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0 Introduction

Suppose X is a smooth and projective scheme over a perfect field k with
Witt ring W. Mazur’s fundamental theorem [23] establishes a striking link
between the action of Frobenius and the Hodge filtration on the crystalline
cohomology of X/W and suggests a close connection and analogy between
F-crystals and Hodge structures. Applications of Mazur’s theorem and its
concomitant philosophy include Katz’s conjecture on Newton polygons [op.
cit.], a crystalline Torelli theorem for certain K3 surfaces [26], and a simple
proof of the degeneration of the Hodge spectral sequence [7]. The theorem
also underlies the deeper manifestations of the theory of p-adic periods, de-
veloped by Fontaine-Messing [12], Faltings [9], and Wintenberger [29)].

Our main goal in this monograph is to formulate and prove a version
of Mazur’s theorem with coefficients in an F-crystal. In order to do this
it is necessary to define and describe a “Hodge filtration” on an F-crystal
and on its cohomology. This suggests our second goal, the development of a
crystalline version of the notion of a complex variation of Hodge structure,
which we call a “T-crystal” (the “T” is for transverse). These objects make
sense on any formal scheme of finite type over W, especially for schemes
smooth over W or over W, =: W/p*W for pu € Z*. Putting together the
“F” and the “T,” we obtain the notion of “F-T-crystal,” which we hope is a
reasonable analog of a variation of Hodge structure, on any smooth complete
scheme over W,. In particular, F-T-crystals of level one should correspond
to p-divisible groups. ' We show how to attach to a T-crystal (E', A) to

1This seems to follow easily from a recent result of Kato, which is essentially the case
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A. OGUS

a suitable F-crystal (E, ®), and our formulation of Mazur’s theorem relates
the action of Frobenius on the cohomology of the F-crystal (E,®) to the
corresponding Hodge filtration on the cohomology of (E’, A).

This paper can be seen as a continuation of our previous study [24, 25]
of Griffiths transversality and crystalline cohomology, here with emphasis on
global, rather than local, results. An important feature of our approach is
that we work systematically with the Hodge filtration on crystalline coho-
mology over W, not just its image in the De Rham cohomology over k.

Before describing the plan of our paper, it is helpful to begin by briefly
reviewing the statement of Mazur’s theorem. Let k be a perfect field of
characteristic p and let W be its Witt ring, with F' denoting the Frobenius
automorphisms of k and of W. Then a nondegenerate F-crystal on k/W is a
finitely generated free W-module E, together with an F-semi-linear injective
endomorphism ®. Even if & is algebraically closed, the classification of such
objects is quite complicated, as is the case for Hodge structures. Now a Hodge
structure can be greatly simplified by forgetting its integral lattice—one then
just obtains a filtered vector space (H, F'il) determined up to isomorphism
by the Hodge numbers h' =: dim Gry; H. Mazur’s crystalline analog of
this simplification is the passage from an F-crystal ® to the associated F-
span ®: E' — E, in which one simply forgets that the source and target
of @ are one and the same W-module. It is easy to classify F-spans up
to isomorphism. Namely, still following Mazur, we define a filtration on E
by taking M'E’ =: ®~1(p‘E); it is then easy to to see that our span is
determined up to isomorphism by the Hodge numbers of the filtered k-vector
space (E' ® k, M). Actually it turns out to be more convenient to work with
a slightly different filtration A, given by A‘E’ =: &, pt=I/MJE', which in fact
induces the same filtration as does M on E' ® k. This construction defines
a functor ax/w from the category of F-crystals on k/W to the category of
filtered W-modules. We can now state Mazur’s fundamental result [4, 8.41]
in the following way: if we apply ax,w to the canonical F-crystal structure
on the crystalline cohomology of a suitable X/k, the resulting filtration A is
just the Hodge filtration:

A'E = HYX/W, JGw).
Now suppose that we have a family of F-crystals (E,®) on a smooth

X/k, i.e., an injective map of locally free crystals ®: FywE — E. Such
an object is usually just called an “F-crystal on X/W,” and we view it

p=1



INTRODUCTION

as an analog of a variation of Hodge structure. Similarly, one can view
an F-span ®: F,y E' — E as an analog of a complex variation of Hodge
structure. For each point z of X, one can perform Mazur’s construction,
and obtain a filtered W (k(z))-module (E'(z), A(z)). It turns out that these
filtrations vary nicely in a family: they fit together to form a filtration A of
the crystal E’. As in the complex case, A is not a filtration by subcrystals, but
rather by sheaves in the crystalline topos, satisfying a crystalline version of
Griffiths transversality. For example the filtration associated to the constant
F-crystal is the filtration by the divided powers of the ideal Jx/w. We call
the data (E’, A) a “T-crystal,” and thus we obtain a functor ax;w from the
category of F-spans on X /W to the category of T-crystals. It turns out that
this functor is even an equivalence for crystals of level less than p. Now
our generalization (c.f. (7.4.3) and (7.5.3)) of Mazur’s theorem says that
the functor @ commutes with the formation of higher direct images, under
suitable conditions.

The use of logarithmic structures in crystalline cohomology greatly in-
creases its range of applicability, so we begin in Section 1 by reviewing and
extending the theory of logarithmic crystals, due originally to Faltings [10],
Fontaine and Illusie, Hyodo, and Kato [15], [20]. The main new features
of our presentation are the systematic study of logarithmic differential op-
erators and the theory of p-curvature and Cartier descent in a logarithmic
context. This section may be of some foundational interest independent of
the rest of the article. On the other hand, those readers who want to avoid
the technical difficulties of logarithmic structures can omit it and just work
with the trivial logarithmic structures throughout the rest of the paper.

The first real task in our program is the systematic study of Griffiths
transversality in the crystalline setting. The advantage of this viewpoint,
aside from its aesthetic appeal, is that it allows us to work in arithmetic
and geometric directions simultaneously. The basic idea is the following: If
(E, A) is a filtered O-module over a ring O and J is an O-ideal, we say that
(E, A) is “G-transversal to J” if JEN A'E = JA*LE for every i. If (J,7) is
a divided power ideal (“PD-ideal”), this notion must be modified to read:

JEN AE = JAT'E + JAAT2E 4.

we then say that (F, A) is “G-transversal to (J,7)” or just “PD-transversal to
J.” Section 2 discusses this notion in detail, investigates its behavior under
pullback, and establishes the technical and geometric underpinnings of our
work.

We begin the study of crystals and Griffiths transversality per se in Sec-
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A. OGUS

tion 3. Recall that if Y/W is smooth, there is an equivalence between the
category of crystals of Oy,w-modules and the category MIC(Y/W) of pairs
(Ey, V) consisting of a quasi-coherent sheaf Ey of Oy-modules endowed with
an integrable and p-adically nilpotent connection V. Consider the category
of triples (Ey, V, Ay), where (Ey, V) is an object of MIC(Y/W) and Ay is
a filtration on Ey which is Griffiths transversal to V. We shall see that this
category is equivalent to the category of pairs (E, A), where F is as before
a crystal of Oy;w-modules and A is a filtration of E by subsheaves in the
crystalline site which is PD-transversal to the PD-ideal Jy,w of Oyw. It
is then easy to give a natural generalization of this condition for arbitrary
schemes X/W (for example, for smooth schemes over k); we thus construct
the category of T-crystals on X/W.

Section 4 develops the language and techniques that we shall use to inter-
polate the various filtrations that arise in our work on Mazur’s theorem. For
example, if (K, A, B) is a bifiltered object then for any subset o of Z x Z, we
obtain a subobject K, =: S{A* N B?: (i,j) € o}. This defines a filtration of
K indexed by the lattice of subsets of Z x Z, and the correspondence o — K,
is compatible with the lattice structure—a fact which plays a key technical
role in our proofs. There is also a close connection between this lattice and
the lattice of gauges (“1-gauges” in our terminology) considered by Mazur in
[23]. After slightly modifying his notion of a “tame gauge structure,” we dis-
cover a close connection between such structures and G-transversality. The
section ends with a discussion of the cohomology of tame gauge structures,
generalizing and simplifying the results of §2 and §3 of [23] and §8 of [4].

Section 5 prepares the way for our formulation of the generalization of
Mazur’s theorem. Suppose for simplicity that X is smooth over a perfect field
k (and we are working with trivial log structures.) Instead of studying F-
crystals, it is more natural and general to work with F-spans, i.e. p-isogenies
®: FxE' — FE in the category of crystals on X/W (c.f. (5.2.1)). We find
a close connection between F-spans and T-crystals. Namely, we construct
a functor ax,w from the category of F-spans to the category of T-crystals,
interpolating Mazur’s construction of the filtration M on E’ when X is a
point. For spans of small level (or “width,” c¢.f. (5.1.1)), this functor even
turns out to be an equivalence of categories. We then introduce the notion
of an “F-T-crystal” on a smooth lifting Y of X to W,,; this is an F-crystal on
X /W together with a lifting of its associated T-crystal to Y/W. The section
ends with a discussion of the relationship between such F-T-crystals and the
category MFV of Fontaine-modules, including a simple proof of Faltings’
structure theorem for Fontaine-modules.
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Section 6 discusses the cohomology of T-crystals. It includes a filtered
Poincaré lemma for T-crystals and some technical preparations that allow us
to study bifiltered complexes and the associated hypercohomology spectral
sequences. In particular, we show that T-crystals can often be “pushed
forward.” Thus if f: X — Y is a smooth proper morphism of smooth W,-
schemes and if (E’, A) is a T-crystal on X/W, the crystalline cohomology
sheaves RIf,E' inherit a T-crystal structure, under suitable hypotheses, c.f.
(6.3.2). We take care to describe as carefully as possible the behavior of the
Hodge filtration even when the dimension is large compared to p.

Section 7 is devoted to the formulation and proof of our analog of Mazur’s
theorem. The main formulation (7.3.1) of this theorem takes place on the
level of complexes. We prove it by an unscrewing procedure based on the
interpolation techniques of Section 4 until we are essentially reduced to a
filtered version of the Cartier isomorphism. On the level of cohomology,
our theorem asserts (7.4.3) that, with suitable hypotheses, the functor axw
commutes with higher direct images. This result allows us to show in (7.5.3)
that (with suitable hypothesis), the higher direct images of F-T-crystals again
form F-T-crystals. As this manuscript was nearing completion, I learned with
great interest that Kazuya Kato [18] is working on a theory (cohomology of
F-gauges), which is closely related to our treatment of Mazur’s theorem, but
uses a different point of view. (The original definition of F-gauges is due to
Ekedahl, [8], and is inspired by work of Fontaine, Lafaille, Nygaard, and of
course Mazur.)

Section 8 contains examples and applications of our theory. It begins
with a very cursory discussion of liftings of T-crystals in mixed character-
istic, leading to generalizations of the decomposition theorems of Deligne
and Illusie [7] as well as vanishing theorems of Kodaira-type, all with coef-
ficients in the Hodge complexes associated to an F-T-crystal. We also give
a slight refinement (8.2.2) of a result of Faltings [9, IVb], which shows that
the Hodge spectral sequence and torsion in crystalline cohomology are well-
behaved, provided that the prime p is large compared to the dimension of
the space and the width of the crystal. Next we discuss Hodge and Newton
polygons associated to F-spans and F-crystals, and in particular establish a
form of Katz’s conjecture with coefficients in an F-crystal (fulfilling, at least
partially, a hope expressed in [1]). One application of our use of logarithmic
structures is the link we find between the mixed Hodge structure of a smooth
variety in characteristic zero and the Newton polygon of its reduction modulo
a suitable prime p (8.3.7). Finally we work out what our theory says about
the cohomology of symmetric powers of F-T crystals on curves, with an eye

7



A. OGUS

toward the theory of modular forms (compare work of Ulmer [28]).

I wish at this point to express my gratitude to Luc Illusie for sending me
an early version of his manuscript [17], and to Pierre Deligne for a letter [5]
about the degeneration of the Hodge spectral sequence (with constant coef-
ficients) and its application to the lifted form of Katz’s conjecture. I also
want to thank the N.S.A., the C.N.R.S., and the Universities of Rennes and
Orsay for their support and hospitality. My conversations with the équipes
of both universities were a source of many ideas and great pleasure. Finally,
special thanks are due to the referee, who did a truly heroic job on both the
local and global levels.



1 Logarithmic structures and crystals

In this section we discuss some of the foundational aspects of logarithmic
crystals and crystalline cohomology. Although we cannot give a complete
treatment of the foundations here, we shall review the basic notions for the
convenience of the reader. If (X, Ox) is a scheme, a “prelogarithmic struc-
ture” on X is a pair (M, ax), where My is a sheaf of commutative monoids
on X and ax is a morphism from My into the multiplicative monoid of
Ox. If t is a local section of Ox, then ax'(t) can be thought of as the
set (possibly empty) of local logarithms of ¢ defined by the prelogarithmic
structure. Therefore we shall write the monoid law of Mx additively. From
now on, “monoid” will mean “commutative monoid.” We write M — M9
for the universal map from a monoid M into a group, and recall that M is
called “integral” if this map is injective. We often write M* for the group of
invertible elements of M.

If (Mx,ax) is a prelogarithmic structure on a scheme (X, Ox), we say
that (X,Ox, Mx,ax) is a “prelogarithmic scheme,” and sometimes write
X, or even just X, for this entire set of data. A morphism of prelogarithmic
schemes f*: X* — Y is a morphism f of the underlying schemes, together
with a morphism f3¢*: f~'My — My such that the obvious square commutes.
We will usually just write f* instead of fyy".

Kato has observed that it is desirable to declare that each unit should
have a unique logarithm. Thus, he defines a logarithmic structure as a prel-
ogarithmic structure for which the map

AX|a-1(0%): a~H(0%) — O%

9



A. OGUS

is an isomorphism. Kato shows that any prelogarithmic structure o maps
to a corresponding universal logarithmic structure, called the logarithmic
structure associated to a. For example, if A is aring and : M — Ais a
map from M to the multiplicative monoid of A, then there is an associated
logarithmic scheme Spec(A, M,a). If in addition M is finitely generated
and integral, Spec(A, M, a) is called “fine and affine,” and a fine logarith-
mic scheme is a scheme with an open cover (étale or Zariski, depending on
one’s taste) each member of which is isomorphic to a fine and affine loga-
rithmic scheme. Without explicit mention to the contrary, all logarithmic
schemes considered here will be fine. Fiber products exist in the category
of (fine) logarithmic schemes (but the constructions may be different in the
different categories). For a fundamental example, view the polynomial al-
gebra Z[t;, .. .t,] as the monoid algebra associated to the monoid N™. The
natural map N® — Z[t,,...t,] sending (i1, ...i,) to ti' ---ti» is a preloga-
rithmic structure on Z[ty,...t,], and the associated logarithmic scheme is
called “logarithmic affine n-space A™*.”

If (X, Mx) is a logarithmic scheme, the natural map My — O% is an iso-
morphism, and hence there is an injective morphism of monoids A\: O% — Mx.
Let M x be the sheaf of orbits of the action of O% on Mx, together with its
induced monoid structure. Then we have a canonical “exact sequence”:

0— 0% -2 Mx— M x—0 (1.0.0.1)

If a: M — Oy is a logarithmic structure and m is a section of M, then
one sees immediately that m is invertible if and only if a(m) is. Furthermore,
if f*: X* — S§* is a morphism of logarithmic schemes sending a point z of
X to s € S, then a section m of Mg, is invertible if and only if f*(m) is
invertible in Mx .. (This follows from the preceding statement and the fact
the the map f*:Og, — Ox, is a local homomorphism.) We have to refer
to Kato’s paper [20] for discussions of the more subtle notions of exact and
integral morphisms.

If there is more than one prelogarithmic structure we want to consider, we
may write X* for another prelogarithmic scheme with the same underlying
scheme, and then we may find it necessary to write Mxx or Mx«. We hope
the context will make our notational abuses acceptably clear.

1.1 Logarithmic crystals and differential operators

We shall begin by reviewing and expanding on Kato’s discussion of logarith-
mic calculus. In this section we work with schemes annihilated by a power of

10
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p. Alternatively one could use p-adic formal schemes; in this case all tensor
products are taken to be completed tensor products.

A morphism of logarithmic schemes *: X* — T is said to be a “closed
immersion” if the underlying morphisms of schemes is a closed immersion and
the map i*:i"! My — My is surjective, and a closed immersion is “exact” if
the induced map i~*Mr — M x is an isomorphism. If this is the case and if
J is the kernel of i*: Or — i,Ox, then we have an exact sequence of sheaves
of monoids:

0— i1 (1 + J) 2 ' Mp— Mx—0 (1.1.0.1)

where 1 + J is the kernel of the map Or* — Ox*.

Now suppose that i*: X* — T is an exact closed immersion over S*
and suppose we are given two S*-morphisms g;* and g3 :T* — Y such
that gy 04* = gX 04* = f*. Then for each section a of Oy, we let D(a) =:

i~lg3a —i~'gta € i71J, and we have the familiar equations:

D(ab) = ¢;(a)D(b) + g5 (b)D(a) + D(a) D(b).

Thus, projecting to J/J? we obtain a derivation D: Oy — g,J/J%. Similarly,
for each section m of My, we can consider the two sections gf(m) of Mr.
As these have the same image in M, we see from the exactness of (1.1.0.1)
that there is a unique section p(m) of i~!(1 + J) such that

g3 (m) =17 gi(m) + Mu(m)).

We shall sometimes write g3(m) — gi(m) for A(u(m)). Note that u is a
homomorphism of monoids My — f,i~!(1+ J). Let §(m) =: u(m) — 1, a
section of J. If m’ is another section of M7r, we have the equation

S(m+m') = 6(m) + 6(m') + 6(m)é(m’),

and projecting to J/J? we find an additive map §: My — g,J/J%. One sees
immediately that

D(a(m)) = gi(a(m))é(m),  hence D(a(m)) = a(m)é(m),

which is compatible with our view of m as a logarithm of a(m). For future
reference, we summarize these definitions and formulas as follows:

1.1.1 Formulas: If g; and g, are two log morphisms T>* — Y™ which agree
modulo the ideal J of an exact closed immersion i: X* — Y*, then there are

11



A. OGUS

monoid morphisms

D:f'o, — i"\J
wf My — 1+i71JCi7lo}

If we let 6(m) =: u(m) — 1 € i~1J, then for a € Oy and m € My,

i"lg3a = i7'gla+ D(a)

D(ad) gi(a)D(d') + gi(a')D(a) + D(a) D(d')
g2(m) = gi(m)+ Mu(m))

pm) =1

&(m) + 8(m’) + 6(m)é(m’)

D(a(m)) = gi(a(m))b(m)

These formulas justify the following definition:

9’\
3
T o
33
T

1.1.2 Definition: Suppose (X, Mx,ax) is a prelogarithmic scheme and E
is a sheaf of Ox-modules. Then a “logarithmic derivation of (Ox, Mx) with
values in E” is a pair 0 =: (D,§), where D:Ox — E is a derivation and
6:Mx — E is a monoid homomorphism, such that D(a(m)) = a(m)é(m)
for each m € Mx. If (X, Mx,ax) — (S, Ms, as) is a morphism, then 8 is a
“derivation relative to (S, Ms,as)” if Df*(b) = 0 = 6f*(n) for every section
b of Og and n of Mg.

If 9 = (D, 6) is a logarithmic derivation, we usually just write da and m
for Da and ém, respectively. It is clear that there is a universal logarithmic
derivation d: (Ox, Mx) — Qx/gx relative to S*; Qyx g« is the sheaf of
“relative logarithmic Kahler differentials”. If u is a local section of O%, then
it follows from our definitions that dA(u) = u~'du i.e. dlogu. A logarithmic
derivation (D, §) on a logarithmic scheme is determined uniquely by 6, but
not by D in general.

Logarithmic smoothness and étaleness are defined using Grothendieck’s
infinitesimal lifting properties for nilpotent exact closed immersions. We
warn the reader that such morphisms can be quite complicated, and refer
to Kato’s paper for some important results about them. In particular, if
X*/S* is smooth O}« /sx is locally free. We say that a sequence (mi, . .. mn)
of sections of My is a “system of logarithmic coordinates” if and only if
(dmy, ...dm,) form a basis for Q% /sx- Since Dex /s is locally generated

12
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by the image of M, it is clear that such systems always exist locally on X,
if X*/S* is smooth. A sequence (m;,...m,) of sections of Mx determines
an S*-morphism from X* to logarithmic affine n-space Agx over S, and it
follows from [20, 3.12] that this morphism is logarithmically étale if and only
if (my,...m,) is a system of logarithmic coordinates.

If i%: XX — T* is a locally closed immersion of schemes with fine log
structure, Kato has shown in 20, 4.10] that, locally on X, there is a factor-
ization 1% = uX 04'*, where u* is log étale and '*: X* — T"* is an exact
closed immersion. This process usually involves some blowing up in 7. The
formal completion of X* in along #'* is independent of the choices and ex-
ists globally, and is called the “exact formal completion” of T along X*.
The divided power envelope of the ideal of #* in T'* along i'* also exists
globally, and is just called the divided power envelope of X* in T (20, 5.4].
In particular, if J is the ideal of the exact formal diagonal, then one has a
canonical isomorphism J/J? 2 Qyx /gx.

Let Q%x gx be the i exterior power of Q« gx. Then there is a unique
way to define operators

d': Qg(x/sx —’Q;t}/sx

such that d> = 0 (in particular d(dm) = 0 if m € M) and d(a A B) =
(da)B + (—1)%&>q(dB) for all @ and B. The resulting complex is called the
(logarithmic) De Rham complex of X*/S*. There is a also the notion of
a logarithmic connection V: E — E ® Qyx gx, which is defined just as in
the classical case. However, in order to really understand the relationship
of connections to crystals, it is best to study differential operators of higher
order. We give only a sketch, following the methods of [4].

Suppose that g:Y* — S* is a morphism of logarithmic schemes, with
X — Y™ a closed immersion. Let Dy, 4(n) be the logarithmic divided
power envelope of X* embedded in (Y*)"*! via the diagonal map. Let
D* =: Dg,4(0), and for any quasi-coherent sheaf £ on Y, we write D*(1)®E
for pl.p3E.

1.1.3 Definition: If E and F are quasi-coherent sheaves of Of-modules, an
“HPD-differential operator from E to F” is an Opx-linear map

$:D*(1)® E — F;

¢ has order less than or equal to n if it annihilates J™**! where J is the di-
vided power ideal of X in D}’ﬁ/ s(n). For any such operator ¢, ¢": My x E — F

13
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is the map defined by
¢'(me) = ¢(u(m)(pi(e)), and
#'e) = ¢'(0,€) = d(pse),
where p(m) is given as in (1.1.1).

If ¢ is an HPD differential operator Ox — Ox, we shall write ¥(m)
for 4(m,1). Since the map ¢ — ¢° is not injective, composition of HPD
differential operators has to be defined “formally,” i.e. geometrically, as
described in [4, 4.6]. We have a natural isomorphism:

D*(2) = D*(1) xpx D*(1),
and we let A* be the composition:
A% Opx 1y 0px 2) = Opx(1y B Op(r
Then if ¢ is an HPD-differential operator from F to G, we define
Yod=:1o0 (idpxa) ®¢) o (A* ®idg).

1.1.4 Lemma: If ¢ and ¢ are HPD differential operators and if m is a local
section of My and e is a local section of E,

¢ (m', a(m)e) = a(m)¢’(m +m',e), and
(¥9)’ (m, €) = 4°(m, ¢’ (m, e)).
Proof: For the first formula, we just calculate:
a(m)@*(m+m',e) = a(m)g[u(m+m')ps(e)]
= a(m)g[u(m)u(m)p;
= mw mmm<%wﬂ
2

=¢M amm]
=¢%nd)d

To compute the formula for 4 o ¢, we first need to check that for any
section m of My,

A*(u(m)) = (u(m) ® 1)(1 ® u(m)) = u(m) ® p(m) (1.14.2)

14
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To prove this cocycle condition, observe that the three projection maps
pi: DX(2) — D* all agree on the strict diagonal, which is an exact closed
subscheme of D*(2). Thus for each m € My and each pair (3,7), there is a
unique p;;(m) € Opx (g such that A(ui;(m)) + pim = pjm. Consequently

AMuij(m)) + Apje(m)) = Mpix(m))  and
piz(m)pir(m) = pax(m)
Furthermore, pj;u(m) = p;;(m), since
Api;u(m))p; (m) = pi;(Mu(m))p; (m)) = p;(p3(m)) = pj(m).

It follows that pi;(u(m)) = piy(u(m))pss(n(m)), and (1.1.4.2) follows imme-
diately.

Let us write ¢ (e) for ¢°(m,e), um for u(m), and pam(e) for pmpi(e).
Then there is a diagram:

E i D*(1)® E R F
|Pim [[EEE [P Nt
*Ri idpx 1y ®¢
D*(1)®E “&¥ Dpx1)eD*(1)®E 8 D1)eF L

The square on the left commutes because of (1.1.4.2). The counterclockwise
circuit from E to G is (¥¢)m, and the clockwise circuit is ¥m@m. |

When Y*/S* is (logarithmically) smooth we can calculate explicitly us-
ing Kato’s local description [20, 6.5] of D*(n), which we now recall. Locally
on Y we can choose a set of logarithmic coordinates (my,...m,) for g*. Let
t; =: a(m;), ui =: pem;), and 7; =: u; — 1. Then n; belongs to the the ideal
of the diagonal and in fact (7;,...7,) forms a set of PD-generators for this
ideal. We have the equation

py(ti) = wipi(t:) = pi(t:)(m + 1). (1.14.3)

Now using p; as structure morphism, one finds an isomorphism of PD-
algebras over Opx

ODx(l) = ODx (1’]1, . ’I]n).
Thus the set of PD-monomials 75!’ is a topological basis for ©@ D (1) 8 Opx-

module (via p?). Let d; be the Opx-linear map such that d;(nV’!) = 64,
a PD-differential operator of order |I|. We shall see that J; acts like the

15
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differential operator t;07/8t!. If N = (ny,...n,) and J = (jy,...Jn) are
multi-indices, we write J! for [];(5;!) and (;’) for TJ; (’;:), where as usual

(ni) _oni(ni—1) - (ni —j5i+ 1)
Ji) Ji(ji—1)---1 '
We also say J < N if and only if j; < n; for all i.

1.1.5 Lemma: With the notations above, we have the following formulas:
o nmy = 2(7)
5 J
Yy = J!(N>tN

J
oy = I G:—13i)
0<J1<J

Proof: We calculate
33(Zi:nimi»1) = m(?u(mmﬁ)
= 6J(Hu?‘)
= 31(f[(1+ni)"*)

= aJ(H Z 73! (Zl> 771[‘”]

i T

P N T

0<R<N

The first formula follows immediately, and the second is a consequence: apply
(1.1.4.1) withm =Y ;n;m;, e=1, and m' = 0.

For the composition formula, recall that we can identify D(2)* with the
divided power envelope of X in Y(1) xy Y(1). We write 1 for the identity
element of Op(1)x. Since u; = pm;), it follows from (1.1.4.2) that A*(u;) =
u; ® u;. Since 7; = u; — 1, we find

A'(mp) =A% w)—1 = w; Qu;—1
= m+1)®@(m+1)—-1
= 0N +n901+1mn;

16
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Now we can compute the divided powers:

A = Y (men)¥me1)1en)
a+btc=n

b
= ¥ gl e
a+btc=n

a+c\/b+c\ [ ¢
(e
c c

a+b+c=n

The same equation holds with multi-indices. Let ¢; be the multi-index with
a 1 in the i* place and zeroes elsewhere, so that 9., = 8;. Then we find

(id ® 8e,) A* (n) = plV=4 4 ]
It follows from this that
010, = Oj4e; + JiOs

for any multi-index J. Then (1.1.5.3) follows easily by induction. [ |
Here is the relationship between logarithmic derivations and differential
operators.

1.1.6 Lemma: To each logarithmic derivation 0: Ox — E there is a unique
logarithmic differential operator d* of order < 1 such that 8*(m) = 8(m) for
all m € Mx. Furthermore,

1. For any sections m of Mx and a of Ox we have

% (m,a) = 0(a) + ad(m).

2. If : F — Ox is an HPD differential operator and 0 is a logarithmic
derivation, then for x € F and m € My,

(0")’ (m, z) = (¥’ (m, 7)) + 8(m)y’ (m, 7).

Proof: Let i: X — D*(1) be the inclusion (via the diagonal) and let J be the
corresponding ideal of D*(1). For any a € D*(1), let ¢(a) =: a — pji*(a).
Then ¢: D*(1) — J is an HPD differential operator, and its composition
¢ with the projection to J/JI¥ has order less than or equal to 1. It is
immediate that ¢°(b) = Db and ¢°(m,1) = §(m) for b € Ox and m € My,
in the notation of (1.1.1). Thus ¢’ is a logarithmic derivation Ox — J/J?,

17
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and it is clear that it is the universal one. This gives us the identification
J/J® = QY. o and allows us to identify d with ¢*. Now any logarithmic
derivation & =: (D, 6) is the composition of d with a linear map 9: Q4 Jsx ™
E. Then 8 =: d o ¢ is evidently the unique differential operator 8 of order
less than or equal to 1 such that 8*(m, 1) = 9(m); furthermore 8(a) = 0*(a)
for a € Ox,m € Mx. Moreover, because o* has order less than or equal to
1 it annihilates J®, and hence 8*6(m)p}(a) = 3*6(m)pt(a). It follows that

8*(m,a) = 8" (pja+ b(m)pja)
= 9"(a) + 8" (5(m)pia)
= 8®(a) + ad®(6(m), 1)
= 0J(a) + ad(m)
|
This proves the first of the formulas above; the second follows by substi-
tuting a = ¢°(m, z) and using (1.1.4). |

1.1.7 Proposition: The sheaf Txx;sx of logarithmic derivations with val-
ues in Ox relative to S* becomes a Lie algebra over f~'Og with bracket
operation defined by

[(Dl, 61), (Dz, 62)] = ([D], Dz], D162 - Dzél). (1174)

If 8, and 8, are two logarithmic derivations and if 8 and 8% are the cor-
responding differential operators (1.1.6), then [8;,dy)! = [8", %], where the
latter is computed in the associative algebra of HPD differential operators.

Proof: It is not difficult to check directly that (1.1.7.4) defines a logarithmic
derivation. Furthermore, if we let 9; = (D;, §;), then we can compute from
(1.1.6.2) that for any m € Mx

(8405 — 050%)" (m) = D16x(m) — Daby(m),
and for any section a of Oy,
(8408 — 8504) (a) = Dy Dy(a) — D2Di(a).

This proves that the formula for the Lie bracket is compatible with the form-
ing commutators in the algebra of HPD differential operators. |
If w € Q4 /8% and 9y, 9, are logarithmic derivations, it is easy to verify

that
(dw, 01 A 8p) = 01w, B) — Oa{w, O1) — (w, [0, Ca)). (1.1.7.5)

18
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The proof is the same as in the classical case: although neither the right
nor the left side of the purported equality is a linear function of w, one
computes easily that the difference between them is. As 0}« 5% 18 generated
by elements of the form dm with m € My, it therefore suffices to check that
the formula is true when w = dm. The left side is zero for such dm, and the
right side is

61 (dm, 62) - 62<dm, 61) - (dm, [(91,62]) =
D;(62(m)) — D2(61(m)) — [61, 62)(m),

which vanishes by (1.1.7.4).
A logarithmic connection V: E — EQ,« /5% prolongs uniquely to maps

Vi: E® Qiyx/sx - EQ® ng—xl/sx

such that Vi(e ® w) = V(e) A w + e ® dw; the connection is said to be
“integrable” if V2o V! = 0. Using (1.1.7.5) one sees easily that a connection
V is integrable if and only if V is compatible with bracket, i.e. if and only
if Via,,6,) = [Va,, Va,] for any two logarithmic derivations 9, and 0,.

An integrable connection on a p-adic formal scheme is said to be “locally
quasi-nilpotent” if for every local system of logarithmic coordinates and every
local section e of F, V(9;)e tends to zero as |J| tends to infinity. (Later we
shall see that this condition is in fact independent of the coordinate system.)
One can define the notion of a PD-stratification and an HPD stratification
just as in the classical case (4, 4.3,4.3H]

Theorem 1.1.8 (Kato) If E is a quasi-coherent sheaf on D% (Y/S) the
following sets of data are equivalent:

1. An integrable (resp. integrable and quasi-nilpotent) logarithmic con-
nection
V:E—+ Qi/x/sx ®E

such that that V(fe) = df ® e + fVe for local sections f of Op and e
of E.

2. A PD stratification (resp. HPD stratification) e: p3E — piE.

If (my, . ..my) is a logarithmic system of coordinates and n; =: 6(m;) (1.1.1),
then € is given explicitly by the formula

e(pre) = 3 nIpi (V(0s)e) = S nIpi (] (V(8:) —5))e).  (1.1.8.6)

J J Ji<J
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Proof: The method is basically the same as in [4, 4.8,4.12]. One has to
show that V prolongs uniquely to a homomorphism p from the ring of PD-
differential operators D* — D> to the ring of PD-differential operators £ —
E. This can be checked locally, with the aid of the explicit formulas (1.1.5):
{07} is a basis for the algebra of of operators D* — D* as a left D*-module,
and the only possibility is

p@) = I (V(3)- 7).

0<J'<J

One then must show that p extends to a homomorphism of operator algebras.
There is one tricky point, which is to show that the differential operators p(3;)
commute. The fact that V is integrable just tells us that the corresponding
endomorphisms p(6;)’ of E commute, and to conclude that the same is true in
the ring of differential operators one must show that a priori the commutator
[(8:), p(9;] has order less than or equal to one. This is the logarithmic version
of [4, 4.9], and can be proved in much the same way. We know that the ideal
J is generated as a PD ideal by the set of elements of the form §(m), where
m ranges over local sections of My. Then it is easy to prove from (1.1.4.2)
that the image of J1? under the map

D*(1)/J¥1—D*(1)/J® & D*(1)/J¥

induced by A* is generated by the set of elements of the form §(m) ® §(m).
Then one can check just as in op. cit. that for any connection V on E and
any two differential operators ¢ and : Oy — Oy of order less than or equal
to one, [V(¢), V(¢)] is again a differential operator of order less than or equal
to one. |

If $* is a fine logarithmic scheme endowed with a PD -ideal (I,~) and if
X* is a fine logarithmic scheme over S* to which ~ extends, Kato explains in
[20, 5.2], how to define the logarithmic crystalline site: one considers all exact
closed PD-immersions (U*,T*,§) of open subsets of X* over (S*,7); the
nilpotent crystalline site is defined similarly. Then quasi-coherent logarithmic
crystals on the nilpotent site can be interpreted in terms of modules with
logarithmic connection on logarithmic PD-envelopes as above, and crystals on
the full site correspond to modules with nilpotent connection. Cohomology
in this topos can be calculated with the aid of a filtered Poincaré lemma, just
as in the classical case.
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1.2 p-Curvature and the Cartier operator

Our first task is to show that the module of tangent vector fields on a loga-
rithmic scheme in characteristic p has a natural structure of a restricted Lie
algebra. I am grateful to H. Lenstra, G. Hochschild, and G. Bergman for
some enlightening discussions concerning the identities necessary to prove
this fact.

1.2.1 Proposition: Suppose that f: X*/S* is a morphism of logarithmic
schemes in characteristic p. Then the sheaf Txx,sx of logarithmic derivations
with values in Ox relative to S* becomes a restricted Lie algebra over f~1Qg,
with a p-linear mapping 0 — 0®) defined by the formula

(D,8)® = (DP,Fy 06+ DP™! 0 6) (1.2.1.1)
Furthermore, if a € Ox and 0 € Txxsx, we have the formula ?
(@d)® = aPa® — o~} (a?~1)3 (12.1.2)

Proof: It is well-known that the p™ iterate D of D is an (ordinary) deriva-
tion; we must show that there is a corresponding monoid morphism

8®: My — Ox such that DP(a(m)) = a(m)§® (m)

for m € Mx. To do this, consider the corresponding differential operator
¢ =: 0" If m € My, we have, by the first of the formulas in (1.1.4),
DP(a(m)) = a(m)¢” (m). Let 6% (m) =: ”(m). If we can prove that §® is
a monoid morphism, it will follow that 9®) =: (DP,§®) is again a logarithmic
derivation. Furthermore, the axioms for a restricted lie algebra, as well as
(1.2.1.2), will hold, by the general formula of Hochschild [14, Lemma 1].

The additivity of 6%, as well as (1.2.1.1)), will follow from the explicit
formula

(#) = Fy o6+ D o5,

of which there are several proofs. The most elementary is due to H. Lenstra;
this is the one we choose to present.

Let £, denote the set of partitions of the set {1...n}. Then I claim that
for each positive integer n we have

(¢™)(m) = 3 [ D**~'o(m). (1.2.1.3)

ey, cE€

2This formula is attributed to Deligne in [21, 5.2.3], where it appears with an incorrect
sign; I believe it is originally due to Hochschild [14, p. 481].
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This formula is clear for n = 1, and we proceed by induction on n. First
let us observe that if § € £, then there is a unique member é* of § which
contains the element n + 1. Let ¢ =: §*\{n + 1} and § =: §\{¢'}. Then

define .
5. {5', if #6* = 1;
L8 U{d} otherwise.

Thus & — & defines a surjection £,41 — &y; the fiber of an element € of &,
becomes identified with the set of elements of ¢, together with one additional
element €*.

We can now proceed with the induction step in the proof of (1.2.1.3). Let
us write b for ¢°(m) = 8(m). From (1.1.6) and the induction hypothesis, we
obtain

D(¢")’(m) + b(¢")"(m)
DY TID* 'b+b) [[D* '

€€y CcEE e€€y CcEE

= Y Y D*b J] D*'b+b) [[D* b

€€y, cEe c’ee\{c} e€&y, cEe

= ¥ LI

€EEn §:5—=¢ cES

= ¥ 1o

6€En 41 cES

(¢™*1) (m)

Now if € € €, has r elements {c; ...c,}, with #c¢; > #ca .. ., let I(e) =:
(#c1 — 1,#tca — 1,...). For each multi-index I, we let ¢(I) =: #{e € &, :
I(e) = I'}. Then the formula above can be rewritten

(6™ (m) =3 c(I) [] DYb.
I J

The symmetric group S, operators on {1,...n} and hence on &,; the orbits
of this action are precisely the fibers of the function c¢. Let the cyclic group
Z/nZ act by sending its generator to the cycle (1,...n); it is clear that the
only elements of &, fixed under this action are the two trivial partitions,
with n elements and with 1 element, respectively. In particular, if n = p is
prime, all the other orbits have cardinality divisible by p. Thus modulo p
our formula reduces to

§®(m) =: (¢?)*(m) = ¥ + DP~'(b) = §(m)? + DP~'§(m),

as desired.
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1.2.2 Remark: If X*/S* issmooth and (my, ... m,) is a system of Il sarith-
mic coordinates, let (8y,...8,) denote the corresponding basis for T'xx sx.
Then I claim that that 6,~(p ) = 9, for all i. Let 9., also denote the differential
operator 8!, as in (1.1.6). (Here ¢; is the multi-index with 1 in the i** place
and zeroes elsewhere, consistent with the notation we used in (1.1.5).) Since
the ring of HPD differential operators is killed by p, 0F, — 0, = Hg;(l, (O — 7).
By (1.1.5), this is Ope,. It is clear from (1.1.5.2) that & (m;) = 0 for all 4,
and it follows that 6% )(mj) — 0;(m;) = 0 for all j; proving the claim.

Now we can define the p-curvature of a sheaf (F, V) with integrable loga-
rithmic connection, following the usual method. Namely for each logarithmic
derivation 0 of Ox into Ox, we consider

P(9) =: V(9)P — V(o).

It follows from the Jacobson identity and the formula (1.2.1.2) for (f8)®
that 1 is a p-linear map from the set of logarithmic derivations of X into
the set of horizontal endomorphisms of (E, V).

Suppose that Y*/S* is smooth, with S a p-adic formal scheme, and let
(E, V) be a quasi-coherent Oy-module with integrable logarithmic connec-
tion. It is now easy to see that (E, V) is quasi-nilpotent (1.1.8) if and only if
the p-curvature v of its reduction mod p is quasi-nilpotent, in the following
sense: for every local logarithmic derivation @ and every local section e of
E/pE on a quasi-compact set, 1(9)"e = 0 for n large enough.

1.2.3 Remark: A logarithmic scheme X* in characteristic p has a canon-
ical Frobenius endomorphism: the underlying map of schemes is just the
usual absolute Frobenius, and the morphism on the sheaf of monoids is mul-
tiplication by p. Kato has given a delicate analysis of the relative Frobenius
map of a morphism X*/S* of fine log schemes in characteristic p, necessary
for understanding the Cartier isomorphism. He begins by forming the usual
fiber product X! of X* with X* over S%, in the category of log schemes.
In general, this log scheme may not be integral, and the fiber product X*
computed in the category of fine log schemes is a closed subscheme of X!.
(If the morphism X* — S* is integral [20, 4.3], however, then X* = X1.) It
is still true, however, that the pullback of Q/sx to X* is Qyy gx. Further-
more [20, 4.10], the map X* — X* induced by Frobenius can be factored
canonically X* — X’ — X* where X* — X’ is exact [20, 4.6] and weakly
purely inseparable [20, 4.9] and X’ — X* is log étale; we shall call the map

Fxx/stXx —>X’ (1234)
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the “exact relative Frobenius morphism” and shall denote the map X’ — X
by mxx,sx. In particular, the differentials of the complex 2« /sx are Ox:-
linear, and it is still true that Q, g« = T /sx- Notice that if X — 5
is integral, then the map X’ — S* is logarithmically smooth.

If the map g: X’ — X* is an isomorphism and if X*/S* is an integral
morphism of log schemes [20, 4.3], then the map X* — S* is said to be a
morphism of “Cartier type.” We shall be primarily interested in morphisms
which are of Cartier type and log smooth; we call such morphisms “perfectly
smooth” for the sake of brev.ty. For example, suppose that f: X — Sp is
a smooth morphism of schemes with trivial log structure and Z C X is a
relative smooth divisor with normal crossings. Then the monoid of sections
of Ox which are invertible outside Z defines a fine logarithmic structure on
X, and the associated logarithmic map to S is perfectly smooth. If Sy is
locally factorial and D C Sy is a divisor, then the same construction for
D C Sy defines a fine log structure on Sp; if also X is locally factorial, we
also get a fine log structure associated to Z U f~!(D) C X, and a perfectly
smooth morphism of fine log schemes X* — S*. In fact X/Sy need not be
smooth: it is enough for it to have semi-stable reduction along D.

Warning: even for perfectly smooth morphisms, the relative Frobenius
map need not be flat. For example, if P is any integral saturated monoid,
the spectrum of the monoid algebra k[P], endowed with the log structure
associated to the inclusion P — k[P] is perfectly smooth over Speck with
the trivial structure. The Frobenius morphism is not flat unless k[P] is
regular.

Now we can copy the proof of [24, 2.11] to obtain:

1.2.4 Proposition: Let (E,V) be a sheaf of Ox-modules with integrable
connection on a fine log scheme X* /S* in characteristic p, and let F: X* — X'
be the exact relative Frobenius morphism. Then there is a unique OQx:-linear
map (the Cartier operator):

C:F.Z\(E,V)—Qx ox ® F.E

such that for any logarithmic derivation & on X* and any section w of
Z'(E,V),
(C(w), 7*8) = (w, dP) — V5w, d). (1.2.4.5)

Furthermore, if & is a logarithmic derivation on X', and if e is any local
section of E, we have

Vo(C(w),d) = —¢o (0, w) (1.2.4.6)
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(C(Ve),d') = o (e) (1.24.7)
|

If the p-curvature v of (E, V) vanishes, then the last two equations of
(1.2.4) imply that we have a commutative diagram

F,,Z(E,v) _C_' I;‘*E®(25('/.9><

L !

FHYE,V) 5 F.HE,V)® Q% s

In the case of the constant connection (Ox,d), Kato has defined the
inverse Cartier isomorphism [20, 4.12]. This is a canonical isomorphism

C_l: QqX,/Sx — _H_q(ﬂ.xx/sx), (1.2.4.8)
characterized by the fact that
C7ldm*my A---dr*mg) = [mi A -+ - my) (1.24.9)

for any sequence of sections (my, ...mq) of Mx.

To justify our notation, we should verify that Kato’s C~! is indeed the
inverse of our mapping C in the diagram above. It will suffice to check that
CC~!(dn*m) = m*dm for every local section m of M, and for this it suffices
to verify that they have the same contraction with 7*9 for every logarithmic
derivation 8 = (D, §) on X*/S*. Using (1.2.4.9) and (1.2.1.1) we compute:

F*(CC Ydr*m,n*8) = (Cdm,n*d)
= (dm,d®) — "~ (dm, d)
= (dm,F% o6+ DP! o §) — 0°~'(dm, )
= (6(m))? + DP~1(§(m) — DP~}(§(m))
= (6(m))
= F*(r*dm,n*0)
This proves the formula. [ |
We shall need a slightly more precise form of Kato’s theorem.

1.2.5 Theorem: Suppose that X* — S* is a smooth morphism of loga-
rithmic schemes in characteristic p, with exact relative Frobenius morphism
F =: Fxx;sx: X* — X', and suppose that E' is a quasi-coherent sheaf of
Ox-modules.
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1. The sheaf E" =: F*(E') has a canonical integrable connection V",
whose p-curvature vanishes. Furthermore, one has a canonical Cartier
isomorphism

FE ®Q§(,/Sx ~ F.H'(E",V").

2. Suppose that A is a quasi-coherent filtration on E' and let M denote the
filtration of E” induced by A. Then we have canonical isomorphisms:

IR

CHAE @ 0% s F.HY(M'E", V")
C™hGIY E'® 0% s = F.H'(Gry E",V")

Proof: The differentials of the complex F,Qyx sx are Ox--linear, and we can
form the complex of Ok-modules: E' ® F,{lyx gx. But

El ® F*QqXX/SX g FtE/I ® QqXX/SX‘)

and we can identify this complex with the De Rham complex of an integrable
connection V"’ =: idp®d on E”. It is clear that the p-curvature V” vanishes.
To prove the second statement, it will be enough to prove that we have
canonical isomorphisms

E'® F.H(Qxjsx) = HY(E' ® F.Qx sx)

for all E’, compatibly with filtrations. Some care is required because the map
F is not flat, and the maps F*A*E’ — M*E" are not injective, in general. It
is clear that we may work locally on X*—e.g. étale locally (in the classical
sense).

Let ©¢82%./5[—q] be the complex consisting of 2%, /s in degree ¢ but with
zeroes as boundary maps. In fact, Kato’s proof shows that, locally in the
classical étale topology, C~! comes from a homotopy equivalence of complexes
of Ox-modules

©e s s[—a)— Qg s

This immediately implies that formation of its cohomology is compatible with
any base change, and with filtrations in the sense of the proposition. |

We shall also need to use Mazur’s formula for the Cartier isomorphism,
which relates C~! to local liftings of F*. We shall be using these local liftings
extensively, so it is worthwhile to formalize the definition.
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1.2.6 Definition: Let S* be a formal W -scheme with the p-adic topology,
equipped with a fine logarithmic structure. A “lifted situation over S*” is a
a logarithmically smooth and integral X* /Sy, together with a lifting

Fyx/sx YX — yl

of the exact relative Frobenius morphism of X* /Sg. The lifted situation is
“parallelizable” if there exist systems of logarithmic coordinates (my, ... mn)
for Y*/S* and (mj, ... m;,) for Y'* /S such that Fyx g« (m;) = pm; for all
1.

Notice that the relative Frobenius morphisms considered above are Og-linear,
and in particular we do not assume that the absolute Frobenius endomor-
phism of Sy lifts. Furthermore, because X*/S* is integral, Y/S and Y'/S
are flat [20, 4.5].

Let us check that such liftings exist locally. Let Y’ and Y™ be liftings
of X’ and X*, respectively, and let (my,...m,) be a system of logarithmic
coordinates for Y*/S*. These induce logarithmic coordinates (7, . ..T,)
for X*/S* and (W}, ...m,) for X'/S*, and Fx(m}) = pm,. Lift (my,...m;,)
to a system of logarithmic coordinates (mj,...m}) for Y'/S*. We get a
diagram,

Yy* Y’

I I

A 5 AY
where h* and k' are the étale maps defined by the coordinate systems and
g is the map sending m; to pm;. Modulo p this square is filled in by the

Frobenius map X* — X’, and by the infinitesimal lifting property for étale
maps, we can fill in the square above as well.

1.2.7 Lemma: Let Y* =: (Y*/S*, F) be a lifted situation. Then
dF‘: Q{/I/Sx i Q%/x/sx

is divisible by p, and p~'dF* when reduced modulo p defines an injective
map
’I]}(! Q}(’/S" - Fyz)l(x/sx .

The composite of this map with the natural projection is the Cartier isomor-
phism (1.2.4.8).
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Proof: It follows from the exactness of Fxx/sx that M3, /Mg = M /M,
and with this identification the Frobenius map M/ M = MP /ME be-
comes multiplication by p. In particular, for any local section m’ of M{5/MZ?,
F*m/ can be written as pm + a, where a € Ker(M{’,” — 5‘7(”2. Since X — Y
is an exact closed immersion, this kernel is just the set of sections of Oy
which are congruent to one modulo p, so we can write a = A(1 + pb). Then

c=: (b—pb®/2 +p?b*/3 — p*b* /4 + - - ) € Oy,
and in fact da = dlog(1 + pb) = pdc. Hence
dF*(dm') = d(F*m’) = d(pm) + da = pdm + pdc

This shows that the dF* is divisible by p and that p~'dF* takes dm’ to
dm + de, which maps to the class of dm = C~1(dm’) in cohomology, by
(1.2.4.9). The injectivity of our map is a consequence of the fact that C~! is
an isomorphism. [ |

1.3 Residues and Cartier descent

If X/S is a morphism of smooth schemes with trivial log structure in charac-
teristic p, then the “classical” theory of Cartier descent gives an equivalence
between the category of quasi-coherent sheaves of O x.-modules and the cat-
egory of quasi-coherent sheaves of Ox-modules equipped with an integrable
and p-integrable connection [21]. However in the logarithmic case, a module
E with integrable and p-integrable connection V does not descend, in gen-
eral, to X’: the canonical map F*H°(E,V) — E need be neither injective
nor surjective. (For example, let X be the logarithmic affine line. Then the
ideal (t) C k[t] is stable under the standard logarithmic connection V and
has zero p-curvature. However, the map F*H°((t), V) — (t) is not surjec-
tive, and the map F*H°(k[t]/(t),V) — k[t]/(t) is not injective.) Similar
phenomena occur over a power series ring R in characteristic zero: the map
R ® H°(E,V) — FE need be neither injective nor surjective, in general. In
order for the descent to work one needs in addition conditions on residues.

If f*: X* — S* is a morphism of logarithmic schemes, we let X* denote
X with the logarithmic structure induced from that of S. Note that we have
Q}(/S = Q}(./Sx. Then f factors as f* = f* ou, where u: X* — X* and
f*: X* — §*. Thus, we have an exact sequence

QiY;/Sx — lex/sx — RXX/SX hd 0, (1.3.0.1)
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where Rxx/sx =i Qx x.. The map d:Ox — Qxsx factors through

QL. ox, and hence the composite map Ox — Rxx/sx is zero. If z is a
X*/S , /

point of X and m is a section of My ., then dm lies in Q% /8% .20 and we can

look at its image in the k(z)-vector space Q) /s« (2). Because the latter is
a group, our map extends uniquely to M5,, and because it is a k(z) vector
space, it extends further to a map

k(z) @ M, — Qxxsx (3)-
Similarly, we find that dlog induces a map
k(z) ® Ok, — Qxs(2)-

These maps are compatible and fit into the commutative diagram in the next
lemma.

1.3.1 Lemma: If z is a geometric point of X and s = f(z), there is a
commutative diagram with surjective columns and exact rows:

K@) ® 0% — k() ® ME /ME, — kz) @M%, /M, — 0

! ! 7

Qy/s(z)  — Qlx /% (2) — Rxx/sx () — 0.
Furthermore, d(x) is an isomorphism.
Proof: Only the last statement requires proof. Let
™ M., — k(z) ® My« ,

be the map sending m to 1 ® 777, where 77 is the image of m in My« z- Then
a(m)n(m) = 0 for all m. Hence the pair (0,7) is a logarithmic derivation
and so factors through d : Mg | — Qyx gx .- We get an induced map

Rxxjsx (x) — k(z) @ Mix o/ Mg g
which is inverse to the map d(z). |

1.3.2 Definition: A sequence (my,...m,) of logarithmic coordinates for
X*/S* is a called “strict” at z if and only if there exists an r such that
{dmy(z)...dm,(z)} form a basis for the image of

Q}(/s(x) - Q}(X/s>< (2).

We shall say that f: X* — S* is “strictly residual” at a point z if the map
Q}Yx/sx (z) — Rxx;sx(z) is an isomorphism.
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It is clear that if X*/S* is smooth and z is a point of X then there
exists, in a neighborhood of z, a strict system of logarithmic coordinates for
X*/S*. Note that any étale map is strictly residual. We have the following
useful lemma.

1.3.3 Lemma: Suppose that f*: X* — S* is smooth and z is a point of X.
Then in a neighborhood of x there exists a factorization f* = g* oh*, where
h*: X* — Z* is strictly residual and smooth at z, Z* — S* is smooth,
and Z* has the logarithmic structure induced from S*. If f* is perfectly
smooth, so are g* and h*.

Proof: If z is a point of X, we can find a strict system of logarithmic coor-
dinates (mi, ...m,) at z, with (my,...m,) a basis for the image of Q/¢(z)
in Q% « ;sx(z). Let Z* be affine r-space over S*, with the logarithmic struc-
ture induced from that of S*, and let A*: X* — Z* be the map induced by
(a(my),...a(m,)). Then we have an exact sequence:

h*lex/Sx — Q;(x/sx — Q&(x/zx — 0,

and it is clear from our construction that the first map is injective and that the
sequence is split in a neighborhood of z. Hence by (20, 3.12], h is smooth; of
course the projection map g: Z* — S* is also smooth. Since the logarithmic
structures on Z* and on S* are essentially the same, the statements about
perfect smoothness are clear. |

Suppose that (E, V) is a sheaf of Ox-modules with integrable logarithmic
connection. Then the map V induces a map

pE— EQ® Rxx/sx;

this map is Ox-linear because d: Ox — Ryxx;sx vanishes; it is called the
“residue map of V.”
Now we can state the logarithmic analog of Cartier descent.

1.3.4 Theorem: Suppose that X*/S* is a smooth morphism of logarith-
mic schemes in characteristic p, and let F: X* — X' be the exact relative
Frobenius morphism of X*/S*. If (E,V) is any coherent sheaf with inte-
grable connection, then E' =: EV is a coherent sheaf of Ox-modules and
there is a canonical horizontal map (F*E',V") — (E,V). If the residue
p and p-curvature of V vanish, this map is surjective, and if in addition
Tor?* (E, Rxx;sx) =0, then it is bijective.
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Proof: We may argue locally in a neighborhood of a point z of X. Sup-
pose that (my,...m,) is a set of logarithmic coordinates for X*/S*, with
corresponding basis (4, ...8,) for Txx;sx. Let h be the HPD differential
operator defined by 5

= _n\neL
where 9 is the differential operator defined in (1.1.5), where I ranges over
all multi-indices (Ii, ... I,) with each 0 < I; < p, and where I! means [J; I;!.
Let V(h) denote the corresponding endomorphism of E. Then it is clear that
V(h)e = e if Ve = 0. Moreover, if the p-curvature vanishes, then I claim
that V o V(h) = 0. To see this, recall from (1.1.5) that

-1

ajéi = H (661' _jl),

i'=0
and define, for each integer & € [0, p),

k .
hop = Y(~1)1 %5

o 7
An easy induction on k (valid in any characteristic) shows that
(—1)k(a€i — 1)(661' — 2) e (a(i — k)

hi,k = k! )

and hence that

oty = OO =1 (0 = B) _ () *Oeine

v k! k!
Letting h; =: h; 1, we find (in characteristic p) that
apfi

(p—1)!
Recall from (1.2.2) that 8% ) = 8,. Hence if V is any integrable connection,
we find

e hi = = — O, = Doy — .

V(3)V(h) =

|
14444
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We have
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Thus we see that, if the p-curvature vanishes, h is a projection operator
onto the horizontal subsheaf EV of E. Note also for further reference the

simple formula
n p—1

h=T1 1 =% (1.34.2)
imiim (—di)
As h =J; h; and h; commutes with 9;, our claim follows.

Suppose now that (F,V) has vanishing residue map and p-curvature.
Consider first the case in which f* is strictly residual at z, so that

Q;{"/S" (.’L’) & Rxx/sx (1‘)

Since the residue map is zero at z, it follows that each V(9;) maps E into the
maximal ideal m, times E. This implies that h is congruent to the identity
map modulo m,, and hence that EV — E(z) is surjective. It follows from
Nakayama’s lemma that the map F*EV — F is surjective in a neighborhood
of z.

Let K denote the kernel of F*EV — E, so that we have an exact se-
quence: 0 - K — F*EV — E — 0. Applying (1.2.5.1), we see that the
map (F*EV)Y — EV is an isomorphism, and hence KV = 0. It is clear
that K inherits an integrable connection from that of F*EV, and its p-
curvature must vanish because the p-curvature of F*EV does. If in addition
Tory(E, Rxx/sx) = 0, then it also follows that the residue map of K vanishes.
But the result of the previous paragraph now applies to K, telling us that
the map F*KV — K is surjective. Then K = 0 and the proof is complete in
this case.

To deduce the general case, we use a factorization f* = g* o h* as in
Lemma (1.3.3). The exact relative Frobenius map F: X* — X' for X*/S*
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factors as F' = F' o Fxx/zx, where Fxx;zx: X* — X7 is the exact relative
Frobenius map for X*/Z* and F' is the exact relative Frobenius map for
Z*[S* pulled back to Xg.. We have an exact sequence

0— h*Qle/Sx — Q}(x/sx — Q}(x/zx — 0,

and we let Vx/z: £ — E® Q}(x/zx be the composite of V with the map
E ® Qyx/sx — E ®Qxx/zx. Let E” denote the kernel of Vyx;z, which we
view as a sheaf on X .. It is clear that the p-curvature and residues of Vx,z
vanish if those of V do. Then by the strictly residual case discussed above,
the map Fyx ;< E” — E is surjective, and bijective if the Tor vanishes. We
may assume that X/Z is affine, and then we view E” as a quasi-coherent
sheaf on Z. It is clear that V induces a map Vz/s: E” — E" ® le/s, and
this Vz/s is an integrable connection whose p-curvature vanishes if that of V
does. Furthermore the kernel of Vs is precisely the kernel of V. Hence by
the standard version of Cartier descent, c.f. [21, 5.1], we find an isomorphism
F*EY = E", and hence Fix ;x F'*EY = Fyx ;% E". Our result is now clear.

[ |

1.3.5 Corollary: Suppose that ¥ =: 0 — E; — E3 — FE3 — 0 is an exact
sequence of quasi-coherent sheaves with integrable connection on X*/S*
and that the p-curvature, residue map, and Tor,( , Rxx/sx) of E; all vanish.
Then if ¥ is split as a sequence of Ox-modules, it is also split as a sequence
of sheaves with connection. In particular, the sequence

0 EY - EY - Ey =0
is also exact.

Proof: We begin with the last statement. Let @ denote the cokernel of the
map Ey — EY. Then we have a commutative diagram with exact rows:

F*Ey — F'EY — F'Q — 0
ol
E, — Es — 0

The vanishing of the residue map and p-curvature of E5 imply their vanishing
for E3, and because X is split, Tor; (Rxxsx, E3) vanishes also. It follows that
the arrows a2 and a3 are both isomorphisms, and hence that F*@Q = 0. But
the morphism F' is surjective, and hence Q = 0.
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The above argument also applies to the sequence
0— Hom(Fj, Ey)— Hom(FE3, E;)— Hom(E3, E3)—0,

so that the map Hom" (Es, E;) — Hom" (Es, E3) is surjective. Thus, there
is a horizontal splitting F3 — FEs. |

1.3.6 Corollary: Suppose that (E",V") is a quasi-coherent sheaf of Ox
modules with an integrable logarithmic connection and endowed with a hori-
zontal and finite filtration M by quasi-coherent subsheaves. Suppose that the
p-curvature and residue map of V" vanish, and that Tor,(Gry E”, Rxxsx) =
0. Then if E' =: E"Y and A'E' =: E'NM'E", the natural map Fy gA'E' —
M:E" is an isomorphism for all i. In other words, (E", M) descends canoni-
cally to a quasi-coherent sheaf with quasi-coherent filtration (E', A).

Proof: By induction on i, Tori(E%/M*E%, Rx;s) and Tori(M*E%, Rxs)
vanish for all i. Hence by (1.3.4), E’% is spanned by its sheaf of horizontal
sections F', and in fact the map (x: FxE%s — E¥% is an isomorphism. The
subsheaf M*E% of E% is stable under V" and hence its p-curvature is also
zero. Because the map

MkESI( &® RX/S i Eg( ® Rx/s

is injective, we can conclude that the residue map p: M¥E% — M*E% ® Rx/s
also vanishes. Thus by Theorem (1.3.4), the map F%[(M*E%)Y] — M*E%
is also an isomorphism. By definition, A*E%,, = (M*E%)V = E' N (M*E").
|
The following useful corollary is of course trivial when Fxx sx is flat.

1.3.7 Corollary: If Q is a quasi-coherent sheaf on X' such that Fyx gxQ
is locally free of finite rank, then Q is also locally free of finite rank.

Proof: The statement is local, so we may and shall assume that there exists
an exact sequence K — E — Q — 0, where F is locally free on X’'. Let M
be the image of Fx gx(K) in Fyx s« E, so that we have an exact sequence

0‘—’M—’F;(X/SX(E) ‘—'F;(x/sx(Q)_’O

of modules with integrable connection. Because the last term is locally free,
the sequence is locally split as a sequence of Ox-modules. It follows from
Corollary (1.3.5) that it is also locally split as a sequence of modules with
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connection. This implies that the map F — @ is also locally split, and hence
that @ is locally free. The finiteness result is easy. |

Let us change our notation slightly, letting S* denote a flat formal W-
scheme with ideal of definition Sy defined by p, endowed with a fine logarith-
mic structure, and let X*/Sg be a logarithmically smooth and integral mor-
phism, where X * is a fine logarithmic scheme. The exact relative Frobenius
morphism Fx/s,: X — X' is Sp-linear and induces a morphism of crystalline
topoi:

FX/Socris: (X/S)cris - (XI/S)cris-

At the risk of some confusion, we shall reduce the number of subscripts by
just writing Fx/s instead of Fix/sycris. Notice that Fix/s is Os-linear, and no
lifting of the absolute Frobenius endomorphism of Sy enters.

1.3.8 Corollary: Suppose that E' is a crystal of p-torsion free Ox:/sx-
modules on X" /S and let E" =: Fyx g« E'. Then if E' is p-torsion free,
the natural map H°(X'/S*, E') — H°(X*/S*, E") is an isomorphism.

Proof: The assertion is local in the Zariski topology of X and therefore may
be proved locally, in a lifted situation (1.2.6). Let us just write E' and E”
for the values of E' and E” on Y’ and Y, respectively, and let V' and V" be
the corresponding connections. It follows from (1.2.5) that the natural map
E% — Fx/s.Fx /s E% is injective, and it is easy to see that this implies that
the map H°(X'/S*, E') — H°(X*/S*, E") is also injective.

To prove the surjectivity we shall need the following lemma.

1.3.9 Lemma: Suppose that « € E" ® Q’;,"xl/sx and f € E'® Qz;//x/sx are
such that p’d"a = F*3 (mod p™*!'). Then d"a € pE" ® Dy /g

Proof: We have a commutative diagram

i— d i
E'/ ® lei/sx — E, ® lex/sx

ln}" 1pn§/

E' Q@ FO5 o 5 E'® Fie g

in which 77;, is the map induced by p~*F*. Our assumption says that there
is a7 € Qyx/sx ® E” such that

prdlla — pzni/ﬁ +pr+1,y
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If 8 = 0 our assertion is trivial. Otherwise we may write 3 = p?#’, where
B' € Qi sx and p does not divide 5. If i + j > r our assertion is again
trivial, and otherwise we may divide by p**7 to obtain

pr—i—jd//a — 77;’5, +pr—i—j+l’)’.

Reducing modulo p and recalling that d” modulo p is just d ® idg, we see
that C~! applied to the reduction of 4 modulo p is zero. This implies that
@' is divisible by p, which is a contradiction. |

To prove (1.3.8), suppose that €” is a horizontal section of E”, and that
we have found €], € E’ and €/, € E” such that ¢’ = 1) (e,,) + p™el.. Then

0=F*(V'(en)) +p"V"(en),
and by Lemma (1.3.9), it follows that V"(e!

") is divisible by p. Then by
(1.2.5.1), we can write €}, = 7%.(8],) + pé,,. Then

e = ny(en +p"6,) + " eq

It is clear that the limit €’ of the Cauchy sequence (e),) satisfies ¢’ = n%(¢')
and that €’ is horizontal. |
We include the following result for the sake of completeness.

1.3.10 Proposition: Suppose that E is a crystal of finite type locally free
sheaves of Oxxsx-modules on X*/S*. Then there is a crystal E' of locally
free Ox:/sx-modules on the nilpotent crystalline site of X'/S* such that
E = Fyx,9x E' if and only if, in characteristic p, the p-curvature and residue
map of (Ex, V) vanish.

Proof: The necessity of our condition is clear. It follows from Corollary (1.3.8)
(which also works for the nilpotent site) that the functor Fi. ¢ is fully faith-
ful, so we may prove the sufficiency locally, in a lifted situation. We write
E for the value of F on Y, and let V be its connection. We may and shall
assume that F is free, and choose a basis (e;). Let 6 be the connection ma-
trix i.e., the matrix of one-forms such that V(e;) = ; e; ® 6;;. We have to
prove that we can choose the basis such that § = F*(¢') for some matrix of
one-forms on Y’. Theorem (1.3.4) tells us that this is true modulo p, so that
we may assume that we have chosen (e;) such that

0=F(¢) +p"w
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with n = 1. Let us show how to modify the choice of basis so that the same
equation holds with n + 1 in place of n.

Because the connection is integrable, we have the matrix equation df =
0 A8, and it follows that

p"dw = F*(p A ¢ —dp) (mod p™t?).

Then Lemma (1.3.9) tells us that w is exact modulo p. Thus the reduction of
w modulo p is homologous to an element in the image of the inverse Cartier
isomorphism, and so we can find matrices of forms § on Y’/S and u and €
on Y/S such that w = p~!F*(6) + du + pe. Then we have

0= F*(¢+p"'6) + p"du + p"H'e.

Now let e; =: e; — p" ¥_; ejuj;, which is again a basis for £ because n > 0.
Because 6 is divisible by p, we have

Ve: = Z €; ® Oji — p"ej ® duﬁ = Z €; ® 9]‘,' - p"C; ® du]',' (mod pn+1).
J J

Thus there is a matrix w” such that the new connection matrix ¢’ is give by
9 =0 _pndu +pn+lw// — F*(¢ +pn—16) +pn+1(w// + 6).

It is clear that our procedure converges to a basis with desired property.
Let us remark that the p-curvature of the resulting connection need not be
nilpotent, and hence the corresponding crystal lives only on the nilpotent
site, in general. |

37






2 Transversality and divided power ideals

2.1 First notions

In this section we study various notions of “transversality” of a filtration with
respect to an ideal. We use these in the next section during our crystalline
interpretation of Griffiths transversality. Usually our filtrations F' will be
decreasing and indexed by Z, and we write F* for N; F* and F~ for U;F*;
as usual F[i] is the filtration defined by setting F[i}) =: F**J. If g: T" — T'isa
morphism and (E, A) is a filtered Or-module, we let A, denote the filtration
on ¢g*E induced by A, i.e. A} =:Im(g*A’E — g*E). If there is no danger
of confusion we may sometimes write (¢*E, A) or even (E7+, A) instead of
(9"E, Ag)

2.1.1 Definition: If (E, A) is a filtered sheaf of quasi-coherent Or-modules
and g:T' — T is a morphism, we say that (E, A) is “normally transversal to
g” if the maps g*A*E — g*E are all injective.

For example, if F is flat over Or, then (E, A) is normally transversal to g
if and only if each Tor{T(E/A*E, Or:) vanishes. It is easy to see in general
that if (E, A) is normally transversal to g, then the natural map

g*Grh E - Grt g’F

is an isomorphism. The converse is true if g*E is separated with respect
to the A, topology—for example if A'E = 0 for i >> 0. Of course, if the
inclusions A*E — E are, locally on T, filtering direct limits of direct factors,
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then (E, A) is normally transversal to every g (and conversely, by a theorem
of Lazard).

To justify our terminology, we recall that two T-schemes X and Y are
sometimes said to meet transversally over 7' if for all i > 0, Tor{’" (Ox,0y) =
0. Then if Y is a subscheme of T defined by an ideal I, the I-adic filtration
of Or is normally transversal to X — T if X meets the normal cone to Y in
T transversally over T". (We have so far had no need to consider the higher
Tor’s, so we have omitted them from the definition.)

If j: T' — T is a closed subscheme defined by an ideal J, we shall say that
(E, A) is normally transversal to 7" or to J instead of to j. The condition
says in this case that JE N A¥E = JAE for all k. We shall be interested
in a weakened version of this condition. Namely, we shall say that A is “G'-
transversal” to J if JEN A*E C JA*~'E for every k. Note for example that
the J-adic filtration on F is G'-transversal to J, but not normally transversal
to J. In fact, if A is the J-adic filtration, JEN AFE = JA*-1E for all k, in
which case we say that (F, A) is “G-transversal to J.”

In fact we shall need to generalize the condition of G-transversality to
take into account divided powers. Suppose that T is a scheme and J is
a filtration of Or by quasi-coherent sheaves of ideals. We say that J is
“multiplicative” if Op = J° and J'J7 C J**7 for all i and j. For example
if J C Or is a sheaf of ideals we can consider the J-adic filtration, given by
J? =: J¢, and if (J,7) is a sheaf of ideals with divided power structure we
can also consider the J — PD-adic filtration: J* =: Jt. In any case we just
write J for J1.

2.1.2 Definition: Let J be a quasi-coherent and multiplicative filtration of
Or and let (E, A) be a filtered Or-module. We say (E, A) is “G'-transversal
to J” if for all k

JENAE C J'AF'E + J2AF2E + - -,

is “saturated with respect to J” or “J-saturated” if J*AT'E C A'E for
all i and j, and is “G-transversal to J” if it is both G'-transversal to J and
J -saturated.

Thus, (F, A) is G-transversal to J if and only if for all £ we have
JENAYE = J'A*'E + J2AF2E + . (2.1.2.1)

For example, it is clear that the filtered Opr-module (Or, J) is G-transversal
to (Or,J). If J is the J-adic filtration, J* = JJ* ! if i > 0, so this
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definition is consistent with the simple one given above. Note that if (E, A)
is J-saturated, then Gry E is annihilated by J. Furthermore, if (E, A) is
saturated with respect to J it is also saturated with respect to the J-adic
filtration, as J* C J* for all i.

If J is the sheaf of ideals determined by a locally closed immersion of
schemes i: X — T, we shall also say that (F, A) is G-transversal to i or to
X instead of to J when convenient.

2.1.3 Definition: Suppose that A is a filtration on E which is G-transversal
to J, and that m and n are integers. We say that “the J-level of (E, A) is
within the interval [m,n]” if A"*'E C JE and A™FE = E, and we say that
(E, A) has “width less than or equal ton —m.”

When there seems to be no danger of confusion as to which ideal J we
are using, we just say “level” or “width” instead of “J-level.” or “J-width.”

2.1.4 Lemma: If A is G-transversal to J, then the following conditions are
equivalent:

1. A has level within (—oo,n).
2. For all j >0,

A"+jE=,_7jA"E‘+jj+1A"_lE+---.

Proof: It is clear that the second condition implies the first. We check
the reverse implication by induction on j, the case of j = 0 being trivial.
Supposing that A"*'E C JE and that the second condition holds for j, we
note that A"*7+1E C A"'E C JE, and hence

A"”HEQ JEﬂAn+j+lE=len+jE+j2An+j_lE+"'+._7j+1AnE+-'-.

It now suffices to apply the induction hypothesis. |

2.1.5 Remark: When J is an invertible ideal and F is J-torsion free, the
data of a filtration M on E which is G-transversal to J and of finite level
has a very simple interpretation in terms of J-isogenies, see Lemma (5.1.2).
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2.2 'Transversality and pullbacks

Suppose that 7" and T are schemes, endowed with quasi-coherent multiplica-
tive filtrations J’ and J on their respective structure sheaves. Then by a
morphism (7, J') — (T, J) we mean a morphism of schemes g: 7" — T such
that g* maps g~!(J*) into J" for every i.

2.2.1 Lemma: Suppose that g: (T",J') — (T, J) is a morphism of schemes
with multiplicative quasi-coherent filtrations. Let i: X — T and i: X' = T"'
be the inclusions defined by the ideals J and J', so that we have a commu-
tative diagram:

x o
|1 le
X 5 T

Let (E, A) be a filtered sheaf of Or-modules, and suppose that (i*E, A) is
normally transversal to f.

1. If (E, A) is normally transversal to i, then (g*E, A,) is normally trans-
versal to i'.

2. If (E, A) is G'-transversal to J, then (¢*E, A,) is G'-transversal to J'.

Proof: Write h =: io f = go4'. Let KerX =: JEN A*E/JAFE, so that we
have an exact sequence of O x-modules:

0 — Ker, — i*A*E — A**E — 0.

Define Kerﬁy in the same way, so as to obtain a commutative diagram with
exact rows:

f*Kert — f**A*E — f*AM*E — 0

L |# b

0 — Ker’;g — *AlE — ARE — 0

We have a surjection: g*A*E — AFg*E and hence 8 is also surjective. Since
(*E, A) is normally transversal to f, the map

fAY'E - f*E~h'E

is injective, and hence so is the map «. It follows from the diagram that « is
surjective.
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It is now easy to prove our claims. It is clear that the normal transversality
of (E, A) to J is equivalent to the vanishing of Ker¥ for each k, and normal
transversality of (¢*F, Ag) to ¢’ is equivalent to the vanishing of Ker* Ay Since
a is surjective, the former implies the latter. For the G-transversal version,
let

QNA,J) = AFE/(J A 'E + JPA*2E + .. )N A*E

As Q%(A,J) is killed by J we can regard it as as an Ox-module. Further-
more, the projection A*E — Q*(A, J) factors through a map 6*:i*A*E —
Q%(A,J), and it is clear that the the condition of G'-transversality amounts
to the vanishing of the restriction 6% of 6% to Ker% for all k. We find a
commutative diagram:

frok: f*Ker’lf, — f*Q*(A,TJ)

Je !

o'*: Kerﬁg -  Q¥Ay T

Since a is surjective, the vanishing of f*6*(A, J) implies that of 6*(A4, J').

|

In particular, the lemma applies when f is flat or when (i*E, A) is locally

split. For example, if J' is coarser than J and if J' = J or (i*E, A) is locally

split, then any filtration which is normally (resp. G’-transversal) to J is also
normally (resp. G’-transversal) to J’. Here is another example.

2.2.2 Corollary: Suppose (E, A) is a filtered sheaf of O x-modules and that
i: X — T admits a retraction f:T — X. Then (f*E, Ay) is normally trans-
versal to .

Proof: We have a commutative diagram:

X = 7
e |1
X ¥ x

It is trivial that (E, A) is normally transversal to the zero ideal, and as idx
is flat, the lemma implies that (f*F, Ay) is normally transversal to i. |

2.2.3 Lemma: Suppose that, in the situation of Lemma (2.2.1), g is faith-
fully flat and J' = f*J. Then the converse statements also hold. That is,
if (g*E, Ay) is normally (respectively, G'or G) transversal to J', the same is
true of (E, A) with respect to J.
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Proof: The flatness of g implies that g* A*E = Afg*E and that g* commutes
with intersections and sums. These statements make the proof straightfor-
ward. [ |

2.3 Saturation

2.3.1 Lemma: Let (E, A) be a filtered sheaf of Or-modules, G'-transversal
to J, and let (E,A)s =: (E, A7) be the “saturation of A with respect to
J,” defined by

AYE = AE+ J'A*'E+ JPAFPE+ -

1. Ay is G-transversal to J and is coarser than A. It is the finest filtration
on E which is coarser than A and which is saturated with respect to

J.
2. Ay induces the same filtration on E/JE as does A.
Suppose that also that A®E = E for m << 0. Then

3. Ay is the coarsest filtration on E which is G'-transversal to J, is coarser
than A, and induces the same filtration on E/JE as A.

4. Ay is the unique filtration on E which is coarser than A, is G-trans-
versal to J, and induces the same filtration on E/JFE as A.

Proof: For any integers i and j,
JiJjAk—-jE C jH—jAk—jEl C A{c7+iE'

This implies that J*A%E C A%"E, and hence that Ay is saturated with
respect to J. It is clearly coarser than A and is the finest J-saturated
filtration with this property. To see that it is G'-transversal to J, suppose
that £ € JEN AYE, and write £ = ¢/ + 2", where 2/ € A*E and 7 €
J'ARIE + J2A*2E + ..., Since z and z” belong to JE, z’ belongs to

JAE + J2ARE 4
J'ATE+ TASPE+ - -

JENA*E C
-

Since z” also belongs to this sum, so does .
It is clear that A*E C A’;E C AFE + JE, i.e. that A7 induces the same
filtration on E/JFE as does A. Suppose that B is another filtration with this
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property and which is coarser than A and G'-transversal to F; we shall check
that B¥E C A%E for all k. For k << 0 this is trivial, and we proceed by
induction on k. Assuming the result for k — 1, suppose that b € B¥E. Since
B and A induce the same filtration on E/JE, we can write b = a + ¢, where
a € A¥E and ¢ € JE. Since B is coarser than A, a € B*E, and it follows
that ¢ € JEN B*E. Since B is G-transversal to 7, it follows that

ce JENB*EC J'B*'E+ J*B*?E + ...
By the induction hypothesis we see that
ce J'ASE+ J?ASPE - C ASE.

Since a € A*E C A% E, we conclude that indeed b € A% E. It is clear that
the last statement of the lemma follows from the others. [ |

2.3.2 Corollary: Suppose A and B are two filtrations on E, both of which
are G-transversal to J. Suppose that A and B induce the same filtration on
E/JE and that A is coarser than B. Then in fact A = B. |

2.3.3 Definition: Suppose that (E, A) is a filtered sheaf of Or-modules
which is G-transversal to J, let i: X — T be the closed immersion defined
by J, and let f: X' — X be a morphism. Then we say that “(E,A) is
compatible with f” if and only if (i*E, A) is normally transversal to f. In a
situation as in Lemma (2.2.1), if (E, A) is compatible with f, it follows that
the J'-saturation of (¢* E, A) is G-transversal to J'; we call it the “transverse
pullback of (E, A).”

If in the above situation f is the closed immersion associated to an ideal
I, we may say that (E, A) is “compatible with I” instead of with f. In partic-
ular, we see from (2.2.1) and (2.3.3) that if J and J’ are two multiplicative
filtrations on Or and if J' is coarser than J and (E, A) is G'-transversal to
J and compatible with J’, then (E, A7) is G-transversal to J'.

2.3.4 Remark: Suppose that ¢': (7", J") — (T",J’) is another morphism,
defining a commutative diagram:

1

XII 1_) T/I

ol
X 5T

A
X 5 T
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Suppose (E, A) is a filtered sheaf of Or-modules such that (i*E, A) is nor-
mally transversal to f and (f*i*E, A) is normally transversal to f’. Then
(i*E, A) is normally transversal to f o f'. Furthermore, the J"-transverse
pull-back of (E, A) by ¢ is naturally isomorphic to the J”- transverse pull
back of (f*E,Az) by ¢'.

2.3.5 Remark: Suppose that m is an integer such that J* = J* for all
i < m and that (E, A) is G-transversal to J, of level within [a,00). Then
for i < m + a we have A~™E = E and hence

JEnAiE — JlAi_lE-’-'-~jm—1Ai_m+lE+JmAi_mE-i-"'
= JIAT'E+...J™'E

This shows that the filtration B defined by B‘E =: A'E if i < m + a and
B™teE = 0 is G'-transversal to the ideal J. It follows that the J-saturation
Bj of B is G-transversal to J, and BYE = A'E for i < m +a. In particular,
we see that there is a simple equivalence between the data of a filtration
which is G-transversal to J and of width less than m and that of a filtration
which is G-transversal to J and of width less than m.

Suppose that 7 and K are two multiplicative filtrations on O7 and define
T = ATK* 1i+k = j}.

One checks immediately that J is again multiplicative; we denote this filtra-
tion by 74K and call it the “sum of Z and K.” For example, if J = I+ K, the
J-adic filtration is the sum in this sense of the I-adic and K-adic filtrations,
and similarly for PD-ideals.

2.3.6 Lemma: Suppose that the J is the sum of two multiplicative filtra-
tions K and I, and suppose that A is a filtration on an Op-module E which
is saturated with respect to I and G'-transversal to K. Then Ay = Ax. If
A is G'-transversal to K, then Az is G-transversal to K.

Proof: If A is G'-transversal to K, Ax is G-transversal to K, and hence the
second statement follows from the former. We note that

J=K+.. KT +...T79,
and since A is Z-saturated, KT/ A*JE C K*A*—*E. Then
JIAIE CKIA*IE +...K'A*E+..- A*E C ALE.
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We conclude that
ASE = A*E+.--JIA*JE+ ... C ALE.

This shows that A% E C A} FE; the reverse inclusion is trivial. n
Note that if (E/KE, A) is locally split, it follows from (2.3.3) that (E, A7)
is in fact G-transversal to J also. This shows that a filtration (E, A) can be
G-transversal to more than one multiplicative filtration J.
The following rather technical lemma will be used in our proof of the
Griffiths transversality theorem (3.3.3).

2.3.7 Lemma: Suppose that (E, B) is a filtered Or-module with B°E = E,
and that T and K are multiplicative filtrations on O such that

1. (E, B) is saturated with respect to I.
2. (Grg E, B) is G-transversal to I.

3. (E,KE) is normally transversal to I and (E, B) is normally transversal
to each K.

Then (E, Bx) = (E, Bryx) is G-transversal to I. Suppose further that I' is
an ideal containing I such that (Gri(E/IE), B) is normally transversal to
I'. Then (E/IE, B) is also normally transversal to I'.

Proof: We see from Lemma (2.3.6) that (E, Bz,x) = (E, Bx). Thus for the
first statement it will suffice to prove that (E, Bx) is G'-transversal to Z. Let
A =: Bx and take k > a. We have by the third hypothesis

A*E =. B*E+K'B*'E+...K*¥°B°E
B*E+K'ENB*'E+...K*°*En B*°E

It follows that K ENA*E = K/ENB*E = K/B*~/E and that A* Grf E =
B*3 Gr}. E. We shall prove by descending induction on j < k — a that

IENK'ENA*E CT'A*'E + T2 A 2E + - - .. (2.3.7.1)
For j = k — a, we have on the left IE N K*E, which is the same as

IK*E by the last hypothesis. But IK¥E C IA*E by definition, so (2.3.7.1)
is certainly true in this case.
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For the induction step, let z be a member of the left side of (2.3.7.1) and
let i =: k—j. Then x € IENKJE = IK'E by the third hypothesis again.
Let z” be the image of z in Grk E. It is clear that z” belongs to

IGL ENA*GrL,E = IGr.ENB'GH.E
= I'B"'GrLE+---I°B"*GrL E,
by hypothesis (2). Choose
z€I'KIBTIE+ .- . I°K'B™ °E CIENKB'E CIEN A*E

mapping to ”. Then z — z lies in K’t1'ENA*ENIE, and, we can apply the
induction hypothesis to see that

z—z€T'AE+ ... Tk 2 A°E,

But 2 € I'K/B*"1E+ .- -+ I°K/B*°E C T'A*"'E + T?A*2E + - - ., so the
proof is complete.

The second statement takes place entirely modulo I, so we may as well
assume that I = 0. There is a commutative diagram with vertical isomor-

phisms: o )
AGr E®QOr/I' — GrLE/I'E

B-iGr E®Q Or/I' — GrLE/I'E

As the bottom arrow is an injective by assumption, so is the top one. It now
follows by induction that each map

(AE/AENK'E)® Op/I' —» E/(K’E + I'E)
is injective. Hence any element of the kernel of A!E® Or/I' — E/I'E is the
image of some z € (A*ENKJE)® Or/I'; furthermore this element z maps to
zero in E/I'E. Taking j = i we have K'E C A'E, and we see that z belongs
to the kernel of the map K'E® Or/I' — E/I'E. Because (E, K) is normally

transversal to I’, z vanishes, and this shows that A'E ® Or/I' — E/I'E is
injective—i.e. that (E, A) is normally transversal to I'. n

2.4 Uniform filtrations

2.4.1 Definition: Suppose that (E, A) is a filtered sheaf of Or-modules, G-
transversal to J. Suppose that E is separated and complete for the J-adic
topology. We say that (E, A) is “J-uniform,” or just “uniform” if there is no
risk of confusion, if E is locally free of finite rank over Or and Gra(E/JE)
is locally free over Ox =: Or/J.
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Note that if (E, A) is J-uniform and J' is coarser than J, then the J'-
saturation (E, A’;) of (E, A) to J' is G-transversal to J', by lemma (2.2.1).
We shall also call (E, A7) the “expansion of A to J',” and we call A a
“contraction of A7 to J.” Note that we have an isomorphism of filtered
objects:

(E/JE,A7)) = (E/JE,A) @ Or/J (2.4.1.1)
It follows from this that (E, Az/) is J'-uniform. Note also that the process
of expansion is transitive in the obvious sense.

2.4.2 Proposition: Let (E, A) be a filtered sheaf of Or-modules uniformly
G-transversal to J. Let JE or Jg denote the filtration on E defined by
JLE = J'E.

1. Locally on T, A can be contracted to any subfiltration of J.

2. For any k and any i > 0,

TJENA*E = JPA¥E + JH A 1B 4.

3. There are canonical isomorphisms:
Gr'; Or ® (E/JE, A[—i]) = (Gr'/_ E, A)
Gr; Or ® Gr¥(E/JE) = Gr}E GrY E

Proof: If T is affine and if Grs(E/JE) is free, we can clearly find a filtration
B such that Grg E is free and such that B is finer than A and induces the
same filtration on E/JE as A. Corollary (2.3.2) shows that By = A. Then
B is uniformly G-transversal to the zero ideal, and we can expand it to any
ideal contained in J.

The next statement is also local, and thus we may assume that there
exists a contraction B of A to the zero ideal. I claim that for any ¢ > 0,

J'ENA*E = J'B*'E + g B1E ... (2.4.2.2)

This clearly implies statement (2) above. We prove it by induction on i,
the case of i = 0 being just the fact that A = Bg. If it is true for 4 and if
z € J*HEN A*E, then by the induction hypothesis we can write z = y + 2
where y € J'B*~*F and z € J**'B**"1E 4+ .... Then y € J*t*'EN B*E,
and since E/B*"'E is flat, y € J**'B*E C J™*'B**"lE. The result
follows.
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For the last statement, note that the image of the multiplication map
J®A*E — Eis contained in A’ENJ*E, and hence we find a commutative
diagram of filtered objects

(Ji®(EvA[_i]) - (jiE’A)

(J'/TH @ (E/JE,A[-]) — (Gry,, A)

The bottom arrow is an isomorphism because E is locally free; to prove that
it is strictly compatible with the filtrations we may work locally, choosing
a contraction B of A to the zero ideal. The strictness is then clear from
(24.2.2) |

2.4.3 Corollary: A filtered sheaf of Or-modules (E, A) is uniformly G-
transversal to J if and only if, locally on T, (E, A) is isomorphic to a finite
direct sum of copies of filtered objects of the form (Or, J[d)), for various d.

Proof: If (E, A) is uniformly G-transversal to ., Proposition (2.4.2.1) shows
that, locally on T', we may choose a contraction B of A to the zero ideal. We
may also choose a splitting C' of the filtration B of E; then for all i

B=CaCHg...
If d; is the rank of C; we find
AE=@ITC = P(Or, T[-5)%.
7=0
This proves the nontrivial direction of the corollary. |

2.4.4 Corollary: Suppose that (E,A) and (E',A’) are two filtered Op-
modules, both uniformly G-transversal to J. Then (E®QE') and Hom(E, E'),
endowed with the usual filtrations, are also uniformly G-transversal to J.

Proof: Thanks to the previous corollary, the first statement follows from the
fact that
(Or, Ja]) ® (Or, I[b]) = (O, Ta + b)),

and the second from
Hom((Or, Ja]), (OrT[b])) = (Or, T[b— a])

when each J¢ is invertible. (]
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3 Griffiths transversality

Suppose that Y/S is a smooth scheme and (E,V) is a sheaf of Oy-
modules with integrable connection. Recall that a filtration A of E by sub-
Oy-modules is said to satisfy Griffiths transversality if and only if VAF C
Al ® Q{,/S. We shall also say that A is “Griffiths transversal” or just
“G-transversal” to V. Our goal in this section is to give a crystalline inter-
pretation of this condition.

Throughout this section and most of the rest of this article we shall work
with the following notation. Let S be a formal scheme for the p-adic topology,
and suppose that (I,~) is a divided power ideal of Og, compatible with the
divided power structure of (p) C Z, and defining a closed formal subscheme
S’ of S. We suppose that S is flat over Z, and for each integer v > 0 we denote
by S, the reduction of S modulo p”; we also let Sp =: S; and So, =: S. We
shall allow S to carry a fine logarithmic structure, e.g. the trivial one, and
just use the notation S to stand for the corresponding logarithmic formal
scheme. Let us fix u € [0,00] such that S’ C S, and let X/S,, be a fine
log scheme of finite type to which the divided powers (I,7) extend. Then
Cris(X/S) is by definition the site whose objects are exact PD-thickenings T
of open subsets of X such that p"Or = 0 for some n > 0, and with the usual
morphisms and covering families. (This site is denoted by Cris(X/S) in [4].)
Let (X/S)cris be the corresponding topos with sheaf of rings and PD-ideals
(Oxys, Jx/s,7). (Since the PD-structures on I and on Jx;s are by definition
compatible, we will not run into any serious difficulties by using the same
letter «y for both of them.)
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If U C X can be embedded as a closed subscheme of a log smooth Y/S,
then for each n > u we can form the divided power envelope Dx(Y,) of X
in Yy, and (for n' > n) the reduction of Dx(Y;/) modulo p” is Dx(Y,). We
denote by Dy(Y') the inverse limit of the system {Dy(Y,) : n > u}, a formal
scheme for the p-adic topology. Such an object is called a “fundamental
thickening of U relative to S.” Although Dy(Y) itself is not an object of
Cris(X/S) as we have defined it, each Dy(Y,) is, and by passing to the limit
we see that a sheaf E of Ox/s-modules on Cris(X/S) in fact defines a sheaf
Ep of Op-modules on Dy (Y).

The site formed in the obvious way by considering fundamental thicken-
ings of open sets of X is called the “restricted crystalline site” and is denoted
by Reris(X/S). In practice, it will suffice (e.g. for cohomology calculations)
to consider the value of sheaves on the fundamental thickenings. In particu-
lar, giving a crystal of Ox/s-modules on Recris is the same as giving a crystal
of Ox/s-modules on Cris(X/S). In fact, if D is a fundamental thickening of
X/8, then to give a crystal of Ox/s-modules on Cris(X/S) is the same as to
give a compatible collection of crystals on each Cris(X/S,), and is again the
same as to give a sheaf of Op-modules with connection V which is integrable,
p-adically nilpotent, and compatible with the divided powers.

3.0.5 Remark: A sheaf F such that EFp = 0 for each fundamental thicken-
ing D is called “parasitic.” For example, if X/S, is log smooth (or a local
complete intersection in a log smooth scheme), then the kernel of multipli-
cation by p on Ox/s is parasitic. For a thorough discussion of the restricted
site and parasitic sheaves over bases on which p is nilpotent, we refer to [3,
Iv,2].

3.0.6 Remark: The category of crystal of Ox,s-modules is abelian, with
the evident construction of kernels and cokernels. However, the inclusion
functor from the category of crystals of Ox/s-modules to the category of
all sheaves of of Ox/s-modules is not left exact—for example, if X/S, is
log smooth, then multiplication by p on Ox/s is injective in the category
of crystals, but not in the category of sheaves. We will be dealing with
crystals endowed with filtrations which consist sometimes but not always
of subcrystals. For the sake of clarity, we should therefore explain how we
associate to a filtered object (F, N) in the category of crystals a filtered
object (E, N ) in the category of sheaves of O s-modules. For each object T'
of Cris(X/S), we let N*E denote the sheaf-theoretic image of N*°E — E in
the category of sheaves. For each fundamental thickening D of X relative to
S, the natural map N*Ep — NEp is an isomorphism, and the kernel of the
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natural surjection N°E — N'E is parasitic. Because of this the distinction
between N and N is not very important, and we shall eventually drop the
tildes from the notation.

3.1 Griffiths transversality and G-transversality

If (E, A) is a filtered sheaf of Ox/s-modules in (X/S)cris such that (Ez, Ar)
is G-transversal to Jr for each object T of Cris (X/S), then we shall say that
(E, A) is “G-transversal to (Jx/s,7).” For any morphism f: (1", Jr,v) —
(T, Jr,~) in Cris (X/S), Lemma (2.2.1) tells us that the filtration Ay on f*Er
induced by Ar is G'-transversal to (J7v,7), and hence by Lemma (2.3.1), its
saturation Ay, , is G-transversal to (Jrv,7).

3.1.1 Lemma: Let E be a crystal of Ox;s-modules on Cris ((X/S)), en-
dowed with a filtration A which is G-transversal to (Jx;s,). The following
conditions are equivalent:

1. For any morphism f:T' — T in Cris (X/S),
A*Bp = A Bp + Jp A B+ JHAY B -
2. For any object (U, T,~) of Cris (X/S), the filtration induced by Ar on
EU is AU
These conditions are automatically satisfied if X/S is log smooth.

Proof: Clearly (2) is a special case of (1), with f the inclusion morphism:
(U,U,0) — (U,T,~). For the converse, note that since A*E is a sheaf on
Cris (X/S), we have a commutative diagram

f‘AkET E— Ak ET’

l !

[*Er — Eq.

It follows that the filtration Ar» of Ep is coarser than the filtration Ay
induced by the filtration Ar of Er, and (2) implies that Az, Ar, and (hence)
Ay all induce the same filtration on (Ey). Lemma (2.2.1) implies that Ay is
G'-transversal to Jpv, and it follows that Ay ;_, , is G-transversal to (J7v,7),
finer than A7+, and induces the same filtration on Ey: as does Ar. By
Corollary (2.3.2), the two filtrations coincide. Finally, we verify that (2) is
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automatic if X/S is log smooth. This is local on T', so we may assume that T’
is affine and that there exists a retraction f: T — X. Then as we have seen,
the filtration Ay on Er induced by the filtration Ax on Ex is finer than the
the filtration Ar on Er, and the filtration on Ex induced by Ar is finer than
Ax. Pulling back the containment Ay < Ar, we obtain that Ax C i*Ar. As
also i*Ar C Ay, the filtrations are equal. |

3.1.2 Theorem: Suppose that Y/S is log smooth and E is a crystal of Oy;s-
modules on Cris (Y/S), corresponding to a module with integrable connection
(Ey,V) onY/S. Let A be a filtration of E by subsheaves of Oy;s-modules
and let Ay be the corresponding filtration of Ey. Then if A is G-transversal
to (Jyys,7), the filtration Ay is Griffiths transversal to V. Conversely, given
a filtration Ay on Ey which is Griffiths transversal to V, there is a unique
filtration A on the crystal E which is G-transversal to (Jy;s,y) and whose
value on Y is the given filtration Ay.

Proof: Given (E, A), consider the first infinitesimal neighborhood Py g of
the diagonal of Y x5 Y. The ideal of Y in Pyg is Qy/s, and since it is a
square zero ideal, we may endow it with the trivial divided power structure.
Then (Py/s,Y,0) becomes an object T' of the crystalline site of Y/, and
(ET, A7) is a filtered sheaf on P,l,/s. We have maps p;:T — Y for i = 1,2,
and hence canonical isomorphisms: p;: pf Fy — Er, reducing to the identity
on Y. If e is a section of Ey, then

Ve = papj(e) — mpi(e) € QyysBy.
Now if the filtration Ar is G-transversal to 2y, and e € A*Ey, then pop3(e)
and p;p}(e) lie in A*Er and
Ve € Oy sEr N AEr = Qs A* ' Er = A" Ey ® Qy 5.
This shows that (Ey, Ay) is Griffiths transversal to V.

Conversely suppose that (Ey,V, Ay) is a module with integrable con-
nection and Griffiths transversal filtration. Let (D(1), J,7) denote the di-
vided power envelope of the diagonal of Y xsY, and let e: p5Ey — p}Ey be
the isomorphism induced by V. By Lemma (2.2.1.2), the filtrations A, on

p!Ey are G'-transversal to (J,7), and hence by Lemma (2.3.1) the filtrations
A; =: A, s, are G-transversal to (J, ).

3.1.3 Lemma: The isomorphism e: piEy — pjEy induces an isomorphism:

AspsEy — AfpiEy.
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Proof: This is a local statement, and we may work with a system of log-
arithmic coordinates (my,...m,) for Y/S. Let n; =: 6(m;) € J and let
{81} denote the corresponding basis for the ring of PD-differential operators
(1.1.5). Recall from (1.1.8.6) that if e is a local section of Ey, ep3(e) =
> llpt(V(8))e). Now if e € A¥Ey, the fact that A is G-transversal to V
implies that V(d;)e € A* I and hence nlllp;d;(e) € Akp{Ey. It follows
immediately that ¢ maps AXptEy to A¥p}Ey. Since the formula for the in-
verse of € is the same, with only the indices interchanged (a consequence of
the cocycle condition), the same argument shows that the inverse of ¢ maps
A¥ptEy to AkpiEy. This proves the lemma. ]

It follows immediately from the lemma that if r; and r; are two retractions
(T, Jr,v) — (U,0,0) in Cris (Y/S), then the two filtrations A, ;. are equal.
Since Y/S is log smooth, such retractions always exist locally, and we can
use any retraction to define a filtration Ar on Er which is G-transversal
to (Jr,v). It is now straightforward to verify that A*E forms a sheaf of
Ox/s-modules, and that the filtration (E, A) satisfies the conditions of the
theorem. Finally, we observe that Corollary (2.3.2) implies that the filtration
thus constructed is unique. |

3.2 T-crystals

I hope that the previous theorem provides justification for the following def-
inition.

3.2.1 Definition: A “proto-T-crystal” on X/S is a pair (E, A), where E is
a crystal of Ox/s-modules and A is a filtration on E which is G-transversal
to (Jx/s,7), and satisfies the equivalent conditions of the Lemma (3.1.1).
We say (E, A) is “uniform” if E is locally free of finite type over Ox/s and
Gry Ex is locally free on X. A proto-T-crystal (E, A) is a called a “T-crystal”
if (E, A) is compatible (2.3.3) with the closed subscheme of X defined by p*
for every i > 0.

Note that the the condition that (E, A) be compatible with p* just says
that (Ex,A) is normally transversal to the ideal p’Ox; this is of course
automatic if p'Ox = 0 or if (E, A) is uniform.

Now suppose that i: X — Y is a closed immersion, with Y/S log smooth.
Temporarily we will denote by § the PD-structure of Jy;s. Recall that
Dx(Y) =: icrissOxys is a crystal of Oy, s-algebras, endowed with a sheaf
of PD-ideals (icrisxJx/s,7) [4, 6.2]. The next result can be thought of as
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a crystalline version of the Griffiths transversality theorem for the closed
immersion 1.

3.2.2 Lemma: Suppose that (E, A) is a proto-T-crystal on Cris (X/S), and
let ipisu(E, A) denote the filtered crystal of Oy;s-modules defined by

AkicristE = icristAkE-
Then icriss(E, A) is G-transversal to (Jy;s,8) and to (icriseJx/s,7)-

Proof: Suppose that T =: (U,T,§) is an object of Cris(Y/S), and Jr is
the ideal of U in T. To simplify the notation, we may and shall assume
that U =Y. Recall that i};,T is represented in Cris(X/S) by Dx(T) =:
Dx(T), the divided power envelope of X in T' compatible with the divided
power structure 6§ on the ideal Jr of Y in T (and of course with v and the
canonical divided power structure on (p).) Thus, icrise A¥E7 is )\,.AkED(T),
where A\: Dx s(T) — T is the canonical projection. The fact that (Er, A) is G-
transversal to the ideal (Jp(r),7) of X in Dx(T) comes from the definitions,
but to prove that it is G-transversal to the ideal (Jr, ) of Y in T takes more
work. Dropping the \’s from the notation, we can write what we have to
prove as:

AkED(T) N JTED(T) = JTAk_lED(T) + -+ J;f]Ak_iED(T) + - (3.2.2.1)

This assertion is local on Y, so we may and shall assume that Y is affine.
Since Y/S is log smooth, there exist a retraction r: 7" — Y, which by func-
toriality induces a map f: Dx(T') — Dx(Y') of divided power envelopes. We
find a commutative diagram:

X — Dx(Y) —

| !

Y
!
Xr — Dx(T) — T
l,.

! b

X — Dx(Y) — Y

Here X7 is the inverse image of X in Dx(T), so that the bottom square on
the left is Cartesian. Recall that the very fact that ic.s.Ox/s is a crystal
asserts that the bottom square on the right is also Cartesian; this is one of
the key technicalities of the foundations of crystalline cohomology [4, 6.2].
It follows trivially that the squares on the top are Cartesian. Since the ideal
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Jpery of X in Dx(Y) is a PD-ideal and the map (Dx(T), X) — (Dx(Y), X)
is a PD-morphism, it follows that the ideal K = Jpy)Op(r) of X7 in Dx(T)
is a sub PD-ideal of the ideal Jpi) of X in Dx(T). Similarly, the ideal
I of Dx(Y) in Dx(T) is a sub PD-ideal of Jp(r). In fact, it is clear from
the fact that the top squares in the diagram are Cartesian that this ideal
is just JTOD(T) and that JD(T) =]+ K. Thus Jqll]AiED(T) = I[ﬂAiED(T),
are reduced to proving equation (3.2.2.1) with I in place of Jr. Write J for
Joa).

Let AXEp, (1) denote the image of the natural map f*A*Epy) — Ep(),
so that A*Epy = A% ; Epa). Since (Ep(y), A) is saturated with respect
to (Jp),7), (Ep(r), Af) is saturated with respect to (K,7). By Lemma
(2.2.1.1), (Ep(y), Ay) is normally transversal to I and hence G'-transversal
to (1,6). Lemma (2.3.6) now tells us that (Epry), A) is G-transversal to
(1,6). ]

Recall that the crystal ic.s« E is also a sheaf of Dx(Y)-modules. As we
have seen (icrs+ F/, A) gives rise to a module with connection (Ey, V), with a
filtration A which is G-transversal to V. This sheaf has a structure of Dx(Y)-
module; we refer to [4] for the various compatibilities these data satisfy. It
is clear that we have proved:

3.2.3 Theorem: The construction (E, A) +— (s« E, A) described above
defines an equivalence between the category of proto-T-crystals of Ox/s-
modules on X/S and the category of triples (Ey,V,Ay), where Ey is a
sheaf of Dx(Y)-modules on 'Y endowed with an integrable connection V and
Ay is a filtration of Ey which is G-transversal to V and to the sheaf of PD-
ideals (Jx,7) of X in Dx(Y). Under this equivalence, (E, A) is a T-crystal
if and only if (Ex, A) is normally transversal to each p'Ox. |

In particular, we see that if X/S’ is log smooth and if Y/S is any lifting
of X/S’', the data of a T-crystal on X/S amounts to the data of a triple
(Ey, Ay, V), where (Ey, V) is a module with integrable connection and Ay
is a filtration on Ey which is Griffiths transversal to V and G-transversal to
the ideal (I,7) of S’ in S (compatibly with each p').

3.2.4 Remark: If X/S is a formal scheme, (and 4 = 0o) we define a T-
crystal on X/S to be a compatible collection of T-crystals on each X,,. If
X/S is formally log smooth, a p-torsion free and coherent T-crystal on X
amounts to a p-torsion free coherent sheaf of Ox-modules Ex, together with
an integrable connection V relative to S and a filtration A which is Griffiths
transversal to V such that Gr, Ex is p-torsion free. To see this, suppose that
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(E, A) is a T-crystal on X; then for any n the underlying crystal on X, /S
gives us a module with connection (Ex,V) on X/S which is independent
of n, as well as a filtration A, which is Griffiths transversal to V and to
the PD-ideal (p™, ). Furthermore, for n’ > n the filtration A,/ is compatible
with the ideal p™ and its saturation (2.3.1) with respect to (p", ) is A,. This
implies that the image of A,/ in F,, is the same as the image of A,,, and we let
A'E =:lim A E,,. 1t is clear that (E, A) is Griffiths transversal to V and it
remains only to prove that Grg Fx is p-torsion free. The hypothesis that the
filtration (E, A,,) be compatible with p says precisely that (E,, A) is normally
transversal to the ideal (p), and hence that Tor;(E,/A: E,, Ox/pOx) van-
ishes. Then liLnTorl(E'n/A:;E'n, Ox /pOx) also vanishes, and it follows easily
that each E/A'E and hence also Gra Ex is p-torsion free. As an exercise,
the reader can also prove that in fact A'Ex =N, A% Ex.

For example, take X = S =: Spf W. Then a proto-T-crystal on W/W
is just a W-module E endowed with a filtration A, since any such A is
automatically G-transversal to the zero ideal. For (E, A) to be a T-crystal,
we require (E, A) to be normally transversal to each p'; it is clear that if
E is finitely generated, this is equivalent to saying that the filtration A is a
filtration by direct factors. If X = Spec W,,, a coherent T-crystal on X/W
is a finitely generated filtered W-module (E, A), where A is G-transversal to
p™ and (E ® W, A) is a filtration by direct factors.

3.2.5 Remark: Suppose that, in the situation of Theorem (3.2.3) the filtra-
tion Ay is stable by V. Then in fact we can regard A as defining a filtration
of E by subcrystals, and following the procedure described in (3.0.6), we ob-
tain a filtration A of the the sheaf E by sheaves of Ox/s-modules. If (E, A)
is the corresponding T-crystal on X/S, it is clear that the filtration Ar of
Er can be computed by taking the (Jr,~y)-expansion of the filtration Ar.
We shall call T-crystals arising in this way “horizontal.” The failure of a
T-crystal to be horizontal is measured by the mapping

&y:Gra Ey— Gry By ® Q;’/S

induced by V; this mapping has degree —1 and is in fact a linear map of
sheaves of Ox-modules. If X/S,, is log smooth and Y/S is a lifting of X/S,,,
then Gry F ® Q§,/S 2 GrpEy ® Q}(/S, and it is easy to check that &y is
independent of the choice of Y/S. Note that the map &y is compatible with
the filtration (p,~) of Gra Ey; it is useful to think of &y as a filtered complex.
For more on these Kodaira-Spencer maps, c.f. §6.2.
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3.3 Functoriality

3.3.1 Remark: Suppose f: X' — X is a morphism of logarithmic S-schemes
and (E, A) is a proto-T-crystal on X/S. If (Ex, A) is normally transversal to
f then there is a natural way to define a proto-T-crystal f*(E, A) on X'/S.
Namely, if T is an object of Cris(X/S) and 7" an object of Cris(X’/S)
and if g: 7" — T is a PD-morphism covering the restriction of f to X'NT,
it follows from (2.2.1) and (2.3.3) that the (J7v,v)-saturation of (¢*Er, Ag)
is G-transversal to (Jy/,v). Moreover, this saturation is, up to canonical
isomorphism, independent of the choice of g. To see this, suppose that g;
and g, are two such choices, and let h: " — T'(1) be the corresponding map
to the fiber product of T' with itself in the category Cris(X/S). Let (E;, A)
be the transverse pullback of (Er, A) to T'(1) via the canonical projection m;;
since (E, A) is a proto-T-crystal, we have canonical isomorphisms (E;, A) =
(Eray, A). On the other hand, it follows from (2.3.4) that the transverse
pullback of (E;, A) via h can be identified with the transverse pullback of
(ET, A) via g;, and hence these coincide. If (E, A) is a T-crystal, one has
to check that (f*Ex, A) is still compatible with each p; this is of course
automatic if pOx, = 0 or if (£, A) is uniform.

3.3.2 Remark: In keeping with the usual notation for Hodge structures, we
let Ox/s(m) denote the T-crystal obtained by endowing Ox/s with filtration
At = J;g;'g If (E, A) and (E', A) are two uniform T-crystals on X/S, we can
use (2.4.4) to construct a T-crystal structure on £® E’ and on Hom(E, E’).
Suppose that (E, A) is uniform. Then by a “principal polarization on (£, A)
of weight m” we mean an isomorphism of T-crystals

(E,A) — Hom [(E, A), OX/S(—m)];
the associated bilinear map
(, ):Ex E— Ox/s(—m)

is supposed to be alternating if m is odd and symmetric if m is even. The
form ( ,) identifies A’Ex with the annihilator of A™*!~'Ex, and it follows
that the width of (E, A) is less than or equal to m.

The following result can perhaps be thought of as a version of the Grif-
fiths transversality theorem for a log smooth morphism, on the level of the
crystalline topos.
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3.3.3 Proposition: Suppose that S’ C S is defined by a PD-ideal (I,7),
that X/S' is log smooth and that (E, A) is a proto-T-crystal on X/S. Then
if D =: Dx(Y) is the PD-envelope of X in a log smooth Y/S, (Ep, A) is G-
transversal to the PD-ideal (I,v)Op. Furthermore, if (E, A) is a T-crystal,
(Ep/IEp, A) is normally transversal to each p'.

Proof: Since (Ep, A) is G-transversal to (J,) and I C J, it follows that it is
also saturated with respect to (I,7y). The G'-transversality will require more
work. Suppose that the lower level of (E, A) is at least a.

The assertion is local on Y, so we may and shall assume that Y is affine
and that X admits a smooth lifting Z/S embedded in Y. Since X C Z is
defined by the PD-ideal (I, 7), Z is in fact contained in Dx(Y’). The ideal K
of Z in Dx(Y) is a sub PD-ideal of the ideal J of X in Dx(Y), and in fact
J = K + I. Furthermore, since Z/S is log smooth, there exists a retraction
9:Dx(Y) — Z. Recall from (3.1.1) that

A*Ep = AtgEz + JAN 9" Ez + JAAS 29" By + -+ 4+ JElg* ASE.

Since (Ez, A) is saturated with respect to (I,7) and since J = K + I, it
follows that:

A*Ep = ASg"Ez + KAY ' g* By + KPAS 29" By + - + K1 A%g" B

Thus, (Ep, A) is the saturation of of (Ep, Ag) with respect to (K, 7).

Note first of all from [4, 3.32] that locally on Z, Op looks a divided power
polynomial algebra, compatibly with the filtrations. Hence Op and Grg Op
are flat over Z. It follows from this that (Ep, Kg,7) is normally transversal
to I and that (Ep, 4,) is normally transversal to each K. Furthermore,
(Ez, A) is G-transversal to (I,v) and hence Lemma (2.2.1) tells us that
(Ep, Ag) and (Grg,, Ep, A,) are G'-transversal to (I,7); since the filtration
remains saturated with respect to (I,~), it is in fact G-transversal to (1, 7).
Thus it follows from Lemma (2.3.7) that (Ep, A) is G-transversal to (I,7).

It remains for us to prove that if (E, A) is a T-crystal on X/S’, then
(Ep/IEp, A) is normally transversal to p'. Let D' =: D xg S’ and let D"
be the reduction of D' modulo p?, with similar notation for Z and X; note
that Z’ = X. We want to prove that A'Ep ® Op» — Ep» is injective. By
assumption, A'Ex ® Ox» — Ex» is injective, and because Grg ., Op is flat
over X, the top map of the diagram

A'Ex ® Oxn ® Grg, Op —  Ex» ® Grg,y Op

! !

Gri,y AgEp ® Opr — Grg Epr
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is injective. The vertical maps are isomorphisms, and hence (Ex:, (K,7)) is
normally transversal to p and the bottom map is injective. Thus (Grx Epr, A,)
is normally transversal to (I + p‘). The second part of Lemma (2.3.7) now
finishes the proof. [ |

3.3.4 Corollary: Suppose i: X — X' is a closed immersion of log smooth
S’-schemes. Then if (E, A) is a T-crystal on X/S, icris«(E, A) defines a T-
crystal on (X'/8S).

Proof: Locally on X’ we may choose a smooth lifting Y’/S. Then if D =:
Dx(Y'), we have seen that (icrise Ep, A) is G-transversal to the ideal (1,7)
of X’ in Y’, compatibly with each p’. Furthermore, it has a canonical inte-
grable connection, hence defines a T-crystal on X’/S. It is clear that this
construction is independent of the choice of the lifting. |

The above corollary applies in particular to the T-crystal (Ox, Jx/s). The
value of icriss(Ox, Jx/s) on Y is (Opy(yy, Jpx(v)). Note that this T-crystal
does not have bounded upper level.
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4 Filtrations, bifiltrations, and gauges

4.1 Lattice filtrations and bifiltrations

Let A be an abelian category with direct and inverse limits and in which
direct (i.e. filtering inductive) limits are exact. Let L be a a partially ordered
set. By an “L-filtration” on an object E of A we mean a morphism from
L to the partially ordered set of subobjects of E. For example, if L = Z
this amounts to the usual notion of an (increasing) filtration indexed by
Z. If A is the filtration and A € L, we denote by A)E the corresponding
subobject. If A is an L°P-filtration of E, we write instead A*E and refer to
A as a “decreasing filtration.” A filtration is said to be “exhaustive” if, for
all b € L, U {A,E : a > b} = E, and is called “separated” if, for all b € L,
Na{AE : a < b} = 0. Similarly, A is said to be “finite” if for all b there
exist elements a and ¢ of L such that a <b<cand A,F=0and A.E =E.
If A is increasing and A,E = Y ,c5 Ao E whenever S is a totally ordered
subset of L with supremum s € L, then we say that A is “continuous.” If
A is decreasing we say that A is continuous if the same equation holds with
“supremum” replaced by “infimum”.

For each a < b in L, we may consider the quotient Ay/A,, which we could
reasonably denote by Gr(’:,, E. We let GR? E denote the direct sum of these,
for all a < bin L.

4.1.1 Definition: Suppose that L is a lattice, i.e. that any two elements
x and y have an infimum z Ay and a supremum z V y. We say that an

L-filtration A on E is a “lattice filtration” if the following two equivalent
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conditions are fulfilled, for any o and 7 € L.
1. A,E+ AE = Ayv-F and A,EN A,E = A, E.
2. The natural map A,E/A;pr E — Agv-E/AE is an isomorphism.

To see that the second condition implies the first one, contemplate the
following diagram, in which the exactness of all the columns and rows except
the central row implies the exactness of the central row as well.

0 0

l !

0 — A E — A.E — 0

l l l

0 — A,nFE — A,E®AE — A E — 0

l ! !

0 — A FE — A E — AGE/A;nE — 0

| | |

0 0 0

For example, we could take for L the set of integers with the usual or-
dering, or the set of subsets of some set S, or the set of closed subsets of a
topological space.

If (E, A) is an L-filtration and E’ C E is a subobject, then one can define
in the usual way an induced filtration on E’, and similarly for quotients.
Note that lattice filtrations do not induce lattice filtrations, in general. If
f:(E,A) — (E',A) is a morphism of L-filtered objects, we say that f is
“strict” if A and A’ induce the same filtration on Im f. For example, if f
is injective and A is exhaustive, one sees immediately that f is strict if and
only if GR f is injective. If A is exhaustive and f is any morphism, one sees
that f is strict if and only if the sequence

0 — GR*(ker f) = GR* E — GR* E — GR*(Cok f) — 0

is exact.

Suppose (E, A, B) is a bifiltered object in A, where each of A and B is
a decreasing filtration of F indexed by Z. If (i,5) € Z x Z we will often
write E;;, A'B?, or AN B for AAE N BJE. It is sometimes convenient
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to set A= =: UA;, and A® =: NA;, and similarly for B¥>. If (¢,j') is
another element of Z x Z, we write (i’,jzzﬁ,j) if ¥ >4 and j > j. Let
Z =:7ZU {—00,00}. For any subset o of Z x Z, let

E,=:(E,A B), =Y A'NB:(ij) €o.

Note that E, = E5 where @ =: {(d’,V') : 3(a,d) € 0 : (d',¥) > (a,)}. On
the other hand, if 7 is a proper subset of @ for every proper subset 7 of o
we will say that o is “reduced.” When no confusion seems possible we will
also write (a, b) for the singleton set containing (a,b). Observe that o C 7,
& =7 and that U7 = dUT. Thus, 0 — @ defines a topological closure
operator on Z x Z. Actually it is even true that @ = U{7 : 7 € T'} whenever
o = U{7 : 7 € T}, so that any union of closed sets is again closed. We see
that the operation o — F, defines a filtration of F indexed by the lattice
of subsets of Z x Z. Clearly we lose no information by restricting to the
lattice L of nonempty closed subsets; this lattice L even has infinite infima
and suprema. Note that the lattice L has an obvious involution ¢ — ¢,
taking o to its transpose (obtained by interchanging the two coordinates).
For any (a,b) € Z x Z we also have the translation operation To4, defined
by Top(o) =: {(i +a,5+b) : (i,j) € o}. This is clearly also a lattice
automorphism.

4.1.2 Lemma: Let (E, A, B) be a bifiltered object of A.
1. If T is any subset of L and 0 =: U, T,
(E, A; B)a = Z(E) A» B)r

T7€T
2. If 0 and T are any two subsets of Z x Z,

(E,A,B), N (E, A, B), = (E, A, B)grr.

In other words, o — (E, A, B), defines a continuous lattice filtration of E,
indexed by L.

Proof: The first statement is obvious, as is the inclusion “2” in the second
statement. It suffices to prove the reverse inclusion for finite subsets 7, since
direct limits commute with finite intersections. We do this by induction
on the cardinality of 7. There is nothing to prove if 7 is empty, so we
consider first the case in which 7 consists of the single element (m,n). Our
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statement is obvious if 7 C 7, so let us assume that this is not the case.
Let p =: {(a,b) € 0 : a < m}, and let ¢’ =: {(a,b) € 6 : a > m}, so that
E, = E, + E,. Since (m,n) € @, b > n for every (a,b) € p. Suppose
z € E, N E,,, and write z = y + 2’ where y € E, and 2’ € E,. I claim that
y € Ezq7. If p is empty this is trivial; if not we let d be the smallest integer
which occurs as the second coordinate of an element of p. Then d > n and
(m,d) €NT. Nowz € A"E and ' € A"E soy € A™E. As E, C B°E
we conclude that y € A"EN BYE C F5qz. It follows that ' € E,»N E,, and
it suffices to prove that ' € Ezz. Let 0” =: {(a,b) € ¢’ : b > n}; then a
similar argument shows that 2’ € Ezns + E,». As ¢” C T, it is obvious that
E,» C Esn7; this completes the proof when 7 has cardinality one.

For the induction step, write 7 = 7/ U 7", where 7" has cardinality one.
Write an element z of E, N E; as y' +y”, with ¢ € E» and ¥ € E,». Then
1" belongs to

E.r// n (Ea + E-,-I) = ETI/ n EgUT'
= E?"n(afr")

E(?”na)u(?”n?’)

Ezing + B

Write y” = 2"+2/, with 2” € Ezvz and 2’ € Ezvqw. Then z = y/+2'+2", with
2" € Benpy C Eznz and y/+2' € E. Butthena' =: —2" =4'+2' € E,NE,,

so by the induction hypothesis 2’ € Eznz. As 2 € FEgn7, the proof is
complete. |

4.1.3 Definition: A morphism n: (E, A, B) — (E', A, B) of bifiltered ob-
jects is “bistrict” if it is strictly compatible with the filtrations A and B and
if additionally the maps

GI‘A n. (GI‘A E, B) — (GI‘A E,, B)

GI‘B n. (GI‘B E, A) — (GI‘B E,, A)

are strictly compatible with the filtrations.

4.1.4 Lemma: Suppose n: (E, A, B) — (E', A, B) is an injective morphism
of bifiltered objects in A. Then 7 is bistrict if and only if for every o C Z x Z,

TI_I(E', A$ B)a = (E7 A, B)a-
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Proof: Suppose 7 is bistrict. For any integer k£ we have a commutative
diagram
(Gr3**E,B) — (A™E/A™HE B) - (AmE/A™*E . B) — 0

| ! !

(G E',B) — (A™E'/AmIE\B) — (ATE/A™*E',B) — 0

The two rows are exact sequences of filtered objects (the arrows are strictly

compatible with the filtrations), and hence the associated graded sequences
are also exact. Using the strictness of Grs 7, we can now easily prove by
induction on k that the map

(A™E/A™*E, B) — (A™E'|A™*E', B)
is strictly compatible with the filtrations. In other words, we have
Y BYE NA™E + A" E')= BYENA™E + A™E

whenever m’ > m. As 7 is also strictly compatible with the filtration B, it
follows also that if n' > n,

Y (BYE'NA™E +A™ E'NB"E') = B¥ENA™E+ A™ ENB"E' (4.1.4.1)

Because direct limits are exact, it suffices to prove the lemma for finite
subsets o. Note that if the cardinality of o is one, the result is trivial, and we
proceed by induction on the cardinality of o. We may further assume that o
is reduced and that it has cardinality at least two. Suppose (a,b) € o has the
smallest possible first coordinate and let (c,d) be the element of o such that
¢ > a and such that ¢ is minimal with this property. Then necessarily d < b
and d is maximal with this property. Let 7 be the set obtained from o by
removing (a,b) and (¢, d) and inserting (a,d). By the induction hypothesis,
the lemma is true for 7. We have E, = E, + E,;, and similarly for E'.
By Lemma (4.1.2), E; N Euq = Eab + Ecq. We deduce the existence of the
following diagram of exact sequences:

O i Ead/(Eab+Ecd) - E/Ea i E/ET - 0
0 - Eu/(Ew+Es) — E/E, — FE/E — 0

The induction hypothesis tells us that the arrow on the right is injective and
(4.1.4.1) says that the arrow on the left is injective; it follows that the middle
arrow is injective, and the proof is complete. We leave the easy proof of the
converse to the reader. |
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4.1.5 Corollary: Let L be the lattice of closed subsets of Z x Z, for the
closure operator defined above. Then there is an equivalence between the
category of bifiltered objects of A and the category of objects of A endowed
with a continuous lattice L-filtration. In this equivalence, bistrict arrows
correspond to strict arrows.

Proof: Suppose we are given a lattice filtered object (E, C). For each integer
i, let a; =: [i,00) X Z and B; =: Z X [i,00). Define A'E =: C,, and B’E =:
Cp;- As o; N B = [i,00) x [j,00), it follows easily that C, = (F, A, B),
for any 0 € L. This gives a functor from the category of lattice L-filtered
objects to the category of bifiltered objects which is quasi-inverse to the
functor constructed above. [ |

4.2 Gauges

Let us explain the relationship between the lattice L and Mazur’s gauges. Let
G denote the set of nonincreasing functions Z — Z, endowed with the usual
partial ordering and lattice structure (defined pointwise). Let n be a positive
integer. We shall call an element ¢ of G an “n-gauge” if €(j + 1) > €(j) — n
for all j, and we let G, denote the set of all n-gauges. 3 If e € Z, we write
c. for the constant function whose value is always e. We shall also consider
the constant c_, to be an n-gauge. If a € N and j € Z, we let a; denote
the a-gauge given by a;(i) = a if i < j and a;j = 0 if ¢ > j. One checks
easily that the set G, of n-gauges forms a sublattice of G. If ¢ € G, and
(a,b) € Z x Z, let T,p(€)(i) =: €(i — a) + b. Then T,p(€) € Gy, and Ty is
a lattice automorphism G — G. Finally, we define an involution € — € on
G, by setting €'(i) =: e(—1) — .

4.2.1 Proposition: For each ¢ € Gy, let o(e) =: {(e(3) + i,¢(3)) : i € Z},
0(C—0o) =t Z X Z. Then the mapping

€ T(e)

defines an anti-isomorphism of lattices L — G, and is compatible with the
involutions’ and the translation operations Ty.

Proof: Suppose that ¢ € L; we will find a 1-gauge € such that 7(¢) = o.
We may suppose that o is a proper subset of Z x Z. Let A be the image

3Strictly speaking, our “l-gauges” correspond to Mazur’s “gauge functions” [23]. We
make no use of his “cutoffs,” which seem to be partially responsible for his Lemma (5.2),
which is not desirable in our situation.
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of o under the first projection map Z x Z — Z. For each a € A, let
B(a) =: {b: (a,b) € o}, and let b(a) € Z be inf B(a). Notice that, since o
is closed, a < a’ implies that b(a’) < b(a). In particular, if b(a) = —oo, then
the same is true of b(a’) for all a’ > a; we let a, be the smallest a such that
b(a) = —oo if such an a exists. (Note that the set of a’s such that b(a) = —o0
is bounded below, since o is a proper subset of Z x Z. ) Let A’ be the set of
all a € A such that b(a) is finite. For each a € A', let i(a) =: a — b(a), and
note that if a and o’ are two members of A" with a < a’ we have

i(a') —i(a) = a' — b(a’) — a+ b(a) > b(a) — b(a’) > 0.

Then a’ — b(a) = i(a’) — (b(a) — b(a’)) lies in the interval [i(a),i(a’)], and we
can define a function ¢ on this interval by the rule

~ . ) bla) if i<d —ba)
6(”)"{a'—z' ifzzz'—b(a)

Then €(i(a)) = b(a), €(i(a’)) = b(a’), and € is the restriction of a 1-gauge
to [i(a),i(a’)]. If the set A’ is bounded below and if ao is its greatest lower
bound, define

€(i) =: ap — i for i < i(ao).

If A" is bounded above, let al, be its greatest upper bound, so that a,, =
al, + 1. Set i(aoo) = oo — b(al,), and define

(i) = { blab,) if i € [i(al,), i(aw)]

oo — 1 if i > i(aoo)

Then € € Gy, and I claim that 5(¢) = 0. Suppose first that (a,b) € 0. If
B(a) is bounded below, b > b(a). As (e(i(a)) + i(a), €(i(a))) = (a,b(a)), we
see that (a,b(a)) € o(e) and hence (a,b) € T(e). If B(a) is not bounded
below, a > aw and we let ¥ =: b A b(al,). Then setting i =: ao, — ¥/, we
see that ¢ > i(ac) and so €(i) = aeo — ¢ = b'. Then (e(i) + 3, €(7)) = (Ao, V')
belongs to o(€) and so (a,b) € 7(e). For the converse it suffices to check
that o(e) C o. First suppose that ¢ € [i(a),i(a’)], with @ and o’ in A’ If
i < a’'—b(a), (e(i)+1,¢€(i)) = (b(a)+1,b(a)). The first coordinate of this pair
is at least a, and as (a, b(a)) belongs to o, so does the pair. If i > o’ — b(a),
(€() + i, €(2)) = (a’,a’ — 1) and the second coordinate is greater than b(a’),
so again the pair belongs to o. Now if i < i(ag), (e(z) + ¢, €(?)) = (ao, ap — 1),
and ap — @ > bp so again our pair belongs to 0. If i € [i(al,),%(ac)], then
€(?) +1,¢(2)) = ((baly) + 1, (b(al,)) whose first coordinate is at least al, and
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so belongs to o. Finally, if i > i(ac), (€(2) + %, €(7)) = (@0, @0 — ©), Which
trivially belongs to o because B(ao) is not bounded below. This concludes
the proof that () = o.

Suppose € and § are two 1-gauges and suppose that (e) C 7(6). I claim
that then € > 6. Indeed, if i € Z,

(e() +1,¢(1)) € T(e

)
so there exists a j such that (e(z) +14,€(2)) > (6(5) +4,6(5)). If i < 7, we use
the fact that 6 is a 1-gauge to see that

e(i) +i > 6(j) +5 > 6(5) + i

and hence €(i) > 6(i). If on the other hand j < i, we use the fact that é is
decreasing to see that €(i) > 6(j) > ().
It follows that € = § if T(e) = 7(6), and hence that our mapping 0: G —
L is bijective and order reversing, and hence defines an anti-isomorphism
of lattices. The verification that our isomorphism is compatible with the
involutions and translation operations is immediate. [ |
We next discuss a generalization of Mazur’s notion of “tame” gauges.

C (),

4.2.2 Definition: A “control function” is a nondecreasing g: N — N such
that g(0) = 0 and g(i)+ g(j) > g(i+j) fori,j € N. For any control function
g, set

=: {e € G : €(i) — €(j) > g(j — i) whenever j > i}.

Elements of G, will be called “g-tame.”
Notice that Gy C Gyu) = Gy(1)ia. For example, the function
i (i) = inf{ord, p’ /5! : j >4}

is a control function. It is easy to see that if g is any control function, the
subset G4 of G satisfies the following conditions:

1. G, contains the constant functions.
2. G, is stable under the operations T, ;.
3. Gy is closed in G under infima and suprema.

4.2.3 Proposition: For each n € N, the assignment g — G, defines a
bijection between the set of control functions g with g(1) < n and the set of
subsets of G, satisfying the above conditions.
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Proof: Suppose that G., C G,, satisfies the three conditions above. If j € Z,
let G,; =: {¢ € G, : ¢(j) =0 }. Note that if e € G, €(3) < (j —9)n V0 for
all 4, and hence

¢; =:sup G, ; (4.2.3.1)

exists and belongs to G,. This function will be the maximal tame gauge
which vanishes at j, and we will use it to construct our control function g.
Note that ¢y € G, j, and hence ¢;(i) = 0 for i > j. Furthermore, if € € G,
T(),_e(]')(f) S G‘Y,]" SO To,_e(j)(e) <€, that is,

e<e+e(j) foranyec€cG,andj€Z (4.2.3.2)

Next, I claim that
Tio(€;) = €itj for all 4, 5. (4.2.3.3)

Indeed, T;o(e;(i + 7)) = €;(j) = 0, so Tio(€j) < €iy; for all 4 and j. Apply
this with ¢ replaced by —i and j by i + j to conclude that T_;o(eiy;) < €,
hence €;1; < T;o(e;), whence we have equality.

Let g(j) =: €;(0) = eo(—7) for j > 0. Then g(0) = 0 and g(j) > 0 for all
j > 0. Furthermore, note that

€i+;(J) — €(0) = Tjo(e:)(j) — €(0) = €(0) — €:(0) = 0.
Hence €;; — €;(0) € G,,;, and thus
€i+j - Ei(O) S €;. (4234)

This implies that ¢;4;(0) < €;(0) + ¢;(0), so g is a control function.
I claim that G, = G,. Suppose that € € G, and i < j. Then by (4.2.3.2),
(i) < () + e(j), 50

e() — €(7) < (i) = ¢;-i(0) = 9(j — 1),
and hence € € G,4. Conversely, if € € G4 and if j > 4, we have
€(d) = €(4) < 94 — i) = (7).
On the other hand, if j < i we have
€(1) < €(j) = €(j) + (1),

so in any case we conclude that €(i) < €;(i) + €(j) for all 7 and j. Let
0; =: €; + €(j), and note that §; € G, and that ¢ < §; for all j. It follows
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that § =: inf{6; : j € Z} € G, and that € < §. On the other hand, we have
€(j) = 6;(j) > 6(j) for all j, and hence € = §. This proves the proposition,
except for the uniqueness of the control function g. For this, note that given
a control function g, we can define a: Z — Z by a(i) =: g(—i) if i < 0 and
a(i) = 0if 4 > 0. Then using the fact that g is a control function we check
that a € Gg; it is in fact clear that a = ¢ and hence that g is determined
by Gy. |

4.2.4 Remark: For any gauge ¢, there is a maximal g-tame gauge €, which
lies under €. Specifically €,(j) = inf{e(k) + g(k — j) : k > j}, and is called
the “g-tame closure of ¢.”

Warning: The operation of taking the g-tame closure of a gauge does
not commute with the operation V. Notice also that if limsupi — g(z) = oo,
€; = C_oo if € is not bounded below. This is the case, for example, for the
control function ( ).

When we are dealing with 1-gauges, it is also possible to describe the
notion of tameness in terms of the lattice L of closed subsets of Z x Z.

4.2.5 Lemma: Let g be a control function with g(1) = 1 and say that a
subset 0 of Z x Z is g-tame if (a, b) € o implies that (a+g(k)—k,b+g(k)) € T
for all k > 0. Then a gauge ¢ is g-tame if and only if the corresponding o is.

Proof: First suppose that € is g-tame. Suppose (a,b) € o(e€), and choose
Jj € Z such that (a,b) = (e(j) + j,e(4)). For k € N, let i =: j — k. Then
by definition of o(e€), (e(i) + 4,€(i)) € o(e). Since € is g-tame, we have
€(3) < €(j) + g(k), and hence

(a+g(k) —k, b+ g(k)) = ((4) + g(k) + 14, €(j) + g(k)) € T(e).
Conversely, suppose that o(e) is g-tame and ¢ < j. Set k =: j —i. We have
(e(4) + j,€(j)) € o(e), and since the latter is g-tame, it follows that

(e(d) + i+ g(k),e(d) + g(k)) = ((4) + 7 + g(k) — k, e(5) + g(k)) € T(e).
Then there exists an integer m such that

(e(4) +1i + g(k), €(§) + g(k)) = (e(m) + m, e(m)).

Now if m < i, e(m) > €(3) and we conclude that €(j)+g(k) > €(¢), as required.
On the other hand, if i < m, e(m)+m > €(i)+i and so €(j)+i+g(k) > €(i)+i,
which yields the same conclusion. |

Note that ¢ is g-tame if and only if 7 is. We let L, denote the lattice of
g-tame elements of L. It is clear that for any o C Z x Z, there is a unique
minimal element in the set of all ¢’ € G, which contain o; we denote this
element by o, and call it the “g-tame closure” of o.
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4.3 Tame gauge structures and G-transversality

4.3.1 Definition: Let t be a nonzero divisor of a ring R. A multiplicative
filtration J of R is “t-principal” if each J* is principal, generated by some
power of t.

If J is t-principal we can define g:N — N by the rule J¢ = (t#®);
then g is a control function. Conversely, if g is a control function, the same
rule defines a filtration J such that J:J7 C J**J. To avoid overloading
the notation we shall suppose in what follows that ¢ is fixed in advance. In
practice, t will always be our prime number p. Recall that J =: J.

4.3.2 Definition: Suppose that J is t-principal, given by a control func-
tion g, and that (E, A) is a filtered R-module. We say that (E, A) is “G-
transversal to (g,t)” (or just to g) if and only if A is exhaustive, G-transversal
to J, and compatible with t.

We shall see from (4.3.4) that in fact if (E, A) is G-transversal to g then
(E/JE, A) is necessarily normally transversal to t* for every i. Note again
that this condition is trivial if g(1) = 1.

4.3.3 Definition: Let E be an R-module on which t acts bijectively. A
“g-gauge structure,” or “Gg-structure,” on E is a decreasing exhaustive G-
filtration A on E such that

1. AVSE = AE N APE for every ¢ and 6 in G,

2. AE = 4 ASE if e = inf{6 € D}, whenever D is a subset of G, which
is bounded below.

3. AHE =tAE ife € G,

The first two conditions just say that A is a continuous lattice filtration
on E. We write E for A% E, and note that E is necessarily the localization
of E by t. Indeed, it is clear that there is an injective map F; — E. IfzeE,
T €A, E, since the filtration A is exhaustive. As ¢,__ = inf{c, : n € Z},
it follows from axiom 2 that for some n << 0, z € A*E. Then by axiom
3, AE C t"E, so z € t"E and our map is surjective. We shall often write
AE instead of AE. Recall that for each i € Z, (j) =: g(i — ) if i > j and
€i(j) =: 0 otherwise.

We say that (E, A) has “level within [z, 00)” if whenever €(a) = d, A°E >
A% E, or equivalently, AV E = A%, or AME = A‘E. We say that (E‘, A)
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has “g-level within (00, ] if and only if whenever ¢ is a g-tame gauge with
€(b) = e, A°E C A% E (equivalently, AE = AVE, or A%E = A\*E.)

4.3.4 Proposition: Let J be a principal multiplicative filtration on R with
associated control function g, let E be a t-torsion-free R-module with a fil-
tration A which is G-transversal to g, and let E =: E,. For each ¢ € G,
define A°E by

AE =Y A%HOE =Y O AE, (4.3.4.1)

Then ¢ — AE defines a Gy-structure on E. Furthermore, every G-structure
arises in this way, and in fact there is an equivalence between the category
of R-modules (E, A) with filtration G-transversal to g and the category of
G,-structures.

Proof: Suppose that A is a filtration on E which is G-transversal to g and
define A°E as above. Then I claim that this defines a G,-structure on E.
The only nontrivial property to check is (4.3.3.1). To verify it, suppose that
€ and 6 belong to G4. Suppose also for the moment that € and § are constant
outside a finite interval.

We proceed by induction on the sum of the lengths of such an interval for
€ and 8. Note that if € > 6 or § > ¢, the result is trivial, and in particular it
is trivial if € and 6 are both constant. Let n be the smallest extended integer
such that €(n’) = ¢(n) for all n’ > n, and let m be the analogue for 8.

Case 1. € is not constant and €(n) > 6(n).
In this case, write z € A°E N A°E as EKn t<Og; + t‘("):z:" with z; € AE
Then 2’ =: t*Mz, € AVE and so ¢’ =: z — 2" € AN A°E. But in fact
' € AYE, where ¢ =€V Ce(n—1)- As € is constant outside a smaller interval
than €, we can conclude by induction that 2 € AV E C AE. and hence
the same is true of z.

Case 2. § is not constant and §(m) > e(m).
This case is proved in the same way as Case 1.

Case 3. €(n) < §(n) and §(m) < e(m).

We may suppose without loss of generality that m > n; in this case ¢
is allowed to be constant but § cannot be. We argue by induction on
€(m) — §(m). Dividing by t*(™, we may assume without loss of general-
ity that §(m) = 0. Write z = ¥, t*®z;, with z; € A'E. As €(n) = ¢(m) > 0
and r € A€E‘, z € tE, and as (i) > 1 for i < m, z,, € tE. It follows that
T, € tEN A™E. Since (E/JE, A) is normally transversal to t, we see that
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T, lies in tA™E + JE. Write z,, = ym + 2z with y,, € tA™F and z € JE;
then

2€JENATE = ¢'WA™E+t9@A™?E + ..
tem(m—l)Am—lEv + tem(m—2)Am—2E +-,

since g(i) = €n(m —i). As §(m) = 0, § < €, and so we can write z,, =
thm + Ticm t*®y; with y; € A'E. Set xi =: z; + y; for i < m and observe
that we have T = ty, + ¥icm t?P ) with 2 € A*E. This shows that in fact
T € A¥E, where & =: § V ¢;. The induction hypothesis then implies that
T € A¥VEE C ASVEE.

Notice that if € is constant and § is not and € and § cross, we are covered
by Case 3. Thus the above cases cover all possibilities and our result is proved
provided € and § are constant outside a finite interval.

Suppose next that ¢ and § are eventually constant for large values of i
and that (E, A) has level within [a, 00), where a is finite. Let € =: € A ce(a).
Since (E, A) has level within [a, 00), we have

AE=3tOAE = A°E,
i>a

and € is constant outside a finite interval. Using the same notation for §, we
find that

AENAE = AENAE

Now suppose that (E, A) has finite level and that € is arbitrary but that §
is eventually constant, and let p,,(¢) =: €V ce(n). Note that p,(€) still belongs
to G, and is constant for large i. As e = inf{p, : n € Z} and p,41 < pn, we
have

AENAE = (
= (UamIE)nAE
= U(am“En A°E)

n

— UAp"(e)VéEvv
n

S AOEY N AE
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Ainf{p,.(e)V&}E"-
AcV&E’n

Arguing similarly for §, we easily deduce our formula for arbitrary e and 6,
provided that (E, A) has finite level.

To eliminate the hypothesis on the level, note first that for any a, the
induced filtration (A®E, A) is still G-transversal to g, and now has finite
level. But we have A°E = U,A°A°F for any ¢, and so the general case
follows by an argument similar to that of the previous paragraph.

Conversely, suppose that (E‘ , A) is a Gg-structure, and set E' =: A% E. By
property 3 of the definition of Gg-structures, ! E = A% E for each j € Z. For
each integer i, let A'F =: A% E C E, where ¢ is defined in equation (4.2.3.1).
We have already seen in the proof of (4.2.3) that if e € Gy, € = inf{e; +€(7)},
and hence

AE=Y A0 =5 tOAE. (4.34.2)

I claim that the filtration (E, A) is G-transversal to g. Indeed, to see that
it is J-saturated, recall from (4.2.3.4) that €;1; < €; +€;(0), for all i > 0 and
j € Z. Therefore we have

AitsO C AS+i E
1O AG | C ASHE
JAE C AME

Now suppose that 0 < e < g(1). Then
a . g(j—1) if i<y
e,(z)Ve——.{e if i >

Hence

ttENAE=A“ENAYE = A9“E
= YA E+Y VAR
i2j i<y

tAE+ T A YE+ JPA2E+ -

Taking e = g(1) we see that (E, A) is G'-transversal to J. Taking e = 1
and reducing modulo JE we see that (E/JE, A) is normally transversal to
t.
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It is clear that our constructions define an equivalence of categories as
described. We should also remark that they preserve level. |

For example, we see easily that to give a Gi-structure on E is the same
as giving a submodule E C E such that E;, = E and a filtration A of E
which is G-transversal to (t). Let tg be the t-adic filtration of £ defined by
E C E. Then one verifies immediately that, in the notation of (4.2.1),

(E, A, ()o@ = A°E. (4.3.4.3)

Warning: More generally, any control function g with g(1) = 1 defines a
lattice of tame gauges G4 and a corresponding lattice Ly C L. Then to give
a Gg-structure on E is the same as giving a submodule E as above and a
filtration A which is G-transversal to (g,t). However, (4.3.4.3) is not valid
for all g-tame gauges e.

4.3.5 Remark: If (£, A) has g-level within [a, b], then for any g-tame gauge
€, ACE = A Ce(a)Veet) F) = Zz pe(i)AiE‘

4.3.6 Remark: Let G} denote the set of all elements of G, which are
bounded below. Because every member of G, is the infimum of a subset
of G;, it follows from axiom (2) of (4.3.3) that a Gg-structure is determined
by its restriction to G;. Furthermore, arguing as we did at the end of the
proof of Proposition (4.3.4), we see that any G';-structure extends to a G-
structure, and the two notions are essentially equivalent.

4.3.7 Lemma: Suppose that J is the filtration of R defined by a control
function g and a nonzero divisor t € R, and let (E, A) be a Z-filtered R-
module.

1. If (E, Ay) is the J-saturation of (E, A) and if e € Gy, then
AGE = A°E.

2. If (E, A) is J -saturated and if ¢, is the g-tame closure (4.2.4) of ¢, then
AYE = A°E.

Proof: For the first statement, we have:

J
tf(J')A?'yE = ¢0) z =) Ai R

1=—00

7



A. OGUS

i
(0 3 =< gi

Cc
1=—00
C 3 tOAE
i=—00
C A°E

This implies that A% E C A°E; the reverse inclusion is obvious.
To prove the second statement, choose for each j a £k > j such that
€(j) = €(k) + g(k — j). Then

D AR = e 0rat—i) gi
C tWAkE
C AE
|
For example, let € (i) =: (k — i) and ox =: o(ex). Then if A is G-
transversal to p, the saturation A,. of A with respect to (p,v) is given by
ASWE = A%E = (E, A),,.

4.4 Cohomology

We now discuss cohomology. As we have to deal with filtrations which are
not finite, we cannot really rely on the standard references [16] and (2] for
the filtered and bifiltered derived categories. This is not serious, since we
won’t need any of the deeper theorems from these sources. If L is a partially
ordered set, we say a morphism (K, A) — (K’, A") of filtered complexes in
A is a “filtered quasi-isomorphism” if for each A € L, the induced mor-
phism AyK — A\K’ is a quasi-isomorphism. Of course, this implies that
the induced map GR* K — GRA K’ is a quasi-isomorphism, but the con-
verse is not true without further hypotheses. In order to save space we shall
sometimes write A instead of A'K.

4.4.1 Lemma: Let (K, A, B) be a bifiltered complex in A. Suppose that for
each j, A*Gry K is acyclic for k >> 0, and for each i, B* Gr’y K is acyclic
for k >> 0. Then the following are equivalent:

1. For each i and j, the intersection A'K N BYK is an acyclic complex.

2. Whenever i < i’ and j < j', the complex (A*N B?)/(A* N BY + A'N B")
is acyclic, and for some pair (m,n), the complex A™ KN B™K is acyclic.
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3. For each i and j, the complex Gry Gr) K is acyclic, and for some pair
(m,n), the complex A™K N B"K is acyclic.

4. For every 0 C Z X Z, the complex (K, A, B), is acyclic.
Proof: Suppose that ' > ¢ and j° > j. We have exact sequences of complexes:
0— A'NBI - A'NBI - (A'\NBY) /(A" NBY) -0
0 — A'nBY /A" NBY — (A'nB%) /(A" NBY) - (A'NB7)/(A'NBI+ AinBY) — 0.
These sequences immediately show that condition (1) implies condition (2),
and condition (3) is the special case of condition 2 obtained by setting 7' =

i+ 1and 5/ = j + 1. Suppose that condition 3 holds. If k > j we have an
exact sequence:

0 - Gr, K Gry, K — B'K Gry K/B**'K Gy K - B'K Gr', K/B*Gr, K — 0

By induction on k we see that each B’ Gr K/B*Gr} K is acyclic, and
because B* Gr', K is acyclic for k large we conclude that each B’ Gri K is
acyclic. A similar induction shows that the complexes (A* N BY)/(A¥ N BY)
are acyclic, and, symmetrically, the complexes (A*NBY)/(A*NBY') are acyclic.
Applying the first of these with i or i’/ = m, we conclude that the complexes
(A* N B™) are acyclic for all i, and applying the second with j or j' = n we
see that condition (1) is also satisfied.

Supposing the first three conditions are satisfied, we prove condition (4)
by induction on the cardinality of o, the case of cardinality one being trivial.
For the induction step, suppose (m,n) € 0. We may assume without loss of
generality that o is reduced, for otherwise we would have K, = K, for some
proper subset 7 of o, and we could apply the induction hypothesis. Now let
o' =: 0\ {(m,n)}, let m’ be the smallest i > m such that (i, j) € o’ for some
Jj, and let n' be the smallest j > n such that (i, j) € o’ for some i. Applying
Lemma (4.1.2), we find:

A"NB"NK, =A™ NB"+ A" N B"

As K, = K, + A™ N B™, the above equation implies that we have an exact
sequence of complexes:

0— K, — K, - A"N B"/(A"' N B"+ A™ N B™) — 0.

As we have seen, condition (1) of the lemma implies that the last complex is
acyclic, and the induction hypothesis implies that the complex K, is acyclic.
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Finally we remark that because filtering direct limits are exact in A, we can
deduce the truth of (4) for infinite subsets from its truth for all finite subsets.
This completes the proof that (1) implies (4). On the other hand, the last
exact sequence above also makes it clear that (4) implies (3). |

Applying the standard yoga of filtered mappings cones [16, V,1.2], we can
conclude that formation of (K, A, B), is compatible with bifiltered quasi-
isomorphisms, i.e.,

4.4.2 Corollary: Suppose f: (K, A,B) — (K', A, B') is a bifiltered quasi-
isomorphism and ¢ C Z x Z is a finite subset. Then f induces a quasi-
isomorphism

(K,A,B), — (K', A", B'),.

We can construct the filtered homotopy category K(A,L) by taking as
objects L-filtered complexes in A, and as morphisms the filtered homotopy
classes of maps. We then obtain the filtered derived category D(.A,L) by
localizing this category by the filtered quasi-isomorphisms. We have a similar
notion for the bifiltered derived category. Suppose the abelian category A
satisfies Grothendieck’s axioms AB1-AB5 and admits a generator, so that
every object of A can be embedded in an injective object I(A). In fact
Grothendieck shows in [13] that this can be done in a functorial way: there
exist a functor I: A — A and a natural transformation ¢:id4 — I such that
each I(A) is injective and each ¢4 is a monomorphism. An investigation
of his construction reveals more: if A C B, then I(A) C I(B), and also
I(A)/A C I(B)/B and I applied to the zero morphism is zero. It is now
clear that any object (K, A) of D*(A,L) is isomorphic to an object I(K, A)
each of whose terms is injective. For any additive functor I': A — A’ we
define RT(K, A) to be the class of ['T(K, A). One can see that if (K’, A)
is any object of D*(A,L) all of whose terms are acyclic for I', then any
isomorphism (K, A) — (K’, A) in D*(A,L) induces a natural isomorphism
RI(K,A) —» I'(K', A) in D*(A’,L). In the context of the bifiltered derived
category it is worth noting that if (K’, A, B) is a bifiltered object such that
each A’ K'NBIK’ is acyclic for T, then the same is true of each (K, A, B), for
each finite subset o of Z x Z. The same is true for all subsets of ¢ provided
that T' preserves direct limits. Notice that if (K, A) is a continuous lattice
filtration, then so is (K’, A’), at least in the sense of the derived category.
(That is, if 0,7 € L, the natural maps A, K'/A . K' — A, K'/A K" are
quasi-isomorphisms, and similarly for direct limits.)
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4.4.3 Proposition: Let (E,A) be a G,-structure of level within [a,o0).
Suppose that {(H?,6%) : ¢ € N} is a cohomological §-functor, and suppose
that forq=mn andn+ 1,

1. The A-module H%(E) is t-torsion free.
2. For all i the maps HI(A'E/A'E NtE) — HI(E/tE) are injective.
3. The functor H? commute with direct limits.
Then for all €’ > € > € € G,,, the sequences
0 — H"(A“E) —» H"(AE) — H"(A‘E/A“E) — 0
and
0 — HYA“E/A”E) > HYAE/AYE) —» HYAE/AYE) — 0

are exact. Furthermore, if we let AH"(E) =: H*(A°E) — H"™(E) then
(H™(E), A) defines a G.,-structure (4.3.3), and we have natural isomorphisms

AH™(E)/AC HY(E) = H™(A°E/AY E)

Proof: The following argument, which works with just one value of g, replaces
the method of comparing gauges by means of “simple augmentations,” used
in [23] and [4] and which does not apply in the current context.

4.4.4 Lemma: With the notations of (4.4.3), suppose that the hypotheses
(1)-(3) are satisfied for . Then whenever € > €, the map HY(AYE) —
H(AE) is injective.

Proof: If e € G, we write H4(¢) for HI(AE), and if € > ¢, we write H(e/€)
for HY(AE/A€E), and H% (e/€') for the image of H9(¢) in H9(e/€'). We can
and shall identify H9(E) with the localization of HI(E) by t. Notice that if
€’ > € > ¢, then we have a commutative diagram

HY(¢) — H9 — HY

l l !

Hi(€/e") — Hie[e") — Hi(e/€)

l ! l

Hq+1(€/I) _5_) Hq+1(€") - Hq+1(€’)
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in which the columns and central row are exact. This diagram shows that
the sequence
HEL(€/e")— HL(¢/€")— H&(e/€)

is exact.
Step 1: If ¢’ > e, the maps
Hi(ce) = H(ce) and H(ce/cet1) — HE(ce/cer+1)

are injective.
Proof: If ¢ = e + d, we have a commutative diagram

HY(E) £ HYE)

2 |

Hi(cey) — Hi(c)

in which the map f, (resp. f.) is induced by multiplication by t¢ (resp. t¢).
These maps are isomorphisms, and because HI(E) is t-torsion free, it follows
that H9(ces) — H9(c.) is injective. Now consider the diagram

H(cery1) — HI(ce) — HZ (cer/cert1)

Je ls b

Hi(cey1) — Hic) — &(Ce/cert1)

In this diagram « is an isomorphism, § is injective, and 7 is surjective. It
follows that ~ is also injective. This proves Step 1.

If g(1) = 0 there is nothing left to prove, so we assume that g(1) > 0.
Let 1; =:e;Aci € Gy for all i € Z.

Step 2: For any i € Z and e € Z, the maps H(1;+ce/Cet+1) — HI(Ce/Cet1)
are injective.
Proof: First note that

AEJ/AENIE 2 ASEJ/AVOE & AN EJAYE = AYE[AE.

Thus the second hypothesis implies that the top horizontal arrow in the
diagram below is is injective.

Hi(1i/c1) —  H(co/c1)

| |+

Hq(1i+ce/ce+l) a— Hq(ce/ce-i-l)
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As the vertical arrows are isomorphisms, it follows that the bottom arrow is
also injective. This proves Step 2.
Step 3. For any € € G4 and any e € Z, the map

HeV ce/€V Cer1) = HI(Ce/Cet1)

is injective.

Proof: If € > coq1, €V Ce = €V cey1 = € and the injectivity is trivial. Similarly,
if € < ¢, then € V¢, = c. and € V cey; = ceq1 and the injectivity is again
trivial. In the remaining case, there exists an ¢ € Z such that €(i) > e+1
and e(i+ 1) < e. Then if we set § = €V c. we find that €V cey1 = 0V Ceya, 50

EVCe/CVCe_H = 5/6VCe+1 = 6/\ce+1/ce+1 = (1, +Ce)/Ce+1.

Thus Step 3 follows from Step 2.
Step 4. For any € € Gy, e € Z and k € N, the map

HE(€V ce/€V Corr) = HE(ce/Cetk)

is injective.
Proof: We proceed by induction on k; the case k = 0 being trivial. We have
a commutative diagram with exact rows:

H3 (eV Cerk/€V Cetkt1) N HY(eV cefeV Coyry1) —= HL(€V cefeV Cetk)

1a lb lc
HY(Cork/Cerrrt) o HL(co/cerrs) o HL(Ce/Cork)

In this diagram, a is injective by Step 3, ¢ is injective by the induction
assumption, and f’ is injective by Step 1. It follows that b is also injective,
proving Step 4.

Step 5: For any € > § € Gy, the map H9(e) — H9(6) is injective.
Proof: We may assume without loss of generality that § = c_, and that
€ # Coo. Fix integers d and e with d > €(a) Ve. Then (eV ¢4 — ca)(a) =0,
so that (e V¢4 — cé) < ¢, and AV D A%E. Sigce (E,A) has level
within [a,00), A*FE = E, and we conclude that A*V*FE D A%FE. Then in
fact AV4E = A°E. We have a commutative diagram with exact rows:

H(e V cq) 1, Hi(eVe) - HL(eVce/eVca)

L L+ I+

Hic) L Hie) L Hile/c)



A. OGUS

In this diagram a is an isomorphism, ¢ is injective by Step 4, and f’ is injective
by Step 1; it follows that b is injective. This is true for any integer e, and in
particular if we take e =: ¢(n) for n large. As € = inf{eV c¢n) : n € N}, we
find that H?(e) = lim H%(e V c(n)), and Step 5 follows. This completes the
proof of the first statement of the proposition.
Step 6. For any € € Gy, H(e + 1) = tH(e).

Proof: This is is clear: we see from Step 5 that each H9(e) is t-torsion free,
and we have by definition that At E = tA°E. |

4.4.5 Remark: As a matter of fact, in the proof we used only a hypothesis
which is slightly weaker than (2) above; it is enough to require that the maps

HYL (A'E/A'ENtE) — HY (E/tE)
be injective.

Now suppose that H9*! also satisfies the above hypotheses. In this case,
we conclude that the maps H9+!(¢') — H9%!(e) are all injective. This implies:

4.4.6 Claim: For any € and 6 in Gy,
Hi(eA6) = Hi(e) N HI(8) and H(e V 6) = H(e) + H(6).
Proof: We have a commutative diagram with exact rows:
0 — AEVAE — AESAE — AEANAE — 0

| l !

v v

0 — FE — E'GBE' — FE — 0

Applying the cohomology functor {H? : ¢ € N} we obtain a commutative
diagram with exact rows

— Hievs) 25 Hie)oHYS) 2 HIens) — ...

| ! !

0 — HYE) — HIY(E)eoHY(E) — HY(E) — 0

It is obvious that the bottom row is exact, and we know by Step 5 that a? is
injective. Since a?*! is also injective, it follows from the long exact sequence
of cohomology that b7 is surjective, so that the top row is short exact. The
claim follows easily.

Using the fact that H? is compatible with direct limits we see that H?
is also compatible with infinite infima, and hence that € — H9(¢) defines a
G,-structure on H?(E) which evidently has level within [a,00). Thus our
proposition follows from (4.3.4). |
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4.4.7 Corollary: With the notations and hypotheses of (4.4.3), let P denote
the filtration of Grs E induced by the t-adic filtration on E. Then for all i
and j, the sequence

0 — H™(P'Gr), E) —» H*(Gr, E) - H"(Gr%, /P'Gr, E) — 0
is exact.

Proof: By the calculus of gauges, we have
PGP E=tENAE/tENATE = A%VS E/A%Van E,  and

GI‘/]“ E/Pi GI“]A E =~ Aej/Aej+lA(€qu)

Of course, the same equations hold for the gauge structure (H9(E), A). Thus
the previous corollary tells us that we have a commutative diagram

HY(PiGr,E) — HYGr E) —  HYGr, E/P‘Gr,E)

l ! l

P'Gr, HI(E) — Gr,HYE) — Gr), HY(E)/P:Gr}, H(E)

As the vertical arrows are isomorphisms and the bottom sequence is short
exact, so is the top. |

4.4.8 Remark: Suppose that the base ring A in (4.4.3) is a discrete valua-
tion ring with uniformizing parameter ¢ and that all the cohomology groups
H9(AE) and HY(A°E /A€ E) are finitely generated A-modules. Then we can
define the g™ Betti number h9(E) of E to be the rank of the (free part of)
the finitely generated A-module H(FE). Because Ey =: E/tE is killed by t,
H9(Ey) is a vector space over the residue field k of A; we let h?(Ep) denote
its dimension (necessarily finite). Then one sees immediately from the long
exact sequence associated to 0 — E — E — E, that h?(Ep) > h?(FE), with
equality if and only if both H9(E) and H9*!(E) are t-torsion free. Similarly
it follows from the exact sequences

H9(A'Eo)— HY(Eo)— HY(Ey/ A* Eg)— H*' (A Ey) — HT* (Ep)

that hypothesis (4.4.3.2) is true for ¢ and for q + 1 if and only if for all 4, the
sequence
O—>Hq(AiEo)—)Hq(Eo)——*Hq(Eo/AiEo) —0
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is exact. In fact, each H(Gr Ep) is a finite-dimensional vector space over
k, and if we let h*9~i(Ey, A) denote its dimension, it is easy to deduce the
following statement:

hq(E) < hq(Eo) < Zhi’q—i(Eo, A),

and equality holds if and only if H? and H*! satisfy the hypotheses (4.4.3.1)
and (4.4.3.2)

4.4.9 Proposition: Let (K, A, B) be a bifiltered complex of abelian sheaves
on a noetherian topological space X. Let E(X, K, A) denote the spectral
sequence of hypercohomology [6, §3]:

E(X,K,A) = H(X,K).
Suppose that the following hypotheses are satisfied:
1. The complex K is bounded below.
2. The filtrations A and B are exhaustive, and the maps
HY(B*) — lim H(B'/B*™)
are isomorphisms for all q.

3. For each j, the complex Ak Gri; K is acyclic for k >> 0, and for each
i the complex B* Gry K is acyclic for all i < i and k >> 0.

4. The spectral sequences of the two filtered complexes E(X, K, B), and
E(X,Grp K, A) degenerate at Ey (Ey = Eu).

Then for all q,1,j we have
1. HY(X,A'K) C HY(X,K), HYX,B’K)C HY(X,K)
2. H(X,AKNB'K)~ HI(X,A'K)N HY(X, B’K.)

3. The spectral sequence of each of the two filtered complexes E(X, K, A)
and E(X,Gra K, B) degenerates at Ey (Ey = Eo).

4. If o is a subset of Z x Z, there is a natural isomorphism:

HY(X, (K, A, B),) = (HY(X, K), A, B),.
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4.4.10 Remark: Instead of assuming that the arrows
Hq(X, Bi) N zi_l_an(X, Bi/Bi+m)

are isomorphisms, we could instead assume that the maps HI(X, B*!) —
H9(X, B*) are injective for all i.

4.5 Gauges and the derived category

We shall also find it useful to discuss a construction which I learned from
a letter from Deligne to Illusie, dated December, 1988. The origin of this
technique is hard to trace; it goes back to ideas of Fontaine-Lafaille [11], Kato
[19], and Fontaine-Messing [12]. Essentially this construction can be viewed
as a derived category version of the gauge-theoretic operation (E, C) — C*E.
Let R be a noetherian ring, separated and complete for the p-adic topol-
ogy. Suppose that C =: {C%, j;: C* — C*~! : i € Z} is an inverse system of
R-modules. If e:Z — Z is a nonincreasing function, let A(z) =: €(¢) —e(i—1)

and consider the chain complex given by:
T(C) = P L P, (4.5.0.1)

1

where 0¢ sends ¢; to (—p*®)¢;, ji(c;)) in C'@C 1. Welet L§(C) =: Ho(T*(C))
and L§(C) =: H,(T¢(C)). Of course, a filtered module (E, C) can be viewed
as an inverse system, and in this case we write T¢(E, C) for the corresponding
construction. It is clear that L§(E,C) = 0 for any filtered module, since in
that case the maps j; are injective.

It is worth remarking that if ¢ > ¢, then there is a morphism of complexes

BT (C) — T(C)
defined by

Bi(c:) = pé-V-<G-D¢;  for ¢ € C' C T (C)
Bo(c;) = p@—<Clc; for c; € C* C T§ (C)

If " > € > € the corresponding morphisms are of course compatible. Note
that if we identify T¢*1(C) with T¢(C), the arrow St becomes identified
with multiplication by p.

If (E,C) is a filtered module there is a natural map

a5 T¢(E,C) —» C°E,  sending @ci— Y p¥q (4.5.0.2)
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It is clear that of determines a surjection L§(E,C) — C°E. If Gr¢ E is
p-torsion free, it is easy to see that this surjection is an isomorphism.

The functor T passes over to inverse systems of complexes in the obvious
way: if C is an inverse system of complexes then we let T¢(C) denote the
total complex formed from the double complex constructed by functoriality.
It is obvious from the construction that the functor T thus formed is exact,
i.e. that it takes quasi-isomorphisms to quasi-isomorphisms.

4.5.1 Remark: (The following remark is not used in the sequel; it jus-
tifies our statement that T can be viewed as a derived category version
of (E,C) — C°E.) If E is any R-module, let F(E) denote the free R-
module spanned by the nonzero elements of E. Then F(E) becomes a
functor of E in an obvious way; it is not additive but takes the zero mor-
phism to zero. Furthermore we have a natural surjection o: F(E) — E.
Suppose that R is p-torsion free and that (E,C) is a filtered complex of
R-modules such that each C*EY is separated and complete for the C-adic
topology and such that C*E? = E9 for i < a. Let K% =: [[;5, F(C?E9),
and let C*'K% =: [[;»; F(C’E?) C K%. The boundary maps of E in-
duce maps K% — K%*! and in fact (K° C) becomes a filtered com-
plex. We can define a map (K%,C) — (E9,C) by sending (z; : i > a)
to ¥°; o(z;); this map is strictly compatible with the filtrations, surjective,
and compatible with the boundary maps. Let K~! be its kernel, with the
induced structure of a filtered complex. We have a strict exact sequence
0 - (K1,C) - (K°%C) — (E,C) = 0. As Gr¢ K! is contained in
Gre K° = F(C*), both these are p-torsion free. Taking the total filtered
complex (K,C) associated to the double complex K~! — K° we see that
(K, C) is quasi-isomorphic to (E,C) and has a p-torsion free Gr. Hence we
have quasi-isomorphisms:

T¢(K,C) = T*(E,C) and T*(K,C) = C°K.

This shows that T¢(K, C) can be viewed as the derived functor of the oper-
ation (K,C) — C*K.

For example, suppose X/W is formally smooth and D is a fundamental
thickening of X/W. Then the filtered object (Op, Jp) has a p-torsion free
associated graded, and hence T(Ox w, Jp) = Jp. On the other hand, if € is
(p*,7)-tame, then in fact we have a quasi-isomorphism Jp, & (icris« J%, /w ) D-
This shows that the sheaves J§, we have been considering can be regarded
as the left derived functor L¢(Ox,w, Jp) for any lifting X/W of X,,/W, and
that this derived functor is independent of the choice of lifting, when e is

(p*,7)-tame.
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If (K,C) is a filtered complex, we denote by H9(C) the inverse system
obtained by taking the ¢** cohomology of the inverse system {C*K}. Since
formation of T¢ commutes with taking cohomology, we have a short exact
sequence of complexes:

0 — T5(K, C) — T*(K, C) — T{(K,C)[1] = 0
and an associated long exact sequence
T{(HY(C)) — Ts(HY(C)) — HY(T*(K,C)) — T{ (H*(C)) — Tg(H™(C)),

We deduce the following short exact sequence, which we note for further
reference:

0 — LYHI(C) — HY(T(K,C)) — LSH?(C) — 0 (4.5.1.3)

We say that an inverse system C has “level within the interval [a,b]” if
C? =0 for i > b and j; is an isomorphism for i < a. If there exists such an
interval we say that C is “essentially finite.”

Proposition 4.5.2 (Deligne) Let C be an essentially finite inverse system.

1. If C has level within [a, ], then the inclusion map from the subcomplex
of T* given by

b b
@Cz’ - @Cz
a+1 a

into T is a quasi-isomorphism.
2. If each C* has finite length, then lg L§(C) = 1g L§(C) + 1gC~

3. If each j; is injective, then L{(C) = 0, and the converse holds if € is
strictly decreasing and multiplication by p is nilpotent on each C".

4. Suppose that ¢ is strictly decreasing. If each j;: C* — C*! is a split
monomorphism, Ly(C) = C~*°, and the converse is true if each C* is a
noetherian R-module.

Proof: To prove the first statement it is sufficient to prove that the quotient
complex is acyclic. This quotient @ looks like:

a a—1
@ Ci N @ Cn',
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and in this case each j; is an isomorphism. We can define an inverse to the
boundary map by mapping an element d of Qp to the element c of ), given
by

CG = di—l +pA(i—1)di_2 +pA(‘i—2)di_3 R

This proves statement (1), and statement (2) follows immediately from this
and the consequent exact sequence:

b b
0— L{(C) - PC - PC — Li(C) — 0.
a+1 a

If each j; is injective it is clear that O¢ is injective. For the converse,
suppose ji(z) = 0. Using induction and the nilpotence of multiplication
by p, we may replace z by p*z for some k so that pr = 0; then it suf-
fices to prove that this z = 0. But then 9°(z) = (ji(z), —pz) = 0, so
z € L = 0. For the last statement, suppose that s;: C* — C**! is a split-
ting of j;. Define v: C* — T by v(c) = (¢, so(c), (s1(s0(c)), - ..), and define
B: L§(C) — @, C* by B(co,cty--.) = (so(o) — 21, 1(%1) — T2,...). It is
clear that £ is the quotient of T¢ by ~, and that the induced map from T7(C)
to this quotient sends, in degree 4, ¢ to ¢ — p®@c. Since A(i) > 0, this is an
isomorphism, and the proof is complete. To prove the converse, notice that an
isomorphism Lo(C) = C~*° induces an isomorphism L§(C® R) = C™ ® R
for every Artinian R-algebra R'. Hence by statement (2), Ig L{(C ® R') =0
for every such R’ Then by the third statement, each C*® R’ — C*"' ® R’
is injective. This implies that j; remains injective when tensored with any
A-module, and hence is a split monomorphism. |

Our application of these techniques will rest on the following result.

4.5.3 Proposition: Suppose that h and g are control functions and 6 is a
positive integer such that h(i) > g(i)+6 for alli > 1. If (E, C) is a p-torsion
free filtered module which is G-transversal to h and of level within [a,c0),
and if € is a g-tame gauge, then there is a natural quasi-isomorphism:

T(E/p°E,C) = CE/p’C°E

Proof: Let E5; =: E/p’E. In the following diagram, a is the map a¢ defined
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in (4.5.0.2), and Kj is the kernel of 7°.
Ks p6C‘E

| |

T«E,C) -2 TE,C) -2 CE

| [ l

T¢(Es,C) 2 Te(Es C) CE[p’C°E
The two columns on the right in the diagram form short exact sequences,
but the middle row is not exact, in general. Since by construction (Ej, C) is
a filtered object, the map 95 is injective, and we know that a is surjective.
Thus it is clear that our proposition will follow from the following fact.

4.5.4 Lemma: With the notation above, a~!(p’C¢E) = K + Im .

Proof: We begin by showing that a maps Kj to p’CE. Suppose that z €
Kj; without loss of generality we may assume that z is homogeneous, say
z=(0,...,zj,...) lies in degree j. Then z; € pP’ ENC’E, and as

p6E NC'E = pach + ph(l)Cj—lE + ph(?)ci—?E. ..
C P(CUE+pVCE 4+ pPCITE ),

we have
a(z) = p‘(j)mj € pP(pYCIE + pHsi-tp 4 ...

As e is g-tame, we have €(j) + g(j — i) > €(3) for all ¢ and j, and hence we
see that a(z) € p’C*E, as required. Since Imd C Kerq, it is clear that the
right side of our purported inequality is contained in the left.

For the reverse inclusion, suppose that ¢ € T§(E, C) is such that a(c) €
p°CeE; say a(c) = p’z, with 2 € C*E. Since the map a is surjective, we can
choose y such that a(y) = z. Then a(c—p®y) = 0, and since p°y € Kj, it will
suffice to prove that ¢ — p’y € K5 +Imd. Thus we may as well assume that
¢ € Kera. We choose j such that ¢, = 0 for m > j and argue by induction
on j. Write

c= (Cj,Cj_l,...) with ¢ € C'E.

Since a(c) = 0, we have
pf(j)cj + pe(j_l)cj—l + .- .pe(a)ca =0.
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Dividing by p*@, we find that
¢ € pA(J')E NCE C pA(J')CJ‘E + ph(l)Cj—lE + .- .ph(j-i)CiE 4o
Write .
where y; € C*E. For i < j we have
€(f) +h(j —i) 2 (i) +9(j — 1) +6 2 (i) +6,
so that
2 =: pe(j)+h(j-i)—6—e(i)yi € CtE

Let
d = (0, cj—1+ p‘sz,-_l + Yj,Cj—2 + p62j._2, ol)

Then we find that
ald) = pU (e +p72m +35) + - p e+ p0z) + o
— pe(J—l)yj + p5(1—1)+'5z]._1 + .. .pf(i)"'l’zi + ... +p5(j—1)cj_l + ...
= PO A0y, 4+ pPWy. 4 +p Ve 4
= pe(J)cj + pf(J—l)c]._l + ...
= 0.

By the induction assumption, ¢ € K5 +Imd. As each p’z;, viewed in degree
i, belongs to Kj, it follows that

" =:(0,¢j1 +yj,Cj—2,...) € Ks+1Ima.
Now we have
c=c"—8(y;,0,0...) + (" Vyjy + - "y +--,0,..)

As each p"U~9y; viewed in degree j, lies in C’E N p®E C Kjp, the proof is
complete. |

4.5.5 Remark: For example, suppose that g is the control function asso-
ciated to the PD-ideal (p*,7) and that h is the control function associated
to (p°*%,v). Because v;(p*+®) = py;(p®), it is clear that h(i) > g(i) + 6
whenever ¢ > 1. We shall apply this especially when a = 1.
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5 T-crystals and F-spans

Throughout this section S will denote a logarithmic formal W-scheme
with a subscheme of definition Sy C S defined by the PD-ideal (p). We
let X/Sp denote an integral [20, 4.1] and logarithmically smooth morphism
of fine logarithmic schemes. Let Fx/s: X — X' denote the exact relative
Frobenius morphism (1.2.3), which fits in the familiar diagram

X 5ox ™oy
N | (5.0.5.4)

F, So

S() —'So

In this diagram, mx/s o Fx;s is the absolute Frobenius endomorphism of X.
If X/S is perfectly smooth (1.2.3), the square is Cartesian. The integrality
of X/ Sy assures that smooth liftings of X and X’ will be flat over S, c.f. [20,
4.3]. Note again that Fx/s is Og-linear and that we do not need a lifting of
Fs, to S for now.

Our main goal in this section is to describe the close relationship between
T-crystals and F-spans (whose definition we recall below). In particular, we
show in (5.2.13) how to associate a T-crystal to an “admissible” F-span in
a natural way. Our construction interpolates to families the construction of
the abstract Hodge filtration attached to an F-span over a point in [23] and
enriches the mod p construction in [24]. For admissible F-spans of “width”
less than p (5.1.1), we even obtain an equivalence of categories.
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5.1 G-transversality and isogenies

Our constructions depend on the simple observation that when E is a p-
torsion free object in an abelian category, the data of a filtration on E which
is G-transversal to (p) and of finite level amounts to nothing more than a p-
isogeny. We shall need to understand this correspondence rather thoroughly,
so our first task is to explain it in some detail.

We say that an object in an abelian category is “p-torsion free” if the
endomorphism of F induced by multiplication by p is injective, and we define
the p-adic filtration P of E by letting P*E be the image of multiplication
by p* for i > 0. Assuming henceforth that E is p-torsion free, we note that
P'E is isomorphic to E, and in fact we can define a system E of objects
indexed by Z by setting P*E =: E for all i, and for k < i P'E, — P*E the
map defined by multiplication by pi~*. Actually we are interested in i << 0,
so we should regard this as a direct system and work with the ind-object
“l_il)n PE.” In practice it will suffice for us to work with P2F for some a
sufficiently negative, so we need not insist on this point. Notice that for any
other p-torsion free object E” and any 7,

Hom(E", E) =: lim Hom(E", P°E) = Hom(PE", ) = Hom(E", E).

5.1.1 Definition: A “p-isogeny” E" — FE is an isomorphism of ind-objects
®: E" — k. We say that @ has “level within [a,b]” and “width less than or
equal to b—a” if ® lies in Hom(E”, P*E) and its inverse lies in Hom(E, P~°E").

The terminology and notation we are using are somewhat abusive because
& does not come from a map E” — E unless a > 0, in which case we say that
® is “effective.” Of course, one can always reduce to this case by a “twist.”
An effective p-isogeny of level within [0,b] amounts to a map ®: E” — E
such that there exists a map V: E — E” with ®V and V® both equal to
multiplication by p®.

If $: E" — E is a p-isogeny we define filtrations M on E” and N on E
by the following formulas:

MIE" =: 1 (PE)
NE = &(PIE") (5.1.1.1)

The filtrations P, N, and M are G-transversal to (p), and ® induces a
bifiltered isomorphism

&: (E", M, P)—(E, P,N). (5.1.1.2)

94



T-CRYSTALS AND F-SPANS

In particular, if o is a finite subset of Z x Z and if ¢ € G}, we have isomor-
phisms:

®,: (E", M, P), — (E,N, P), , ®: M°E" — N°E, (5.1.1.3)

where ¢ and ¢’ are as described in (4.2). (These equations hold for all & and
¢ if our category has exact direct limits.) Notice that (E, N) has level within
[—a, —b).

5.1.2 Lemma: Let E” be a p-torsion free object in an abelian category. The
correspondence described above gives an equivalence of between the following
three sets of data:

1. A p-isogeny E" — FE of level within |a, b]
2. A filtration M on E" which is G-transversal to (p) such that

Mbéll C POE“W C MaEvII

3. A filtration M on E" which is G-transversal to (p) and of level within
[a, b]

Similarly, if E is a p-torsion free object, to give a p-isogeny E" — E of level
within [a, b] is the same as giving a filtration N on E which is G-transversal
to (p) and of level within [—b, —a].

Proof: We give only a sketch. We have already described above how to
pass from a p-isogeny to a filtration M as in (2). Starting with the data
of (2), we simply restrict it to E” =: P°E to obtain the data of (3). On
the other hand, if we start with (3), then we observe that for any j > 0,
PIE" N M*E" = p M*IE", because M is G-transversal to (p). It is clear
that we can use the right side of this equation to define the left side for
j <0, and in this way we obtain a filtration M on all of E” which is still
G-transversal to p. Since (E”, M) has level within (oco,b], M**1E" C pE",
and it follows that MPE” C P°E". Since (E, M) has level within [a,0),
P°E" =: E" C M°E" C M°E", and we have the data of (2). Starting from
(2), we let E =: M°E", and let & be the map coming from the inclusion
E"= POE" — M°E" = PoE. Because M*E" C P°E" we have also ME" C
PYE" hence a map E — P~ E" which is the inverse to ®. ]

There is an obvious notion of a morphism of p-isogenies, and the corre-
spondence above is functorial.
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5.2 The functors y and a

Because X/ Sy is logarithmically smooth and integral, the structure sheaf of
a fundamental thickening of any open subset of X/S is p-torsion free. We
can then apply the above constructions in the abelian category of crystals of
Ox/s-modules. In particular, any locally free crystal will be p-torsion free.

5.2.1 Definition: An “F-span on X/S” is a triple (E', E, ®), where E' is a
crystal of p-torsion free Ox+/s-modules on X'/S, E is a crystal of p-torsion
free Ox/s-modules on X/S, and ®: Fx ,gE' — E is a p-isogeny. A morphism
of F-spans is a pair of morphisms of crystals, compatible with the given
p-isogenies. The F-span p™: Ox/;s — Oxs is denoted Ox/s(—m).

For example, if X = Sy, a crystal on X/S just amounts to a quasi-
coherent sheaf of Ogs-modules, and Fx/s is the identity map. Thus an F-
span on Sgp/S is just a p-isogeny of p-torsion free quasi-coherent sheaves of
Os-modules. We shall often denote the category of F-spans on X/S by
FS(X/S). If ®: Fx;sE' — E is an F-span, we can apply (5.1.1.1) to obtain
bifiltered ind-objects (Fx y SE”, M, P) and (E, P, N) in the category of crystals
of Ox/s-modules, and a bifiltered isomorphism

&: (Fx/sE', M, P) > (E, P,N). (5.2.1.1)

5.2.2 Remark: An F-span is said to be “effective” if it has level within
[0, 00), and is said to be “of finite type” if E' and E are of finite type. We shall
say that an F-span is “uniform” if it has finite width and if Gr}, Ej = Gry' Eo
is a locally free Ox;s,-module of finite type for all 4. If this is true, it follows
that E and E” are locally free Ox/s-modules of finite type also. In fact,
if Y/S is a lifting of X/S, it follows easily from (2.4.2) that, locally on Y,
there exist bases (e) of Ef and (e;) of Ey such that ®(e!) = p%e; for
some sequence of integers (d;). It is now easy to prove that formation of the
filtrations M and N is compatible with base change, tensor product, and
internal Hom, for uniform F-spans. A principal polarization on an F-span is

defined in the obvious way, c.£.(3.3.2).
We can describe our constructions explicitly in a lifted situation (1.2.6).

In terms of the lifted situation Y =: (Y, Fy/s), the category F'S(X/S) can
be described as the category of horizontal p-isogenies of the form:

F}/S(E§,, V') — (Ey, V).
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Similarly, a T-crystal on X’/S can be described as a triple (E’, V', A), where
E' is a quasicoherent sheaf of Oy:-modules, V' is an integrable and quasi-
nilpotent logarithmic connection on E’, and A is a filtration on E’ which is
G-transversal to (p,~) and Griffiths transversal to V'.

Note that in a lifted situation, the Frobenius mapping is divisible by p*
on i-forms, and we let

7I§/1 Qzi"/s — Fys. F; {,/SQ’;,/S

denote p“*F,‘,/S. If E' is any quasicoherent sheaf of Oy-modules we find a
natural map

i O '®id i ~ i «
nE’: QYI/S ® E" &FY/S*(QY/S) ® EI - Fy/s*(ﬂy/s ® Fy/sEl). (5.2.2.2)

5.2.3 Definition: An “F,-span on X/S” is a pair (E', M,), where E' is a
p-torsion free crystal of Ox.s-modules on X'/S and M, is a filtration of
Fx/sE' by subcrystals which is G-transversal to the PD-ideal (p,7).

If : Fy/gE" — E is an F-span on X/S, we let ®, denote the F,-span
on X/S obtained by taking the saturation (2.3.1) of the filtration M with
respect to (p,7). Thanks to (5.1.2) and (2.3.5) we see that, for F-spans of
width less than p, the functor ® — &, is an equivalence of categories.

5.2.4 Definition: A T-crystal (E',A) on X'/S is “admissible” if E' is a
crystal of finite type p-torsion free Ox/s-modules and the filtration A is
compatible with Fx;s (2.3.3), i.e., (EY., A) is normally transversal to Fxs
(2.1.1).

(This terminology is abusive, because admissibility of (E’, A) depends not
only on X'/S but also on X/S.)

5.2.5 Proposition: Suppose that (E’, A) is an admissible T-crystalon X'/S.
Then the T-crystal Fy,s(E', A) is in fact horizontal (3.2.5) and defines a fi-
nite type F,-span on X/S. Letting px;s(E',A) denote this F.-span, we
obtain a fully faithful functor from the category of admissible T-crystals to
the category of F,-spans. For uniform T-crystals, the functor p commutes
with base change, tensor product, and internal Hom. Finally, if E' is of finite
type, u(E', A) is uniform if and only if (E', A) is uniform.
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Proof: The fact that the T-crystal Fy,s(E’, A) is defined is an immediate
consequence of our assumption that the filtration A of E’ is compatible with
Fx/s. (3.3.1). To compute it, let us begin by working in a lifted situation ).
Let M, denote the filtration of Ey =: Fy s(Ey/) induced by Ay,. We know
by (2.2.1) that M, is G-transversal to (p,7). Because the ideal of X in YV
is just (p) and the filtration M, is saturated with respect to (p,v), M, is in
fact the filtration of Ey giving the value of the T-crystal Fy s(E’, A) on Y.
In particular, it is independent of the choice of Fy/s.

To prove that M, is horizontal, it suffices to check that each MYEY is
locally generated by sections z such that V"z € MY¥E" ® Q. If z is a local

section of A*F',

V' (z) = pn' (V'z) € pFys.(Qys® F}"/SAVIE')
C Fys:(Qyys ® MyE")

as required.

We know from (1.3.8) that the functor Fi g from the category of finite
type p-torsion free crystals of Ox//s modules to the category of crystals of
Ox/s-modules is fully faithful. Thus the full faithfulness of 4 will follow from
the following lemma.

5.2.6 Lemma: Suppose that (E', A) is an admissible T-crystal on X'/S.
Then for any (p,~) tame-gauge €, the natural map

Fy sA°Ey, — M3Ey
is an isomorphism. Furthermore, the map
n: (Ey., A) — Fyss.(Ey, M)

is injective and strictly compatible with the filtrations.
Proof: Let us consider the cohomological é§ functor

HY(M) =: Tor%¥' (M, Fy;s5,0y).
We can apply Proposition (4.4.3) with ¢ = 0 to conclude that each

Fy,sA°Ey, — Ey

is injective, and that we get in this way a G,-structure on Ey. It follows
that the image of Fy sA°Ey, in Fy By, must be MIEy.
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For each i we can form the following commutative diagram, in which we
have just written F for Fyys.

0 — GrfA Iy/ 4 EI;///AH_I E{// — ;// /Az 4//

I s g

0 — F,F*GryE,, — F.F*Ey,/A*E, — F.F*Ey, [AFE},

We know by Proposition (4.4.3) that the sequence along the bottom is exact.
Furthermore, if @ is any quasi-coherent sheaf of Ox/-modules, it follows
from (1.2.5) that the map

mo: Q@ — FX/StF)*(/SQ

is injective. This implies that the arrow f in the diagram above is injective.
It is now clear by induction on 7 that the arrows g and h are injective also.
The strictness of 7 follows. |

To finish the proof of (5.2.5), we recall that a p-torsion free T-crystal of
finite type (E’, A) is uniform if and only if Gry EY, is locally free, and the
corresponding F-span is uniform if and only if Gry E% = Fy/s Gry EY, is
uniform. The equivalence of these two follows from Corollary (1.3.7). |

5.2.7 Remark: Let Tg(Y'/S) be the category whose objects are triples
(EY, V', Ay), where (EY,, V') is a module with integrable connection on Y’/S
and Ay is a filtration which is G-transversal to (p) and Griffiths transversal
to V'. This category depends on Y’/S and not just on X'/S. If (EY, A)
is normally transversal to Fx/s, then the filtration M induced by A on
E" =: Fy,gE" is G-transversal to (p), and the proof of (5.2.5) shows that
it is also horizontal. In this way we obtain a functor from the category of
objects of Tz(Y’/S) which are compatible with Fx/s to the category of F-
spans on X/S. However, for objects of width at least p, the functor depends
on the choice of Fys.

5.2.8 Definition: An F-span ®: Iy gE' — E on X'/S is “admissible” if
and only if there exist an admissible T-crystal (E', A) on X'/S and an iso-
morphism of F,-spans u(E', A) = (E', M,). We shall denote the T-crystal
(E', A) associated to an admissible F-span ® by ax;s(®).

We should remark that the T-crystal associated to an admissible F-span ®
is unique, and even functorial in ®, because p is fully faithful. Consequently
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the question of the admissibility of an F-span is a local on the Zariski topology
of X. Notice that we have an equivalence between the category of admissible
F-spans of width less than p and the category of admissible T-crystals of
width less than p.

The following result gives more substance to our constructions.

5.2.9 Theorem: An F-span ®: F}/SE' — E of finite type is admissible if
and only if the filtration M induces on Fx gE descends to Ex. This is
automatically the case if Tor{* (Gry E, Rx/s) vanishes (e.g. if ® is uniform
in a neighborhood of the support of Rxs).

Proof: The “only if” assertion is trivial, and the second assertion follows
from (1.3.6) and the isomorphism Gry Ex = Gry Fy,sEx. It remains to
prove the “if” part of the first assertion. In other words we have to prove
that ® is admissible, provided that the natural maps

Fy/s(M'EX) — M'Ex

are isomorphisms for all i.

This is a local question, and so we may work locally on X/S, with the
aid of a parallelizable lifted situation Y. Let ®: Fy o(E', V') — (E, V) be
the realization of ® on Y. If Xo = Speck, Y = SpfW and Fy/s is an
isomorphism, so the filtration M automatically descends to a filtration on E’
and there is nothing more to prove. (This is essentially the construction of
Mazur in [23].) It will take us more work to carry out the construction in a
family. Let (E",V") =: F,*,/S(E’,V’), let ng: E' — Fy;s.E" be the natural
map, and define

ASE = np'(MFE"). (5.2.9.3)

The main difficulty is contained in the following lemma, which is the
logarithmic version of [24, 2.2.1].

5.2.10 Lemma: For all ¢ > 0, the maps (5.2.2.2)
nk: (B, Ay) ® Qs — Fxysa(Ex, M) © Q% /g
are injective and strictly compatible with the filtrations.

Proof: If (my,---my,) is a system of parallelizable logarithmic coordinates
for ), we see that n},(dm!) = dm;, so that n* locally looks just like a direct
sum of copies of 7%. Thus it suffices to prove the lemma for n =: 7%.
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With respect to our chosen set of coordinates we have Fy(m]) = pm;, and
hence Fydm; = pdm;. Let (0y,.. .,0n) denote the basis for Ty;s dual to
(dm,...,dm,), and (84,...,8,) the basis for Ty,s dual to (dmj,...dm;,).
Then 8;(Fyw') = F3(pdjw') for any section w' of Qy,/5, and hence

V() 0 =no V'(pd).

Define an endomorphism h” of E” as in the proof of (1.3.4); using for-
mula (1.3.4.2) we can write

i e

=1 j;=1

Since the filtration M on E” is horizontal, it is stable by A”. Furthermore,
we know from (1.3.4) that for any section e’ of E”, h”(€") is horizontal mod
p, and hence lies in the image of 7 modulo p. Now define an endomorphism
k' of E' by the analogous formula:

Then A’ is congruent to the identity modulo p, and nh’ = h"7.

We can now prove that 7 is strictly compatible with the filtrations.
Namely, suppose €’ is a section of E, such that n(e’) € M*E%. Then if
z' € EY, is any lifting of ¢, there exist y € M*Ey and z € EY such that
n(z') = y + pz. We proceed to show that one can in fact choose z’, y, and 2z
such that n(z’') = y + p’z for every j > 0, by induction on j. If this is true
for j with j > 0 we get:

n(@) = y+pz
h// ( /) — h”(y) +pjh”(3)
nh'(z') = R'(y) + p"(n(z') + pz")

n(K(@) - p2) = K'(y)+p+"

Since A’ is congruent to the identity modulo p and j > 0, h'(z') — p? 2’ is still
a lifting of €/, and our claim is proved. But for j > i, p’z € M*E”", and it
follows that ' € A*E’, as required. n

5.2.11 Lemma: The filtration Ay is G-transversal to (p) and compatible
with Fx/s, and the natural map F,';/SA@E’ — MFE" is an isomorphism.
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Proof: It follows immediately from the definitions that the filtration Ay is
G-transversal to (p). Indeed, if a € ASE' N pE', then

TIE(G) c MkE// an// — pMk_lE”,

and hence a € pAﬁ,‘lE’ . The reverse inclusion is even more obvious. Now we
proceed to show that the natural map Fy, sASE' — M*E" is an isomorphism
by induction on k. We have a commutative diagram

FysAS'E > FygASE — FysASExy — 0

Je=- 15 |k

0—M+-'g" £ M'E" —  MFERYy — 0.

The bottom row is exact because the filtration M is G-transversal to (p), and
the top row is exact because A is G-transversal to (p). The map ¢*~! is an
isomorphism by the induction hypothesis, and (5.2.10) tells us that M*E}Y
is precisely A’j,Eg(. Because we are assuming that the map

Fy;s(M*EY’) — M*Ex

is an isomorphism, we see that ¢% is an isomorphism. It follows that ¢* is
an isomorphism, as required. Finally we note that the injectivity of (% says
that Ay is compatible with Fx/s. |

In order to prove that Ay is Griffiths transversal to V' we shall use the
following converse to the argument of (5.2.5).

5.2.12 Lemma: Let (E', V') be a quasi-coherent sheaf with integrable con-
nection on Y'/S, let Ay be a filtration on E' which is G-transversal to (p)
and compatible with Fx/s. Let (E",V") =: Fy,s(E', V'), with the filtration
M induced by Ay. Then Ay is Griffiths transversal to V' if and only if M is
stable under V".

Proof: Note first that by (2.2.1), the filtration (E”, M) is G'-transversal to
(p). If = is a local section of ASE’" and M*E" is stable under V", we have

pn'(V'z) = V'n°(z) € Fy/s.(Qy)s ® M*E").
As (E", M) is G'-transversal to (p), it follows that
n'(V'z) € Fy/s.(Qy)s ® M*E').
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Since n! is injective and strictly compatible with the filtrations, V'(z) €
O} s ® AE |

To finish the proof of Theorem (5.2.9), we argue as in the proof of (5.2.5),
using Proposition (4.4.3) and the compatibility of A with Fx/s, that for any
one-gauge ¢, the natural map

FysASE' — MCE"

is an isomorphism. Let Ay, denote the saturation of Ay with respect to
(p,7). it is easy to check that Ay, is still Griffiths transversal to E’, and
hence defines a T-crystal (E', A) on X’/S. It is clear that this T-crystal is
compatible with Fx/s, and that u(E’, A) = (E”, M,). This completes the
proof that ® is admissible. |

The proof of (5.2.9) also gives us a method for computing the T-crystal
associated to an admissible F-span. For the sake of our later applications, it
is useful to summarize our constructions in the following way.

5.2.13 Theorem: There is a functor ax/s from the category of admissible
F-spans on X/S to the category of admissible T-crystals on X'/S which
are compatible with Fx;s. This functor is uniquely characterized by the
fact that, in a parallelizable lifted situation Y, it takes (®: Fy,sE' — E) to
(Ey:, Ay) (5.2.9.3). It induces an equivalence when restricted to objects
of width less than p, and takes the constant span id: Ox/s — Ox/s to the
constant T-crystal (Ox+/s, (Jx//s,7))-

[ |

5.2.14 Remark: Suppose that f: X — Y is a log smooth morphism of log
smooth and integral Sp-schemes and )/ S is a log smooth lifting of Y//S, We
can form a relative Frobenius diagram:

Fx;y & T7xt/yiys TX/Y/S
X - X -7 X = X

N7 |7 |7
y 5y 3y
N |

Fyg,
Se —= S

in which Fx/y is formed by taking the exact version of the induced map from
X to the fiber product X’ xy: Y. We have

Fx/s =TXx'/y'/s© FX/y and TXx)y = TX)Y/SOTX'/Y!/S-
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Now if (E’, A) is an admissible T-crystal on X'/S which is compatible with
Tx+/ys, then it pulls back to a T-crystal (£, A) on X which is compat-
ible with Fx/y, giving an admissible T-crystal on X/Y. 1t is clear that
px/y(E, A) = px/s(E', A). Now if Ox/s: F%/sE' — E is an F-span on X/,
we can let E =: T yysE' and view ®x/s as a map Px/y: F)‘(/YE' — E of
crystals on X/S. Forgetting some structure, we can regard this as a map of
crystals on X/}, and we find that we have an F-span on X/). It is clear
that this procedure defines a functor from the category of F-spans on X/S
to the category of F-spans on X/). We see that if ®x/s is admissible and if
ax/s(®x/s) is compatible with Fx/y, then ®x/y is admissible, and in fact

ax/y(Px/v) = Txiyyiysox/s(@xys)-
Finally let us note from the exact sequence
f*Ry;s — Rx/s — Rx;y — 0

that the support of Rx/y is contained in the support of Rx/s, so that if
®x/s is uniform in a neighborhood of the support of Rx/s, then ®x/y is
uniform in a neighborhood of the support of Ry/s, and all our compatibility
and admissibility conditions are fulfilled.

5.3 F-crystals, T-crystals, and Fontaine modules

In this section we introduce the notion of F-T-crystals, which we propose as
a p-adic analog of a variation of Hodge structure. We use the same notation
as before, but we assume in addition that the logarithmic formal scheme S
is provided with a lifting Fs of its absolute Frobenius morphism. If S is
log smooth over Spf W (where W has the trivial log structure), such liftings
always exists locally. More generally, W could be endowed with a log struc-
ture attached to a prelog structure sending every nonunit to zero (I propose
calling log structures of this form “hollow”.) On the other hand, the log
structure on W associated to the prelog structure N — W sending 1 to p
does not allow such liftings of Frobenius.
If now X/Sp is log smooth, we find from the commutative diagram

x £ x
| !
s 5 g
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a morphism of topoi Fxcris: X/Seris — X/Seris; frequently we just write Fx
instead of Fix.qs. Recall (1.2.3) that X/Sp is said to be perfectly smooth if it
is log smooth and integral and the relative Frobenius morphism is exact. We
say that a formal log scheme Y/S is perfectly smooth if it is logarithmically
smooth and integral and its reduction modulo p is perfectly smooth.
Classically, an F-crystal is a p-torsion free crystal of Ox/s-modules E
together with an isogeny ®: Fx E — E. We shall enrich this notion as follows:

5.3.1 Definition: Suppose that Y/S, is a perfectly smooth morphism of
fine log schemes, and let X/Sy be its reduction modulo p. An “F-T crystal
on Y/S” is a triple (E,®, B), where E is a p-torsion free crystal of X/S-
modules, ®: FxE — FE is a p-isogeny, and (E, B) is a p-torsion free finite
type T-crystal on Y/S which is compatible with Fx and with mx/s, such
that W;(/S((E, B)lx/s) = ()tx/s((I)).

Of course, we should really have replaced the equal sign in the above
definition with a specified isomorphism. Notice that admissibility of the
F-span and T-crystal to which an F-T-crystal gives rise is automatic from
the definition. When S = Spf W with the trivial log structure and X/k is
perfectly smooth, the map mx/w: X’ — X is an isomorphism, so that the
filtration Ax/w of E' = wj(/WE descends uniquely to E. Thus in this case
an F-crystal is the same thing as an F-T-crystal, and we can view ax;w(®)
as a T-crystal on X/W.

5.3.2 Remark: The hypothesis that the absolute Frobenius endomorphism
of Sy lift to S is a nuisance, especially in the logarithmic context. At the price
of a more cumbersome definition, this hypothesis can be relaxed somewhat.
Suppose that Y/S, is perfectly smooth, and suppose that we are given a
lifting Fs, of Fs, to S,. Then a “u-F-T crystal on Y/S” consists of: an
admissible F-span ®: Fy,sE' — E on Y/S, an admissible T-crystal (E', B')
on Y’/S lifting ay,;s(®), and an admissible T-crystal structure B on E,, with
an isomorphism 7,5 (E,, B) = (E,, B'). It is clear that, if Fg, lifts all the
way to S, an F-T-crystal gives us a u-F-T-crystal, and it turns out that the
structure of a u-F-T-crystal is enough for most of our applications.

The category of F-T-crystals is closely related to the category MFV !
defined in [9], at least in a local situation. We shall begin by reviewing this
category and the main facts about it. Let Y/S, be flat (e.g. smooth), suppose

!1 propose calling objects in the category M F()) “modules de Fontaine” in French, or
“Fontaine modules” in English.
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Fy:Y — Y is a lifting of the absolute Frobenius endomorphism of X =: Y;
covering Fs and let Y =: (Y, Fy). Consider the category M F4(Y) whose
objects are pairs (M, ¢), where M =: {M"*, j;,i € N} is an inverse system of
Oy-modules and where ¢ =: {¢;: Fy M* — M°} is a collection of linear maps
such that ¢;_; 0 j; = po ¢; for all i > 1. To give such a system ¢ is the same
as giving a map ¢: Fy L{(M) — M°, where ¢(i) =: —i and L} is the cokernel
of the map 9* defined in (4.5.0.1). Morphisms in the category M Fy,,(Y) are
defined in the obvious way, and one obtains an abelian category, with the
standard construction of kernels and cokernels. For any a,b € N MFj, ())
is the full subcategory of M Fy;;()) such that each M* vanishes if i > b, each
ji with ¢ < a is an isomorphism, each M* is coherent, and such that ¢ is an
isomorphism. We let M F,, () denote the union of all MFj,(Y) such that
b—a < n and MF(Y) the union of all MF,(Y). If ' — Y is a morphism
(compatible with the lifts of Frobenius), we have an evident functor from
MFyy(Y) to MFyg)'. Since the functor Li commutes with base change,
this functor sends M F(Y) to MF()'). When Y/S, is log smooth, one can
also consider the category MFV()/S), in which there are also given maps
Vi: M* — Qs ® M*~! satisfying the evident connection rule. (The point is
that the category M F,,V_,(y) is independent of the choice of Fy, as explained
by Faltings [9].) For the reader’s convenience we state and give a proof of
the following theorem of Faltings [9, 2.1], in a slightly more general form.

Theorem 5.3.3 (Faltings) Suppose (M, ®) is an object of MF(Y).

1. Each M is locally a direct sum of sheaves of the form Oy /p*QOy, and
each j;: M* — M*~! s injective and locally split (so the inverse system
M can be regarded as a filtered object).

2. MF(Y) is an abelian subcategory of M Fy;4()), and any morphism in
MF(Y) is strictly compatible with the filtrations.

Proof: We first discuss (5.3.3.1) in the case in which 4 = 1,s0 Y = X.
It is then clear that the complex T*(B) (4.5.0.1) can be identified with the

complex .
P M i 9, P M.
i>0 i>0
Thus,
L{(M) = Go(M) =: & Cok(j;), and
The following result, based on the technique of Deligne (4.5.2), replaces Falt-
ings’ argument using Fitting ideals.

106



T-CRYSTALS AND F-SPANS

5.3.4 Lemma: Suppose that R is an Artinian local ring with residue field k
and let M =: {M*, j;} be an inverse system of finite type R-modules indexed
by N, such that M* =0 for i >> 0. Then

lgGo(M ® k)IgR > 1g M°, (5.3.4.1)

and equality holds if and only if each j; is injective and each M* and Go(M)
are free.

Proof: There is an exact sequence:

0— CGi(M)— DM P M — Go(M) -0

i>0 i>0
As all the terms have finite length, we see that
lgGo(M) =1g M° +1g G1 (M) (5.3.4.2)

Let r be the length of R. It is clear from Nakayama’s lemma that for any
finite type R-module N, rlg(N ® k) > lg N, with equality if and only if N
is free. Apply this to Go(M) and use the fact that the functor Gp commutes
with base change to conclude that 1g Go(M ® k) > 1g Go(M), with equality
if and only if Go(M) is free. Using equation (5.3.4.2) we find

rlgGo(M ®k) > lgGo(M) = 1g M° +1g G1(M).

The claim is now obvious: equality in the equation (5.3.4.1) implies that
G1(M) = 0 and that Go(M) is free so that M is a finitely filtered object
whose graded object is free. |

We now can easily prove (5.3.3.1) when pu = 1. Without loss of generality
we may assume that X is local, and even that X = Spec R, where R is an
Artinian local ring. We argue by induction on its length r. If r > 1 write
Fr = fog, where g is a map to a proper quotient R’ of R. Then the induction
hypothesis applies to g*M and hence g*Go(M) is free. It follows that the
same is true of F3Go(M). Of course, this is automatically true if r = 1.
Thus we may proceed under this assumption. Then as F{Go(M) & M we
have

lg M° =1g F3,Go(M) = rlg FRGo(M) ® k

=rlg(FfGo(M ®k)) = rlgGo(M ® k).

Then (5.3.4) finishes the proof.
It is clear that it will suffice to prove the theorem when u is finite, which
we assume from now on.
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5.3.5 Claim: Suppose that f: (M, ®) — (M",®") is a surjection in M F(Y)
and that (M",®") satisfies (5.3.3.1). Then (M, ®') =: Ker f lies in MF(Y).

Proof: For any integer ' < p, let Y, denote the reduction of Y,, modulo .
Because Y/S,, is flat, we have an exact sequence

0— Oy“,, — OY - OY"; - 0:

where y" =: u — y'. This sequence remains unchanged when pulled back by
Fy, and in particular remains exact on the left. This implies that

TOI'?Y(FY*O)/, Oyﬂ,) = O,
and then by induction that
Tor{¥ (Fy.Oy, Oy,,) = 0 for all i > 0. (5.3.5.3)

Since the maps j! are locally split monomorphisms, (4.5.2.4) implies that,
locally on Y, Li(M") = M™, and the latter is locally a direct sum of modules
of the form OY“,. We conclude that Tor‘f’y(Fy,.Oy, Ls(M")) = 0. (Of course,
all this is obvious when Fy is flat.) Since the maps j; of M" are injective,
Ly(M") =0, and it follows easily that we have an exact sequence

0 — Lg(M') — Lg(M) — L(M") — 0.

This sequence remains exact when pulled back by Fy, and we obtain a
commutative diagram with exact rows:

0 — FpLy(M') — FLLy(M) — FpLy(M") — 0

l l |

0 — MIO — MO — M”O - 0

It follows that the vertical arrow on the left is also an isomorphism. [ |

We now proceed with the proof of (5.3.3) by induction on p, closely
following Faltings. Suppose u > 1 and the result proved for u — 1, and let
(M, ®) be an object of MF(Y). Let M" =: M/pM and M’ =: pM, so that
we have an exact sequence:

0-M-—->M->M'—-0.
As the functors Lj and F}, commute with base change, the map

F;LB(MII) N M/IO
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is an isomorphism, hence (M", ") € MF()). As M" is killed by p, (5.3.3.1)
is true for it, and the claim then implies that (M’, ®') € M F(Y) also. By the
induction assumption, it also satisfies (5.3.3.1). It is now immediate that the
maps ji: M* — M*~! are injective. Furthermore, the injectivity of the maps
7 implies that pM° N M* = pM*. It is then easy to check that (5.3.3.1) is
true for M. | |

To prove (5.3.3.2), suppose that f is a morphism in M F(Y). Since L§
and F}, are right exact, it is clear that Cok f is in MF(Y). Then by (5.3.5)
and (5.3.3.1), Im f is in M F(Y), and hence by the same reasoning Ker F is
in MF(Y). Finally, notice that the injectivity of transition maps of Cok f
immediately implies that f is strictly compatible with the filtrations. [ |

Later we shall also find a derived category version of Theorem (5.3.3)
useful. For complexes annihilated by p, see also (8.2.2). We begin with a
definition.

5.3.6 Definition: A “Fontaine-complex” on ) is a filtered complex (K, B)
onY together with an isomorphism in the derived category

: LFyT (K, B) — K.

5.3.7 Corollary: Suppose that ((K, B), ) is a Fontaine-complex on ) which
is bounded above and such that H(Grp K) is coherent. Then

1. There are natural isomorphisms
Ly(H*(B)) — HY(T*(K,B)) and FyLi(H*(B)) — H'(K).
In particular,each (H9(B),) becomes an object of MF(}Y).
2. Each HY(B'K) — HY(K) is injective and a local direct factor.

3. Each HY(B'K) is, locally on Y, a direct sum of sheaves of the form
Oy /p°Oy (for various e).

Proof: Our assertion is local so we may and shall assume that Y is affine.
We argue by descending induction on ¢, assuming that H? (K, B) satisfies
all three statements for all ¢ > q.

Begin by replacing (K, B) by a complex such that each Grg B is flat and
of finite type over Oy. Note that the fact that the maps

HY(j;): HY(B'K) — HY(B"1K)
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are injective implies by (4.5.2.3) that Lt HY(B) = 0 for ¢ > g, and hence
from the exact sequence (4.5.1.3) that the map L{H? (B) — HY (T*(K, B))
is an isomorphism for ¢ > ¢. Furthermore, since H? (j;) is split for ¢’ > g, we
see from (4.5.2.4) that LyH? (B) & HY (K) for ¢’ > g, and hence by (5.3.5.3)
and (5.3.7.3),

Tor:(Fy.Oy, HY (T*(K,B)) =0

in this range. Now applying the universal coefficient theorem and using the
quasi-isomorphism %, we find an isomorphism

FyLyH%(B) = Fy HY(T'(K, B)) = HY(FyT*(K, B)) = H'(K).

Thus we can apply (5.3.3) to the inverse system H9(B), so it too satisfies the
conclusions of our proposition. |

5.3.8 Proposition: Suppose that Y/S is flat and that (M, ¢) is an object
of MF(Y). For each i, let M} be the p®-torsion submodule of M* and let M}
be the quotient of M* by M, so that we have an exact sequence in M Fy;y())

0 — (My, ¢:) — (M, ¢) — (M, ¢5) — 0.
Then in fact, all the terms in this sequence lie in M F(}Y).

Proof: We may argue locally. Each j;: M — M®~! is locally split, and hence
so is each j;; and j; y Thus by (4.5.2), there is an isomorphism L§(My) = M?,
and hence Ly(M;) has no p-torsion; furthermore Li(My) = 0. It follows that
the sequence

0 — Lo(My) — Lo(M) — Lo(My) — 0

is exact, and that L§(M;) = Ly(M), and similarly L§(My) = Lg(M)ys. It is
then clear that (M, ¢;) and (My, ¢;) lie in MF(Y). |

Now we can explain the relationship between Fontaine-modules and F-T-
crystals.

5.3.9 Proposition: Suppose Y = (Y/S,, Fy) is a local situation, withY/S,
perfectly smooth and v > 2, and let u =: v —1. Then there is a functor from
the category of F-T-crystals on Y/S of width less than p to the category
MEY ((Y,/S,), taking an object (E,®, B) to the inverse system {B'E, :
i € Z}. When v = oo, this functor induces an equivalence between the
category of F-T-crystals on Y/S and the category of p-torsion free objects of
MEY ,(Y/S).
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5.3.10 Remark: In fact, to construct a Fontaine-module on a perfectly
smooth Y/S, (with liftings of Frobenius to Y and to S,), we only need
a p-F-T-crystal (E, B, B',®) on Y/S, plus liftings of Y’/S and (E', B) to

Sut1.

Proof: It is perhaps worthwhile to begin with the following result, which
holds without any restriction on the level.

5.3.11 Lemma: Suppose that Y/S, is perfectly smooth, with a lifting of
Frobenius Fy, and that (E,®, B) is an F-T-crystal on Y/S. Then for every
lifting of Y and (E, ®, B) to S, and every p-tame gauge ¢, there is a natural
isomorphism

FyLy(E®W,,B) = (N“E) ® W,.

More generally, we obtain an isomorphism as above from a u-F-T-crystal
(E,B,B',®) on Y/S plus liftings of Y’ and of (E', B') to S,41.

Proof: Let g be the control function (4.2.2) associated with (p,~y) and h the
control function associated with (p**!,7). Let (E', B') =: my,5(E, B), or, in
the case of a u-F-T-crystal, just the given T-crystal on Y’/S, and let C’ be
the lifting of B’ to a lifting of Y’ to S,41. Then h(i) > g(¢) + 4 when i > 0.
Hence by (4.5.3), (4.5.5), and the fact that L§ commutes with base change,
we have isomorphisms

my,5,L6(Eu B) = L§(E,,, B') 2 L§(E.,,C') % CE' @ W,..
Since € is p-tame and C' lifts A =: ax/w(®), we have C“E' = AE' by
(4.3.7). By (5.2.6) and equation (5.1.1.3),
Fy g A°E' = MSFy gE' = MFy gE' = NE.
Reducing modulo p* we find

FYLy(Ewn B) = Fyjsmys, Lo(Eu B)
Fy;5(AE') @ W,
(N“E)® W,

IR

[

| |

In particular, suppose (E, ®, B) has width less than p. We may and shall

suppose, without loss of generality, that its level is within [0,p — 1]. Let
t(i) =: —i for all ¢ € Z. Then we have isomorphisms:

FyLy(E®W,,B) > E®QW, (5.3.11.4)
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Indeed, for any m > 0 let ¢,,, be the maximal p-tame gauge which vanishes
at 0, and let €, be its “transpose” (4.2.1). If m < p it is easy to check, using
the fact that N*E = p'NCE for i > 0, that N»E = p™N™™E. If m is
greater than or equal to the upper level of &, N™™E = E, and we obtain
that N=E = p™E. Again from the facts that the level of (E, B) is within

[0,m] and that m < p we see that the natural map
T4™(E® W, B) — T (E ® W,,, B)

is an isomorphism. Identifying 7“t™ with T* and p™FE with F and applying
the previous lemma, we find the desired isomorphism (5.3.11.4). This com-
pletes the construction of the functor. Thanks to Faltings’ structure theorem,
it is clear that any torsion free object of MF,Y ,(Y/W) is given by a filtration
B on E =: M° by local direct factors, and that & is divisible by p* on B'E.
Finally, I claim that the saturation B, of B with respect to p is precisely the
filtration Ay attached to ®. Indeed, if z € Fy AYE, ®(z) = p'z for some z.
Since ¢ is an isomorphism, we can write z = ¢(y), where y € Fy Ly(B) is the
class of yo @ y; - - -. Then p'é(y) = ®(p'yo + p*~'y1 + - - ), and it follows that
T =p'yo+p" "'y + -+ € BLE. This shows that Ay is finer than B,, and the
reserve inclusion is obvious. |

5.3.12 Corollary: If (E, B, ®) is a u-F-T-crystal on Y/S such that Y; and
(E', A) lift to Sy, then (F, B) is uniform. In particular, if u4 > 1, any p-F-T-
crystal on Y/S of width less than p is uniform.

Proof: Our statement is local on Y, so we may assume that there exists a
local lifting of Frobenius. Then by (5.3.9) we see that (Ex, B) underlies a
Fontaine-module, and hence by (5.3.3) Grp Ex is locally free. In fact, we
see even that Grp E,_; is locally free, but we need to prove that Grp Ey is
locally free. . This follows from the following lemma.

5.3.13 Lemma: Suppose that (E, B) is a T-crystal on Y/S, whose restric-
tion to X =: Y, is uniform. Then (E, B) is uniform.

Proof: We know that Grg Ex is locally free over Ox. and we have to prove
that Grg Ey is locally free over Oy. By dévissage we see that Ex is locally
free, and since E is p-torsion free, the local criterion for flatness implies that
E7 is locally free for every local lifting T of Y. Thus Ey is locally free.
To prove that (E, B) is uniform, we still have to show that each Grg Fy is
locally free on Y. By the local criterion for flatness, it will suffice to prove
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that Tor;(Gr} Ey,Ox) = 0. which we do by induction on j. Assuming the
result true for all ¢ < j, we observe from the exact sequences

0 — B*'Ey — B'Ey — GrgEy — 0

and induction on i that Tor;(B’Ey,Ox) = 0, and so again by the local
criterion for flatness, B?Ey is locally free over Oy. It follows that we have
an exact sequence

0 — TordY (Gt Ey,0x) — B*'Ey ® Ox — B’Ey ® Ox.

But our definition of T-crystals requires that the filtration (Ey, B) be nor-
mally transversal to p, so the arrow on the right is injective and the Tor
vanishes. |

5.3.14 Corollary: IfY/S is a perfectly smooth logarithmic formal scheme,
the operation of killing torsion defines a functor from the category MFY(Y/S)
to the category of uniform F-T-crystals on Y/S. Under this functor, the fil-
tration M on M° corresponds to the filtration B.
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6 Cohomology of T-crystals

Let S be a fine logarithmic formal W-scheme, flat over W, which we
view as a PD-scheme by using the unique PD-structure on the ideal (p). Let
S, C S be the subscheme defined by I =: (p*), a sub-PD-ideal of (p). Let
X/S, be integral and logarithmically smooth and suppose (E, A) is a T-
crystal on X/S. We will be interested in studying the cohomology of (E, A)
as a filtered object in several senses. For example, we shall want to study
the bifiltered object (F, A, (I,7)), as well as the bifiltered object (E, A, P),
where P is the p-adic filtration. Furthermore, we shall want to study the
gauge structure on F defined by A using formula (4.3.4.2) with respect to the
element p. Let J; C Os denote the 7" divided power of the ideal (p*). Then
J. is a multiplicative p-principal filtration and is determined by a control
function g = g,, with g,(1) = p. Because the filtration A is saturated with
respect to (p*,7) = Ty, A%E = A°E for any gauge € € E, by (4.3.7.2). Thus
we may as well restrict our attention to g,-tame gauges. Let us note also that
if X can be embedded in a logarithmically smooth Y/S and D =: Dx(Y),
then by (3.3.3), (Ep, Ap) is G-transversal to (p*,7). Hence by (4.3.4) we
have a G ) =: G 7,-structure on £p which we denote by Ag.

6.1 The Poincaré Lemma

We begin with the analogue of the filtered Poincaré lemma for T-crystals. If
i: X/S — Y/S is a closed immersion, with Y/S logarithmically smooth, the
value Ep of E on the PD-envelope D =: Dx(Y) of X in Y has a natural
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integrable connection V and filtration Ap which is G-transversal to V. Let
AL(QL ® Ep) =: Q) ® AT9ED;

one obtains in this way a filtered complex which we denote by (Ey, A) or
(Kyys, A) and which we call the “De Rham complex of the T-crystal (E, A)
with respect to Y/S.”

6.1.1 Theorem: Suppose i: X/S — Y/S is a closed immersion, with Y/S
logarithmically smooth. Let (E, A) be a T-crystal on X/S, and let J be
a filtration of Ox/s by sheaves of ideals. Then there is a bifiltered quasi-
isomorphism:

RUX/S,.(E, A, \7) = (EY7 A7 57)

Furthermore, this quasi-isomorphism induces a filtered quasi-isomorphism of
G-filtered objects:
R’u,x/s,(E', Ag) = (Ey, Ag).

Proof: We use Grothendieck’s technique of linearization of differential op-
erators, discussed for example in §6 of [4]. We give only a sketch. Re-
call that for any Oy-module with integrable connection (Ey, V) there is
a complex Fy of Oy-modules and differential operators and then a com-
plex L(Ey) of crystals of Ox/s-modules on Cris (X/S), with Ox/s-linear
boundary maps. Moreover, there is a natural isomorphism of complexes
L(Qy,s) ®oy,s Ey = L(Ey) [4, 6.15]. The complex L({2y,s) comes equipped
with a canonical filtration Filyx (whose definition we recall below). If E is a
crystal of Ox/s-modules, the value Ep of E on the divided power envelope
Dx(Y) of X in Y has a natural integrable connection, and there is a canon-
ical isomorphism L(Qy,s) ® E = L(Ep). If (E, A) is a T-crystal, we shall
want to consider the tensor product (L(Qy,s), Filx) ® (E, A), endowed with
the tensor product filtration, which we denote by (L(Ey), A).

6.1.2 Proposition: There is a natural map of bifiltered complexes of O xs-
modules

(B,A,J) — (L(E),A,J).

Locally on (X/S)cris, this map is a bifiltered homotopy equivalence. In par-
ticular it is a bifiltered quasi-isomorphism, and it induces a filtered quasi-
isomorphism of G-filtered objects

(E,Ag) — (L(Ey), Ag)
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Proof: The proof of [4, 6.13] shows that the map
(Oxss,Ix/s,7) — (L), Filx)

is, locally on (X/S)crs, a filtered homotopy equivalence. Furthermore, since
the filtration A on F is saturated with respect to (Jx/s,v), the tensor product
filtration of Ox/s ® E induced by A and (Jx;s,7) is just A. It follows that
the map

(E, A) — (L(E"), A) = (L(Qy;s) ® (E, A))
is locally a filtered homotopy equivalence. The proposition now follows from
the following lemma.

6.1.3 Lemma: Let f:(K,A) — (K',A’) be a morphism of filtered com-
plexes of Op-modules. Then f induces a morphism of bifiltered complexes

(K,A,TJ)— (K'A', J).

Suppose, moreover, that f is locally a filtered homotopy equivalence. Then
f also induces bifiltered homotopy equivalences, and in particular bifiltered
quasi-isomorphisms:

(K,AI)— (K',A,I) and (K,Ag)— (K',Ag)

Proof: Suppose g: (K, A) — (K', A") is a morphism of filtered sheaves of Ox-
modules. Then g automatically maps I"K to I"K' for all n, and hence also
I"KNA™K to I"K'n A" K’ for all n and m. Thus, g is compatible with
the bifiltrations. Applying this remark to a morphism of filtered complexes
f as in the lemma, we find the first statement of the lemma. If f is a
homotopy equivalence on some open subset U of X, then on U we have a
retraction s: (K’, A’) — (K, A) and homotopy operators h;: (K, A) — (K, A)
and hy: (K', A") — (K', A") to which we can also apply the remark. |
Warning: Caution is required because in general the maps

(K,A,J)— (K',A",J) and (K,Ag)— (K',Ag)

induced by a filtered quasi-isomorphism (K, A) — (K’, A’) are not (bi)filtered
quasi-isomorphisms.

Let Y =: ¢*(Y) in (X/S)eis, which we identify with the object Dx(Y),
which prorepresents it. Recall from [4, 5.26] that there is a map

¢: (X/S)crisly'"—’DX(Y)zar = Xzar'

Let us write Q‘)’-,/S for Op ® QY 5.
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6.1.4 Lemma: There are natural isomorphisms:
AENPL(Q,s® Ey) = jy,¢"(Q, s ® A'By N P Ey)
AL(Q s ® Ey) = 36" (55 ® A[—4| Ey)
Proof: An isomorphism L(Q, ¢ ® Ey) = jy,¢" (2, ® Ey) was constructed
in [4, 6.10]; we need only check that it strictly preserves the filtrations. This
is clear for the p-adic filtration, and we check it for the A-adic filtration
locally, on an object T of Cris (X/S) which we may assume admits a map

h to Y. To simplify the notation, we just check the case ¢ = 0, and let
D =: Dx(T xsY), with wr: D — T the natural projection. Recall that

Jy.d*(A'Ey) = 71, A¥Ep.
Moreover, L(Ox) = Or ®o, Oby,s(1), where Dy/s(1) is the PD envelope of
X inY xgY, and Filk C L(Ox/s) is the kth divided power of the PD-ideal

K generated by the ideals of X in T and in Dy/s(1). It is shown in [4, 6.10]
that the natural map

9:Or Koy ODY/S(I) — Dx(T Xg Y)

is a PD isomorphism taking K to the ideal J of X. Thus, g identifies A*L(E)
with the tensor product filtration of (n}E7, Ar) and (J,~). This is just the
expansion of the filtration Ar with respect to (J, ), which by Lemma (3.1.1)
is the same as the filtration A of Ep, as desired. The assertion for gauges

follows. (For more details on the gauge construction, c.f. pp. 8-15 and 8-16
of [4].) n

6.1.5 Lemma: All the terms of the filtered complexes (L(E"),A,T) and
(L(E"), Ag) are acyclic for ux/s,.

Proof: This lemma is essentially proved in [4, §7], but is not stated explicitly
there. For the sake of clarity, we briefly sketch the argument, which uses the
intermediate site Cris (X/S.) defined on page 7-22 of [4]. We shall also use
the notation of the diagram on the top of page 7-24 of op. cit. Suppose that
F is one of the terms of one of the above complexes. For each T € Cris(X/S),
Fr is quasi-coherent, so by [4, 7.22.2],

RUX/s,F = RMRUX/S,,*(";;F) = R?TX*RUX/S.*.]'*F.

Now by (6.1.4), [4, 6.10], and [4, 5.27}, each sheaf j,,j* F is acyclic for ux/s,,
and since these sheaves also satisfy the hypothesis of 4, 7.20], Rux/s.j*F =
vx/s.+J* F is acyclic for mx, also. [ |
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6.1.6 Lemma: If e € G, the natural map Rux;s.,A°E — A°Ey is a quasi-
isomorphism.

Proof: We have a filtered quasi-isomorphism (F, Ag) — (L(Ey), Ag), and
the terms of the latter are acyclic for ux/s., so we obtain an isomorphism in
the filtered derived category:

Rux/s.(E, Ag) = ux/s.(L(Ey), Ag)-

For any ¢ € G we have ux/s,A°L(Ey) = lim A°E, . Thus, the filtered
complex ux/s.(L(Ey), Ag) is the p-adic completion of the filtered complex
(Ey, Ag) and we denote it by (Ey, Ag). We have a natural map of filtered
complexes X

(Ey,Ac) — (Ey, Ac),
and it remains only for us to show that it is a filtered quasi-isomorphism. In
other words, we have to show that for any € € G, the induced map

ke AEy — AEy

is a quasi-isomorphism. Because the filtration A on Ey has level within
[a,0), we have A°Ey = ¥;5,p*PA*Ey. Moreover, if € is bounded below, a
finite sum suffices, and hence the map k. is an isomorphism of complexes.
(This is proved in [4, pp.8-15-16] in the special case of the constant T-crystal,
but the general case is essentially the same.)

To deal with unbounded gauges € (which are not very important), we
claim first that for j << 0 the map

RUX/S,AGVCJ'E - RUX/S,AGE

is an isomorphism. We may check this fact locally, and hence we may choose
a lifting Z of X. In this case, A is just the (p*,v)-adic filtration of Ez, and
since (Ez, A) has level within (0o, b), AV Ez = A°Ez for j << 0. The same
holds for the De Rham complexes, which calculate the derived functors in
question, so the claim holds.

Returning the proof of the lemma, we observe that for j << 0, the maps

Aevchi/ _’Ach,-_lE)’/ —*AGEY

are quasi-isomorphisms. Taking the direct limit as j tends to —oo, we see
that the map A°Ey, — A°Ey is also a quasi-isomorphism, as required. |
Theorem (6.1.1) is an immediate consequence of the above lemmas.  #
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6.1.7 Corollary: Suppose that i: X — Y and i: X — Y’ are two em-
beddings of X, with Y/S and Y'/S formally log smooth. Suppose that
f:Y' = Y is a morphism such that f oi = i. Then f induces (bi)filtered
quasi-isomorphisms:

f‘:(El./’AvJ) - (E)"HAvj)

I (EY7AG) - (El‘/" AG)
|

6.1.8 Remark: If X/S cannot be embedded in a smooth scheme over S,
we can use simplicial techniques to calculate Rux/s,. Let {X;:i=1,...7}
be an open cover of X such that there exist closed immersions X; — Y;,
with Y;/S smooth. For each multi-index I =: (I,...I,) let X; =: N; X,
and Y; =: xsY¥;;. Then we have a locally closed immersion X; — Y and
we can form the divided power envelope D; of this closed immersion. For
each n let X, =: [[{X; : |I| = n} and similarly for Y, and D,; then the
standard projection maps define simplicial schemes X,, Y,, and D,. We have
an evident morphism €¢*: X, — X, and it is standard that for any abelian
sheaf E on X,, the natural map £ — Re¢}e¢™F is an isomorphism. A similar
statement holds for the bifiltered derived category. In our situation we have
a commutative diagram of toposes (c.f. [4, pp. 7.13-7.14])

(XO/S)Cris uﬂ’s Xo

+
chria l€+

(X/S)eris -5 X

If (E, A) is a T-crystal on X/S we denote its inverse image on X,/S by the
same letter. Carrying out the construction of Theorem (6.1.1) with respect to
the embedding X, — Y, we obtain an isomorphism Rux,s.€}i,(E, A, I) =
(Ey,,A,I), and hence we find an isomorphism

Rux/s.(E, A,T) = Re} Rux, js.(E, A, T) = Re} (Ey,, A, T).

Now if X/S is separated, Re}(Ey,,A,T) is represented by the total com-
plex (Ky,;s, A, ) associated to the filtered double complex which in degree
P, q is Oyr=p(Ep, ® O, /8 A,T). Thus, we find a simplicial version of Theo-
rem (6.1.1):

R’U,X/S,,(E,A, I) = (Ky./s,A,I).
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6.2 Kodaira-Spencer sheaves and complexes

In order to study the cohomology of a T-crystal (E, A) on X/S, it is useful
to consider also the sheaves Gry E on Cris (X/S) and Gry4 E,,, where E, =:
E/p*E. (Note that if i: Cris(X/S,) — Cris(X/S) is the inclusion, we have a
natural isomorphism Rux;s,(E,, A) = Rux;s,(i*E, A).) It would be natural
to call these either the “Kodaira-Spencer sheaves” or the “Hodge sheaves”
attached to (E, A). For technical reasons it is often convenient to restrict our
attention to the realization of these sheaves on the divided power envelopes of
X in smooth schemes Y over S—i.e. to sheaves on the restricted crystalline
site. Their values their can be endowed with several natural filtrations. For
example, it is useful to consider the filtrations induced by p-adic filtration P,
and the divided power I-adic filtration I, =: (I, g) on E.

6.2.1 Proposition: Suppose X — Y is a closed immersion, where Y/S is
smooth. Then there are canonical filtered quasi-isomorphisms:

Gra Kyys
(GI’A Ky/s, P)
(Gra Kyys, 1)
Gry Ky, s

IR

Rux;s. Gra E
Rux/s. Gra(E, P)
Rux/s. Gra(E, 1)

Rux/s,. Gra E,,

R 1R

IR

Furthermore, the complexes listed on the right are complexes of Ox-modules
with Ox-linear boundary maps.

Proof: The existence of the quasi-isomorphisms follows from (6.1.1). Since
Gry Ey is annihilated by the ideal of X in Dx(Y’), the complexes on the right
are in fact complexes of O y-modules. The fact that the boundary maps are
linear follows as usual from the Griffiths transversality of A to V and the
Leibniz rule. [ |

For example, the proposition shows that we have natural isomorphisms:

R‘ll,)(/s“, GI‘A E” = GI‘A ]‘,X/S,,-
Recall that if we apply this to the constant T-crystal (Ox;s, Jx/s,7) we get
Ruxys,. Gy Os, = Qs [—i].

6.2.2 Remark: Associated to the filtered sheaf (E,, A) on (CrisX/S,) and
the functor fx/s,. is the usual spectral sequence

Ei’j(EI“ A) = Ri+jfx/5“‘ GITA E“ = Ri+ij/S,,*E;u
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Using the isomorphisms of (6.2.1), we can rewrite the E;-term in terms of
the cohomology of a complex of sheaves and Ox-linear maps on X with its
Zariski topology:

R fxss,. Gty B, = R f, Grly Kx/s,
where Gri K x/s is the complex
GrYy Ex — Grf;lEX@Q}(/S — "'Gr’}f"Ex@DQ}/S e

in which the term Gri{? Ex ® Q% /s appears in degree ¢. In order to make
the indices compatible with the usual Hodge spectral sequence in the case of
the constant T-crystal, we introduce the following notation:

Qi ay/s =: Grly Kx/s(i] = Ruxys. Grly E,,[i] (6.2.2.1)

If the filtration A is understood, we will write Q¢ instead of Qg 4/5- Then
our spectral sequence can be written:

EY'(E,, A) & R™ fx/5.(Grly E,) = R f.(X, Qfy/s) = R fx/s.(E,).

We shall call this spectral sequence the “Hodge spectral sequence” associated
to a T-crystal (E, A).

The Kodaira-Spencer sheaves Gry E can be analyzed in terms of suc-
cessive extension of quotients of the sheaves Gry E,,, as the following result
shows.

6.2.3 Proposition: Let I, denote the filtration of Gry E induced by the
(I,)-filtration on E, and let I denote the filtration of Grq E induced by the
usual I-adic filtration. Then there are natural isomorphisms of sheaves on
the restricted crystalline site:

Gr},, Os ®o, Gy’ E, = Gr}  Grj E.
L4
If (E, A) has level in [a, 00) and n < p+a, we also have natural isomorphisms:

A"E,~ Gty A"E  and

Gr} 05 ®os Gy 7 E, = Grj(A"E/IA™E) if j > 0.
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Proof: If D is a fundamental thickening of an open subset of X, then by
Proposition (3.3.3) we see that (Ep, A) is G-transversal to (I,) and com-
patible with each p'. It follows from Proposition (4.3.4) that (Ep, A) is given
by a Gz, -structure. In particular, if g is the control function corresponding
to (I,7), and if €, is the maximal g-tame gauge which vanishes at n, then
A"Ep = A*Ep. Recall that ¢,(i) = g(n—1) for i < n, and Il = (p9®). Let
c denote the constant gauge whose value is g(j), by property (1) of (4.3.3),
we see that A°Ep N A*"Ep = A%V Ep. As (cVe)(n—1) =g(i) if i > j and
= g(j) if i < 7, it follows that

IVE N A"Ep = IVAIEp 4 [UHI A==, 4. (6.2.3.2)

This implies that the natural map

10y ® A" Ep — IVEL N A™Ep
is surjective modulo IVt Ep,. Let I ; € Og denote the annihilator of Gr],',7 Og,
i.e. (poUtD-90)), We see that multiplication by p?") induces an isomorphism

A" Ep/(I;EpN A" Ep) = Gr] , A"Ep.
Now I C I; and the filtration (Ep,,A) is normally transversal to I;. It
follows that multiplication by p?9¥) also induces an isomorphism:
A" Ep/(I;EpN A" Ep) 2 Gr], Os® A" Ep,.

We thus obtain an isomorphism

Grj, Os® A"JEp, = Gr}  A"Ep (6.2.3.3)
It is clear that this implies the first statement of the proposition.

For the second statement, first note from the standard formula [4, 3.3]
for the ordinal of p™/n! that I7 = IV if j < p. Nowif 0 < j<n—a <p,
formula (6.2.3.2) reads:

NENA'E = [UAIE 4 [UHIA~I-IE 4 ... 4 [Irmelgep
= PA"IE4 PHAYITIE 4+ ... "% A°E
FAYIE
Thus if 0 < j <n —a we have
FENAE = PA™JE and
PHENA"E = PENA"ENPHYE
= (FA"E)NnIPYE
F(A™ENIE)
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Thus we have an isomorphism:
P/ @ A"IE, — G A™E. (6.2.3.4)

If also j > 0, FENIA"E = A"+ E, 50 (6.2.3.4) also induces an isomor-
phism . . .

/P @ Gry? E, — Grj(A"E/IA™E).
This proves the second statement if j <n —a. If j > n —a,

FECII™9E C IA™E

so Grj(A"E/IA™E) vanishes, as predicted by the formula. |

6.3 Higher direct images of T-crystals

Throughout this section we suppose that X/S,, is proper and logarithmically
smooth and integral; here 1 € N or p = oo.

6.3.1 Proposition: Let (E, A) be a T-crystal on X/S of level within [a, b],
and let d be the relative dimension of X/S. Suppose that n is an integer
such that R" fx;s.E and R™* fx,s.E are p-torsion free over Os and that the
Hodge spectral sequence (6.2.2) of the restriction of (E, A) to X, degenerates
at E, in degree n, i.e. E}’ = EY whenever i 4+ j = n. Then the maps

AkRnfx/s.E = Rnfx/s.(AkE) - Rnfx/s,E

are injective for all k and define a filtration on R" fx,s. E which is G-transversal
to (g,p), of level within [a,b+ d]. Furthermore, if € is any p"-tame gauge,
there is a natural isomorphism:

A°R" fx;s.E = R" fx/s.(A°E).

Proof: We describe the proof when X can be embedded in a logarithmically
smooth and proper scheme Y/S, and let D be the divided power envelope
of X in Y; the general case follows by means of the usual simplicial meth-
ods (6.1.8). According to Theorem (6.1.1), the cohomology of (E, Ag) is
calculated by the Zariski cohomology of the G-filtered complex (Ky;s, Ag),
where Kyys is the De Rham complex of Ep. As we have observed, Proposi-
tion (3.3.3) implies that the terms in the complex (Ky/s, A) are G-transversal
to (g,p), and it follows that we have a G z-structure in the category of com-
plexes of sheaves of modules on X,,,.
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As X/S,, is smooth, it follows from (6.1.1) that the natural map
(Ev/s/p*Ey;s, A) = (Ex/s,, A)

is a quasi-isomorphism. Our hypothesis on the the hypercohomology spectral
sequence of the filtered complex (Grg Ky;s, A) = (Kx/s, A) implies that each

Hq(Ai GI‘(}); Ky/s) - Hq(GI‘(])a Ky/s)

is injective for ¢ = n and n + 1. Thus we can apply (4.4.3) to conclude that
the map R™f x/s,Ak E — R"fx;s.E is injective and defines a filtration which
is G-transversal to (g, p), and that formation of R™fx/s. is compatible with
the construction A¢.

It is clear that A°R"fx/s.EE = R"fx;s«E. On the other hand, if k¥ > b,
A¥*Ex = 0 and hence if k > b+ d, the complex A* K x/s, = 0. It follows
that A*R"fx/s,E, vanishes if k > b+ d. This shows that the level is as
described. |

6.3.2 Theorem: Let f: X — Y be a logarithmically smooth, proper, and
integral morphism of logarithmic schemes which are logarithmically smooth
over S,. Let (E, A) be a T-crystal on X/S and suppose that R" f s, E and
R™!f, ...E are locally free over Oyy/s, and that the Hodge spectral sequence
relative to fx,/y, of the restriction of (E, A) to Xo degenerates at ) in degree
n. Then the filtration

A*R™ fx)y.E =: R"fx)y.(A*E) C R fx)v.E

defines a T-crystal on Y/S. Moreover, for any i’ < u, the restriction of this
T-crystal to (Y,,/W) is the ¢ direct image of the restriction of (E, A) to
(Xu’/ S )

Proof: We may work locally on Y, with the aid of a smooth lifting ) of Y to
S, and use the description (3.2.3) of the category of T-crystals on Y,/S. It
follows from the previous result that (R"fx/y.E, A) is G-transversal to the
divided power ideal (p*,v) of Y in ), compatibly with all p*. Because f is
logarithmically smooth and integral, it is flat {20, 4.5, and it follows that base
changing for crystals works the same way as in the classical case [20, 6.12].
In particular, since R™**!fx/y,E is locally free, the formation of R" fxyE
commutes with base change, and R"fx/y,E forms a crystal on Y/S whose
crystal structure is determined by the Gauss-Manin connection on Ey. The
fact that the filtration induced by A is Griffiths transversal to V is proved
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in the same way as the classical case. Finally, note that the restriction of
(R™fx/s+E, A) to Y, is defined by taking the saturation A, of A with respect
to (»*,v). Thus, for each i, Af‘,R" fx/y«E = A%R" fx;y.E, where ¢; is the
maximal p*-tame gauge which vanishes at i. Since ¢; is also p#-tame, we see
that

AZ:Rnfx/y,,E = Rnfx/ytAe"E = Rnfx/y*AL,E.

This last is precisely the i** level of the direct image of restriction of (E, A)
to X w / S. |

6.3.3 Proposition: With the notation of (6.3.2), suppose that Yp is re-
duced, that (E, A) is a uniform T-crystal on X/S, and that the cohomology
sheaves R" feriso E are locally free Oy;s-modules for all n. Suppose also that
for each closed point y of Y, the Hodge spectral sequence of the restriction
of (E, A) to the fiber X(y)/k(y) of f over y degenerates at F,. Then for
all n, (E, A) satisfies the satisfies the hypotheses and conclusion of Theo-
rem (6.3.2), and the T-crystal (R"furisr E, A) is uniform on (Y,/S). If Y
is another smooth logarithmic S,-scheme, then formation of the T-crystal
(R™feriss E, A) commutes with base change Y -Y.

Proof: Because X/Y is flat and the cohomology sheaves are locally free,
their formation commutes with all base change. By hypothesis, the hy-
percohomology spectral sequence of (Gr% E(y), A) degenerates at E;, and
therefore the rank of H™(X (y)/k(y), Gra Gr% E(y)) over k(y) equals that of
H™(X(y)/k(y), Gr% E(y)), hence is locally constant. It follows that the co-
herent sheaf R" fx,s, Gry Gr% E is locally free on Y, and that its formation
commutes with base change.

Choose a local lifting Y of Y as above and let E =: R"fx/s,F with
its induced filtration A, and let E; =: E/p'E. We know that (E, A) is
G-transversal to g, and in particular that the induced filtration on E, is
normally transversal to p', i.e. that A'E, ® Oy, — E| is injective. As E,
is flat over ), this implies that Tor,(E,/A'E,, Oy,) = 0, where the Tor is
computed on Y = }Y,. As (E;/A'E) is flat over Yi, the local criterion for
flatness implies that (E,/A'E,) is also flat over Y,,. This proves that (E, A)
is uniform as a T-crystal on Y,,. The fact that its formation commutes with
base change follows easily from the fact that this is true modulo p* and
Lemmas (2.3.2) and (2.2.1). ]

6.3.4 Remark: Instead of assuming that Yp is reduced and that the Hodge
spectral sequence degenerates fiber by fiber, we could instead have assumed
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that the sheaves R” fx/v.(Gra Ex) are locally free and that the Hodge spec-
tral sequence for fx/y degenerates at E;. Let us also remark that if X
and Y have trivial log structures and are smooth over W, and if E comes
from a crystal on X/W, then we know from [27, (1.16,3.7)] that the rank
of H*(X (y)/W (y), E(y)) is a locally constant function of y. If we assume
that for every y these modules are torsion free, then they they are free, and
it follows from the universal coefficient theorem for crystalline cohomology
that the rank of

H™(X(y)/W(v), E(y)) ® k = H*(X (y)/k(y), Grp E(y))

is locally constant. Then standard techniques show that each of the sheaves
R" fx/v,+(Gr% E) and R"fx,y.(E) is locally free and that its formation com-
mutes with base change.
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7 Cohomology of F-spans—Mazur’s Theo-
rem

This section is devoted to the formulation and proof of a generalization of
Mazur’s fundamental theorem [23] about Frobenius and the Hodge filtration
to the case of cohomology with coefficients in an F-span. In essence, our
theorem will assert the compatibility of the functor ax/w with formation of
higher direct images.

Throughout this section we let S denote a p-adic formal scheme, flat
over W and endowed with a fine logarithmic structure. We let X/S, be a
smooth and integral morphism of fine log schemes; y will be zero (and hence
X = Xo) unless explicitly stated otherwise. Eventually we will also require
that X/Sy be perfectly smooth (1.2.3); in any case we let Fix/s,: Xo — Xp
or just Fx/s denote the exact relative Frobenius morphism (1.2.3.4). We do
not need a lifting of the absolute Frobenius endomorphism Fg, until later,
when we discuss F-T- crystals.

7.1 Cohomology of the conjugate filtration

If ®: Fy gE' — E is an F-span on X/S, we let E” =: Fy,oE'. As described

in (5.1.2), we have filtrations M and P on E"= E"®Q, and P and N on
E =: E® Q, as well as a bifiltered isomorphism

&: (E",M,P) — (E,P,N).
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In particular, for each integer j we can apply the functor Rux/s. to obtain
an isomorphism in the bifiltered derived category of complexes of Zariski
sheaves on X,

(Rux/s,P'E", M, P) — (Rux/s.N’E, P, N).

These fit together for varying j’s to form an inductive system of isomor-
phisms, which we denote abusively by

(Rux/s.E", M, P) — (Rux/s.E, P,N).

(Note that the systems N7 E and P E are cofinal, so “lim” NIE = “lim” PiE.)
The existence and functoriality of (Rux/s.E’” , M, P) and (Ru X/S*E', P,N)
follow from the functoriality of the crystalline topos. The following proposi-
tion describes how they may be computed explicitly in terms of filtered De
Rham complexes.

7.1.1 Proposition: Suppose that X can be embedded as a locally closed
subscheme of a logarithmically smooth S-scheme Y, let D be the (p-adically
complete) PD-envelope of X inY', and let Ky, s denote the De Rham complex
of E on D, with Iv(y/s =: "li_r__n”PjKy/s. Then there is a commutative diagram
of isomorphisms in the bifiltered derived category:

(Rux/s.E",M,P) — (Ky,, M,P)

Js L
(Rux/s.E2,P,N) — (Ky;s, P,N)
| |

Proof: This would be standard, except that we must compare the filtrations
by subsheaves M and P (respectively P and N) of E" (resp. E), and the
filtrations by subcrystals (c.f. Remark (3.0.6)). The difference between these
is parasitic (3.0.5), and we have some technical work to do to show that it
causes no essential problems when we pass to cohomology.

If : E' — E is a morphism of crystals of Ox,s-modules we let K(f) denote
the kernel of § computed in the category of all sheaves of Ox/s-modules. If
6 is a monomorphism in the category of crystals, K(6) will be parasitic (3,
V,2], but need not vanish, in general. When working over a base scheme on
which p is nilpotent, Rux/s, annihilates all parasitic sheaves ([3, V,1.3.3]),
but I do not know if this is true in our context, when S is a formal scheme.
We shall have to make do with the following result.

130



COHOMOLOGY OF F-SPANS—MAZUR'S THEOREM

7.1.2 Lemma: Suppose that §: E' — FE is a monomorphism in the category
of crystals of Ox/s-modules whose cokernel has bounded p>-torsion. Then
RUX/S.,K(G) =0.

Proof: This is a local question, and we may assume that X admits a smooth
lifting Y/S. For n > u, we can restrict 6 to the site Cris(X/S,) to obtain
a map of crystals 6, on X/S,. Let K, denote the kernel of 6,,, computed
in the category of crystals of Ox,s,-modules. Because Cok(#) has bounded
torsion, the inverse system {Tor;(Cok(f), Ox/s,) : n > p} is essentially zero,
and hence the same is true of its quotient system {K,}. Because K, is a
crystal, Rux/s,.«Kn is represented by the De Rham complex K, with respect
to Y/S, and in fact the inverse system of these complexes is essentially zero.
There is an evident map of sheaves of Ox;s,-modules t,: K, — K (6,), whose
kernel K/, cokernel K] are parasitic on Cris(X/S,).

In order to pass from the collection of sites Cris(X/S,) to Cris(X/S), we
use the intermediate site Cris(X/S.) and the diagram on the top of page 7-28
of [4]. It is clear that we have an exact sequence of quasi-coherent sheaves

0—-K.—-K —-K0)—>K'. -0

on Cris(X/S.); furthermore K (.) is just the restriction j*K () of K(6) to
Cris(X/S.). Since K}, and K], are parasitic, Rux/s,«K;, = Rux/s,«K, =0,
and hence by [4, 7.22.1] Rvx/s.K'. = Rvx/s.K". = 0. It follows that
Rux/s.K. = Rux;s.(K(6.)), and applying [4, 7.19] and [4, 7.22.2], we find

Rux/s.K(0) = Rux;s.Rj.j* K (0) = RWX*R’UX/S,.K(G.) = Rrx.Rux/s.K..

Now Rux/s.K. is represented by the inverse system of De Rham complexes
{K,}, which we have seen is essentially zero, and hence is annihilated by
Rmx.. ]

If D is a fundamental thickening of X relative to S and E is a sheaf of
Op-modules, we let L(FE) be the corresponding crystal of Ox/s-modules [4,
6.10.1).

7.1.3 Lemma: Suppose that 0: E' — E is an injective map of Op mod-
ules whose cokernel has bounded p*°-torsion. Then the image L(6) of L(6),
computed in the category of sheaves of Ox,s-modules, is acyclic for ux;s.

Proof: Observe that L(6) is a map of crystals of Ox/s-modules and that its
cokernel has bounded p*>°-torsion. We have an exact sequence

0 — K(L(0)) — L(E') — L(8) = 0
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of sheaves of Ox/s-modules. By Lemma (7.1.2), Rux/s.K(L(f)) = 0, and
by (6.1.5), the sheaf L(E') is acyclic for ux/s,. It follows that the same is
true for L(6). |

If E is a crystal of Ox/s-modules we let E}, denote the De Rham complex
of the module with connection Ep, and we recall that there is a natural
quasi-isomorphism of sheaves on Cris(X/S): E = L(Ep). Suppose that N is
a filtration of N by subcrystals; then for each ¢ we have a map of complexes
of Ox/s-modules L(N‘Ep) — L(Ep), and we let N*L(E},) denote its image.

7.1.4 Lemma: There is a natural filtered quasi-isomorphism of complexes
of Ox;s-modules (E, N) — (L(Ep), N).

Proof: For each i we have a commutative diagram of complexes of sheaves
of Ox/s-modules

NE — E — E/NE — 0

! ! |

L(N*Ep) — L(Ep) — L(E/N'‘Ep) — 0

Notice that we have zeroes on the right because the inclusion functor from the
category of crystals to the category of sheaves is right exact. We know that
the vertical arrows are quasi-isomorphisms, and it follows that the natural
map N'E — N*L(Eb) is also a quasi-isomorphism. |

It is now easy to prove Proposition (7.1.1). It is clear that the previous
lemma holds also for bifiltered complexes. Furthermore, by (7.1.3), the terms
of the bifiltered complex (L(E}), P,N ) are acyclic for Rux/s., and hence we
obtain an isomorphism in the bifiltered derived category:

Rux;s.(Ep, P, N) & uy/s.(L(Ep), P,N) = (Ep, P, N).

These arguments also apply to the bifiltered complexes (P7E”, P, M) and
(NJE, N, P). Thus, for any integer a, we have a commutative diagram:

(Rux/s,PIE",M,P) — (PIK},5,M,P)

|e |ev

(R’U,x/s.NjE,P,N) —_— (NjKy/s,P,N)

All the arrows are isomorphisms in the derived category, and in fact the
vertical arrow on the right is an isomorphism of filtered complexes. Fitting
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these together as a varies and noting that “liLn” PIK “Er_n” N’K, we obtain
the statement of the proposition. |

In fact, it is not the bifiltered object (Rux/s,E", M, P) in which our
primary interest lies, but rather the object obtained from it by applying
Deligne’s “décalé” operation [6] (also used by Illusie in [17] in a context very
similar to ours). Recall from [6, 1.3] that if (K, P) is a filtered complex, we
have

(Dec P)')K? =: {z € P*"K17:dg € PTItIKIH}
(Dec* P)'K? =: {P*9K%+dP™*i1KI™!}

These operations are not compatible with taking mapping cones but are
compatible with filtered quasi-isomorphisms: a filtered quasi-isomorphism
h: (A, P) — (B, P) induces filtered quasi-isomorphisms:

(A, Dec P) — (B, Dec P) and (A,Dec* P) — (B, Dec* P).

Furthermore, if A’ is a subcomplex of A of A and if P’ is the filtration
on A’ induced by P, then by its very definition Dec P’ is the filtration of
A’ induced by the filtration Dec P. Dually, the same is true of quotient
complexes, with Dec replaced by Dec*. It is however not true that Dec is
compatible with quotients or Dec* with subobjects. Nevertheless, it follows
from the five lemma that if the filtered quasi-isomorphism h induces a filtered
quasi-isomorphism (A’, P) — (B’, P), then it also induces filtered quasi-
isomorphisms

(A', Dec P) — (B', Dec P) and (A/A',Dec P) — (B/B’,Dec P),

and similarly for Dec*. We conclude that if u: (A, F, P) — (B,F,P) is a
bifiltered quasi-isomorphism, then the induced maps

(A, F,Dec P) — (B, F, Dec P) and (A, F,Dec* P) — (B, F,Dec* P)

are also bifiltered quasi-isomorphisms. Thus the décalage operations pass to
the bifiltered derived category.

Warning: Formation of the décalé does not preserve acyclicity with
respect to uy/s. of the terms of a complex, and hence does not commute
with higher direct images, in general. In particular, (Rux/s,‘fv?” , M, Dec P)
is not the same as RuX/S*(E‘” , M, Dec P).

Note that the filtration N of K is G-transversal to (p); it follows immedi-
ately that Dec N is also. (This is not so for Dec* N, however.) Thus, we can
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also can view our bifiltered objects as objects endowed with a lattice filtra-
tion (4.1.1) indexed by the lattice L, or as endowed with a gauge structure
indexed by the lattice of 1-gauges G; (4.3.3). Furthermore, the dictionary
(4.3.4.3) allows us to pass from one point of view to the other.

7.1.5 Remark: If X cannot be embedded in a smooth log scheme over
S, we may compute Rux/s.(FE, Dec N, P) by simplicial methods, as in Re-
mark (6.1.8). Using the notation introduced there, note that if (K, A, B)
is a bifiltered complex on X, we also have an isomorphism in the bifiltered
derived category:

(K, A,Dec B) = Retet*(K, A, Dec B).

Since the operation of décalage commutes with restricting to open subsets,
et*(K, A,Dec B) can also be viewed as the décalage of the filtration B of
€t*(K, A, B). In particular, it follows that the formation of the décalage of
B in €**(K, A, B) commutes with Re}.

7.2 Local version of the main theorem

It seems desirable to begin our discussion of Mazur’s theorem in the case of
a parallelizable lifted situation Y =: (Y, Fy/s) (1.2.6). Let ®:Fy oE' — E
be an admissible F-span (5.2.8) of level within [a,b]. As we have seen in
theorem (5.2.13), there is a corresponding filtration Ay on E’ which is G-
transversal to V' and G-transversal to (p); recall that

ASE' =: (D ong) ™ (p*E).

We shall find it convenient to work with the extension of Ay to E‘;,, given
by (5.1.2); this extension is also Griffiths transversal to V' and G-transversal
to (p). As before, we let K}, ;s denote the De Rham complex of (F., V),
with its filtrations P and Ay.

7.2.1 Theorem: With the notation of the previous paragraph, Fy ¢ induces
a bifiltered quasi-isomorphism:

U: (Ky./s, Ay, P) — Fy;s.(Ky,5, M, Dec P) & Fy;s,(Ky;s, P, Dec N).

Proof: We begin with a preliminary remark in characteristic p, in which the
lifting plays no role and need not exist. Recall that the Frobenius pull-back
of any quasi-coherent sheaf inherits a canonical integrable and p-integrable
connection.

134



COHOMOLOGY OF F-SPANS—MAZUR'S THEOREM

7.2.2 Lemma: Let (Ej, A) be a quasi-coherent sheaf of Ox:-modules with
a finite filtration by quasi-coherent subsheaves, and let (Ej, V", M) be the
corresponding quasi-coherent sheaf of Ox-modules, with its induced inte-
grable connection V" and horizontal filtration M. Let (Kg, M) denote the
De Rham complex of (Ej, V"), with the filtration induced by M. Then:

1. There are natural isomorphisms of filtered sheaves:

C—l: ( ?(’/So ® E(')’ A) - (En(K(I)I)’ M)

2. The spectral sequence of a filtered complex:
B = B (Gri, KY)) = H (B, V)
degenerates at F

3. The boundary maps of the complex K{ are strictly compatible with
the filtration M.

Proof: Statement (1) is repeated from (1.2.5). The remaining two conditions,
which are in fact equivalent [6, 1.3.2], are an easy consequence. In fact, we can
use the Cartier isomorphism (7.2.2.1) to identify H"(Ky) with Q%5 ® Eg,
compatibly with the filtrations. As the maps

Q')l(:/s &® AzEé — Q}’/S ® E(I)
are injective, so are the maps

H™(M'Kg) — H"(Kg).

This proves the degeneration of the spectral sequence. |

Let us return to our study of an F-span in a lifted situation, keeping
the notation and hypotheses of (7.2.1). We consider the spectral sequence
E.(K,W) of a filtered complex (K, W). Recall from [6, 1.3.3.2] that there
are natural maps:

u: E{" 9 (K,DecW) = Grd.\y K* — EIM™(K,W)
u' BT (K, W) — Grheew K™ = E3" (K, Dec* W)

which induce quasi-isomorphisms (after a suitable renumbering):

’U,IGI'Dech — El(K,W)
u":El(K,W) — GI‘DectwK
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7.2.3 Proposition: With the notation and hypotheses of (7.2.1)

1. The maps u and u* induce filtered quasi-isomorphisms

u: (Grpec P Iv{;;/s’ M) — (Ey( v;;/s’P)yM)
u*: (Eq( v;ﬂ/S,P),M) — (GrDec.pIV{;i/S, M)
u: (Grpeen Kyss, P) — (Ei(Kyys, N), P)
u*: (Ey(Ky;s, N),P) — (Grpee v Kyys, P)

2. The natural maps

(Kyss M,DecP) — (K5, M, Dec" P)
(Kyss, P,DecN) — (Ky/s, P,Dec* N)

are bifiltered quasi-isomorphisms.

Proof: Because it is natural, Deligne’s morphism u is automatically compat-
ible with the filtrations induced by the filtration M, and gives us a map of
filtered complexes

u: (Grpecp K", M) — (EL (K", P), M).

It is not automatic, however, that this arrow is a filtered quasi-isomorphism,
and the proof of this fact will take further work. Because (Ey,M) is G-
transversal to p, we see that multiplication by p? induces natural filtered
isomorphisms:

Gry(Ey, M[—j]) — Grp(EY, M).

As these isomorphisms are evidently compatible with the connections, they
induce isomorphisms of filtered complexes:

Groh(K", M[—j]) = Gi%(K", M[—j]) — Grh(K", M).
It thus follows from Lemma (7.2.2) that the boundary maps of the complex
Grp(Ky,s) are strictly compatible with the filtration M, and [6, 1.3.15] im-
plies that the maps u and u* are filtered quasi-isomorphisms. This proves
(7.2.3.1) for (K", M, P). 1t is easy to deduce (7.2.3.2). In fact, it follows that
u* ot GI‘Decp RUX/S*(E”, M) — GrDecm P R'U,X/S*(E", M)
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is a filtered quasi-isomorphism, so by (4.4.1) it will suffice to check that
whenever i >> j or j >> i, the induced map

u* ou: M N (Dec PY)Ky,s — M* N (Dec® PP) Ky
is a quasi-isomorphism. Recall that
MY E" C PEY C MOHES
and it follows that if d is the relative dimension of X/Sp,
MKy o C Dec PRy s © MV Ky (7.2.3.1)

and similarly for Dec* P. Thus for example if we take j > i+b+dori > j+a
our result is obvious. This proves (7.2.3) for (E”, M, P), and of course the
analogs for (£, P, N) follow. |

We are now ready for the proof of Proposition (7.2.1). We check first that
Fy,s induces a bifiltered morphism

U: (K', Ay, P) — Fy;s.(K", M, Dec P).
Suppose z is a local section of
PIK"NAYK"Y = Qf, s @ PE NASIEY, = Q) s @ P Ay I EY..
As Fy,q is divisible by p? in degree g, we see that U(z) lies in
0 P M-I = QYo (MAEY 1 p 9B,
and d¥(z) = ¥(dz) lies in p*'*QY ® E”. This shows that
¥(z) € Fy/s. M*K" N (Dec P) K",

as required.
Here is the main step in the proof.

7.2.4 Lemma: For any j and k, the map ¥ induces filtered quasi-isomor-
phisms:

(Grp Ky/s, Ay) = Fyys.(Grpec p K¥,5, M) = Fys.(Eo(KY,s, Dec P), M)
and hence quasi-isomorphisms:

¥k Grp Grly, Ky /s = Fy/s, Grhee p Grhy K¥ /s = Fyys, Grhe, y Grp Kyys.
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Proof: Lemma (7.2.3.1) shows that the map
u: (B§"~ (K5, Dec P), M) — (B{*™7(Kys, P), M)

is a filtered quasi-isomorphism, so the lemma will follow if we show that the
composite u o ¢ is also. We have the following commutative diagram, in
which the vertical arrows are isomorphisms:

(B§"7(K',P),Ay)  *%  Fys.(E{™ (K", P), M)

| !

(s ®Grp E', Ay[-n]) —  FysH"(GrE™ Ky, M)

b [

(/s ® Giy B, Ay[-n—j]) — Fy;s.H"(Grp Ky/s, M[—j —nl)
Now Mazur’s formula (1.2.7) for the Cartier operator shows that the bottom
arrow is just the Cartier isomorphism (7.2.2.1), and the lemma follows im-
mediately. | |
Since the filtrations with which we are working are not finite, we still

have a little work to do to finish the proof of the theorem. Note that
Pi=**1 Gy}, E' =0, and P/=*Gr),, E' = Gy, E'. It follows that

Pj—-a+l+d Gr‘l‘y k’ =0 and Pj_b GI‘Z,{y I?I = Gr,l\y IV('?

so that the filtration induced by P on Grﬁ,y K’ is finite. Similarly, the fil-

tration induced by Dec P on Gri, K” is finite. We conclude that ¥ induces
quasi-isomorphisms:

¥: P9 Gr¥ , K — Dec P? Grk, K"

for all j and k. Taking k > b+d and j = 0 and noting that MEK" C PPK' =
K’ and Dec P°K" C K", we find quasi-isomorphisms:

. Gr'j,y K — Fy/s, GIJ;W K"

Moreover, for these large k, AL E' = pAY/sE' and M*1E" = pM*E", so
we see that the map
v Al)c//sK/ — Fy/s.MkK”

induces a quasi-isomorphism when reduced modulo p. As both the source
and target complexes are p-adically separated and complete, we conclude
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that the arrow itself is a quasi-isomorphism for large k. In other wogds, we
have shown that for large k, the map W: P°A}, K’ — Dec PPM*K" is a
quasi-isomorphism. Now it is clear from (4.4.1) that ¥ is a bifiltered quasi-
isomorphism. [ |

Lemma (4.4.1) implies that for any ¢ C Z x Z we obtain a quasi-
isomorphism

V,: (K', Ay, P)s — Fy;s.(K", M,Dec P), = Fy;s.(K, P,DecN),.
/ /

In fact, ¥ induces an isomorphism of L-filtered objects, as described in
(4.1.5). Note that (K, P,Dec N), = (K,Dec N, P),:, where ¢’ is the trans-
pose of 0. As Dec N is G-transversal to (p), we can also express this in terms
of 1-gauges, using equation (4.3.4.3). Recall from (4.2) that € is defined by
€ (i) =: €(—1i) —i. We find the following result, which will be useful when we
attempt to globalize Theorem (7.2.1).

7.2.5 Corollary: For any 0 C Z x Z, and any 1-gauge ¢ we obtain quasi-
isomorphisms

\I’a: (K;”/S’AJ’,P)U - FY/S*(K;L/Sa M: DeCP)a = (Ky/s,DeCN, P)a’-

U A Ky /s — Fyys, Dec N¥ Kyys.

These maps are compatible with inclusions given by 7 C o (resp. € > §),
and in fact define isomorphisms of L-filtered objects.

7.3 The main theorem

We are now ready for a global formulation of Theorem (7.2.1). In this section,
“tame” will mean with respect to the control function ( ), and we let G,
denote the set of all ( )-tame gauges.

7.3.1 Theorem: Let ®: F gE' — E be an admissible F-span on X/S, and
let (E', A) be the associated T-crystal on X'/S. For any tame gauge ¢, let

Dec’ N°Rux/s,E =: Dec N Rux/s,E.

Then Fx;s induces a natural isomorphism in the derived category of G-
filtered objects:

\IIG~,: (RUX//S,EI, AG—,) — FX/S!(RUX/S#Ey Dec’ NG'y)'
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In particular, for each tame €, we have a natural isomorphism in the derived
category:
ve: AERUXI/S,E/ — Fx/s* Dec Ne’R’u,x/S,E,

compatible with the distinguished triangles associated with any inequality
§>e

Proof: The first step is the construction of the arrow. We begin by doing this
in a generalization of a lifted situation, which we shall call a “fundamental
thickening of Frobenius.” Suppose that X C Y is an embedding of X into
a logarithmic formal scheme which is integral and logarithmically smooth
over S, and let Y)x denote the exact formal completion of Y along X (c.f.
section (1.1)). Let Fy,;s: Yo — Y be the exact relative Frobenius morphism
of Yo/S, and suppose that Y’ is a lifting of Y. Then a morphism F from Y, x
to Y/, induces a morphism Fp on divided power envelopes D — D'. If the
reduction of F modulo p is the exact relative Frobenius morphism of Dy/S
we shall say that Fip: D — D' is a “fundamental thickening of Frobenius.”

Note that if X C Y is an exact embedding of X into an integral logarith-
mic formal scheme over S, then it is easy to see from Kato’s construction of
the exact relative Frobenius map that the square

nX/S
X X5 x

!

Ty/S
Y, B Y
is Cartesian.

7.3.2 Lemma: Suppose that D and D’ are fundamental thickenings of X
and X' and that F: D — D' is a fundamental thickening of Frobenius. Then
the natural map

n:Ep — F,F*EL = E})

takes A}, Ep, into M:EY,

Proof: This statement can be checked locally, so we may and shall assume
that all our schemes are affine. In the case of the constant span, our lemma
just says that F* takes the ideal J[[’,l, to (p)!. This is well-known but its
proof is worth repeating. Because F* is a PD-homomorphism, it suffices to
show that it maps Jp: into pOp. But the ideal Jp/ is the PD-ideal generated
by the ideal of X’ in Y”, and this ideal is generated by 7y sJx. If a is any

section of Jx, Fy smy sa = aP. But o? = pla in Op, as required.
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For a general admissible F-span ®, our lemma is true by construction
when (D, F) is a lifted situation. In general, suppose D is the PD-envelope
of an exact closed immersion j: X — Z, with Z/S smooth. Choose a map
9:Z;x — Y such that go j is the inclusion X — Y since X = Y, the map g
is necessarily log smooth. In fact it is even classically smooth, since Z,x has
the log structure induced from Y. Let go: Zy,x» — X' be the pullback of go
via Ty,,s; then the natural map Zo/x — Z; /X is the exact relative Frobenius
map of Z,. Because Y’/S is log smooth, we can find a lifting g¢’: Z}X, Y’
of g4, and ¢’ will also be formally smooth. Then because ¢’ is smooth we can
find a map G: Z,x — Z), lifting the relative Frobenius morphism of Zo/So
and such that the following diagram commutes:

S 19 lg’
X — v Xy

Let us use the same letter G to denote the map D — D’ it induces. We have
the following commutative diagram:

g Fy s A By, — g MiBY
|= |=

G*g/*Ai ’E/D’ RN M,;E’[I)
| !

G'¢"Ep -5 B}

The filtration Ap, of E7, is the saturation of the filtration g"* Ay with respect
to the PD-ideal Jp: of X’ in I)', so it suffices to check that for any ¢ and j,
0 takes JUg* Al E}, into MY E},. As we have observed, G* maps J& into
(p)b, and hence JU A%, ), into (p)VIME) C MEHEY},. Thus, the lemma
is true when F = G.

To prove the general case, we use the commutative diagram

F*Ep - GUEY,

o

as well as the explicit formula (1.1.8.6) for ¢ in terms of a logarithmic coordi-
nate system {m; :i=1,...n} on Y. Because F and G are both fundamental
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thickenings of relative Frobenius, F*m; = A(w;)G*m; with u; € 1+ pOp for
all 5. Write u; = ps; + 1. Then if e is a local section of E},, we have, in the
notation of (1.1.8):

eF*(e) = Z(ps)U]G*(V dr)e) = me s'G*(V(or) ZSIG‘ (p"dye).

Now suppose that e € A¥E",,. Since the filtration Ap: is Griffiths transversal
to V',
a[e—HH 8)—I'e€Ak I”E’D/,

i Il

and since pi! € (p)"l and Ap is saturated with respect to (p,7), it follows
that plldje € A%, E},. As we showed above, cG* Ak, Ep, C MYEY, and it
follows that 6 (eF*(e)) € M¥EY,. The diagram now shows that OrF*(e) €
MXED,. n

Warning: It is not true that the image of (Fx/s)%,A'E’ — E” is con-
tained in M.’;E" . This would require that the above lemma be true for any
pair of objects T' € Cris(X/S) and T" € Cris(X’/S) and any morphism
F:T — T’ covering the relative Frobenius map U — U’, not just for for
fundamental thickenings of Frobenius.

We first construct the arrow ¥, when X admits a fundamental thick-
ening of Frobenius, coming from Fy;s: Y/ x — Y/'X,. Let T and 7' be the PD
envelopes of X in Y and Y, respectively, and let us also denote by Fy,s the
morphism 7" — T" induced by Fy;s. We obtain a map

Ny: E"T’ - Fy/g,ErlI/-.

Now in the derived category, the morphism induced by Fx,s on crystalline
cohomology can be identified with the map:

F}?/SI K;”/S - FY/StI(;i/S

7.3.3 Claim: Let 0 =: o(e) (c.f (4.2.1)) and let o’ be its transpose. Then
F{i/s sends the subcomplex A*Kys of the complex Ky, /S into

(FY/S;Kﬁ/S, M, Dec* P)a (Fy/s,Ky/S, P, Dec* N)a

(Fy/s,.](y/s, Dec* N, P)a/

IR 1R



COHOMOLOGY OF F-SPANS—MAZUR'S THEOREM

It suffices to prove that each p*®) A* Ky, maps into the aforementioned com-
plex. This will follow from Lemma (7.3.2) and the fact that Fy, g is divisible
by p? on Qf, /5.

Fys(®AK) = Fyys(p® ASIK)
- pE(k)pq M];—q K"
pe(k)pq i p(j) MFr-9-iKg"a
j=0
3 MF-iHG+ek) A pa+l)+elk) g

N

N

Since € is tame, we have €(k) + (j) > ¢(k — j), and hence

ME-IHGR) [ ) g f: ME-+elb=i) ) pel=a) g
j=0
k
Z Mi+€(i) N pq+e(i)Kllq

(K", M, Dec* P)3.

N

N

This proves the claim.
To construct the arrow of the theorem, we note that we have a natural
bifiltered morphism

(Ky/s,DeC N, P) — (Ky/s,DeC* N, P) (7331)

which I claim is a bifiltered quasi-isomorphism. This is a local question, and
is independent of the choice of Y/S. As we have proved it in the case of a
lifted situation (7.2.3), it is true in general. Because the filtration Dec N is
G-transversal to p, we can identify (Ky,s, Dec N, P),» with Dec N ‘K y/s for
every € (4.3.4.3). Making this identification and composing the map in the
claim with the inverse of (7.3.3.1), we obtain a map

\I’G7: (RUX//S.E', Ag,y) — (I{y/s, Dec' N(;,y).

This completes the construction of the arrow ¥, when X admits a fun-
damental thickening of Frobenius. Let us review explicitly the sense in which
it is independent of the choices involved. If X — Y; for i = 1, 2 are two closed
immersions into integral log smooth S-schemes with fundamental thickenings
of Frobenius F;: Y;/x — Y,.’/X,, then we can also embed X into Y =: Y; x5V,
and it is clear that F; x F; induces a fundamental thickening of Frobenius
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on the divided power envelopes. The projection morphisms Y — Y; then
induce quasi-isomorphisms compatible with the arrows constructed above.
Now quite generally, we can find an open cover of X such that each open
subset admits a fundamental thickening with a lifting of Frobenius, and the
compatibilities allow us to construct ¥, for the associated simplicial scheme
X,. Thus the arrow exists in general. Moreover, the question of whether or
not it is a quasi-isomorphism is local and independent of the choice of the
embeddings. Thus, to prove that our global arrow is a quasi-isomorphism
we may work locally, in a lifted situation ). We are therefore reduced to the
situation of (7.2.5) and the theorem is proved. |

7.3.4 Example: Suppose that E’ is a locally free crystal of O x/w-modules,
let E =: E" =: Fy ,gE', and take @ to be the identity map. Then ®: E" — E
is an F-span, and it is apparent that M and N are just the usual p-adic
filtrations. In this case, Theorem (7.3.1) says that there is a canonical filtered
quasi-isomorphism

Ruxs.(E', P) — Fx;s.(Rux;s.Fx;sE', Dec P).

This case has been used recently (and independently) by K. Kato in his
forthcoming study [18] of the cohomology of F-gauges, which is closely related
to our results here.

7.3.5 Corollary: Let ®: F ,sE' — E be an admissible F-span on X/S, of
level within |[a, b).

1. In the filtered derived category we have natural isomorphisms:
¥%: (Gry Rux,/sbv?', A) — (G n Rux/s.ljj‘, P)
¥;: (Grly Gry Rux/s.E') — (Grpee v Grp Rux/s. E).
2. If j < p+ a, we have an isomorphism:

(Rux /s, AE',P) — ((Dec N)™Rux;s.E, Dec N[—j])
(Rux/s.(AE"Y®F,, P) — (((DecN)™Rux;s.E) ® F,, Dec N[—j])

3. If j < p+a— 1, then we also have an isomorphism:

RuX’/St (GI‘L EI, P) — (GI'BZCN RUX/StEa Dec N[—]])
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Proof: Write K’ and K for Rux//s.E' and Fx;s.Rux/s.E, respectively. For
each k € Z let
Le(s) = 1 ifi<k
k(i) = {0 ifi>k/
It is easy to compute the corresponding subsets of Z x Z (4.2.1):
(13) =7 (1x) = 0 x [k,00) U [1,00) X Z,

and
g(c}) = [1,00) x Z.

Using equation (4.3.4.3) we find that
Dec N“ K = Dec N'K and Dec Nt K = Dec N°K N P*K + Dec N'K.
We find a commutative diagram
AaK' — AK' — AFGr} K’
K |v K
F,DecN'K — F,DecN°KNP*K — F,P*Grd yK
Passing to associated graded complexes, we find isomorphisms:
Gk Gr% K’ — Grb Gid . v K.

Now using the G-transversality of Dec N to (p) we see that

Grh Grd, v K = Gr% Grgk v K = Gr% Grgf v K.

This completes the proof of (7.3.5.1).

For any € € G, let € =: € Acgq) and € =: € A c;(a). Then ¢ — € and
€ — ¢ are lattice homomorphisms and € = ¢/. Using the fact that ® has level
within (a, 00) one verifies easily that

AK' = A°K’ and Dec N¢K = Dec N°K
Let ¢; denote the maximal tame gauge which vanishes at j. If j < p+a,
&) = (=) VO)A (i —a) = (¢ Vc)d)
S0 € = Q/J V ¢p. Hence our involution € — € takes

§Vea — VeV
§+1Va — ¢+1Vg Ve
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But we have
Dec N%VeVek K = pf Dec N~V K N Dec N¥ 7K.

For fixed j and varying k, {A%V*E'} cuts out the filtration P induced
on A*E’, while {Dec N%V%V%} cuts out the filtration N induces on p/ N
Dec N°Ru x/s+E. Using the G-transversality of Dec N to p, we can identify
this with the filtration induced by N[—j] on Dec N~7Rux/s.E. The remain-
ing statements follow easily. |

7.3.6 Corollary: If &: Fy E' — E is an admissible F-span on X/S, then
® induces an isomorphism

R’u.xl/s.EI — Fx/s, (Dec N)ORUX/S,E.
Proof: This follows by applying (7.3.5.2) with j = 0. n

7.3.7 Corollary: Let ®: Fx,sE' — E be an admissible F-span on X/S, of
level within [0, b], and let ¥: Rux/s, E' — Fx;s.Rux;s.E be the natural map
induced by ® and Fx/s, as in (7.3.1). Then if d is the relative dimension of
X/S, there is a canonical morphism in the derived category

V. FX/S.RUX/s. E—*RUX'/S* E'
such that V o ¥ and ¥ o V are each multiplication by p**¢
q > 0, we can also find a morphism

Vql Fx/s,. (TSqR’U,X/s,E) —T<q (R’U,X//S*EI)

. For any integer

such that V, o (1<,¥) and (1<,¥) o V, are multiplication by p?*®.

Proof: Applying (7.3.6), we may and shall identify the morphism ¥ with the
morphism (Dec N)°Rux/s.E — Rux/s.«E. To simplify the notation we shall
write K for Rux/s.E.

Notice that since ® has level within [0,00), N°E C P°E, and it follows
that (Dec N)°K C P°K = K. For any j > 0, multiplication by p/ induces a
map v: (Dec N) 7K — (Dec N)°K. Thus, for any e > 0, we find a commu-
tative diagram

(DecN)°’K — (DecN)—¢K L= K

lpb+e l'y lpb+e

(Dec N)°K -4 (DecNPK — K
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in which the composite map along the top has been identified with ¥. We
shall see below that when e = d, the map 3, is an isomorphism, and we
can define V to be v o 8;!. Taking e = g, we find a similar diagram after
applying the truncation functor 7<,, and we shall also see that 7<,08, is an
isomorphism. Thus our corollary follows from the following lemma.

7.3.8 Lemma: The inclusion maps
(Dec N)_b_dR’u,x/s,E — R’u,x/s,E
T<q|(Dec N) ™ *Rux/s.E] — 7<qRux/s.E
are isomorphisms, in the derived category.

Proof: Let us consider the map G.: (Dec N)™*~*K — K, where e > 0. To
prove that S, is an isomorphism, it will suffice to prove that each Grh, y K
is acyclic if i < —b—d; to prove that 7<,(5,) is an isomorphism, it will suffice
to prove that <, Grp,. v K is acyclic if i < —b — g. It even suffices to prove
that each Gri, vy Grh K = GrpZ y Gr% K is acyclic if j > 0 and i < —b —d,
and evidently it suffices to prove this if j = 0. A similar statement holds for
the truncations. But (7.3.5.1) tells us that

Grheoy GIP K = Gry' Grh K.

which is the Kodaira-Spencer complex (6.2.1) of E' on X’/Sp. This complex
looks like:

Gry Ex @ Q378 — Griyt By, ® Q378 — ... = Gr ™ By, ® Q% /s,

This complex vanishes when i < —b —d. If i < —b — g the complex begins
beyond degree g, and in particular is killed by 7<4 [ ]

7.4 Cohomological consequences

Suppose now that X/S; is proper in addition to being logarithmically smooth
and integral, and that @ is an admissible F-span on X/S; for simplicity of
notation we suppose that S is affine. We have a natural map

. Rux//S.E" — FX/S,RUX/S.E.
Passing to cohomology, we obtain an Og-linear map

&% HY(X'/S, E') — HY(X/S, E) (7.4.0.1)
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Let e =: min(d, q); then it follows from (7.3.7) that there is a natural map
V,: H(X/S, E) —» HY(X'/S, E')

such that V, o &7 and &7 o V, are multiplication by p***. Letting H' denote
the quotient of H? by its p*>-torsion, we see that ®? defines a p-isogeny of
Og-modules. We have proved

7.4.1 Proposition: If X/S, is proper and of relative dimension d, with S
affine, and if ®: Fy sE' — E is an admissible F-span on X/S of level within
[0,8], then we obtain a p-isogeny

" H (X'/S,E') - H'(X/S,E)
of level within (0, e], where e =: min(d, q). n

Our main result in this section tells us that, under suitable conditions,
formation of the filtration A and N is compatible with passage to cohomol-
ogy. It can be regarded as the cohomological version of our generalization of
Mazur’s fundamental theorem to the case of coefficients in an F-span. First
we must investigate the behavior of two spectral sequences associated to an
F-span, the analogs of the Hodge and conjugate spectral sequences [23] for or-
dinary De Rham cohomology in characteristic p. Recall from (6.2.2) that the
spectral sequence associated with the filtered object (Ej, A) on Cris(X/So)
can be written

EY/(E', A) = H™(X'/ S, Griy Ey) = HY (X, Qgys) = H™(X/ S, Ey),

where by definition (6.2.2.1) Qf, s =: Rux/s. Gry Ejli]. We call this spectral
sequence the “Hodge spectral sequence” associated to the F-span (E, ®).

We can also consider the filtered sheaf (Eo, N) on Cris(X/S) and the
associated spectral sequence

EY (Eo, N) = HY(X/S,Grly Eo) = H™(X/S, Ey).

However it is more useful for us to look at the spectral sequence associated
to (RUX/S*E(), Dec N):

Ey’(Rux/s.Eo, Dec N) & H*(X/S, Grh, y Ruxys«Eo) => HV(X/S, Eo).
Using (7.3.5.1) and (6.2.2.1), we see that

Fx/ss Grhee ny Ruxysi Eo = Gry* Ruxys. Fy = EZ'/SM‘
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Thus the E}’ term of the above spectral sequence is canon.ic':;mlly isomorphic
to H%#HI (X, ;32'/5). If we set ' =: 26+ j, ' =: —i, and E.” =: E?|, then
we can write our spectral sequence as

T & B 00,0y ) = B0/, B,

We shall call this spectral sequence the “conjugate spectral sequence” asso-
ciated to an F-span. To summarize:

7.4.2 Proposition: Suppose X /S, is proper and that ®: F,‘(/SE’ — FE is
an admissible F-span on X/S, with S affine. Then there are two spectral
sequences (with corresponding filtrations on the abutments), called respec-
tively the “Hodge” and “conjugate” spectral sequences (and filtrations):

EY(E,®) = H (X', O /5) = HY(X'/S, Ey)
By (B,9) = H'(X', %, ) = H™(X/S, Ep).

Here is the main result of this section.

7.4.3 Theorem: Suppose X/S, is proper and that ®: Fy gE' — E is an
admissible F-span on X /S, with S affine. Suppose that n is an integer for
which the cohomology groups H*(X/S, E) and H™'(X/S, E) are p-torsion
free and that in the conjugate spectral spectral sequence (7.4.2), F;’] = F'w]
whenever i + j = n. Let (H"(X/S, E), N) and (H*(X/S, E'), A) denote the
filtered objects attached as in (5.1.2) and (5.2.13) to the F-span on S/S:
&,: H(X/S, E') — H*(X/S, E).

1. The groups H*(X'/S, E') and H™*'(X'/S, E') are p-torsion free, and in
the Hodge spectral sequence we have Ey” (E, ®) = E%(E, ®) whenever
i+j=n.

2. There are natural isomorphisms:

H™(X/S,Dec N'E) = N'H"(X/S,E)

H™(X'/S,A'E') = A'H™(X'/S,E')
Proof: Since Dec N is G-transversal to (p), we can view (K,DecN) =:
(Rux/s«E,Dec N) as a G-structure; it has level within [—b,00). The tor-
sion hypothesis says that H9(X, Rux/s,E) is p-torsion free for ¢ = n and
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n + 1, and our hypotheses on the conjugate spectral sequence is equivalent
to the assertion that for each i, the sequence

0— H"((Dec N)‘Ko) — Hn(Ko) - H"(Ko/(Dec N)’Ko) — 0
is exact, or equivalently, that the maps
Hq((Dec N)'K()) — Hq(Ko)

are injective for ¢ = n and n + 1. Since X is quasi-compact, our functors
also commute with direct limits, and so the hypotheses (4.4.3) hold, with
t =p, A= DecN, and H the hypercohomology functor. We conclude that
the maps

H(X, (Dec N)'Rux/s.E) — HY(X/S,E)

are injective for ¢ = n and n + 1. Furthermore, the corresponding filtration
on H*(X/S, E) defines a G-structure, and in particular is G-transversal to

(p).
Recalling that (7.3.6) tells us that v induces an isomorphism

E', - Fx/s, (Dec N)ORUX/S,E,

we see that the map ®9: HY(X'/S,E’') — HY(X/S, E) is injective for ¢ = n
and n+ 1. It follows that H*(X/S, E’) and H"*!(X/S, E’) are p-torsion free.
By corollary (7.3.5.1), we have for every i a commutative diagram

Hn(Pz Gr(l))ecNK) - Hﬂ(groDecNK) - Hn(Gr(l))ecNK/Pi Gr%ecN K)

l l !

HYA'GISK') — HY(Gi%K) —  H"(Gr%K'/A G K')

in which the vertical arrows are isomorphisms induced by 4°. But Corol-
lary (4.4.7) tells us that the top sequence is short exact, and it follows that
the bottom sequence is also. This implies that E}?(E, ®) = EJ(E, ®) when-
ever i + j = n. Now we can again apply (4.4.3), this time to the G, struc-
ture defined by (E’, A). We conclude that the maps H(X'/S, A‘E') —
H(X'/S, E') are injective and define a filtration on H™(X'/S, E’) which is
G-transversal to (p,).

We have now proved that H"(X,(Rux/s.E,Dec Ng)) defines a gauge
structure and that H™(X/S, (E', Ag,)) defines a tame gauge structure. Fur-
thermore, our main theorem (7.3.1) identifies the restriction of the former to
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G, with the latter. Our formulas follow formally from this. It is not difficult
to be explicit. First of all, we can identify the image of

®,: H*(X'/S,E') —» H*(X/S,E)

with the image of H"(X, Dec N°Rux;s,E), and hence N°H"(X/S, E) with
H™(X,Dec N°Ruyx/s.E). As the filtration on H"*(X/S, E) induced by the
filtration Dec N on H™(X, Rux;s.E,) is G-transversal to p and agrees in
level 0 with the filtration NN, the two must coincide. Furthermore, we can
identify H"(X'/S, A*E') with H*(X'/S, A*E'). Now

H™(X'/S,A*E') = H"(X/S,Dec N%Rux/s.E)
> SR OHNH(X/S, E)

i

> p*O[p H™(X/S, B) N N°H™(X/S, E))|
> 9+ (@,) 7 [P HM(X/S, B)]

~ S p*IMH™NX'/S, E)

1

IR

IR

This is precisely the definition of the filtration M, on H*(X/S, E'). Since
Fs;s is the identity map, M, = A, and our proof is complete. |

When we are working over a field it possible to make a statement even
in the presence of p-torsion. For the sake of simplicity in our statements we
shall assume that X/Sy is perfectly smooth (c.f 1.2.3).

7.4.4 Corollary: Suppose that X is logarithmically smooth and proper
over a perfect field k endowed with a fine logarithmic structure and that
®: Fx)wE' — E is an admissible F-span on X/W. Suppose n is an integer
such that the p-torsion subgroups of H1(X'/W, E') and of H(X/W, E) have
the same length when q = n and when q = n+ 1. Then the Hodge spectral
sequence of (F, ®) degenerates at E) in degree n if and only if the conjugate
spectral sequence of (E, @) degenerates at Fy in degree n. In particular, this
equivalence holds if ®: FY)wE — E is an F-crystal and if X /k is perfectly
smooth.

Proof: Let us note first that if ® is an F-crystal and X/k is perfectly smooth,
then the exact Frobenius diagram is Cartesian and E' = m% cE. Hence
H{(X'/W,E') & F},H(X/W, E), so that in this case the two cohomology

groups certainly have isomorphic p-torsion. In any case, we know from (7.4.1)
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that the cohomology groups HZ, (X'/W, E') and H%,,(X/W, E) have the
same rank, and if they also have the same torsion it follows from the universal
coefficient theorem that the k-vector spaces H*(X'/k, Ey) and H*(X/k, Eo)
have the same dimension. Now the Hodge spectral sequence degenerates at
E, in degree n if and only if

R (X' [k, Eg) = Z W (X', Qg s),
i+j=n
and the conjugate spectral sequence degenerates at E; if and only if

hM(X/k, Eo) = Y B(X', Q% ).

i+j=n

These are now obviously equivalent. |

7.4.5 Remark: It is clear from the proof of (7.4.4) that if both the Hodge
and conjugate spectral sequences of an F-span degenerate, then conversely
the p-torsion submodules of H9(X/W, E) and HY(X'/W, E') have the same
length. Thus the hypothesis on p-torsion is necessary; in (8.4.3) we give an
example to show that it is not superfluous.

7.5 Higher direct images

Suppose that f: X — Y is a smooth morphism of log smooth and integral
So-schemes and let ®: F ¢E' — E be an F-span on X /S. From the com-
mutative diagram

x 25 ox
1% L
y %5y

one obtains a morphism
F;/Squéris*El - quf—“fis*F;(/SEl

of sheaves on Cris (Y/S). Composing with the map obtained by applying the
functor R?f.is. to the morphism ®, we obtain a map

% YR ftyias B = R feriss P

With further hypotheses, we shall see that ®9 defines an admissible F-span
onY/S.
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7.5.1 Theorem: Suppose that X and Y are as above and that f: X — Y is
perfectly smooth. Let ®: Fy,cE' — E be a locally free F-span on X/S which
is uniform in a neighborhood of Rx;s (and hence admissible by (5.2.9)). Fix
an integer n, and consider the following conditions:

1. The sheaves Rf. .. E' are locally free for ¢ > n.

2. The conjugate spectral sequence for the F-span ®x/y on X/Y degen-
erates at E, in degreen, i.e. By = E.. whenever i+ j =n.
3. The sheaf RIfy,y:, Gra Ej is acyclic for Fy g, i.e.
Tor{"' (R f./y» Gt Ep, Fy5.0y)
vanishes for i > 0.
Condition (1) implies that ®, defines a nondegenerate F-span on Y/S, of
width at most the width of ®x,s plus dim(X/Y'). If all three conditions are
satisfied, then the T-crystal (E', A) =: ax;s(®) on X'/Y and the morphism

f': X" =Y’ satisfy the hypotheses of (6.3.2), and (R"f.,;,.F', A) defines an
admissible T-crystal on Y'. Furthermore, the F-span ®, is admissible, and

ay/s(R™(®)) = R" feriss (ax/s(P)).
Proof: We work locally on Y, with the aid of local liftings (), Fy/s) of Y
and its relative Frobenius morphism. Let & denote the F-span FX/YE — F
deduced from @ as in (5.2.14), and let @ =: mx//y/s. As explained in
(5.2.14), @ is again admissible, and its corresponding T-crystal (E, Ax/y)
is m(E', Ax/s). We have a commutative diagram:
F;/Squ(/:ristE, - qucristF)*(/sEl — qucn's:cE

I L
qucn'sn-E — qucrisF)‘(/yE — qucris*E

Then (7.4.1), with S replaced by Y, shows that the arrow along the bottom
is a p-isogeny of level at most the level of ® plus the relative dimension of
X/Y.

Condition (1) implies that formation of R™f..s; commutes with base
change and defines a locally free crystal of Oy;s-modules c.f. [4, 7.12] and
[20, 6.12]. Since f: X — Y is perfectly smooth, the square

X — X
ol
Yy — Y
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is Cartesian. Thus the base changing arrow (3: F{,/ sR*firi B! — R fcm,,E is
an isomorphism. It follows that @, is a p-isogeny, whose level is as described.

Now suppose that conditions (2) and (3) are also satisfied. We know
from (7.4.2) that, in the spectral sequence attached to the filtered object
(G2 E, Ax/y) and the morphism fx /y» We have EY = Eb when i +7 > n,
and hence we can apply (6.3.2) to conclude that the maps

R fg )y A'Bo— R fz )y, Fo

are injective when ¢ > n. We need to descend this information to Y’, i.e., to
prove that the maps

ige
Ry A'Eq—— R fx1 /v, By

are also injective. Outside the support of Ry, the map Fy,s is faithfully
flat, and so the only difficulty is local around the support of Ry//s. Since the
inverse image by f'~! of this support is contained in the support of Rx/s, the
T-crystal (E', Ax/s) is uniform there, and in particular its associated graded
is locally free. By descending induction we may and shall suppose that :? is
injective when q > n.

Thanks to our assumption that (1) holds for ¢ > n, we know that the sheaf
R" fy1y1 By is acyclic for Fy . Let us assume, by induction on 4, that the
same is true of R f%, y,, A'Egy; we may also assume that R™! f%, v, A Ej
is acyclic. The injectivity of ¢™*! implies that we have an exact sequence

0 — K — R™fxjyn A Ey — R fx, jy1, A'Ey — R" .y, Grly By — 0.

We can conclude by condition (3) that the image I of R"f¥.,y,, A™" Ej in
R™ fyi v A'Ey is also acyclic for Fys. It follows that the top row in the
commutative diagram below is exact.

0 — F;/SK - F;/SRnfS(’/Y’*Ai+1E(,) - ;/SRnf&I/YI*AiEé
0 = BfgyAME - Ry AE

Our acyclicity assumptions for n + 1 imply that the vertical arrows are iso-
morphisms, and it follows that F;/SK is zero. Since Fy/s is faithful, K =0
and the map R"f, jynATE — R fy, e A'E' is injective. It follows that
R f%, /Y,*A‘“E’ is also acyclic for Fy,s, and that the spectral sequence of
(Eg, A) and the morphism fY, ., degenerates at E) in degrees > n.
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Let us choose a local lifting Fy of Fy;s. An argument similar to the
one we just made, but simpler, shows that the sheaves R?fy, ., E’ are p-
torsion free for ¢ > n. Furthermore, we see by descending induction on ¢
and (1.3.7) that the sheaves R?fx/ y. E' are locally free and commute with
base change for ¢ > n, and in particular that they form crystals on Y’/S.
Thus the hypotheses of (6.3.2) are satisfied, and we conclude that the maps
Rify/y, A'E' — Rify,,y, E' are injective and define a filtration which is
G-transversal to (p,7). In fact, an application of (4.4.3) shows that they
remain injective when pulled back by Fy, and that the filtration they induce
is G-transversal to (p, 7). It is now easy to conclude that the map

FJ‘;quS(//Y'*AiEI e quX/YAlE

is an isomorphism. But (7.4.3) tells us that R?f3 /Y(E,A) is just the filtra-
tion M., attached to ®9. This shows that the F-span ®7 is admissible and
completes the proof of the theorem. |

7.5.2 Corollary: Suppose f: X — Y is a perfectly smooth and proper mor-
phism of smooth and integral log schemes schemes over Sy, with Y reduced.
Suppose further that (E,®) is a uniform F-T-crystal on X/S (5.3.1) such
that for every n the sheaves R" fcrioo EE are locally free on Oy;s and for ev-
ery closed point y of Y, HZ, (X (y)/W(y), E(y)) is torsion free, and that
the Hodge spectral sequence of (E(y), ®(y)) degenerates at E,. Then the
hypotheses and conclusion of (7.5.1) are satisfied for all n.

Proof: Corollary (7.4.4) tells us that the conjugate spectral sequence of the
restriction of (E, @) to every fiber of f degenerates at F,. Arguing as in the
proof of (6.3.4), we see that, locally on Y, the terms of the conjugate spectral
sequence of (E, ®) are locally free and commute with base change, and that
the spectral sequence degenerates at Es. [ |

The mixed characteristic analog of Corollary (7.5.1) concerns higher direct
images of F-T-crystals. Recall (5.3.1) that if X/S, is a smooth and integral
log scheme, then an F-T-crystal on X/S, consists of an F-crystal (E,®)
on (Xo/S) together with a T-crystal (E,B) on X/S and an isomorphism

mx/s((E, B)|x/s) & axs(®).

7.5.3 Corollary: Let f: X — Y be a perfectly smooth and proper mor-
phism of smooth integral S,-schemes with log structure, and let (E,®, B) be
a locally free F-T-crystal on X/S which is uniform in a neighborhood of the
support of Rx. Suppose that for some integer n, the F-span (E, ®) satisfies
the following conditions:
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1. The sheaves R?f..s. E are locally free for ¢ > n.

2. The conjugate spectral sequence for the F-span ®x/y on X/Y degen-
erates at F, in degree n, i.e. E2 E whenever i + j = n.

3. The sheaf RIfx/ )y, Gry Ey is locally free in a neighborhood of the
support of Ry;s for ¢ > n.

Then (E, B) satisfies the hypotheses of (6.3.2), so that (R"f.is«E, B) is a
T-crystal on Y/S, and

<I>,,: F;/sRnfcris*E g Rnfcrisa-E

is an F-crystal on Y/S. Furthermore, (R"feriss E, ®n, B) defines an F-T-
crystal on Y/S, and in particular we have ay,/s(®n) = R" feriss0tx,/s(P).

Proof: Let (E, A) be the restriction of (E, B) to Xo/S, so that by definition,
its pullback (E', A) to X'/S is ax;s(®). We argue the same way as in the
proof of (7.5.1), using Fx and Fy instead of Fx;s and Fyys, to prove that
R" foriss(Gr% E, A) degenerates at E; in degree n. Hence we can apply (6.3.2)
to conclude that the maps R" f.iss B'E — R™f..is E are injective and define
a T-crystal on Y/S. It follows from the compatibility (6.3.2) of the formation
of restriction with higher direct images that the restriction of (R" feriss E, B)
to Yp/S is the T-crystal (R™ f s« E, A), and condition (3) implies that

W;//S(Rnfcris*E, A) = Rnfcl:riu(E’v A)

Now (7.5.1) tells us that R"f,,,,(E’, A) = ay;s(®,), and we conclude that
the triple (R" feise E, @5, B) forms an F-T-crystal on Y/S. [ |

We shall describe some applications of our results to Hodge and New-
ton polygons (Katz’s conjecture with coefficients in an F-crystal) in Sec-
tion (8.3).
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8.1 Liftings and splittings

The idea that a lifting of a variety over k to W should cause its Hodge spectral
sequence to degenerate may be originally due to Raynaud (oral communica-
tion). The first results along these lines were obtained by Kato [19] and
further developed by Fontaine-Messing [12], Deligne, and Illusie (7] and [17].
Faltings has also proved such results, with coefficients in a Fontaine module
[9]. Here we attempt to generalize and unify these results using the language
of F-T-crystals.

We begin with a rudimentary discussion of deformations of T-crystals.
Let us fix the following notation. Let S be a flat formal scheme over Spf W,
endowed with a fine logarithmic structure (e.g. the trivial one). (Later we
shall have to assume that the absolute Frobenius morphism of Sy lifts, at
least locally, to S, but we do not need this now.) Write S,, for the reduction
of S modulo p* for any p € Z*, and let Sp = S; and S, = S. Let (X'/S,)
be a logarithmically smooth and integral morphism of fine log schemes, and
suppose that v € Z* U {00} is greater than or equal to y and that Y'/S, is
a lifting of X'/S,,) (formal if v = 00)). If (E’,C) is a T-crystal on Y’/S and
(E', B) is its restriction to X'/S, as defined in (3.3.1), we say that “(E',C)
is a lifting of (£, B) to Y’/S.” Let i: X' — Y’ be the inclusion, and let I be
the ideal of X" in Y’ (i.e. (p")), with its natural divided power structure +.

Recall that a pair of filtrations (P, Q) on an object E is said to be “n-
opposed” if and only if for each j the natural map P’E & Q" 7*'E — E is
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an isomorphism. If this is the case, there are natural isomorphisms:

PP ENQEXEX@GCGLE=PG’E.
j J J

J

If we start with a filtered object (E, P), giving a filtration Q which is n-
opposed to P is often called “splitting the filtration P.” If (E,P,Q) is
graded, we say that the pair of filtrations (P, Q) on E is “opposed” if and
only if for each n the bifiltered object (E™, P, Q) is n-opposed. Finally, one
says that a triple (W, P, Q) of filtrations on E is “opposed” if and only if the
pair of filtrations induced on Gry E by (P, Q) is opposed. (Of course, all
these definitions are taken from [6].)

Recall from (6.2.1) that if (E’, B) is a T-crystal on Y’/S, we call Grp E’
the Kodaira-Spencer sheaf of (E’, B). We endow it with the filtrations
I, =: (I,v) and I, induced by the (/,7)-adic and I-adic filtrations of E’,
respectively. Furthermore, we write E;, for the reduction of £’ modulo p™,
for any m € Z*.

Proposition 8.1.1 (Kodaira-Spencer Decomposition) Let (E', B) be
a T-crystal on X'/S and (E',C) a lifting of (E',B) to Y'/S,. Suppose
that v = pu+ 6 and let y' =: min(u, §). Then, on the restricted crystalline
site of Y'/S,

1. If v = oo, the triple of filtrations icris« (B, C, I,) is opposed.

2. For any v, the lifting (E', C) of (E', B) determines a functorial splitting
of the I,-adic filtration on (Grg E') ® W,,. In particular, it defines
canonical isomorphisms

@ Grj,0s® Gy E, — (G E) @ W,y

i+j=n

3. Ifn < p+a, then the lifting (E', C') determines a splitting of the filtered
sheaf (B"E') ® W, I), and in particular an isomorphism

[B"E,] ® [P Gt} Ey| = (B"E') @ Wy
i<n
Proof: Let us first observe that there is a natural isomorphism of sheaves on
Cris(Y'/S):
beriss B'E' 2 C"E+IC" 'E'+. .- [PC B/ 4 [In—HI i1 L (8.1.1.1)
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Indeed, if V C T is an object of Cris(Y’/S), the divided powers of the ideal
Jr are by definition compatible with (p,v), and hence the ideal Jr + p*Or
of X' in T is a divided power ideal. Thus we can regard T as an object
of Cris(X'/S), and in fact the value of icri5s B"E’ on T is just the value of
B™E’ on this object [4, p. 5.17]. Equation (8.1.1.1) now follows from the
definition (3.3.1) of pullback of T-crystals.

Now suppose that Z is any object of Reris(Y’/S). It is clear from equa-
tion (8.1.1.1) that the natural map:

[I =i+l B B"E’Z] & [C'EzN B"Ey| — B"Ej

is surjective. If v = oo, (E},C) is normally transversal to each (p*), by
(3.3.3). Hence

I[n—H—l]E‘/Z n CzE‘IZ C I[n—i+1]ciEIZ C Bn+1EIZ,

proving the first statement.
Of course when p = 00, (8.1.1.2) follows easily from (8.1.1.1). Namely, if
we combine (8.1.1.2) and (6.2.3), we find

G E = @ C'GrpENEGLE
i+j=n
~ PGr),Gig E
J
~ P Gr},0s®CGry E,
i+j=n

In the more general situation of (8.1.1.2) we have to use a slightly different
argument: the filtration C itself is too coarse. For each n, let we define a
new filtration C, on E’ by setting j =: n — ¢ and

CiE' = C"E'+ IC™'E' + [BC"?E + ... IVC'E' C B"E'
Equation (8.1.1.1) shows that we still have
B"E' C C:E'NB"E' + IV E' n B"E'.

We can apply compute IU+UE'NC: E' using the calculus of gauges. Namely,
let (J,v) =: ((p),7), and let g and h be the control functions (4.2.2) defined
respectively by (I,v) and (J,7); note that h(i) = g(i) + i6. The filtration
C on Ej is G-transversal to (J,7) and compatible with (p) by (3.3.3). By
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(4.3.4) it defines a Gy-structure, where h is the control function associated
with (J,7). Define

_fgln—k) ifk>i
€(k) —'{oo if k <1,
and let ¢, be the h-tame closure (4.2.4) of e. Then CiE’' = C*E’' = C*FE'.

Let ¢ denote the constant gauge whose value is always g(j + 1), so that
C°E' = ["—*+1E/, Then

I[n—i+l]El ) C;E, =V E = Zpg(j*l-l)Veh(k)CkEl’
k

which I claim is contained in p’ B*E' + B**'FE'. If k > i,
pg(j+1)V€h(k)CkE/ C I[j+1]ciEl C Bn+lE,.
If £ < i, we have
en(k) =: inf{e(k')+h(k'—k): k' >k}
inf{g(n — k') + h(k' — k) : k' > i}
inf{g(n — k') +g(k' —k)+ (K —k)§: k' > i}
gn—k)+ (i — k)b
gn—k)+6
It therefore follows that
pg(j+1)Veh(k)CkEl C p6+g(n—k)ckE/ C p61[n-k]ckEl C péBnEl.

v v

We conclude that the filtrations C: and (I,v) are n-opposed on (Gr E)®Ws,
and (8.1.1) follows from (6.2.3) as before.

If n < p+a, we use the same method to show that C? (defined analogously,
but with the I in place of (I, 7)) splits the filtration induced on B"E’ by the
I-adic filtration on E’. Everything is the same except when j =n—a =p—1.
In this case we find

PHENCE CIPCLE +p’B"E C IB"E' + p*B"E'.

Thus the two filtrations are n-opposed on (B"E'/IB"E') @ W/, and again
we are reduced to (6.2.3). ]

8.1.2 Corollary: Suppose that b+dim X'/S,, < n < p+a, and suppose that
v > 2u. Then a lifting (E',C) of (E, B) to Y’ determines an isomorphism:

Rux:/s.(B"E' ® W,.) = Ruxs. Grp E,, = @ O, /sl
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Proof: Since § > p, we have by (8.1.1.3) an isomorphism
n—1
B"E, & (D Gry E, = B"E'® W,

By (6.2.1), Rux//s. Gr’é E,, is quasi-isomorphic to the Kodaira-Spencer com-
plex whose term in degree q is Grz ' Ex ® Qg(/s» hence is zero when j >
b+ dim X’/S. Since n > b+ dim X/S, this implies that Rux/s, Gry E, is
acyclic if j > n and that the natural map

RUX//S,.BHEL — R’u,xr/s, GI’% E;‘

is an isomorphism. |

8.2 Decomposition, degeneration, and vanishing the-
orems

We begin by discussing the conjugate filtration. This takes place in charac-
teristic p, so we shall suppose that 4 = 1. Let Fx/s: X — X' be the exact
relative Frobenius morphism (1.2.3), with mx;s: X’ — X the natural projec-
tion. Let Y’/S, be a smooth lifting of X’/S,. Notice that our result does
not require a lifting of (E, B) to a lifting of Y of X/S, but rather a lifting of
the pull-back (£, A) of (E,B) to Y'/S.

Theorem 8.2.1 (conjugate decomposition) Suppose that ®: Fy oE' —
F is an admissible F-span on X/S of width strictly less than p —dim(X/S).
Then if v > 2, a lifting (E',C) of the T-crystal (E', A) =: ax/s(®) toY'/S
defines a canonical splitting of the filtration (Rux/s.Eo, Dec N). In particu-
lar,

1. The conjugate spectral sequence (7.4.2) of (E, ®) degenerates at Ej,
and the associated filtration on the abutment is canonically split.

2. There is a canonical isomorphism:

Rux1ss Gra Ey = Fx/s.Rux/s« Eo

3. Suppose also that X/S is proper and that the cohomology sheaves
Rifx/s.E are p-torsion free when ¢ = n and n+ 1. Then the cohomol-
ogy spectral sequence of the filtered object (E],C) degenerates at E
in degree n.
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Proof: Without loss of generality we may assume that the level of ® is
within [0, b], with b < p — dim(X/Sp). When n =: b+ dim(X/S,), we know
by Lemma (7.3.8) that Rux/s, Dec N™"E = Rux;s.E, so the isomorphism
(7.3.5.2) gives us a filtered quasi-isomorphism

(Rux1/s.(A"E' ® Fp, P)) — Fx/s.(Rux;s.Eo, Dec N[—n]).

As we have seen in (8.1.1.3), the lifting of the T-crystal (E', A) =: ax/s(®)
determines a splitting of the filtered object (Rux;s.A"E’ ® Fp, P), which
translates into a splitting of the filtered object (Rux;s.Eo, Dec N[—n]). This
proves (8.2.1.1), and provides us with a canonical isomorphism

Rux)s:(Grpec N Eo) — Fx/s«(Rux/s.Eo)-

Composing with the isomorphism (Grg Rux:/s.Fpy) = Grpeen Rux/s.Eo)
of (7.3.5.1), we obtain (8.2.2.2). Alternatively, we could could have used
(7.3.5.2) and (8.1.2). The remaining statements (8.1.1.3) follow from (7.4.3)
and (6.3.1). n

Our next result is a generalization of the theorem of Deligne and Illusie
[7] to the case of cohomology with coefficients in an F-T-crystal (E, ®, B) on
X/S (5.3.1). We use the same notation and hypotheses as in the previous
section, except where otherwise noted. We work locally on S, and assume
that S is affine and that we are given a lifting Fg to S, of the absolute
Frobenius morphism of S;. Then we can form as usual a Cartesian diagram

x5 x
L,

u
Sp > Sy

When X/S, is perfectly smooth, the corresponding relative Frobenius mor-
phism on the reductions modulo p Xy — X{ is exact, so our notation will be
consistent with that of the previous results.

First some terminology. If R is a ring and K is a complex of R-modules,
we say that K is “strictly decomposed in degree n” if dy = dj™' = 0, and
we say that K is “perfectly decomposed in degree n” if and only if it quasi-
isomorphic to a flat complex K’ such that K’ is strictly decomposed in degree
n. Similarly, if (K, B) is a filtered complex of R-modules, we say (K, B) is
“perfectly decomposed in degree n” if it is quasi-isomorphic to a filtered
complex (K’, B) such that Grp K’ and. K’ are flat with d%, = dj.' = 0. Of
course, this implies that each of the complexes B'K’ and Grp K' is strictly
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decomposed in degree n also. Finally, we say that a filtered complex of
quasi-coherent sheaves (K, B) on a scheme S is “perfectly decomposed in
degree n” if there exists an affine open cover of S on which (K, B) becomes
perfectly decomposed in degree n. Finally, we say that (K, B) is “perfectly
decomposed” if it is so in all degrees.

Theorem 8.2.2 (Hodge decomposition) Suppose that (E,®, B) is a 1-
F-T-crystal (5.3.2) on a perfectly smooth X/S,, of width less than p —
dim(X/So). Then a lifting (E',C) of (E', Ax/s) to a lifting of X/Sy to Sz
defines functorial isomorphisms:

Lr/syRux;ss Grp Eo = Fx/s. Rux/s. Eo
LF§, Rfx s« Grp Eo = Rfx/s.Eo.
Furthermore, if X/S is proper, Rfx/s.(Eo, B) is perfectly decomposed. Con-
sequently the spectral sequence of the filtered object (Eo, B) and the functor

fx/s+ degenerates at Ey, and the sheaves of Os,-modules R fx;s. Grp Ep and
Rifx;s.Ep are locally free and commute with base change. |

Proof: First observe that (E, B) is automatically uniform by (5.3.12). The
first isomorphism is an immediate consequence of (8.2.1.2) and the isomor-
phism
LT";(/S(,RUX/St GI‘B Eo = R’ILXI/S* GrAX/s E(,)
Applying Rf], we obtain an isomorphism
Rf.:Lﬂ:Y/SORuX/St GI‘B Eo - Rfin/s*Ru,\'/S*Eo = Rf,R’U,X/s,Eo.

Since X/S is perfectly smooth, it is flat [20, 4.5] and X’ is the pull-back of
X by means of the absolute Frobenius endomorphism of Sy. Thus, the base
change map

LFgoRf.RuX/s. GI’B Eo - RfiLTl';(/soRUX/S* GI‘B Eo

is also an isomorphism. Since Rfx/s. & Rf,Rux/s., we obtain the desired
isomorphism
LF§,Rfx s« Grp Eo = R fx/s.Eo.

To prove that, in the proper case, R fx/s.(Eo, B) is perfectly decomposed, we
refine the argument of Deligne and Illusie, c.f. [17, 2.5]. Since (E, B) is uni-
form, so is (E, Ax/s), and it follows that Rux,s.(Ex/s, Ax/s) is perfect as a
filtered complex. That is, locally on S it can be represented by a bounded fil-
tered complex of finitely generated flat Sp-modules, whose associated graded
is also flat. Thus our statement follows from the following result.
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8.2.3 Lemma: Let R be a noetherian local ring of characteristic p and with
residue field k. Suppose that (K, B) is a filtered complex of R-modules such
such that Grp K has finite tor-dimension and H*(Grp K) is finitely generated
for all i > n, and suppose that there exists an isomorphism in the derived

L
category R ®p, Grg K — K. Then (K, B) is perfectly decomposed in
degrees > n.

Proof: If R is a field, it is clear that any complex is perfectly decomposed.
We shall see below that a filtered complex (K, B) over a field is perfectly
decomposed in degree 7 if and only if E}?(K, B) = E:J whenever i+ j = n.
If R is local with residue field k, we say that a complex is “minimal in degree
n” if and only if K ® k is strictly decomposed in degree n. We write h™(K)
for the length of H™(K).

8.2.4 Claim: Suppose R is an Artinian local k-algebra. Let (K,B) be
a complex with a finite filtration which is bounded above and such that

L
H"(Grg K ® k) has finite length. Then

L
h*(K) <h*(Grg K ® k) l1g R,
and the following are equivalent:
1. (K, B) is perfectly decomposed in degree n.

2. H*(K) and H"(Grp K) are free, their formation commutes with all
base change, and furthermore Ey’ (K, B) = E%J whenever i + j = n.

L
3. h"(K) =h"(Grg K ® k)IgR.

Proof: The only facts that require proof are the implication 3 implies 1 and
the inequality. Replace (K, B) by a quasi-isomorphic filtered complex whose
Gr is free; then K is also free, and we can use K to calculate filtered derived
tensor products. Note that we have h"(K ® k) < h*(Grp ®k), with equality
if and only if the maps d" ® idy and d"~! ® id;, are strictly compatible with
the filtrations [6, 1.3.2]. If equality holds we say we are in the “strict case.”
Let 7 be a basis for the image of d® ® idy, compatible with the filtration
induced by B. Choose T in K™ ® k such that d"Z = 7. If d" ® idy is strictly
compatible with the filtration B, we may choose T such that Z; € B'K" ® k
whenever J; € B'K™! ® k. Now choose a lifting  of T (with the same
property in the strict case). Consider the complex which is free in degree
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n with basis z and free in degree n + 1 with basis dz. This is naturally a
subcomplex of the complex K, is acyclic (resp., its Gr is acyclic ), and the
quotient K’ is also free. Furthermore, the map K — K’ is a (resp. filtered)
quasi-isomorphism, and d%, ® id; = 0. Arguing the same way for d*~!, we
see that we may arrange for K’ ® k to be strictly decomposed in degree n.
Let r =: 1lg R. We have:

L L L
rh*(Grp K ® k) > rh™(K k) =rh*(K' ® k) =rlg(K™ ® k) = lg K™

= h"(K') +1gImd}! +lgImdy, = A*(K) + lgImdy" + lgImdy,

This implies that h"(K ® k) lg R > h™(K). Furthermore, if we have equality,
h*(Grg K ® k) = h"(K ® k), and we are in the strict case. Thus, our
map (K, B) — (K, B) is a filtered quasi-isomorphism. Furthermore, d%, =
d%' =0, so that K’ is strictly decomposed in degree n.

It is now easy to prove the lemma. By a standard argument we may
assume that Grp K* is finitely generated and free if i > n. Let us write F}, for

L
R ®py. Note first that both the hypothesis and the conclusion of the lemma

L
are stable by derived base change R — R'. In particular, K’ =: K ®g k
satisfies the hypotheses of the lemma, and so h*(F} Gr K') = h*(K’) fori > n.
But evidently h*(F Gr K’) = hi(Gr K’), and so the previous claim implies
L
that (K, B) ® k is perfectly decomposed in degrees > n. Thus we may
L
assume without loss of generality that the boundary maps of K ® k vanish

in degrees > n — 1. We now prove that the same is true of K é R’ for every
Artinian quotient R’ of R, arguing by induction on the length r of R'. If
r > 1, the homomorphism Fgs can be factored Fr = fog, where g: R — R”
is a map to a proper quotient of R’. Hence the induction hypothesis applies

L
to K ® R". It follows in particular that ¢g* Grg K is perfectly decomposed

L
and hence so is Ff Grg K. Let K’ =: K ® R'; from the isomorphism
Fg Grg K’ = K' we have

L L
h™(K') = k*(F}y Grp K') = rh™(F} Grp K' & k) = rh™(F} (Grs K' & k))
L
= rh*(Grp K' ® k) > h"(Grp K') > h*(K').

It follows that we have equalities everywhere, and in particular A™(K")
rh™(Grg K'), so (K', B) is strictly decomposed in degree n.
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We next discuss an analog and generalization of Faltings’ theorems [9,
§IVDb], which provide the cohomology of an F-T-crystal in mixed charac-
teristic with the structure of a Fontaine-module. We begin with a derived
category result which uses the filtered derived gauge construction described
in Section (4.5).

8.2.5 Theorem: Suppose that X/S,, is perfectly smooth and that (E,®, B)
is a p-F-T-crystal on X/S of width less than p—dim(X/S,). Then associated
to a lifting Fs, of the Frobenius endomorphism of Sy to S, and to liftings
Y/Su+1 of X/S, and (E,C) of (E, B) toY/S, there is a natural isomorphism

Lys, T (Rux/s«Eu, B) = Fxys,sRux;s. Ey.

Proof: Without loss of generality we may assume that ® is effective, with
level contained in [0, b]. Let m be b plus the relative dimension d of X/S, and
let €,, denote the maximal p-tame gauge which vanishes at m. Write K for
Ruxs.E and K’ for Rux:/s,E'. Then, using the fact that m < p as in the
proof of (5.3.11.4), we find that Dec N= K = p™ Dec N™™K. Furthermore,
the map Dec N™™K — K is a quasi-isomorphism because m > b+ d, by
Lemma (7.3.8).

On the other hand, by (4.5.3) the liftings of (F, B) and X define a quasi-
isomorphism

T (Ky, B) » C"K® W, = B"K @ W,
and hence
LTF;(/sTfm(](l“ B) — Lﬂ';(/SB(m K® VVI, ~ A}';/SK' o W,.

Furthermore, we may replace ¢,, by ¢, as in the proof of (5.3.11.4). Combining
this with the quasi-isomorphism

Asp K ® W, & Fx,zs, Dec N K
of the main theorem (7.3.1), we obtain a quasi-isomorphisin
LT (K B) = K

|

By passing to cohomology we obtain the following result, which is essen-

tially due to Faltings, in the context of Fontaine modules. (It follows from

his [9, §IVb], combined with [9, 2.1].) We do get a slight improvement, since
he seems to require a p — 2 in place of our p — 1.
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8.2.6 Theorem: Suppose that, in the situation of (8.2.5), we also have that
X/S, is proper. Then given liftings as above to data over S,1,

1. The filtered complex (Rfx;s,«E,, B) can be provided with the structure
1 of a Fontaine-complex (5.3.6), depending naturally on the liftings.

2. The inverse system RIf..;s. B can be endowed with a structure ¢ of an
object of MFV(S/W) (depending on the liftings to S,41).

3. Each Rfxs,.B'E, is, locally on S,, isomorphic to a direct sum of
sheaves of the form Og ® W, for various i < p, and its formation
commutes with base change to any S'/S which is flat over W,,.

4. The maps Rifx;s,.B'E, — Rifx/s,.B'E, are injective and locally
split.

Proof: It is immediate to see that formation of T* commutes with base change
and derived functors. Thus applying Rf'* to the isomorphism provided by
(8.2.5), we obtain

RfiLW;(/S“TL(R’ux/S“*E'“,B) — RfiFXO/So*RuX/S“tEp

LFS*FT'(Rf, RUX/S“* E,L, B) — Rf*R’ltx/Sw,E“

|= |=

LF T"(Rfx/s,.E., B) -5 Rfx/s,+Eu
This is the Fontaine-complex structure we are seeking; the rest of the theorem
follows from Corollary (5.3.7). |

8.2.7 Corollary: Suppose we are in the situation of Theorem (8.2.6) with
p = 00. Then the sheaves E? (obtained by killing the p>™-torsion of R? friss F)
are locally free, and if B is the filtration on E? induced from the filtration B
on E, the triple (E9,®, B) forms a uniform F-T-crystal on S/S.

Proof: This follows immediately from Corollary (5.3.14) and Theorem (8.2.6).

|

It is well-known that degeneration results as above imply Kodaira-type

vanishing theorems, c.f. [7] and [17], for example. We obtain the following

vanishing theorem with coefficients in the Kodaira-Spencer sheaves of an F-

T-crystal. Trying to be careful with the logarithmic structures, we obtain
two results which are not quite dual to each other.
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Theorem 8.2.8 (Kodaira vanishing) Suppose X/S, is perfectly smooth
and proper and (E,®, B) is an effective 1-F-T-crystal on X/S. Suppose
that the pull-back (E', A) of (E,B) to X'/S admits a lifting (E',C) to a
smooth lifting Y'/S, of X' over S;. Suppose that the width of (E,®) plus
the dimension d of X/Sy is less than p and that S is affine and L is ample
on X. Then

1. Ifi+j >d, then H (X, L ® Q) =

2. Suppose also that S is regular and that X is Cohen- Macaulay and
purely of dimension d. Then if i+ j <d, H(X,L™' ® Q/s) =

Proof: Recall that H#(X, L®Q/s) = H+(X, L®Grp Ey/g). Since X/So is
perfectly smooth it is flat, and since (E, B) is automatically uniform (5.3.12),
it follows that L ® Q¢ is a complex of flat Os,-modules. Thus by standard
base-changing arguments, it suffices to prove the vanishing of the cohomology
groups of these sheaves along the fibers of X/S,. Notice that when Sy is
regular, these fibers are, locally on Sy, defined by a regular sequence, and
hence are Cohen-Macaulay if X is. Thus we may assume without loss of
generality that Sp is the spectrum of a field.

Now Grg EY,s is a complex of locally free Ox-modules which is con-
centrated in degrees [0,d]. Hence Serre’s vanishing theorem tells us that
HY(X,L" ® Grg E}(/s) = 0 for n >> 0 and for ¢ > 0. When X is Cohen-
Macaulay of pure dimension d, we can apply Serre duality and the same
vanishing to conclude that H9(X, L™ ® Gry4 E}(/s) =0forg<dandn <<0.
Thus the above theorem will follow from the following result:

8.2.9 Claim: Suppose that HY(X, L? ® Grp E}(/s) =0 for all ¢ > 0. or
that S is regular and that we have this vanishing for one value of q. Then
HYX,L® Grg Ex/g) =0 in the same range.

Proof: The sheaf L? = F%L inherits a canonical integrable connection, and
endowed with the zero filtration it becomes a T-crystal on X/S,. Then
L? ® E is again a T-crystal, and its filtration is just the filtration induced
by the filtration B of E. The E, term of the spectral sequence associated
to this filtration is H(X, L ® Grp EYs), and hence our assumption implies
that HY(X/S, FxL ® Ey) = 0 for all ¢ > 0. Now consider the isomorphism
Rux s, Gra E, = Fx;s,Rux;s, Eo provided by (8.2.1.2), thanks to our lift-
ing. This can be written as an isomorphism Grg E, /s — Fx/S,Ej(/s in the
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derived category of Ox:-modules and Ox:-linear maps. Let L' =: 7% /5Ly and
tensor the above isomorphism with L’ to obtain an isomorphism:

L'® Gra Exiys = L' ® Fx/s.Ex;s & Fx;s. FxL ® Ex/s
Taking cohomology of both sides, we see that there is an isomorphism
HY(X',L' ® Gra Ex./s) & HY(X, FxL ® Ex;s) =0.
Since S is a field, Fs is faithfully flat, so the base changing map
F3HY(X,L® Grg Ex/s) = HY(X', L' ® Gra Ex./s)

are isomorphisms, and we conclude that H9(X,L ® Gra E}(/s) vanishes as
well. | |

It is well-known that degeneration and vanishing results in characteristic
p can be used to deduce similar results in characteristic zero. By way of
example, we include only the following result, for smooth proper logarithmic
schemes over SpecW. We note that if W is endowed with a hollow log
structure, the absolute Frobenius endomorphism of Spec k with its induced
log structure lifts to Spec W, so we can apply our theory. Our methods do not
apply, however, to the “canonical” log structure (corresponding to 1 — p),
and in particular do not give us information about semi-stable reduction over
w.

8.2.10 Corollary: Let X/S be a perfectly smooth and proper logarithmic
scheme over S =: Spec W (where W is endowed with a hollow log structure).
Let (E, B, ®) be an F-T-crystal on X/S of width less than p — dim(X/S).
1. The Hodge spectral sequence
EY = H'(X,Q/s) & H*(X/S,Gry E) = H"(X/W, E)
degenerates at Fj.

2. If L is ample and i + j > dim(X/S), then H(X, L ® Q,5) = 0.

3. If L is ample, if X is Cohen-Macaulay of pure dimension d, and if
i+ < d, then H(X, L' ® Qf/s) = 0.
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Proof: Our lifting Fs of frobenius allows us to pull-back X/S and (E, B)
to obtain liftings of Xj and (E’, A). Thus the first statement follows from
(8.2.6), and the next two statements follow from (8.2.8), the universal coef-
ficient theorem, and Nakayama’s lemma. | |

It may be instructive to compare our results to those of Deligne and Illusie
by considering the case of the constant F-T crystal Ox/s. In this case N is
just the p-adic filtration, and Rux/s,.Ox/s = Q}(/so- Thus

; 0 ifi>0

N*Rux;sp+Ox/s, = { Qy/s, fi<0

Then Dec N is just the canonical filtration, and so
GrDecN.... 2 @HI(Y)

According to (8.2.1), a lifting modulo p? of X’/S provides us with an
isomorphism in the derived category

SH(Qy/s) = Qx5

This tells us that the complex Q¢ is perfectly decomposed—exactly as
the statement [7, 2.3], except that in [7] a clever use of duality allows an
extension of the result to dimension p. Note that the isomorphism above
takes place in the unfiltered derived category, and hence tells us nothing
about the Hodge filtration. However, when X/S is proper, (8.2.2) tells us
that the filtered complex (2, B) is perfectly decomposed, which implies (2.4)
and (4.1.2) of [7].

8.3 Hodge and Newton polygons

Let Sy denote Speck endowed with a fine saturated logarithmic structure;
recall that there exists a finitely generated integral monoid P with P* = 0
such that the map P — k sending every nonzero element of P into zero is
a chart for Sp. Let S denote an element of Cris(Sp/W) whose underlying
scheme is Spec W. For example, we could consider the “hollow” logarithmic
structure associated to the prelog structure P — W sending every nonunit
to 0. We let Fix/s: X — X' denote the exact relative Frobenius morphism of
X/ So.

Suppose that X/Sp is proper and logarithmically smooth and integral,
and suppose that (E’, A) is a T-crystal on X’/S. As in Remark (4.4.8), for
each n € N, we set

R (ES, A) =: dimyg H™(X'/S,, Gry Ep) = dimy H* (X', Qié(/s.,),

)
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and we denote the Hodge polygon [4, p. 8.43] attached to the sequence
of numbers h* =: h*"~i(Ej, A) by Hdg"(E', A). For example, the Hodge
polygons of (Ox/w, Jx;w,?) are the usual Hodge polygons of X'/So.
®: Fy/sE' — E is an admissible F-span on X /S, we write Hdg"(X/S, ®) for
Hdg"(ax/s(®)). For example, an F-span on k/W is just a p-isogeny (5.1.1)
®: E' — E between two finitely generated free W-modules, and its Hodge
polygon Hdg" is trivial if n # 0, so we may drop the superscript from the
notation. It is clear that our polygon in this case is the same as Mazur’s
“abstract Hodge polygon of an F-span” [23]. Recall that such an F-span on
k/W is determined up to isomorphism by its Hodge polygon.

Let ®: FxE' — E be an admissible F-span on X/S, and fix an integer
n. Recall from (7.4.1) that we obtain an F-span ®,: E™ — E™ on Sp/S by
taking the map H™(X'/S, E') — H™(X/S, E) induced by Fx;s and ® and
dividing by the torsion of H*(X/W, E') and H*(X/W, E). Our aim is to
compare the Hodge polygons of ®,, and of ®.

8.3.1 Theorem: Suppose X/S, is proper and logarithmically smooth and
integral, and let ®:Fy%/sE' — E be an admissible F-span on X/S. For
each n € N, let ®,, denote the F-span on Spec Sy/S obtained as above by
taking crystalline cohomology and killing torsion. Then the Hodge poly-
gon Hdg(Spec So/S, ®,.) lies on or above the Hodge polygon Hdg"(X/S, ®).
Furthermore, the following conditions are equivalent:

1. The two polygons Hdg(Spec So/S, ®,,) and Hdg"(X/S, ®) have the same
projection to the x-axis.

2. Therank of H*(X/S, E') is the sum of the Hodge numbers h*"~*(E}, A).

3. For ¢ =n and ¢ = n+1, the groups H4(X'/S, E') are torsion free, and
the maps _
Hq(X,/Soa AtE(,)) - Hq(XI/SO’ E(/))

are injective for all i.

Proof: To prove that Hdg(So/S, ®,) lies on or above the Hodge polygon
Hdg"(X/S, ®) we follow the method of [4, 8.36]. In particular, the following
estimate will suffice [4, 8.37]. Let us write H™ for H "(X /S, E) and H™ for
H™(X'/S, E'); we shall identify A" with its image in H" under &,.

8.3.2 Claim: For all i > 1,
(" /o H NH™) < h™(X'/So, Griy ! B}) + 2h™(X"/So, Gris? B)) +
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Proof: In the commutative diagram below and what follows it we have written
D in place of Dec N, K in place of Rux,s.E, and H" for H*(X, ).

H"p'KND°K) — H"(D°K) -2 H™(D°K/piK N D°K)

l b l

H"(p'K) — HY(K) — H"(K/p'K)
Because the rows are exact, we find a surjective map from the image of 3 to
the image of H*(D°K) in H*(K)/p*H™(K). Corollary (7.3.6) allows us to
identify H™(X'/S, E') with H"(X/S, D°K), and hence we have a surjective
map from the image of 3 to the image of H"inH" /pH". 1t follows that
IgH"/(H" np'H") <lg HYD°K/p'K N D°K).

For each j € N we have an exact sequence:

H™(Grs ' D°K) — H*(D°K/p’ K N D°) — H(D°K/p’'K N D°K),
and it follows that
h*(D°K/p'K N D°) < h*(Grs! D°K) + h™(Gr5 2 D°K) + - - - h*(Gr D°K).

Using the G-transversality of D to (p), we see that multiplication by '
induces an isomorphism D77 Gr} K — Gry D°K, so that

h™(Gr)h D°K) = h™(D~? Gr% K).
From the exact sequences
H™D' K Gi% K) — H™(D™7 Gi% K) — H™(Grg Gi% K)

we see that
h™(D~ Gr% K) < h™(Gr Gr% K) + h™(Grp? Gr'% K) + - - - h*(Gr) Gry K).
But Corollary (7.3.5) implies that h*(Gr’ Gi% K) = h™(Gr’; Gr E'). Now
our (8.3.2) follows immediately. _

Now the length of the projection of Hdg(Spec So/S, ®») to the z-axis is
the rank of H*(X/S, E') which is the same as the rank of H*(X/S, E), so

it is clear that conditions (1) and (2) are equivalent. According to (4.4.8),
conditions (2) and (3) are also equivalent. |
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We now suppose that S is endowed with the hollow logarithmic structure.
It is clear that then we can choose a lifting Fis of the absolute Frobenius
endomorphism of Sp to S; in fact, the set of such liftings is a torsor under
the group Hom(P, W*).

If X/S, is perfectly smooth and proper and ®: Fx E — E is an admissi-
ble F-crystal on X/S, then because Fs is flat, the base changing morphism
FsH™(X/S,E) — H™(X'/S,7%,sE) is an isomorphism, and we obtain an
isogeny

O, F:H(X/S,E) —» H(X/S,E).
Ignoring the logarithmic structure on Sp, we can regard this isogeny as defin-
ing an F-crystal on Speck/W. Let Nwt(®,) denote its Newton polygon [22].

Corollary 8.3.3 (Katz’s Conjecture) Let X/Sy be perfectly smooth and
proper, and let ®: E — E be an admissible F-crystal on X/S. Then each

®,: FfH" (X/S,E) —» H (X/S, E)

defines an F-crystal on Speck/W, and we have inequalities of Hodge poly-

gons:
Nwt(®,) > Hdg(®,) > Hdg"(X/S, ®).

The polygons Nwt(®,) and Hdg(®,) have the same endpoint, and the fol-
lowing conditions are equivalent:

1. The two polygons Nwt(®,) and Hdg"(X/S, ®) have the same projec-
tion to the z-axis.

2. Therank of H*(X/S, E) is the sum of the Hodge numbers h*"~*(Ey, A).

3. For ¢ =n and ¢ =n + 1, the groups H9(X/S, E) are torsion free, and
the maps .
H(X'/So, A'E5) — HY(X'/So, Ef)

are injective for all i.

4. The two polygons Hdg(®,,) and Hdg"(X/S, ®) coincide.

Proof: It is of course a general fact that the Newton polygon of an F-crystal
on k/W lies above its Hodge polygon and has the same endpoint [23], so our
inequalities follow from (8.3.1). The equivalence of (1)-(3) follows from the
analogous equivalence in (8.3.1) as well as the isomorphism

FiH™(X/S,E) — H™(X'/S, E).
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If these conditions are satisfied, then by (7.4.4) we see that HY(X/S, E) is
torsion free for ¢ = n and n + 1 and that the conjugate spectral sequence
degenerates at F; in degree n. Then Theorem (7.4.3) tells us that the abstract
Hodge filtration A of the F-span ®,, can be identified with the cohomological
filtration on H™(X'/S, E') induced by the filtration A of Ej} and so the two
polygons Hdg(Spec Sp, ®,,) and Hdg"(X/S, ®) coincide. |

Suppose now that Y/S is proper and logarithmically smooth and integral
and that (E, B) is a T-crystal on Y/S. Then we can also speak of the Hodge
polygons of (Ek, B) on the generic fiber Y, /S, of Y/S. Thus, Hdg"(Ek, B)
is the Hodge polygon attached to the numbers h*(E, B) : i+ j = n, com-
puted in characteristic 0: h*J(E, B) is the rank of the n'* hypercohomology
group of the Kodaira-Spencer complex

Gry By —» Gry ' Ey ® Qs — ...Gr; "Ey @ Q% 1y — ...

8.3.4 Theorem: SupposeY/S is proper and perfectly smooth and (E, ®, B)
is an F-T-crystal on Y/S of width less than p — dimY/S. Then for all n,

Hdg"(Ex, B) = Hdg(®n).

Proof: When Y = S, it is obvious from the definitions that Gry E is a free
W-module of finite rank and that

Gry E ®w k = Gry Eo.

Thus the theorem is trivial in this case. In general, we know from (8.2.7)
that (E™, ®,, B) is an F-T-crystal on Spec S/S. As

Gry Ef = H2,(Yi/K,Grs E" ® K),
the theorem follows. |

The following corollary, at least in the case of constant coefficients, is due
to Deligne [5].

8.3.5 Corollary: With the hypotheses of the previous theorem, the Newton
polygon of ®,, lies on or above Hdg"(Ek, B).
|

8.3.6 Remark: The previous result is a special case of a much more general
consequence of the work of Faltings in [9] (although with a somewhat more

restricted notion of logarithmic structure.) We can only give a rough idea.
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Let S be the spectrum of the ring of integers V' in any finite extension K of
the fraction field Ko of W, and let Y/S be smooth and proper. Then Faltings
proves that the representation of Gal(K/K) in H% (Y%, Qp) is associated (&
la Fontaine) to the data obtained by combining the action of Frobenius on the
crystalline cohomology of the special fiber of Y/S with the Hodge filtration on
the cohomology of the generic fiber. In particular, it follows that these data
are “weakly admissible,” and hence that the Newton polygon of the F-crystal
lies above the Hodge polygon of the generic fiber. Faltings even has a similar
result with coefficients, provided one starts with a p-adic representation of the
fundamental group of the generic fiber. Notice that there are no restrictions
on the ramification of K, the dimension of Y, or the level of the Hodge
filtrations involved.

8.3.7 Remark: Suppose that S is a scheme of finite type and geometrically
connected over Spec Z and that U/S is smooth and separated. After replacing
S by some dense open subset, we may find a smooth X/S and an open
immersion U — X over S such that the complement of U in X is a relative
divisor with normal crossings over S. Let X be the logarithmic scheme
obtained by pushing forward the trivial logarithmic structure on U to X.
Then X/S is logarithmically smooth and proper. If ¢ is a C-valued point of
S, then the Hodge filtration of Hpg(X(0)/C) = Hpr(U(0)/C) is precisely
the filtration used by Deligne in (6] in the construction of the mixed Hodge
structure on Hp(U(0)/C). Localizing S some more, we may assume that
for every closed point s of S, the characteristic p(s) of the residue field
k(s) satisfies the hypotheses of (8.2.5). Thus, the Hodge polygon of the F-
crystal H2, (X (s)/W (s)) agrees with the Hodge polygon of the mixed Hodge

structure of the geometric generic fiber.

8.4 F-crystals on curves

In this subsection we study the cohomology of F-T-crystals in the simplest
possible nontrivial case, namely F-T-crystals of rank two and width one on
curves, as well as the cohomology of the symmetric powers of such F-crystals.
As an application, we give a simple proof of some results of Ulmer in the
theory of modular forms [28].

As usual, we let S denote a p-adic formal scheme which is flat over W
and endowed with a fine logarithmic structure and, eventually, a lifting of its
absolute Frobenius endomorphism. Suppose that X/Sy is a perfectly smooth
connected logarithmic morphism of relative dimension one, so that (% /59 =0
unless i = 0 or 1.
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For an important case to keep in mind, consider S = Spf W, X the
complete modular curve classifying semi-stable elliptic curves with a suitable
(prime-to-p) level structure, and let X be the logarithmic scheme obtained
from X by logarithmically cutting out the “cusps.” More precisely, if U C X
is the open subscheme of X classifying smooth elliptic curves, X has the
logarithmic structure obtained by taking the direct image on X of the trivial
logarithmic [20, (1.4)] structure on U. Then the universal elliptic curve over
U prolongs to a perfectly smooth morphism f: Z — X of logarithmic schemes
over S. Then by (7.5.2) and (7.5.3), we see that R'f.u(Ozs, Jz/s,®)
defines a uniform F-T-crystal (E,®,B) on X/S. Poincaré duality for f
defines a principal polarization (3.3.2) on (E, ®, B).

If (E, B) is a T-crystal on X/S of level within [0,b], let Ey /g, be the De
Rham complex of its restriction to X/Sy, and let

&:Gry Ex — Grig' Ex ® Q}(/S

be the Kodaira-Spencer mapping, i.e. the map induced by the connection
V. Then the Kodaira-Spencer complexes of (E, B) are as follows:

Gry Ex o ifi =0
Gri Ex/s, = Grp Ex—>Grg' Ex ® Qs if0<i<b+1
Gry Ex ® Q/s[-1] ifi=>b+1.

Assume now that (F, B) is uniform of level one and rank two, so that
w =: B'FEx is an invertible sheaf on Ex. Assume also that (E, B) is endowed
with a principal polarization of weight one (3.3.2). The polarization induces
an isomorphism B!Ex = Hom(Gr} Ex, Ox), and we shall identify these two
sheaves. Let us also assume that the Kodaira-Spencer mapping

Ew—w'® Q}(/s

is not identically zero. Then there is a unique effective divisor R such that £
defines an isomorphism

w=w @0k s(—R), (8.4.0.1)

which we can also regard as an isomorphism w?(R) 2 Q5. We shall call
R the “ramification divisor” of (E, B). In the case of the modular curve
discussed above, R = 0, and if (E, B) is obtained by pullback via a morphism
7 to the modular curve, then R is just the ramification divisor of w. For
example, in [28] Ulmer considers the Igusa curve of level p*, and if n > 0 R
is a nonzero divisor which is supported at the supersingular points.
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Consider the m* symmetric product S™(E, B) of (E, B), with filtration
B induced in the usual way by the filtration B on E. It is clear that (S™E, B)
forms a T-crystal on (X/S). The polarization on E defines a polarization on
(S™E, B), but this polarization will not be principal if m > p.

8.4.1 Proposition: Suppose as above that X/ Sy is perfectly smooth of rel-
ative dimension one, proper, and connected, and let (E, B) be a rank two
uniform T-crystal on X/S endowed with a principal polarization of weight
one. Suppose that the degree of w =: B'Ex is positive and that the Kodaira-
Spencer mapping

Ew—ow!l® Q}(/so
is nonzero, with ramification divisor R.

1. If m > 0, the Hodge numbers of (S™E, B) in degree one (4.4.8) are as

follows:
hY(w™™) ifi=0
i,l—i/qm _ deg R 1'f0<z'<m+1,p,{'i
(ST B, B) = po(wti-m(R)) + hl(w¥™) if0<i<m+ 1, pli
h(w™+%(R)) ifi=m+1.

2. If0 <m < p, H(X/S,S™E) = 0 if i # 1, and the hypotheses of
(6.3.4) hold. Thus, the maps H'(X/S, B:S™E) — H'(X/S, S™E) are
injective and define a T-crystal on (Sp/S).

Proof: Locally on X we may choose a basis {z,y} for Ex such that {z} is
a basis for B'Ex. Then B'S™Ex has a basis {z"y™ " : i’ > i}, and the
Gauss-Manin connection acts by the rule

Va'y™ " =iz Yy Ve + (m— i)z y™ vy
It is clear that for i € [0,m)],
Gry S"Ex = (Grh Ex)® ® (Gry E$™ ) = ' @ '™ = (%™
Furthermore, the Kodaira-Spencer map
Gry S"Ex — Grg' S"Ex ® Ox/s
can be identified with i times the standard map w%*~™ — w*-™(R). We find
quasi-isomorphisms

w™™ ifi=0
ot smp o ) (R R[] ifpfiand0<i<m+1
B TX/S T ) w¥-m g w%-m(R)[-1] ifpliand0<i<m+1
w™2(R)[-1] ifi=m+1.
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The proof of the proposition is now straightforward. |
Suppose now that (E, B, ®) is an F-T-crystal on X/S (5.3.1), uniform
and endowed with a principal polarization (5.2.2)

(E,®) — Hom((E, @), Ox/s(-1))

Because ax;s(®) is isomorphic to the pullback of (E, B) to X’/S, we find that
&x: FxEx — Ex annihilates Fix Ex, and there is a commutative diagram:

FyEx =% Ex

|

FLGr% Ex - FyGrlEx

Here h: F; Gry Ex — Gr% Ex is the “Hasse-Witt” morphism, and can
be interpreted as a map w™ — w™!, or a section of wP~!. If it is identically
zero, then the image of ®, is B'EYy, and we have an isomorphism w™ —
w, i.e. a trivialization of wP*!. Furthermore, in this case we see that the
filtration B°Ex and N°Ex coincide, and since the latter is horizontal, it
follows that the Kodaira-Spencer mapping is zero. In any case, we see that
w has nonnegative degree.

Let us assume from now on that the Kodaira-Spencer and Hasse-Witt
mappings are nonzero. Then there is an effective divisor ¥ such that the
image of h is Iy ® w™!, and we have Ox () & wP~1. In particular, deg(XZ) =
(p — 1) degw. Applying the previous result and (8.3.3), we find:

8.4.2 Corollary: Suppose that X /Sy is perfectly smooth of relative dimen-
sion one, and (E, ®, B) is a rank two F-T-crystal on X/S which is uniform of
level one and endowed with a principal polarization of weight one. Suppose
that the degree of w =: B'Eyx is positive and that the Kodaira-Spencer
mapping is nonzero, with ramification divisor R. Then if 0 < m < p,
(HY(X/S,E),®) defines an F-crystal on Sy/S, and its Hodge numbers are
given by the formulas (8.4.1.1).
[ |
Let us remark that by (8.3.3), the Newton polygon of (H'(X/S, E), ®)
lies above the Hodge polygon we have described; this gives the result of
Ulmer [28]. We should also point out that for simple enough logarithmic
structures, at least (for example, for the trivial log structure on S = Spec W
and the “omit the cusps” log structure on X), one can use Faltings’ results to
extend these calculations to the case of m > p. Namely, one can always find
a smooth lifting Y of X to S and then a lifting (E, ®, C)) of the F-T-crystal
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to Y; if p is odd then Faltings’ theory guarantees the existence of a p-adic
representation associated to (E, ®,C). Taking the symmetric powers of this
representation and applying (8.3.6), we still find that the Newton polygon
lies above the Hodge polygon given by the obvious extension of (8.4.1).

We close by discussing the cohomology of “horizontal” F-spans on elliptic
curves.

8.4.3 Example: We shall see that there exists an F-span ®: Fx/sE' — E
on an elliptic curve whose Hodge spectral sequence does not degenerate but
whose conjugate spectral sequence does. As explained in (7.4.4), this F-
span cannot be an F-crystal, and the torsion subgroups of H!(X'/W, E')
and H'(X/W, E) have different lengths.

Let X/k be an elliptic curve, and let = be an extension of Ox./w by
Ox/w in the category of crystals of Ox//w-modules. Let £ denote its iso-
morphism class, which we can view as an element of H'(X'/W, Ox/w). Then
= corresponds to an exact sequence

0—)OX//W—)E,—)0X//W—-———)O

We can view the subcrystal Ox:/w of E' as defining a filtration on E'. Since
the filtration is horizontal it a fortiori satisfies Griffiths transversality, and
hence if we let A be the PD-saturation of this filtration we obtain a T-crystal
on X'/W. Then Gry EY, = Ox & Oy, and the Kodaira-Spencer mapping
is zero. Thus we obtain

% = ox
Ql.(l)/k OX’[I] © Q}Y'/k
Of i = Qo]

This shows that the sum of the Hodge numbers in degree 1 associated to
the two spectral sequences is 4. In particular, the Hodge spectral sequence
degenerates if and only if h'(X'/k, Ey) = 4, and this holds if and only if the
reduction modulo p of our extension is split. In other words, the Hodge spec-
tral sequence degenerates at E; if and only if £ is divisible by p in H'(X'/W).

If we now follow the procedure of (5.1.2) we find an F-span ®: F*E' — E,
which fits into the following diagram:

R

0 — OX/W — F;(/WE/ i OX/W — 0

|» |2 ia

0 — Oxw — E — Oxw — 0
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This diagram shows that the isomorphism class of the extension correspond-
ing to the sequence along the bottom is pFy /€. Thus, the filtration N on
Gr}(E) is just the subobject Ox/x defined by the extension in the diagram;
note that this (mod p) extension is split, so that h'(X/k, Ep) = 4 and the
conjugate spectral sequence always degenerates at Fo.

Now suppose that £ is not divisible by p. Then we see that the Hodge
spectral sequence does not degenerate, and the conjugate spectral sequence
does. Furthermore, H'(X’'/W, E') is p-torsion free, while H!(X/W, E) is not.
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