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Résumé. — Nous étudions la régularité conormale de solutions bornées d’équations
semi-linéaires strictement hyperboliques dans des domaines & bord diffractif:

Pu = f(z,u) dans X, ulox=0, u € Lis.(X).

Si X_ C X et X est le domaine d’influence de X_, nous considérons des solutions
u telles que singsupp(u) N X_ N &X = 0 ; de plus nous supposons que u [x_ est
conormale par rapport & une hypersurface caractéristique lisse, le front entrant.

Dans le cas de I’équation linéaire f = 0, le support singulier de u est contenu
dans la réunion du front entrant et du front réfléchi obtenu par les lois de optique
géométrique. Ces deux surfaces caractéristiques sont tangentes a l’ensemble des
rayons rasants, le lieu des points ol les bicaractéristiques entrantes sont tangentes
au bord. Dans le cas semi-linéaire, nous démontrons que si de nouvelles singularités
apparaissent alors elles apparaissent sur le demi-cone caractéristique au-dessus de
Iensemble des rayons rasants. En fait, le théoréme de régularité conormale établi
dans cet article est beaucoup plus précis.

Pour illustrer notre propos, nous choisirons pour P l'opérateur des ondes &
coefficients constants et pour X le produit de R; et de l’extérieur d’'un obstacle
strictement convexe. Alors X_ = X N {¢t < —T}. Comme donnée initiale, on pourra
prendre une primitive locale de ’onde plane §(t — (z,w)) avec T suffisamment grand.
La géométrie de ce probléme est figurée sur les schémas 1.1 et 1.2.

Abstract. — We study the conormal regularity of bounded solutions to semi-linear
strictly hyperbolic equations on domains with diffractive boundaries:

Pu= f(z,u) in X, ulox=0, u € LS (X).

If X_ C X and X is the domain of influence of X_ we consider solutions such that
singsupp(u) N X_ N&X = 0 and further suppose that u[x_ is conormal with respect

to a smooth characteristic hypersurface, the incoming front.

For the linear equation, f = 0, the singular support of u is contained in the
incoming front and the reflected front obtained using the rules of geometrical optics;
these two characteristic surfaces are tangent at the glancing set, the locus of points
at which the incoming bicharactersitics are tangent to the boundary. We prove that
in the semi-linear case the only new singularites which may occur appear on the
characteristic half-cone over the glancing set. The actual conormal regularity result
presented in the paper is considerably more precise.

Our assumptions are best illustrated by taking for P the constant coefficient wave
equation with X the product of R; and the exterior of a strictly convex obstacle.
Then X_ = X N {t < —T} and for the initial data one can take locally an anti-
derivative of the plane wave §(t — (z,w)) with T appropriately large. The geometry
of this problem in two space dimensions is shown in Figures 1.1 and 1.2.



TABLE OF CONTENTS

Introduction and statement of results

Diffractive geometry

Resolution of singularities and the conormal spaces
Microlocally characterized spaces of distributions
Refined estimates in the past

The extension property

Estimates for the Dirichlet Problem

Proof of the main theorem

Glancing hypersurfaces and b-geometry

b-Sobolev spaces

Bibliography

15

25

47

65

81

117

121

127

129






1. INTRODUCTION AND
STATEMENT OF RESULTS

The purpose of this paper is to describe the conormal regularity for a class of mixed
problems for the semi-linear hyperbolic equations.

The study of C* regularity of solutions to non-linear wave equations has had two
main directions: finding estimates on the strength of the anomalous singularities, i.e.
those not present in the linear interaction, and obtaining geometric restrictions on the
location of singularities. Our work is of the latter type. The strength of singularities
for non-linear mixed problems has already been investigated with considerable success
in [45, 10, 21, 48]. The estimates on the location of singularities are much finer, so
stronger assumptions are needed on the incoming waves or the initial data. The most
striking example of this was provided by [2] where it is shown that wave-front set
restrictions alone still allow the self-spreading of singularities, making the singular
support propagate essentially in the same way as the support of the solution. Thus, in
full generality, the location of singularities cannot be related to the original geometry
except in a trivial way. A technically more challenging construction of a similar
example for gliding mixed problems was then given in [47].

The appropriate class of distributions to consider for the incoming waves or
the initial data are the conormal distributions, as was first noted in [6]. The
conormal distributions appear naturally in the linear theory and are a subclass of
the Lagrangian distributions motivated by geometrical optics. The interaction of
conormal waves for interior problems has been investigated in [40, 32, 7, 9, 3, 42, 34]
and the formation of non-linear caustics in [18, 19, 11, 27, 43, 44]. For mixed
problems, with only transversal reflections allowed, it was shown in [4, 5] that no
anomalous singularities appear. One should also mention that examples of ‘new’ non-
linear singularities were provided at an early stage in [39]: namely, the interaction
of three plane waves carrying conormal singularities produces a conic surface of
new singularities propagating from the triple interaction point. However, in more
complicated settings such as the propagation of the swallowtail or diffraction, where
the ‘new’ cones are expected, no examples have yet been constructed. For the
interior problems the methods developed in [20] provide a systematic approach to
such constructions. Energy estimates used in the work on the lifespan of solutions to
semi-linear hyperbolic equations [15, 22] are also, in essence, of conormal type.

If ¥ C X is a C*™ hypersurface in a C* manifold X, let V(X, X) be the Lie algebra
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of C* vector fields in X tangent to ¥. The space of distributions of finite L?-based
conormal regularity with respect to X is then defined by the stability of regularity
under the applications of the elements of V(X, X):

LLIE (X, D) ={ue Ly (X) : Vi---Viue L3 (X) for | <kand V; €0V(X,%)}.

This modifies the definition of the Sobolev space H(x) by placing some geometric
restrictions on the differentiations. Nevertheless, as observed in [32], bounded
conormal functions have very good multiplicative properties in view of Gagliardo-
Nirenberg type inequalities.

Let us now consider a mixed hyperbolic problem with a diffractive boundary (see
chapter 2 for a review of definitions). Our object of study is the semi-linear equation:

Pu = f(:c,u) in X, ul@X =0, UIX_ = Uop (11)

where f is a C* function of its arguments, P is a strictly hyperbolic operator, X is a
C* manifold with the boundary X, X_ = {z € X : ¢(z) < —T'} with ¢ € C>°(X)
a time function for P and the time T fixed.

The initial data is assumed to be conormal to the incident front F. The reflection
rule of geometrical optics produces the reflected front R. With the motivation coming
again from the geometrical optics we define the shadow boundary on 80X as

I'=8XNcl[RNF\dX].

The front obtained from the nonlinear interaction is the forward half-cone, Sy, of
P—bicharacteristics starting on I'. Let us also denote by D, and B, the two
components of the set of glancing characteristics on Sy. A more detailed discussion
of the fronts is presented in chapter 2. Fig. 1.1 shows three different time slices and
Fig. 1.2 is a space-time picture. Note that R and F' are hypersurfaces with singular
boundaries.

The crudest form of our result is
Theorem 1.1. — Let u € L>°(X) be a bounded solution of (1.1) with
ug € IoLE (X _; F).
Then
WFy(u) C 'N*RU N*F U ®N*S, U °N*B, U °N*D, U *T# X \ 0

We refer the reader to [25] and [14], Sect. 18.3 for the definition of the b-wave front
set, W Fy, which reduces to the ordinary WF away from the boundary 8X. We use
the natural map 7 : T*X \ 0 — ®T*X \ 0 (see chapter 4 and the references given

above) to define *N*% = 3(N*Z).
Theorem 1.1 immediately gives the singular support statement:

Corollary 1.2. — Under the assumptions of Theorem 1.1

sing suppu C FURU S,.
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Figure 1.1. The fronts projected to the space variables at fixed times

Since the data wg is conormal, one would like to describe precisely the conormal
regularity of the solution u. In fact the proof is based on the construction of an
appropriate space with good multiplicative and propagative properties — see chapter 3.
Since the precise definition of this ‘strong’, but not quite conormal, space is rather
involved we shall content ourselves with a weaker statement here, referring the reader
to Definition 3.2 and Theorem 8.2 for the full result.

Theorem 1.3. — Letu € L (X) be a bounded solution of (1.1) with

loc
up € I LE (X _; F).
If Q is an open subset of X such that
QN(D;+UB) =10
then
ulo € IeLioo(Q, F) + IeLioo(, R) + I Lo (2, 54).-

Already in the transversal case this is slightly stronger than the result in [4] as
conormal singularities with respect to the boundary are excluded.

Our conclusions are concerned purely with the L2-based regularity. The present
existence theory [45] requires higher Sobolev regularity for up to guarantee local
existence of bounded solutions, so one needs to assume ug € Iy L} (X_; F)NH(s)(X-)
for s > n/2. However, the conormal results described above should lead to an
improvement in the style of [41]. It should be noted that our present method does
not treat the fully semi-linear equation Pu = f(z,u,Vu), essentially because the
iteration procedure in k proceeds in steps of 1/2.
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Figure 1.2. The forward half-cone and the glancing boundaries B and D.
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2. DIFFRACTIVE GEOMETRY

First we describe the interaction of a characteristic hypersurface for a second-order
hyperbolic operator with a bicharacteristically concave (diffractive) boundary. In
particular the reflected front is shown to have a cusp singularity when continued
across the boundary.

Let X be a manifold with boundary equipped with a pseudo-Riemannian metric
of hyperbolic signature, +, —, —, — . ... The metric symbol p € S?(T*X) is therefore
a polynomial of degree two on each fibre and it can be reduced, in linear coordinates
in each fibre, to

22— ... € dimX=n+1.

The boundary of X is said to be time-like if p is negative-definite on N*0X; this is
always assumed below. It will be convenient to assume that X is time oriented; this
amounts to the continuous selection of one of the solid cones, p > 0, in the fibres. A
function t € C*°(X) is a time-function if p(dt) > 0.

The assumption that 60X is time-like means that it carries an induced pseudo-
Riemannian metric of hyperbolic signature. If g is the dual quadratic form to p, on
TX, then gs = g[rsx fixes the induced structure. Let ps denote the metric symbol

on T*90X. Set
I = {ps >0} =3Iy UIN_

S ={ps =0} in T*0X\0
& = {po < 0},

respectively the hyperbolic, glancing and elliptic regions of T*0X\0. The time-
orientation of X induces a time-orientation of X, giving the decomposition of the
hyperbolic region.

The restriction to the boundary of the characteristic variety

E={p=0}CT*X\0
projects onto H UG = J( :
So=SNTX ~>HUS. (2.1)

Here o* : Tjx X — T*0X is the pull-back map induced by the inclusion X < X.
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The map (2.1) is a fold, 2 — 1 over 3 and 1 — 1 over §. To see this, note that
T34 X — T*0X is the quotient map with respect to N*0X. The restriction of
p to each fibre of ¢* is of this form

p=1"ps —n? (2.2)

where n : T;x X — R is the symbol of the inward-pointing vector field, V, satisfying
9(V,-) = 0 on TOX, g(V,V) = —1. Thus ps > 0 on the range of t* on X5 and the
involution exchanging the points in ¥5 with the same image satisfies

Ig: X5 Ea, Ign = —n, v Iy = L (2.3)

Let # 4,9 be the preimages of 3+ and $ under ¢*, so in particular ¢* : G+ Gis
an isomorphism.

The projection ¢* can be expressed symplectically. Let z € C*°(X) be a defining
function for X and let ¢ € C°(T*X) be its lift to T*X. Then the Hamilton vector
field H, satisfies Hyq = 0, i.e. H, is tangent to the leaves of .* : Tjx X — T*0X.
Since the leaves are tangent to ¥ exactly at g,

g={p=0,g=0, {p,q} =0}

where {p,q} = Hpq = —Hgp is the Poisson bracket. The simple tangency of H, to
Y5, corresponding to the fact that (2.1) is a fold, is expressed by
{g,{a,p}} <0.

This holds throughout T3y X, since 0X is time-like. Applying H, to both sides of
(2.2) and noting that {g,n} is the lift of a function from the base, so {q,{g,n}} =0

{a,p} = —2n{q,n}
{qv {(Lp}} = _2{Qv n}z'

Thus (2.2) can be written in terms of Poisson brackets

_ {q,p}?
PPt S {a,p}}

The denominator {q,{g,p}} is also the lift of a function from the base. Thus, if the
involution is extended to Ty X so that the second two conditions in (2.3) hold, then

I3{q,p} = —{a,p}- (2.5)

The points of § are further distinguished by the behaviour of the second Poisson
bracket:

(2.4)

Gg={me @;ng(m) > 0}
= {m € §; H2q(m) = 0} (2.6)
g,={me @;ng(m) < 0}
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These, and similarly their images in § under *, are respectively the sets of diffractive,
higher-order and gliding points. The boundary of X is said to be diffractive (or
bicharacteristically concave) if § = G4; this is always assumed below.

Consider the differential of the involution Iy on Xy, at §. In particular note that

the type of a glancing point, in the sense of (2.6), is reflected in:

{p.{p,a}}
o)y = Hy =20 Laoy @1)
In fact, since t*- I = I, the projection of (I5).Hp under ¢* is equal to the projection
of Hy,. The null space of the projection is spanned by Hy, so it is only necessary to
compute the coefficient on the right. Applying both sides to {g,p} and using (2.5)
gives (2.7).

We will be concerned with the local geometry near a base point g € 80X, so we
are free to shrink X as necessary. In this sense the assumption that the boundary
is diffractive is really that § N T; 0X C 94. In case X = R x Y carries a product
metric, g = dt? — h, with h a Riemannian metric on Y, the boundary is diffractive
if and only if 8Y is strictly geodesically concave. In case Y = R™\K where K is an
open, smoothly bounded region and h is the Euclidean metric this is equivalent to
the strict convexity of K (cf. [26]).

It is convenient to consider an extension, X , of X to a manifold without boundary.
A corresponding extension of this pseudo-Riemannian structure will be denoted p.
The defining function z € C*°(X) extends to & € C*(X) and if X is chosen small
enough, 0X = {Z = 0} is an embedded hypersurface. The freedom to shrink X will
be used to choose X to be bicharacteristically convex.

In X we consider a closed characteristic hypersurface for p, passing through this
point zg. Thus F' C X satisfies

F={f=0}, feC®(X), df #0on F, p|y.5 =0. (2.8)
Since 0X is time-like, N*0X and N *F are linearly independent and hence
Fy=FUJX — 80X

is an embedded hypersurface. Since N*ﬁa =* (Ngxﬁ), with Ngxf‘ C Xy, we have

N *Fy C H =3 US. For us the most interesting points are the diffractive points for
F.

Lemma2.1. — If F C X is an embedded characteristic hypersurface then
'=n~x (N*ﬁa N 9d> C ﬁa (2.9)
is an embedded hypersurface.

Progf. — Consider the function 4 = {p,q} restricted to N *F. By assumption
N*F C ¥ so H, is tangent to it. At any point of 84 N N3y F, {p,q} = 0 and
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{p,{p,4}} > 0, by definition. Thus Hp{p,q} # 0 and so dy # 0 on N*F. Since
Hypq = {piq} = 0 on 84, ¢ and {p,q} have independent differentials on N*F at
94N N3y F. It follows that

NixFN8yC N3y F

is an embedded hypersurface. Since it is homogeneous it projects to the embedded
hypersurface T'. a

The characteristic hypersurface F is to be thought of as the extension through the
boundary of X of the incident front. It is important to separate which parts of F' are
intrinsic and which depend on the choice of extension—the latter being necessarily
irrelevant to the final form of the results.

By assumption N *Fis closed, so

def
Ap =

N*F\0
is the union of the maximally extended bicharacteristic intervals, i.e. integral curves
of Hp, through each of its points. Set

F = {z € F N X; the bicharacteristics through N F stay in T*X for t < t(z)}.

Here, t is a time function. The submanifold I' C F is the singular locus in F near
which it is not even a manifold with corners. Indeed the boundary of F' consists of
two smooth manifolds with boundary (each of codimension two in X)

OF =F3UB, FsNB=0Fy3=0B=BnNoX =T. (2.10)

Here Fj is half of Fa and B, the shadow boundary, is the projection into X of the
forward half-bicharacteristic starting at points of N/ F.

The main objective of this section is to consider the reflected front generated by F
and 0X. To do so we need to recall the notion of a hypersurface with cusp singularity.
By definition a cusp hypersurface is one which is diffeomorphic to C = {z3 = 2%} in
R”, n > 2.

A simple characterization can be obtained in terms of the closure of the conormal
bundle to the regular part of the hypersurface. As is easily checked

Ac = cIN*{z3 = 22,25 > 0} C T*R™\0

is a smooth, homogeneous Lagrangian. Now a point of the singular locus, L = {z1 =
I = 0},

m: Ac — R™ has differential with (2.11)
two-dimensional null space at Ac N T;'R",l € L. ’

Moreover, any vector field V on T*R™ which is tangent to T;*R", independent of the
radial vector field and takes the value v € T;yAc N T, (TR™) at m is only simply
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tangent to Ac at m. Conversely (see Arnol’d [1]) if these two conditions hold for A¢
near m € T;'R™ N A¢ then the projection of a neighbourhood of m € A¢ is a cusp.

We use this abstract characterization, with R™ replaced by X (as can obviously be
done) to analyze the reflected front.

Set A% = I5(N3x F) and let Ag be the H,-flow-out in T*X\0 of A%. Thus A is
just the union of the maximally extended H, integral curves passing through points

of AY,.

Proposition 2.2. — If FcXis a smooth characteristic hypersurface for which xo €
0X is a diffractive point then, for X shrunk to a sufficiently small bicharacteristically
convex meighbourhood of xg, AR c T*X \0 is a smooth closed conic Lagrangian
submanifold which is the closure of the conormal bundle to a hypersurface with cusp
singularity, R, through xg.

Proof. — To see that A R is smooth it suffices to observe that H, is not tangent
to the initial surface 1~\0 By definition /~\ is the image under I of Naxﬁ and
F\O C 84, by assumption. Thus H, is tangent to N} XF at N, F\O and hence
(Ia) Hp is tangent to A at Ny, F. Now H, cannot be tangent to NaXF\O (smce
this would mean F was tangent to 8X) and hence cannot be tangent to A9 R at Ng F
From (2.7) it follows that Hy, is not tangent to A9 R» SO Ar C T*X\0 is smooth, closed
and conic if X is chosen small enough. It is also invariant under reflection in the
fibres.
This discussion shows that both (I5).H, and H, are tangent to Ar at N;Oﬁ , hence so
is H,. Since H, is tangent to the fibres of T*X and is non-radial at N;OF\O it follows

that the differential of the projection 7 : Ar — X has null space of dimension
of at least two. In fact 7. : T;uAr —> Tr(m)X has rank exactly dim X — 2, since

Tt me% — Tr(m)0X has rank dim0X — 1 at m € N;‘oﬁ\o. Finally note that H,
is only simply tangent to Ag at N F\0 since it is only simply tangent to X. Thus
AR is the closure of the conormal bundle of a hypersurface with cusp singularity O

Clearly the cusp locus L C R passes through I'. It is important to check that

I\l € X\X and L is simply tangent to 8X at T (2.12)

Since the tangent space to L is just the image of the tangent space to Ag under the
projection, L is certainly tangent to 0X at I'. The reflected front R N X° is smooth
so the inclusion follows. To see the simple tangency we first choose coordinates so
that X C RS x Rp~3 and

R={(w,y):af=23}nX, T={(z,y):y=0}nX.
As in Proposition 2.1 of [34] it then follows that

= a(4€3 — 92263 + &ap1 + (n,5)), a # 0. (2.13)
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The cusp locus is given by L = {2, = 3 = 0}NX and if X = {p = 0}, X = {p > 0}
then the tangency of L to X at I' implies
0z,p(0,y) = 0. (2.14)
The points m = (0,y;(0,0,1),0) € "X \ 0 are diffractive:
p(m) = p(m) = {p, p}(m) = 0, {p,{p,p}}(m) > 0.
Hence (2.13) and (2.14) show that
02,p(0,y) > 0, (2.15)
and consequently
p(z,y) = z3 — g(21,3,y), 0,9(0,y) = g(0,y) = 0.
Since L\ T C {p < 0} we also see that g(z1,0,y) > 0 and thus we can write
9(21,23,9) = g1(21,y)a] + x3g2(21,73,9). (2.16)
The restriction of R to 8X is given by
Ad(BXNR\F)U(BXNF)=RNOX ={(z,y) € X : g(z1,23,y)° = 23},
and using (2.16) we see that

Fnox = {(z,y) 123 = G(iﬂlvws,y)gl(iﬂl,y):‘ + F($17$37y)91($1,y)47
z2 = g(v1,3,9)}, G(0,y) # 0,

{(z,9) : 23 = —G(z1,23,9)91(21,9)* + F(21,23,9)91(21,9)*
r = g(r1,23,y)}

A(R\F)no

The Lagrangian N*(F N 8X) is simply tangent to 8 C T*8X \ 0 and since
N*(cl(R\ F)N8X) is related to it by the billiard ball map (see (2.19)) below the two
Lagrangians are simply tangent at N*(FN8X)N$ (see the equivalent model case in
chapter 7). Hence 0,,91(0,y) # 0 and thus in view of (2.16), L is simply tangent to
80X = {z2 = g(x1,23,9)}.

In the case of the wave equation in the exterior of a convex obstacle Proposition
2.1 was given in [49]. In that case the cusp locus L projected to the space variables
is the envelope of the reflected rays, see Fig. 2.1.

In the remainder of this section we review the geometry of the fronts. With the
possible exception of Proposition 2.4 b) (see [34]) all the facts are essentially well
known and are implicit in the proofs in chapter 3 and chapter 7 below.

The intersection properties of F and R are described in

Proposition 2.3. — Let B be the shadow boundary defined by (2.10). Then

10
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F R

X

Figure 2.1. The extended reflected front projected to the space variables at a fixed
time.

1. FNR=(FndX)UB
2. AR and Af intersect cleanly and AR NAp =TEX\ONAr=TEX \0NAF.

It is important to remark that although the extension p was used in the definition
of AR, the part of R corresponding to the true reflection is determined by p and F'
alone. It will be denoted by R and is defined as follows. Proposition 2.3 implies that
R\ F has four components, two of which are disjoint from L. We now take as R the
closure of the one for which RN8X = FNOX. An alternative definition is provided
by taking

R={z€ RNX:*(B; NTixX \0) C *(N;xF), where B is the bicharacteristic
through N*R with t < t(z)}.

The bicharacteristic cone over the shadow boundary in 8X, I' is now defined in
the standard way, as the union of the maximally extended bicharacteristic intervals
over N*I'N X. We denote it by As and its projection by S. We note however that
S|x depends on the extension p. Thus we need

Proposition2.4. — The set D = cl[m,(exp Hp(N*I'N8))\B] is a smooth codimension
two submanifold of X, tangent to 0X at I' and intersecting B cleanly, BN D =T.
The components St and S— of S\ (BUD) such that S N(X\ X) = 0 are determined
by T’ and p.

11
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We can separate the forward and retarded components, S4, respectively, and similarly
denote by .§+ the full forward cone over I 'We also denote by By and Dy the
intersections of B and D with cl S respectively, see Fig. 3.1

In the non-linear interaction more geometry is present. In addition to the cone
over I' we will also have to include, in a very residual way, smooth characteristic
surfaces tangent to S at D — see chapter 3. Thus we define

R = {H c X smooth hypersurface : p|y+x = 0, Np\rH = NB\Fg}, (2.17)

with the first easy observation that (5.4 H = D. By the analogy with the previous

notation we also write Ag def N+ g \ 0.

The intersection properties of As and Ag, Ar, Ay are given in
Proposition 2.5. — The following Lagrangian submanifolds

1. Ag and Ap intersect cleanly at ArNAs = As N N*B,
2. As and Ag are simply tangent along ArNArp = AsNN*B,
3. As and Ay intersect cleanly at As "N N*D.

The restrictions of the characteristic (singular) surfaces R and S to the boundary

can be related to Fy = FNOX and T C 8X respectively. Thus we define the following
smooth Lagrangian submanifolds of 7*0X \ 0:

Aoo = N*T', A1 = N*(I?‘OBX), Az = N*(Cl(ﬁ\ﬁ) ﬂ@X), Az = N*(HﬂaX),
(2.18)

and
A21UA23=N*(§O(9X), Al ﬂAggZ(Z), AisN Ay = 0.

Using the time function restricted to the boundary, t [ 80X, we then obtain
Lagrangians with boundaries:

Af=Ayn{£t>0}, j=13,i=123

The relations between these Lagrangians in then given by the billiard ball map
5%t 1 1*(Zp) = 1*(Zo) (see [35, 36]) which is two valued (+) and has a square root
singularity over §. To recall the definition of § we introduce the natural map

Yp: o — X/Hp

which, same as 1* above, has a simple fold. Thus we can associate to it an involution
I, exchanging the points with the same image (as I did for +*). The two valued map
6% is then defined by

6ot =1,

12
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The relation between the Lagrangians with boundaries is then given by
AL =0FAL, AL UAE =6%A,. (2.19)

Finally, we relate the geometry described above to the differential equation. We
assume that the principal symbol of a strictly hyperbolic operator P in X, p, satisfies
the glancing assumptions with respect to the boundary 0X defined by g. On the
extension X, we introduce a strictly hyperbolic extension of P with the symbol p.
We will also denote it by P keeping in mind, however, the freedom we have in its
choice. The past X_ C X is defined so that X is its domain of influence, and

FNnX_ =FnX_.cXnX_-¥x_, FnX_noax =0.
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3. RESOLUTION OF SINGULARITIES AND
THE CONORMAL SPACES

As described in chapter 2 the interaction geometry is quite complicated as it involves
cusp and conic singularities. To define a conormal space with reasonable propagation
of regularity for P, one follows the method originating from [32] and subsequently
applied in [27, 34, 42, 43, 44]. Its essence is the resolution of singularities and
the use of the vector fields tangent to the lifted geometry in the resolved space.
The insistence on conormality is motivated by the good multiplicative properties of
bounded conormal functions, as already indicated in chapter 1 and the conviction
that conormal regularity excludes any hidden singularities that could produce self-
spreading.

For our problem the method of resolution is similar to that used in [34, 44] and it
involves a non-homogeneous blow-up. To describe it let us consider

R*"=R3 xR"™3, 2= (zr,y), ze R,z €R3 ycR"3
on which we define an R —action T51_2_3:
T§_2‘3(;v,y) = (6x1,0%z2,8%23,y), 6 € Ry (3.1)

We start with a definition of spaces of functions with given non-homogeneous orders
of vanishing:

M}7P(X) CO®(X), ue M 3(X) = Tju=0(8"), 650  (32)

This allows us to the define a filtration of the differential operators in terms of
homogeneity. Thus

QEeDifff |, 5(X) = Q: M} > 3(X) — M7 3(X) for r2>p.

The homogeneous differential operator important in our discussion is Friedlander’s
operator in R3:

Py =4D2, — 9z2D2, — 6D,, Dy, .

15
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Proposition 3.1. —  There exist coordinates (z,y) € R*, z € R3,y € R"3 in X such
that
P=P+Q, QeDiff  , 5(X), (3.3)
L,
OX = {(@,9) 02 — 723 = 0}, (3.4)

and with the notation of chapter 2 and any H € R given by (2.17)

L. T={0,9):yeR*3}NX

2. R={(z,y):23 -2} =0, 2 € R® y e R"3}

3. ﬁ = {(x,y) 1 2x3 — 3x01y + .’L'? +f1=0,z¢ R37y € Rn—3}, f4 € Mi_z_g(Rn)
4

.8 = {(z,y) : 24+ 8x1z3 — 623z, — 32 + 55 = 0, z € R3,y € R 3},
s5 € My—273(R™).

5. H={(z,y) : 21+ hy =0}, hy € My *3(R").

Proof. — By Proposition 2.1, Risa surface with a cusp singularity and thus we
can find coordinates (z,y) such that R is given by b). The cusp locus is then
L = {2 = z3 = 0} and as noted in (2.12) it is simply tangent to 8X at T,
L\T C X\ X. If X is given by p(z,y) > 0 near (0,0) then by (2.15) P,(0,0) > 0.
We conclude that

p(z,y) = z2 — g(z1,23,y), 92,9(0,y) =0,

near (0,0). We expand g into go(z3,y) +z191(z3,y) +2{g2(21, 23, y) where go(0,y) =
91(0,y) =0 and g2 > 0. (since L\T' C X \ X). Completing the square we write g as

1 (g1(zs,)?) | 1 1 gi(ws,y)  \°
(90(963,3/) - Em> +7 <2w1(92($1,$37y)) Zm) -

[N

+

We then change variables by replacing xz; by the term in the second bracket and
observe that the term in the first bracket, say g, vanishes for all ;3 when z3 = 0.
We can now apply Theorem 4.1 of [1] to obtain a cusp preserving change of variables
(z2,z3) depending smoothly on the parameters (z1,y) and putting zo — g(z1,z3,y)
to 2. Thus in the new coordinates p(z,y) = z2 — 22 /4 as desired.

If R = {z% — 23 = 0} is characteristic for a strictly hyperbolic operator P then
one easily sees that P = Py + Q, Q € Diffj ; _, 3 — see Proposition 2.1, [34]. We
observe also that neglecting Q produces errors of higher homogeneity (see th(i proof

of Proposition 2.1 [34].). Since the right hand side of c) is the reflection of R with
respect to 0X obtained using the symbol of Py, we conclude that

F={(z,9): f(z,y) =0}, f(z,y) =223 — 32221 + 2} + fa(z1,22,9), fs € Mi:‘:‘)-
3.5
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The same conclusion can be made about S:

S={(z,y) : q(z,y) = 0}, q(z,y) =z} + 82173 — 62772 — 323 + g5, g5 € MQ‘Z‘B-
3.6)

The surface B is given by SN F N R which up to terms of higher homogeneity
is parametrized by (¢,t2,t3,y). The codimension two surface D consists of
characteristics of P tangent to X and not contained in B. Neglecting @ in P, D one
would obtain D = {(0,0,t,y)} (which would lie in 8X). Since that describes D up
to terms of higher homogeneity we conclude that D = {(f1(t,y), f2(t, y), . y) [t| < €}
and it easily follows from (3.6) that Vq [p= ¢[(8, F(t, ), falt,y) + O@)], fi € C.
Since H is smooth and tangent to S at D, it follows that its normal at D is
given by (8, f1, f2) + O(t). The implicit function theorem immediately gives e) with
h = h(zq,z3,y) satisfying h(0,0,y) = 0, that is h € My~ 273(R™). a

We will consider the surfaces on the right-hand side as the model geometry. The
sense in which they are models can be explained as follows. The model surface for F
in ¢) is characteristic for Friedlander’s operator Py and the cusp R is obtained from
that model surface by reflection (according to the rules of geometric optics given
in Proposition 2.1) through the boundary z; — %x% = 0. Note that this surface,
although microlocally diffractive near N *I:f, is not globally diffractive for Py : it
contains the characteristic {x; = z2 = 0}. Thus we see that @ # 0 and essentially
it has to contain a term of the form —cszfE1 which destroys the degeneracy of the
characteristic {z; = z2 = 0}. The surface defined by the right hand side of d) is the
cone over 0 € R® with respect to the characteristic flow-out by Py.

In view of Proposition 3.1 it is natural to resolve the geometry using the 1-2-3
blow-up given by the R, —action (3.1). Thus we define the space

X, =(X\DU(S?_ 5 s xR 3) >Ry xS, 5 xR*3 (3.7)

12/4

where S_,_3 is a non-round sphere {w € R®: 37, ., 3w;”'* = 1} and where the C*°

structure on X; is given by the second identification (see [28]). We now have the
blow-down map

)?1 ﬂ) )’Z', (r,w,y) — (7‘0.11,1"2(41277'3003??/)

which is a diffeomorphism on X; \ 8X;. Thus following [28] we define the pull-back
of Y to be

BrY =d[B7 (Y \T)], Y CX.

Propositions 3.1 imply that ﬁlF /BlS and [5’1 0X are smooth hypersurfaces in X1

1ntersect1ng the boundary 0X 1 cleanly, and GF Rhasa cusp singularity transversal to
0X1. Also,

BiF N 0X, = B {2xs — 3zaz1 + 28 = 0} N 0X],
6{508;{1 = ﬂ;{l‘% + 813 — 61’%(1?2 - 31‘% = O} N 6_521,
BiHN X, = B {x, =0} NOX;.

17
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The boundary of the resolved space 0X 1 and the above intersections are shown in
Fig. 3.1.

BrS_

Figure 3.1. The geometry on 0X 1 as seen from the positive x5 direction.

The lift of the operator P is of the form:
riB1,PB; = Py € Diff}(X1), o2(Pr) T:»T5~ %,= o2(r*Br. PofSt) be(;Y %
X1 1

where we refer the reader to [25] (and also [14], Sect. 18.3) for the definition of the
totally characteristic operators, the compressed cotangent bundle and the b-symbol
map.

As the blow-ups described above depend on the particular choice of coordinates,
or alternatively the R —actions, it is important to note certain invariance properties.
To state them, let ¥ : X — X be a local diffeomorphism such that x(I') ¢ T'. For
simplicity we shall consider the 1-2-3 action given by T5 = T51_2_3 only and require
that

[Id— (Tsox) ™ o(xoTs)] : M}™27% — M}777%, forall 7€ N. (3.8)

This almost homogeneity condition is now present in

Proposition 3.2. —  Any diffeomorphism x satisfying (3.8) lifts to a boundary
preserving diffeomorphism

Xlt)?l—))?l
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Also, if a diffeomorphism preserves R and S in coordinates giwen by Proposition 3.1,
then it satisfies (3.8).

For the proof and further geometric results needed in the study of interior propagation
we refer the reader to [34]. In chapter 6 we will however need the following result:

Proposition 3.3. — If p is a defining function of X then each of the following can
be obtained with a diffeomorphism satisfying (3.8):
Z) H = {:I?l = 0}, § = {93% - 4:171$3 = 0}, B = {1:3 =Ty = 0}, dp fr"—‘ d(l?z,
it) F = {223 — 37129 + 23 = 0}, R = {a? — 23 = 0}, dp|r= dzs + adzs.
Proof. — A diffeomorphism leading to ¢) is already essentially obtained in Proposi-
tion 3.3 of [34] with the almost homogeneity (3.8) guaranteed by construction. This
implies that

dpr= adzy + Bdz3, o #0.
If 8 # 0, then D = SNH = {z2 = 1 = 0} would be transversal to the boundary
which contradicts the glancing assumption. Thus, 8 = 0 and by rescaling a = 1.

For 4i) we first recall from Proposition 3.1 b) that F is given by 2z — 3z129 + 23 +
hy(xy,z2,y) = 0, hg € M}7273. Also, B = cl(RN F \ X) is up to terms of higher
homogeneity given by the normal form (t, 2,3, y), that is, for small ¢:

B = {(t,*(1 +tg(t, )%, (1 + te(t, 1)), )},

where we used the exact form of R. Thus changing z; to z1(1 + z1¢(z1, y)) puts B
into its normal form. Since the defining function of E has to vanish there and its
gradient has to coincide with the normal of R (R and F are simply tangent along B)
we conclude that

h4(t,t2,y) =0, am1h4(t’t2a y) = 8$2h4(t7t2’ y) =0,
and thus hy(z1,Z2,y) = (22 — 22)%h4(z1,22,y). A simple applications of the

homotopy method concludes the proof. In fact, let us put f; = 2x3—3z2z; + 3 + shy.

We want to find a cusp (R) preserving family of diffeomorphisms such that
X:fs=f07 0<s< 1.

If V; is the family of vector fields generating s, the required conditions are equivalent
to

Vshs = —hyg, Vs tangent to R.
This is obtained near I" with

_ (.’L’Q - m%)im i
3+ 4szhg + s(xa — x%)(fu);l Ox1’

S

Since the diffeomorphism constructed above clearly satisfies (3.8) we conclude that
p =z — 23 /4(mod M, ~273). O
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Remark 3.4. — In case i) considered in the proposition

p(z,y) = 22+ c1(V)a} + 2(y)73 + cs(W)a} + D aij (Y)ziz; + O (|z*),
1<j

and the assumption that {z1 = z2 = 0} and {z2 = z3 = 0} are glancing easily implies
that ¢1,c3 > 0.
The map ¥(z1,z2,23) = (2z3 + 23 — 3zax1,22 — 3, 321,y) transforms Q to
{4z371 — z3 = 0}, thus the cone on the right hand side of d) in Proposition 3.1 is
essentially symmetric with respect to the interchange of x; and z3. Roughly speaking,
an additional blow-up near 87 (Q NG)NIJX; is needed to undo the asymmetry of the
1-2-3 blow-up.

To introduce it we first change coordinates (using a diffeomorphism satisfying (3.8))
so that 3) of Proposition 3.3 holds. Using the lift of these coordinates, we blow-up

with the 2-1-1 homogeneity the codimension three submanifold 0X 1NBH{z1 =22 =
0,z3 >0} =0X1NB;D4:

552&5{'1&2, B2 = P10 B2

Xy =X\ (X1 NB{Dy) U(S5_11, x R™9),
where S3_;_;, is a half non-round sphere {v € R®: v} +v3 +v3 = 1,13 > 0} and
Brz(p, v, y) = (p°v1, pra, pv3, y),
with the coordinates in X 1 near 0xX 1 N Bi D4 chosen so that
Bi(X1, Xa,m,y) = (rX1,7Xa,7°,y) € X.

The manifold )?2 has a codimension two corner and 8)?2 is shown in Fig. 3.2.

>R

N G SN

fﬂ

Figure 3.2. The hierarchy of blow-ups

20



SEMI-LINEAR DIFFRACTION OF CONORMAL WAVES

Since S and H are simply tangent at D another blow-up is still needed:
> B3 g Bz v B ¥
X3 2 Xy =5 X1 5 X, 3= 010120 fs.

Here, the line 85 D is blown-up with the 2-1-0 homogeneity in the coordinates where
BHNN = {X; =0}NN and 835NN = {4X; — X2 = 0} N N where N is a
neighbourhood of 85Dy — see [43].

There are additional tangencies and singularities that have not yet been resolved:
the tangencies described in Proposition 2.5 persist in X, at B1B as does the cusp
singularity of ,B{ﬁ at B7 L. The former is resolved using a succession of normal blow-
ups [33] (see Fig. 3.3) and the latter using the 3-2 blow up [43|, only at 8} B4 and
B% L, respectively (8f L4+ = Bf(L N{x1 > 0}. This leads to the space Xy

X4Eﬁ>)?3ﬁ>5(:, B=04=P3003

see Fig. 3.2.
For future reference we also define X5, analogously to X4 but obtained by applying
the same blow-ups at the lifts of Dy, Ly, By rather than of Dy, L, B, only:

Xs &)X’a &X, Bs = B3 o B3s.

We shall now define the C™-algebra J;L2(X, H) associated to the geometry in
the open manifold X. In the notation we stress the dependence on the ‘artificial’
characteristic hypersurface H € R.

Let us first consider the surfaces in )2'4 obtained from the geometry in X:

/B*ﬁv ﬂ*ﬁa ﬂ*’§+7 ﬂ*(fﬂﬁ\B), IB*(§+D§\B)’ ﬁ*H

where we note that the lifts of By, Dy and L, are included in the boundary of X
Let & be the variety obtained by taking a disjoint union of the five submanifolds
above with 0X4:

§=F"FUBRUBS,UB(FNR\B)UB (S NR\B)UB*HUOX, (3.9)

Ideally, we would want to define Jka()? ,H) as the g-pushforward of the conormal
spaces associated to & which is in fact done for the interior problem. Here, however,
this would be disastrous.

In chapter 5 we shall define K; = K;(e) C X; (see Fig. 5.1) which in some sense
constitutes a ‘non-homogeneous’ past. We can take € small enough so that

BH(FNR\B)C X, \Ki(e) & B(FNOX) C X1\ Kie). (3.10)

Since the all the higher generation blow-ups occur away from K; we can think of it
as a subset of X4 (or 81, K1 = K;).
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8'R e
51* S+
5 6'F
ﬁf*ﬁ ﬁf* §+
Bf* §+
~ ~ *
Y 51*R ﬁ:S_,_ 64 R
A N
*}';‘.’ ﬁ:F
1
ﬁ‘*F“ ~ 64* S‘;’+
R

Figure 3.3. The three normal blow-ups of 5} B

@

Definition 3.5. — For k € Ny, we define

JoLA(X, H) = BAU € L LA(X4;0(X4,8)) : Ulg, € IkL2(Xa, B°F U8X4) Ik, },
where the variety & is given by (3.9) and K1 = K;(€) is given by Definition 5.1 with
€ such that (3.10) is satisfied. The norm is defined using the norm of the lift:

lull gy 2%, 1) = 18 ullpy 22 (%, 0 (Ra9)) + 187Kl 122 (%4 80 FLOR Ik,

We also define J,iLQ()?, H) by demanding that u, Du € JkLg()A(:, H), with the obvious

norm.
For non-integral values of the order of regularity we use complex interpolation and

define:
Jess LA(X, H) = [JhL*(X,H), Jo1 L3(X, H)|s, 0<s<1, (3.11)
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and similarly for J} +&‘Lz()? JH).

This is a pseudo-conormal space as it involves an additional condition in K;. The
corresponding pseudo-conormal space for the manifold with boundary X is essentially
obtained by restriction with an additional singular support condition:

Definition 3.6. — For s > 0, s € R we define

JL3(X) = {u€ L*(X): for every H € R there exists i € J.L*(X, H)
with @ x=u and sing supp'®u N (F’\FUT%\RU S, \Sy)=10}.

We recall that using the regularity function s,(z) (cf. [14], Sect. 18.1), we define
sing supp®u = {x : s,(z) < s} which by lower semi-continuity of s, is closed. The
space J;L%(X) is not a normed space and although it can be made into a Fréchet
space we shall not need this fact here. The L2 _ based spaces are defined in the

obvious way: u € J,L2 (X) if and only if for any x € C§°(X), xu € JsL*(X).

loc

Remark 3.7. —  Although the definition of the blow-up involves the choice of H, it
can in fact be made independent of it. It is also true that away from I the spaces
JsL?(X) is the same as the space defined without including the lift of H in the defining
variety. That statement is non-trivial only near D.

The complications of the definitions are now compensated by the simplicity of the
proof of the following

Theorem 3.8. — The spaces J,L2 (X, H)N L. (X) and J,L2 (X)NLZ (X) given

loc loc loc loc

by Definitions 3.5 and 3.6 respectively are C*-modules and C* -algebras.

In fact, we use the identification of the conormal spaces on the ‘blown-up’ side with
b-Sobolev spaces (see Appendix B) and then apply the well known algebra properties
of those spaces.

As in the earlier work on conormal regularity the difficult part is the propagation
theorem. For the interior problem it is proved in Theorem 7, page 1026 of [34]:

Theorem 3.9. — If the variety S5 in X5 is given by (3.9) with 8 replaced by Bs, and
Pu=f in X, ulg =0, f € (Bs)s(ItL},(Xs,55)),
then

u, Du € (B5)« (I L}, 1oc(X5,85))-

The main result of this paper is the propagation theorem for the Dirichlet problem
and ths, space JyL%(X) — see chapter 8. A simpler refinement of Theorem 3.9 to
JxL?(X, H) will be given in chapter 5.
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4. MICROLOCALLY CHARACTERIZED
SPACES OF DISTRIBUTIONS

4.1. The important notion of solutions to linear real principal type equations
associated to Lagrangian submanifolds was introduced in [13]. That followed a
rich tradition in geometric optics and semi-classical analysis already exploited in
[17, 23] and generalized the notion of oscillatory solutions by recasting it in terms
of propagation of singularities. The control of multiplicative properties required in
the study of non-linear problems made it necessary to introduce a larger class of
geometrically defined marked Lagrangian distributions [27, 30]. Additional motivation
came also from the study of operators with double characteristics and of singular
Radon transforms [12, 38]. For the basic material needed in this paper we refer the
reader to the presentation in [34], chapter 9, while a proper development of the theory
will appear in [30].

The purpose of this section is to extend the notion of marked Lagrangian
distributions in two directions: to sub- and super-marked Lagrangian spaces, the
closely related spaces associated with Lagrangian manifolds with boundaries, and to
marked Lagrangian spaces on a manifold with boundary, M. In the last case we
allow, unlike in [34], certain Lagrangians which are not smooth in ®7*M\0. These
two directions are rather independent at this point, with a rather special connection,
however, which will be exploited in chapter 7.

To make this section self-contained we start with the general discussion of marked
spaces, conducted for simplicity in the case of infinite regularity. We shall then
proceed with the more detailed theory of %- and 2-marked spaces. For our purposes
it will be sufficient to consider only markings by a single submanifold.

Let M be a C* n-manifold without boundary and let Ag,A; C T*M\0 be conic
Lagrangian C'° submanifolds, intersecting cleanly. Then K = AgN A; is a C*®
embedded conic submanifold of Ap, and any such K can be obtained locally as a
clean intersection with a Lagrangian submanifold A;. We define the following marked
Lagrangian varieties associated to this geometry:

Lo = Ao, £1={A0,K}, Lo = AgUA; ={A0UA1\AQQA1, AoﬂAl} (41)
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0

and the corresponding ¥y,

(M)-modules of first order pseudodifferential operators:

\Illlphg(M; &) ={Ae ¥, (M): o (A)|L =0, Hy, (A)

4.2
is tangent to L for all L € £;}, t=0,1,00. (42)

The H(,)(M)-based spaces of (marked) Lagrangian distributions associated to the
varieties (4.1) are defined as

IH(S)(M;.gt) ={u S H(s)(M) AL Aju € H(s)(M)

for A; € \Il:,hg(M;St) and [ € N}, t=0,1,00.

(4.3)

The space on which the iterated regularity is based, H(,) can clearly be replaced
by Hf;)mp or H %‘;)C Suppose now that K = Ag N A; is assumed to be an embedded
hypersurface in Ag. Locally, we can use the following model for the geometry (which

is a special case of a more general extension of Darboux’s theorem [38]): M C R
open, 0 € M and

Ao = T(;Rn\(), A1 = N*{.’II L= =Tp—1 = 0} (44)

In this case one easily sees that U}, (M; &) is the D, (M)-span of

%Dy, ,j=1,...,n t=0 (4.5)
2;Dy,,2nDq,,22D,;, i=1,...,n—-1,j=1,....n t=1
2;Dg;,2nDy, 1,j=1,...,n,1%#n, t = oo. (4.7)
Thus
u € IH(S)(M;£,3) «—=u’ e SLz(ma,g(H,t)—n) (48)
where m, = (1 + [¢]%)%,
_ laep  ag
T IR T AT EP) v g 1

and SL? are the L?(R™) based symbols (replacing L> by L? in Sect. 18.4 of [14]).
Since we have
IH(s)(M;£O) c IH(S)(M7£1) C IH(s)(Maé?oo)

one expects that changing of a = (1 + t)~! in (4.8) will lead to new classes of
distributions which we will call sub-marked Lagrangian for 0 < ¢t < 1 and super-
marked Lagrangian distributions for 1 < ¢t < oo. Since, unlike (4.2) and (4.3), the
definitions using the model metrics g, are not a priori invariant we might have to
allow for more geometric information. This will indeed be the case for the super
marked distributions.

To start we need to review the definition of the k-jet bundle of a manifold Y. Using
the identification of Y with the diagonal in Y x Y,

Y~Ay ={(y,y): yeY}CY xY
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we define for k£ > 0 the following vector bundle over Y :

JFY) =94¥) X)), §(¥) cCP(Y xY) (4.9)
JY)={feC®Y xY): flay, =0} (4.10)

Then J*(Y) = (J*(Y)*)* — Y is the k-jet bundle. If Y C X is an embedded
submanifold of a C* manifold X, then using the pull backof ¢: Y XY — X x X we
obtain a natural mapping J*(X)* — J*(Y)* and consequently J*(Y) — J*(X).
Restricting J*¥(X) to Y we obtain JE£ (X) the jet of X at Y, with the natural inclusion
J*(Y) C JE(X). The inclusion map can be replaced by a more general f : X; — X
which then induces

JEf TR (X)) — JR(XY).

If X =X, =Xsand Y7 CY C X are embedded submanifolds, we say that f
preserves the k-th jet of Y at Y7 if

T F(J3, (Y)) C J5, (Y),

where J§ (Y) is naturally included in J§, (X).
We now extend the notion of marked Lagrangian varieties of the type shown in
(4.1) to the jet Lagrangian varieties:

€9 = {Ao, T VA ) (4.11)

where we include the index ¢t,0 < t < oo in the variety and allow the convention
JOY)~Y.

Definition 4.1. — For 0 <t < oo and Ag, A1 given by (4) we define the t-marked
Lagrangian spaces associated to the jet Lagrangian varieties 53? given by (8) as

IH (M, £)) = {u € Hi (M) : (¢u)" € SLA(ms, g110)-1) for ¢ € C°(M)}.

For the harder finite regularity case and ¢ = 271, 1,2, the invariance properties
will be given in Proposition 4.1. In Proposition 4.3 we shall give, for the same ¢’s and
finite regularity, the proof of the following identity, quite easy in the case considered
now

TH (M, £o0) = ITHy (M, £}) + IH 5 (M, ,@g), 0<t< oo0. (4.12)

where £} is the variety obtained from £, in (8) by exchanging Ag and A;. This reflects
the main role of the sub- and super-marked Lagrangian spaces, which is in providing
decompositions of spaces associated to pairs of intersecting Lagrangians into terms
which can be treated individually.

We conclude this introductory discussion by defining (marked) Lagrangian
distributions associated to Lagrangians with boundaries, again only in the model
case and with infinite order of regularity.
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Thus, in addition to the models given by (4.4) we consider
AE =AoN{x£, >0}, OAE ={6 =0}NAg=AgNA;. (4.13)

The marking will now indicate the microlocalization on one side of the boundary: the
lower the marking the more localized the singularities are to AZ. As we shall see in
Proposition 4.2, for the case t = 2, the invariance requires an additional marking in the
transversal direction as can be seen from the uncertainty principle. As before, super-
marking requires additional geometric information and we introduce the following jet
Lagrangian varieties:

eF = (AF 1}, t>1; &F = {A(‘,—L,J;A(Et_t_lHl)Al,t}, 0<t<l. (4.14)
0

For t = 0 we could consider Ag U A; obtaining a slightly larger space than the one
considered [38§].

Definition 4.2. — For AT given by (4.13) and the jet varieties in (4.14) we define
for0<t < oo

TH (M, £F) ={u € TH (M, £,-1) : x([&1])x(~[&1]" T &) ([€1]" T &)V (pu)”
€ SL2(ms,g(1+Lt)), for N >0 and ¢ € C§°(M)}

(4.15)
and where £, m;, go are given by (4.14) and (4.8), x € C*(R),
0, t<1
t) = ’ 4.16
x(®) {l, t> 2. ( )
The decomposition (4.10) can now be refined to
TH (M, L0) = IH(y)(M, &) + Y TH(M,£5),0 <t < oo. (4.17)
+

4.2. We shall now develop carefully the ideas presented in the first part of this section
for the cases t = %, 1,2 and finite regularity. We recall that the marked Lagrangian
distributions of [30] constitute the caset = 1.

For the applications in chapter 7 it is convenient to state the definitions for a
slightly different model:

Ao = N*{xl =Ty = O} C T*R“\O, A = N*{.’L'l = 0} - T*]R"\O, (4.18)

with the coordinates z € R™ written as (1, 2,2'), 2’ € R*2 For M C R™, open,
0 € M, we give
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Definition 4.3. — Let Ay and A1 be given by (4.18). Then
IokH(s)(M; Ao, AoNAy, §) = {U € Hs)(M); DS/ (21Dz,)" (€1Dx,)* (22 Da,) ¥ 2htu

2
EH(S+%k4)(M)’ |Ol/|+k1+k2+k3+§k4§2k},

Dok+1H(s)(M; Ao, AoNAy, 7) =
[Iz<k+1>H(s)(M; Ao, Ao N A, 3), Tok Hie) (M Ro, Ao M As, %)]

19
2

and
IeH sy (M; Ao, Jxona, A1y 2) =
{u € H(S)(M) : Dg’l(xlDzl)kl (xlDwz)kz(x2sz)k3xl2C4u

1
€ Higpir (M), || + k1 + k2 + ks + §k4 < k}

One should observe that for & = oo these definitions coincide with Definition 4.1.
In this case, as before, we could use the variety notation £, ¢t = %, 2. In both sub-
and super-marked cases above, it is crucial that the operators appear with variable
weights in the stability conditions. Thus we say that (D,) 3z, has weight 2 (D)3 s,
weight % The correct filtration is based on operators of order 1 and that explains the
need for fractional weights for operators of different orders.

We now want to verify the invariance of the ¢-marked spaces. Thus, let I’ C T*R™\0
be a connected open conic neighbourhood of mg = (0; (1,0, ...,0)) and let us consider
a canonical transformation

x: I — T*R™\0, x(mo) =mg (4.19)
preserving the model geometry (4.18):
X(Ao NT) C Ao, J'X(Jh nn, A1 N TR(T*R™\0)) C Jh na, A1 (4.20)
For such x we have

Proposition 4.4. — Let F be a Fourier Integral Operator of order 0 associated to a
canonical transformation x satisfying (4.20) with | = —([—t]+1). Then, ift = 1,1,2

F: LHgy (M, Aoy JR VAL ) — LeH o) (M, Ao, Ty HHT AL ).

Proof. — We will give the proof in the case ¢t = 2. When ¢t = 1, the invariance is
clear from the symplectically invariant definitions (4.2), (4.3) and the case t = 3 is
similar and simpler, as in particular it does not involve the jet bundle. It can also be
derived by the methods of [30] or by using the calculus of Lagrangian distributions
of class I3 in [14}, Sect. 25.1.
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For t = 2, the argument is easier in the model given by (4.4) and it is clear that by
composition of Fourier Integral Operators we will obtain the invariance in the general
case and in particular in the model given by (4.18). This means that, by Egorov’s
theorem, we change the operators in Definition 4.3 to

(xl)alDLa,l(xl-le)kl ($1Dz2)k2 (xZDwz)ksmIZMu € H(s+%k4)(M)’

1

1 (4.21)
lo/| + k1 + ko + ks + sk <k, WF®+) (y) c T

Without the loss of generality, we can also assume that s = 0. As in chapter 9 of [30]
we first observe that if x~!(y,n) = (X(y,n),Z(y,n)) then

1
(2m)"

Fu(y) = / SO by, Ma(E(y,m)dn, be SOR™R)

and we start by specifying the properties of Z = (Z1,2,,Z'), ' € R"~2, implied by
the jet condition (4.20):
E1(y,n) = mhi(y,n), h1(mo) # 0, h1 homogeneous of degree 0

Ea(y,m) = n2h2(y,n) + y191(y,m) + y392(y, 1) + (¥, 9(y, M),
h2(y,n) = hao(n) + y2h22(n,y), ha(mo) # 0, (4.22)
h; homogeneous of degree 0, g;, g homogeneous of degree 1,

= (y,n)| < C|m| for (y,n) €T,

where I' C T is another conic neighbourhood of myg, suppb C L.
To illustrate the simple idea of the proof, let us consider the following integral:

1 .
I(y1,y2) = @) /e’<y"’)a(n1,n2 +ysm)dn, ac€ SL2(1,g%).
By taking the Fourier transform in the y; variable and making a substitution
A=m, y=2ASy;, n=2Asn,
(that is, introducing a nonhomogeneous blow-up on the Fourier transform side, see
chapter 7), we obtain

1 G 1
L(\y) = py /ezy’?al ()\,774_ )\l—g(k+1)yk))\%dn’

with a; stable under ADy, nD,, D, with weights 1,1, % respectively. If 1—(k+1)/3 <

0, that is k > 2, one easily checks the stability of I under the same operators and
with the same weights.

Returning to the actual situation, we observe that in view of (4.21) it suffices to check
that

[T w:Dy)* (w2Dy,)*2 b Fu(y) € Hiapy (M) (4.23)
i#2
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if

[1m D)™ (12D, (0 Do) x(m)D3a(n) € L*(R™), uwe&'(M)  (4.24)
i£2

where in both cases Xk; + %l < k and « is arbitrary. Using (4.22) we write

Fu(y) = / UMby, ) x

a(nih1, m2hoo + May2haz + y191 + y392 + (¥, 9), B (y,m))dn,  (4.25)

1
(2m)"

where h; # 0 and hgg # 0 in L. Thus, we can replace @ by a(ni,n2 + nayohoz +
g1 + Y232 + (v, 3),Z (y,n)), with a(n) satisfying (4.24). We denote the integral
obtained this way by F(a,b) and we show that the application of the operators in
(4.23) changes F(a, b) to F(a,b) with b € SO(R™,R™), or S~3 (R", R") suppb C I and
a satisfying (4.24) with k decreased depending on the weight of the operator applied
(1 or ). We start with

1
yzF(avb)(y) - (27‘_)”
-1

2n? /e“y’")(l + yohas + naya(ha2)n, + y1(G1)n, + Y3 (G2)n, + (5 (@)n,)) (Dny@)b dn,

[ =Dy, )(bayin =

where we omitted the terms F(a, b;),b; € S°. The term in brackets can be absorbed
into b, while a can be replaced by a = 171% D,,a. Thus we obtain F(a, 5) with b €
S35 (R™,R™) and a satisfying (4.24) with k replaced by k— % Boundedness properties
on Sobolev spaces for Fourier Integral Operators show that F(a,b) € H,, 1)(M) if
F(a,b) € H5)(M).

‘We now consider

1 . 1 .
(y2Dy,)Fu = eVys - n2(ba)dn + eVMyy X
(2m)m (2m)m

[ (7723/2(’_122);2 T oo+ a (1)), + W, gy2>) (Dyya) + (2., Dy)a|bdn  (4.26)

Since the needed estimate is local near y; = y2 = 0, we can, without the loss of
generality, shrink the support of b, T', so that |y2ha2(n)| < % in I'. Thus by changing
b to (1 +yaha22(n))~1b, we can introduce the factor (1 + y2ho2(n)) in the integrand on
the right hand side of (4.26). Neglecting the terms of the form F(a,b;), b; € S, the
first term in the right hand side of (4.26) can then be written as

1
(2m)"

/ ) (y1yogs + 39> + (o, 9))abdn. (4.27)

/ei(y’">(n2 +12y2haz + Y191 + Y392 + (¥, §)) (D) - bdn

+27r)”
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The first integral is of the form F'(a,b) with @ = n2Dp,a (12 becomes the first term
in brackets), which satisfies (4.24) with k decreased by 1.

In the second term we integrate by parts using the stability under 71 D,, , m Dgz and
mDy, la| = 1 in (4.24) for y1(y2g1), y3(g2) and (y',g) respectively. In fact, let us
verify this for 11Dy, :

(mDn,) [a(n1,m2 + n2y2hoz + Y191 + ¥3g2 + (v, 9),2)] = (4.28)
[y2m2(m (h22)y, ) + myr(Ga)y, +mys(@2)n, + ', 3n,)] Dn.a

where we omitted the terms 7;D,,a and m1D,ya as then we can use the operators
in (4.24). Since we have the stability under 7, D3, with weight 1 in (4.24), the goal
is to bring the number of 72 derivatives falling on a to three. For the first term in
(4.28) we use (4.27) again, with b in the first term replaced by ya(71 (ha2),, )b € S°(T')
and a in the second term by ysDp,a. For the remaining terms in (4.28), we use
yi exp(i(y,n)) = Dy, exp(i(y,n)) and integration by parts. In each case there is a
gain in the number of 7y derivatives, so after at most three applications we obtain
mD3,a.

Since 7y 'g:,n7'g € S°(T), the second integral is again of the form F(a,b), with
b € S and a satisfying (4.24) with k decreased by 1. The analysis of the second
term on the right hand side of (4.26) and the verification of the stability under the
remaining operators in (4.23) are similar and are left to the reader. O

We shall now present the finite regularity analogue of Definition 4.2. In that we
restrict ourselves to the case relevant in our applications, ¢t = 2.

Definition 4.5. — Let Ao and A1 be given by (4.18) and let M C R™ be a bounded
open set, 0 € M. If Af = Ao N {£¢&, > 0}, then

L Ho (M, AE,2) = {u € Hiy(M) : DX (21D4,)* (21 Dy,)*2 (22D, ) F2 2k
(€ Dx(Fla 3 &) (16| 736) (dw)")Y € Hgy 2y, (M)
2 1
for ¢ € CSO(M), |Oll| + k1 + ko + k3 + §k4 -+ gko < 2k}

with x € C*(R) satisfying (4.16) and (e)" denoting the inverse Fourier transform.
For odd orders of regularity 2k + 1, Iogi1Hs)(M, A%,2) is defined by complex
interpolation as in Definition 4.3.

To study the invariance properties, let I and x be as in (4.19) with (4.20) replaced
by

x(AENT) c AL (4.29)
The analogue of Proposition 4.1 is:

Proposition4.6. — Let F be a Fourier Integral Operator of order 0 associated to the
canonical transformation x which satisfies (4.29). Then

F: I Hiy (M, A¥,2) — L Heg (M, A7, 2).
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Proof. — We can consider only Al and assume that k is even as the odd order
case will follow by complex interpolation. We shall use the same model (4.4) as in
the proof of Proposition 4.1 with AE given by (4.13) As in (4.21), Egorov’s theorem
provides the defining operators (see (4.34) below) and we can assume that

WF® (y) cT, WF® (Fu) T,

where I' C T is a small conic neighbourhood of mg. It is convenient however to use the
representation of F' involving the generating function of the canonical transformation:

(y,n) = x(z,€) = (y,m;2,€) = (y, ¢y; D, §),

Fu(y) = / (. €)i(€) de. (4.30)

1
(2m)"
The assumption (4.29) implies that

?(y,€) = y1&1h1(y, &) + y2b2ha(y,€) + V', 9(v,6)), (4.31)

where hi, hy are homogeneous of degree 0 and positive in I', g is homogeneous of
degree 1 with g;, of rank n —2in T

We shall, as in the proof of Proposition 4.1, consider more general integrals, starting
with the Fourier transform of (4.30):

1
(2m)"

G(a,b)(n) = / e W=V (e, )b(y; €, m)a(€) dE dy (4.32)

where b€ S g'lo(]R”, R?"), supp b C I'; with I'; a small conic neighbourhood of
3

(0;(1,0,...,0),(1,0,...0)) (with respect to the R -action in the last 2n coordinates).
In fact b is assumed to satisfy a stronger estimate:

|DEDJb| < Cap(l+ & + mp) = 1+187 14§ (02 +62)) L
I= l(b)’ CYI/ = (a17a37 e 7an), IB// = (617ﬂ37' .. 7/871)'

The cut-off ¢ € C§°(R\0), is chosen so that ¢(t) = 1 for & <t < C for some C. We
assume also that a satisfies

(=& 36) (€ P &)% (61D, €1 DE (6 De, )" (€5 De, ) oa
€ (1+ &)= L3 (R"), (4.34)

2
%ko +k+ ko + §k3 + |&/| < max(0,p), p=pla)€ %Z.

(4.33)

We observe that the boundedness of Fourier Integral Operators in the class I z_l,
implies that ’

G(a,b) € H((b)+max(0,~p(a)))(M)- (4.35)
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The cut-off ¥(£; 'n1) in (4.32) can be inserted, at the expense of smooth error terms,
in the integrand on the right hand side of

Fu(n) = R / WOy €)a(e)de dy (4.36)

since
[ ey, 00 - wie )y =1+ e+l (@437

for any N > 0. In fact since hi(y,£) > 0 in T, h1(0,(1,0,...,0)) = 1, we have

(@(,€) = (y,m))y, > c(1 + |&1] + |m]) in the support of (1 —¢)(¢;'m) if C and ¢
are appropriately chosen. Thus, standard oscillatory integral estimates (see Theorem

7.7.1 of [14], as applied in Sect. 25.1 there) give (4.22). We conclude that Fu is
essentially of the form (4.32) with p(a) = k, and we want to show that it also satisfies
the estimate (4.34) with p = k.

If we apply the first operator in (4.34) to (4.32) we obtain

x(=m; *n2)(ny *n2)G(a,b) = I + Iy, (4.38)

_2 _2
where the decomposition was obtained by inserting 1 = x(&; 3&2) + (1 — x)(&; *&2)
in the integrand:

1

h=Gon

[ oo by g mp(ng (e P ea)ate)ds . (4.39)

We shall now integrate by parts to put I; in the form (4.32) with new a and b.
Strictly speaking, we should also introduce a cutoff in £’ /£; similar to v, reducing the
integration in £’/; to a compact set. For this we observe that since g, in (4.31) has
rank n—2, y’ can be expressed in terms of (', g;,) € R"~2 and there exist differential
operators Q1(y, &, De¢/) and Q2(y, &, Der) of order 1 with coefficients homogeneous of
degree 1 in £ such that
et P(¥:8)—iym) — (772 —&a(ho + yz(hz);z))‘l
[(=Dy, + Q2(y:€, Dgr)) — (ha)y, (1 = (€2/61)F (h2)g, (ha)g,) ™"
(61D, — €1(h2)g, €2De, + Qu(y, €, Dgr))] PO~ (4.40)

The last term is obtained by writing

yleid’(y,{)—i(ym) — (D§1 _ y2€2(h2),€ _ <yl gél>)ei¢(y,§)—i(y»ﬂ) —

1 )
[De, — €2(h2)t, (De, — &1y1(ha)e, — (0, 3,)) — (¥, Gz, )] 404w

and observing that if T is small enough then |(§2/£1)£f(h2)’€1(h1)’52| <3

(4.41)

2
Since |7z — &a(ha +y2(h2)y, )| > cmax{£7, [€2| + 02|} in the support of the integrand,
we obtain I; = G(ai,b1) where b; € Sg% (R™;R?"), Iy = I(b) + 2 (with the stronger
3
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estimate (4.33) valid) and a; satisfies (4.34) with p(a1) = p(a) — 1. Note that the gain
of regularity in b;, compensates the decrease of p, so that the weight of the operator

on a is 3, same as that of X(—?’];g’l’p)’l’h_%ﬂz — see (4.34) and (4.35).

The analysis of I is similar but we now invoke the assumption that a is stable under

1-0(E e e (4.42)

with weight 1. To do that we again use (4.40) to write
gnt 3

L, = _(271r)n /(él/ﬂl)%ﬁl_g [€2(ha + y2(h2)l,,) — Dy, + Q2(y, &, Der)—

(h1)y, (1 = (&2/€1)€ (ha)g, (h1)g,) " (€1D¢, — €1(h2)z, £2De,+

Q1(, &, De))] @O WMp(y: £ m)(1 = x)(& 3 &)x(—nn2)al€) de dy,

and then integrate by parts. Thus Iz = G(az, b2) + G(as, bs), where a2 satisfies (4.34)
with p(az) = p(a) — 1, bo satisfies (4.33) with I(bz) = I(b) and ag satisfies (4.34) with
p(as) = p(a) — 1, b3 satisfies (4.33) with I(bs) = I(b) + 2. In both cases the effective
weights of operators are preserved.

The action of the remaining operators is similar and simpler. Thus we obtain

X(=17 ¥12) (=1 *m2)*o (m De, ) 0\ ' D& (12D, ) (nf Dy, )2 G(a, b)
N 1 5 (4.43)
:ZG(ai,bi), §k0+k1 +k2+ §k3+|o/| Sp(a)
=1

with a; satisfying (4.34) with p(a;) < p(a) and b; € S%_,lo(]R"; R2"), | = max(0, —p(a)).
Using (4.35) we conclude that Fu satisfies (4.34) with p = k. d

Having established the invariance we can now give the general definition. Let
M be a C*° manifold of dimension n and let A,A C T*M\0 be conic Lagrangian

submanifolds intersecting cleanly at A N /N\, a hypersurface in A. For t = %, 1,2 we
define the jet Lagrangian variety

€, ={A,J TR 1, (4.44)

We also corlsider At ¢ A C T*M\0, a Lagrangian submanifold with boundary,
OAT = AN A and the variety

et ={AF,2}. (4.45)

We should remark that subsequently we may use either the notation £; or the explicit
description of the variety as given by the right hand side of (4.44).
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Definition 4.7. — For A, K, £ above and t = %, 1,2 we define the space
Iy Hs)(M; £4)

as consisting of u € 9'(M) such that there exists ug € I H(s)(M; A\ANA), a countable
covering of AN A by parametrizations

x;: Ij — T*R™\0, AnAc|Jr,, (4.46)
J
Xi(T5NA) C Mg, J=U=t¥Dy o g ltFDE o+
where Ao and Ay are given by (4.18),
Fj € I(R", M; (x;1)") and v € I H(s)(R™; Ao, Ty IV ALLE),

where the last space was given in Definition 4.3. The distributions F;v; are assumed
to have locally finite supports such that

uU— Uy — ZF]"UJ' S H(k)(M).
J
If &% is given by (4.45), the space
IeH(s) (M; £T)
is defined in a similar way using Iy H s (R™; A, 2) given in Definition 4.5.

We now proceed with the finite regularity case of the decompositions (4.12) and
(4.17). For the marked Lagrangian distributions (¢ = 1) the proposition below
was already established in [30]. Its proof here illustrates, in a computationally
simple case, the general philosophy of relating microlocal and conormal spaces (see
[25, 34, 42]), on which we shall rely heavily in chapter 6 and 7. For the variety

AUA = {AUA\ANA,ANA} we define I H(s (M, AU A) by (4.3) with the obvious
finite order modification.

Proposition 4.8. — Let A and A be as in Definition 4.7. Then for t = %,1,2 we
have

Ikleoc(M; AU K) = Ikleoc(M; ‘S?t) + Ikleoc(M; Sé%)’ (447)

where £ 1s given by (4.24) and 8, is obtained by exchanging A and A there. In
addition, if A = UM+, Ay NA_ = OA* = AN A, then

I L2 (M, AUR) = L,L3 (M; &) + Z L2 (M; %), (4.48)

with €% given by (4.45).
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In the proof we shall only consider the case t = % as t = 2 is symmetric to it, while
t =1 is discussed in Remark 4.12. The proof is based on a lifting of the right hand
side of (4.47) to a conormal space. As the result is local and in view of the invariance,

we take M to be a neighbourhood of 0 in R™ and A = A, A = Ag given by (4.18).
With M = R" we consider the following successive blow-ups of {z; = z3 = 0}

My23 My 23 M, B=Pis0Bs, (4.49)

where M is a manifold with boundary and M> a manifold with corners:
My = M\{O}U(S}_s xR"2) =Ry xS_s xR ST 5 = {weR*:wi+wy® =1},

with the C structure given by the second identification. The blow-down map
B3_1: My — M is given by

Ba_1: (rw,z') — (rBwy,rws, 2). (4.50)
The second resolution M is obtained by the blow-up of 35_,{z2 = 0} N OMj :
My = My\(B5_1{z2 = 0} N OM1) U (Si__p x R*?) U (S}, L, x R"7?),

where now S}, _, = {(61,62) : £61 > 0,61 + 63 = 1} (see Fig. 4.1) with the usual
C® structure (see [28]). The intermediate blow-down map Bi_2 : My — M; is
given by B1_2(p,0,z') = (&pb:1,p%02,2'), where (p,0,2') € Ry x S}, _, x R*72,
with coordinates near 85_,{zs = 0,%£z; > 0} N OM, (r, X2,2') chosen so that
Ba—1(r, Xa,2') = (£r3,rXs,').

Using the definition (4.3) we easily see that u € Iy LZ (M; Ao U A;) if and only if

loc
(mlDrl)kl (xZDIZ)kz(‘rlez)ksD:’lu € leoc(M)v Xki + |Oé/| <k.

This condition, Definition 4.3 of I, LZ _(M; Ao, JI{OGA1 ,2) and the lifting of the vector

loc
fields in projective coordinates, give

Lemma 4.9. — For Ay, Ay and My, M above

LL2 (M Ao UAy) 25 L2 0 (My,0(0M; U B* {1 = 0})),

L2 o(M; Ag, Th o, Av, 2) 255 L2 100 (M, 0 (0M3)), (4.51)
where By,v = dzx.

Proof. — We only need to check that the left hand side of (4.51) is defined by
stability under vector fields — that is clear for the space in the preceding line and the
remaining portion of the proof is a straightforward computation. In view of Definition
4.5 we first need to show that

1 m
zyu € Hy (M), k=, (23Dg,) " u € L*(M), m < k. (4.52)
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The right hand side is equivalent to (z3(D,))™ u € L2(M) and the left hand side to

1 l 1
(CE%<DI>§) u € L3(M). Since [z2, (D,)3] € ¥~% (M), the left to right implication
follows. For the opposite direction we observe that if u € C§°(M) then

ERTRE / 23(D,)?Puadz + / (Da)V3, 23)(Dy) }uade
M M

IA

23(D2)*3ul| L2(ar) 1ull L2(ary + |72
and similarly

2 1 1
23(Dz) 3 ullZ2(ary < 25(Dz)ull2an [ 22(Dz) S ull L2 (ary + lull L2(any 122(D) Sul| L2(ar)-

Hence using 2ab < €a? + ¢~1b? we conclude that for u € C§°(M)

I

L2 (M)

(xg(D,)%)lu

<03 @]
m<k

L2(M

if | < 3k. A density argument and commutation with the remaining vector fields in
the definition of Iy L?(M; Ao, Jx 4, A1,2) conclude the proof. O

We should remark that the last space on the right hand side is equal to H (bk)(Mz)
with the measure v and thus the supermarked space on the left is an interpolation
space in k. For every order k = 2[ the space Iy L% (M; A1, A1 N Ao, %) is easily seen
to be characterized by the condition

(21D2,)" (22Ds,)** (21D, DEL DS w € H(_ 31, (M), (4.53)

S ki + 2ka + |@/| < k = 2L For IyL} (M, AT,2), Af = Ay N {£z > 0}, we need
i<4

to add the stability under the operator x(|Dq, |)X(F|Dz, |3 €2)| Dz, |3 22 with weight
L. The following Lemma constitutes the harder part of the proof of Proposition 4.3
3

and it will be crucial in chapter 7:
Lemma 4.10. — If
v € It L2 1o (M2,0(8*{z1 = 0, %z > 0} U OM3))

then
Buv € Ikleoc(M; Azlta 2) + 5*H(blc)(M2)'

Proof. — We observe first that the two conormal spaces in the Lemma are
interpolation spaces in k. As the Lagrangian space, IyLZ (M ;Ait,2), was defined
by complex interpolation for ¥ odd, we only need to prove the lemma for k = 2I,
l € Z. It is also sufficient to consider the + case alone.

We can assume that suppv C B*{|z1| < ex3}, as on the remaining part of the
support the function is in Hé’k)(Mz), see Fig. 4.1. Thus we can consider suppv C
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M

2

181—2 M, 63—1 M

Figure 4.1. The manifold M and the support of v

M N B5_{|z1] < ex3} and use coordinates (X,r), B3-1(X,r) = (r3X,r), where we
drop the insignificant coordinate z’. We also have
PTppoMe = {(X,7E, ) 1 X,E,A€R, T € Ry},

and we can assume that
WF(@w) c{(X,nE,X): |\ <|E]}. (4.54)

In fact, using a ¥2-partition of unity, we obtain v = v1+vz, WF(v1) C {|A| < |E[} and
WF(vz) C {|A| > |Z[}. Since (rD,)Pv; € Li(Mz), p < k we obtain vy € Hpy,) (Ma),
so it can be neglected.

Using the ellipticity of Dx in W F(v) we can then write

v= DR+ 0¥, § € LLH,, (M, V(8" {x1 = 0,22 > 0} UOM1)), v* € Hfyy(Mp).
(4.55)

Replacing v by v — v#, we now claim that B.v € I, L2 .(M; AT, 2). Since all the other
operators in (4.53) lift we only need to investigate DE  and

X(1Da, NX(F|Day |5 22)| Dy, |3 22
Thus, we start with p = 3m < 2] = k and
1 3
Dir B = B*({;(TDT - 3XDx)}*™ D) =
= D7 B.(r*™{ %(T’DT -3XD,) ")

+ 8" (5 (D, — 3X Dx)}™, 7" DEJ0),  (456)

where we used Dy, 3. = B.r~3Dx. Since [r~}(rD, — 3XDx),Dx] = r~13iDx, the
expansion of the commutator gives

D‘:;Tﬂ*v = D;"lﬁ*vl, NS IZk—Zng,loc(MZ»@(,B*{xl = 0,.’132 > 0} U (9M2)),
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so that D3 B,v € H(_,,)(M) if 2m < 21 = k, that is %p < k, p = 3m. Thus the

weight of DE_ is in agreement with the weights in I, L2 (M, AT, 2). For p not divisible
by 3 we use

2
”Dzz’u’”H(_%)(M) <

102, ul,

2
“Dgz’u’”%{(_l)(M) + g”“”iz(M)

LW =

(4.57)

1
a0 < 5108, ulld o + 5 el2an, v € CR(M).

Wl

_%)(

In (4.53), D,, is the only operator with a fractional weight (-g—), so that if D2 occurs
we can use the stability under Dgz. If VD,, A occurs, where A is a product of operators
and V is an operator different from D,,, then we can use (4.57), integration by parts
and stability under V2A, D3 A, (D3 A € H(_1)(M)). This proves (4.53) for 8*v and
we still need to consider the remaining multiplier. That however is easy, since for v,
after all the reductions above (mod H, (bk)(Mz)),

X(IDz, )X (=D, |5 22)|Da, |3 2280 = 0.

In fact, let us consider H € L*°(Mz) defined by

H|mnoms = (Blar\ons )™ ((22)2).

Then B.H = (z2)° and (x2)° Buv = B.Hv = 0, if as assumed, suppv C 8*{|z1| <
ex3}. We then observe that

1 1 1 1
X(| Dz, )X(=|Da,y |5 22)| Dy, |3 22(22)° = X(|Day )X (| Dy |5 22)| Doy | T 22
concluding the proof. a

Remark 4.11. — A converse of Lemma 4.2 is also true:

B I LE (M;Af,2) € I, L2, (M2, 0(8*{z1 = 0, £z5 > 0} U OM>)),

loc v,loc

and although we do not need it, this fact is implicitly present in the Dirichlet estimates.
Its failure (see Remark 7.8) in one case considered in chapter 7 explains to some
extent the complications of the space JyL?(X).

Proof. — Proof of Proposition 4.3 It is easy to see that the right hand sides in (4.47)
and (4.48) are contained in Iy L2 _(M;A U A). Since I, L2(M; %) C L L3 (M, 23), it

loc
remains to verify (4.48) and that easily follows from Lemmas 4.1 and 4.2 as

Tk L2 10c (M2, 0 (M, U B*{z1 = 0})) =
Hbo (M) + Y IeL2 10 (M2,0(0M3 U 3*{z1 = 0, x5 > 0})),
+

which concludes the proof. a
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Remark 4.12. — The same proof can be used for t = 1, with the 3 —1 and 1 — 2
blow-up replaced by a 2 — 1 and 1 — 1 blow-ups of the same submanifolds (with the
obvious modification in the latter case). The last (1—1) blow-up is not strictly speaking
necessary but it is useful in characterizing 8*Ii,(M; Ao U A1) as a b-Sobolev space.

4.3. Let M be a C* manifold with a C* boundary M. The b-Lagrangian
distributions in Sect. 7 of [34] were defined for C*° homogeneous Lagrangian
submanifolds A C T*M\0 such that jA C *T*M\0 is smooth,

7:T*M\0 — °T*M\0.

They were defined using (4.2) and (4.3) with totally characteristic operators, U} (M)
employed in place of ¥!. We need to generalize this notion to allow cases when
gA C ®T*M\0 is singular in a controlled way. A C* submanifold of *T*M\0, ®A, is
called a homogeneous (b-)Lagrangian if and only if dim °A = dim M, A N °T},, M is
a homogeneous C*° Lagrangian submanifold of 7*0M,

bwlr, 5 =0 VY mebAN®Ty. M\O,

and ’A is homogeneous with respect to the natural R,-action on ®T*M\0. The
last two conditions simply state that ®A N ®Tx, . M\0 C T*M°\0 is a homogeneous
Lagrangian submanifold of 7*M°\0. Locally °A is given by the zeros of n = dim M
functions in C*®(*T*M\0) :

PANT={meT: fi(m)="--= fo(m) =0},

fi€ CX(CT*M\0),  *{fi, f;} =0,
where I' ¢ ®T*M\0 is a conic neighbourhood of m € A. To pass to the global
situation we consider the ideal

Iop = {f € C(T*M\0) : flop=o}

which is locally finitely generated. Since ’A is homogeneous we introduce for every
keZ
Mk (PA) = 9 p0 N SEL(CT*M\0)

and observe that
PA={m: f(m)=0,V f € M, (°A)}.

Example 4.1. If Ay C T*OM\0 is a homogeneous Lagrangian submanifold and
M ~9dM x[0,1), then A = {(z,y;&,7) : (y,n) € Ao, & =0} C T*M\0 is a Lagrangian
submanifold and JA C ®T*M\0 is a C™ b-Lagrangian submanifold.
Example 4.2 Let us define A ¢ T*R2\0 by A = N*{z + 2 = 0}. If M = R2 =
{r>0}and A=A 7+ a0 then PT*MN\O D gA = {(z,y;\,n) : z+y* =nz—2y\ =0,
(m,A) # (0,0)} is not smooth.

We wish to consider Lagrangian submanifolds similar to those in Example 4.2 in
the sense of having defining functions which are polynomials in £ at the boundary in
a way which is invariant under b-canonical transformations — see [26], part III.
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We use z as the defining function of the boundary and A = %oy (zD,) as its b-dual
variable in ®T*M\0. Then we consider

m * AP m— *
SpE T M\0) = ¢ > A ap € Spy PT*M\0) », (4.58)
0<p<k

where S{lg(bT*M \0) are homogeneous symbols a € C®(*T*M\0). These are the
symbols satisfying a(T,m) = r'a(m), where T, is the R, action generated by
pam + A0, pan the radial vector field on T*9M\0.

The right-hand side of (4.58) involves a choice of coordinates but the space Sﬂ;’k
is nevertheless invariantly defined. In fact, for k = 0, S}T:;’k = S}’I’"é and Sﬂ;’l can be
characterized by demanding that Z - S;:;’l C Sy and that Z - S}’g_lthM M vanishes

at A = %01 (ZD;z) = 0, for any defining function of &M. Since X is well defined on
T2, M this gives an invariant definition. We then see that

Sx:';’k - Z biy ... by, by, € S,’:;’l

0<p<k

is also invariantly defined. We should also remark that

SpeECT*M\O) p-prono = § >, €0 aplenroro : ap € Sy P(PT*M\0) ¢,  (4.59)
0<o<k

where £ = 01(D,;). This characterizes S;';‘k as well. Clearly, the homogeneous

symbols (Shg) could be replaced by the polyhomogeneous ones (Sphg), or by the

usual symbols.

Definition 4.13. — A homogeneous C* Lagrangian submanifold A C T*M\0O is
called b-polynomially defined if and only if there exists an ideal 9 C U S k(bT*M\O)
m

phg
such that
A={meT*M\0: 5*f(m)=0, V fed}.
Putting
b (A) =9 n | Sk (PT*M\0) (4.60)
k>0

and using elliptic elements of Sohg(bT*M \0) we see that a b-polynomially defined
Lagrangian A is given as

A={meT*M\0:j*a(m)=0,Vac b@n;‘f(A)}. (4.61)
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We can define bf’)]lf (A) for an arbitrary A C T*M\0 as the set of a €
U Sg;lg(bT*M \0) such that j*a|s = 0. Then for b-polynomially defined Lagrangians
k>

(4.61) holds. One easily observes that if JA = A is a smooth b-Lagrangian, then
bo# (A) D b9, (A) with strict inclusion in general (see for instance Example 4.1
above; equality occurs for A = N*9M).

The property of being b-polynomially defined is local near each fiber of Tj,,M.
Thus if m € Tj3,,M, we say a C*™ Lagrangian A is b-polynomially defined near m if
for an open cone I' C T*M\0, m € T

ANT={meT: 5*f(m), ¥V f € &r} (4.62)

where Jdr is an ideal in U Sgil (*T*M\0). If T is everywhere locally b-polynomially

defined, a partition of umty argument shows that A is b-polynomially defined. We
could rephrase the local definition by saying that A is defined by bé)llf (A) near m (or
inT).
Example 4.3. We give an example of a Lagrangian submanifold which is not b-
polynomially defined and to do that we start with the non-homogeneous case. Thus
we define A C N C T*R2, for a small neighbourhood of (0,0), N, as the set of zeros
of

fi(z,y;€m) = f(€) +y(€ +1),

fo(z,ys&m) =z +n(E+ 1)y + f(€)
where f € C®(R), f*)(0) = 0 for all k and f(t) # 0 if t # 0. We easily check
that df1(0;0) and df2(0;0) are linearly independent and that {fi, fo} = 0. Since
9 f1(0;0) = 0 for all k, f1(0,y;&,m) cannot be written as a polynomial in §. By
introducing an additional variable z with the dual {, a homogeneous example is
obtained by taking fi(x,y,2;€,0,¢) = fi(z,y;€/¢,n/¢), i = 1,2 and choosing a
homogeneous function f3, so that {f;, f3} = 0, as we may by Darboux’s theorem.
The vanishing of f;’s defines a smooth homogeneous Lagrangian submanifold in a
conic neighbourhood of (0;(0,0,1)) € T*R3 \ 0.

If 1% = T'NT*M°\0, where I is the open cone above, we can consider a canonical

transformation

x:I° — T*M°\0, (4.63)
which we assume extends to a b-canonical transformation [25]
by . b brpx b
x:T'— °T*M\0, Jrycer (4.64)

such that

*x(s(m)) = g(ma),  my € T M\O. (4.65)

The basic invariance property is now given in
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Lemma 4.14. —  Let us assume that A,A; C T*M\0 are homogeneous C>
Lagrangian submanifolds and x with the properties (4.63), (4.64) and (4.65) satisfies
also

X(ANT%) C Ay, N*OM N A =0. (4.66)

If Ay is locally b-polynomially defined near my, then A is locally b-polynomially defined
near m.

Proof. — The second condition in (4.66) shows that A = cl(A N T*M°\0)
which in view of the first condition holds also for A;. Thus A; is defined by
bONF (A1)| - prero near my. Since PO (A1)|7-aroro C SHT*M°\0), A is defined by
X*(”@llf(AlﬂT*Mo\o) near m. Recalling that *x*z = az and ®x*\ = bA+cz, a,b # 0,
and that ®x* preserves S;'flg(bT *M\), we easily see that

X SR (PTM\0) — SiR(°T).

Thus x* (*MF (A1)|r- ao\o) extends to | Sg;’g (°T"), and this extension defines A near
k>0

m. O

We next consider marked Lagrangians. Let K C A be a homogeneous submanifold
of codimension 1 satisfying the condition

K is tangent to T3x X to a fized finite order. (4.67)
Note that we do not demand that K = {m € A : a(m) =0}, a € Sg;l’gk(bT*M\O)
even though this is the case in all applications. For A and K satisfying (4.67) we
define,
Yo (A, K) = {a € PM¥F(A) : H(ja| 1 prov0) 18 tangent to K NT*M°\0}.

The b-canonical transformations preserve b-Hamilton vector fields which satisfy

b

Hiler-mvoye = Hy fireporo:

Thus, because of (4.64), the definition above is invariant and we obtain the following
analogue of Lemma 4.3:

Lemma 4.15. — Let x,A, A, Ay be as in Lemma 4.3 and assume that homogeneous
hypersurfaces K C A, K1 C A satisfy (4.67) and

x(KNT) C K;. (4.68)
Then
f et (A1, K1), supp f C *x(°T) = *Xif € MY (A, K).
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To quantize these geometric notions we recall the definition of a class of operators
from [25], Sect.IIL.5:

> PA+BiQi: A;,Bi € U7 (M), P,,Q; € Diffi™ (M), m; < k}

finite

vk = {
By restricting to the interior M°, and using (4.59) one easily obtains a surjective
symbol map
bUm,k : ‘I’;,n’k(M) - Sm’k(bT*M\O)a bUm,k(PA) = Oora(p)(P) 'bam—ord(P)(A)a
if P is a homogeneous differential operator of ord(P) < k. These leads us to define
UPH(M,A) = {C € TF (M) o (C) € PONE (A)} (4.69)
and similarly
IR (MG A K) = {C € U (M) : Yok (C) € F (A, K)}.

We can also consider a disjoint union of two cleanly intersecting Lagrangians A;, As,
A1 A5 and define b%ﬁ(Al UAs) and \Il;"’k(M, A;UA2) with the analogue of Lemma
4.4 easily available. We note that

PO (A1 U Ag) C PO (Ay),  i=1,2

(4.70)

TR (AL UAg) C PR (A).

Let us consider the following Lagrangian varieties
L=A {AK} or AjUA; (4.71)

with A, K, A; above. We say that £ is b-polynomially defined if the Lagrangians in
£ are b-polynomially defined and K satisfies (4.67). We then have

Definition 4.16. —  For a Lagrangian variety £, | € Ny and s € R, we define the
space of distributions

IPH (s (M; €)= {u € H(M): Ci...Cpu € Hiyy (M)

: 1,k > , (4.72)
if C; € ¥ (M,L) for some k, and any l" < 1}.

To study the invariance we recall from [25], Sect.IIL.5, that if F' is an elliptic b-Fourier
Integral Operator of order 0 and G its parametrix then

FUMH(M)G c UF(M). (4.73)

If F is associated to a b-canonical transformation satisfying (4.63) and (4.64) we
rewrite (4.66) and (4.68) as

X(€nT) C & (4.74)
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with an obvious modification for £ = A;UA,. Let C € \If;,n’k(M) and C; = FoCoQG.

By (4.73), C; € ¥}"*(M) and we want to compute its symbol. Let F°, G°, C° and C?
be restriction of the operators above to M°. Then C° and C? are pseudodifferential
operators of order m on compact subsets of M°. Egorov’s Theorem (see Theorem
25.3.5 of [14]) shows that x*om(F° o C° 0 G°) = 0,,(C°) on the subsets of I' which
have compact projections to M°. It follows from the definition of %o, j that

*0mk(C1) = X Omk(F o C10G) ="0mi(C) in°T.
Combining this discussion with Lemmas 4.3 and 4.4 we obtain

Proposition 4.17. —  If x satisfies (4.63), (4.64) and (4.74) and F is an elliptic b-
Fourier Integral Operator of order 0 associated to ®x, then for £ locally b-polynomially
defined near T’

u € IJH(s(M,2) and WFy(u) C°T => Fu € IPH (M, £).

The main application will be to Lagrangians which are actually polynomially defined.
That property does not carry the necessary invariance but it is very useful for
computations (see chapter 6).

Proposition 4.18. —  Suppose that £ is b-polynomially defined and that bf’)l’tfé(é?) 18
spanned over ¥)(M) by {A;Q,}jes, Q; € DIf™ (M), A; € \Illl,_mj(M), A; elliptic
(in the totally characteristic sense). Then

u € IkH(s)(M,é?) - le .. .leu € E[(s+l— ) mjp)(M), 1<k, jp € J. (475)
p<l

Proof. — Definition 4.16 implies that A;, Q;, ... A; Qj,u € H(4(M). We recall the
commutation relation:

Qe (M), AcUy(M) = AQ = QA1+ Q',

T (4.76)
Ay € Tl (m), ®oy(A) ="oi(4r), Q € V] o

which follows from iterating

AV = V(zAz™') + [Vz, Alz™!, V € Diff' (M), [Vz,Alz~! € U, 1(M).
We also observe that

O (M) - I H iy (M, 0M) C IymikHipg) (M, M), g, g—m+k > 0.

Thus by successive applications of (4.76), we obtain that for an elliptic operator
Ae VE(M), L=1-3m, AQ;,...Qju € I_LH(,)(M,0M). Let B be the
p<l

parametrix of A in ¥, L(M). Applying it to the previous expression we obtain (4.75).
O
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5. REFINED ESTIMATES IN THE PAST

In the space of distributions defined in chapter 3 only the forward cone and part of
the reflected front (the cusp) appear. Since the only data in the past is the incident
front this is natural in the case of forward propagation. However, in principle some
singularities could appear in the past on the boundary of the resolved space X4 and
the purpose of this section is to present some refined conormal estimates which show
the absence of such a behaviour. The essential component here is the use of weighted
L2-estimates ‘in the past’ similar to those in [32].

We will use the coordinates introduced in Propositions 3.1 and 3.2 and define
the non-homogeneous past, K, using the model operator . To start, we define
go € C*°(X1), independent of r and y as

go(w) = r_4(ﬂ*q)(r,w), g(z) = x‘ll + 81T — 6xf:v2 — 33:%

Thus 8*Q = {(r,w,y) : go(w) = 0} is the model cone (see Proposition 3.1).
Throughout this section we will write 8 = ;. We then consider

X\ { (rnw,y) : gow)=—€}, €>0 (5.1)

which for small € has three components.

Definition 5.1. — The past in X’l, K, is defined as the component of (5.1) which
contains B*Q—, where Q_ is the retarded model cone over I'. We then define
K = (B.K;, (5.2)

The intersection of K; and dX, is shown in Fig. 5.1. It is actually convenient to
consider also a 1-2-3 homogeneous change of variables (cf. Proposition 3.3 ) which
allows us to write

q(z) = 4zy23 — 23, Py = Dy, D,, — D?

T2

(5.3)

and

P=PFR+Q, Q e€Diff5;_5_3(X). (5.4)

The surface OK is smooth and spacelike for P away from I (if X is sufficiently
small). More precisely:
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Figure 5.1. K; N8X1, B*F N8X; and 8*Qx N 0X:

Proposition 5.2. — Ifr(z,y) = (X,<ics 2, 2/"12 s the 1-2-8 radial variable and
g-

z

zZ € 5(', is the retarded solid P-cone over z then

1.S;NXCKNX if ze KNX.
2. inf{r(z'): 2/ €S} >C r(z) if ze KNX.

Proof. — Since the singular set of 0K is of codimension 2, and thus the smooth
part, 9K \ T, is connected, it suffices for part a) to show that K \ I is space like, i.e.
that for m € 8K \ T and f, a defining function of K near m, p(df(m)) > 0. As the
function f we can take (.qo + € which is smooth in a sufficiently small neighbourhood
of m. Thus we want

p(d(Beqo)) =7 *ps(%dgo) > cr™*, pg = oa(r*B*PB.), ¢>0.

From (5.4) we see that 8*Pf, = 8*Pyf«+1Q1, Q1 € Diﬂ’f()?l). Hence, by shrinking
the domain, it suffices to show that

pos(’dao) > ¢, pog = ‘o2(rB* Pop.)
for go = —e. Since qo is independent of r and y, the left hand side can computed in

local coordinates on 8X3, yielding ¢ proportional to €.

To establish b) let us consider the retarded cone S;, z € R3, over {(z,y) : y €
R"3} N N where N is a small neighbourhood of I' € R". It is defined as the
projection to N of the union of the maximally extended retarded bicharacteristics
starting at N*({(z,y) : y € R®"3} N N) N p~1(0). By the analogy with S; we define
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the solid retarded cone over {(z,y) : y € R* 3} N N, S;. We then claim that for N
small enough

S-

ey NN CS; NN (5.5)

for which it is enough to show that the tangent cone of S ) T(z,49)5, is contained

@y )
in a component of R™ \ T(, ,yS, , where T(; .S, is the tangent cone of S;". Since
Sz is characteristic, T{;4)S; is tangent to T(54)S, , and the conclusion follows
from the general fact about quadratic forms: let g be a Lorentz quadratic form

(i.e. of indices of inertia 1,n — 1). If Cx are the connected components of the cone
C ={X:9(X) >0} and IT is a plane tangent to C then II separates C; and C_.

It now follows from part a) that T NS;° = @ if 2 € KN X, as otherwise a
neighbourhood of a point in I" would be contained in S;° (I' C 9K).

Thus the minimal value of r(2'),2’ € ST, z € K N X is attained on 8S; = S;. We
also note that (5.5) implies

infzes(_zvy)nNr(z) > inf -7 (2), (5.6)

so we would like the bound for the right hand side.

We will first obtain it for @7, that is, for P = P, the operator with constant
coefficients and homogeneous of degree —4. In that case Q, = {(z/,v’) : ¢(z'—z) = 0}
for a 1-2-3 homogeneous polynomial of degree 4, q. If r(z,y) = 1 we easily see that
0 ¢ Q3. In fact, we would then have (z,y) € QF which contradicts 8*KNB*Qd = 0 if
(z,y) € K. Thus, for (z,y) € K, r(x,y) = 1, we have r(z’,y’) > C~Lif (z/,y') € Q.

For any (z,y) = z € K we obtain (Z,§) = Z = T, (,)-12 € K with r(Z) = 1. Since ¢
is homogeneous we then have Q7 = (T;(.))Q3 and for 2’ € Q7 ,

r(2') > r(z) inf{r(v) 1 v € Q7 } > C71r(2).

The general case follows from a perturbation argument based on (5.5) and (5.6).

Let us first observe that

infzes(.wyy) r(z) = inf%},y) infzev(;,y) r(z),

where V(z,y) TUDS through all the retarded characteristics starting at (z,y). For

v = 7(;,3;)7 let us define

L, =inf{r(y(t)) : 0 <t <inf{t: r(y(t)) > 2r(z,y)}}

and it is enough to show that for some ¢ > 0 and (z,y) € KNN, I - > cr(z,y).
(z,y)

In fact,

inf {r(y(t)) : 0 < t < teo,y(t) € N} = infrinf {r(y(t)) : t} <t < ti} =

- inf{r(Fx(t)) : 0 < t < t; —t}} > infy I5, > cr(z,y),
3)

infg inf. _
=]
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if we choose t§ = 0 and

th = inf{t > ti : r(v(t) > 2r(Y(t))}, thyr = sup {t > ¢ : 7((8)) > r(v(t}))}-
Part a) of the proposition was used here in asserting that 'y(t,lc) € K.

In view of (5.5) we obtain

I - >inf,inf._ .- I
Yoy = T Ay

where 4 runs through the retarded characteristics lying in S . Consequently, we only
need to show that Iy > cr(x) for any such 7.

Let us make a change of variables
2=Ts12, z2=(z,y), 2 =(",y)
so that
P(¢,D,) = 6*(Py(x,D;) + dP1(6,2,D,))

and we introduce the operator Ps(z,D,) = Py + 6 P,. Using its principal symbol ps,
we can define i(_z )6 and Si 5 as we did for p. It follows that

:)/:I_"a(z,y) = Té:)'/(_z,y)’g, Sfl_"sz = Tés;g, (5.7)

To describe :7(; y),6 We can use the parametrization

ﬁ@yy)yg(t) =7 (eXP(tha (%,9;€,0))), €l =1,t>0,
with (z,y;£,0) in the retarded component of
P51 (0) N NG {2, 9) : 5 € R*°).

Since Py(x, D) is strictly hyperbolic in R3 (or by a direct computation) there exists
T independent of 0 < § < Jp such that for T < ¢t < 2T, 7'('7(; v) s(t)) > 2. This is

obtained by first arranging that d(T',%(t)) > C, T < t < 2T where d is the euclidean
distance and then observing that r(z) > C'min(d(z,T),d(z,T)3). Hence for r(z) = 1,

I%_w&(z’y) > infocter r(Tﬂ(;,y),g(t))v

and it is enough to show that there exists do > 0 such that for § < § and r(z) =1,
info<t<T7(V(z,y),s(t)) > c. Since

d(p;*(0)N{n=0}NS*N,p;*(0)N{n=0}NS*N) — 0, § — 0,

the continuous dependence on parameters and initial data for solution of ordinary
differential equations implies that

Supo<t<T dﬁ(_x,y),o(t)"?(_m,y),»,(t)) — 0, — 0.
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On the other hand Q; = S, ; and hence
infr(Y(z,y),0(t)) = inf,o-7(2) = cL.
By taking § small enough we get ¢ = 1/2C. O

If ¢(2) is a time function for P (in view of Proposition 3.1, we can take ¢(z,y) =
x1 + z3) once we arrange in Lemma 5.5 below that 02(Q)|n-r = 0 we can assume
that {z : |¢(2)] < 6} C X C {z: |¢(2)| < 26} for some small §. We then define
X_={z€ X :¢(z) < —6/2} and denoting K N X by K,

L2(K)={uel*K): u=0in KNX_}.

If A is the forward fundamental solution of P we form the operators

Do A 1<j<3
Bj={ i =J= (5.8)

Dy, ;A 4<j<n

which in view of part a) of Proposition 5.2 and the energy estimate, have the mapping
property

B;:L*(K) — L2(K), 1<j<n
‘We can now state

Lemma 5.3. — If A is the forward fundamental solution for P and K,)Z' and B;
are defined above then

Bj:rPL%(K) — rPL%(K) (5.9)
forallp>1and1 <j<n.
Proof. — By Proposition 5.2, Af € 9'(K) is well defined for f € L? (K) and the
energy inequality gives (5.9) for p = 0. If b; is the Schwartz kernel of B;, then, since
supp b;(z,8) C S, part b) of Proposition 5.2 gives
bj(2,2)=0 if r(2)<er(z), 2,2 € K. (5.10)

One can now apply the dyadic decomposition argument as in [32]:

K=|JK}, K/=Kn{z:279p<r(z2) <27p}, K =] KL
k<j

Let us define

b () — u(z), z€K(
u )(z)
j 0 2 € K\KJ,.
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It is easy to see that with L?(K) norms and p > 0,
P2 “2ipp e 12« 27 b2
Iul? < 02 S0P uf P < o ull (5.11)
j

It now follows from (5.10) that (Bu);) = (B(u(;))°)(;) and from (5.11) that
24P
2% _ 1

which proves the lemma. O

I Bul* < ¢7P lrPul®

We now show that if the only singular data for the free propagation in the past
is the incident front, no new singularities appear in the past on the resolved level as
well (see Fig. 5.1). In particular, the retarded cone is not present at all.

Since, away from I, Fand S are simply tangent along B we find that in coordinates
in which (5.3) holds

F= {($,y) T3 = l’%a(l’l,]}z, y)}a a < Coo
The map

1
(z1,22,23,y) = (21, 22(1 — 210)2, 23 — w%a, Y)

preserves S , B and maps F into

F={(z,y) : 23 = 0}.
It is also convenient to assume, without any loss of generality, that the coefficient of
D? in Pis 1.

T2

Proposition 5.4. — If the operators B; are defined by (5.8) and K, 1is given by
Definition 5.1 in the definition of K, K1 = 8*K, then

Bj : B Ik L2(K1,0X, UB*F) N L% (K) — BuIxL2(K1,0X, U B*F).

Before proceeding with the proof we shall establish

Lemma 5.5. — Let us define the following vector fields:

3
Voo = ijjDzj, Voj = Dy;, 1 <j<n—3, Vi1 = Dy, Vo1 = Dy,.
j=1

Then, after a possible change of coordinates satisfying (3.8),

[P, Vix] = —4idkoP + > Wikjd Vit + Zix
7l

where Wij1, Zir, € Diff'(X1) and the coefficients of Wixji are © (r™ax(0:3=1),
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Proof. — We first want to arrange that 72(Q)|n-r = 0 while preserving the form
of F (with a change of coordinates satisfying (3.8)). That however is quite easy
as the only terms in @ with homogeneous symbols possibly non-zero on N*I" are
aD2 + bD,, D,,. Thus replace a and b by a(0,y) and 5(0,y) and make the change
of variables

b 1
T —> T — 51’2 + (a - Zb2).’IJ3, Ty — x5y 1 F# L

Since then Dy, + Dq,, Dy, + Ds, = Dy, and Dy, — (a — &)Dy, +— Dy, the

reduction is complete as D2, — Dy, Dy, + aD2 +bDg, Dy, — Di — Dy, Dg,.

Since [Py, Vik] can be explicitly calculated and {z3 = 0} is characteristic for P, it
is easy to see that we only need to check this for [Q,Vik], Q as in (5.4). Thus
Wok11 Vi1 contains only terms D,le,DfBl,Dmel, as the terms D, D,, can be
put in Woko;Vo;. Since the symbols of @ and Vo vanish on N*T', the coefficients
have at least one factor of z; and thus are O(r).

The term Woge1 V21 can only have Dy, D,,, as Dﬁz does not occur (va2 has coefficient
lin P and Dy, D,,, Dy, D., can be included in Wox11V11 and Woko; Vo respectively).
Since D,, D, is homogeneous of degree —5 it has to have a coefficient in O(r?).

Finally we consider Wi121 V51 which has terms of homogeneity —4 or higher. Again,
it has to have coeflicients in O(r). d

Proof. — Proof of Proposition 5.4 We start by characterizing the push-forward of
the conormal spaces in the proposition:

9€ B LLB K, 0X:1 UBF)N L2 (K) <= [[Vig*g e r2en"on[2(K), (5.12)
i,k

|| < k, which follows easily from the definition of the conormal space in X;. If
u=Af, f € Bt L2(8*K,8X, UB*F) N L% (K), we want g = D,,u, Dy, u to satisfy
the condition on the right hand side of (5.12). To obtain that we shall use a more
refined version of the usual ‘system’ argument (see [32], chapter 6). For that we will
define

(wp,mi € LA(X;CY), N=N(p,m,1) €N, (5.13)
by an inductive procedure using

(u)?a,m,l = {ka(“)g-l,z,m;Vik(“)g,m,z—ﬁij(“)f;,m—l,z:

i=0,1;j=0,1,2k=0,,n—-3}, (whoo=1

where the vector fields are applied to each component of (u)ﬁ, assumed to be 0 if any
of the indices is less than 0. Note that we allow repetitions and order the components
of (u)} using the lexicographic ordering of products of vector fields. To define (5.13)
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we start by setting (u)o,0,0 = u and continue with

(@)o,0.0+1 = {(Wo,045 (W} o141}
(@Wo,m41,0 = {(Wom1; (W i1, h
(Wp+1,m,t = {(W)p,m,1; (u)g+1,m,z'}
where to identify with CN,N = N (p, m, 1) we again use the lexicographic ordering of

products of vector fields. We again adopt a convention that (u)p,m, = 0 if any of the
indices is less than 0.

The characterization (5.12) can be rephrased in terms of (g)p,m, as follows:

9 € Bk L2(B*K,0X, U B F) N L2 (K) <= (9)p,my € 7™ 2 L2 (K;CNEPmD),

’m’ (5.14)
p+m+1<k. If Pu= f, we will obtain the following system
Ppmi(Wpmi = Wi (Wp—1,m, 141 +7®,1>?m,z(u)p—1,m+1,l + (5.15)
Wyt (Wpm—1,041 + Fp,mt (f)mit,p
where
Pp,my € DIf2(X;CNEmD CNEmD) - o (@) 1) = 09(P)denemn,  (5.16)

o((\)iom L€ Diff! (5{'7 (CN(p,m,l), (CN(p—l,m,l-kl)),
:lﬂgl)om L€ Difft (5(" (CN(p,m,l)’ CN(p—l,m—{—l,l))’
Tt);lalm , € Dif! (5(', CN(p,m,l), (CN(p,m—l,H—l))’

with the coefficients of W7, in O(r?), and Fp,m, € C®(X;CNEmD @ CNPmD) 1f
(5.16) holds then Lemma 5.5 is still available:

[(‘J)p,m’l, ‘/ikIdCN(p,m,l)] = —4i5k05,Pp’m,l + (5 17)
> WikrsVesldenwmn + 5™, 5™ € Diff! (X, CN@mb, cNEmD),
7,8

The operator in the system is defined by successive inductions based on (5.17) and
the inductive definition of (u)pm,i:

Po0141(Wo0,41 = {P0,0,1(1)0,0,15%P0,0,i( 0 0.1) Z Wikrs(Ves( 0 o) —

~0,0,l .
200N (W)l o101 # 2,

where we identify Vj(u )001 with components of (u )g,o,l+1 but use Pp0,; on
{0; Vig (u)l 01} €9 '(X;CN(©0D) The terms on the right hand side of the system
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equation are YDB’ 04 =0and
Fo,0,04+1(f)o,0,41 = {Fo0,0,1(f)o,0,15
VooFh0.1(£o.0.r — 4i5h o ,(Fo.ot Vik(Fb o, (Fo0),7 > 0},

where 5§ o, (£)o0,1 = P0,0.1({0, (u0,02)})-

The next induction will introduce " ol

EP0,m+1,l(u)0,m+1,l = {‘(PO,m,l(u)O,m,l;SPO,m,l(V 0 ml Z Wyk'rs TS )0 m, l)
8,r#2

9 07 vl .
ijm (u)g,m,lv*CPO,m+1,l—1(Vik(“)g,mﬂ,z—l) - Z Wikrs (Vrs(“)g,mﬂ,l—l) -

T8
2N W 1 15 =0,15i=0,1,2k=0,--- ,n - 3},

with the same convention as before. Thus g 41, is constructed from %y ., and
BN} _
EPO,m+1,l—1- Now Iﬁo,mﬂyl =0 but

wtl),lm+1,l(u)0,m,l+1 = {}(l\)(l)lm 1(w)o,m—1,1415 Wika1 (Va1 (u )Om 1); 057 # 2},

where we consider V51 (u )g m,, @ a component of (u )0 mit1- We also have
Fo,m+1,(F)om+1, = {Fomi(F)omt; Voo £l i — 455 1o 1 (Fomits VikFh o (Fom.ss
Voo (ff(u),mﬂ,z—l(f)o,m+1,l—1> — 4i(FY 111 (Fomr1i-1),
Vik (‘Tg,m+1,l—1(f)O,m+1,l—1) ; 1=1,2;k=0,--- ,n—3}

@ def
where Jg,,-n,l(f)O,m,l = Po,m,1({0, (U)g,m,l})-
Finally, we define

9p+l,m,l (u)p+1,m,l = {g)p,m,l (u)p,m l;( p,m, l(VOk( )p m, l Z WOkOs ‘/03( )p m, l)

o pyml
200 (u)pml’ p+1,m—1,0 (Vi (u )p+1m 1) Z Wikrs(Vrs )p+1m 1)~
8,r#2

op+lm—1,1 # . C -
‘ij (“)p+1,m—1,17‘Pp+1,m,l—1(vwk( p+1,m,l— 1 E:Wzkrs v p+lml 1)

Zf:l’mYl-H(u)i.{-lym,l_l :7=0,1;9=0,1,2,k=0,--- ,n— 3}’
and
YD;L m(Wp,m+1,0 = {?aé?m,l( )o—1,m+1,1; Wok11 (Vi1 (u )pml) 0;0;k=0,---,n—3},
Wpb1,m 1 (W) pym, i1 = {0 1(8)p—1,m,14+1; Woka1 (Var (u )pm );0;0;k=0,--- ,n—3},

W 1,m (Wpt1,m—1,041 = FOL b 1 (W pm—1,0415 0 Wikar (Var (W)h 1 1y )05
]=0>1,k=O7 an_3}’
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where again we use the convention that, for instance, Vn(u)f) m.. 1s a component of
(u)fo,m 41,1~ The definition of §p11,m, is analogous to those in the previous cases.

Since the principal symbol of Py, 1 ; is PIdcn(e,m.1y, Lemma 5.3 can be applied in this
setting and thus

u=Af, (flooy € r*L*K,cNO0D) —
272 N(0,0,0 (5.18)
(9)o,00 €T~ L*(K,C ©, ’)), g = Dz,u, Dy, u.
Using the right hand side of (5.18) and (5.15) we can now prove by induction that
(9)o,my € r ™ ALY (K, CNO™Y) g = D, u, Dy, u. (5.19)

In fact, (f)o,m,; € ™™ 2 L3(K,CN(©™) in view of the characterization (5.14), and

WYL (Woym—2, 141 € 77 (MTATHHNL2 = pom=2p2

’(f)(l,}m7l(u)0,m_1,l+1 € O(p)p(m—D-20+) 12  p=m-212

by the induction hypothesis. Thus another application of Lemma 5.3 gives (5.19).
Using that as the starting point of an induction on p concludes the proof. a

The immediate consequence is the following refinement of Theorem 3.9:
Theorem 5.6. — If J,L*(X, H) is given by Definition 3.5 and
Pu=f inX, ulg =0, feJJLXX,H), flz =0,
then
we JILE (X, H).

Proof. — Let us first take s = k € Ny. Then clearly

”U”ka()?,H) < |lﬁgU||1kL35()?5,§5) + 2llﬂ*U||IkL51(KhaXUﬁ*F)'

If v = xu or v = D;xu, where x € C§°(X), then by Theorem 3.9 and Proposition
5.4 the right hand side above is bounded by

185 1l 1 z2, (%o 55) + 206" fllnzars,ox 0y < 20F 15123,y
Thus,
||Xu“J’1L2(5(',H) < 2||f||JkL2(5{'YH)>
for any x € Cg"()? ), so that the general case is immediate by interpolation. d

We would now like to have an analogue of Proposition 5.4 for the Dirichlet problem.
It is convenient to find appropriate coordinate functions.
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Lemma 5.7. — There exists a diffeomorphism satisfying 3.8 such that the coordi-
nates given by Proposition 8.1 to transform to coordinates (z,y) near T' = {z = 0}
in which

P=P0+Q7 POZD:%Z_Q:ZD:%I_DMD%,

2 (5.20)
Q € Diff;;_,_3, 02(Q) [N+r=0.
and
X ={zp >0}, 0X = {zp =0}. (5.21)
Proof. — Starting with the coordinates given by Proposition 3.1 we take an inverse
near 0 of the transformation
T 21 (5.22)
zo — (16)3 (323 — 22) (5.23)
x3 — 27x3 + 97129 + 5T (5.24)

so that the cusp is given by {(27z3 + 9z1z2 + 523)% — 16(3z2 — 2%)® = 0}. The
operator for which the conormal bundle of this cusp is characteristic has to be of
the form Py + @, Q € Diff§’1_2_3(R") where we rescale z; if necessary — this can
be seen directly or by transforming the statement of the proof in Proposition 3.1
(the motivation for this computation and the ones below is given by the explicit

expressions for A, in chapter 7 ).

As in the proof of Proposition 3.1 we can preserve the cusp and take the boundary
to be {z2 = 0}. Then also

~ 1 _o_
F={(z,y) : z3 — z122 + gx? + fa =0}, fse M 23RM).

We claim that we can preserve 8X = {X, = 0} and map F to {xs — 172+ s73 =0}
by a transformation satisfying (3.8). In fact, proceeding as in the proof of iii) in
Proposition 3.3 we need a family of vector fields V; tangent to X such that

1
Vi(zs — 221 + —:L“Ij +8f4) = —fa.

3
and for that we can simply take, near (0,y),
Vo= —2 4, 6,50,y =0.
1+ 36% f4 3 8

The resulting diffeomorphism clearly satisfies (3.8). It remains to check that

02(Q) [n-r=0.

Since {z3 — z122 + %—m"f = 0} is characteristic for P and P it has to be characteristic
for Q. The only terms with symbols nonvanishing on N*I" are anE1 +bDg, Dy, so
that leads to the condition a(z? — z2) = bz; implying b(0,y) = a(0,y) = 0. This

concludes the proof of the lemma. ]
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We shall need a number of preliminary facts and we start by considering the
following problem. Let V be a fixed vector field of the form

V = aD,, +bDy, + (¢, Dy), a,be C®(X,R), ce C®(X,R"3).
If ¢ denotes a time function, let us consider the solution of
Pu=Vf, ulox=g, u=0 for ¢(z) < -0 (5.25)

where f € 030(5(,;)_, g € C°(Xs N 0X) with Xs, a neighbourhood of 0 in X such
that ¢(z) > —¢ in X5. We then define the map

T:(f,g9)—u

allowing also the notation Thg = T'(0,9) and Tof = T(f,0) so that T'(f,g9) =
Tig+ T>f. Before proceeding with the analogue of Lemma 5.3 for 77,7 we need the
following

Lemma 5.8. — If f € C°(Xs) and g € C°(Xs N 0X) with X5 sufficiently small,
bicharacteristically conver neighbourhood of 0 in X, then the solution of (5.25)
satisfies

lull2xs) < CO%(I fllLzxs) + Collgll L2axngs)- (5.26)
Proof. — By translating 0 € X we shall assume that
XsCXi={zeX:-6<¢(z) <0},

where, as we may, we take ¢(z,y) = x3, (only the tangency of the time function to the
boundary is important). Let us recall the energy inequality, [14], (24.1.4), (compare
also (24.1.6) there):

5_1/(|h’|2+|h|2)dv 505/ |\ Ph|2dv +
Q Q

n—3
C/ (IR[? + | D, hl? + |Dgyhl? + > |Dy, h?)dS,  (5.27)
Qnax =1
where Q = {z: 22 > 0,23 < 0} and h € S(R"), h =0 if ¢ < —4. Let x € C§°(R")
be supported in a sufficiently large ball around 0, so that x(z)u(z) = u(z) if
-0 < ¢(2) < 0. The existence of x follows from the finite speed of propagation
(see [8], Sect.VIL.8). Consequently, it suffices to establish (5.26) with u replaced by
XU.
We now follow, in a slightly modified way, the proof of Lemma 24.1.5 in [14] by first
introducing

n—3
E,(D')* = ((1+DZ +> D) +iDy,)°

1=1
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and then applying (5.27) to h = E_1(D’')*xu. It is important here that A = 0 in
#(z) < =4, since u = 0 there. We also recall that by Theorem B.2.4 of [14],

1B (D)l 2 gy < CUIDashllZa ) + 1 Dashllza ks
(X5) ( (

1
+ Z “Dyzh”iz(xﬁ + ”h“Lz(Xﬂ )2
i—1

and
n—3

E_y(D')*|P, E{] = Ra, (2, D) Da, + Ray(2,D,)Day + Y Ri(2,D})Dy, + Ro(2, DY),
i=1

where R.;,R; € S°(R™,R""!), D, = (Dg,,Da,,Dy), and Re(z,D,)Dew =
Re(z,D,)w,, if we = Dew for ¢p(v) < 0 and we = 0 elsewhere.

Thus,

[121(D")"hll L2 x2)
< C62HE—1(DI)*PU||L2(X§) + C‘S”E‘l(DI)*g”H(l)()_‘g”aX)’

”XUHLZ(Xg)

A

since xg = g. We conclude the proof by observing that
||E—1(DI)*PU||L2(X};) S CllPullag, _y(xs) < Cll fllLzxs) (5.28)
and
IE-1(D)"9ll g, (xtmox) < 1E-1(D')" gl 0) < llgllL2(ox) = lgllza(xsnox)-
O

By following the proof of Lemma 24.1.6 in [14] and using (5.28) we also obtain the
mapping property:

T :L*(Xs) x L*(Xs N 0X) — L*(X;5) (5.29)

with small norms ©(82,§), in the first and second factors, respectively.
Let us now modify the previous notation to the boundary value problem case.
Thus we consider

Ks = KnNn Xy,
where K was defined by (5.2) and X5 was given in Lemma 5.8. Similarly, we define
K{ = K5 N X,

and L% (K;), L2 (K?), by analogy with L? (K). With this notation we have
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Lemma5.9. — Let K5, K2 be as above. If g € L2 (K?) then

PP TigllL2(xs) < COlITPgll (k) (5.30)
and if f € L% (Kj5) then

7P T fllL2(xes) < CO* 7P fllL2(is)s (5.31)
where, T(f,g) = Tof + T1g is the solution operator for (5.25).

Proof. — The support property required in the proof of Lemma 5.3 holds for the
mixed problems as well (see [8], Sect.VIL.8). Since the existence is guaranteed for f
and g in L? we can again proceed using the dyadic decomposition. The details of the
proof are the same. O

As in the free case we shall now consider the resolved space X; = cl(8*X) which
is a manifold with a codimension 2 corner 8X; N 3*0X. Thus we have

ﬁ:Xl —)X, 8X1 =ﬁ*8Xﬂ(8)?1r1X1).
We also define (compare chapter 7 below)
8% =5

The following estimate will be useful later:

B*0X 5 ,Baﬂ*BX——)BX

Lemma 5.10. — Let N C X be such that 3*N C X is open with smooth boundary
and let u € C°(X) satisfy Pu=0 in N. Then

> pPesteeten DBy iy < G Y PP DI D32 Dyul| L2y,

3

lal+]B8]<t || +|B|<t
(5.32)
for any 1l > 0.
Proof. — Let us define
Hf’o‘l)(Xl) = {we€ L3(X1):w=w +ws, suppwe NBioX =0, wy € Hé’l)()?l),

wy supported near 570X, W (rDT)"“D;, € L1(X1),
ly| <1, W =r'8{Dy By, i = 1,3},

which is simply the mixed b-Sobolev space based on X 1 D X; and B*0X. Clearly,
X can be replaced by §*N in this definition. Thus (5.32) can be rewritten as

”ﬁ*U”H(b,)(,@'N) < Cl“ﬂ*uHH?o,t)(ﬂ*N)’ P fiu=0 in B*N,

where P, = r%3*Pp3,. Since P; is b-noncharacteristic with respect to 3*0X, the
estimate follows from an easy modification of the proof of Theorem B.2.9 of [14]- see
Appendix B. a
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We also need a modification of Lemma 5.5 to help us in this setting:
Lemma 5.11. — Let us define the following vector fields:
‘/il =-D:1:i’ i=172,37 Vb] =Dyj’ ]=1> 7n_3'

If P and X are of the form (5.20) and (5.21) and the coefficient of D2, in P is 1,
then for i # 2

[P, Vor] = Z Wijlez + (aok Vi3 + bok Dz, )Viz + Zo, aok = O (%), box = O(r?),

J#2,3

[P,V11] = Z Wuszjz + (a11Vis + b11 Dy )Vis + Z11, a1 = O(r2), box = O(r),
J#2,3

[P, Vai] = ZWMﬂle + Z31,
72

where Wikﬂ, Zk € Diffl()?) and the coefficients of ﬁ;mcn are in O(r).

Proof. — The argument used in the proof of Lemma 5.5 together with Lemma 5.7
easily yields the desired statement. a

The next lemma provides the crucial a priori estimate:

Lemma 5.12. — Let K5, K2 be as in Lemma 5.9 and let f € C$°(0X) satisfy
flgo € L% (K?). If u is the solution of

Pu=0 in X ,u|¢(z)<_5 =0, U'E)X =f,
then, for § sufficiently small

”ﬂ*u“IkL,z,(ﬁ*K(s;a)?lﬂﬂ*Kg) S C”ﬂa‘fllIkLﬁa(ﬂ*K?;a)?lﬂﬁ'K?)' (533)

Proof. — To the extent that it is possible we shall follow the proof of Proposition
5.4. Thus, the boundedness of the norm on the right hand side of (5.33) is equivalent
to

H V;'(me € r—30431-0t11L2_(K?), |C¥| < k;’ (534)
i,k i#£2

The required estimate for the solution now takes the form:

H‘/i(;iku c T_3a31_2a21_a11L2_(K§)) |a| S k‘ (5.35)
i,k

To obtain the system we define (u)p,m, as before using Vji, j # 2 and introduce also

(u)p,m,l,l € LZ(X:; CN(p,m,l)), (U)p,m,l,l = Dl?z (u)p,m,la
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with D, applied to all the components of (u)p m, and the order preserved, so that,
for instance,

(Wp+1,m1 = {(Wp,m,1,1; Da, (u)f,+1,m,z}-

As in the proof of Proposition 5.4 we obtain the following system, where now Lemma
5.11 is used:

30 10 21
Pomt(Wpmt = Ap i (Wp—1,mi+1 + Qp 1 (Wp—1,m41,0 + Qp 1 (W pm—1,141
B2t (Wp—1,mr1,01 + By 1 (W)p,m—1,,1

with boundary and initial conditions

(Wpmitlgzy<—s =0, (Wpmilox = (f)pmiis

and where
Pp.m € D2 (X; CNEmD NPy - 5P, 1) = o9 (P)Idenmn

and (i;’ml(m, D,,,D.,), ‘B;]ml(a:,Dzl,Dm) € Diff!(X) with coefficients in O(r?).
Since the construction is analogous to that in Proposition 5.4 we will only describe
the last, most involved, inductive definition:

g)p—i-l,m l(u)p+1 m,l = {(p ,m, l(u)p,m,l;l('pp,m,l(VOk (’U‘)f),m,l)

- ZWOkOS L

~p,m,l
- ZOk, (u)p m, l;‘(PP+1 m—1,1 (V7k (u)fp-{-l,m—l,l)

E: ijrs rs )p+1m 11)
8,1#2,3

:vp—i—l m—1,1
— %k ’ ’(U)f,ﬂm 1z§*‘Pp+1,m,l—1(Vik(u)iﬂ,mJ_l)

- Z Wzkrs TS )p+1ml 1)

8,7#2

~p+1,m,l+1 . X
T W ey 4 =0,1i=0,1,3;k=0,--- ,n — 3},

with
B1-0-1'ml( )P+1,m—1,l’1 =
{B 2101 (Wpim—1,,15 03 bok Var (W)h 1 oy 1, b1 Var () 4y 1y 303,
B2 ) ot (W1 = {B20 1 (W)p—1,m,1,15 bok Vas(w)}, 13050},
@304 i (Wpmi+1 = {@30, 1 a0k Vis(Vas ()t . ); 050},
p+1mz(u)p,m+1,l = {2 1 (W)p—1,m+1,; Worn1 (Vir (W)}, 1); 05 0},
+1 m, 1(W)pt1,m—1,141 =

@2 1 (Wpm—1,1413 0; a0k Var (Va1 (W)} 1 ), 011 Var (Var (w)f ;1) 03,
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We now use the estimates (5.30) and (5.31) of Lemma 5.9 and proceed by induction
starting with

(u)o,0,1 € 'r_3lL2_(K5; (CN(P,m,l))_

Since u € C°°(X), we can assume that the norms of (u)p m, 1,1 in r~9L% (Kg; CNPmD)
are bounded and consequently we obtain

1™ @) mtll22 (icay SOOI (W) 1,mtll 22 1) o
+ [ (W) m 12 (1)
+ ||T3l+m(u)p,m_z,z,1||L2_(K5))

+ 05||T31+m(f)p,m,l”Lz_(Kf;’)'

Summing (5.36) in p,m,{, p+ 1+ m < k we obtain

3az1+o11 o as1 pa’
E ”T DzluDz;; Dy u”Lz_(Kg) <
la|<k

052 Z ”,,.3031+20421+Ot11 Dngu”Lz_(Kg)
la|+|BI<k

+08 3 I+ DIt DI DY flls ey
ler| <k

If § is small enough we can apply Lemma 5.10 with N = K to obtain the desired a
priori estimate. O

For f € L2 (8X) we consider the Poisson operator Tt,
PTif=0 in X, Tiflox = f, Tifle(z)<—s = 0.

We can use Lemma 5.12 to deduce
Proposition 5.13. — The Poisson operator T given above has the mapping property:

Ty : B2ILE, (8% K5 0%, 0 627 KJ) N L2 (KJ) — Bl L}(5"Ks;0X1 N 5" Ks)
where B,v = dxdy , Bvs = 1*dzdy, 1: 0X — X.
Proof. — By the comment following the proof of Lemma 5.8, the map

Ty : L? (K?) — 9'(K;)

is well defined and, since we know the existence in L?, we have obtained u € L% (Kj)
such that

u=Tiflg, if flgo € L2 (K3).
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The conormal spaces in the statement of the proposition are complete (as they can be
identified with H, f’k) of a manifold with corners — see Appendix B) and 5*C*°(X)|g~n;,

B2 e (0X)|po- o are dense in

I L(B*Ks;0X, N B*K;s) and L2, (8% KZ;0X, N B2 K§) N L2 (KY),

respectively. This can be seen using the density of 3*C§%(X), where CgG are all
functions vanishing to infinite order at I' = {(0,y) : y € R"~3} which follows
from the density of (R™) in H(r)(R™) (where we again use the b-Sobolev spaces on
manifolds with corners and the identification with the usual Sobolev spaces through
a logarithmic change of variables).

Thus, if F € IkL,z,a(ﬂa*Kf?;@)?l N B2 K2) N L2 (K?), f € B.F, then there exist
Fy € 827C>(8X)|k7 such that

Fy — F in L2, (8°°KZ;0X:n B2 KQ)NL2(K?), N — oo.

We then consider uy = T13%, Fx, where using the a priori estimate of Lemma 5.12,
we conclude that u € I L2(8* Ks; 0X1 N B*Ks). a
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6. THE EXTENSION PROPERTY

The purpose of this section is to construct an extension map from the
marked Lagrangian spaces in X defined in Section 4 into the conormal space
(Bs)«(Ix L% (X5,85)). Let us first fix our notation (see chapter 2):

Ar=N*R\0, Ap=N*F\0, As=N*S\0, Ay =N*H\O. (6.1)
The main result is

Theorem 6.1. — There exist linear and continuous maps

Ey: IRL2(X,As U Ag) + IELA(X, As; As N Ap) — (Bs)«(Ik L2, (X5,85)),
and (6-2)
Ep: IELA(X,Ap UAR) — (Bs)«(Ix L2, (X5, 85))

such that

Ew)=uin X. (6.3)

Before constructing the extension maps E; and E5 we need to present a result on
the commutation of blow—ups.

In this section we will modify the notation introduced in chapter 3 and apply the
blow-ups symmetrically as in the construction of X5 (see Fig. 3.2 and Fig. 6.1):

)?5—>)Z'3—>)A(:2—>)?1—>)?.
Thus, X2 is a manifold with corners defined by the 1 — 2 — 3 blow—up of I" followed
by the 2 — 1 — 1 blow—up of DN BXl with §; o 815 : Xz — X1 a correspondmg
blow—-down map. Recall also that X. 3 is a manifold with corners obtained from X 2 by

the 2—1—0 blow—up of D = (f10P12)*D and Ba3 : Xg — X2 is the corresponding
blow—-down map.

The problem of constructing the extension using 31 0 812 0 B23 is that the boundary
of X does not lift to a smooth hypersurface under this map. Thus we will need an
alternative hierarchy of blow-ups.
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~{ =P

ﬁ"‘ﬂ.

Figure 6.1. The auxiliary blow-ups: )Z'a = )?r ﬁ—zf 5{:2

Let D((,z) = D@ N X, and (z1,%2,23,y) be local coordinates given in ) of
Proposition 3.3. Let (2/,y’, s) be the corresponding projective coordinates near D(()z)
chosen so that (12(2,y', 8) — (522

Z',sy’,s). Then
D@ ={y =2 =0}, DP ={s=y =2 =0}.
Let
St_3-1, = {w € R®:w] +wj +w3® =1, +wz >0}

and define the space obtained by blowing up the two components of D(()Z):

X, =X\ D& U(S2 5.1, xR U(SZ 5., xR"™3)

with the C* structure obtained as before. The blow—down map near D(()z) now takes
form:

ﬁ2’r1 Xr — 5(;2
B2r(w, p) = (P6W1yP2w2aPW3) = (zl’ylvs)‘
If D® = B3.D®, we define the auxiliary manifold with corners X, as the one

obtained from X’T by blowing—up the submanifold D® with homogeneity 2 — 1 — 0
and let 3, denote the corresponding blow—down map. Let

B2a: )’Za — X2y
/B2a = /827‘ o ﬂra

be the corresponding blow—down map.

Lemma 6.2. — If Q = {22 — 123 = 0} and H = {z; = 0}, then the smooth
hypersurfaces Q@ = B5Q and H® = B3H lift under (oo to disjoint smooth
hypersurfaces intersecting 0X, transversally.
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Proof. — 1In the projective coordinates (s, y’, z') defined in a neighbourhood of D(?)
QW ={z=y*}, H®={s=0}. (6.4)

As before we shall define projective coordinates for Gs,.. Thus let

_ n_ Y " <
p =S, —p_37 p_6
/
p=1yl3, 8’=§, z“—:—. (6.5)
!
Y r_ S
p:lzll(i7 y”:—, S = —.
P p

Each valid in the region |w;| > 0,7 = 1,2, 3. In each of these coordinate systems we
obtain

B5Q® = {" =y}, 5 H® = {z" =0}.
Q% = (' =1}, ;H? ={"=0}.
B5Q® = {y" = 1}.

Hence in the first coordinate system (5.Q(? and g3, H(® are simply tangent and
thus lift to smooth hypersurfaces in X, by the 2 — 1 — 0 blow—up. In the second and
third coordinate systems ﬂ;rQ(z) and G5 . H (2) are clearly smooth. This concludes the
proof of the lemma. O

Proposition 6.3. — Let U, = 0(85,Q® U B3, H® U 8X,) be the Lie algebra of
smooth vector fields in X, tangent to 85,Q®, B3, H® and 8X, and let V3 =
V(B QP U B3 H® LUOX3) be the corresponding Lie algebra in Xs. Let v, be the lift
of the Lebesgue measure in R™ to Xa. Then

(ﬂ23)*IkL:2/3 ()?3;\03) = (ﬁ2a)*IkL12/a (XaaT)a)- (6~6)

Proof. — Observe that in coordinates (s,y’,z’) such that (6.4) holds, the map
F(s,y,2') = (s,y,2' — y'*) is a diffeomorphism that preserves D® and maps Q(®
into H(®. The homogeneity of the variables s, and 2’ shows that F lifts respectively
under B3 and B, to smooth diffeomorphisms mapping the lift of Q) into the
corresponding lift of H®. Since the pairs 35;,Q® and B3, H®? are disjoint, and
so are 3:Q®? and B:H®, we only need to prove (6.6) for the Lie algebras 03 and
0, replaced by V3 i =0(83,H® UHX3) and V, gy =0 (8 HP UHX,).

The next step is to show that both sides of (6.6) have the same characterization in
terms of singular vector fields.

Lemma 6.4. — Letu € L2 (Xs). Then u € (823).IxL2, (X3, V3.5) if and only if in
the projective coordinates (s,y’,2') in which (6.4) holds

(585,201, |2'|20y,y' By )*u € L2, (X2), |a| < k. (6.7)
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Proof. — Indeed, if u satisfies (6.7), then in projective coordinates
! /
t=\y], 2" = :—2 and t=|2|2, ¢ = y7 (6.8)

the vector fields in (6.7) lift to
505, 2" 0,1, 0y, |2"|% (585 — 22"8.1), and sds,t0y, Byr (6.9)

respectively, and these span 03 . Therefore S33u € I kL33(23,T)3’ H)-

Conversely if B35u € IkLﬁa()ﬁf:;,’("g, H), then B3;u is stable under the application of
the vector fields in (6.9) and therefore u satisfies (6.7). a

Similarly we obtain

Lemma 6.5. — Letue L2 ()22) Then u € (ﬁza)*IkLza()?a,T’a,H) if and only if u
satisfies (6.7).

The two lemmas complete the proof of Proposition 6.3 O

We also need a corollary of Seeley’s extension theorem, with the proof being
immediate from the arguments of [46]. Let R} = {(z',z,) : z, > 0} and for s € R,
let H,)(R%) be the space of restrictions to R"} of elements in H,)(R™)

Proposition 6.6. — There exists a linear and continuous map
§: LA(R}) — L3(R")

such that if u € L2(R%) satisfies

Q1(z',Dy) ... Qu(a', Do) (D} Yu € Hi_(r—1);(R}) (6.10)
for Q;(z',D,/) € Diff*(R"1),1<i<m, j+I1<kandreN,r>1. Then
Q1(z', Dyr) . ~-Ql($',Dz’)(D;n)jS(U) € H_(r—1);(R™). (6.11)

We can now start the construction of the extension map and it is convenient to
introduce the following notation:

X, =8'X, 0X,=p0X.

The X,’s are manifolds with corners and in the definition of the extendible (H(”s))

and partial (H, é’s m)) b-Sobolev spaces (see Appendix B) are taken with respect to the
boundary face given by 8X;. The first half of the theorem is given by

Proposition 6.7. — There exists a linear and continuous map
Ey: RL2(X,As UAg) + IPLA(X, As; As N Ap) — (Bs)« (Ie L2, (X5,85))  (6.12)
such that
Ei(u)=u in X. (6.13)
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Proof. — Let us define the following Lagrangian variety
L ={AsUAg,AsNAF},

where the marking of the union is disjoint from the second component. It easily
follows that if u satisfies the hypothesis of Proposition 6.7, then u € I2L%(X, £). We
shall use this to construct 4 satisfying (6.13). Let us assume that supp(u) is contained
in a small neighbourhood of T

Proposition 3.3 guarantees the existence of smooth coordinates (z,y) in a neighbour-
hood of T" such that

S={a2=mz3}, B=FNS={ey=a3=0}, H={z, =0} (6.14)
and the defining function p of 8X , i.e X = {p > 0}, 0X = {p = 0} satisfies

p(z,y) = T2 + 122 + cox? + c3zi + Z aijziz; + O(|z[*), c1,e3 >0, (6.15)
i<j
see Remark 3.4.

Direct computations show that ¥}"*(X, £) is the ¥)"*(X) span of

i= 3x38w3 + 21‘28;52 + -7718:1:1, Vo = 23716:171 + -T2azza
Vs = (22 — £123)0,,, Vi = (22 — 1173)0s,, (6.16)
V5 = (.Tg - I1$3)6z3, AL, L= 622 - 4621(913.

where A € ¥; (X)) is elliptic. By Proposition 4.5, if V = (V4,...,Vs), we find that

VeLu= Y (Or,,00,, 00,) up, up € L*(X), la|+a<k. (6.17)
[B|<a

The first step is to analyze the lift of (6.17) by 8. Let Xi; = {r~28fp > 0},
V! =ptVi,1 <i<5, L =r*B{L, W; =178}0,,, 1 < j < 3. We deduce from (6.17)
that if u; = f*u, V' = (V{,...,V{) then

V/OcL/aul — pla Z T—Bﬁl—zﬁz—ﬂawﬁué,
|8l<a (6.18)
la| +a <k, uper3Li(Xy).

Since u is supported near I' we may assume that 7 < 1 on supp(ui). As
4a — 361 — 232 — B3 > 0, we obtain from (6.18) that

V'O L'*uy € v HY_ 4 (X1), (6.19)
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where L2 and H, é’s) are the b-Sobolev spaces defined in Appendix B. Then we analyze
(6.19) in projective coordinates

r=|x3|%, Y=x—§, z=4

r T

. 1 I3 _ I
7‘—|$2|2, X—r—s, Z—7 (620)

I3 T2

T=|Z1|, X:T—3’ Y=T'—2

In the third set of coordinates we obtain from (6.19)
(rd:,2X0x + Ydy)*[(By +2Y0x)0y |1 € r°HY_,y(X1), la|+a<k (6.21)

and
pr=1r"2Bip=Y +c1 +O(r). (6.22)

Thus for small r, Y # 0 near 8)’{ 1. The operators in (6.21) span the space of totally
characteristic operators in ¥}(X;,%8) where ®¢ is the marked Lagrangian variety
formed by ®N*SM L N*H(M) marked by *N*SM) nbN*BO),

Near 0X1, p=Y, 2’ = X/Y?, give a smooth coordinate system in which (6.21) can
be written as

(ror, 0,)% [z’ (1 — 2)02]%u; € r_3FIE’_a)(X1)
and (6.23)
0X1 ={p+c1+0O(r)=0}

If o’ = 0 defines the boundary then p’ = p + ¢; + O(r) and we can use it as a new
coordinate. Then we deduce from (6.23) that

(r0r,8,)*(z' (1 — 2)02) w1 € r > H{_py(X1), 8X1={p’ =0}. (6.24)

Since 9,/ is transversal to 0.X; we deduce from Proposition 6.6, or rather its easy
modification to the case of a manifold with corners, that there exists & such that

@=uin Xy, (rd,,8y)%(@'(1—2)02)u e r 2H}_, (Xy). (6.25)
Now we proceed by a microlocal partition of unity of bT* X 1. In the region where

either rd, or 9, is elliptic it follows from (6.25) that @ is conormal to 8X;. In the
region where 9,/ is elliptic we obtain from (6.25) that

(rBy,0,)* (' (1 — )8y )% € 73 LE(X)). (6.26)

Going back to the original coordinates this provides the condition required in the
extension.
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In the region where the coordinates (r, X, Z) can be used
0X; ={1+c12% +O(r) = 0}.

Thus for small r, Z # 0 near 6X; and therefore the set of projective coordinates
(r,Y, X) can also be used there and the extension is constructed as above.

In the first set of projective coordinates in (6.20) we obtain,

(rdr, 2207 + Y8y, r*(Z — Y?)dy,r3(Z — Y?)02)"
[(By +2Y0z)dy]"uy € T3 HY_,(X1).

and the lift of the boundary of X is given by

(6.27)

0X1 ={Y +c1Z% + a19rY Z + a137*Z + by7Z> + bor?Y Z2 + f(Y, Z,7)r® = 0},
fec=, £(0,0,0)=0.

Since we are only concerned with the region r ~ 0, we find that if |Y| > 0 near 8X;,
then |Z| > 0 near X1. Therefore in this case the extension map is constructed in the

third set of coordinates. Thus we may restrict our analysis to a small neighbourhood
of Y =2=0.

To start we need to analyze the lift of (6.27) under the 2 — 1 — 1 blow—down map.
For that we use projective coordinates

/ Y / Z
s=r, y=— ==
S S
Z
5=|Y|, 7'/=£, z/=8—2, (628)
Y
S=|Z|%, TI=T7 y’=?'

In the third set of coordinates of (6.28)
0X, = {y +O(s®) = 0}. (6.29)
We deduce from (6.27) that up = B7,u; satisfies
(10, 505)*[(1 F y'*)02]%up € ' °s 3 A}, (X2), o +a <k (6.30)

Since v’ and s are small, ' ~ 0 near X5 and thus |1 F ¢/ 2| > 0 there. Therefore
near 0X,

('O, 80,)020uz € ' °sEAY_ (Xa), lo] +a <k (6.31)
Let y” =y + O(s®) be a defining function of X,. We deduce from (6.31) that

("0 + frByr,50e + f2By)*O}fug € s HHY ) (Xa), ol +a <k,

6.
0Xy = {y" =0} (6:32)
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where f; and f, are smooth functions. Thus, completing the squares, we see from
(6.32) that

((r'0,)%,(s05)%,02.)%uz € 7' °s™2HY_ , (X2), la| < k. (6.33)
It follows from Proposition B.1, applied to the noncharacteristic operator 35%, that
-3 _2 =
((r'9,1)%, (s05)%)" Ognug €7’ "s sz)—lal)(X?)’ la| +a <k. (6.34)
Proposition 6.6 gives iy € r/ _33_%L§(5(:2) such that

((r'0m)?, (s05)%)° Oygnug € r’_ss‘%Hf’_lal)(Xv’z), la| +a < k. (6.35)

Since at any point q € 5T* X, one of the three operators s0s, 7’0, or Oy~ is elliptic
one deduces from (6.35) that

~ -3 _39 >
U €7' s 2Hé’k)(Xg)
Simple computations show that, for v’ and s’ small, X5 does not intersect the region

where the second coordinate system in (6.28) holds.

Next we consider the region where the first coordinate system in (6.28) is used. We
find that in these coordinates

0Xy ={y +c1s® +82f(r',2/,s) =0}, feC®, f£(0,0,00=0 (6.36)
and we obtain from (6.19) that

(885,22'0.0 +y'8,)*[(By + 24020y )™z € sTEH{_ ) (X2), |a|+m < k. (6.37)

To analyze )?3 we need to blow-up D) with homogeneity 1 — 2. However as we
already mentioned 90X lifts under B23 to a singular hypersurface. This is where we
use the result on the commutation of blow—ups proved in Proposition 6.3. We shall
prove that there exists an extension of 85,u, into the conormal space Ij L,z,a (Xa,04).
It follows from Proposition 6.6 that this gives an extension of us to the conormal
space.

In the first set of coordinates (6.5) we obtain that ug = (3,u. satisfies

(00, 22" Borr + 4" By )*[(Byr + 29" 02)Byn|Mug € p~ HY_(Xr), la| +m < k.
and
0X, ={y"+c1+O(p) =0}.

Thus for small p, y” # 0 near dX,. Then we blow—up D(") = 35 D@ = {y = 2" =
0} with homogeneity 2 — 1 — 0. In projective coordinates

72



SEMI-LINEAR DIFFRACTION OF CONORMAL WAVES

The condition (6.37) gives, for |a| +m < k

(0, 10y)™ (Z~1 )O2™ Brus € t7 2 p O H_pm) (Xa)-

12 : (6.40)
(p0p, t0)*[Y(g — 1)0; ]mﬂmm et” 2p H(_m)( X,).

Hence, away from 0X,, we conclude by a simple microlocal partition of unity
argument that 8}, us € IxL,, (X4, 0Vg).

Since y” # 0 near X, the first set of coordinates in (6.39) can be used and
Xo={t+c1+0O(p) =0}.
We deduce from (6.40) that
(09, 0)°[2(2 — V2™ B4 € p~° H(—my(Xa). (6.41)

Since 0; is transversal to 9X3, one deduces from Proposition 6.6 that there exists an
extension @3 of 3, us to X, such that

(p0p,t0)*[2(2 — 1)02] ™ il € p~ % H(_m)(Xa)- (6.42)

Next we proceed by a microlocal partition of unity. In the region where either pd, or

t0; is elliptic @3 is conormal to the boundary of )Z'a. In the region where 9; is elliptic
we find that

(p8,,8:)*[2(Z — 1)85]%03 € p°L2(X,). (6.43)

This shows that ug is conormal to the lifting of the cone and the plane.
Simple computations show that for p and s’ small, the boundary 8X, does not
intersect the region where the second coordinate system in (6.5) holds. In the third
set of coordinates
_g _
(p0,, 805)*[(1 F y"z)aj,,]mm. €s 2p_ng’_m)(Xr), m+al <k
and (6.44)
={y" + O(p) = 0}
Away from 0X,, a microlocal partition of unity argument gives that uz €

ItL, (X,,0,). On the other hand 1 F y”’ # 0 near 8X,. Thus it follows from
Proposition 6.6 that there exists an extension 43 of us to X, such that

(08, $05)* 02 i3 € s P H) (X,), m+]e| <k (6.45)

Now a simple microlocal partltxon of unity argument analogous to the one used above
shows that iz € p~11s'~ 2H(,C)(XT). This concludes the proof of Proposition 6.7.

Let us observe that the linearity and continuity of E; follow from its construction
and the linearity and continuity of the Seeley map S in Proposition 6.6. O
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Next we consider the Lagrangians corresponding to the direct and reflected fronts,
that is the second part of Theorem 6.1.

Proposition 6.8. — There exists a linear and continuous map
Ep: IELA(X,Ap U AR) — (Bs)« (I L2, (X5, 85)) (6.46)
such that
Ex(u) =u in X. (6.47)
Proof. — We can assume that supp(u) is contained in a small neighbourhood of

I. Let (x1,%2,73,y) be local coordinates in a neighbourhood of ' given by i) of
Proposition 3.3. Hence,

R={z} =43}, F={2z3+ 23 — 3z, = 0}, (6.48)

and the boundary of X is given by

1
0X ={z2 = me +g}, ge M3, (6.49)

In these coordinates the space ¥,"* (X, A U Ag) is spanned over TP (X) by

AP, AL, P =482, — 92202, — 605,05, L = (20z, + 37185,)0x,,

6.50
= 31‘389;3 + 21)281‘2 + a:lé)ml, ay]. ( )

where A € ¥, '(X) is elliptic. To see that one needs to observe that in coordinates
(‘Tlv x2,%3,Y, 517 527 £37 77) in T*R™ \ 0

Ap = {462 — 92262 = 0, 32363+ 27262 =0, & =0, n=0, & # 0},
Ap = {26 + 32163 = 0, 26 — 3(2% — z2)€3 = 0,3x3&3 + 22282 + 2161 =0, n =0},

We then notice that
ApUAR C M = {46 — 92263 — 66163 = 0, 3w + 202 + 2161 = 0,7 = 0,&5 # 0}
Then M is a smooth submanifold of T*R™ \ 0 and in M
Ap ={& =0}, Ar={2& + 316 = 0}.
Therefore if f € C°(T*R™ \ 0) vanishes on Ap U Ag
f = 01(465 — 92265 — 6£1€3) + a2(3x3€3 + 2x2ba + 2161) + a3(2&2 + 31162)61 +

Zajnj, a; € C°(T*R"™\ 0).

74



SEMI-LINEAR DIFFRACTION OF CONORMAL WAVES

This shows that if B € \Il;”’k(X, ApUAR) then B is in the span of P, L and V;. Here
and in what follows we should neglect the trivial generators d,,. It will also be useful
for us to observe that

Vo = 3230y, + 2230y, + (215 — 23)0,, € U (X, Ar UAR).
Therefore if u € I2(X, A U AR) then Proposition 4.5 shows that
(P, L)a(Vl, V2)°‘u € I?_[(_|a|)(X), |a| + |Oé| <k, (6.51)

where V, is used as a generator only for convenience.

To construct the extension map we need to examine the lift of (6.51) under the
blow—down map ;. Thus let

P =7r*B{P, L1 =1rB{L, (652)
V! =pBiVi,i=1,2, W; =17B}0,,,j=1,2,3. '

We deduce from (6.51) that, for u; = Bfu and W = (W1, Wa, Ws)

(Pl,Ll)a(‘/ll7 Vg’)aul — pda1+3az Z p—3B1—282—03 WBUﬁ,
[B8I<lal (6.53)
ug € r°Ly(X1), lal + o] < k.

Since u is supported in a small neighbourhood of I', we may assume that r < 1 on
supp(u). Therefore,

(P, L1)*(V{, V3)*u1 € T2 H_ 4y (X1), la| + |a| < k. (6.54)
Since 22 > 0 on ﬁ, we first consider the region where the projective coordinates
1
r=x3, X =ux3/r3, Z=1z1/r® can be used. In terms of these we find that:

Py = (rd, — 3X0x — Z3z)* — 90% — 60x0z, L1 = (r0, +3(Z — X)0x — Z0z)0z,
Vi =10, V3 =r(3(1-X%0x+(2—2°-XZ)0z),
(6.55)

where we neglected the 70, terms in Vj. The boundary of X; and the lifted
hypersurfaces are defined by

80X, ={Z° =4+rd}, ¢ €C®(Xy),

- - (6.56)
BiF ={2X +2%-3Z =0}, B{R={X?>-1=0}.

One can write

BIF={2XFT1)+(ZF1)*(ZF2) =0}
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proX

b7

proX

Figure 6.2. Intersections of ﬁ*ﬁ and B*E

which shows that 8 F and 8} R are simply tangent along B() = {X = Z = £1} and

intersect transversally at K1) = {X = +1, Z = 32}, see Fig 6.2.

Since r is small in supp(u;) we may write
0X1={2=-2+rd} U{Z =2+7¢3}, ¢2,63 € C(Xy).
Let
P} = (3X8x + Z8z)? — 90% — 60x0z, L) = (3(Z - X)0x — Z8z) 0.
Direct computations show that, modulo lower order terms,
Pl + ZL| = Q] = 3U.0x,
Us = %VZ’ =3(1-X%0x +(2— 2% - X2)0z.
Hence we obtain from (6.55),(6.58) and (6.59) that
L (0xUs) (VY, V3)*ur € T2 HY_ 4y (X1), la| + |o] < k.
We shall prove that in fact
LY Ug*(V{, V3)ur € r°HY_,,)(X1), lal + |of < k.
First we observe that for a1 + a1 <k
LyUs* (V) uy € 773 HY 4 _opy(X1), a1+ 01 <k.
From (6.60) and the fact that Vy = rUs, we deduce for [ + |a| < k
O Ly(V{,U)*uy, (rd,)**LY(V{,Uz)*us,
(rdz)** LY (V{, Uz)uy € 773 HY_y_ o,y (X1).

76

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)



SEMI-LINEAR DIFFRACTION OF CONORMAL WAVES

In the neighborhood where Z ~ +2 we consider a change of variables
U(r,X,Z2)=(r,X,Z —r¢;), i=2,3.

¥ is a diffeomorphism preserving {r = 0} and X7 = ¥(X;) = {Z < 2}. Let
U = 0,0, Vi =0, V/, L¥ = U, L, and uf = ¥,u;. We deduce from (6.63) that
for I+ |a| <k

o rt W viut, (o)Lt UF Vit € r Pt B oy (XF). (6.64)
We obtain from (6.62) that
L (vt Uf)ous € r2AY oy (XT), a1+ a1 <k (6.65)

It follows, in the notation of Appendix B, that (6.64) is equivalent to

L¥ (V#* Uf)*us € r3HY X¥), l+ay+as<k. (6.66)

l—as, az)(

Let us observe that L¥ is a second order differential operator for which 0X# = {Z =
2} is non—characteristic. It follows from (6.66) and Proposition B.1 that by taking
a1 =1+ aq

l _
L (v, Uf)uf e r3H ) (XT), 1+ ol <k (6.67)

Thus the pull-back of (6.67) by ¥ gives (6.61).
The vector fields r8,., Uy and 0z span all smooth vector fields in X 1 tangent to ﬂfﬁ,
while r8,, U, and 3(Z — X)0x — Z0z span the ones tangent to 8{ F. Therefore we
conclude that the operators in (6.61) span ¥} (X1, N*B;F U°N*BiR).
Another simple computation shows that

(Z — X)Us07 — (1 — X?)Ly = —(2X + Z* - 32)03%,

6.68
(2= XZ - Z?)Ly + ZUx8z = —3(2X + Z3 — 32)0z0x (6.68)

Since 0z is transversal to 80X, the same method as the one used in the proof of
(6.61) shows that if U3 = (2X + Z3 — 3Z)9z, then

(rdr,Ua, Us)®uy € r3L3(X1), |of < k. (6.69)

The vector fields rd,,Us and Us span all the vector fields tangent to 61R and ﬁl
We conclude that away from ﬂlF and ﬁlR uy €7 3H b )(X 1) and the extension is
trivial. Therefore we may restrict our analysis to a nelghbourhood of the intersections
of the hypersurfaces and 9.X;.

Let us first consider the case where ﬁ{ﬁ intersects 0X; away from ﬂ{ﬁ'. Since this

intersection is transversal one can introduce local coordinates
¥ =X7F1,2=ZFrd;, i =2,3 in which

ﬁfﬁ ={z' =0}, 80X, ={z =0}
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Since away from B{ﬁ the vector fields in (6.69) span all the vector fields tangent to
B1 R, we find that

(10, ' 0yr, 0,) %01 € r73L%(X,), |a| <k. (6.70)
Now we deduce from Proposition 6.6 that there exists i, € r‘3L12,()? 1) such that
iy = uy in Xy and (rdy, '8y, 8,) %0y € r3L3(X1), |of < k. (6.71)

Finally we analyze the case where ﬁfﬁ and g7 R intersect the boundary simultane-
ously. Let us concentrate on the part of the boundary given by Z = 2 + r¢3 as the
other case is analogous. Consider the change of variables

X+1 ,

=2 =Z-2
T (Z+1)2, z y

which is smooth since Z+1 > 0 near the intersection in question. In these coordinates

ﬁff‘ ={z' = -2}, ﬂffi ={z’ =0}, and

, ~ (6.72)

0X1 = {2 =rds}, ¢s€ C™(X1).
From the fact that r9,, Uz and Us span all the vector fields tangent to ﬁ{ﬁ and G} F
we deduce that

(rdy, (&' + 2")0,, 2 (Bn — 02)) uy € r3L2(Xy), || <E. (6.73)

Then we blow—up the submanifold {z’ = 2’ = r’ = 0} with homogeneity 1 — 1 — 1.
Homogeneity of the vector fields in (6.73) and the fact that X, is non—characteristic
for 9,/ give that the vector fields in (6.73) lift under the 1 — 1 — 1 blow—up to smooth
vector fields tangent to the lifts of the hypersurfaces ﬁfﬁ’ and B{F’ and transversal to
the lift of 0X;. Now we can use Proposition 6.6 to extend the lift of u; across the lift
of 0X; to be conormal to the lifts of 5f R and B F. Then we can show that this in
fact gives an extension of u; across X into the conormal space to the hypersurfaces
BiR and B F.

We still need to construct the extension map in the region where projective
. 1 .
coordinates r = |z3|3 Y = z2/r%, Z = z1/r are used. In these coordinates

BfR={Y®-1=0}, BF ={+2+2%-3YZ =0},
1 - (6.74)
0X, ={Y = ZZ2 +ré1}, ¢1 € CP(XH).

Observe that Y > 0 near ﬂ{ﬁ and near the intersection of ,Bfﬁ and 0X;. Therefore
coordinates (7, X, Z) can be used there and the extension can be constructed as above.
Away from the two hypersurfaces u; € r~2Hf},(X1) and the extension is trivial.

Similarly in the region where coordinates r = |z1|,Y = z2/r%, X = z3/r® are
valid, the intersections of the boundary and the hypersurfaces are contained in the
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region where |Y| > 0 and the extension is constructed as above. Away from the
hypersurfaces u; € 7~ 3H ?k) (X1) and the extension is trivial.

Let us remark again that the linearity and continuity of E; follow from those of the
map S of Proposition 6.6 This concludes the proof of Proposition 6.8. a
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7. ESTIMATES FOR THE DIRICHLET
PROBLEM

7.1. To solve the mixed problem with the Dirichlet boundary condition we proceed
by solving
Pu=20 in X, u[aX: f, u[x_=0

where f comes from restricting the solution of the free equation obtained in Theorems
3.9 and 5.6 Thus we first need to characterize f.
Let (z,y) be the coordinates in Proposition 3.3 (i) which were used in the definition

of X4. Hence
X ={p=0}nX, T=DnNdX, dp|r=dz,,

and (z1,3,y) gives a coordinate system on 0X. In X, defined in the beginning of
chapter 6, the 1-2-3 blow-up followed by the 2-1-1 and 6-3-1 blow-ups induce a 1-3
blow-up followed by 2-1 and 6-1 blow-ups on the boundary 5;0X. Thus, let us write
Y = 80X and define

Vi=(Y\DUS 3 xR 3)~Ry xS ; xR*3, 8l , ={weR?:wi?+wi=1}

with the C°°-structure given by the second identification. The blow-down map
B2 1Yy, — Y is given by

/813 : (T,w,y) — (7'(4)1,7‘3(,4.)2,y)-
We then define Y5 similarly to X, by blowing-up 82" {z; =0, z3 > 0} NdY; =Ty:
Y2 =M1 \T1)U (S5, xR*®), S5, ={weR?:wi+wj =1,w; >0},

with
By 8y 8 _ 20 0
Y2-3 Y, Y, B° = B1 o B,

where 3% (p,w, y) = (p?w1, pwa, y) and where the coordinates in ¥; near I'; are chosen
so that /Bla(Xla L) y) = (TXIa 7'37 y)

o]
Finally, we have Y3237,
Y3 = (Y2 \ (89 {z1 = 0,23 > 0} N 8Y3)) U (Se—1, x R™73),
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defined as a C* manifold with corners in a similar way.

We recall [28, 30] that a diffeomorphism between manifolds with corners is a
homeomorphism which, together with its inverse, induces C'* maps on all the
boundary faces. The induced blow-up of the boundary is made precise in the following

Lemma 7.1. — There exists a diffeomorphism f : 350X — Y3 such that 3,01 =
B2 o f, where 1y : Br0X — X,.

Proof. — The boundary blow-up was defined using the coordinates (z1, z3,y) used
also in the definition of )Ai:r. Thus it suffices to check that, after normalizations
according to homogeneity, 5}z, 8} z3, 85y give coordinates on Br0X. Since dp [r=
dzo this is immediately verified in each projective coordinate system for X,. O

Hence we can identify Y3 and (70X so that the diffeomorphism f will be omitted
below.

This suggests the definition

So=B2*(S, NOX)UB*(FNoX)UB»*(R\ F)NdX)UB®*(HNOX)UdX,
(7.1)

where we note that Sg = 2335, (0824)«S, with § defined by (3.7) and appearing in
Definition 3.5 of JyL*(X, H).

Recalling that the conormal spaces with non-integral orders of regularity are
defined by complex interpolation we can state the restriction result:

Proposition 7.2. — Ifuec JIL(X,H),1<j <n, then
ulox € B2Iuyr/2Lk, (Y3, 0(Y3,8%))
where

§3 = 9Yzup (S, naxX)upP(FNax)u (7.2)
B ((R\ F)\ K)noX)uB*((H\ K) N dXx),

B2vs = dxydxsdy, and K in Definition 5.1, with € chosen as in

The geometry of 5; is shown in Fig. 7.1. The proof will follow easily from the
following

Lemma7.3. — If B*u,3*Dju € I L2(X4,0(X4,8)) then, with Sp is given by (7.1),
Brulgsox€ Iny1/2L2, (Y3, 0(Y3,85)).
Proof. — Let us recall the definition (3.9)
$=B*FUB*RUB*RUB*S,UBHUB(FNR\B)UB* (Sy NR\B),
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axg
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Figure 7.1. The blow-ups on the boundary and 5; in Y3

and introduce the notation
57‘ = ﬂ;r o (/624)*57 53 = ZIéT'

Since the only surfaces intersecting #*D are ,B*g and *H, Proposition 6.4 shows
that

B*v € I LZ(X4,0(X4,8)) = Biv € It L2 (Xa,0(Xa, B0Sr))-

Since in a neighbourhood of 30X = (50X, X, and X, are equal, the assumptions
of the lemma imply that

X:B ueIkH(l)u( 'Né’ )

for some x € C*(X,), x = 1 near 3:0X.

The surfaces ﬁ*§+,,8*H and ﬂ*ﬁ ﬂ*ﬁ away from ﬂ*(f‘ NR \ B), intersect 50X
transversally and are separated from each other. Thus, away from ﬂ*(F n R\ B) (see
Fig. 3.1), V €0(Y3,85) extends to a vector field V € 0(S,), V lgzox=V, so that

Viulgrax) = (V'u) lgrax € Hlyy,,(Y3), 1<k
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asYs >~ 5X0X C X,and Viue H ?l)wr (X'r) If U is a sufficiently small neighbourhood
of B*(FN R\ B) in X, then
S-lu=(B;RUBFUBI(FNR\B))Iu .

By~Proposition 3.3 (see Fig. 3.1) B,’ff, ﬂ;‘ﬁ and (30X intersect transversally at
GrF N Br0X. We conclude that again V € V(U N B:0X,5s [uy) extends to

V € 0(X,,8,), so that the previous argument is applicable. Thus, it follows by
induction that

ulg;ox€ IeHyy ,, (Y3,85).
‘We observe that
Ik L2, (Y3,0(80)) —  IiL2,(Y3,0(85))

Tld (7.3)
IkHé)l)’ya(YéaT)(Sa)) — IkLIQIa(YC’nr@((SB))

and
w € ItHp,) ,, (Y3,0(85)) <= (I + A)*u € L2, (Y3,0(85)),
if A € ¥}(Y3) is elliptic and A > 0. Hence we have
LHY (Y3,0(80)) = [IeH{y,, (Y3, 0(80)), kLY, (Y3,0(85))]

(4
[Te41 L2, (Y3, 0(S0)), In L2, (Y3,0(S5))]
Lip 1 L2, (Y3, 0(50)).

To complete the proof of Proposition 7.2 we observe that (see also Fig. 7.1)
83 Tys\go-(knox)= 9o lyz\go-(knax)s O3 Tgor(rrox)= B (F- N 0X) [ go-(knax),

Proceeding as in the proof of Lemma 7.3 shows that if u; [, € IkH?l),ur ()?r, (ﬁ:ﬁ u
80X, 1k,)), K1 = 8:K, then

(ulpzox) o= (krox)€ Ty 3 Ly (B%* (K 1 0X), 87 (F N 9X) U 8Ys).

Combined with Lemma 7.3 these observations give u [ox € ﬁ,‘?IkJF%L,%a (Y3,0(Y3,87)).
Proposition 7.2 motivates the following definition:

Definition 7.4. — The conormal space on the boundary, JsL2(0X, H), is defined as
J,L2(0X, H) = B21,L}, (Ys, 0 (Y3, 53))

where the variety §% is given by (7.2).
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A slightly stronger formulation of the restriction result is now given in

Theorem 7.5. — Ifu € J'L*(X, H) then ulsx€ Jo1 L*(0X, H).

Proof. — The conormal space in the definition of J;L?(0X, H) is an interpolations
space — see Appendix B. Since for non-integral orders JL?(X, H) is defined by
interpolation between [s] and [s] + 1 the theorem follows from Proposition 7.2. [

The main result of this section is

Theorem 7.6. — Ifu € L% (X) is the solution of
Pu=0 in X, ulox=fe€JL20X,H), ulx.=0, flox).=0 (74)

then there ezists @ € J,L2 (X, H) such that u = @ |x.

Theorem 7.1 is proved by finding a microlocally characterized space containing
JxL%(8X, H) (Proposition 7.7) and by using microlocal models for the components
of that space. The propagation estimates obtained in the Friedlander model
(Proposition 7.9) give u in terms of marked Lagrangian spaces on a manifold with
boundary (Proposition 7.19). The extension property for those spaces obtained in
chapter 6 completes the proof.

Let us start by recalling from Section 2 the defintion of the following smooth
Lagrangian submanifolds of 7*0.X \ 0:

Ao = N*T, Ay =N*(FNoX), As;=N*((R\F)ndX), Az=N*(HnNOX),
(7.5)

and
A21 UAg3 = N*(gﬂﬁX), A1NAgs =0, Ai3NAg =0.
From these we obtain Lagrangians with boundaries:
Af=Ayn{z; >0}, j=1,3i=12,3.

in terms of coordinates (x,y) of Proposition 3.1.

The sub- and super-marked Lagrangian spaces introduced in chapter 4 now enter
in

Proposition 7.7. — If JyL*(0X, H) is given by Definition 7.4, then

JeL2(0X,H) C Y LL*(0X; Moo, Jhoonay A2in2) + 3 IeL*(0X;A%;,2) +
i=1,3 i=1,3

2 )
LL*(0X; A4, 2) + LL2(0X; AL, 2) + 3 LL20X; A58 (D 2). (7.6)

i=1
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Proof. — We need to consider another blow-up 83, : Ys — Y3, 8¢ = 8% o 83,,
obtained by successive 2-1 and 6-1 blow-ups of 82*({z; = 0,z3 < 0}) N Y3 identical
to the blow-ups used in the construction of Yj.

We easily see that
BE I L2, (Y 0(B983 UAYs)) D JL2(0X, H), f2,veq = dz1dzsdy,

and we shall prove that the left hand side is contained in the right hand side of (7.6).
We first prove that

a*g’
axy 4 +
B F

a*
4 S+

ax
4 F

Y,

Figure 7.2. The geometry in Yy

LL2, (Ya0(B2* (F N 6X) U aYy)) 2

Z IkL HX;AOO,JAOOM%A% )+IkL2(aX;A11»2)-
i=1,3

In particular this gives
I L2, (Y4;0Y3) 25 Bary > LL*(0X; Moo, JAognag M2ir 2) + Ik L*(0X; A1, 2).  (7.8)
1=1,3

We note that in view of Proposition 4.3 we can replace the second term on the right
hand side by the last term in (7.6). To prove (7.7) we first observe that we can
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change coordinates in X such that F N8X = {z3 = 0}, T = {z; = 23 = 0} and
TroonAssN2s = JAoona,s (V*{z1 = 0}) and that this change of coordinates lifts to a
smooth diffeomorphism on Y3. To construct such a change of variables we let (21, z3)
be smooth coordinates near I' in which H N 0X = {z; = 0}. Since FNoX is second
order tangent to H N OX at T, it follows that F NdX = {z3 + f(z,y)z3 = 0}, with
f(z,y) # 0. For simplicity we assume that f(0,0) = 1. Now a direct calculation
shows that there exists a smooth function A(s,z1,3) for s € [0,1] and z1, z3 small,
such that

A(Sa wlax3)wlam1 (1173 + 'T:; + S(f(.’l?,y) - 1)1':13) = —(f(mv y) - 1)$?

Thus, as in section 3, we obtain, by integrating the vector field Vs = A(s, 1, 23)230z,,
a one parameter family smooth diffeomorphisms ¢, fixing {z; = 0} and satisfying

s (z3 + 3 + s(f(z,y) — 1)33:1)') =3+

In particular the map ¢; fixes {z; = 0} and ¢ (ﬁﬂ@X) = {z3 + 23 = 0}. We
are going to show below that the vector field z10,, lifts to a smooth vector field in
Y, which is tangent to 0Yy, therefore it follows that ¢; coordinates lifts to a smooth
diffeomorphism on Yy preserving 0Yj.

Proposition 4.3 shows that the right hand side of (7.7) is equal to
IkLZ(BX, Ago U A11) + IkLz(aX, Ao, JI{ooﬁA23A23’ 2)

Thus Definition 4.5, a microlocal partition of unity and the proof of Lemma 4.2 show
that

u € IkLZ(BX, Ago U A11) + IkL2(6X, Aoo, J/1\000A23A23’ 2) —

(7.9)
(23D, ) (21 Dz, )2 (23 Dy, )2 u € L2(0X), ky + ko + k3 < k.

To prove that (7.7) holds one needs to show that for u € Iy L2, (Y40 (B2*(FNoX)u
0Y4)) and v = B4, u one has

(£3Dz,)* (1D, )2 (23D, ) v € L?(8X), k1 + ko + k3 < k. (7.10)

Since the operators in (7.10) are smooth vector fields, (7.7) is a consequence of
39" (2303, , 218s,, 2385,) € V(52" (ﬁ N aX) L 8Y,). (7.11)

In other words one needs to show that the vector fields in (7.9) lift under 3 to smooth

vector filelds in Y, tangent to ﬂf*(ﬁ N dX). To prove (7.11) we compute the lifts of
these vector fields in twelve projective coordinate systems. Consider the first set of
projective coordinates

(p7 Xl) = (le,:th) = (.’L‘l,l’g),
(pa X3) = (:tp> P3X3) = (:L'lva)-
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In these coodinates the lift of the vector fields in (7.11) are spanned, over C* (Y1),
by
papa XlaXl 3 P86X1 )

(7.12)
pap, X3(9X3.

The vector fields pd, and X30x, are tangent to 3?9 "(F N &X) U Y, which can be
identified with 82™(F N 8X) U 8Yy away from {X; = p = 0}.

Next we blow-up {X; = p = 0} with homogeneity 2 — 1. Consider the second set of
projective coordinates

(Rwr,l) = (R, szi) = (p, X1)
(R, p’) — (lezv :th) = (p, X1).

The lift of the vector fields in (7.12) are spanned by

R 6
RBR, ) mlaz’la R 6:::’17

7.13
RaR,plap’ ( )

Away from {zj = R = 0} Y, can be identified with Y; and one easily sees that
the second set of vector fields clearly span U (Yy). Finally one needs to blow-up the
submanifold {z}] = R = 0} with homogeneity 6 — 1. Consider coordinates

(r,T) — (£T%,rT) = (z}, R)
(7‘1,T1) —> (Tlﬁ’l”l,Tl) = (.Z"l,R)

It is easy to see that the lift of the vector fields in (7.13) is in the span of

TOT, Tar
87‘1 ) Tl 8T1

Therefore they are in 1(8Y4). This concludes the proof of (7.7).

We now want

LL2,, (Y0 (82 ((R\ F) N 0X N {1 > 0}) U 8Yy)) 225
Z IkLz(aX; Aoo, Jll\ooﬂAZz'A%’ 2) + IkLz(aX, Ago U Au) + (7.14)
i=1,3

I.L2(0X; AT, 2) + I L*(0X, A11,2),

To prove (7.14) we proceed by a partition of unity in Y. Let ¢ € C°(Y4) be such
that ¢ = 1 near 52" ((R \F)n 8X) N{B2"z; > 0} and ¢ is supported away from the
boundary faces introduced by the %—— 1~and 6 — 1 blow-ups of ﬁg * ({z1 = 0,253 < 0})N
0Ys. Let u € I L% (Y3;70( ?*((R \ F)ndX N {z; > 0}) U dYy)). Then by (7.8)

Vo4

B2, (1= )u € 3 s IkL*(8X; Moo, JXoonny A2ir 2) + Tk L (8X; Ar1, 2).
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From the support properties of ¢ we deduce that
B1.(¢u) = 5. (¢u).
Now it follows from Lemma 4.2 that
B7.(¢u) € I Lioc(0X, AT, 2) + B3 H{y) (9Y3).
Thus (7.14) follows from (7.8).

The push forward of the other components of ,6’&555 are handled in a similar way
and the details will be left to the reader. O

Remark 7.8. —  The space JyL?(0X,H) is strictly contained in the microlocal
space defined in Proposition 7.7. The extra terms are in I,L?(0X;A%,2) and
I, L*(0X;Af3,2). They are explained by the additional blow-ups in Yy needed for
the first term in the mght hand side of (7.6) and the singularities on Yy \ B3;0Y3
produced by I, L?(0X;A%;,2) and I L*(0X;Af;,2). Otherwise the push-forward is
sharp.

To solve (7.4) we use the forward Melrose-Taylor diffractive parametrix [35] which we
shall briefly recall:

T=ToL, LeI'R"!xdX,d7"), T:6R"!) — 9N(X), (7.15)

where PTv € C®(X), Tvlax= Juv, Tvlx_=0, J € I°(dX x R*",¢’) is an elliptic
(in an appropriate cone) Fourier Integral Operator and L its microlocal inverse.
The space 91(X) used here gives, in an invariant way, the functions ‘smooth in the
direction normal to the boundary’ — see [14, 25, 28|.

Let I C T*R™1\ 0 be a small conic neighbourhood of (0;(0,1,0,---,0)). Then
for f € &'(R* 1), WF(f) CT,

Tf(z) = / (9(2, ) A4 (0) + hz O A, (O)As (G) ¥ O fe)de,  (7.16)

with the phase functions (,{o = (¢ [sxxrr-1 and € homogeneous of degree 2/3
and 1 respectively. The amplitudes g € S°(X;R"!) and h € S~¥/3(X,R"1)
are supported in a conic neighbourhood of (zo, (0,---,0,1)), z0 € 8X and satisfy
appropriate transport equations. Most importantly ¢(0,(0,1,0,---,0)) = 1 and
hloxxgn-1=0.

The construction of ¢ and 6 exploits the equivalence of glancing hypersurfaces
which we will now discuss (see_ [25, 35], for detailed presentation and proofs). Let
T c T*R" \ 0 be an open cone, r [z,=0C I', where we denote the coordinates in R™ by
(z,y), z € R3, y € R"3 with R""! = R? = {z; = 0} NR" (compare Proposition
3.1) and let m € Tng(' \ 0 be a glancing point for p = o2(P). Then there exists a
canonical transformation

¥:T— T*X\0, %(0;(0,1,0,---,0)),
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such that

X3 — 2263 — &6, =0} NT) C p~1(0),

x({z2 =0}NT) C Thx X. (7.17)

The equivalence ¥ induces a canonical transformation on the boundary
Xo: I — T*0X \ 0,

and the graph of x5, J, gives then the canonical relation of the elliptic Fourier Integral
Operator J. The main geometric property of xs is the intertwining of the billiard
ball maps defined in chapter 2:

Xgl 0é*o Xo = 60i, (7.18)

where 60i corresponds to the model glancing hypersurfaces in the left hand side of
(7.17).

There is a substantial amount of freedom in choosing ¥. Thus, in addition to (7.17)
we can also have

XB(AO ﬂI‘) C Ago or XB(AI ﬂI‘) C Ali, 1=1 or 3, (719)

where Ag = N*{z; = z3 = 0} C T*R"*" !\ 0 and A; = N*{z3 + z3/3 = 0} C
T*R™"1\ 0. In fact, one can apply Theorem 4.2.6 of [36] in the same way as in
Sect. 3 of [37] and Sect. 3 of [51]. We should note that in (7.19) one needs to choose
a different xp in the case of each Lagrangian Ag, A1;,7=1,3.

We recall from chapter 2 that

AL =0%AE, A UAL =6%A
and
Az:ats = 5iAf3

where As3 is a Lagrangian simply tangent to Az at A2z N Aj3. It corresponds to the
reflection of the false front H.

Thus, thanks to (7.18) in each case of (7.19) we also obtain

xo(A2NT) C Ay, =1 or 3,
X@(ASOF)CAgi, i=1 or 3,

where A,, = N*{z3 + z3/(3m?) = 0},m # 0.
If the phases in (7.16) are considered formally then the expected wave front set

relation for T becomes T o€y , where € is the model square root of the billiard ball
map (see [36] and (7.26) below) and

7 = { (1 05102.9): 52,6 =03 32 92} T T\ 0x TR\ 0
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with § = $* UF~, a smooth canonical relation generated by ¢(z,¢,7) = —€7 273/3 —
7'{1_2/3((2,{) +60(z,£). We also have Fo = §¢ Uy for the model case.
The construction of ¢ and 6 in [35] shows that

F={(r,s) e %(T)xT CT*X\0x TR\ 0:(x"(r),s) € Fo}, (7.20)
and we observe that consequently for each choice of x5 in (7.19)

xo(AyNT) C Ay = N*Fnx([T) c F(AoNT), N*RNX(T) C F(A2NT)

xo(Ao NT) C Agg => N*SNx(T) C F(A; NT)

xo(AyNT) C Ays = N*HNX(T) C $(AoNT), N*H, NX(T) C F(A2NT),
where H, is the reflection! of H by 8X and where in the second case we consider
different choices of ¥ and T giving localization near B and D respectively. We note
that by choosing different conic neighbourhoods I" and T we can reverse the inclusions

above.
7.2. In this subsection we shall consider the model problem in

R} ={zeR%:z, >0}
with Po = DZZ - .’l:zDia - DxlDz37
Pou=0 inR}, u lore = uo € §'(R?), ulg(m«o=0, (7.21)

where ¢(z) is the time function for Py, near zero chosen to be z; + z3. The 1-2-3
homogeneity of the problem has already been stressed in chapter 3 and here we shall
use it microlocally near mo = (0; (0,0,1)).

The solution operator for (7.21) is given explicitly as

1 A+(¢)
(2m)2 ) A+(Co)

u = Toug, Touo(z)= Qo (1, &3)e E1m1TE0%9) dg, dgs, (7.22)

where
¢= _63_1/3(61 + .’17253), lo=¢ raRile3= _53—1/3§1'

Let 'y C T*0R3 \ 0 be a small connected open conic neighbourhood of (0
let T C T*R3\ 0 be a connected open conic neighbourhood of (0; (0,0, 1)

,(0,1)) and
) such that

WFy(xTug) C 3.T  if WF(ug) CTo, x € CP(R3), suppx near 0,

and where j is the natural inclusion 7 : T*R3 \ 0 — °T*R3 \ 0. The existence of T'
follows from propagation of singularities for the diffractive boundary value problem
and in this case can be easily seen directly.

1See chapter 2; we will refer to this artificial surface only once, in the last part of the proof of
Theorem 7.6.
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We also define the microlocal parametrix near I'g:

A % 11 1TI383
oL / B(&s) (&5 €2) +((O) Uo (&1, &) 11+ ms8)de des,  (7.23)

Tiuo(z) =

B€C®(1,)), B(t)=1 ift>2, e CE[R), =1 near 0

and we are interested in its mapping properties.
To exploit the homogeneity in a systematic way, let us now introduce

Z=[1,00)X]R, Z+=[1,00)X]RXR+
(/\,.T) € Z? ()\,w,y) € Z+

and the isometries
W : L*(R?) — ASL%(Z), Wy :L*(R%) — A3L%(Z,)
extending the maps defined for Schwartz function as
up — Wue(A )= \/i;/uo(/\_%w,xg)e_i’\“dmg,
u — Wiu(\z,y) = 27r/u()\"%a:, )\_%y, z3)e” M3 dy,,
This corresponds to a non-homogeneous blow-up on the Fourier transfer side with

(A3,€,m), € dual toz, n dual toy

giving the projective coordinate near the lift of (0,0,1). We observe that because of
the cut-off B in (7.23), there exists a unique operator

5:8(2) — C®(24)

such that SW = W, T*. The formula for T* provides an explicit expression for S:

Sv(A\, z,y) =

3
2

(E y)A ei:c.f
— [votosn g e0eta (2

and since our considerations are local in the original coordinates (z1, 2, z3) we want
to look at

Sto(, z,y) = (A Ey)w(A"Ez)Su(\ 7, ). (7.25)

The billiard ball maps for the model problem (7.21) have the following well known

form s
6f (z1,23;61,63) = (Cvl +2 (%) ’ T3 F 3 (Z) 51@3) .
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In the new projective coordinates we obtain
1 1 1
Y@, 6) = (x+£265,€), €20, z=&n, £=§&°&,

1 _1
that is y¥ o =W odE  near T, where W (z1, x3;&1,€3) = (€5 71,&; *&1). Similarly,
the chosen square root of the billiard ball map, ¢y = ¢ U ¢y,

¢ = {((ml,wa;&,és),(yl,ysam,ns)):wl—y1=i(%)2, (7.26)
@-w=-7;(2)  &=nz0

can be rewritten as
_ N 1
g=8Tus™, 8* ={((z,6),(x',€)): 6 =¢ >0,z -2’ = +£7},

in the sense that $% oW =T o €. We also define (near T'):

1 2 1 —2
Wi (@1, T2, 235 €1,62,83) = (€5 71,85 025 &5 €1, &3 °&2)

and J( such that
H=HTUIHT, HEoW =14 05F

with §& C T*R3\0x T*R? defined earlier and generated by z1&1 +23&F 2(—((z, €))%
The relations K * also take a very simple form

j(i = {((mvy;ﬁ,ﬂﬁ (xlvél)) €= 5,7 r=a'+ (f + y)%7 n= :F(g +y)%} (727)

Let At = N*{z3 + 5252} = 0} N {£a, > 0} C T*R?\ 0, m > 00, be the model
boundary Lagrangians first introduced in (7.19):

AL = (€5)™ Ao, Ag=N"{zx; =3 =0} (7.28)
We then consider Z£ C T*R,

EEX =WW(AL) = {(z,6): £ =m™ %%, £ >0}, m >0, Zp = {(0,¢) : £ € R}.
(7.29)

If A = Fo(Am), Am = Af UAS,, then (7.27) immediately yields

0=T4(Ro) =H(Z0) ={(z,y:6m) :n° —y—£=0, z+n =0}, (7.30)
m =01 (Am) =H(Em) ={(z,5:6m) :n° —y—£=0, m*(z +1)* =&},

when m # 0. Using this and the observation that, by homogeneity,

(3z3&3 + 22282 + 2161) [5 =0
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we obtain explicit expressions for A, in terms of generators or as conormal bundles:

~ 1

Ao = N*({zs+ gz? — z1z2 = 0})

~ 1 1

A = AdN*({zsz1 + ﬁ(zz —22)% - -?;:I:l(xz +22) =0} \ {z1 = 22 = 23 = 0}))

cl[N*({27z3 + 92122 + 523)? — 16(3z — 22)% = 0} \
{322 — 2% = 2723 + 92122 + 523 = 0})].

N
Il

The Lagrangians (7.28), m < 3, are grouped in two pairs related by the billiard ball
map:
{A07A2}7 {AlaA3}7 Ag: = 6OiA07 A,?::: = 56EA17
and we study these separately as they cannot be simultaneous models — see (7.19)
and the discussion following it.
The main result of this subsection is

Proposition7.9. —  The Dirichlet problem parametriz for (7.21), Tg, given by (7.23)
has the following mapping properties for k even:

Ty : I,LA(R? Ao, J3 na, A2, 2) + I LE(R% AT, 2) —
IPLE (R%;50(A1), Fo(A1) NFo(Ao)),
T} : I L2(R?%, A7, 2) + Ik LA(R?, AS,2) — IRLE (R%;50(As), Fo(Ao) NFo(A2)),

and
T} : I LA(R? A},2) — IPLE (R3;50(Ao) U So(Ay)),

loc

where Ay C T*R?\ 0 is any C™ homogeneous Lagrangian tangent to A1 at A1 N Ag.

We want to reduce the proof to an estimate for S defined by (7.24) and for that we
need a characterization of the spaces above. Thus we define

LL*(Z,2E) = {v € L*(Z) : (AD»)* (D, — m™2z%)" .
1
3

for k even, and by complex interpolation between the even indexed neighbours for k
odd. Similarly (but for all k£ € Np),

2
(x(Dgy — m™22?))*2 (x(Fz)z)*v € L? ko + k2 + -?;kl + ks < k}

1
I.L*(Z,50) = {v € L*(Z) : (ADy)* (z D))" z*2v € L? ko + k1 + k2 < k}.

Definitions 4.3 and 4.5 easily give

Lemma 7.10. — If WF(u) C o, u € &' (R?) then
u € LI*R%AL,2) < Wue LL]  (Z,E7)
u € ILL*(R? Ao, Jiyna, A2, 2) &= Wu € It LY, (Z,Eo),

where v, = A™2%d)\dz.
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We proceed similarly for A by defining

I LA (Z4,Z0) = {u € L*(Z) : (ADy)* (D2 — y — Dg)** (Dy + x)*2 -
2

1
— ks <k
3k1+3/€2+ 3 < k},

((x + Dy)Dg)**u € L*(Z4), ko +

LiL*(Z4,Zm) = {u € L*(Z4) : (ADA)* (D2 — y — D;)¥ (Dy — m™%(z + Dy)?)** -

2 2
Zky+ 2
3713
for k even and by complex interpolation for k odd. The analogue of Lemma 7.10 does
not hold in full generality but the following lemma is precisely what we need. For
the notational convenience it is stated, as the rest of this subsection, for Ri but the
generalization to R} is easy.

[(z + Dy)(Ds — m™*(z + D,)?)* € L*(24), ko + k + k3 < k},

Lemma 7.11. — If for some x € Cg°(R®), x(0) = 1, WFy(xu) C 5[ and
Pou € C™(R3), then for k even

Wi(pu) € Ikleﬂ; (Z,Em) for any ¢ € C°(RY) =

u € L, (R, Fo(Am), Fo(Am) NFo(Ao)), m #0,

Wi(pu) € kL2 (Z,50)  for any ¢ € CF°(R}) =

2

u€ IRLE(R3, Fo(Ao) USo(Ay)),

v} = A72%d\dzdy, and where Ay C T*R? \ 0 is any C*° homogeneous Lagrangian
tangent to A1 at Ag N A;.

Proof. — We start with the case m # 0. Near 2., 29! (5o(Am), Fo(Am) N F(Ag))
is generated by (see (7.29))

3
po(z,€) = & — 2263 — &6, a(x,€) = jx;&, (7.31)
j=1

(12(117,5)2, 0,3(1[',6) = (1"153 + 52)0‘2(1’.76)

where az(z, ) = €163 —m~2(z1&5+£2)%. We shall denote by Py and A; the differential
operators corresponding to pg, a;. Since Pyu = 0, it suffices to have
_ 1
AP AP AP € H(lic%m_z%)(m), o+ sas+ag < k=2l (7.32)
In fact, [Py, A;] = —4id1;Py so that PoAT* A5 A3®u = 0. Thus, (7.32) implies
that A7 AS2A%u € H° (R3) which in turn shows that

(a1+202+303,—a1 — Loz —5as)
—3a,—2 s 2 3 . .
BAS AS2 ASu € L2, (RY) for B € U, 0272020593 (R3 ) 4114 gives the defining

condition for IPL2 (R%,50(Am), Fo(Am) N Fo(Ao)):

loc

1
(BlAl)al(BZA2)a2(BSA3)a3u c leoc(Ri)’ oy + 5&2 +az <k,
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_s
where By € UJ(R%), B, € ¥, 2(R3), B; € ¥;*(R%). On the other hand the
definition of I kLi+ (Z4+,Em) and the assumptions on u imply that
1

~loc 2
AP A8 A8y, ¢ HE 15,50, R3), Bu+ 30+ 05 < k=2l (7.33)

Let us observe that a in (7.32) can be assumed to be even and thus we have two
cases

ag=4m+p, p=0 or p=2.
If p = 0 then
ATT AP ASPu = A‘l"lA%mAg’Ag“u € I_{(l"c (Ri) C H'°° (Ri)

—2m,—4m—2as3) (—%a2—2a3)

by (7.33) with 8; = a;,7 = 1,3 and B2 = 3m. Thus it remains to analyse the case
p = 2 which is more involved and which by the above (p = 0) argument reduces to
az =2, k=2 in (7.32). Let us note the following identities:

Ay = Dy, Dy, — m 243, Az = AoAa, ao(z,€) = 2183 + &2, ao = 01(Ao).  (7.34)
The desired property (7.32) reduces to
AiASu € HPS 55,0(RY), i=1,3, (7.35)

which for i = 3 follows by writing A3A2u = AgAdu with A3u € I:I(lgc_4) by (7.33).
Thus in view of the assumption W Fy(u) C 7,I, it remains to establish

{Dey) *x0A1A3ullfae) SC D [(Dxg) ™ 772 AP AR AR U T s ),
B1+2B2+83<2
(7.36)

where x;(z, D) € ¥°(8R3), supp xi, ¢ = 0,1 is in a neighbourhood of I’y (which is
a conic neighbourhood of (0;(0,0,1)) and x3 = 1 on supp xo. We will denote the
right hand side in (7.36) by M (u). We first obtain an a priori inequality in which we
assume u € C*®(R3) and start by using (7.34) to rewrite the left hand side of (7.36)
as

(Dyy) "3 (x0A1A3U, (Dzy) "3X0A1A42Dgy Doy — m™*(Day) > x0A1 A2 AJu)

which modulo commutator terms bounded by M(Bu), B € \Ilg’K(]Ri) for some K
(see the proof of Proposition 4.5), is equal to

z3
m~2((Day) "> x0A1 43, (Day) ~*x0 A1 A3 Aou) =
(Day) "*x0A%u, (Dqgy) ~x0AT Aqu) +
Dg,) "3x0A0A3A1 Agu, (Dyy) "3 x0 A1 Agu) —
Dma>—3X0A1A%U7 <D$3>_3X0A1A3AOU>-
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The integrations by parts without boundary contributions were allowed as we used
only the tangential derivatives and z2D,, in A; which vanishes at the boundary.
Thus the following estimate holds

J
{Dag) " *xoA1A3ul < Y M(Bju) + [[(Day) ~*xoA3ulll|{Dzs) ~*x0 AT Azul| +

j=1
[{Day) ™ *x0A0As A1 Azul|||(Das) ~2x0A1 Aul| +
[{Das) "®x0A1A3ull[[{De,) ~3x0A1 A3 Aqull,

where the norms are in L2(R3 ). An approximation argument gives
+

J
[{Day) ~*x0A143u]l <2 M(Bju),
j=1

for any u satisfying (7.33) with k = 2. As in the proof of sufficiency of (7.32) Pou =0
implies now that M (Bu) < CM(u) for B € \Ilg’K(Ri). In fact, commuting B through
gives

Jg
MBu)<C Y ) BYAT AR AR,
B1+2B2+B3<2 j=1

_ag,_
where B]-ﬁ e v, 32 =305, K+ 1420274305 (R3) and hence we need to show that for
E € U7"*(R3) and v such that Pov € C™ near the boundary,

|Bo]l < Cllollom)  for m <.

This in turn follows from ||Ev|| < C||v[[(k,m-k), m — k < 0, and Theorem B.2.9 of
[14]. Thus we obtain (7.35), 7 = 1, which concludes the proof of (7.32) and of the
lemma for m > 0.

For the case m = 0 we need to describe the generators of bgll‘;(ffo(Ao) U Fo(Ay))
near 7,I'. The Lagrangian §5(Ag) = Ao is given near I', a conic neighbourhood of
(0;(0,0,1)) by the zeros of pg, ag, a1 defined in (7.31) and (7.34). Since Ay is tangent
to A1 at Ag N Ay, it follows that Ay = N*{z3 + z3f(21) = 0}, f € C°°. Thus, a
computation based on this and the definition of F shows that, near T', Fo(Ay) is
given by the zeros of po, ag, a% where

a}(z,€) = a1(z, €) + &5 a0 (2, €)%ha (2, €), (7.37)
ab(z, &) = &163 — ao(x, €)*ha(, &),
with

hi(z,€) = & ao(z, ) f'(z1 + €5 162) /3
ho(z,€) = f(z1 +£5'&) + &5 ao(z, €) f' (21 + &5 62).
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To obtain the generators of *9n} (Fo(Ay)) near 3,.I" we write

hi(x, €) = hi(z,&1,€3(62/€3)%, €3) + (E2/&3) RS (x, &1, €3(62/63)%, &),
#

so that using po, h; in a; can be replaced by

hi(e,€) = hi(; &1, €21 + €1, 88) + €5 e (2561, 631 + &1, &)
which near 7,I are in Sg,; (*T*R3), so that the corresponding al e Slll’g‘l(bT*Ri) and
a} € S (PT*R3).

We observe that we can find operators H; € \Ilg’l(R?jr) such that ®oq 1 (H;) = hg in T
and

[Py, H;) = D2 BY, + B2, D2 + B3D,, + B}, B! € Ui(R%), WF,(B!)ns =0,
(7.38)

where W F,(B) denotes the essential support of B as a b-pseudo-differential operator.
The wave front set conditions on u and B imply that Bu € @(R3). Since u € 91(R3)
it then follows that Bu € C®(R}) as B : 9(R3) c @'(R3) — @'(R3) and
@'(R) NA(RY) = C®(RY) (see the references given above and also Subsection
7.3 below). Hence [Py, H;Jlu € C°(R3) and we can commute Py through as in the
proof of (7.32).

From (7.37) we obtain the generators of ?91# (F¢(Ao) LFo(Ay)) in a neighbourhood of
21
& 'po, af, dbao.

The assumption Wiu € I L2 (Z4, ) implies
2

_ 1
AR AT (Day A0)*u € HG 35, 5,0 300+ B1+ B2 < k. (7.39)

3
Thus, as in the case of (7.32), it suffices to prove that (7.39) implies
(Aii)oq (AgAO)azu € g(lcicm,—2a2+m)’ b0114(A§) = at{, b02,3(Ag) = agv (7.40)

for some m. However, (7.37) shows that
AL = (D,,)"3(D?, Ay + A3Hy), AYAg = D,,D, Ao — A3Ha, H; € UM (R3).
and thus (7.40) follows from (7.39). O

The proof of Proposition 7.9 reduces to the proof of
Proposition 7.12. — If S* is defined by (7.25) then for k even

S I L2 (Z;EE5) — Il (Z438my,) (7.41)

cz+%
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St I L2 (2;50) — L2y (Z4351) (7.42)

oz+%
where vo = A"22d\dxz, l/;' = )\‘Qﬁd)\dmdy.
We start with the second mapping property where we can give a direct proof.

Proof. — Proof of (7.42) Since A does not appear in S other than in the cut-off
function %, the stability under AD, is clear and for simplicity of notation we shall
omit that variable. Thus we consider

A (=€-y)

A (=¢) °©)

Sol6.w) = [ solmp)e s, Fale) =v0Fe)
and recalling the definition of IkL,2,+ (Zs+, ﬁl) we want to apply to it the operators

§— (Dy - DE)Qa (f - (Dy - D&)z)(Dy - DG)

with weights % and 1, respectively, while the stability under Dg —y — £ is clear from
the Airy equation. We claim that

(€ = (Dy = Dg)*)(Dy — De))** (€ — (Dy — De)*)* S0(¢, y) = St 2 (6, 1),

where vg, x, € L2(Z) if v € It L2(Z,E) and 2k; + k2 < k and where we omitted the
irrelevant terms with differentiation falling on 9. In fact, we can proceed by induction,
noting that the order in the iteration does not matter: (é—(Dy—D¢)?) STk, —1,0(€,y) =
STk,0(£,y), where by a simple computation

Uk,0(§) = 2(D2+)(=€)Vky—1.0(6) — 284+ (=€) DT, —1,0(6) — D0k, ~1,0(€).  (7.43)

Here

O, (t) = %ﬁig ~D;®,(t) =®, (1) +t, @, € SI(R).

Thus, to obtain the boundedness of the second term in (7.43), we need the stability of
Dk, —1,0(€), 2k1 < k under (€)% D¢ with weight 2. This follows easily from the stability
under £ D¢ with weight 1, D, with weight 1/3 and an interpolation argument (see the
proof of Lemma 7.13).

We now turn to (Dy — D¢)(§ — (Dy — Dg)z)gﬁkl,krl({, y) = STk, k, (£, y) Where now

Ukky () = —2D°®4 (—E)Vk, ky—1(£) + 4D® 4 (—€) D, kp-1(€)
_2(I>+(_£)D§6k1,k2—1(£) - Dgﬁkl,kz—l(g))

and we use the stability of ¥ under (¢) %Dg with weight 1. The proof is concluded by
observing that $(A~3y)S = O(1) : A L2(R¢) — A2 L*(R¢ x Ryy). O
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The presence of Lagrangians with boundaries in (7.41) presents difficulties which
seem to prevent a computational proof similar to the one above, and the following

characterization of the partial Fourier transform of I}L?(Z,=%) will allow us to

overcome them. We need yet another two spaces of functions:
SpL*(Z) = {a € X*L*(Z) : (AD»)* (£D¢)* D¢a(), €) € \*L*(Z), ko+k1+%k2 <k}
and

SRLA(Z) ={a € N*L*(Z) : (ADx)*¢¥ D{?a € A*L*(Z), ko + %kl + %kl <k}
with the latter space defined only for even k& and then for odd k by complex
interpolation between k — 1 and k + 1.

Using this we now have the crucial

Lemma 7.13. — Let U(\, &) be the Fourier transform of v(\,z) in the second
variable. Then for k even

ve L2 (Z,E%) <= 0(\€) = g(\, &) + eFimed 13 g) (7.44)

where f € SEL?(Z), supp f C {¢£ > 1} and

C ser@ m=o
959 serxz)  m>o,

1]

F=50, va=A"2d)\dz.

Proof. — We observe that the case m = 0 follows immediately from the definition
and we shall first prove that the left hand side in (7.44) implies the right hand side,
that is, we assume that v € IyL%_(Z;EE) for k = 2l and m > 0. To simplify the

notation we will allow m € Z and define =, & E;fl"(m), and also put a = §. Thus

we take v € I2[L,2/1 (Z, E’)
6

Let x € C*(R), supp x C [1,00) be such that x =1 for z > 2 and let us define

vt (z) = x(sgn(m)z)o(z), v- =v—vy
The term v_ satisfies the estimates (ADy)*z*1 D¥2y_ € AV6L2(Z) for ko + 1k1 +
2k, < 21, which immediately implies that o_ € 8}/°L?(Z).

We can easily construct a canonical transformation X, : T*R? \ 0 — T*R? \ 0 such
that xm : N*{z1 =0} — Ap:

1
Xm : (%1, 22;&1,8&2) — (11 3, 22,61, 62 + W‘T%&) = (y1,¥y2;m,m2) (7.45)

" 3m2

100



SEMI-LINEAR DIFFRACTION OF CONORMAL WAVES

which is generated by ¢,, = S#yg& + y2€2 + y1€1. The definition of IkL,z,a (Z;EE)
then shows that (see Lemma 7.10)

v(\,z) = 3™ T Wy (N x), ui € LL*(R% N*{zy = 0} N {*z, > 0},2).

Consequently, if w(A, z) = e”am%izsmr()\, x) then since 9_ € 5;{6L2(Z),

(ADA)*(eD,)" DE2w € ASL2(Z), ko + k1 + §k2 < 21, supp w C sgn(m)[1, c0).
(7.46)

Strictly speaking we should now replace w € A/L2(Z) by a sequence
w; € AY/6L2([1,00); 8(R)), w; — w with the estimate (7.46) satisfied uniformly, but
for simplicity we shall write w everywhere. With this understanding we have

(N 6) = / e3im Pt ~inky, (N p)d (7.47)

and we first consider £ > 1 where we define f()\ &) = x(&) exp(%imfg)&r()\,g). We
will check the stability under D and £Dg (AD) is clear) by induction for more general
f’s of the form

graz*

. 3
et ot O e, (a9

Fn6) = x(©) /

where supp sgn(m) [1,00), w € )\%Lz([l,oo),H(_s)(R)), and ¢+ k + 2s < r. We can
rewrite this as

.2 3 1 3
S (e 3™E? £)(\ z) = a(zx, Dy)* (elsm_z(‘) w(A, ))
where § : L2(R) — L%(R) is the Fourier transform and

zrea

m € (m|§|% + |$|>-T+k5%(q_p)(R; R).

(7.49)

a(z, &) = x(2sgn(m)z)x(¢)

To see that f € A§L2(Z) if w € XS L2([1,00), H(_4)(R)), it suffices to check that

a € (mlé]? +]al) 72 50,(R, R) => e~'#7" a(z, D) : L*(R) — H((R), s > 0.

Since this is clear for s = 0 it is enough to establish the mapping property for s € N
as it will then follow by interpolation. Thus let s = n and we need to verify that
DI (exp(—iztzz®)u) € L?(R). This however is easy as |z|'a € S;SH/Z so that

zla(z, D) : L*(R) — Hp1/2)(R).
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We will show, using (7.46), that the applications of D and {D¢ do not change the
form of f. To do that we first need to strengthen (7.46) slightly:

(ADx)¥e(zDg)* DE2w € A% L*([1, 00); H(—)(R)), (7.50)
2
ko + k1 + gkz < 2l+§s,k1 + ko < 21.

The optimal choice of s is in %No and for s € 9g, (7.50) is clear. For s € Ny + % it
is derived from the iteration of the following statement

Viu,Diue ANsL?(Z), i< 2,j <3 = (7.51)
D2Vu € ASL*([1,00); H(_3(R)), V = Dz, AD.

To see this we take the Fourier transform in z and consider <‘72\u, 5?1;) An
integration by parts in £ or A depending on V (in the case of X\ this means taking
an adjoint in of D)) and an application of the Cauchy-Schwartz inequality yields
¢3Vu € A8 L2(Z) which gives the right hand side of (7.52).

We can now start with
. 3
Def(\€) = /(mg% _ x)el(%mﬁ’l+ﬁz3_z§)a(x’§)w(/\,x)dl. +
. 3
/ (Dea)(m, )3 +5727° =20 (\ 1) de.

The second term is of the desired form, as D¢a is of the form (7.49). We rewrite the
first one as

m’ / (met +z)7Na(z, €)[(~ Dy )e 3 5" =0 (A 2)de

where we can integrate by parts introducing new a’s of the form (7.49) and D,w. By
an interpolation argument (see for instance the proof of (7.52) above) it suffices to
discuss D} f, D with weight 2. Repeating the previous computation we see that D}
is a sum of terms of the same form as f with w replaced by D,w or D?w with 7 in a
(see (7.49)) increased by 1 or 2 respectively. If w € )\éLz([l,oo);H(_s)) then (7.50)
shows that Dyw € A& L([1,00); H(_,)) and D2w € A% L?([1,00); H(_—1), Where we
increased k2 by 1 in agreement with the weight of D?. Hence, indeed Dg f is a sum
of terms of the form (7.48) and DZf € A5 L2(Z).

We proceed similgrl;lf fo3r ¢D;. Observing that £Dga € S°(R,R) and {ei(s_vi—fwa—xg) =
(=Dg + m™222)e' G2 ™ =) we have

EDef(A€) = /nga(SL',f)w()\,z)ei(%m":%‘*s—;‘:‘za—wﬁ)dx+

. 3
m? /(m{é +2z)7! [(—Dm)(—Dz + m—zxz)e’(%m“+¢7’”3_””§)a(m,§) w(A, z)dz.
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and again the first term is harmless. Integration by parts in the second term produces
terms with new a’s satisfying (7.49) and the following terms involving differentiation
of w.

m2/ [(E;zﬁ—P—i———EDzw(A’x) + +(me)w()\, z)+

7 +1) m?(mé? + x)
1
(mg? +z)
All the terms except for the third one are of the desired form (since we used the gen-
erators in (7.46) with weights < 1). To maintain the order of regularity we use (7.50)
again so that if w € A3 L?([1,00), H(_4)(R)) then D2w € AsL2([1,00), H _,_1)).
This decreases 2 by 1 in (7.50) so the order in the filtration is preserved. Since r is
increased by 1, (7.48) is preserved and {D¢ f € A6 L2(Z).
To see that (1 — x(£))04 (), &) € S5L%(Z) we could again analyse the integral (7.47)
but it also follows from the uniform ellipticity of D — m?¢ for £ < 0. In fact, if

2D a(:c {)

¢z 2w(\, z) (iGmed 5y e’ —a6) gy
méz +

20(r2)) aa,6) +

2
supp b C (=00, 1), (AD)*(D§ = m?¢)"b(A,€) € A"L*(Z), ko + Thy < 2
then b € §5,L2(Z) since

1
(DF = m®*€)b,b) L2(r,) > | Debl2ar,) + m*[I1€]2bl|7 2,y — CllwlZag,)-

Note that using an interpolation argument as in the proof of (7.52) we obtain the
correct weights for the operators defining 89 L%(z).

Thus the desired decomposition follows by taking

g E) =T (0 E) + (1 — x(©)T (M), F(NE) = edmed x(6)7. (1, €).

We now want to prove the converse, that is, to show that the decomposition on
the right hand side of (7.44) implies that v € I;CL2 ,L*(Z,Em) where as before

Em Lef Elsinl(m), m # 0. To check the stability under
ADy, D, —m™%z% z(D, — m™2z?)

with weights 1, % and 1 respectively, we move to the Fourier transform side in z and
require that

(ADx)*o(DE — m?€)" [(DF — m2€) D¢ (52 0 W)u(A, €) € \MYCL*(Z), (7.52)
with kg + %kl + ko < k=2l

The functions in 5;{6L2(Z) satisfy (7.52) and we need to look at e ~Fime? Sl/ﬁLz(Z)
Commutation through the oscillatory factor shows that it suffices to establish the
stability of the elements of S, / 6Lz( Z) under <§>%D§ with the weight 2, i.e

f € $3{°L*(Z) = ()2 De)P (ADA)* (€D¢)" DE* f € N/°L*(2),
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%P+ko+k1+%kzg2l.

From this, one sees that it suffices to have the stability under (§>%D§ with weight
1 which follows from the stability under £D¢ and Dg both with weight 1 and the

inequality
/ t|h’(t)|2dt§</ |h”(t)|2dt) (/ t2|h’(t)|2dt) <
0 0 0

3 ([ wepas [T emora), necer.

We now need to check the essential support property required in the definition of
I, L2 (Z,Em). It is easily satisfied for f‘_lé,lc/ ®L? and it remains to consider
3

vy(z) = / x(2e)eFmedriga 1y 6)de,

and to check the stability under z - x(—sgn(m)z) with weight 3. The argument is
similar to the analysis of (7.47) and we shall present only the first induction step.
Thus we write

T

z - x(—sgn(m)z)uy (z) = / x(26)x(—sgn(m)z) Dsei(_%im€%+§’”) f(&)dg

T — mgé
where we integrate by parts. If D¢ f € A}/6L2(Z) then so is the left hand side as
a(,€) = x(26)x(—sgn(m)z)(x — mE*) 'z € S°(R,R)

. 3
and we apply a(z, D;) to §~*(e~37™(®)2 D f)V(z). The obvious inductive argument
concludes the proof of the lemma. O

To prove (7.41) we decompose S into the elliptic and hyperbolic components:

5= 50+ 8 SO = ooy [0 toeg - e
(7.53)
where ¢ € C*(R, [0, 1])
1 t>2
olt) = { 0 t<l.
We start with the elliptic region estimate:
Lemma7.14. — Ifk €2Ng and ko + 2(ky + ka) + 3(ka + k3) <k, m #0, then

(AD»)*DEa* Dfsy*sS, = 0(1) : kL (Z;Ey,) — A*L2([1,00)x X Ryy; H(1)(Rz))
(7.54)
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Proof. — We again consider §e defined in the same way as S in the proof of (7.42)
and, using the asymptotic expansions of the Airy functions on R, we write (omitting
A)

5e0(y,€) = p(AFe)em HEOT ey, (e~ yyun(-6)(0),
where w; € S(—V'/4(R), supp w; C [1,00), (compare chapter 9 of [49]). From Lemma
7.13 we conclude that

9(€) = &(-26)0(¢) € SYL*(2)

and we want to examine the application of the operators falling on S, in (7.54):
&, D¢, Dy, y with the weights %, %, %, %, respectively. From the definition of 8}, the
application of AD),& and D¢ to g is allowed and thus we only need to examine the
effect of the last three operators in (7.54) on the phase. Thus

OF2 0k kS (y,€) = ((—€)F — (—E—y)B)2(— (6 —y)F)loyhe x
6_5((_‘5)%_(_5_”%)’&)1(—{ — y)wy(—€)g(€)

1 k3
- ( (Tg ~y ) (1 4 y)katzkeny(y, €)% x

e 30Ty e pyun(=6)g(6),

where v(y,€) = (—£)2 — (=€ —y)? and where = means that the expressions differ by
terms which can be treated by the analysis for lower k. In fact, for 0; and y this is
immediate, while for J, falling on the phase we write

(=¢-y)* (—¢-y)?
(=€)2 + (1 +y)? (=6)F + (1 +y)?
with (=€) in the second term absorbed into g (with weight 1) - it is allowed as
g € 8*L%(Z). To proceed we need the following
Lemma 7.15. — Let f € C*°(R4 X [1,00)) satisfy
i) 1770, < Cw
1) Ifék)(y, t)] < Ckt®, for some a >0

ii) supp f C {(y,t) : 4 >0, t > 14y}
Then

W=

(~E—y)i= 1+y)7 + ~¢€)

NP 1
/ e~ 3T --0F) £y ay = 0 (1), (7.55)
0

Proof. — We can obtain asymptotic expansion for the integral (7.55) using
integration by parts:

.8 3
/0 e SR f(y, t)dy =

11 ® _apeioa-nh [ 1 _3 1 1
+5t72f(0,8) + o © ==y () + 5 (- y) T Ay (v, 1) | dy
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which continued sufficiently many times gives, in view of (i), a term @(t‘%) and a
sum of terms of the form

IPRYEYS SRS ) —5 4 (ks)
/ e VAt -y)" 2 £ (y, t)dy
0

with k; large. Using ii) and iii) we can estimate this integral by

1t

g -1 3 z
Ckztae—4/3t2 / e4/3(t—y)2 (t _ y)—k2/2dy < Ckzta /2 (t _ y)—k1/2dy +
0 0
Ckztae—4/3(1—2‘%)t% — ot}
if ky > 2a+ 3. 0O

Since (14 y)/2 < (—€)Y2 for y > 0,—€ > —¢ —y > 1, we can apply Lemma 7.15
with f(y, —&) given by

2

1 ks
<(_€§_£ ') ) 1+ y)kat by (y, )2 (=€) wi (€ —y) |

a=ky+ %(kz + k3) to obtain from the above discussion
/ / €)3|(ADy)* Dk zkz DFs yke S 5(y, €)|* A2 dydedn

3 |(ADx)kog¥ Df2 g ()| *deA =2 d

kgsmk;s%kﬁkl,k;sm

= > / |(AD)*o€ks D2 g(¢)|*deA—2dA

ko+2ki+ 5k <ko+3ks+Eki+3ke

£2(z) < C”””i@a(z;zi)’
where the last inequality is a consequence of Lemma 7.13. ]
We factorize the hyperbolic term defined in (7.53) as follows:
~-1
Sph=GoQ,
where

Gv(\ z,y) = / PATEET (1)T(£)e™ 3¢ TITERVFRE g, (7.56)

U (r)e ¥ = ~

o ((1 - ¢)A+)(_S)eiStdsv ¥, e SO(R)’
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~—1
see [49], Sect. 4. The other term @, is the non-homogeneous version of the @;1
operator:

(@ )" (61, 82) = $(E1)B(ET ) (As (=& 3&)) 1T, &), u € 6/(RD),
(@ 0)MNE) = Ay (—)71D(e), ve&(R). (7.57)

The more delicate part of the argument involves @_T_l. This operator is associated
to a canonical relation with boundary €; (see (7.26)) which can be regarded as a
singular canonical transformation.

The following proposition, which may be of independent interest, quantizes the
Lagrangian mapping properties of € :

CoAE =AZ_ |, m#0, CyAo=A].

mF1’
Proposition 7.16. —  Let us define the following marked Lagrangian varieties:
£ = AE,2),
S)O = {AO) JAOQAIAhQ}

where AL, Ao are given by (7.28), and C5 L, = £,—1. Then
Q7' IeH) (R% 8,) — IiH (1) (R?, £p1).

The proof follows from Lemma 7.10 and

~—1
Lemma 7.17. —  The multiplier @ defined by (7.57) satisfies

(D) YAR, < LI (Z,2%) — LL2 (2,25 ), m >0,

»—'m
~—1
(D.)~YV4R, : L2 (Z,Z0) — kL2 (Z,E7).

Proof. — This is an easy consequence of Lemma 7.13 and the asymptotic properties
‘3
of Ap: A7 = G(€) + 3% F(¢), G € $(R), F € SY4(R), supp F C [1,00). O

Proof. — Proof of Proposition 7.16 Unless p = 0 or p — 1 = 0 the statement follows
immediately from the interpolation between the even indexed neighbours. In the
special cases, the proposition is equivalent to

Q7N(Dx) ™ Ik L*(R?, £0) — LiH(y_1y(R*,£1), p=0 (7.58)
(Dz)*~ 3@ : I Ho) (R?, €1) — L, LA(R?, &), p=1. (7.59)
In fact, Definition 4.5 immediately implies that for s € Z,
u € ItH,)(R?, £0) & D2u € I, LA(R?, &), |a| < s & (D,)*u € I, L*(R?, &),

so that the case of general s follows interpolation. On the other hand Lemma 4.4
shows that H(bk)(Yg) % I L%(R?, £y), so that by Proposition B.2 the right hand side
is an interpolation space in k. Hence (7.58) holds for all k. d
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Lemma 7.18. — Let G be defined by (7.56). Then for k even
Y(A\"52)G : L2 (Z,EE) — L% (Z4,Em (7.60)
a+(ls

and in particular

Y(AT52)G(D)* L2 (Z,EE) — LiL®. (Z4,Em) (7.61)
a+3
Proof. — By taking the Fourier transform in y and applying Young s inequality to
eliminate 1 we only need to consider A=Y/6y)(A\~3z) W, (n)e~ sin’ v(z + n) and the
operators (see definition of I)L?(Z,=.,))

n?+ Dy~ Dy, x4, (x+n)Dyy, m=0
with multiplicities %, %, 1 and
1° + Dy — Dz, Dy —m~2(z +n)?, (z+n)(Ds ~m~2(z +n)?), m#0
2
3,3 1.
The corresponding assumptions on v gives stability under the operators (see
definitions of I} L?(Z,Z%): z,2D,, m = 0, with weight 1 and 1), and D, — m~2z?,

z(Dy —m™22?), m # 0, with weight Z and 1. It follows that we need to consider the
norm of

with multiplicities 2

)\—l/ﬁw(A_%z)a(n)w(m +1), a € S°(R), w e L*(R)
in L?(R2 ) and it is easily seen to be bounded2 by ||w| z2(r). The mapping property
(7.61) follows from the frequency cut-off Y(A~5¢) in G. d

Combining (7.61) and Lemma 7.17 we obtain that
Y(A"52)Sh : kL2 (Z,E%) — kL2, (Z4,Emz1),m >0

°‘+:-1$
Y(A"52)Sh : L (Z,50) — L2, (Z+,§1)
a+ 3
Thus, using Lemma 7.14 and the definition of IkL2 (Z4,E,,) we obtain (7.41) of
a+§~

Proposition 7.12:
St = p(A"52)Y(A 3y)(Se + Su) : L}, (Z,E5) — Ll | (Z4,57), m#0.
aty

m

Finally, Lemmas 7.10 and 7.11 complete the proof of Proposition 7.9. We should
remark that we have not used the full power of Lemma 7.14 which shows precisely
the gain of regularity in the elliptic region. A little more will be used in the proof
of Proposition 7.21 but even there it would have sufficed to have A*+s L2([1, 00) x
R4; L?(R)) in the right hand side of (7.54).

7.3. The extension of the equivalence of glancing hypersurfaces to b—canonical
transformations (see Appendix A and references given there) will now be used to go
beyond the model case considered above. Thus we have the following generalization
of Proposition 7.9:
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Proposition 7.19. —  Let the Lagrangians A, be defined by (7.28) and the relation §
by (7.20). Then the diffractive parametriz T given by (7.2) has the following mapping
properties for k even:

N

I LR %5 Ag, JA an, A2, 2) + IRLEZR™HAF,2) —
IPLE (X,5(A1),5 (A1) NF(Ag)),

T : LLAR"GA7,2) 4 LLAR Y AS,2) — IPLE (X, F(Ao) UF(A2)),
T LL2(R™ Y AF,2) — IPL2 (X, F(Ao) US(Ay)).

loc

where Ay C T*R™1\0 is any C™ homogeneous Lagrangian tangent to A1 at AyNAo.

Proof. — Let X : [ »T*X \ 0 be the equivalence of glancing hypersurfaces used in
the construction of the parametrix. By Proposition 1.1 it can be chosen to extend to
a b—canonical transformation ®y : I' — ®T*X \ 0. The induced boundary canonical
transformation xs : [ — T*0X \ 0 coincides with J, the canonical transformation
of the elliptic Fourier Integral Operator J such that for v € &'(R"™1)

PTv = 0, Tv Ix_=0, Tv lox= Jv.
By Theorem 1.5 (and Remark 1.4), ®x can be chosen so that
x)*p = c(€3 — 23€5 — £1&3), c € Spg(T), (7.62)

where we recall that the pull-back by ®x makes sense as p € Sﬁz’;(bT*X \ 0).

Our first goal is to quantize (7.62) using b—Fourier Integral Operators. Thus we
choose F € IP(R% x X;(°x7!)) and G € I)(X x R%;(®x)’) so that FG — I =
Ei, GF — I = E,, with B; € UO(R?), B, € UO(X) satisfying WFy(Ey) N T =
0,WFy(E2) N*x(T) = 0 (WF,(E) denotes the essential support of the full symbol
of E as a b—pseudodifferential operator). By the argument used in the proof of
Proposition 4.4 (see also [25], ITI(4.26) and what follows),

FPG=C(Py+R)+E, Re¥*RY), Ec¥y®RL), (7.63)

and where C € \IIS(II_R’}F) is elliptic in I and can be chosen (by appropriate modification
of F and G) to have the full symbol vanishing outside a neighbourhood of I". By
absorbing the term D2 R_;,R_; € ¥;'(R%), in R into Py (by writing D2 R_; =
PyR_1 + (22D?, + Dy, Dy, )R_1) We can assume that R € ¥ (R?).

The following lemma is based on Proposition 1.2 and allows us to eliminate R:

Lemma 7.20. — If C € UY(R?) is elliptic in T and R € ¥, (R?) then there exist
Q1,Q2 € WY(R™), elliptic in T and E € ¥, ' (R?) such that

C(Po + R) =Q1PQ: + E.
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Proof. — 1t is in fact more convenient to look for T} and T3 in U9, elliptic in I' and
such that

Ty(Po+R) = Ty + E, Ec ¥, N RY),
which can be rewritten as
[Py, T) = TR+ PyB (mod ¥, *?), (7.64)

where T' = Ty and B = T; — T;. Thus we are looking for an elliptic operator
T € ¥ and an operator B € ¥; ! such that (7.64) holds. Identifying t° = 0¢(T) €
SO(*T*R%) and b* = bo_1(B) € S7'(*T*R%) with their pull-backs under j we see
that (7.64) implies

1
;H]got0 = t0 4 pob!, r ="%01;(R). (7.65)

On the other hand if (7.65) holds and we choose T, B! so that %0 (T°) = t° and
bs_1 = b! then

[Py, T°] — T° — PyB* € T (RY).

Proposition 1.7 shows that, indeed, we can find such t° and b!, by taking t° = expa
and b = (exp a)b, with a, b given there. We then continue inductively, assuming that

B9 =[Py, T+ -+ T = (T° +---T?)R — Py(B* + --- + B¥*) € T, 71 (R™).

If °0_;1(E’) = €’ we again use Proposition 1.7 to solve
“Hpot'™ = —e? + rt7 T 4 pobit!
i

since it is equivalent to
1 . ) , . ,
;Hpoq = —(t% eI 4+ ps, 7T =10, BT =t0(gb' +5), g€ STI(), s€ STITHT).

The standard argument adapted to the \Il;’l setting concludes the proof. O

By combining Lemma 7.20 with (7.63) we see that there exist Fy, F> € IP(R% x
X, (bx~1)") elliptic in T' and properly supported such that

F\P = PyF, + EF;, E € ¥, (R") (7.66)

where E is also properly supported. We recall from [25], Proposition II1.4.18 that the
restriction of a b—Fourier Integral Operator, F, to the boundary is a Fourier Integral
Operator Fy with the canonical relation given by the restriction of that for F'. Thus,
(F2)s € I°(R™! x X;(x5")"). We conclude that (F3)goJ = A € ¥O(R"™!), where
A is properly supported and

PyFyTv = —EFRTv + Kv, (FyTv)lax= Av, K :&(R"™) — C®(RY). (7.67)
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To continue we need to recall two basic facts. If X and Y are manifolds with
boundaries, €, a b—canonical graph then,

RXxY;¢Y3G : 9Y) — 9X)
TR X)3 A 0 9UX) — C®(X).

The space 91(X) is defined in [25] (see also Sect. 18.3 of [14]). The first property
is clear from III(4.14) in [25], while the second one follows from 9U(X) N @(X) C
B(X)NA(X) = C®(X) (see [25], Proposition I1.8.8 and [14], Theorem 18.3.24) and
the mapping properties \IJ;’k FO — I, \Ilb_°°’k 16" = Q.

Combining this with (7.67) we conclude that
FT =ToA+ Ey, Ac PO R 1Y), Ep:&(R"!) — C®(R™).

The proof is now concluded through applications of Propositions 4.1,4.2,4.4, Propo-
sition 7.9 and the use of

x(Fo(A)NT) C F(A),
which follows immediately from (7.20). d

Proof. — Proof of Theorem 7.6 We proceed by showing that the Poisson map
& : 0P (0X4) - C=(X):

P(Eflx)=0 in X, &flox=f, 6fIx_=0, (7.68)
extends for s € 2Ny to a continuous map

& : J,L2(0X, H) — (Bs)alo L2 1o L*(X5,85). (7.69)

vs,loc

Since both spaces in (7.69) are interpolation spaces, the map is then continuous for all
values of s, in particular for s € Ny. Once we have (7.69) we apply the ‘vanishing in the
past’ Proposition 5.3 to show that the extension of & f [x to (8s)« ;L% ,,.L*(X5,85)

vs,loc

can be modified to lie in J,L? (X' , H). In fact, Definition 7.4 shows that for s € Ny

comp

ve JL?

2omp (X, H) = v [go€ BPILE (B2 K;0X: N BO"KY).
Proposition 5.3 and the spacelike property of K5 (K ? = 0X N K;s - see Proposition
5.1) gives the second condition in the definition of JiLZ (X, H) (Definition 3.5; in

fact we get a stronger condition: U |, € I L2(X4,0X4) [k, )-

show that the extension of & f [ x can then be modified to lie in JSLIZOC()? , H) without
affecting (7.68).

To establish (7.69) we will reduce it to a microlocal statement. In fact, it suffices to
prove (7.69) with the left hand side replaced by the right hand side of (7.6) and the
right hand side replaced by the left hand side of (6.2), as we can use Proposition 7.7
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and Theorem 6.1, respectively. In that case we consider the full diffractive parametrix
T given by (7.15) and will see that for k even

T : ILZ(0X; Moo, JA,yna, A2is2) + Ik L2(0X; A3, 2) — (7.70)
IPLE (X,As,AsNAF),

T : ILL%0X;A5,2) + Ik L2(0X; AL, 2) — IELE (X, Ar UAR), (7.71)
T : ILL?0X;Af,2) — L .(X,ArUAR), (7.72)
T : LL%0X;A};,2) — IRLE (X, Ag UAsg). (7.73)

Recalling (7), we see that, after a suitable microlocalization, (7.70),(7.71),(7.72) and
(7.73) are a consequence of Proposition 7.19 and the following mapping properties of
L in (7.15):

L : IkL%(0X;A00, Jp oy, A2ir 2) + IkL2(0X;AS;,2) —

IkLE(R™Y5 Ao, JA o, A2, 2) + Ik L2(R™Y A, 2), (7.74)
L : ILL%0X;A;;,2) + Ik L2(0X; A%, 2) —

L L2R™ Y AT,2) + L LR AT, 2), (7.75)
L : ILLY0X;A},,2) — L.LER™ Y Af,2), (7.76)
L : LL%0X;A%,2) — LL2R™ Y AT, 2). (7.77)

The operator L is chosen differently in each case depending on x and I' used in the
parametrix construction — see the discussion following (7.19). Since L is an elliptic
Fourier Integral Operator associated with xs (see (7.19)) the mapping properties
above follow from Propositions 4.1 and 4.2. We then obtain (7.70),(7.71),(7.72) and
(7.73) from (7.74),(7.75),(7.76) and (7.77), respectively from Proposition 7.6, once we
check, for (7.72), that

ArRNT D> F(AyNT),
and for (7.73), that
AsNT D> F(AyNT)
for some Ay tangent to Ay at A;NAg (again, with different choices of x and T in the two

cases (7.72) and (7 73)). For (7.72) we can simply take Ay = Ay = |J, 5 Ao as then

F(A;NT) € AgNT. To construct An for (7 73) we observe that if § and 5 are defined
using canonical transformations X and X1 — see (7.20) — then §1 = § o x5 (x1)s. If
(x1)a is chosen so that (x1)a(Ao NT') C Ago, as it may be by (7.19), then by (7)

F1(A1NT) c As N X(T)
and we can take Ay = xgl(xl)a(Al). Since A; is tangent to Ag, it remains to check
that Ay is tangent to Ap, and that follows from the tangency of $(Ay) to F(Az), as
can be verified using o or even more easily 3 given by (7.27). By the last part of
(7), 3(A2NT) C Ag, and that tangency follows from the third order tangency of the

cone and the reflected front H (see chapter 2). This completes the proof of Theorem
7.6. O
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7.4. Because of the restriction to the boundary (see Theorem 7.5) we lose 1/2 of
the order of regularity when applying Theorem 7.6. To avoid this loss in the final
application to conormal regularity of diffracted waves we need

Proposition 7.21. — If (FNX_)N0X =0 and u € L?(X) satisfies
Pu=0 in X, ulox=0, ulx_=1uo, uo € [LL2(X_;AF), (7.78)
then

u e bIkL%OC(X;AF UAR).

Proof. — Following the proof of Theorem 7.6 and with the notation of Proposition
7.9, we only need to prove the statement in the model case: P = Py, Ap = Fo(Ao),
Ar =50(A2), X =R}, X_ = {¢(x) < =9, z2 > 0}, where for small |z| we can take
¢(z) = 1 + 3. The assumption that X_ N F is away from the boundary is replaced
by its microlocal version:

WF(ug) C Fo(To) N~} (X_) (7.79)

where I'g C T*R™2 is small conic neighbourhood of (0; (1,0, --,0)).

The lemma below provides the needed characterization of the restriction of the free
solution which is already essentially contained in Corollary 5.10 of [35] (see also
Sect. 25.3 of [14] and Sect. 3 of [49]).

Lemma 7.22. — If ug satisfies (7.79) and if
POw =0 in RS) w r(]R:j_)_z Ug, Uo € Ikleoc((]Rs)—ﬂ?O(AO))!

then w € Iy L}, (R3;50(Ao)) and

loc

w[or3 = Qiwo + Euo, wo € ItH(_1/6)(R?, Ao),

where Qi is the multiplier defined by Ai as in (7.57) and E : L2 _(R3) — C*(R3).

loc

Proof. — The first property of w is immediate from the propagation properties of
Lagrangian distributions. Condition (7.79) implies that W F(ug) is contained in a
conic neighbourhood of the bicharacteristic for py through (0; (0,0,1)):

2
T2 = 33%, I3 = gxg, §1=0, & =—x1, =1
Thus by smoothly cutting off of the initial data (which produces C™ errors) we can
assume that up € C®(Ra,;6'(R2, ,.)) and consequently that the same is true for

Ypw, where ¥ € C®(Ry,,C§°(Ry,,2,)); ¥ = 1 near 7(Fo(I'g)). We also note that
(1 — )w € C®(R3). Taking the Fourier transform § in z; and z3 we obtain

(D2, — &3(&s2 +E))Pw(Er, T2, 3) = F (—[Po, Ylw) (1, 2,€3) € C®(Ry; S (RE, ¢,))
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and since ﬁu is tempered in (£1,&3) we conclude that

B(E3)Pw(Er, 22, 3) = B(E3) Ai(—E5 /% (€1 + E32))To (€1, 63),

where we can neglect the term ¢ in the left hand side (see (7.57)) as 5~ *((1— ¢)1Zz])) €
C®>. If Iy is small enough, then 5 > &; > 2 maxeer, |€1/€3] in (R®)_ Nsing suppuo.
Thus, for (z,£) € Fo(To) N7~ 1(X_ Nsing supp uo)

B(€a) Ai(—€5 261 + E322)) = €50 (w2 + £1/63) TV 9(€3) x
[e3eate/e) e (€132, + £165)) + e/ 0 (6352, + 6163))|

at € S, (R),ax(1) # 0. Since the phases are smooth then, we conclude that

__ 2, ~
WF (ff ! (exp(iglia(mz +€1/£3)3/2)a¢w0) f{z2>51,|z|<52}) C
(Fo(WF(wo)) n {.’62 > 01,21 < 0}

Hence, up to an error in C®° (R, ; S(Rgl,ﬁs))

1
6

o (€1, 72,83) = &5 ° (22 + 51/53)_1/4¢(§3)6i%53(z2+§1/£3)3/20+( 32,/3(962 + &183))Wo (€1, &3)-

If up € L _(Ry,; L*(R%2 _ )) we conclude that @y € (£3)Y/6L2(R?), that is, wy €

loc T1,T2
H_ i The desired conclusion is equivalent to the stability condition

(€Dey)™ (€Dg,) > o € (€)/°LA(R?), ky +ka <k,
while we know that
(—&De, + 202Dy, — £1Dg,)** (Day — £3D¢,) 100 € L2, (Ray; L (RE)).
However,
(Dg, — &3D¢, )Uo =
€50 (22 + €1/3) "M 4(E)e FE @2/ g (213 (2, + £163)) (~Es D, ) o,

(—€3Dg, + 2x3D,, — £1Dg, Yo = &5 /% (@2 + €1/€5) "V A 9(E3) x
ei38(@te1/6) "y (e213 (3, 4 £164))(~3€3De, — €1 Dg, ) o,

which together with the wave-front assumption (in particular, |£1| < £3) concludes
the proof. O

With the notation of Proposition 7.12, we want to show that

Su(W(@Zwo)) € IkL:‘jI (Z+a§0) + IkLiI(Z+’§2),

2 2
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as then Lemma 7.11 will provide the desired conclusion. Again, we consider the
elliptic and hyperbolic components separately and start with the former:

Se (W (Qiwg)) = Se(¢(—Dy)XiW (wp)), QioW =W o Q.

Since Ai(—¢) = O((¢)~) for all N if £ < 0, we easily see that q&(—f)Ai(—{’)V[//i;o(/\, &) e
5,16/ 3L2(Z). Thus we can use the proof of Lemma 7.14 to conclude that

Se(@iW (wo)) € L (24, Es).

In fact, a much stronger conclusion holds:
(ADy)ke D k2 DRayka S (GiW (wo)) € AY2L2([1,00) x R; Hiy/a)(R)) € AY/2L(Z4).

Turning to the hyperbolic component we observe that by writing Ai = —wA; —@A_,
w = exp(2mi/3), we obtain

_ (@)
Sh(@i(W'U)O)) = —wGWwy — oG ((?>WU}0> .
+
Straightforward analogues of Lemmas 7.17 and 7.18 conclude the proof. a

We should remark that a minimal amount of additional care would remove the
assumption that k is even, but that is irrelevant to us as indicated in the following

Theorem 7.23. — If the assumptions of Proposition 7.21 are satisfied with k € Ny,
then there exists a continuous map

E: LL*(XAp) — JLL*(X,H)
such that E(uo) [x= u.

Proof. — We only need to combine Proposition 7.21 with Proposition 5.3, Theorem
6.1 and an interpolation argument as in the proof of Theorem 7.6. O
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8. PROOF OF THE MAIN THEOREM

To give the proof of the propagation theorem for the pseudo-conormal space given
by Definition 3.6, two preparatory facts are still needed.

Lemma8.1. — Ifge J,L% (X, H) then

loc

WF®)(g) c N*NFUN*RUN*S, UTEX \OUN*LUN*B, UN*D, UN*H.
(8.1)

Proof. — The statement follows easily from Definition 3.5 if s € No. We need to see
that it is preserved when the space JyLZ (X, H) is interpolated. For convenience we

shall denote the union on the right hand side of (8.1) by £.

Let Q C T*X \ 0 be an open conic set such that Q is disjoint from €. The condition
WF®)(g) C £ is equivalent to saying that for every such €, if a € Sgg(T*X \ 0) is
elliptic in 2 and supp a N € =0, then a(z,D)(D)*g € L .(X). Fixing a with that
property and defining

Wi(X,Q) = {u € L}, (X) : a(z, D)(D)*g € L, .(X)}

we see that W, is an interpolation space in s and that WF()(g) C € if and only if
for all  above g € W,(X, Q). Fixing Q we now see that

Jk+1Ll20c()?7H) — Wit (
T2 (X, H) —— Wi(X,9)

and the complex interpolation finishes the proof. a

To guarantee the singular support condition in Definition 3.6 of J,LZ (X ) we need
the following crude propagation property:

Lemma 8.2. — Let u satisfy

Pu=f in X, ulagx=0, ulx_=0 (8.2)
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with f = f1x, where WF®)(f) is contained in the right hand side of (8.1) If
sing supp® (f) N (R\RUF\FUS8,\S,) =0
then
sing supp®t ) (w)N(R\RUF\FUS,\ S;) = 0.
Proof. — We construct the solution u by starting with the interior problem:
Pi=f in X, alg =0,
where we choose any strictly hyperbolic extension of P [ x to X \ X (a fixed extension

P was introduced in chapter 2). If we denote the right-hand side of (8.1) by € and
introduce

e=8\7 [(R\RUF\FUS,\S,)NnX],

then the assumption on f shows that WF®)(f) c &. If €, is the P—flow-out of
£ N {o2(P) = 0}, then the standard propagation result (see [14], Sect. 26.1) gives

WFEHD () c e U &,

By choosing P in X \ X appropriately, it can be arranged (for instance, by decreasing
the speed of propagation in X \ X) that

(£\&)N(E\2) =0, (8.3)

and this will be crucial later. At the boundary, all the terms in ¢ and §1 are disjoint
except over I' where all of T X \ 0 is included. Thus

1 ~0
WFG+2) (—alsx) C £,

~8 ~
where £, comes from the projection of each term in £; to 7*9X \ 0. Hence when we
solve

Pv=0 in X, vlox=—tlax, vix_=0,

the propagation of singularities theorem for the diffractive Dirichlet problem (see [37]
and [14], Sect. 24.4) shows that

v € N(X), WFb(erE)(v) @ j(§1 [T+ x\0)>

where 7: T*X \ X — ®T*X \ 0. Putting u = @[x +v we obtain the solution to (8.2)
and it is independent of the extension P chosen. Thus we can take either the fixed
extension P (as in chapter 2 and consequently in the definition the extended fronts

and §) or P such that (8.3) holds. This shows that
sing supp** ¥ (u) C 7(€) [x Nm(£1) [xC 7(2) Ix

concluding the proof. g
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We can finally give the long promised
Theorem 8.3. — If flx_=0 and u € L? (X) satisfies

loc
Pu:f in X, ulax=0, ulx_=0,
then
f € Jstloc(X) = Uuc Js+%L120c(X)'

Proof. — Definition 3.6 guarantees that for any H € R there exists f €
JoL? (X, H) such that f = f|x. If we apply Theorem 5.6 to the problem

loc
Pu, =f in )Z', uilg =0,
we conclude that u; € J}leoc()? ,H). Theorem 7.5 then implies that
—uy [ax € Js+%(8X, H)
and we solve the Dirichlet problem with that boundary data:
Puy =0 in X, uzlx =0, uzlox=—u1lox .

Theorem 7.6 shows that uy € JS+%L1200()Z',H) Ix and u = 4 [x, & = uy +ug €

J, +%L120C()Z' ,H). Since H varies freely in ® we conclude the proof by observing
that the singular support condition required by Definition 3.6 is easily furnished

by Lemmas 8.1 and 8.2. O

The proof of the main theorem on the conormal regularity for semi-linear diffractive
mixed problems is now an equally easy consequence of Theorems 3.8, 7.23 and 8.3.
We recall that F is a C*° characteristic surface satisfying F N X_ N 0X = 0 and the
pseudo-conormal space JiLZ (X) is given by Definition 3.6.

loc

Theorem 8.4. — Let u € L{S (X) be the solution of the semi-linear mized problem.:

Pu= f(z,u) in X, ulox=0, ulx_=uo

where f € C°(C) and ug € Iy L% (X_,F). Then u € JyL{ (X).

loc

Proof. — To apply the standard procedure based on the algebra property (Theorem
3.8) and the propagation property (Theorem 8.3) (see [32, 34] and references given
there) we only need to check that

P’LU=0, lU[GX: 0, w[X_=u0 = weJkleoc(X)'

That however is easy now as Theorem 7.23 shows that w € JiL2 (X, H) [ x, for any
H € R, and the singular support statement follows from propagation of singularities

for the diffractive mixed problem (cf. [35] and [14], Sect. 24.4). O

The results presented in chapter 1 are easy consequences of Theorem 8.4 and the
definitions.
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A. GLANCING HYPERSURFACES AND
b-GEOMETRY

The purpose of this appendix is to present some refinements of the equivalence
of glancing hypersurfaces (see chapter 2 for definitions and [24, 35] for a detailed
discussion) and of the construction of solutions to the diffractive transport equations.

We will use the notation similar to that in chapter 4: R} = {(z,y) : = >
0,y € R™} and denote the coordinates in T:‘]R"+1 \ 0 and b’l:*]Ri“ \ 0 by (z,y;&,m)
and (z,y; \,m) respectively, so that 7 : T*R%T \ 0 — *T*R7}*! \ 0 takes the form
Wz,y;6,m) = (2,y;2€,m).

Our starting point is the following theorem from [35):

Proposition 1.1. — If P and Q in T*R7*'\ 0 are given by
Q = {:E = 0} P = {p = 0}, D= ,52 -+ 2&(.’17,3/,77)5 + b(m,y,n), S S}llg, b € Sﬁg,

and are glancing at mo = (0;(0,1,0,---,0)), then there ezists a conic neighbourhood
of 3(mo), T C *T*R¥*!\ 0 and a b—canonical transformation

by : T — PT*RE\ 0, ®x(3(mo)) = 5(mo)

such that

Px({N? + ez®n} — 2®mnn =0} NT) C y(P), €=sgn(d:b(0,0)).

We remark that >x({z = 0} NT") C {z = 0} is immediately satisfied and that a
comparison with the general discussion in chapter 2 shows that e = —1 and e =1
in the diffractive and gliding cases respectively. It is also important to remember
that %y is essentially obtained by extending an appropriately chosen equivalence of
glancing hypersurfaces (or rather its restriction to the boundary, xs):

x:To — T*R™1\0, To € T"R™\ 0, y(x(m)) = "x(s(m)).
For x we immediately have x*p = a(z,y;€,n)(€% + ezn? — mnn), where a is

homogeneous of degree 0 and non-zero in T'y. The corresponding statement for ®y
does not however follow immediately from Proposition 1.1. Nevertheless we have
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Proposition 1.2. — Letp € Sﬁ;(bT*R’_ﬁ“ \ 0) satisfy

$2p|)\2—z3nf—z2nnm=07 d]*p(mo) 7é 0.

Then, for some conic neighbourhood of mg = (0,(0,1,0,---,0)), I'; C T*]R’frl \ 0,
there exists a b—canonical transformation

byr : Ty — PT*RY1\ 0
such that
ip = ¢(€2 — an? — nam), c€ CPCPT*RYTI\0), ¢#0inT;.  (1.1)
Proof. — By the Malgrange preparation theorem (see [14], Sect. 7.5) we can write
2?p = ro(z,y,m) + ri(z,y,MA + (N — 2°m — 2®mnn)s(z,y, A1), (1.2)

for (z,y;A,n) in some conic neighbourhood of j(mg). On the other hand, since
2,2
PES,,

x2p = 2%sy(x, y, A\, n) + Azsy(x, y, A, n) + N2so(z, Y, A, 7).

The differentiation of (1.2) in z and putting z = A = 0 shows that 9,70(0,y,71) =
70(0,yn) = 0. The comparison of the two expressions for z%p gives r1(0,y,n)\ +
A25(0,y,\,n) = A%s0(0,y,m,A) and consequently 71(0,y,m) = 0. Since 19 + r1A
vanishes identically when A\? = z?(znf + mn»), it also follows that r¢ and r, vanish
identically when zn; +n, > 0 (171 > 0 near 3(mg)). The assumption on p implies that
s(mg) # 0 and thus, in view of the above discussion, we can assume that sufficiently
near mq

p =& —an? — nam + po(z, y,n) + Ep1(z,y,m)

where pg and p; vanish identically in 7, + zn; > 0.

To eliminate the last two terms in p, we construct a b—canonical transformation by
the homotopy method. Thus we define

ps =& —an? —num + s(po(@,y,m) + Ep1(z,y,m))

and we want to find a5 and b, homogeneous of degree 0 in (A, n) and such that

d *
== (exp Hy,)" (a.p) =0,

which is the same as

dbg d
{E,asps} + E(asps) =0.
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By introducing o, = logas (the solution as is required to be strictly positive) this

reduces to
dbg dps dbs dog
=(-<= a,p— s 1.
{ds’ps}+ds < {ds’a} ds)p (13)

We easily see that, with n; = 1 for simplicity,

1o} 0

Hp, = 2 ( +§ > T~ 27—
dp 0 0 0

_sm%_a-x +sp1 <% + £3A> + H—ﬂmn+s(Po+§Pl)

where ﬁ_ is the tangential Hamilton vector field. From this we compute for ¢, €
C® (bT*R'_;_-‘-I \ 0)

0 0 0 0
—z{qs,ps} = (,\% +2(nn — spo(O,y,'n))wﬁ +5p1(0,y,7) (wgg - /\5;» gs

0q ~
+psx§;— +ZH _pipots(poteor)ds + Wsds,

where W, is a vectorfield with coefficients vanishing to second order at z = A = 0.
With g5 = dbs/ds in mind (see (1.3) we want to solve

d
~z{qs,ps} = .’II—% + THsPs (1.4)

for some smooth ps = ps(z,y, A,n) so that gs and p, vanish in zn + 9, > 0.
To solve (1.4) we first construct the Taylor series of ¢, and ps at £ = A = 0 and for
that we need the following

Lemma 1.3. — Let H; be the space of real homogeneous polynomials of degreel in
z, A and let A(t) be defined as

3} 0 3}
At) = A5—+tx—+f()(>\—fﬁ— 5;),
with f € C®(R;R), f(t) = O(tN), for all N ast — 0.
Then fort #0 and k € Ny
i) The linear transformation A(t)|m,,,, is invertible, ||(A(t)| oy, ) M = O (E]71).
it) Every u € Hay can be written as

u = A(t)(t) + c(t)(A\? — tz? — 2f(t)z\)*, c(t) €R,

(d/dt)™v]| = (= =™)|lull, (d/dt)"c = O(|t|=*"™)llull, for any fized norms
el =1lell on H,.
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Proof. — To keep notation simple we will only consider the case t < 0. It is
convenient to introduce the following change of variables

wo(3)-0)-(0)
so that

(F)" Y AR F@)* = V]t {’\18%1 - 8(?\ + f/(% (,\ 6(2\1 xl%ﬂ . (15)

Let (e, ®); denote the inner product on H; obtained by restricting to 2 + A2 = 1 and
taking the L? inner product. We introduce a t-dependent inner product on H;:

(F(t)* v, F(t)* w)ep = (v, w);.

It depends smoothly on ¢t for ¢t < 0 and satisfies

(0, 001/C < (v, whey < Ol Mo,wh, (S

7)o = Ot v, o)

Thus, we only need to consider A;(t) given by (1.5). If | = 2k+1, A;(t)|g, is invertible
with the norm bounded by [t|~1/2(1 + o(1)). Consequently, A(t)|g, is invertible with
the norm bounded by [¢|71(1 + o(1)). When I = 2k, A;(t)|n, has a one dimensional
kernel spanned by (A1 + 2% — 2f(t)/+/[t}\121)*. Thus we can take the inverse of
A; (t) restricted to the orthogonal complement of the kernel with respect to (e, e);.
Translating back to A(t) that gives ii) with ¢ = (u, (A% — tz? — 2f(t)zA)*)1 ;. d

Since sdps/ds = zpo + Ap1 we can solve (1.4) in Taylor series:

gs(z, Az, ) Zq D@, Xy,m), ¢P(ey,m)eH, ¢V =0inn, >0,  (16)

o0

ps(@, Xizm) ~ Y p (@ Aym), pd(ey,m) € Hiy, pl) =0inm, 20, (1.7)
=1

In fact, we apply Lemma 1.3 with ¢t = 7, — spo(0,y,n) and f(¢t) = sp1(0,y,7n)/2
(treating 7, as the only variable and the remaining ones as parameters), set q§°) =0
and

¢V (@, A y,m) = (2A()| Hy) ™ (290 (0, 0;5,m) + Ap1(0,0;9,m)), 4§ = DrglP.
We then continue solving

2A(t)q§2k) P 7(2":) +c Zk)(/\2 - t-'L'Z - 2f(t)w)‘)k’
(R (A2 = tz® — 2 (£)zA\)*)e 2k = O,
2A(t)q§2k+1) _ 7§2k+1), cg2k+1) =0.
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where 7§” are obtained from qgm) with m < [. The corresponding pgl) are given by

pD = cDx(X2 - tz? — 2f(t)nv)\)l_T2 + OhgY. (1.8)
The crucial observations are that
N2 —tz? — 2f(t)zh = 22ps + O |z + |A]2),

and that the last term in the right hand side of (1.8) does not contribute to ~{). The
norm estimates in Lemma 1.3 show that qgl), ,ugl) are C™ in (y,n) and the vanishing
in 1, > 0 is immediate. The Borel lemma now gives gs, us, C™ in (z,y; A,n) and s,

vanishing identically in 7, + 712z > 0 and such that (1.6) holds. Thus,

dp,
—m{Qmps} = xd—i + Tpsps + Vs,

where vs; = vs(z,y; A, 1) vanishes in 7, + Mz and to infinite order at z = A = 0.
But then v,/ (m22ps) € C®(*T*R7}*!\ 0) and we have solved (1.4) with p, replaced
by ps + z(vs/(z”ps))-

Going back to (1.3) we now solve for b, and a;,

dbs

— =gqs, bo=0

ds qs 0

dog

—1Y9sy Csy = —Hs, =0.

75 s} =—ps, a0
Putting @ = exp(a1) and °x; = exp(Hp,) we obtain the desired b—canonical
transformation:

*Xi(ap) = € — 21} — nam.

O

Remark 1.4. —  Any b—canonical transformation ®x satisfies

*r=azx, *x*A=b\+cz, a,b#0
and thus induces a canonical transformation on T*R™ \ 0 (or a conic subset of it):
xo(y;m) = (v, 1) = "x(0,4;0,m) = (0,4;0,7).

Since the construction in the proof of Proposition 1.2 gave ¢s(0,v;0,7) = 0 and
consequently b(0,y;0,1) = 0, ®x1 satisfying (1.1) can be chosen so that

(x1)o = Id|r,, To={(y,n) € T"R"\0:(0,y;0,m) € I'1}.
This observation is very convenient in applications presented in chapter 7.

Combining the two propositions we obtain:
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Theorem 1.5. — The b—canonical transformation x in Proposition 1.1 can be
chosen so that

’X*p = c(€® — a0} — mmm),
with ¢ € Sp,*T*RE1\0), ¢ #£0 in T.

‘We now want to consider transport equations and again we start by recalling some
facts already contained, in a slightly different form, in Sect. 4.4 of [35]:

Lemmal.6. — IfTy C RZTI xR} is a conic neighbourhood of mo = (05 (1,0, - ,0))

(with respect to the Ry action on the last n variables) and A, B € S°(T'3) then there
ezist a conic neighbourhood of mo, I's C 'z and g,h,e1,e3 € S°(T'3) such that in T'3:

=0y, = 2+0'12)0y 14 2@+ 17 1) 00 gY_(A), (&
20, _ayn - (2 + 771_177n)8y1 h B €2

and the solution satisfies

g(mg) =1, hl|z=0=0, ¢, =0in zm +n, >0, ei:®(:cN), NeN, z—0.

This lemma allows to solve the transport equations when the operator is the model
one: p = &2 — zn? — mn,. Here we are interested in the following slight refinement of
the standard procedure:

Proposition1.7. — Ifp = &2 —ani—mn, andr € SLHPT*RET\0) then there exist a
conic neighbourhood of (0; (0,1,0,---,0)), T C *T*RT*1\ 0 and a € S°(*T*R7H1\ 0),
be STIPT*RT\ 0) such that

Hya=r+pb in 37 }T),
where we identified a,b,r with their pullbacks under 3 : T*R7+\ 0 — PT*R7H\ 0.

Proof. — Arguing as in the beginning of the proof of Proposition 1.2 (with the
argument applied to xr), we see that for (z,y,z&,n) € T,

r =ri(z,y,n) + &ro(z,y,m) + pb(z, y; 2€, 1),

where r; € S¥(T'2) with I'y C R"*! x R™, a conic neighbourhood of (0;(0,1,0,---,0)
and b* € S~1(T).

Let us now apply Lemma 1.6 with A = 771_11"1 and B = ry to obtain g and h. A
simple computation shows that

Hy(g +&n7th) = 71 + Ero + 2pmy *0:h + €1 + &ny tea.

Since hlz—o = 0 we can take a = g + Ah/z, while b = b + 20,k + 22[(e1 +
My tez/x)/(2%p)], where the last term is smooth as e; vanish identically in mz+n, >
0 and to infinite order at z = 0. d
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B. b-SOBOLEY SPACES

In this appendix we recall the definition of the b—Sobolev spaces on a manifold with
corners and outline the proof of some of their more useful properties. We start with
the case of a manifold with boundary, for a discussion of the characteristic operators
used, see [25, 28] and also [14], Sect. 18.3.

Let M be a manifold with boundary and let v be a measure on M. Then we define

H{y (M) = {u; Au € L3(M) for all A € U3(M)}. (2.1)
When the measure v is not specified and M is locally described by a subset of

[0, 00), X ]RZ_I, we take v = dydr/r and denote the corresponding L2 by L2(M).
A logarithmic change of variables ¢t = logr induces an isomorphism

H([0,00) x R*™1) +— H(5)(R™) (2.2)

and thus we easily conclude that H ?s),v(M ) is an interpolation space for any smooth
measure V.

R

Ro

M, __r M

Figure 2.1. An example of the resolution M; 2 M
More generally if M is a manifold with corners, H?s),t/(M ) can be defined by

(2.1) where W3 (M) is the space of totally characteristic operators on a manifold with
corners [31] (see also [28]) or, more directly, by (2.2) and a multiple logarithmic
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change of variables — see [29]. As for manifolds with boundaries (see [14], Appendix
B) more options for defining Sobolev spaces are available. To describe them let us
assume that M has a codimension two corner and near it, is described by

Zy = [0,00) x [0,00) x R"™2, with coordinates (r,z,y) € Z,.
For that manifold we define

H'E’s)(Zg) = {u; there exists @ € H?s)([O, o0) x R™™1) such that i [,>0= u},
Hf,s,m)(ZZ) ={u:U € Higm)(R x [0,00) x R™2) where U(t,z,y) = u(logr,z,y)},

where H(; ) is defined in Appendix B of [14]. We easily have the following adaptation
of Theorem B.2.9 to this setting

Proposition 2.1. — If P € Diff)([0,00) x R*™1) and {z = 0} C Z2 x R""2 is non-
characteristic for P, i.e. o,(P) l'oN={z=0} does not vanish, then

u € H(I’sl’ml)(Z2) and Pu € szsz—p,mz)(Zz) = u€ Hé,s,m)(Zz)
for s+m < s;+m;, s< ss.

If M is a manifold with corners and

R=RyU---URp =
{URi\ (URij) ,R;NR; \ (URijan) } (2.3)
i i#j k

is a variety of cleanly intersecting smooth submanifolds of M, Ry = OM, we define
the conormal space Iy LZ(M,R) by (1.1) using all vector fields tangent to R for 0. By
succesively blowing up all intersections (see [28]) and then the submanifolds R;,% > 0,
we obtain the resolution Mj:

M, 5 M,

where M is a manifold with corners — see Fig. 2.1 for an example. We then clearly
see that

Ikle’(M’ L‘R’) <L) H(bk),u.,(Ml)v VxlVy =V,
and thus we obtain

Proposition 2.2. — If M is a manifold with corners and R 1is given by (2.3) then
I, L2(M,Q) are interpolation spaces in k.
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