LARS HESSELHOLT

Stable topological cyclic homology is topological Hochschild homology

<http://www.numdam.org/item?id=AST_1994__226__175_0>
STABLE TOPOLOGICAL CYCLIC HOMOLOGY IS TOPOLOGICAL HOCHSCHILD HOMOLOGY

By Lars Hesselholt

1. Introduction

1.1. Topological cyclic homology is the codomain of the cyclotomic trace from algebraic K-theory
\[\text{trc}: K(L) \to TC(L). \]

It was defined in [2] but for our purpose the exposition in [6] is more convenient. The cyclotomic trace is conjectured to induce a homotopy equivalence after p-completion for a certain class of rings including the rings of algebraic integers in local fields of positive residue characteristic p. We refer to [11] for a detailed discussion of conjectures and results in this direction.

Recently B. Dundas and R. McCarthy have proven that the stabilization of algebraic K-theory is naturally equivalent to topological Hochschild homology,
\[KS(R; M) \simeq T(R; M) \]
for any simplicial ring R and any simplicial R-module M, cf. [4]. We note that both functors are defined for pairs $(L; P)$ where L is a functor with smash product and P is an L-bimodule; cf. [12]. An outline of a proof in this setting and by quite different methods, has been given by R. Schwänzl, R. Staffelt and F. Waldhausen. Hence the following result is a necessary condition for the conjecture mentioned above to hold.

Theorem. Let L be a functor with smash product and P an L-bimodule. Then there is a natural weak equivalence, $TCS(L; P)^\wedge \simeq T(L; P)^\wedge$.

It is not surprising that we have to p-complete in the case of TC since the cyclotomic trace is really an invariant of the p-completion of algebraic K-theory, cf. 1.4 below. The rest of this paragraph recalls cyclotomic spectra, topological Hochschild homology, topological cyclic homology and stabilization. In paragraph 2 we decompose topological Hochschild homology of a split extension of FSP's and approximate TC in a stable range. Finally in paragraph 3 we study free cyclic objects and use them to prove the theorem.

Throughout G denotes the circle group, equivalence means weak homotopy equivalence and a G-equivalence is a G-map which induces an equivalence of H-fixed sets for any closed subgroup $H \leq G$.

The author was supported by the Danish Natural Science Research Council

S. M. F.

Astérisque 226** (1994) 175
I want to thank my adviser Ib Madsen for much help and guidance in the preparation of this paper as well as in my graduate studies as a whole. Part of this work was done during a stay at the University of Bielefeld and it is a pleasure to thank the university and in particular Friedhelm Waldhausen for their hospitality. I also want to thank him and John Klein for many enlightening discussions.

1.2. Let L be an FSP and let P be an L-bimodule. Then $\text{THH}(L; P)_*$ is the simplicial space with k-simplices

$$\text{holim}_{I^{k+1}} F(S^{i_0} \wedge \ldots \wedge S^{i_k}, P(S^{i_0}) \wedge L(S^{i_1}) \wedge \ldots \wedge L(S^{i_k}))$$

and Hochschild-type structure maps, cf. [12], and $\text{THH}(L; P)$ is its realization. When $P = L$, considered as an L-bimodule in the obvious way, $\text{THH}(L; L)$ is a cyclic space so $\text{THH}(L; L)$ has a G-action. In both cases we use a thick realization to ensure that we get the right homotopy type, cf. the appendix. More generally if X is some space we let $\text{THH}(L; P; X)_*$ be the simplicial space

$$\text{holim}_{I^{k+1}} F(S^{i_0} \wedge \ldots \wedge S^{i_k}, P(S^{i_0}) \wedge L(S^{i_1}) \wedge \ldots \wedge L(S^{i_k}) \wedge X),$$

where X acts as a dummy for the simplicial structure maps. If X has a G-action then $\text{THH}(L; P; X)$ becomes a G-space and $\text{THH}(L; L; X)$ a $G \times G$-space. We shall view the latter as a G-space via the diagonal map $\Delta: G \to G \times G$ and then denote it $\text{THH}(L; X)$.

We define a G-prespectrum $t(L; P)$ in the sense of [9] whose 0'th space is $\text{THH}(L; P)$. Let V be any orthogonal G-representation, or more precisely, any f.d. sub inner product space of a fixed ‘complete G-universe’ U. Then

$$t(L; P)(V) = \text{THH}(L; P; S^V),$$

with the obvious G-maps

$$\sigma: S^{W-V} \wedge t(L; P)(V) \to t(L; P)(W)$$

as prespectrum structure maps. Here S^V is the one-point compactification of V and $W - V$ is the orthogonal complement of V in W. We also define a G-spectrum $T(L; P)$ associated with $t(L; P)$, i.e. a G-prespectrum where the adjoints $\tilde{\sigma}$ of the structure maps are homeomorphisms. We first replace $t(L; P)$ by a thickened version $t^\tau(L; P)$ where the structure maps σ are closed inclusions. It has as V'th space the homotopy colimit over suspensions of the structure maps

$$t^\tau(L; P)(V) = \text{holim}_{Z \subset V} \Sigma^{V-Z} t(L; P)(Z)$$
and as structure maps the compositions (t=t(L;P))

$$\sum W^\rightarrow V \text{holim} \sum V^\rightarrow Z t(Z) \cong \text{holim} \sum W^\rightarrow Z t(Z) \rightarrow \text{holim} \sum W^\rightarrow Z t(Z).$$

Here the last map is induced by the inclusion of a subcategory and as such is a closed cofibration, in particular it is a closed inclusion. Furthermore since V is terminal among $Z \subset V$ there is a natural map $\pi: t^r(L; P) \rightarrow t(L; P)$ which is spacewise a G-homotopy equivalence. Next we define $T(L; P)$ by

$$T(L; P)(V) = \lim_{W \subset U} \Omega W^\rightarrow V t^r(L; P)(W)$$

with the obvious structure maps.

We can replace $\text{THH}(L; P; S^V)$ by $\text{THH}(L; S^V)$ above and get a G-prespectrum $t(L)$ and a G-spectrum $T(L)$. These possess some extra structure which allows the definition of $\text{TC}(L)$ and we will now discuss this in some detail. For a complete account we refer to [6], see also [3].

1.3. Let C be a finite subgroup of G of order r and let J be the quotient. The r'th root $\rho_C: G \rightarrow J$ is an isomorphism of groups and allows us to view a J-space X as a G-space ρ_C^*X. Recall that the free loop space $\mathcal{L}X$ has the special property that $\rho_C^*\mathcal{L}X \cong \mathcal{L}X$ for any finite subgroup of G. Cyclotomic spectra, as defined in [3] and [6], is a class of G-spectra which have the analogous property in the world of spectra. This section recalls the definition.

For a G-spectrum T there are two J-spectra T^C and $\Phi^C T$ each of which could be called the C-fixed spectrum of T. If $V \subset U^C$ is a C-trivial representation, then

$$T^C(V) = T(V)^C, \quad \Phi^C T(V) = \lim_{W \subset U} \Omega W^C \rightarrow V T(W)^C$$

and the structure maps are evident. There is a natural map $r_C: T^C \rightarrow \Phi^C T$ of J-spectra; $r_C(V)$ is the composition

$$T^C(V) \cong \lim_{W \subset U} F(S^{W^\rightarrow V}, T(W))^C \ni^* \lim_{W \subset U} F(S^{W^C \rightarrow V}, T(W)^C) = \Phi^C T(V)$$

where the map ι^* is induced by the inclusion of C-fixed points. The difference between T^C and $\Phi^C T$ is well illustrated by the following example.

Example. Consider the case of a suspension G-spectrum $T = \Sigma^\infty_G X$,

$$T(V) = \lim_{W \subset U} \Omega W^\rightarrow V (S^W \wedge X).$$

We let $E_G H$ denote a universal H-free G-space, that is $E_G H^K \cong \ast$ when $H \cap K = 1$ and $E_G H^K = \emptyset$ when $H \cap K \neq 1$. Then on the one hand we have the tom Dieck splitting

$$(\Sigma^\infty_G X)^C \cong \bigvee_{H \leq C} \Sigma^\infty_J (E_G/H(C/H) \wedge C/H X^H),$$

177
and on the other hand the lemma shows that $\Phi^C(\Sigma_G^\infty X) \simeq \Sigma_J^\infty X^C$. Moreover the natural map $r_C: (\Sigma_G^\infty X)^C \to \Phi^C(\Sigma_G^\infty X)$ is the projection onto the summand $H = C$. □

A J-spectrum D defines a G-spectrum ρ_G^*D. However this G-spectrum is indexed on the G-universe $\rho_G^*U^C$ rather than on U. To get a G-spectrum indexed on U we must choose an isometric isomorphism $f_C: U \to \rho_G^*U^C$, then $(\rho_G^*D)(f_C(V))$ is the V'th space of the required G-spectrum, which we denote it $\rho_G^G D$.

We want the f_C's to be compatible for any pair of finite subgroups, that is the following diagram should commute

$$
\begin{array}{ccc}
U & \xrightarrow{f_{Cr}} & \rho_{Cr}^* U^{Cr} \\
\downarrow{f_C} & & \downarrow{} \\
\rho_{Cr}^* U^{Cr} & \xrightarrow{(\rho_{Cr}^* f_C)^{Cr}} & \rho_{Cr}^* (\rho_{Cs}^* U^{Cs})^{Cr}.
\end{array}
$$

Moreover the restriction of f_C to the G-trivial universe U^G induces an automorphism of U^G which we request be the identity. We fix our universe,

$$U = \bigoplus_{n \in \mathbb{Z}, \alpha \in \mathbb{N}} C(n) \alpha,$$

where $C(n) = C$ but with G acting through the n'th power map. The index α is a dummy. Since $\rho_G^* C(n) = C(nr)$, where r is the order of C, we obtain the required maps f_C by identifying $\mathbb{Z} = r \mathbb{Z}$.

Definition. ([6]) A *cyclotomic spectrum* is a G-spectrum indexed on U together with a G-equivalence

$$\varphi_C: \rho_G^G \Phi^C T \to T$$

for every finite $C \subset G$, such that for any pair of finite subgroups the diagram

$$
\begin{array}{ccc}
\rho_{C_r}^G \Phi^C r T & \xrightarrow{\rho_{C_r}^G \Phi^C s T} & \rho_{C_r}^G \Phi^{Cr} T \\
\rho_{C_r}^G \Phi^C r \varphi_{C_s} & \downarrow & \varphi_{C_r} \\
\rho_{C_r}^G \Phi^C r T & \xrightarrow{\varphi_{C_r}} & T
\end{array}
$$

commutes.

We prove in [6] that the topological Hochschild spectrum $T(L)$ defined above is a cyclotomic spectrum. The rest of this section recalls the definition of the φ-maps for $T(L)$. The definition goes back to [2] and begins with the concept of edgewise subdivision.
The realization of a cyclic space becomes a G-space upon identifying G with \mathbb{R}/\mathbb{Z}, and hence C may be identified with $r^{-1}\mathbb{Z}/\mathbb{Z}$. Edgewise subdivision associates to a cyclic space Z_* a simplicial C-space $\text{sd}_C Z_*$. It has k-simplices $\text{sd}_C Z_k = Z_{r(k+1)-1}$ and the generator $r^{-1} + \mathbb{Z}$ of C acts as τ^{k+1}. Moreover, there is a natural homeomorphism

$$D : |\text{sd}_C Z_*| \to |Z_*|,$$

an $\mathbb{R}/r\mathbb{Z}$-action on $|\text{sd}_C Z_*|$ which extends the simplicial C-action, and D is G-equivariant when $\mathbb{R}/r\mathbb{Z}$ is identified with \mathbb{R}/\mathbb{Z} through division by r.

We now consider the case of $\text{THH}(L; X)_*$. Let us write $G_k(i_0, \ldots, i_k)$ for the pointed mapping space $F(S^{i_0}, \ldots, S^{i_k}, L(S^{i_0}) \ldots \wedge L(S^{i_k}) \wedge X)$.

Then the k-simplices of the edgewise subdivision is the homotopy colimit

$$\text{sd}_C \text{THH}(L; X)_k = \text{holim}_{f^{r(k+1)}} G_{r(k+1)-1}.$$

The C-action on $\text{sd}_C \text{THH}(L; X)_k$ is not induced by one on $G_{r(k+1)-1}$. We consider instead the composite functor $G_{r(k+1)-1} \circ \Delta_r$, where $\Delta_r : I^{k+1} \to (I^{k+1})^r$ is the diagonal functor. It has C-action and the canonical map of homotopy colimits

$$b_k : \text{holim}_{f^{r(k+1)}} G_{r(k+1)-1} \circ \Delta_r \to \text{holim}_{f^{r(k+1)}} G_{r(k+1)-1}$$

is a C-equivariant inclusion and induces a homeomorphism of C-fixed sets. Let Y and Z be two C-spaces and consider the mapping space $F(Y, Z)$. It is a C-space by conjugation and we have a natural map

$$t^* : F(Y, Z)^C \to F(Y^C, Z^C),$$

which takes a C-equivariant map $\psi : Y \to Z$ to the induced map of C-fixed sets. In the case at hand t^* gives us a natural transformation

$$(G_{r(k+1)-1} \circ \Delta_r)^C \to G_k,$$

and the induced map on homotopy colimits defines a map of simplicial spaces

$$\tilde{\phi}_C : \text{sd}_C \text{THH}(L; X)_*^C \to \text{THH}(L; X^C)_*.$$

We define a G-equivariant map

$$\phi_C (V) : \rho_C^* t(L)(V)^C \to t(L)(f^{-1}_C(\rho_C^* V^C))$$
as the composite

$$
\rho_C^* \mid \text{THH}(L; S^V)^C \xrightarrow{D^{-1}} \text{sd}_C \text{THH}(L; S^V)^C \xrightarrow{\tilde{\varphi}_C} \mid \text{THH}(L; S^V)^C \mid
$$

Indeed it is G-equivariant by [2] lemma 1.11. Next we define a G-map

$$
\varphi_C(V) : \rho_C^* T(L)(V)^C \to T(f_C^{-1}(\rho_C^* V^C))
$$

as the map on colimits over $W \subset U$ induced by the composition

$$
\rho_C^*(\Omega^W - V \tau(L)(W))^C \xrightarrow{i^*} \rho_C^*(\Omega^{W^C - V^C} \tau(L)(W)^C)
\xrightarrow{\tilde{\varphi}_C(W)} \Omega^{\rho_C^*(W^C - V^C)} \tau(L)(f_C^{-1}(\rho_C^* W^C))
\xrightarrow{f_C^*} \Omega^{f_C^{-1}(\rho_C^*(W - V)^C)} \tau(L)(f_C^{-1}(\rho_C^* W^C)).
$$

Then the required maps $\varphi_C : \rho_C^# \Phi^C T \to T$ of G-spectra are evident in view of the definitions. Furthermore [2] 1.12 shows that the diagram which relates the φ-maps for a pair of finite subgroups of G commutes. We refer to [6] for the proof that the φ-maps are G-equivalences.

1.4. Let $j : U^G \to U^C$ be the inclusion of the trivial G-universe and let D be a J-spectrum. The underlying non-equivariant spectrum of D is the spectrum $j^* D$ with its J-action forgotten. By abuse of notation we usually denote this D again.

Let T be a cyclotomic spectrum, then r_{C^s} and φ_{C^s} induce a map of G-spectra

$$
\rho_{C^s}^* T^{C^s} = \rho_{C^s}^* \left(\rho_{C^s}^* T^{C^s} \right)^C \to \rho_{C^s}^* \left(\rho_{C^s}^* \Phi_{C^s}^C T \right)^C \to \rho_{C^s}^# T^{C^s}.
$$

It gives a map $\Phi : T^{C^s} \to T^{C^s}$ of underlying non-equivariant spectra and the compatibility condition in definition 1.3 implies that $\Phi^s \Phi_{rs} = \Phi^s$. The inclusion of the fixed set of a bigger group in that of a smaller also defines a map of non-equivariant spectra $D_{rs} T^{C^s} \to T^{C^s}$, and these satisfies that $D_{rs} = D_{rs}$. Moreover $D_{rs} \Phi_{s} = \Phi_{s} D_{rs}.

Topological cyclic homology of an FSP was defined in [2]; the presentation here is due to T. Goodwillie [5]. Let \mathbb{I} be the category with $\text{ob} \mathbb{I} = \{1, 2, 3, \ldots \}$ and two morphisms $\Phi, D : n \to m$, whenever $n = rm$, subject to the relations

$$
\Phi_1 = D_1 = \text{id}_n,
\Phi_r \Phi_s = \Phi_{rs}, D_r D_s = D_{rs},
\Phi_r D_s = D_s \Phi_r.
$$

For a prime p we let \mathbb{I}_p denote the full subcategory with $\text{ob} \mathbb{I}_p = \{1, p, p^2, \ldots \}$. The discussion above shows that a cyclotomic spectrum T defines a functor from \mathbb{I} to the category of non-equivariant spectra, which takes n to T^{C^s}.
Definition. ([2]) \(\text{TC}(T) = \text{holim} T^{C_n} \), \(\text{TC}(T; p) = \text{holim} T^{C_p^s} \).

If \(L \) is a functor with smash product then \(\text{TC}(L) \) and \(\text{TC}(L; p) \) are the connective covers of \(\text{TC}(T(L)) \) and \(\text{TC}(T(L); p) \) respectively. It is often useful to have the definition of \(\text{TC}(T; p) \) in the form it is given in [2],

\[
\text{TC}(T; p) \cong [\text{holim} T^{C_p^s}]^{h\langle D_p \rangle} \cong [\text{holim} T^{C_p^s}]^{h\langle D_p \rangle}.
\]

Here \(\langle D_p \rangle \) is the free monoid on \(D_p \) and \(X^{h\langle D_p \rangle} \) stands for the \(\langle D_p \rangle \)-homotopy fixed points of \(X \). It is naturally equivalent to the homotopy fiber of \(1 - D_p \).

The functor \(\text{TC}(\cdot) \) is really not a stronger invariant than the \(\text{TC}(\cdot; p) \)'s. Indeed we have the following result, which will be proved elsewhere.

Proposition. The projections \(\text{TC}(T) \to \text{TC}(T; p) \) induce an equivalence of \(\text{TC}(T) \) with the fiber product of the \(\text{TC}(T; p) \)'s over \(T \). Moreover the \(p \)-complete theories agree, \(\text{TC}(T)^p \cong \text{TC}(T; p)^p \). \(\square \)

Remark. In [2] the authors define a space \(\text{TC}(L; p) \) and a \(\Gamma \)-space structure on it. Furthermore they show that the cyclotomic trace \(\text{trc}: K(L) \to \text{TC}(L; p) \) is a map of \(\Gamma \)-spaces. We show in [6] that the spectrum \(\text{TC}(L; p) \) defined above is equivalent to the one determined by the \(\Gamma \)-space structure. \(\square \)

1.5. Stable \(K \)-theory of simplicial rings was defined by Waldhausen in [15], see also [8]. We conclude this paragraph with the definition of stable \(\text{TC} \) of a \(FSP \) and leave it to reader to see that stable \(K \)-theory also may be defined in this generality.

Definition. Let \(P \) be an \(L \)-bimodule and \(K \) a space. The shift \(P[K] \) of \(P \) by \(K \) is the functor given by \(P[K](X) = K \wedge P(X) \) with structure maps

\[
l_{X,Y}^{P[K]} = \text{id}_K \wedge l_{X,Y}^P \circ \text{tw} \wedge \text{id}_{P(Y)}, \quad r_{X}^{P[K]}, Y = \text{id}_K \wedge r_{X,Y}^P.
\]

We shall write \(P[n] \) for \(P[S^n] \).

We define a new \(FSP \) denoted \(L \oplus P \) which is to be thought of as an extension of \(L \) by a square zero ideal \(P \).

Definition. Let \(L \) be an \(FSP \) and \(P \) an \(L \)-bimodule. We define the extension of \(L \) by \(P \) as \(L \oplus P(X) = L(X) \vee P(X) \) with multiplication

\[
L \oplus P(X) \wedge L \oplus P(Y) \to L(X) \wedge L(Y) \vee L(X) \wedge P(Y) \vee P(X) \wedge L(Y) \vee P(X) \wedge P(Y) \to L(X) \wedge L(Y) \vee P(X) \wedge P(Y) \to L \oplus P(X \wedge Y).
\]

The first map is the canonical homeomorphism, the second is \(\mu_{X,Y} \vee l_{X,Y} \vee r_{X,Y} \vee * \) and the last is convolution. Finally the unit in \(L \oplus P \) is the composite

\[
X \to L(X) \to L \oplus P(X).
\]

One verifies immediately that \(L \oplus P \) is in fact an \(FSP \) and that it contains \(L \) as a retract. We shall write \(\overline{\text{TC}}(L \oplus P) \) for the homotopy fiber of the induced retraction \(\text{TC}(L \oplus P) \to \text{TC}(L) \).
Lemma. If K is contractible then so is $\tilde{\text{TC}}(L \oplus P[K])$. Furthermore a contraction of K induces one of $\tilde{\text{TC}}(L \oplus P[K])$.

Proof. Let us write F instead of $L \oplus P[K]$. If $h: I_+ \wedge K \to K$ is a contraction we can define $h(X): I_+ \wedge F(X) \to F(X)$ by the composition

$$I_+ \wedge (L(X) \vee K \wedge P(X)) \cong I_+ \wedge L(X) \vee I_+ \wedge K \wedge P(X) \xrightarrow{pr_2 \vee h \wedge \text{id}} L(X) \vee K \wedge P(X).$$

It is compatible with the multiplication and unit in F, that is the following diagrams commute

$$
\begin{array}{ccc}
I_+ \wedge (F(X) \wedge F(Y)) & \xrightarrow{id \wedge X \wedge Y} & I_+ \wedge F(X \wedge Y) \\
\Delta \wedge \text{id} \downarrow & & \downarrow h_{X \wedge Y} \\
(I \times I) \wedge F(X) \wedge F(Y) & & F(X \wedge Y) \\
\text{id} \wedge \text{tw id} \downarrow & & \mu_{X,Y} \uparrow \\
I_+ \wedge F(X) \wedge I_+ \wedge F(Y) & \xrightarrow{h_{X \wedge h_{Y}}} & F(X) \wedge F(Y).
\end{array}
$$

and

$$
\begin{array}{ccc}
I_+ \wedge X & \xrightarrow{id \wedge 1_X} & I_+ \wedge F(X) \\
pr_2 \downarrow & & \downarrow h(X) \\
X & \xrightarrow{1_X} & F(X).
\end{array}
$$

Therefore the composition

$$I_+ \wedge (F(S^0) \wedge \ldots \wedge F(S^k)) \xrightarrow{\text{tw} \circ (\Delta \wedge \text{id})} I_+ \wedge F(S^0) \wedge \ldots \wedge I_+ \wedge F(S^k) \xrightarrow{h(S^0) \wedge \ldots \wedge h(S^k)} F(S^0) \wedge \ldots \wedge F(S^k)$$

gives rise to a cyclic map $h_V*: I_+ \wedge \text{THH}(F; F; S^V) \to \text{THH}(F; F; S^V)$, whose realization is a G-equivariant homotopy

$$h_V: I_+ \wedge t(F)(V) \to t(F)(V).$$

Furthermore these are compatible with the structure maps in the prespectrum such that we get a G-equivariant homotopy

$$H: I_+ \wedge T(F) \to T(F).$$

This gives in turn a homotopy $I_+ \wedge \text{TC}(F) \to \text{TC}(F)$ from the identity to the retraction onto the image of $\text{TC}(L)$.

\[\square\]
If we apply $\widetilde{TC}(L \oplus P[-])$ to the cocartesian square of spaces

$$
\begin{array}{ccc}
S^n & \longrightarrow & D^{n+1}_+ \\
\downarrow & & \downarrow \\
D^{n+1} & \longrightarrow & S^{n+1}.
\end{array}
$$

we get a map from $\widetilde{TC}(L \oplus P[n])$ to the homotopy limit of

$$
\widetilde{TC}(L \oplus P[D^{n+1}_+]) \rightarrow \widetilde{TC}(L \oplus P[S^{n+1}], p) \leftarrow \widetilde{TC}(L \oplus P[D^{n+1}_+]).
$$

By the lemma the radial contractions of the discs D^{n+1} give a preferred contraction of $\widetilde{TC}(L \oplus P[n + 1])$. Hence we obtain a natural map from the homotopy limit above to $\Omega \widetilde{TC}(L \oplus P[n + 1])$. All in all we get a stabilization map

$$
\sigma: \widetilde{TC}(L \oplus P[n]) \rightarrow \Omega \widetilde{TC}(L \oplus P[n + 1])
$$

which is natural in L and P.

Definition. Let L be an FSP and P an L-bimodule. Then

$$
TC^S(L; P) = \text{holim}_n \Omega_{n+1} \widetilde{TC}(L \oplus P[n]),
$$

with the colimit taken over the stabilization maps.

2. **Stable Approximation of $TC(L \oplus P)$**

2.1. In the rest of this paper the prime p is fixed and we shall always consider the functor $TC(-; p)$ rather than $TC(-)$.

Recall that by definition $L \oplus P(S^i) = L(S^i) \vee P(S^i)$. Thus we can decompose the smash product

$$
L \oplus P(S^{i_0}) \wedge \ldots \wedge L \oplus P(S^{i_k})
$$

into a wedge of summands of the form

$$
F_0(S^{i_0}) \wedge \ldots \wedge F_k(S^{i_k}),
$$

where $F_i = L, P$. A summand where $\# \{i | F_i = P\} = a$ will be called an a-configuration and the one-point space \ast will be considered an a-configuration for any $a \geq 0$.

Recall from 1.3 the functor $G_k = G_k(L \oplus P; X)$ whose homotopy colimit is $\text{THH}(L \oplus P; X)_k$. The a-configurations define subspaces

$$
G_{a,k}(i_0, \ldots, i_k) \subset G_k(i_0, \ldots, i_k)
$$

preserved under $G_k(f_0, \ldots, f_k)$, i.e. we get a functor $G_{a,k} = G_{a,k}(L \oplus P; X)$.

The spaces

$$
\text{THH}_a(L \oplus P; X)_k = \text{holim}_{I_{k+1}} G_{a,k}(L \oplus P; X)
$$

form a cyclic subspace $\text{THH}_a(L \oplus P; X)_* \subset \text{THH}(L \oplus P; X)_*$ with realization $\text{THH}_a(L \oplus P; X)$. Like in 1.2 we can define a G-prespectrum $t_a(L \oplus P)$ and a G-spectrum $T_a(L \oplus P)$. Then $T_a(L \oplus P)$ is a retract of $T(L \oplus P)$. We show below that as a G-spectrum $T(L \oplus P)$ is the wedge sum of the $T_a(L \oplus P)$'s.
Lemma. Let \(j \) be a \(G \)-prespectrum and let \(J \) be the \(G \)-spectrum associated with \(j^\tau \). If \(J^\Gamma \simeq * \) for any finite subgroup \(\Gamma \subset G \) and \(j(V)^G \simeq * \) for any \(V \subset U \) then \(J \simeq_G * \).

Proof. Let \(\mathcal{F} \) be the family of finite subgroups of the circle, then \(J \) is \(\mathcal{F} \)-contractible. Since \(J \wedge E\mathcal{F}_+ \to J \) is an \(\mathcal{F} \)-equivalence, \(J \wedge E\mathcal{F}_+ \) is also \(\mathcal{F} \)-contractible. However \(J \wedge E\mathcal{F}_+ \) is \(G \)-equivalent to an \(\mathcal{F} \)-CW-spectrum and therefore it is in fact \(G \)-contractible by the \(\mathcal{F} \)-Whitehead theorem, [9] p.63. Now

\[
(J \wedge E\mathcal{F}_+)(V) \cong \lim_{W} \Omega^W j^\tau(V + W) \wedge E\mathcal{F}_+,
\]

and \(j^\tau(V) \wedge E\mathcal{F}_+ \to j^\tau(V) \) is an \(G \)-equivalence since \(j(V)^G \simeq * \). Therefore \(J \simeq_G J \wedge E\mathcal{F}_+ \) and we have already seen that the latter is \(G \)-contractible. \(\square \)

Lemma. Let \(H \) be a compact Lie group, let \(X \) a finite \(H \)-CW-complex and let \(Y_a \) a family of \(H \)-spaces. For \(K \leq H \) a closed subgroup we let

\[
n(K) = \min_a \{\text{conn}(Y^K_a)\}.
\]

Then the inclusion

\[
\bigvee_a F(X, Y_a)^H \to F(X, \bigvee_a Y_a)^H
\]

is \(2 \min\{n(K) - \dim(X^K)|K \leq H\} + 1 \)-connected.

Proof. The inclusion above fits into a commutative square

\[
\begin{array}{ccc}
\bigvee_a F(X, Y_a)^C & \longrightarrow & F(X, \bigvee_a Y_a)^C \\
\downarrow & & \downarrow \\
\prod'_a F(X, Y_a)^C & \cong & F(X, \prod'_a Y_a)^C,
\end{array}
\]

where \(\prod' \) is the weak product, \textit{i.e.} the subspace of the product where all but a finite number of coordinates are at the basepoint. The lower horizontal map is a homeomorphism because \(X \) is finite, and the connectivity of the vertical maps may be estimated by elementary equivariant obstruction theory. For example the connectivity of an equivariant mapping space satisfies

\[
\text{conn}(F(X, Y)^H) \geq \min\{\text{conn}(Y^K) - \dim(X^K)|K \leq H\}.
\]

Therefore the left vertical map is \(2 \min\{n(K) - \dim(X^K)|K \leq H\} + 1 \)-connected. \(\square \)

Proposition. \(T(L \oplus P) \simeq_G \bigvee_a T_a(L \oplus P) \).

Proof. We apply the first lemma with \(j \) the \(G \)-prespectrum whose \(V \)’th space is the homotopy fiber of the inclusion

\[
\bigvee_{a=0}^\infty t_a(L \oplus P)(V) \to t(L \oplus P)(V).
\]
We first consider a finite subgroup $\Gamma \subset G$ and show that $J^\Gamma \simeq \ast$. It suffices to show that $j(V)^C$ is $\dim(V^C) + k(V, C)$-connected, where $k(V, C) \to \infty$ as V runs through the f.d. sub inner product spaces of U, for any subgroup $C \subset \Gamma$. We use edgewise subdivision to get a simplicial C-action, that is we can identify $j(V)^C$ with the homotopy fiber of

$$|\bigvee_a \sd C \THH_a(L \oplus P; S^V)^C| \to |\sd C \THH(L \oplus P; S^V)^C|.$$

As in the 1.3 we consider the diagonal functor $\Delta_r: I^{k+1} \to (I^{k+1})^r$. Then the second lemma shows that the inclusion

$$\bigvee_a (G_{a,r(k+1)-1} \circ \Delta_r(i_0, \ldots, i_k))^C \to (G_{r(k+1)-1} \circ \Delta_r(i_0, \ldots, i_k))^C$$

is $2 \dim(V^C) - 1$-connected. By [1] theorem 1.5 the same is true for the homotopy colimits over I^{k+1}. Hence the inclusion map

$$\bigvee_a \sd C \THH_a(L \oplus P; S^V)^C_k \to \sd C \THH(L \oplus P; S^V)^C_k$$

is $2 \dim(V^C) - 1$-connected. Finally the spectral sequence of [13] shows that the induced map on realizations is $2 \dim(V^C) - 1$-connected. It follows that $J^\Gamma \simeq \ast$.

We have only left to show that $j(V)^G \simeq \ast$. If X_\ast is a cyclic space, then $|X_\ast|^G$ is homeomorphic to the subspace $\{x \in X_0|s_0 x = \tau_1 s_1 x\}$ of the 0-simplices. For the domain and the codomain of $j(V)$ this is $S^V G$ and $j(V)$ is the identity. □

2.2. Let us write $a = p^s k$ with $(k, p) = 1$ and denote $T_a(L \oplus P)$ by $T^k_s(L \oplus P)$. Then the cyclotomic structure map $\varphi = \varphi_{C_p}$ induces a G-equivalence

$$\varphi_s: \rho_{C_p}^\# \Phi^{C_p} T^k_s(L \oplus P) \to T^k_{s-1}(L \oplus P), \quad s \geq 0,$$

where for convenience $T^k_{-1}(L \oplus P)$ denotes the trivial G-spectrum \ast.

Lemma. i) The cyclotomic structure map induces a map of underlying non-equivariant spectra

$$T^k_s(L \oplus P[n])^{C_p} \to T^k_0(L \oplus P[n])^{C_p}$$

which is kpn-connected.

ii) $T^k_0(L \oplus P[n])^{C_p}$ is kn-connected.

Proof. Let $\tilde{E}G$ be the mapping cone of the map $\pi: EG_+ \to S^0$ which collapses EG to the non-basepoint of S^0. It comes with a G-map $\nu: S^0 \to \tilde{E}G$ and a G-null homotopy of the composition

$$EG_+ \xrightarrow{\pi} S^0 \xrightarrow{\nu} \tilde{E}G.$$
We can also describe $\tilde{E}G$ as the unreduced suspension of EG and ι as the inclusion of S^0 as the two cone vertices. Finally we note that $\tilde{E}G$ is non-equivariantly contractible while $E^G_C = S^0$ for any non-trivial subgroup $C \leq G$.

Let us write T_s for $T_s^k(L \oplus P[n])$. We can smash the sequence above with T_s and take C_p^r-fixed points. Then we get maps of underlying non-equivariant spectra

$$[EG_+ \wedge T_s]^{C_p^r} \xrightarrow{\pi_*} T_s^{C_p^r} \xrightarrow{\iota_*} [\tilde{E}G \wedge T_s]^{C_p^r}$$

and a preferred null homotopy of their composition. These data specifies a map from $[EG_+ \wedge T_s]^{C_p^r}$ to the homotopy fiber of ι_* and this an equivalence.

We identify the right hand term. Recall the natural map $r_{C_p}: T_p^{C_p} \to \Phi_{C_p} T_s$ from 1.3. It factors as a composition

$$T_s^{C_p} \xrightarrow{\pi_*} [\tilde{E}G \wedge T_s]^{C_p^r} \xrightarrow{\tilde{r}_C} \Phi_{C_p} T_s,$$

where $\tilde{r}_C(V)$ is induced from the restriction map

$$F(S^{W-V}, \tilde{E}G \wedge T_s(W))^{C_p} \to F(S^{W_{C_p}-V}, T(W)^{C_p}).$$

Moreover $\tilde{r}_{C_p}(V)$ is a fibration with fiber the equivariant (pointed) mapping space

$$F(S^{W-V}/S^{W_{C_p}-V}, \tilde{E}G \wedge T(W))^{C_p}.$$

If we regard W as a C_{p^r}-space, then W^{C_p} is the singular set, so $S^{W-V}/S^{W_{C_p}-V}$ is a free C_{p^r}-CW-complex in the pointed sense. Since $\tilde{E}G$ is non-equivariantly contractible it follows that \tilde{r}_{C_p} is a C_{p^r}/C_p-equivalence. The map Φ_{C_p} of underlying non-equivariant spectra defined in 1.4 restricts to a map

$$T_s^{C_p} \xrightarrow{r_{C_p}^{C_p^r/C_p}} (\Phi_{C_p} T_s)^{C_p^r/C_p} \xrightarrow{\varphi_{C_p}^{r_{C_p}^{C_p^r-1}}} T_s^{C_p^r-1}.$$

Our calculation above shows that its homotopy fiber is equivalent to the underlying non-equivariant spectrum of $[EG_+ \wedge T_s]^{C_p^r}$. We contend that this is as highly connected as is T_s. Indeed the skeleton filtration of EG gives rise to a first quadrant spectral sequence

$$E^2_{s,t} = H_s(C_{p^r}; \pi_t(T_s)) \Rightarrow \pi_{s+t}([EG_+ \wedge T_s]^{C_p^r}),$$

where $\pi_t(T_s)$ is a trivial C_{p^r}-module. The identification of the E^2-term uses the transfer equivalence of [9] p. 89.

\[\Box\]
Proposition. In the stable range $\leq 2n$ we have
\[\tilde{\text{TC}}(L \oplus P[n]) \simeq_{2n} \text{holim}_r T_1(L \oplus P[n]; p)_{C_r^r}, \]
with the limit taken over the inclusion maps D.

Proof. We get from the connectivity statements in the lemma that
\[\tilde{T}(L \oplus P[n])_{C_r^r} \simeq_{2n} T^1(L \oplus P[n])_{C_r^r} = \bigvee_{s=0}^{\infty} T^1_s(L \oplus P[n])_{C_r^r} \]
\[\simeq_{2n} \bigvee_{s=0}^{r} T^1_0(L \oplus P[n])_{C_{r-s}^r} = \bigvee_{t=0}^{r} T^1_0(L \oplus P[n])_{C_{r-t}^r}. \]
Under these equivalences $\Phi: \tilde{T}(L \oplus P[n])_{C_r^r} \to \tilde{T}(L \oplus P[n])_{C_{r-1}^r}$ becomes projection onto the first r summands. Therefore
\[\tilde{\text{TC}}(L \oplus P[n]; p) = [\text{holim}_r \tilde{T}(L \oplus P[n])_{C_r^r}]^{h(D)} \simeq_{2n} \prod_{t=0}^{\infty} T^1_0(L \oplus P[n])_{C_{r-t}^r}^{h(D)}. \]
The latter spectrum is naturally equivalent to the homotopy limit stated above.

Remark. When $P = L$ there is an unstable formula for $\tilde{\text{TC}}(L \oplus L[n])$. It was found in [6] and used to evaluate TC of rings of dual numbers over finite fields.

3. Free cyclic objects

3.1. In this paragraph we examine the cyclic spaces $t_1(L \oplus P)(V)$, we introduced in 2.2. They turn out to be the free cyclic spaces generated by the simplicial spaces $t(L; P)(V)$, from 1.2. First we study free cyclic objects.

Suppose $K: I \to J$ is a functor between small categories and \mathbb{C} a category which have all colimits. Then the functor $K^*: \mathbb{C}^J \to \mathbb{C}^I$ has a left adjoint F. If $X: I \to \mathbb{C}$ is a functor then
\[FX(j) = \lim_i((K \downarrow j) \xrightarrow{pr_1} I \xrightarrow{X} \mathbb{C}), \]
where $(K \downarrow j)$ is the category of objects K-over j. It is called the left Kan extension of X along K, cf. [10]. As an instance of this construction suppose I and J are monoids, i.e. categories with one object, and \mathbb{C} the category of (unbased) spaces. Then a functor $X: I \to \mathbb{C}$ is just an I-space and FX is the J-space $J \times_I X$.

Definition. Let X_* be a simplicial object in \mathbb{C}. The free cyclic object generated by X_* is the left Kan extension of X_* along the forgetful functor $K: \Delta^{op} \to \Lambda^{op}$. It is denoted FX_*. If X is an object in \mathbb{C} and S is a set, then we let $S \times X$ denote the coproduct of copies of X indexed by S. We give a concrete description of FX_*.

187
Lemma. Let \(C_{n+1} = \{1, \tau_n, \tau_n^2, \ldots, \tau_n^n\} \). Then \(FX \) has \(n \)-simplices

\[
FX_n \cong C_{n+1} \ltimes X_n,
\]

and the cyclic structure maps are

\[
\begin{align*}
d_i(\tau_n^s \times x) &= \tau_n^{s-1} \times d_i + s x, & \text{if } i + s \leq n \\
 &= \tau_n^{s-1} \times d_i + s x, & \text{if } i + s > n \\
s_i(\tau_n^s \times x) &= \tau_n^{s+1} \times s_i + s x, & \text{if } i + s \leq n \\
 &= \tau_n^{s+1} \times s_i + s x, & \text{if } i + s > n \\
t_n(\tau_n^s \times x) &= \tau_n^{s-1} \times x.
\end{align*}
\]

All indices are to be understood as the principal representatives modulo \(n + 1 \).

Proof. Both \(\Delta \) and \(\Lambda \) has objects the finite ordered sets \(n = \{0, \ldots, n\} \) but \(\Lambda \) has more morphism than \(\Delta \). Specifically \(\Lambda(n, m) = \Delta(n, m) \times \text{Aut}_\Lambda(n) \) and \(\text{Aut}_\Lambda(n) \) is a cyclic group of order \(n + 1 \). As a generator for \(\text{Aut}_\Lambda(n) \) we choose the cyclic permutation \(\tau_n : n \to n; \tau_n(i) = i - 1 \) (mod \(n + 1 \)).

Consider the full subcategory \(C(n) \subset (K \downarrow n) \) whose objects are the automorphisms \(Kn \to n \), i.e. \(\text{ob} C(n) = C_{n+1} \). The restriction of colimits comes with a map

\[
\lim(C(n) \xrightarrow{\text{pr}_1} \Delta^\text{op} \xrightarrow{X_*} \mathcal{C}) \to \lim((K \downarrow n) \xrightarrow{\text{pr}} \Delta^\text{op} \xrightarrow{X_*} \mathcal{C}) = FX_n,
\]

and from the definitions one may readily show that this is an isomorphism. Since in \(\Delta^\text{op} \) there are no automorphisms of \(n \) apart from the identity, the category \(C(n) \) is a discrete category, i.e. any morphism is an identity. We conclude that

\[
FX_n \cong \bigsqcup_{\text{ob} C(n)} X_n = C_{n+1} \ltimes X_n.
\]

It is straightforward to check that the cyclic structure maps are as claimed. \(\square \)

Example. Suppose \(C \) is the category of commutative rings, where the coproduct is tensor product of rings, and \(R_* = R \) is a constant simplicial ring. Then the complex associated with \(FR \) is the standard Hochschild complex \(Z(R) \) whose homology is \(\text{HH}_*(R) \).

3.2. We now take \(C \) to be the category of pointed topological spaces and study the relation between \(F \) and realization.

Lemma. There is a natural \(G \)-homeomorphism \(|FX_*| \cong G_+ \wedge |X_*| \).

Proof. Consider the standard cyclic sets \(\Lambda[n] = \Lambda(-, n) \) and their realizations \(\Lambda^n \). From [7], 3.4 we know that as cocyclic spaces \(\Lambda^* \cong G \times \Delta^* \), so we may view
Λ∗ as a cocyclic G-space. Now suppose Y is a (based) G-space. We can define a cyclic space C∗(Y) as the equivariant mapping space

\[C∗(Y) = F_G(Λ∗, Y), \]

with the compact open topology. Then one immediately verifies that C∗ is right adjoint to the realization functor \(|−| \). The realization functor for simplicial spaces also has a right adjoint. It is given as \(S∗(X) = F(Δ∗, X) \) with the compact open topology. Finally the forgetful functor U from G-spaces to spaces is right adjoint to the functor \(Gϕ− \).

By a very general principle in category theory called conjunction, to prove the lemma we may as well show that \(Sm(UY) = K∗C∗(Y) \) for any G-space Y. But this is evident since \(F_G(Gϕ−X, Y) = F(X, UY) \).

Proposition. There is a natural equivalence of G-spectra

\[Gϕ− T(L; P) \simeq_G T1(L ⊕ P). \]

The V′th space in the smash product G-spectrum on the left is naturally homeomorphic to \(\lim_{W} \Omega^{W−V}(Gϕ−\tau(L; P)(W)) \), where G acts diagonally on \(Gϕ−\tau(L; P)(W) \).

Proof. The smash product \(P(S^{i0}) ∩ L(S^{i1}) ∩ ... ∩ L(S^{ik}) \) is a 1-configuration, cf. 2.1. Thus we have an inclusion map \(THH(L; P; X)_k \hookrightarrow THH1(L ⊕ P; X)_k \) and these commutes with the simplicial structure maps. By definition we get a map of cyclic spaces

\[j(X)_∗: F THH(L; P; X) → THH1(L ⊕ P; X). \]

and lemma 3.2 shows that on realizations this gives rise to a G-equivariant map

\[j(X): Gϕ− THH(L; P; X) → THH1(L ⊕ P; X). \]

When X runs through the spheres \(S^v \) these maps form a map j of G-prespectra. Let us write \(Gϕ−\tau(L; P) \) for the G-spectrum whose V′th space is the colimit

\[\lim_{W \in U} \Omega^{W−V}(Gϕ−\tau(L; P)(W)). \]

Then j induces a map \(J: Gϕ−\tau(L; P) → T1(L ⊕ P) \) and an argument completely analogous to the proof of proposition 2.1 shows that this is a G-equivalence. Finally the canonical inclusion

\[Gϕ−\tau(L; P)(V) → Gϕ− T(L; P)(V) \]

gives a map \(Gϕ−\tau(L; P) → Gϕ− T(L; P) \) and this is a homeomorphism, cf. the appendix.
3.3. Before we prove our main theorem we need the following key lemma, also used extensively in [6].

Lemma. Let T be a G-spectrum. Then there is a natural equivalence of non-equivariant spectra

$$[T \wedge G_+]^{C_p} \simeq T \vee \Sigma T,$$

and the inclusion $D: [T \wedge G_+]^{C_p} \hookrightarrow [T \wedge G_+]^{C_{p-1}}$ becomes $p \vee \text{id}$. Here p denotes multiplication by p.

Proof. The Thom collaps $t: S^C \to S^{cP} \wedge G_+$ of $S(C) \subset C$ gives rise to a G-equivariant transfer map

$$\tau: F(G_+, \Sigma T) \to G_+ \wedge T$$

which is a G-homotopy equivalence, cf. [9], p.89. There is a cofibration sequence of C_{p_+}-spaces

$$C_{p_+} \to G_+ \to C_{p_+} \wedge S^1$$

where S^1 is C_{p_+}-trivial. We may apply $F_{C_{p_+}}(-, \Sigma T)$ and get a cofibration sequence of spectra

$$F(S^1, \Sigma T) \to F_{C_{p_+}}(G_+, \Sigma T) \xrightarrow{\text{ev}_\zeta} \Sigma T.$$

Finally evζ is naturally split by the adjoint of the G-action $G_+ \wedge \Sigma T \to \Sigma T$. \qed

Proof of theorem. If we compare proposition 3.2 and lemma 3.3 we find that

$$T_1(L \oplus P)^{C_p} \simeq T(L; P) \vee \Sigma T(L; P).$$

Now holim of a string of maps

$$\ldots \xrightarrow{f_i} X_n \xrightarrow{f_{i-1}} \ldots \xrightarrow{f_2} X_2 \xrightarrow{f_1} X_1 \xrightarrow{f_0} X_0$$

where every $f_i = pg_i$ for some g_i vanishes after p-completion, so by proposition 2.2 and lemma 3.3 we get

$$\widetilde{T}(L \oplus P[n]) \simeq T(L; P[n]).$$

The functor $T(L; P)$ is linear in the second variable, cf. [12] 2.13, so therefore

$$\Omega^{n+1}\widetilde{T}(L \oplus P[n]) \simeq \Omega^{n+1}\Sigma T(L; P[n]) \simeq T(L; P).$$

It remains only to check that the stabilization maps defined in 1.5 induce an equivalence of $T(L; P)$. They do. \qed
A.1. Let C be either of the categories Δ or Λ and let $X: C \to \text{Top}_*$ be a functor to pointed spaces. We define a new functor $\tilde{X}: C \to \text{Top}_*$ by the homotopy colimit

$$\text{holim}((- \downarrow C)^{\text{op}} \xrightarrow{\text{pr}^2_{\text{op}}} C^{\text{op}} \xrightarrow{X} \text{Top}_*),$$

where $(n \downarrow C)$ is the category under n, cf. [10]. If $\theta: n \to m$ is a morphism in Δ (not C), which is surjective, then $\theta^*: (m \downarrow C) \to (n \downarrow C)$ is an inclusion functor. In general inclusions of index categories induces closed cofibrations on homotopy colimits. In particular $\theta^*: \tilde{X}_m \to \tilde{X}_n$ is a closed cofibration, so \tilde{X} is good in the sense of [14]. Moreover we have a homotopy equivalence $\tilde{X}_n \to X_n$ because $\text{id}: n \to n$ is initial in $(n \downarrow C)$.

A.2. This section explains a technical point in the passage from G-prespectra to G-spectra. Let GPU denote the category of G-prespectra indexed on the universe U and let GSU be the full subcategory of G-spectra. In [9] the authors prove that the forgetful functor $l: GSU \to GPU$ has a left adjoint $L: GPU \to GSU$. We call this functor specification and if $t \in GPU$ then we call Lt the associated G-spectrum. Such a functor is needed since many constructions such as $X \wedge -$ and any (homotopy) colimits do not preserve G-spectra. However L has the serious drawback that in general it looses (weak) homotopy type, i.e. the homotopy type of $(Lt)(V)$ cannot be described in terms of that of the spaces $t(W)$. To control the homotopy type the G-prespectrum t has to be an inclusion G-prespectrum, that is the structure maps $\tilde{\sigma}: t(V) \to \Omega^{W-V} t(W)$ must be inclusions, then

$$(Lt)(V) = \lim_{W \in U} \Omega^{W-V} t(W).$$

This is the case for example if the adjoints $\sigma: \Sigma^{W-V} t(V) \to t(W)$ are closed inclusions. The thickening functor $(-)^T$ defined in 1.2 produces G-prespectra of this kind. Therefore $L(t^T)$ has the right homotopy type.

If $a: GPU \to GPU$ is a functor we define $A: GSU \to GSU$ as the composite functor La and if a has a right adjoint b, then B is the right adjoint of A. Suppose b preserves G-spectra, then $b(lT) \cong lB(T)$ for any $T \in GSU$. By conjugation we get

$$A(Lt) \cong La(t)$$

for any $t \in GPU$. The functors a we consider take a G-prespectrum, whose structure maps σ are closed inclusions, to a G-prespectrum of the same kind. Hence the homotopy type of $La(t^T)$ and therefore $A(L(t^T))$ may be calculated. This shows that all G-spectra considered in this paper have the right homotopy type.

REFERENCES

L. HESSELHOLT