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PRÉFACE 

Ce livre est consacré à l'étude de majorations uniformes de solutions parti­
culières de systèmes d'équations linéaires à coefficients holomorphes, qui sont 
présentés en détail dans la première page de l'introduction. Bien qu'il s'agisse 
d'une question élémentaire et fondamentale, on ne disposait, jusqu'à ce jour, 
d'aucune étude complète de ce problème. J'espère que cet ouvrage servira à 
combler cette lacune. Le champ d'applications directes est vaste. En appen­
dice III, on en esquisse une plus indirecte. On y explique comment on pourrait 
procéder pour fonder une théorie de cohomologie modérée permettant de gé­
néraliser le "GAGA" de J. P. Serre [50] dans le cas non propre. 

L'outil mathématique qui est au centre de ce travail est le théorème de 
division de Hironaka avec ses diverses variantes. Les idées de base sont la 
semi-continuité du polygone de Newton, la stratification qui la manifeste et 
le "comportement modéré" de la division de Hironaka sur chaque strate. Des 
méthodes analogues ont été utilisées dans le passé (par Hironaka entre autres !) 
et plus récemment par E. Bierstone et P. D. Milman [57], dans un contexte 
différent. Dans une postface, j'expliquerai le rapport qui existe entre leur 
travail et le mien. Au chapitre IV, une "astuce" permet de ramener toute 
division par un sous-module à une division par un idéal (sur un autre espace), 
ce qui s'avère crucial pour la démonstration de certains résultats. Je pense 
d'ailleurs que le cadre naturel du théorème de division est celui des idéaux, le 
chapitre IV étant une illustration de cette affirmation (mais cela n'est peut être 
qu'une question de goût). Ce point de vue permet, en tout cas, de démontrer 
une version plus générale de ce théorème. 

Toutes les démonstrations dans ce travail sont détaillées et aussi complètes 
que possible. C'est un pari volontaire, même si cela est aux dépens de la 
concision du texte. Cette règle ne s'applique évidemment pas à l'appendice III 
qui n'est que le plan d'un travail qui fera l'objet d'une publication ultérieure. 
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La démonstration des énoncés de cet appendice nécessite, en plus des résultats 
du présent travail, une version très fine de la théorie de la voûte étoilée de 
Hironaka. Par ailleurs, les définitions qui y figurent ont été volontairement 
"simplifiées" pour éviter d'introduire la notion d'éclatements permis. 

Les références internes sont données suivant le système décimal. Par exemple, 
dans III, 4.3.2, le chifre III indique le chapitre, le chiffre 4 le paragraphe et 
le chiffre 3 la section du paragraphe. A l'intérieur du même chapitre, on sup­
primera la mention du chapitre. On se réfère aux appendices selon le même 
principe en ajoutant le préfixé App. Les chiffres entre crochets correspondent 
aux ouvrages cités dans la bibliographie. 

Je remercie Adrien Douady qui m'a initié à la géométrie analytique, ainsi 
que Jean Giraud qui m'a guidé dans les "forêts" et autres "jardins", "bos­
quets" et "polybosquets" de Hironaka. Je remercie Chantai Postadjian qui 
a assumé courageusement la tâche ingrate et particulièrement difficile de la 
frappe de ce texte rempli de formules et de symboles. 

Ce livre est dédié à la mémoire de Jean-Louis Verdier. Au cours des années, 
ses encouragements, ses conseils, sa rigueur et son perfectionnisme, aussi bien 
sur le fond que sur la forme, m'ont aidé à achever cet ouvrage. Sans lui, ce 
travail n'aurait sans doute jamais eu sa forme actuelle et serait resté au stade 
des versions préliminaires et incomplètes. 

4 



INTRODUCTION 

J_. L'axe principal de ce travail est l'étude du problème suivant. On considère 

un ouvert U  de <rP et un système d'équations linéaires à coefficients dans 

T(U,0 ) , c'est-à-dire une matrice (f.J^.^ . -,<•<- ,  où f . . €r(U,0 )  ,  ou 
/pp 1J i =J-=ii, i =J =111 J-J 

encore, ce qui est équivalent, un morphisme de (̂ -modules 

f • (f > d1 

Pour tout polycylindre compact K de (Cp (K = K1x...xKp , où pour tout i  , 

1  ̂i p̂ ,  es t un compact convexe d'intérieur non vide de C  ) contenu dans 

U , si l'on désigne par B(K ) l'algèbr e de Banach normée des fonctions continues 

sur K  e t analytiques sur K  ,  munie de la norme | | . |L , définie par 

||g|L = sup|g(x)| ,  pour g€B(K ) , 
K x€ K 

le morphisme f  définit , par restriction des su r K  , une application 

B(K)-linéaire continue 

B(K:f):B(K)m •  B(K)n 

qu'on peut aussi considérer comme un système de n  équation s linéaires à m 

inconnues à coefficients dans B(K ) . On cherche un procédé permettant d'associer 

C-linéairement à tout élément g  d e B(K) n , c'est-à-dire à tout second membre de 

notre système d'équations, un élément h  d e B(K)m qui en soit une solution, 

si g  G Im(B(K;f)) , et cela d'une façon continue. Cela équivaut à définir une 

application C-linéaire continue 

a : B(K)n—» B(K)"1 

telle que 

B(K;f) °a ° B(K;f) = B(K;f) . 

On dit alors que a  es t une scission de B(K;f ) . Cela n'est pas toujours possi-

ble. Si l'on désigne par 2 I e (̂ -module cohérent conoyau du morphisme f  , 

l'existence d'un tel a  équivau t à affirmer que le polycylindre K  es t privilé-

gié pour Q  ,  au sens de Douady [ 7 ] . Le but de ce travail est de définir des 

scissions (T-linéaires continues rr„ de RfKifl . de telle sorte au'on raiisse 

"contrôler" la croissance de la norme de e n fonction du polycylindre pri-

vilégié K  ,  du moins pour K  "asse z petit". En termes de système d'équations 

linéaires, il s'agit de trouver un procédé C-linéaire continu de détermination 

d'une solution particulière, avec "contrôle" de sa norme, en fonction de celle 

du second membre et cela d'une façon "uniforme" en fonction du compact privilégié 
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K . 

Il existe un cas simple. C'est le cas où le conoyau Q . de £ est un Ĉ -modul e 

localement libre. Dans ce cas, tout polycylindre compact de (Cp contenu dans U 

est privilégié pour Q . , et comme f  possèd e localement des scissions (̂ -linéai -

res, il est facile de voir qu'il existe une fonction continue 

: U > m 

et un recouvrement ouvert (LL) ^ de U te l que pour tout polycylindre compact 

K d e ,  contenu dans au moins un des IL ,  il existe une scission (C-linéaire 

continue d e B(K;f ) (qu i peut même être, dans ce cas, choisie B(K)-linéaire ) 

telle que 

| | c U | <  sup i|/(x) . 
R x€ K 

Le cas général est beaucoup plus difficile. Le résultat le plus fin obtenu dans 

cette direction, avant ce travail, est dû à J.L. Verdier qui s'inspirant des 

méthodes de B. Malgrange [56] et A. Douady [ 7 ] démontre, dans un texte inédit, le 

théorème suivant : 

THÉORÈME (J.L. Verdier).- So tant U  un ouve.it de. (Ep et f : 0™ —* 0^ un moK-

phjj>me. de. 0^-moduleM. KloKò poux tout point x  de U II oxiàte. de.* nombAeò Aée.1* 

e , ô et A , e€IR * ,ôe]R+ ,  A € ]R+ eX un <¿le.me.nt d  = (d-,,... ,dp) 

de 1N P te.lA QUO, vowi tout voludihaue. kanmé. K de centAe. x eX de. voluAauon 

p = ( p r . . . , p ) , p € ( R * ) p , Ite Inégalité.* 

P l < e , p 2 < p r . . . , p < P 

Impliquant que, K òolt contenu donò U at qu'il axÀAtc una *ct**lon (H-ltnéaÂAe. 

continuo. o*£ de B(K;f ) telle, qua 

l | a K H K < A/pd 

[où pd = S pji )  . 
i=1 

Le but principal de cet ouvrage est d'étudier la variation de e , ô , A et 

d e n fonction du point x  de U .O n obtient le théorème suivant : 

THÉORÈME.- So tant U  un ouve.At de C p ut f  : G>™ —> 0^ un moAphlòme. de 

0^-modulte. Il e.xlòte. una òtAatifilcation <C-analytique. ( X ^ ) ^ j de U et pouA 

tout j , j G J , un élément J . de , un nombna Aéel 6. , t S . E R * , e.t 

J J J 
deux Xonc£c0jtó continue.* 

co. : X. — • R* et il). : X. —> R* , 

6 
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INTRODUCTION 

тоаЫеел [à CÂJOÂAbanco, polynomlale) le. long de Xj " Xj * °à Xj désigne. Vadhe­
rence, de. X.. danA U , te.tb que роил tout point x de et tout polydlAque 
^ehme К de cent/ie x et de polynayon p = ( p ^ , . . . ^ ) , p€ (R*)p , £e* 

ô . ô . 
(i) Р ^ Ч / Ф ^ М , p2<p1J,...,pp<pp^1 
Impliquent que К <бо>££ contenu dam U e£ qu'^£ existe иле 4aÎ44^con C-line, силе 
continue, оv de B(K;f ) telle que 

a. 
||aKHK < ^(x)/p 3 . 

On remarque que les inégalités ci-dessus impliquent, en particulier, que le 

polydisque compact K  es t privilégié pour le conoyau de £  .  C'est pour cette 

raison qu'on appellera ce théorème, théorème de "privilège numérique uniforme". 

En fait, on obtient un énoncé plus précis et plus général. Plus précis, car on 

donne des formules explicites de d . e t ô- j e n fonction des exposants privilé-

giés minimaux du sous-module Im(f ) de 0^ (défini s dans le chapitre IV) et on 

exprime tp ^ et I|K e n fonction des dérivées partielles des coefficients de la 

matrice définissant le morphisme f  ,  la stratification ^j^jç j étan t cons-

truite canoniquement et ne dépendant que du sous-module Im(f ) de 0™ .  D'autre 

part, on remplace les inégalités (I) par des conditions plus générales (dépendant 

du choix d'une relation de bon ordre sur ) , conditions qu'on étend aux 

polycylindres (tandis que dans l'énoncé précédent on se limite aux polydisques ). 

La version précise du théorème est nouvelle même dan s le cas "ponctuel", et peut 

être utile à la majoration uniforme des normes des scissions des morphismes ap-

partenant à une famille infinie. 

L'approche de J.L. Verdier ne peut pas être adaptée pour démontrer le théorème 

de privilège numérique uniforme. En effet, elle repose sur un dévissage du co-

noyau de f  qu i dépend du point x  e t se prête fort mal à une étude uniforme. 

La stratégie adoptée ici est basée sur le théorème de division par un idéal de 

Hironaka ([24] et [1]) et Grauert [55] . On en démontre une forme plus précise 

(numérique uniforme) généralisant la version Hironaka du théorème. 

Le théorème de privilège numérique uniforme peut s'appliquer à l'étude de 

nombreux problèmes en rapport avec la majoration uniforme de solutions de systèmes 

d'équations linéaires à coefficients C-analytiques. La principale application 

esquissée dans ce travail concerne l'établissement de théories cohomologiques 

"avec conditions de croissance". Pour cela, on étend le théorème de privilège 

numérique uniforme aux morphismes de modules cohérents (pas forcément libres), en 

suivant d'assez près des idées de J.L. Verdier, et ensuite on en déduit une 

variante utile à l'étude de la variation de la norme des scissions construites 
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dans ce théorème quand "on sTapproche" d'un fermé analytique. On utilise ce 

résultat pour démontrer l'exactitude à gauche d'un foncteur "sections modérées" , 

ce qui permet de définir une cohomologie "modérée". On en déduit une généralisation 

du théorème de "GAGA" de J.-P. Serre [50] pour les variétés algébriques non 

nécessairement propres. 

Pour résumer, les deux théories qui ont le plus influencé ce travail sont la 

théorie du "privilège" et la théorie de "division". Les premiers "théorèmes des 

voisinages privilégiés" sont dus à H. Cartan [54] et H. Grauert [22] . La notion 

de compact privilégié qui est implicite tout le long de cet ouvrage (bien qu'elle 

ne soit explicitement mentionnée qu'à partir de l'appendice II) a été introduite 

par A. Douady [7] à qui l'on doit l'utilisation systématique des techniques des 

espaces de Banach en géométrie analytique. Une caractérisation particulièrement 

élégante des polycylindres privilégiés a été obtenue par G. Pourcin [48] . Le 

théorème de division de Hironaka ([24] et [1]) et Grauert [55] , descendant 

lointain du théorème de préparation de Weierstrass [53] , a été amélioré et sim-

plifié par A. Galligo ([16] et [18]). Le lien entre ces deux théories est la 

notion de scission continue introduite par B. Malgrange [56] dont la contribution 

est grande aussi bien dans la théorie du privilège que dans le développement de 

versions différentiables du théorème de division. La notion de scission a été 

exploitée dans l'étude numérique du privilège par J.L. Verdier. 

Le concept de fonction modérée a été introduit par P. Deligne [6] , et son in-

térêt découle des inégalités de tojasiewicz [38]. Les travaux de Deligne, en vue 

d'une généralisation du fameux "GAGA" de J.-P. Serre [50], ainsi que la théorie 

de la voûte étoilée de Hironaka [27], inspirent largement les idées développées 

dans 1'appendice III. 

Les techniques utilisées dans ce travail sont cellesde la géométrie analytique. 

Ce sont Henri Cartan et ses élèves qui en ont posé les fondements dans le célèbre 

séminaire à l'Ecole Normale Supérieure. Des théorèmes devenus classiques comme 

les théorèmes A et B de Cartan ou le théorème de cohérence de Oka sont utilisés 

sans référence. Les contributions ultérieures de Grauert et de Hironaka sont 

capitales. Les théorèmes de l'image directe de Grauert et de désingularisation 

de Hironaka sont implicitement utilisés dans l'appendice III. 

Dans la suite de cette introduction, on exposera sommairement les notions et 

les méthodes utilisées pour démontrer le théorème de privilège numérique uniforme, 

ainsi que les résultats intermédiaires présentant un intérêt indépendant. 
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INTRODUCTION 

2. Pour toute relation de bon ordre £  su r ]N P , compatible avec sa structure 

de monoîde et moins fine que la relation d'ordre produit ^  su r ]N P (i l en 

existe et on en donnera une classification complète au chapitre I, §3, l'exemple 

le plus simple étant celui de l'ordre antilexicographique ^ T ,  défini par 

d < d '4=*(d=d') ou [3i - 1£i <p : [(d. <dï ) et (Vi, i <i^p:d. =d-')]] 
o o 

pour d  = (d1,... ,d ) , d' = (d*,... ,d̂ ) , d G NP ,  d'G NP ) e t toute série con-

vergente à p  variable s f  ,  f^ O ,  f  = £ a , Xd , 

d d 1 dr , dG] N 
(où X  =X1 •....XpP s i d = (d.j,...,dp)) , on définit l'exposant privilégié de 

f pou r <  comm e étant le plus petit élément de l'ensemble 

E(f) = {dG NP : ad^0} 

pour la relation de bon ordre < ^ ,  noté v^Cf ) . Pour tout e , e G R* ,  et 

tout d  et d' ,  d= (dr...,d), d» = (d',...,d̂) ,  d G Np ,  d'G Np ,  on 

pose 

Vdl_d;e = {(p1,...,pp)eQR:)P: £ pj 1 di<e} 

Au chapitre I, §4, on démontre que la famille 

(Vd,-d;e)d€WP , d'G!Np, d <ad', e G R* 

est un système de générateurs d'un filtre sur (R*) p ,  noté F a ,  plus fin que 

la trace sur (R*) p d u filtre des voisinages de zéro dans R p 

Si l'on désigne par N  l'applicatio n de ((C*) P dans (R*) P ,  définie par 

N(xr...,x ) = C | 3 C 1 | , — ,  pour (x^,.. . ,xp) G (C*)P , 

on vérifie aisément que la famille 

CN-'CA))AeF 

est une base d'un filtre sur C(C*) P ,  noté F ^ ,  tel que pour toute série con-

vergente f  ,  f  ¿0 ,  f  = Z „ a,Xd , on ait 
dG№ d 

limp(f/ad Xd°) =1 , 
a о 

où d  =v (£) .E n plus, le filtre F ' es t la trace sur (C:*) P d'u n filtre plus 
o a  ^  '  a  r 

fin que le filtre des voisinages de zéro, possédant une base forméede parties 

ouvertes de 0? . 
Dans ce travail on s'intéresse davantage au filtre F  qu'a u filtre F ' e t 

a a 
on a besoin d'une description parfaitement explicite d'une base de ce filtre. 
Ce sera le but principal du chapitre I. On signale simplement ici que dans le cas 

où la relation d'ordre <  es t la relation d'ordre antilexicographique , 
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le filtre F  es t le filtre engendré par la base de filtre (Ex . ^clD . -in* > 

où pour tout < S et e , ô € ]R ,  e € K* 3 

E6;e = tiPr---PpÎ€CR:)p:Pl<e, P2<P;)-..,Pp<Pp.1> -

3. Dans le chapitre II, §1, on introduit la notion de l'ensemble des exposants 
privilégiés d'un idéal. Etant donné un idéal I  de l'anneau des séries convergen-
tes à p variable s (C{X } = C{X.,... ,X } , on dit que d  ,  d £ ]NP ,  est un 

exposant privilégié de I  pour < ^ s1 il existe une série convergente f  , 
î£ 0 , f el ,  telle que d = v (£) et on désigne par P  . T l'ensemble de ces 

exposants privilégiés. Si I  est un idéal principal engendré par la série con-
vergente f  ,  f / 0 , alors il est facile de voir que 

P т = d + ]NP 
a;i 

où d = v̂ (f) .  Dans le cas général, si l'on désigne par l'ensembl e des 
éléments minimaux de P  .j pour la relation d'ordre produit <  sur 
(qui est un ensemble fini (1,1.1)), on vérifie tout aussi facilement que 

P - =  и (d+]Np) . 
a,i de M j 

Mais alors il n'est pas toujours vrai que si ^ Î^-J^^ désign e un système de 
générateurs de l'idéal I  ,  on ait 

Ma;lcídr---'dm> > 
où pour tout i  ,  1 ^i<m ,  =va(f̂ ) .  En revanche, on démontre (111,5.4.3) 

que si t̂ î i<i< m désign e une famille d'éléments de I  telle que 

a; I I ' m 

où pour tout i  ,  1 ^i m̂ ,  d^=v (f̂ ) ,  alors la famille Cf-|<i< m 
engendre l'idéal I 

J_« Soit U un ouvert de C P . Pour tout point x de U e t toute fonction analyti-

que f  ,  f  €r(U,() )  ,  on désigne par f  l a série de Taylor de f  a u point x 

£ = z i. 3|d|f (X ) xd 

iji cL + ...+d 
P 9ldl f 3 1 Pf 

(où d! = n d. ! et -3— = —-5 j , si d = (d1,... ,d )) et pour tout 
i=1 ЭХ ЭХ,1 3X¿> P 

idéal cohérent J de Oy , on désigne par J x l'idéal de C{X} engendré par 
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INTRODUCTION 

les séries convergentes £ x pou r f  er(U',J) ,  où U ' es t un ouvert de C p 

contenu dans U  e t contenant x  (ce s notations sont conformes aux notations 

classiques modulo l'identification de 0 à  Ç{X } moyennan t les coordonnées 
<TP x 

X.j,...,X d e (Ep ) .  L'objet du chapitre II est l'étude de la variation de 

p ou , ce qui revient au même, de M  quan d x  vari e dans U  . 
a;J a , j 

Dans le cas où J  est un idéal principal (qu'on supposera, pour simplifier, 

nul sur aucune composante connexe de U ) , c'est-à-dire o ù il existe f , 

f e r ( U , J ) ,  (identiquement nul sur aucune composante connexe de U ) qui engendre 

J au-dessu s de U  ,  cette étude est simple. En effet dans ce cas, comme pour 

tout x  ,  xeU ,  M T  = {d} e t P  _  =  d + JNP ,  où d  = v (f ) ,  il suffit 
a;Jx a,J x a  x 

d'étudier la variation de v  (f ) .  Or, si pour tout d  ,  d e 1NP ,  on désigne 
ot x 

par J , l'idéa l cohérent de 0 engendr é par la famille 

V4- а'е"-а,<«4 
et par l e sous-espace analytique fermé de U  défin i par l'idéal ,  alors 

la famille W^^^p >  indexée par l'ensemble bien ordonné lsf p pa r <̂  ,  est 

une famille décroissante pour la relation d'inclusion, on a YQ= U , 

fl Y , =0 :  et si pour tout d  ,  de Np ,  on pose 

d e # d 
Zd"Yd"Ys (d) 

a 

où s  (d) désign e le successeur de d  pou r la relation de bon ordre <  ,  la 
a ot 

famille ^^}^£fp es t localement finie, et pour tout x  ,  x£U ,  on a 

xeZ^ ,  si et seulement si vaCfx ) = d .  On en déduit d'une part, qu'il existe 

une stratification (C-analytiqu e (Zï) . T ,  telle que pour tout j  ,  je J , 

et tout x  et x' ,  xeZï ,  x'G Zï ,  on ait v  (f ) = v (f.) e t d'autre 
3 J  a  x  a  x  ^ 

part, que pout tout point x Q ,  X Q £ U ,  il existe un ouvert U  de CR contenu 

dans U  e t contenant x  ,  et une famille finie ( d - . d'élément s de ]N P 
o 1 l ^ l M ï l 

tels que pour tout i , 1  ú i S m ,  on ait d . < d ,  où d  = v (f )  ,  et 
1 »• * O O CL X 

O 

tels que pour tout x  ,  x€U' ,  il existe i , 0^i<m ,  te l que va^x ) =di-

Dans le cas général, l'étude de la variation de M  T  (o u de P  ,  ) es t 
a;Jx a ;jx 

beaucoup plus difficile. On est amené à introduire un bifoncteur covariant de la 

catégorie des (̂ -modules cohérents dans celle des modules gradués sur la C)y-algèbre 

des polynômes à p  indéterminée s %[Tp... . ,T ], graduée par Kp . 

En démontrant un théorème de commutativité de ce foncteur au produit tensoriel, 

sous des hypothèses de transversaiité, par un argument délicat de passage à la 

limite par récurrence transfinie et platitude supérieure (11 ,2.6.3), on établit 
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dans le cas général aussi, l'existence d'une stratification C-analytique (Z.)-c7 3 3 £*J 
de U tell e que pour tout j , j e J ,  et tout x  e t x' ,  x ç Z^ ,  x' e 

on ait M ,T = M .T (don c aussi P  ,  = P T  ) (II, 3.5 ) . C'est le 
a;Jx a;Jx ' a;J x a;Jx ' 

premier résultat important de ce travail. En fait c'est un résultat beaucoup plus 

précis que l'on démontre (II, 3.6 ). 

PROPOSITION.- Иоил tout ^елта analytique. lASicductlhlc Y da и , It existe, un 
icxmc analytique, S  de Y d'IntéKlauA. vida [dan* Y ) et una Camilla ilnla 
Wj^l^j^n d'clamant* doux à daux distinct* da fP tcLb qua poux tout x  , 

x С Y - S , on ait M  ,  = {d-,... ,d } ,  at роил, tout ouvcxt da Stain U' Kcla-cx, j I  m 

tivement compact dans U  rencontrant Y  ,  XL existe un ensemble fini I  ,  une 
famille (S.).C T de fermés analytiques d'Intérieur vide de Y  П U ' et une famille 
CFij)iGI,1<j<m d'enne*** & rCUf xUf,ÖUxU) toJU qua : 

i) n  S.cSnU ' ; 
i€I 1 

ii) роил tout i eí j, 1^j^m , et tout Xq , xQ€: YfiU1 , 

si Von désigne, рал Vêlement de. ГШ',0ц) défini рал £ ц (x) = (xQ,x ) , 

роил x € U1 , on а : 

a) f̂ e r C U V ) ; 

b) v. (£. . ) ̂  d- V (£.. ) = d. ,  si x  CYflU' - S. . 
a ijx n er ljjx̂  j '  o i 

_5. Les chapitres III et IV sont consacrés à la démonstration du théorème énoncé 

au paragraphe 1, sous une forme un peu plus générale. Pour ne pas trop charger 

cet exposé préliminaire, on se limitera au cas des polycylindres particuliers que 

sont les polydisques fermés. On rappelle qu'un polydisque fermé de centre x  et 

de polyrayon p  ,  où x=(x1,...,x ) ,  xECP e t p=(p,,...,p ) , 

p€ (M*) ,  est la partie D(x;p ) d e CF défini e par 

D(x;p) = {(y1,...,yp)€Cp:vi, 1<i<p :  | y i - x i | < P i > . 

Etant donné une relation de bon ordre <  su r ,  compatible avec sa 

structure de monoîde et moins fine que la relation d'ordre produit <  su r ]NP 

et un point x  d e Cp ,  on dira qu'une propriété est satisfaite pour tout poly-

disque fermé de centre x et de polyrayon suffisamment effilé pour ^  ,  si l'en-

semble des polyrayons p  ,  p € (R*)p ,  pour lesquels le polydisque D(x;p ) 

satisfait à cette propriété, appartient au filtre F  défin i précédemment. Au 

chapitre IV on démontre le théorème suivant (IV, 4.4.2). 

12 
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THÉORÈME.- Solent U a n ouvert de Cp et f  : — u n monphlAme de 

Ou-modaleò. Il existe une òtsiatlfilcatlon ([.-analytique (X.) . T de U e t pouA 

tout j  , j G J y un élément d - de w et une {onction contenue 

ipj : Xj —» ]R* ,  modérée le long de X. . - X̂ ,  telò que pour tout point x de 

Xj et tout polydisque iermé K  d e cent/ie x  et de polyrayon p  hu^lMamment 

ei^llé pour < a , K  òolX contenu dan* U  e t qu'il existe une AclAAlon 

linéaire continue o„ de B(K;f ) telle que 

l | o K H K S  ^fx)/pdJ . 

En fait, on démontre un résultat beaucoup plus précis en donnant explicitement, 

en fonction du point x  ,  un ensemble appartenant au filtre F ^ ,  tel que si 

le polyrayon p  appartien t a cet ensemble, le polydisque fermé D(x;p ) satisfass e 

à la conclusion du théorème,et en explicitant d - e t ty- - résultat qui est 

d'ailleurs essentiel dans les applications. L'énoncé du théorème donné au paragra-

phe 1 est le cas particulier du théorème dans le cas de la relation d'ordre 

ant i1exicograph ique. 

Dans le chapitre III, on étudie le cas où n  = 1 . Alors la matrice du morphis-

me 

f:: <—> 0V 

est une matrice ligne (f^,...,^ ) e t son image un idéal cohérent J  de O y . 

Dans ce chapitre on établit une forme extrêmement précise du théorème de division 

par un idéal (théorème de "division numérique uniforme" par un idéal (111,6.4.2 )). 

Pour tout point x  de U ,  tel que pour tout i  ,  1   ̂i  ̂m ,  f^ ^ 0 ,  et 

pour tout polydisque fermé K  ,  de centre x  e t de polyrayon p  = (p^,...,p ) 

suffisamment effilé pour <  ,  on construit une application (C-linéaire continue 

af .K : B(K) —> B(K)m 

(absolument explicite) telle que 

|d |+...+|d |+ m 
l i ° £ ; K l l K * 2 

d 
sup (1/|a.|).1/p 0 , 
1<i^m 1 

où pour tout i  , 1 < i <m ,  d . = v (f • ), 
' i  a  î x  ̂' 

P 
d. = ( d . , , . . . ^ . ) , Id. I = l d. . , i i l ' ' îp ' 1 i1 I J ' 

\ -3 - ê « 
8X 1 

et d  = (d d  ) 
o o 1 ' '  op 

, où pour tout j  ,  1   ̂j  ̂p , 

d^. = sup d. • ( d = sup d. 
0J 1<ii m ^  0  1<i< m 1 

pour la relation d'ordre produit ^  su r ]NP) 

et telle que 

o£;KoB(K;f) o 0 f ;K =  a£; K 

13 
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(c'est-à-dire telle que B(K;f ) soi t une scission de Or v) . La difficulté 
r ;K 

réside dans le fait que généralement a^. ^ n'es t pas une scission de B(K;f ) 
On démontre que les conditions suivantes sont équivalentes 

i) <j£. K est une scission de B(K;f ) ; 

ii)M e ^ , . . . , ^ } . 

Or, on l'a déjà signalé, la condition (ii) n'est pas en général satisfaite par un 

système de générateurs quelconque de l'idéal J  ,  et l'application Or v n e 
t in-

satisfait donc pas en général à la conclusion du théorème. Pour contourner cette 
difficulté on procède de la façon suivante. On considère une stratification 

C-analytique (X.) . T de U  tell e que pour tout j  ,  J e J ,  et tout x  et x' , 

xGX. ,  x'€X. ,o n ait M  ,  = M ,  ,  dont l'existence est démontrée au 
3 3 oi;J x a;Jx , 

chapitre II. Pour tout point x  ,  x  eXj ,  on peut choisir un système de 

générateurs (S^^i^ » d e ^ a u voisinage de x  te l que 

M 7  = {d'..,d'f} , a;Jx 1  ' *  m' ' 

où pour tout i  ,  1  <i^m' ,  d ï = V (g- 3 .  Si l'on désigne par g  l e mor 
1 et I X phisme de ^-modules 

g : < — > Ои 

défini par la matrice ligne (g-j, . • • jĝ  ) a u voisinage de x  ,  pour tout poly-

disque fermé K  d e centre x  e t de polyrayon suffisamment effilé pour < ^ , 

o Y es t une scission C-linéaire continue de B(K;g ) ,  et par une méthode stan-

dard on peut en déduire une scission (E-linéaire continue de B(K;f ) . Mais si 

l'on choisit la famille de générateurs t&i^i^ » arbitrairement , comme la 

majoration de la norme de o * ^ dépen d des dérivées Э gj(x)  

ЭХ 1 
, on n'obtient 

aucun résultat uniforme. C'est là qu'intervient la proposition 3.6 du chapitre 

II, énoncée ci-dessus, et en surmontant de nombreuses difficultés techniques 

(d'autant plus que l'on cherche à expliciter un ensemble appartenant au filtre 

F̂  qu i précise le "suffisamment effilé"), on arrive à en déduire le théorème pour 

le cas n  = 1 .On serait tenté d'en déduire le cas général par dévissage du 

Ojj-module cohérent Im(f ) . Mais en procédant ainsi on ne parviendrait à définir 

la stratification nue localement, stratification qui serait d'ailleurs dépourvue 

de toute signification intrinsèque. On procède donc autrement et cela est dévelop-

pé au chapitre IV. On y définit la notion des exposants privilégiés d'un sous-

Ojj-module cohérent de e t on y démontre un théorème de "division numérique 

uniforme" par un tel sous-module, en se ramenant au cas d'un idéal comme suit. 

14 
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Soient 
f : <—> 0V 

un morphisme de (̂ -modules , M = Im(f) e t 0  = coker(f) . La surjection 

Onu q o 

définit une surjection 

S(ög) S(Q) —* 0 

où S((̂ . ) (resp . S(Q)) désign e l'algèbre symétrique de (resp . de Q J. 

On en déduit une immersion fermée 

Specan(S(£)) c—• SpecanCSCOÎ1,) ) . 

Or, Specan(S((^)) es t canoniquement isomorphe à U x Cn e t Specan(S(Q)) s'iden -

tifie par cette immersion à un sous-espace analytique fermé Y  d e U  x (C11 . 

Si l'on désigne par J(M ) l'idéa l de définition de Y  dan s U  x C11 ,  J(M) es t 

un idéal cohérent de ̂ yx̂ n e t on ramène la "division" par le sous-module M  d e 

Onu à la "division" par l'idéal J(M ) de 0yx(C n •  On en déduit le théorème dans 

le cas général, d'une façon analogue à celle décrite ci-dessus dans le cas où 

n = 1 . 

Dans l'appendice I, on démontre les propriétés des fonctions modérées (à crois-

sance polynomiale) utilisées dans ce travail. Dans l'appendice II, on généralise 

le théorème principal au cas d'un morphisme de faisceaux cohérents et on en donne 

une formulation non-stratifiée. Dans l'appendice III, on esquisse une application 

en vue d'établir des théories de cohomologie avec des conditions de cro issance 

à "l'infini" et on obtient une généralisation de "GAGA" de J.-P. Serre pour les 

variétés algébriques non nécessairement propres. 
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CHAPITRE 0 

PRELIMINAIRES 

Dans ce chapitre on rassemble quelques notations, conventions et définitions 

utilisées tout le long de ce travail. 

Soit p  u n entier, p € IN . Pour tout élément d  ,  d = (d̂ ,... ,d^), d e W 

on pose 
P P 

|d| = E d. ,  d! = TT d.! , 
i=1 1  i= 1 1 

pour tout a  ,  a = (a^,... ,SL^) , OÙ â ,... ,â  son t des éléments d'un monoîde 

noté multiplicativement, on pose 

d * 1 d p a =  a1 •... .a 
1 P 

et pour toute fonction C-analytique de p  variable s ,..., X o n note 

3Xd 
la dérivée partielle 

aldl£-aT" s 
3)(d эх^1 эх^р 

Pour tout ensemble A  ,  si < a désign e une relation d'ordre, on désignera par 

< ,  > ,  >  ,  inf ,  sup , max , min le s notions correspondant à cette 
a ' a  a  '  a  ' * a '  a  '  a  r 
relation d'ordre. Si < ^ es t une relation d e bon ordre, pour tout d  ,  d€A , 

on désignera par sa(d ) l e successeur de d  pou r cette relation de bon ordre. 

Si A=]N P ,  A=2ZP ,  A = QP o u A=R P o n désignera par û l a relation d'ordre 

produit su r A  défini e par 

(dr...,d )<(d],...,d')4=^ Vi, 1<i<p :  d<d ï 

pour (d̂ ,.. . ,dp) G A e t (d̂ ,.. . 9d^) G A .L a relation d'ordre ^  es t une re-

lation d'ordre partiel et l'ensemble ordonné (A,̂ ) es t un treillis, c'est-à-dire, 

toute partie finie non vide de A  possèd e une borne inférieure et une borne su-

périeure. On réservera les notations in f et sup pour cette relation d'ordre. 

Pour tout espace de Banach norme E  ,  muni d'une norme notée l l - l l ^ > o n 
désignera par E p l'espac e de Banach norme, muni de la norme notée également 

Il - Il ic * définie Par 

Il (£r....VllK - sup ||f.|| ,  pour (£-,...,£ ) GEP . 
1<i<p *  1  P 

En particulier, on considérera toujours (C p muni de la norme || . || , définie 

par 

H Cx1, — , x ) H = sup |x. I ,  pour (x-,..., x ) € CP , 
1 p  1 ^i<p 1 1 p 
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Cet jamais de la norme euclidienne) et on désignera par d(.,. ) l a distance 

sur (C p définie par cette norme 

d(x,y) = ||x-y|| ,  pour xEC p , y€Cp . 

On dira qu'une partie К de (Cp est un polycylindre compact si K = K . j X . . . x K p ? 

où pour tout i  ,  1  ^i p̂ ,  es t une partie compacte, convexe, d'intérieur 

non vide de С , et on désignera par B(K ) l'algèbr e de Banach normée des fonc-

tions continues sur К et analytiques sur К munie de la norme I I • l l ^ défini e 

par 

||f|L = sup |f(x)| ,  pour f  € B(K) . 
* хек 

Pour tout ouvert U de <CP ,  si f  désign e une matrice (f-0.,^. ^ -.^-^ à 
coefficients dans r(U, 0p) o u un morphisme de CL-module s 

f • лт » (f1 

et К un polycylindre compact de (C p contenu dans U  o n désignera par BCK;f ) 

l'application C-linéaire continue 

BCK;f) : BCK)m ^  BCK)n 

définie par la matrice Cfi j I K)  ̂<i<n 1̂ j<m '   ̂Particulier > si f  désign e une 

famille finie Cf̂ ) 1 <îm ^élément s de r(u > o u 11116 matrice ligne 

(f̂ ,...,fm) à  coefficients dans CU, 0 p) o u un morphisme de (̂ -module s 

f : <—> 0V 

on désignera par BCK:f ) l'applicatio n C-linéaire continue définie par 
m 

BCK;£)(gl,...fgm) = (£i|K)g i 9 P°Ur % , . . . ^ ) е В С К ) т . 

Si M  désigne un sous-tf̂ -module cohérent de ,  on désignera par l e 

sous-BCK)-module de BCK) n Cno n nécessairement fermé) image de 

TCK,M) ®r K̂  ̂-jBCK) dan s BCK) n e t s'il existe un morphisme de Ĉ -module s 

f • о m > ûn 

tel que M = ImCf) , on a =  ImCBCK;f)) . En particulier si J  désign e un 

idéal cohérent de 0^ , JK es t un idéal de l'algèbre B(K ) e t si 

^i^1<i<m es t 1111 systeme ê générateurs de l'idéal J  a u voisinage de K  ,  alors 

la famille i I *01 < • <n engendr e l'idéal JL . . 

Si X  désign e un espace analytique, Y  u n sous-espace analytique fermé de X  , 

i : Yc—* Y l'immersio n canonique et M  u n 0̂ -module cohérent, on dira que M 

est porté par Y  ,  si le morphisme canonique M  —* i*i*CM ) es t un isomorphisme. 

Cela équivaut à l'existence d'un Ô -module cohérent M ' te l que M  soi t isomorphe 
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à i*(M' ) ,  ou encore à JM = 0 ,  où J  désign e l'idéal de définition de 

Y dans X .  Si M  es t porté par Y  ,  alors tout quotient de M  l'es t aussi 

ainsi que tout produit tensoriel M  8̂  W pa r un (̂ -modul e cohérent N .  Si M 
X 

est porté par Y  ,  on a l'inclusion ensembliste supp(M)c Y ,  la réciproque 

étant évidemment fausse. 
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CHAPITRE I 

RELATIONS D'ORDRE ET FILTRES ASSOCIES 

On connaît l'importance de la notion de degré dans l'étude des polynômes, 

ou de la notion de l'ordre d'une série convergente à une variable dans l'étude 

locale des fonctions analytiques d'une variable. On rappelle que l'ordre d'une 

série convergente à une variable est égal à l'ordre de multiplicité du zéro à 

l'origine de la fonction analytique définie par cette série au voisinage de zéro, 

ou encore au degré du monôme dominant de cette série au voisinage de zéro (qui 

n'est autre que le monôme non nul de plus petit degré) ; de même que le degré 

d'un polynôme à une variable est égal à l'ordre de multiplicité du pôle à l'infini 

de la fonction méromorphe sur la droite projective définie par ce polynôme, ou 

encore au degré du monôme dominant de ce polynôme au voisinage de l'infini (qui 

n'est autre que le monôme non nul de plus grand degré). Si l'on veut généraliser 

la notion de l'ordre d'une série convergente aux séries convergentes à plusieurs 

variables, on obtient deux notions différentes selon qu'on généralise la première 

ou la deuxième définition. Dans le premier cas, on obtient l'ordre de multiplicité 

de la singularité à l'origine du diviseur des zéros de la fontion analytique 

définie au voisinage de zéro par la série convergente (ordre égal à zéro si le 

support de ce diviseur ne passe pas par l'origine) qui est un nombre entier supé-

rieur ou égal à zéro, qu'on appelle ordre de la série convergente, et qui corres-

pond à la notion du degré total d'un polynôme à plusieurs variables. Dans le 

deuxième cas, si l'on cherche le monôme dominant d'une série à plusieurs variables 

au voisinage de zéro, on s'aperçoit aussitôt que cela dépend de "la façon" dont 

on tend vers zéro. On cherchera donc des filtres plus fins que le filtre des 

voisinages de zéro tels que, pour toute série convergente (non nulle), il existe 

un monôme dominant de cette série quand on tend vers zéro suivant ce filtre. 

Plus précisément, soient p  u n entier ,  p£K ,  et <C{X } = <C{X.j,... ,Xp} 

l'anneau des séries convergentes à r > variables. Pour toute série convergente 
_j j  d 1 d 

f ,  f = l a , Xa (où X = x J X  p si d = ((L,...,d )) ,  on désigne 
d€Kp a  1  P  1  P 

par E(f ) l a partie de défini e par 

E(f) = { d e # : a,/0 } . 

Alors on cherche des filtres F  su r (C p ,  plus fins que le filtre des voisinages 

de zéro, possédant une base formée de parties ouvertes de (C p et tels que pour 

toute série convergente f  ,  f  = £  a , Xd ,  f  0̂ ,  il existe d  ,  deE(f), 

tel que 
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liiiu (f/a,Xd ) = 1 

où F(C*) P désign e la trace du filtre F  su r (C*) P (qu i est un filtre, car 

F possédan t une base formée d'ouverts de (E p pour tout A  ,  A € F ,  il existe 

un ouvert non vide U  d e (E p tel que Uc A ,  et alors comm e Un(C*)p^0 , 

on a An (C*) ^ 0 ) . Supposons qu'un tel filtre F  exist e (on verra que c'est 

bien le cas), et soient d  e t d ' deu x éléments distincts de ]N P . Considérons 

la série convergente g  = Xe* + Xe* .  Alors 

E (g) = id,d'} 

et on a donc 

lim „ ( g / ^ ) = 1 ou lim- - C g / X * ' ) = 1 , 
(̂(C*)p h((E*) p 

ce qui implique que 

(2.1) lim.- CXdVxd) = 0 
((C*)p 

ou lim,. T,(Xd/Xdl) = 0 . 
^(C*)P 

On en déduit que pour toute série convergente f  ,  f  = E adXd ,  f  ¿0 , 
delNP d 

l'élément d  d e E(f ) te l que 

limp ff/aHXd)= 1 
r((C*)p a 

est unique, car si d * €E(f), il résulte de (2.1) qu'on ne peut avoir 

limF (adXd/ad,Xd' ) = 1 

que si d  = d' .O n appelle cet élément de ]N P exposan t privilégié de f  sui -

vant le filtre F  e t on le note vP(f ) . C'est la notion de l'exposant privilégié 

d'une série convergente à plusieurs variables qui constitue la deuxième généralisa-

tion de la notion de l'ordre d'une série convergente à une variable (la termino-

logie établie d'exposant privilégié n'est pas très heureuse mais il est sans doute 

trop tard pour y remédier). Ensuite, on définit une relation <  dan s 1N P pa r 

d < d'<= > [(d = d') o u limr (Xd'/Xd ) = 0 ] . 
*"0E*)P 

On vérifie aussitôt que la relation ^  es t une relation d'ordre sur 1N P , 

compatible avec sa structure de monoîde et il résulte de (2.1) que cette relation 

d'ordre est une relation d'ordre total, et du fait que le filtre F  es t plus fin 

que le filtre des voisinages de zéro dans C p ,  qu'elle est moins fine que la 

relation d'ordre produit <  su r 1N P . On démontrera ( 1,1.5 ) qu'une telle 

relation d'ordre sur ]N P est une relation de bon ordre et alors pour toute série 

convergente f  ,  f  = Z a , Xd , f /0 ,  si d ^ désign e le plus petit élément 
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de E(£ ) pou r la relation de bon ordre < p ,  on a Vp (f) = dQ . En effet,on 

démontre (111,4.2.1) qu'il existe un nombre fini d'éléments d̂ ,.. . .dm d e 1N P 

tels que pour tout i  ,  1  <i<m ,  d Q<pd^ e t des séries convergentes 

£.,...,£ telle s que 
d m d -

f = a d X° + z ^ X 1 , 
O 1=1 

et comme pour tout i  ,  1  < i < m , 

limr ( X VX °) = 0 e t lim _ ff. ) = f. (0) , 
F((C*)P F(C*) P 1  1 

on a 
d 

lim- if /a, X °) = 1 , 
((C*)p o 

d'où Vp(f ) = dQ .O n remarque que si f  e t g  son t deux séries convergentes 

non nulles, on a 

vF(f.g) = vp(f) + vp(g) 

et si f  + g ¿ 0 

vF(f+g) *p min {vp(f } ,vF(g)} 

et 

Vp(£+g) = min< {vF(f), vF(g)} s i vF(g ) f Vp(g) . 

Enfin, pour tout e , e £ ]R* ,  et tout d  et d' , d = (d̂ ,... ,dp) , 

d' = (d j , . . . ,d^) , dclNp , d'elP ,  d<pd ' ,  si l'on désigne par Wd,-d.e 

la partie de (C*) P défini e par 

Wd'-d;c = {(zr...,zp)€(C*)P 

d!-d. 
P i l 

: TT |z- I <  e] , 
i=1 1 

on a Kd'-d;Ee F^*)P •  En effet, comme 

limF 
df d 

)P(xa /xa) = 0 , 

il existe A , Ae F ,  tel que pour tout (z1,.. . ,z 1 e An (C*)p o n ait 
P d!-d . 
n |z. | 1 X< c 
i=1 1 

, d'où AH №*)Pc:Wdf_d.e: . On en déduit que la famille 

CWd'-d;e}de]NP ,d'elNp , d < f d ' , e e R* 

est un système de générateurs d'un filtre moins fin que F^*^ p e t il est facile 

de voir que si l'on désigne par F f l e filtre sur (C p engendré par ce système 

de générateurs, alors ce filtre F 1 vérifi e les mêmes conditions que F  ;  pour 

toute série convergente f  ,  f  / 0 , on a Vpt (f) = Vp(f ) e t la relation 

d'ordre ^pf n'es t autre que ^ p . 
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Pour démontrer l'existence des filtres F  su r C p possédan t les propriétés 

requises ci-dessus, on procède en sens inverse comme on l'a exposé au §2 de l'in-

troduction générale et comme on le détaille dans ce chapitre. 

Le chapitre I est consacré à l'étude des relations d'ordre sur Is P , compati-

bles avec sa structure de monoîde, et des filtres sur (]R*) p qu'o n y associe. 

Au §1 on rappelle quelques résultats élémentaires sur les relations d'ordre sur 

. Au §2 on rappelle quelques propriétés élémentaires des relations d'ordre 

sur un espace vectoriel sur un corps ordonné, compatibles avec sa structure d'es-

pace vectoriel. Ces deux paragraphes ne sont inclus dans ce travail que par souci 

d'être complet. Au §3 on donne une classification complète des relations d'ordre 

total sur (resp . ]Rp) , compatibles avec sa structure de monoîde (resp. 

d'espace vectoriel), en introduisant la notion de drapeau orienté. Aux §4 et §5 on étudie, 

de façon détaillée, le filtre sur (R*) p associ é à une telle relation d'ordre, 

notion qui devrait, à mon avis, occuper une place centrale dans toute introduc-

tion à l'étude locale des fonctions analytiques de plusieurs variables. Les 

résultats de ce paragraphe, élémentaires mais très techniques sont constamment 

utilisés à partir du §4 du chapitre III. Jusqu'au §3 du chapitre III inclus, seuls 

les résultats du §1 sont nécessaires. 

§1.- Relations d'ordre sur iP 

(1.0) Dans ce paragraphe on se fixe une fois pour toute un entier p  ,  p  e 1M . 

On rappelle qu'on dit qu'une relation d'ordre ^  su r fP es t compatible avec 

sa structure de monoîde si pour tout d  , d' et d" , de lP ,  d'e ]NP ,  d" e iP , 

d' û d " impliqu e d ' +d S d"+ d ,  et une telle relation d'ordre est dite ré-

gulière si en plus chacune des conditions d' + d % d" + d o u nd ' % nd " (où 

ne IN*) implique que d ' Sa d" .  Une relation d'ordre total sur îsl p compatible 

avec sa structure de monoîde est régulière. La relation d'ordre produit ^ sur Np 

est compatible avec sa structure de monoîde et régulière, et une relation d'ordre 

^a su r ]N p compatible avec sa structure de monoîde est moins fine que ^  s i et 

seulement si pour tout d  , d e Np , on a 0  < d 

PROPOSITION 1.1.- SOAX Л une pcuvtie de ~$P . L'ensemble d'éléments mlnimaxxx 
de A роил < est &lni. 

Démonstration . Considérons 2Z[X ] = Z[X^,...,X ] l'annea u des polynômes à p 

indéterminées à coefficients dans Z  e t I  l'idéa l de Z[X 1 engendr é par la 

famille oA ç̂̂  * L,anneau Z[X] étant noethérien, il existe une famille finie 
P̂î 1<i<r d'élément s de Z[X ] qui engendrent I  .  Pour tout i  ,  1<i^ r , 

P. = Z a - Xd ,  où a - i £ S ,  et A - es t une partie finie de A  + Np (ca r 
1 deA - x d i a 1 
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R 

P I € L ) .  SOIT A' = U AI .  ON A A'C A + JNP .  POUR TOU T D  ,  d e A ,  IL EXISTE 
1 i=1 à r 

Ç L ,... ,Q e Z T X ] TEL S QUE X =  £  Q. P . DON C d e A' + W . O N EN DÉDUIT QUE 
I R  Î= 1 I I 

A c A ' + JNP , donc A ' + fP = A + fP .Or , les éléments minimaux de A son t les mê-

mes que ceux de A + fP ,  c'est-à-dire, ceux de A ' + NP qu i sont les mêmes que 

ceux de A' .  L'ensemble A ' étant fini on en déduit la proposition. 

PROPOSITION 1,2.- Soient A  une paxtle non vide de JN P et d  un élément de A  . 

Il existe un élément minimal d ' de A  pou A <  ie£ qae d ' < d . 

Démonstration . L'ensemble {d " e iP : d"<d} étant fini la proposition est évi-

dente . 

( 1 . 3 ) Pou r toute partie A  de fP ,  on notera M  (A) l'ensembl e des éléments mini-

maux de A pour ^  .  L'ensemble M(A ) est fini et tout élément de A est minoré 

par un élément de M(A) (Prop. 1 .1 et Prop. 1.2 ) . En particulier, si A  ̂0 

alors M(A )  ̂0 et si A + l f c A (o u ce qui est équivalent A  + fP =A) , on a 

A = U  ( d + fP) = M(A) + JNP . 
dCM(A) 

COROLLAIRE 1 . 4 , - Soient < une relation d'oxdxe *ux fP , moin* &lne que < , 

et A  une paxtle de iP .  L'ensemble de* élément* minimaux M (A) de A  poux 

ú e*t ilnl et poux tout élément d de A , Il existe d ' , d ' e M (A) , tel que 

Démonstration . Il est clair que M (A) c M ( A ) ,  donc M (A) es t un ensemble fini. _ 1 a a 
Soit d eA e t démontrons qu'il existe d ' , d'e M (A) , tel que d'< d .  Soit 

a a 
A' = id" e A : d"< d} . 

a 
L'ensemble M(A! ) est fini et non vide ( 1 . 3 ) . Il existe donc un élément minimal 

d' d e M(A') pour <a . On a d f d̂ . Démontrons que df €M^(k) . En effet, 

soit d " £ A ,  tel que d"<^d' . Alors d " < d , donc d " e A ' . On en déduit 
qu'il existe d"'çM(A' ) , tel que dM' <d" (Prop . 1.2). On a alors d' " < d" , 

a donc d,f l  ̂dT ,  d'où dM! =df (df étant un élément minimal de M(A) pour ^ ). 
et u> 

On en déduit que dM = df , ce qui prouve que d' e M (A) . 

COROLLAIRE 1 . 5 . - Sott <a une relation d'ordre total òur ]Np moins fine que < . 

Alors й est une relation de bon ordxe. 

Démonstration . Le corollaire 1 . 4 implique que toute partie non vide de 

possède un élément minimal pour £  ,  qui est un minimum puisque <  es t une 

relation d'ordre total. 
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œROLLVIIŒ J So.it ± une relation d'ordre total sur fP , compatible avec 

ba structure de monoîde. Les propriétés suivantes sont équivalentes : 

i) <  est moins £lnc que û ; 

ii) < a est une relation de bon ordie ; 

iii) iïP possède un plus petit élément pour ^ ; 

iv) O  est le plus petit élément de fP pour ^ . 

Ç-^^l^L^iPJ1 • L'implication (i) => (ii) résulte du corollaire 1.5, l'implication 

(ii) => (iii) est évidente et l'implication (iv) => (i) résulte du fait que < 

est une relation d'ordre compatible avec la structure de monoîde de fP .  Il reste 

à démontrer que (iii) => (iv) . Soit co le plus petit élément de W pou r < ^ . 

On a alors co % 0 ,  donc co + c o ^ c o (compatibilit é de < ^ ave c la structure 

de monoîde de ]NP ) ,  d'où co + co = co ,  donc co = 0 , ce qui démontre le corollaire. 

§2.- Relations d'ordre sur un espace vectoriel 

(2.0) Soient (K,^ ) u n corps (commutâtif) totalement ordonné (on dira simplement 

corps ordonné) et E un K-espac e vectoriel, muni d'une relation d'ordre ^  . 

On dit que la relation d'ordre ^  es t compatible avec la structure d'espace 

vectoriel de E sur le corps ordonné K  (o u plus simplement compatible avec sa 

structure d'espace vectoriel) si la relation < E satisfai t aux deux conditions 

suivantes : 

a) pour tout x , xT et x" ,  x €E , x' eE , x"e E , x' <E x" impliqu e 

x' + x <  j, x" + x ; 

b) pour tout x ' et x" , x' e E , x" € E e t tout p  ,  peK s i P>K0 e t 

x' < x " alor s px ' < px " . 

S i l'on pose K+ = {p e K : p >K0 } et E+ = {x e E : x >E 0} , on a alors 

i) E+ + E + c E + , 

ii) K+E+c= E+ 

iii) E+n (-E+) = {0} , 

et x  <Ey équivaut à y - x e E+ ,  la relation ̂ E étan t une relation d'ordre 

total si et seulement si on a en plus 

iv) E ^ U (-EJ =  E . 

Réciproquement, si une partie E + de E satisfait aux conditions (i), (ii) et (iii), 

la relation définie par 

x ^E y<-=> y - x £ E+ ,  pour x  e E , y e E 

est une relation d'ordre sur E , compatible avec sa structure d'espace vectoriel, 

et E + = {x € E : x >E 0 } . 
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On définit ainsi une bijection entre l'ensemble des parties de E satisfaisan t 

aux conditions (i), (ii) et (iii) et l'ensemble des relations d'ordre sur E , 

compatibles avec sa structure d'espace vectoriel, les relations d'ordre total 

correspondant aux parties de E qui satisfont en plus à la condition (iv). 

PROPOSITION 2.1.- Soit <^ une relation à*otubiti AUA N p , compatible, avec &a 

òtAuctuAe de monolde et régulière (cf . (1.0)). Il exÀMte une relation d1 ordre ^ 

òur compatible avec òa structure d'espace vectoriel òur le corpo ordonné Q , 

et une òeule, induisant û„ our ]Np . et la relation ^ ekt une relation 
a Q,a 

d'ordre total. ¿1 et seulement ¿1 <a l'eàt. 

Démonstration . Démontrons d'abord l'unicité. Soient q ' et q" deu x éléments 

de Q P . Il existe n  ,  nelN* ,  tel que nq'eZp e t nq " e Z? ,  et d , 

defP ,  tel que nq' + d€lNP e t nq"+de1N P .  Si < es t une relation 

d'ordre sur compatibl e avec sa structure d'espace vectoriel, induisant < 

sur W ,  on a Q1 ^ q a cl" si et seulement si nq' +d ^ nq " +d ,  ce qui prouve 

l'unicité. Pour démontrer l'existence on définit la relation < ~ dan s 
Q,a 

par 
(q' < q")«== > (3n€ 3d € 1̂  : nq' +dG 1NP ,  nq" + d G 1NP et nq ' + d < nq" + d) 

pour q ' ,  q 1 ^^ et on vérifie que <^  ̂es t une relation d'ordre sur fljP 

compatible avec sa structure d'espace vectoriel, induisant <  su r 1NP , et que 

cet ordre est total si et seulement si ^ l'est . 

(2.2) Soient K  un corps ordonné, E un K-espac e vectoriel et A une partie 

de E  tell e que A + AcA ,  K A c A e t An (-A) ={0} . 

LENME 2.2.1.- Si x  eòt un élément de E n'appartenant pah à - A et ¿1 l'on poòe 

A'= A  + Kx ,  on a Ac A' ,  A ' + A ' c A ' , K A ' c A et A ' n (-A1) =  {0} . 

Démonstration . IL est clair que A c A ' ,  A' + A' c A ' e t K + A ' c A ' .  Démontrons 

que A' n (-A') = {0} . Soit y  ,  yeA' n (-A') . Il existe a  et a' appartenant 

à K  e t t et t' appartenan t à A tel s que y = t+ax e t y = -(t' +a'x) .On 

a donc t  +1' + (a + a')x = 0 . Si a  + a'  ̂0 , on en déduit que xç (-A) , ce qui 

est contraire à l'hypothèse. On a donc a  = -a' et , comme a  et a' appartiennen t 

à K + , on a a  = a' = 0 . On en déduit que t = -t' et , comme An (-A) ={0} , 

que t  = t' =0 , d'où y = 0 ,  ce qui prouve le lemme. 

LENME 2.2.2.- Il existe une partie B de E contenant A et telle que 

B + B c B , K + B c B , Bn ( -B)={0} e t B U ( -B ) = E . 

Démonstration . Soit A  l'ensembl e des parties A ' de E telle s que AcA' , 

A' +A'cAf , K+A'cA' e t A'n (-A') = {0} ,  ordonné par inclusion. L'ensemble 
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A es t non vide, car AtA ,  et si A1 est une partie totalement ordonnée de 
A , A' possèd e un majorant dans A .  En effet, si l'on pose A" = U  A ' , 

A'G A' 
on vérifie aussitôt que A" £ A .  On en déduit que A possède au moins un élément 
maximal R  flemme de Zornl . Démontrons nue R  u f-TO = F. . En effet, sirnnosons 
que BU(-B ) / E et soit x ,  x E E et xjÉBU(-B) . Si l'on pose B'= B + K+x, 
on a B ' £ A (lemme 2.2.1) et B  B ' ,  ce qui est absurde et prouve que 
BU (-B) = E ,  ce qui démontre le lemme. 

^^Ä-JL-Ä-- e l'ensemble des parties B  de E telles que Ac=B , 
B + Bc=B .  K.BciB , Bn(-B) = (0)et B  U f-B) = E . On a 

A= n B  . 
BGE 

^nîPi}^!^^1! • es t clair que Ac n B  . Soit x G U B e t supposons que 
BGE B€ E 

xjÉA .  On a -xj É (-A) e t si l'on pose x' =-x e t A' =A + K+x' , il résulte 
des lemmes (2.2.1) et (2.2.2) qu'il existe une partie B ' de E tell e que 

A'cB» , B'+B'cB' , K+B'cB' , B'm(-B')={0} e t B' U (-B') = E . 
Alors on a - x G B' e t B'€ E ,  donc xG B' ,  d'où x= 0 ,  ce qui est contraire 
à l'hypothèse x^ A e t démontre le lemme. 

PROPOSITION 2.3.- Soient K  un corps ordonné, E un K-espace vectoriel et 
une relation d'ordre sur E compatible avec sa structure d'espace vectoriel. 
Alors : 
i) Il existe une relation d'ordre total ^'£ sur E compatible avec sa struc­
ture d'espace vectoriel et moins line que ^£ ; 

ii) pour tout x ' et x " , x' G E , x"GE , on a x ' ^x" si et seulement si 
pour toute relation d'ordre total ^ sur E compatible avec sa structure 
d'espace vectoriel et moins &lne que ^ on a x ' ̂ ' x" . 

Démonstration . C'est une conséquence immédiate des lemmes (2.2.2) et (2.2.3). 

28 



RELATIONS D'ORDRE ET FILTRES ASSOCIÉS 

§ 3. - Drapeaux orientés 

Dans ce paragraphe, on introduit la notion de drapeau orienté d'un R-espace 

vectoriel de dimension finie, et on démontre qu'il y a une bijection entre l'ensem-

ble des drapeaux orientés d'un tel espace et l'ensemble des relations d'ordre 

total sur cet espace, compatibles avec sa structure d'espace vectoriel sur le corps 

ordonné IR . D'autre part, on démontre que toute relation d'ordre sur fP , 

compatible avec sa structure de monoîde et régulière se prolonge en une relation 

d'ordre sur ]R P , compatible avec sa structure d'espace vectoriel, ce prolonge-

ment n'étant pas unique en général, même si on se limite au cas des relations 

d'ordre total. Dans ce dernier cas, on obtient une classification complète de ces 

relations d'ordre. 

(3.1) Soit E  u n IR-espac e vectoriel de dimension finie. On appelle drapeau 

orienté de E  l a donnée : 

i) d'une suite croissante de sous-espaces vectoriels de E , 

E c E 1 c . , . c E ,  telle que E = {0} , E = E e t telle que pour tout i  , 
o l  P  0  P 
1 ^i<p ,  E. - soi t un hyperplan de E- ; 

ii) pour tout i  ,  1  <i<p ,  d'une orientation de E^/E ^ (qu i est une 

droite). 

Pour tout i  ,  1  ^i p̂ ,  on notera E ^ l'imag e réciproque par la surjection 

canonique de E - su r EVE- * d e la demi-droite fermée positive pour l'orienta-

tion donnée. On remarque que la donnée de l'orientation de la droite E^/E ^ 

équivaut à la donnée de E * ,  qui est l'un des deux demi-espaces fermés de E ^ , 

définis par l'hyperplan Ei_ 1 o u encore à la donnée d'un élément de ^^i'^i - P ' 

(3.2) Etant donné un drapeau orienté a  de E 

a :  Eoc=ElC . . . c E p , 

on pose 

D =  U  (E + - E. J UE 
a 1<î p 1  1- 1 ° 

et on définit une relation <  dan s E par 

x ^ y  4=* y - x € D 
a 7 7 a 

On vérifie facilement qu'on a : 

i) D + D c D ; 

a a a ' 
ii) IR D c=D ; 

+ a a 
iii) D fi (-D ) = {0} ; 
iv) D u (-D ) = E . 

a a 
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On a donc 

PROPOSITION 3.2.1,- Soient E un R-espace vectoriel de dimension {Inle et a 

un drapeau, orienté de E . Alors < ej>t une relation d'ordre total òur E 

compatible avec &a structure d'espace vectoriel òur le corpo ordonné R  . 

(3.3) Soient â ,...,O p p  forme s ]R-linéaires sur E  forman t une base du dual du 

R-espace vectoriel E  .  Posons E . = n  Ker(a- ) ,  pour O^i^ p .  On a 
1 i<Ĵ P 3 

E = {0} , E =  E e t pour tout i  ,  1^i^ p ,  E . - es t un hyperplan de E-
D'autre part, pour tout i  ,  1  < i p̂ ,  a^|E ^ es t une forme R-linéair e 

de E ^ don t le noyau est E^_ ^ .  Elle définit donc un isomorphisme de E^/E ^ 

sur R  e t en particulier une orientation de Ê /Ê _ ^ .  On associe ainsi à une 

base du dual de E  u n drapeau orienté de E  e t il est clair que tout drapeau 

orienté de E  peu t être obtenu ainsi. D'autre part, on vérifie facilement que si 

oj,...,a^ son t p  formes R-linéaires su r E  ,  elles forment une base du dual 

de E  e t déterminent le même drapeau orienté de E  ,  si et seulement si pour 

tout i ,  1  ^i p̂ ,  il existe une famille Cb - - ) - , ^ - ^ d'élément s de R  tell e 
î j l ^ p p 

que pour tout j  ,  1<j< i ,  b-.=0 ,  > 0 ,  et a- * = Zb-.a- . 
Enfin, si l'on désigne par a  l e drapeau orienté de E  associ é à ct-j,.. . 

on a 

x ^ay^(x = y) o u [3i, 1 <i < p : [(^(x) <ai(y}) et (vi',i<i'<p: OL± , (x) =  ,(y ) ) ] ] 

pour x  e E e t y  e E . 

(3.3.1) Soient E ' u n sous-R-espace vectoriel de E  e t a.|,.. . ,0^ un e base du 

dual E * de E . On dit que la base ,  — d e E * es t adaptée au sous-espace 

Ef , s'il existe une partie I de [1,p], telle que pour tout i  ,  i£ l , 

appartienne à l'orthogonal EfI - de E' dans E* e t (ĉ -ĵ j soi t une base de 

E,J- .O n remarque qu'alors (c^ | E' ) - j p-j.j est : une Dase du dual E! * de E' 

qui détermine un drapeau orienté a ' de E' te l que la relation d'ordre £  , sur 

E' soi t induite par la relation d'ordre ^  su r E  ,  où a  désign e le drapeau 

orienté de E  détermin é par la base o u ,...,a d e E * . 

PROPOSITION 3.3.2.- Soient E  un R-espace vectoriel de dimension finie, E 1 un 

sous-R -espace vectoriel de V. et a un drapeau orienté de E  .  Alors II existe 

une base â ,...,a p de H * déterminant le drapeau orienté a et adaptée au 

sous-espace E f 

Démonstration. Soient â ,...,a ^ un e base de E * déterminan t le drapeau a  , 

n l a dimension de EtJ - ,  O^n^p ,  e t I'={i , 1^i^p:aj€E' } .  Alors 

card(rj"n e t si cardQ1 ) = n ,  la base a|,.. . d e E * es t adaptée au 
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sous-espace E 1 . Supposons que card(I' ) <n .  Alors le système ̂ ailE'̂ ie[ i p]-i' 

r-'est pas libre et il existe i Q ,  i Q G [1,p] - I' ,  tel que (a j lE1)^-̂  p]-I ' 

soit un système libre et tel qu'il existe une famille (b-) . n- ̂ -.t » d'élément s 

de R  ,  telle que 

a! |E' = Z  b.(aME' ) . 
o iG]i0,p]-I ' 

On pose 

aV =  a! -  l b  a' , 
\> xo iG]i0,p]-I f 

pour tout i  ,  1<i< p ,  i^i Q ,  a V = a| e t I " = {i,1 < i < p : c£ G E'-1-} . 

Alors ay,.-.,a ^ es t une base de E * qu i détermine le même drapeau orienté a  de 

E (3.3 ) et I " =If u {iQ} ,  donc card(IM ) = card(I) + 1 c e qui démontre de 

proche en proche la proposition. 

(3.4) Soient a  u n drapeau orienté de E , 

a : EocE1 <= ...c=Ep , 

et u  u n automorphisme du R-espac e vectoriel E  . Si pour tout i  ,  0  ̂i  ̂p , 

on pose E ï =u(E.) ,  on a E ' = {0} ,  E ' = E , pour tout i  ,  1  ^i<p , 

E|_.j es t un hyperplan de E j , et u  indui t un isomorphisme de E^/E ^ su r 

E|/E|_1 qu i définit une orientation de Ej/E|_ 1 ,  déduite de celle de E^/E ^ • 

On définit ainsi un drapeau orienté a ' de E 

a' : E¿CE- c ...cE¿ , 

noté u(a ) , et alors on a u(Da ) = e t 

x <a y«=> u(x) <uÎQtjU(y) , pour XG E e t y  G E . 

Si v  es t un autre automorphisme de E  ,  on a v(u(cO ) = (vou)(a) . Le groupe 

linéaire GL(E ) opèr e ainsi à gauche sur l'ensemble des drapeaux orientés de E  , 

et il résulte de (3.3) qu'il opère transitivement. 

(3.5) Soit A = (aîj)i<i<p l<j<p un e matrice inversible à coefficients dans R . 

Chaque ligne (aj/)-]<• < d e la matrice A  défini t une forme linéaire su r 

ïïè ,  les formes linéaires ,...formen t une base du dual de Wp qu i 

détermine un drapeau orienté de HP .  et tout drapeau orienté de Wp peu t être 

obtenu ainsi. Si A ' = (a!.)i/-/ es t une matrice à coefficients dans R 

A' es t inversible et détermine le même drapeau orienté, si et seulement si, il 

existe une matrice triangulaire supérieure B  à  coefficients dans ] R e t dont 
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les coefficients de la diagonale principale sont strictement positifs, telle que 
A' = BA . Si l!on désigne par a  l e drapeau orienté de Wp associ é ainsi à la 

matrice A ,  on dit que la matrice A es t une matrice de définition de la 
relation d'ordre ^  su r ]R P ou que A défini t la relation d'ordre <  e t on a a 
a : 

x<ay<=*(x = y) ou [Зз.,Ш̂ р : p p 
[ ( Z x . < Z Äii y.) 

p p 
et (Vi',i<i'* p : I a.f.x , = £ ai4 y-)]] , 

j = 1 1 J 3 j= i 1  3 3 

pour x= (x̂ .-.jXp) , y= (y.j,...,y ) ,  xeRp ,  y er .  Si p' est un entier, 
0 <p! <p ,  on dit que la matrice A es t adaptée au sous-espace vectoriel 
]RP = ]RP X {0} de Wp ,  si les formes linéaires â ,...,o ^ , définies par les 
lignes de la matrice A ,  forment une base du dual de ]R p adapté e au sous-espace 

W ,  c'est-à-dire, s'il existe une partie I de [1,p ] telle que card(I) = p-p' 
et telle que pour tout i  et j  ,  ici ,  1 <j <p' ,o n ait â j =0 ,  et 

alors la matrice A' = (a^.)^̂  pj_j -|<j<pi es t inversible et définit la relation 
-p» 

d'ordre sur W induit e par < 

PROPOSITION 3.5.1.- Sott et un drapeau orienté de Жр tel que la relation d'or­
dre < sott moins fine que la relation d'ordre produit < sur Жр . А1югл 
Il extòte une matrice de définition de la relation d'ordre à coefficients 
dans Ж . 

Démonst r ation. Soient e e l a base canonique de R p e t 
A=(a..)1... 1 ... un e matrice de définition de la relation d'ordre <  .  Pour 
tout j  ,  1^j^p ,  on a e.>0 , donc e . > 0 , ce qui implique qu'il existe 

3 J  et 
ij ,  1  ̂i j  ̂p ,  tel que a^ j > 0 e t tel que pour tout i  ,  i^ <i<p ,  on 
ait â j = 0 . En particulier, pour tout j  ,  1 < j <p ,  on a a   ̂ 0̂ .  Posons 

iQ = inf{i,1̂ î p : Vj , 1̂ ĵ p, â  ^0} .  On a 1  ^iQ p̂ e t si i Q = 1 ,  la matrice 

A es t à coefficients dans R  .  Supposons donc que i  > 1 et soit 
J={J>1=J=P : a. _1 .<0} .  Pour tout j  ,  jeJ ,  on a i-^ i e t il existe 

о '3 3 0 
b. , b. e R* ,  tel que a ^ _̂  . +b.a. .>0 .  Pour tout j  ,  1  ̂j <p ,  on pose 3 3 уЗ 3 -î3 

aï л . = a. л - + E b.. a. 
10-Ю i0 - i , j j . g j J  i j . J 

et pour tout i  ,  1  ̂i  ̂p ,  i  ̂iQ - 1 , =  .  Alors pour tout j  , 

1 û j p̂ ,  a? _1 . 0̂ ,  la matrice A 1 = (a'. • )•!<•< -i<-< es t une matrice de 
1Q~ I >J 1J l=l=p,l=J=P 

définition de la relation d'ordre S (3.5 ) et si l'on pose 
Cl 
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VQ = inf{i,1^i^p : Vj , 1^j^p, ajj ^0} ,  on a <  iQ ,  ce qui démontre de pro-

che en proche la proposition. 

Remarque 3.5.2. Inversement, il est clair que la relation d'ordre sur R p 

définie par une matrice inversible à p  ligne s et p  colonne s à coefficients 

dans R + es t moins fine que la relation d'ordre produit û su r R P 

Exemple 3.5.3. La matrice unité à p lignes et p colonnes définit une relation 

d'ordre total sur R p ,  compatible avec sa structure d'espace vectoriel et moins 

fine que la relation d'ordre produit û su r W ,  appelée relation d'ordre 

antilexicographique sur R P et notée < ^ . Pour tout x  et y ,  x = (x̂ ,...,x ) 

y=(yr...,y) ,  x€RP ,  yeRp ,  on a 

x<y<^(x=y) ou [3i,1£i<p : [(xi<yi) et (vi ' ,i < i'< p : xit = yit) ] ] 

La relation d'ordre antilexicographique < ^ n'es t autre que la relation d'ordre 

, où e * désign e le drapeau orienté de R p détermin é par la base duale 

e* ...,e* d e la base canonique e1,..., e d e R p .S i E désigne un R- espace 

vectoriel de dimension p, O|,...,o^ un e base du dual de E  e t a  l e drapeau 

orienté de E  détermin é par cette base, pour tout x  et y , xeE ,  y e E ,o n 

a 

x ^ y ^ t o ^ x ) , . . . , ^ ) ) < L (a1(y),...,ap(y)) . 

Pour toute matrice inversible ^= ^a±p -\<±< -j<-< p >  a coefficients dans R 

si £  désign e la relation d'ordre sur R P défini e par cette matrice, pour 

tout x  et y ,  x  e RP ,  y e Rp ,  on a 

x <a y«=» Ax <L Ay . 

(3.6) Soient K  u n sous-corps de R  qu'o n considérera ordonné par la relation 

d'ordre induite par celle de R , K  =  {p€K:p^0} ,  F  u n K-espace vec-

toriel de dimension finie, qu'on identifiera à son image dans E  = F ®̂  R 

par l'injection canonique, et D  un e partie de F  tell e que 

i) D  + DcD ; 

ii) K+Dc D ; 

iii) D n(-D) = {0}; 

iv) D  U (-D) = F . 

On attire l'attention du lecteur sur le fait que dans la suite le signe "-" 

sera utilisé dans deux sens différents, même éventuellement à l'intérieur d'une 

même formule, à savoir si A  et B son t deux parties de F  (o u de E ) 

-B = {be F : -be B} (sen s vectoriel) 

et 
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A-B={a€A :  a £ B} (sen s ensembliste). 

Le lecteur rétablira facilement la signification de chaque occurence de "-" 

(formellement le signe "-" aura la première signification s'il est en début de 

formule, ou s'il est immédiatement précédé par un signe relationnel ou par l'ou-

verture d'une parenthèse, la deuxième signification dans les autres cas). 

LENME 3.6.1.- Si {0 } et ¿1 D  désigne l'adhérence de D  dans E  (pour sa 

topolagle naturelle d'espace vectoriel de dimension {Junte sur R ) , alon> 
Dn (-D) est un hyperplan de E , et D est l'un deA deux demi-espaces fermés 
de E  définis par cet hyperplan. 

Démonstration. La condition (i) implique que D + D c D e t la condition (ii) 

que R+D c D (ca r K+ est dense dans R+) .  On en déduit que si l'on pose 

E' =DD (-D) , alors E ! est un sous-R-espace vectoriel de E .  D'autre part, 

comme - D = (-D) , la condition (iv) implique que D U (-D) = E (ca r F est dense 

dans E) . Démontrons que D-E' ^0 . Soit e.j,..., e un e base de F sur K . La 

condition (iv) implique que pour tout i  ,  1   ̂i  ̂p ,  on a e ^ € D o u -e ^ D . 

On peut donc supposer (quitte à remplacer certains vecteurs de la base par leur 

opposé) que pout tout i  ,  1   ̂i  ̂p ,  on a e^GD . Soit 

V= R*e1+...+R*e + l +  p 

L'ensemble V  es t un ouvert non vide de E ,  contenu dans D  .  Démontrons que 

P 
Vn (-D) = 0 . En effet, si xeVn(-D) , alors x = I p-e. , où 

i=1 1  1 
(p1 , . . . ,pp) G (R*)P , et comme x  € F ,  on a (p1 , . . . ,p ) G KP ,  donc 

(p-|,...,pp)€ (K+)P ,  d'où x£D e t la condition (iii) implique que x=0 , ce 

qui est absurde. On en déduit que Vn (-D) = 0 et par conséquent V c D - E ' , 

ce qui démontre que D - E ' + 0 .D e même, (-D ) - E ' / 0 (ca r (-D) - E ' = -(D - E ' ) ) . 

En conclusion, D-E ' et (-D ) - E' son t deux fermés non vides disjoints de 

E-E' don t la réunion est E-E' . On en déduit que E-E' n'est pas connexe 

ce qui prouve que E' est un hyperplan de E ,  et que D est l'un des deux 

demi-espaces fermés de E défini s par cet hyperplan. 

LEMME 3.6.2.- Il existe un drapeau orienté a de E tel que D  = F n D̂  . 

Démonstration. On raisonne par récurrence sur la dimension de F .S i F  = {0} , 

le lemme est évident. Supposons donc que dim^(F) = p ,  p^1 ,  et que le lemme 

soit établi pour tout p 1 ,  0<p' <p .  Comme dinu(F ) > 1 , Dn (-D) es t un 

hyperplan de E (3.6.1) . Si l'on pose F' =Fn [Dn (-D)] , F' es t un sous-K-

espace vectoriel de F de dimension strictement inférieure à p  (pa s nécessaire-

ment un hyperplan, car en général Dn (-D) n'es t pas rationnel sur K ) . Si 
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l'on pose D ' =F'D D ,  on voit facilement que D' vérifi e les conditions (i), 

(ii), (iii), (iv) en tant que partie de F' . L'hypothèse de récurrence implique 

donc l'existence d'un drapeau orienté a ' de E ' =F'0^]R , 

a' : E Q c E 1 c . . . c E p l = E' , 

tel que D' = F' nD .̂ .E n identifiant E ' à son image par l'injection canonique 

dans E  ,  on a E'cDn(-D ) (ca r E' est le sous-R-espace vectoriel de E 

engendré par F' =FnDn (-D)) . Il existe donc une suite croissante de sous-R-

espaces vectoriels de D n (-D) contenan t E' 

Ep'+1c'-- c Ep-1 

telle que E ^  = Dn (-D) e t telle que pour tout i  ,  p' +1 ^i^p-1 ,  E^ 

soit un hyperplan de E- .O n pose E  = E . On définit ainsi un drapeau orienté 

a de E 

a :  E o e E l e . . . c E p , e E p , + 1 e . . . e E e Ep , 

l'orientation de E./E. étan t la même que pour le drapeau orienté a ' pour 

1  ̂i ^p' ,  arbitraire pour p 1 + 1 < i <p - 1 ,e t celle qui correspond à E p = D 

pour i  = p (c f .(3.6.1 ) et (3.1)). Démontrons que D = F n D̂  .E n effet, on a 

FDD = F fi [ U ( E Î - E - J U E l = et * ^ - ^ i  i- 1 o 
1 úiúv 

= ( F n Df)U [ F n ( U  ( eT-E- -)) ] U [F PI (E* - E - ) ] . 
01 p'+1<i<p- 1 1 1 1 P P 1 

Or, comme D  , c E ' et F  D E' = F' ,  on a ' a ' ' 

F n D a , = F ' n D a , = D ' = F ' n D = Dn[Dn (-D) ] = DnE - . 

D'autre part, pour tout i  ,  p'^i^p-1 ,  on a E'cE^cD n (-15) ,  et comme 

F n E' = F' = F n [D D (-D) ] , on a F n Ei = F' .  On en déduit que pour tout i  , 

p'+1^i^p-1 , Fn (E*-E..) = 0 .  Enfin, la condition (iv) implique que 

FH (Ep-Ep_.¡) = [DU (-D)] n [D - (D n (-D))] = D n(E-Ep-1) , 

ce oui démontre le lemme. 

LEMME 3.6.3.- Soient a et a ' deux drapeaux orientés de E  , 

a :  E o e E l c = . . . c z E p , 

a' :  ^ c E j c . . . c ^ , 

teU que F n D = FilD , . Alors on a E + = E'+ et E  1 = E' 1 . 
P P P-1 P-1 
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Démonstration. Comme E * (resp . E^+) est l'un des deux demi-espaces fermés 

de E  défini s par l'hyperplan E  ^  (resp . (cf . (3.1)), il suffit de 

démontrer que E * = E' + . Lf égalité F  n D̂  = FnD^, impliqu e que 

F n (E"* - E )  = Fn(E'+-E* J .  Or, F étan t dense dans E  ,  E+- E ,  étant 
p p- 1 P  p- 1 P  p- 1 

un ouvert de E et E ' + un fermé, on en déduit que 

E;-vicFn(V-E;-i)c< 
d'où E p cEp •  De m̂ me o n a E^ c E p , ce qui démontre le lemme. 

LEMME 3.6.4.- Soit a , 

a : E czE1 c . . . c E o 1  p 

un drapeau orienté de E  ,  rationnez sur K  [e1 est-à-dire tel que pour tout 

i ,  1   ̂i  ̂p-1 ,  E^ soit un sous- H-espace vectoriel de E  engendré par 

des éléments de F  ) . Alors pour tout drapeau orienté a * de E , 

a : E czE1 c ... cE 

Végalité FnD^, = FnDa Implique que le drapeau orienté a 1 n'est autre que 

a . 

Démonstration. On raisonne par récurrence sur la dimension p  de F .  L'égalité 

FnDa? = FnD^ implique que E^ = Ê  e t que E* = Ê + (3.6.3), ce qui 

prouve que l'orientation de E /E . est la même que celle de EVE1 

(cf. (3.1)). Or, le drapeau a  étan t rationnel sur K ,  si l'on pose F' =FnEp_^ 

et E' = F ' @K R ,  F' es t un hyperplan de F et en identifiant E' à son 

image par l'injection canonique dans E ,  on a E' = Ep_i •  Soi.* (resp . ap 

le drapeau orienté de E' 

a1 : EocE1c--'cEp-1 

(resp. a} : E ^ c E j c . . . c E » ) , 

les orientations étant les mêmes que pour a  (resp . a'). Le drapeau es t un 

drapeau rationnel sur K ,  l'égalité FflD t = FnD impliqu e que 

F' nD^, = F' n D^ e t l'hypothèse de récurrence que a-j = ,  d'où a' = a , 

ce qui prouve le lemme. 

LEMME 3.6.5.- Si K  = R (c e qui implique en particulier que F  = E ) ,11 existe 

un drapeau orienté a de E  et un 6eut tel que D  = D̂  . 

Démonstration. C'est une conséquence directe des lemmes 3.6.2 et 3.6.4 appliqués 
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à K  = R . 

Remarque 3.6.6.- Si K   ̂R ,  le drapeau orienté a  de E tel que D = F D 

n'est pas nécessairement unique. Par exemple, si K  = (Q , F = QP et 

n p 
D={(q1,...,q ) 6Q1 :  Z a.q. ^0} , 

i P  i =1 1 1 où (a .j,...,ap) est un système de p nombre s réels linéairement indépendants 

sur Q  ,  on voit facilement que l'ensemble D  vérifi e les conditions (i), (ii), 

(iii) et (iv). Alors pour tout drapeau orienté 

a : Ê  c=E1 с . . . cz E о 1 p 

de R P te l que 

E 1  = {(x1,... ,x ) € Rp :  1 a.x. = 0} 
p-1 i p  - 1 

et tel que l'orientation de E /E _̂  soi t celle qui correspond à 

Ep = {(x1,...,xp) €RP : 
P 
I а±х. >0} 
i=1 

on a D  = F П D 
a 

PROroSITION 3.7.- SolX E  un R - espace vectoriel de dimension finie. V application 
qui associe à un drapeau orienté a  de E  la relation est une bljectlon de 
Vensemble des drapeaux orientés de E  sur Vensemble des relations d'ordre total 
sur E  compatibles avec sa structure d'espace vectoriel sur le corps ordonné R . 

Démonstration. La proposition résulte de la proposition 3.2.1 et du lemme 3.6.5. 

PROPOSITION 3.8.- Solent E un Ж-espace vectoriel de dimension finie et A une 
partie convexe de E  telle que 0  £ A . Mors II e-xàte un drapeau orienté a de 

E tel que AcD 

Démonstration. La partie A étant convexe, pour tout p^ et p2 , p.j € R+ , 

p2 £ R ,  on a 

P]A+P2Ac rPl +P2)A , 

et comme 0 £ A ,  on en déduit que si p^ + p2^0 , p-|An ( -p2A) = 0 (ca r si 

p-jAfl ( -p2A) / 0 ,  on a 0  € p ^ + p 2 A c (p1 + p2)A ,  d'où p 1 + p2=0) . Si l'on 

pose 

В = U pA , 
p£R+ 

on a donc B  + BcB ,  R + B c B e t В П ( - B ) = {0} .On en déduit qu'il existe 
une partie D  de E tell e que BcD ,  D + DcD ,  R+D cD , Dn(-D) ={0} 
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et D + (-D) = E (2.2.2). Il existe donc un drapeau orienté a  de E tel que 

D=D^ (3.6.5) , et on a AcBcD ^ ,  ce qui démontre la proposition. 

COROLLAIRE 3.8.1.- En gardant les notations d e la proposition 3.8 , Il existe p 
{ormes Ж -linéaires с^,...,^ sur E , telles que pour tout x  , x€A , Г en­
semble {i , 1<i£p : о^(х) / 0} soit non vide, et si Von pose 

ix = sup{i, Ш < р : о^Сх) Ф 0} , 

on ait 
a± (x) > 0 . 
x 

Démonstration. Le corollaire est une conséquence directe de la proposition 3.8 et 

de 3.3. 

COROLLAIRE 3.8.2.- En gardant les notations de la proposition 3.8 , ¿1 A  est 

ouvert dans E , Il existe une {orme Ж-linéaire a òur E  , telle que pour 

tout x  ,  x e A , on ait 

а(х)>0 . 
Démonstration. Si ,.. . désignen t p formes ]R-linéaires sur E vérifian t 

les conditions du corollaire 3.8.1, pour tout x  ,  xGA , on a Op (x) >0 . 

L'ensemble A  étan t ouvert, Op(A) est un ouvert de R  conten u dans R + , 

donc 0£ a (A) ce qui démontre le corollaire. 

Remarque 3.8.3.- Le corollaire 3.8.2 est un cas particulier du théorème de 

Hahn-Banach. On peut donc considérer la proposition 3.8 (ou le corollaire 3.8.1) 

comme une forme plus précise du théorème de Hahn-Banach en dimension finie. 

PROPOSITION 3.9.- Soli F un es pace vectoriel de dimension {Inle. Joute relation 

d'ordre total sur F  ,  compatible avec sa structure d'espace vectoriel òur le 

corps ordonné Q ,  se prolonge en une relation d'ordre total sur E  = F &JR , 

compatible avec sa structure d'espace vectoriel sur le corps ordonné Ж , F 
étant Identifié à son Image par VInjection canonique dans E . 

Démonstration. La proposition résulte du lemme 3.6.2 et de la proposition 3.2.1. 

Remarque 3.9.1.- Conformément à la remarque 3.6.6, ce prolongement n'est pas 

nécessairement unique ; à moins qu'il n'existe un drapeau orienté a de E , 
rationnel sur Q ,  tel que l'ensemble des éléments de F  supérieur s ou égaux 

à zéro pour la relation d'ordre donnée, soit égal à FnD ^ (o n dit alors que cette 

relation d'ordre est rationnelle), dans quel cas, conformément au lemme 3.6.4, 

ce prolongement est unique. 
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COROLLAIRE 3.9.2.- Soit F  un ^-espace vectoriel de dimension finie. Toute rela­
tion d'ordre sur F  ,  compatible avec sa structure d'espace vectoriel sur le corps 
ordonné Q  , se prolonge en une relation d'ordre sur E = F 8̂  IR , compatible 
avec sa structure d'espace vectoriel sur le corps ordonné R , F  étant Identi­
fié à son Image par VInjection canonique dans E . 

Démonstration. Soient ̂ p une telle relation d'ordre sur F  et (^gq g 
l'ensemble des relations d'ordre total sur E , compatibles avec la structure 
d'espace vectoriel de E sur le corps ordonné R ,  et induisant une relation 
moins fine que < ~ sur F .  On définit une relation <  dan s E par 

x ̂ E у«=Ф (v3, $€ В : x <£ y) , pour x  e E , y e E . 

Il résulte de (2.3,i) et de (3.9) que l'ensemble B  est non vide, et par suite 
que <i g est une relation d'ordre sur E  compatible avec sa structure d'espace 
vectoriel sur R , et de (2.3,ii) et de (3.9) que ^  indui t su r F  , 
ce qui démontre le corollaire. 

COROLLAIRE 3.9.3.- Toute relation d'ordre sur fP , compatible avec sa structure 
de mono'lde et régulière (cf . (1.0)), se prolonge en une relation d'ordre sur RP . 
compatible avec sa structure d'espace vectoriel sur le corps ordonné R . 

Démonstration. Le corollaire résulte de la proposition 2.1 et du corollaire 3.9.2. 

Exemple 3.9.4.- La relation d'ordre produit û sur N P ,  qui est une relation 
d'ordre compatible avec sa structure de monoîde et régulière, se prolonge sur 
RP pa r la relation d'ordre produit û sur RP ,  et il est facile de vérifier 

que, dans ce cas, ce prolongement est le seul prolongement en une relation d'ordre 
sur RP ,  compatible avec sa structure d'espace vectoriel sur le corps ordonné 
R. En plus si < ' est une relation d'ordre sur IS p , compatible avec sa struc-
ture de monoîde, régulière et moins fine que ^  ,  toute relation d'ordre sur 
rP ,  compatible avec sa structure d'espace vectoriel sur le corps ordonné R , 
qui prolonge < ' est moins fine que la relation d'ordre produit <  sur 
En effet, une relation d'ordre ̂ " sur rP , compatible avec sa structure d'espace 
vectoriel sur le corps ordonné R , est moins fine que la relation < 
si et seulement si, pour tout i  ,  1 ^i p̂ ,  e^ ̂ " 0 , où ê ,...,e 

désigne la base canonique de rP ,  et comme pour tout i  ,  1 < i < p ,  e^ e fP 

cette condition ne dépend que de la restriction de < " sur fP 

™^SJ1™J/.1°-" точ1е relation d'ordre total sur INP compatible avec sa 
structure de monoîde est Induite par une relation d'ordre й sur wP , ой a 

d a 
désigne un drapeau orienté de W . 
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Démonstration. La proposition résulte des propositions 2.1, 3.9 et 3.7. 

Remarque 3.10.1.- Inversement il est clair que pour tout drapeau orienté a de 

Rp ,  la relation dfordre ^  su r RP indui t une relation dfordre total sur 

, compatible avec sa structure de monoîde. 

Définition 3.11.- Soit ^ une relation d'ordre total sur lP , compatible avec 
sa structure de monoZde. On dit qu'une matrice A  , A=(a..)^.^ _ . ,  à 
coefficients dans R , est une matrice de définition de la relation d1'ordre <^ 
SUA Jp , ou que la matAljce A définit la relation d'ordre < sur lP , 

si la matrice A  est Inversible et si pour tout d  et df , d = (d̂ ,... ,d ) , 
d' = (clj,...,dM ,  defP 9 d'efP ,  on a 

P P 

d S d'*=»( d = d') ou [3i, 1<î p : [( Z a.-d.< Z a.-d!) e t 

P P 
(Vi',i<i'<p : Z a...d = Z a.,.d!)] ] . 

j=1 ^  j  = 1 1  3 3 

Si pf es t un entier, O^p ' p̂ ,  on dit que la matrice A  es t adaptée au 

sous-monoîde fP = iP x {0} d e iP ,  s'il existe une partie I de [1,p] tell e 

que card(I ) = p-p' e t telle que pour tout iet j ,  i e l , 1  <j <p' ,o n 

ait a . . =0 . On dit que la relation d'ordre total £  su r iP es t rationnelle, 13 a  ' 
si <  possèd e une matrice de définition à coefficients dans Q  . 

PROPOSITION 3.12.-

i) Toute relation d'ordre total sur lP , compatible avec sa structure de 
monoZde, possède une matrice de définition. 

ii) Toute relation d'ordre total sur lP , compatible avec sa structure de 
monoZde et moins fine que la relation d'ordre produit <> sur lP , possède 
une matrice de définition à coefficients dans R 

iii) Soit p ' un entier, 0<p ' <p .  Toute relation d'ordre total sur lP 

compatible avec sa structure de monoZde, possède une matrtce de définition adaptée 
au sous-monoZde fP de lP 

iv) Toute relation d'ordre total sur lP , compatible avec sa structure di 
monoZde et rationnelle, possède un prolongement unique en une relation d'ordre 
total sur IR P , compatible avec sa structure d'espace vectoriel sur le corps 
ordonné R . 
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Démonstration. La partie (i) de la proposition résulte de 3.10 et 3.5, la partie 

(ii) de 3.10, 3.9.4 et 3.5.1, la partie (iii) de 3.10, 3.3.2 et 3.5, et la partie 

(iv) de 2.1, 3.9 et 3.9.1. 

Exemple 3.12.1 .- On appelle relation d'ordre antilexicographique sur 1N P e t 

on désigne par ^  l a relation définie par 

d £ d '4^(d = d') ou [3i, 1<i£p : [(di <dpet(Vi',i<i'<p : dit= d|,)]] , 

pour d=(d1,...,d ) ,  d' = Cd' ,...,d') , d€]Np ,  d'e fP .  La relation < i p  i  p  i -i 

est une relation d'ordre total sur ,  compatible avec sa structure de monoïde, 

moins fine que la relation d'ordre produit ^  su r e t rationnelle. La matrice 

unité à p lignes et p colonnes en est une matrice de définition, et la relation 

d'ordre antilexicographique sur Wp (3.5.3 ) en est le seul prolongement en une 
p 

relation d'ordre total sur R  ,  compatible avec sa structure d'espace vectoriel. 
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§4.- Filtre associé à un drapeau orienté 

Dans ce paragraphe, on associe à tout drapeau orienté de R p (o u ce qui re-

vient au même, à toute relation d'ordre total sur wP ,  compatible avec sa struc-

ture d'espace vectoriel) un filtre sur (R*) p ,  et on décrit explicitement une 

base de ce filtre. Au §5 , o n associe à toute relation d'ordre total sur W , 

compatible avec sa structure de monoîde, un filtre sur (1R*) P .  Plus précisément, 

pour tout x  ,  x € ïïP , x = (x1,... , X p ) ,  et pour tout e , eel* , on 

désigne par V  l a partie de (R*) P défini e par 

Vx;E = í(p1'-'Pp)e(IR*+)P : ^ / ? < е } 

Si lfon désigne par e l'application 
]RP 

e : Rp >  (R*)p 
W 

définie par 
a . a 

e^pCar...,ap) = (e ,...,ep ) ,  pour (a1,.. . ,ap) € Rp , 

on remarque que e est bijective et que 
Жр 

e~1̂  (V )  = W T Rp x; e x;Log e 9 

où pour tout с , c€]R ,  W désign e la partie de wP défini e par 
X ,c 

p 
Wx;c = ^ar...,ap) € Rp : Z a±x±<c} . 

Pour toute partie A  d e don t l1 enveloppe convexe ne contient pas 0  ,  il 

résu l te du théorème de Hahn-Ranach nue l a fami l le 

^ x i c ^ x e A . c E F 

est un système de générateurs d'un filtre sur Wp .  La famille 

CVx;£Jx€A,e€]R* 

est donc un système de générateurs d'un filtre sur .S i ^  désign e 
+ R p 

une relation d'ordre sur ïïP ,  compatible avec sa structure d'espace vectoriel 

l'ensemble des éléments x  de Rp tel s que x > 0  étan t convexe, on en 
déduit aue la famille 

\;e\> 0, e CR* 
W 
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est un système de générateurs dfun filtre sur (R*) P .  Ce paragraphe est con-

sacré à l'étude de ces filtres dont le rôle dans ce travail a été longuement 

développé dans l'introduction générale. En remarquant que (R*)* 5 s'identifi e 

canoniquement au groupe des caractères réels sur R* 3 , on associe plus générale-

ment à toute partie A d'un R-espace vectoriel de dimension finie E  ,  dont 

l'enveloppe convexe ne contient pas 0, (de même qu'à toute relation d'ordre sur 

E, compatible avec sa structure d'espace vectoriel) un filtre sur le groupe des 

caractères réels de E  ,  ce qui permet d'obtenir une définition plus intrinsèque 

de ces filtres. 

(4.1) Soit E  u n R-espace vectoriel de dimension finie. On rappelle qu'un ca-

ractère réel sur E  (o n dira plus simplement caractère sur E ) est une applica-

tion continue 

X : E —> R 

telle que 

i ) pour tout xet y ,  x  e E ,y € E , 

xO + y) = x(x).x(y) ; 

ii) Y  t 0 . 

On remarque que si x désign e un caractère sur E ,  pour tout x  , x  e E ,  on 

a 

X(x) =  x (x/2+x/2) = (xCx/2))2 , 

donc x (x )=° >  e t x C x ) i 0 ,  car s'il existait x Q ,  X Q e E ,  tel que 

Y(x ) = 0 ,  on aurait pour tout x  x  € E , 

x C x ) = x(xQ + (x-xQ)) = X(x0).x(x-x0) = 0 . 

Un caractère sur E  es t donc un homomorphisme continu du groupe additif de E 

dans le groupe multiplicatif R * ,  et l'ensemble des caractères sur E  form e 

un groupe multiplicatif, noté H£ .  Si a  désign e une forme linéaire sur E  , 

a€E* ,  et si l'on pose 

r ^ ct(x ) _ -pi X(x) = e ,  pour x€ E 

X es t un caractère sur E  ,  et réciproquement si x désign e un caractère sur 

E ,  xe -j; ,  et si l'on pose 

a(x) = Log(x(x)) , pour x£ E , 

a es t un homomorphisme continu du groupe additif de E  dan s le groupe additif 

de R  ,  donc une forme R-linéair e su r E  .  On établit ainsi un isomorphisme 

eE ' * >  "E 
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du groupe additif de E * su r le groupe multiplicatif H E ,  qu'on munit de la 

topologie qui rend e ~ u n homéomorphisme. 

Si F  désign e un R-espace vectoriel de dimension finie et u  : E —» F  un e 

application R-linéaire , pour tout caractère x sur F o n désigne par x U 

le caractère sur E  défin i par 

xu = X ° u > 

et on désigne par r u l'homomorphism e de groupes 

ru : 5F * 5E 

défini par 

r u W =  XU >  Vour X€H F , 

et on a 

r o er = er o 
u F  E 

(ce qui implique en particulier que r u es t continu), et 

r. , = id̂  
ldE ^ 

Si G désign e un R-espace vectoriel de dimension finie et v  : F —» G un e 

application R-linéaire , on a 

r =  r °  r v o u u  v 

et pour tout caractère x sur G ,  on a 

(vou) f  v.u 
X =  (X ) 

En particulier, si E  = F = G e t si u  désign e un automorphisme du R-espace 

vectoriel E , r u es t un automorphisme du groupe e t 

r •* — ( r T 1 -1 u u 

Il résulte aussi que si l'application R-linéaire u  : E —F es t injective 

(resp. surjective), l'application r u : Hp —> E ^ es t surjective (resp. injec-

tive) . 

(4.2) Soient E  u n R-espace vectoriel de dimension finie, x u n élément de 

E ,  et e u n élément de R * (resp . c  u n élément de R ) . On désigne par 

V . (resp . W . ) l'ouver t de Ev (resp . E*) défin i par 
X, £ X , C Ei 

Vx;e = ÍX£HE:X(x) < e} 

(resp. Wx.c = {a€E* : a(x) <c }) . 
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Alors on a : 

(4.2.1) eË1cVx;e3 = Wx;Log£ 

et 

(4.2.2) eE(Wx;c} = Vx;ec > 

et pour tout x 1 et x2 , x ^E ,  £ E ,  tout e t p2 , (p^p̂  £ (R+) - {0}, 

tout & 1 et &2 , e R* ,  e2 € 1R* e t tout c ] et c2 ,  c ^ F, c ^ R , 

on a 

(4.2.3) W nw c W 
V c 1 x2;c 2 p1x1+p2X2;p1C1+p2C 2 

et 

(4.2.4) V . flV . c V p 1 p2 
x1,e1 x2»e 2 p1x1+p 2 2,e1 E2 

Soit A  une partie de E .  On rappelle que l'enveloppe convexe de A est 

l'intersection de toutes les parties convexes de E contenan t A  ,  et c'est la 

plus petite partie convexe de E contenan t A  .  L'enveloppe convexe de A est 

formé de l'ensemble des éléments x  de E tel s qu'il existe une famille finie 

^xPl<i<n d'élément s de A e t une famille ^i^<i< n d'élément s de IR+ telle s 

que P l +...+ pn = 1 et 

x = Plx1+...+ pnxn . 

PROPOSITION 4.3.- Solent E un ]R-espace vectoriel de dimension finie et A  une 

partie de E  .  Les conditions suivantes sont équivalentes 

i ) V enveloppe convexe de A ne contient pas 0  ; 

i i ) il existe un drapeau orienté a de E tel que A c D ^ - {0} ; 

i i i ) la famille CVx.£ )x fA ^ est un système de générateurs d'un filtre 

sur HF ; 
iv) la famille ( W . ) est un système de générateurs d'un filtre sur 

X J C X c A j C c J K 
E* . 

Démonstration. Pour tout drapeau orienté a  d e E ,  D^ - {0} étan t convexe, 

l'équivalence de (i) et (ii) résulte de la proposition (3.8). L'application 

eE * * *  "E 

étant bijective, l'équivalence de (iii) et (iv) résulte de (4.2.1). Démontrons 

que (iv) implique (i). Supposons que 0 appartienn e à l'enveloppe convexe de A 

Alors il existe une famile finie (x - [ ) - j< î<n d'élément s de A e t une famille  45
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(p-;)-!̂ ,̂ d'éléments de R  telle s que p. , + ...+p = 1 e t p.x . + ...+ox = 0 . i î isn +  l  n  i  1 ' n n 
On en déduit que pour tout c ,  c € R , 

W П . . . flW cW 
x^c x  :c o; c 

(4.2.3), et comme pour tout c ,  ceR ,  ĉ O ,o n a W. =  0 ,  ceci est 
o JC 

en contradiction avec la condition (iv). Réciproquement, démontrons que (i) 
implique (iv). Il suffit de démontrer que si (x.)- . es t une famille finie 

1 I =l=n 
d'éléments de A e t (c-)-,<• < un e famille d'éléments de R  ,  n  W .  i 0 

i i=i=n .  . x.,c. 

Soit B = ix̂ ,...,xn) , et soit B' l'envelopp e convexe de B  .L a condition 
(i) implique que OjÉB ' ,  et comme l'ensemble B  es t fini, B' est un fermé 
de E  .1 1 existe donc un ouvert convexe U d e E  te l que B'c U e t O^ U 
(si || . || désigne une norme quelconque sur E et d(.,. ) la distance déduite 
de cette norme, B' étant fermé dans E  ,  d(0,B') >0 e t alors on peut prendre 

U={x£E : d(x,B') <b} ,  où b = d(0,B')) . Il existe une forme linéaire a sur 
E tell e que pour tout x ,  xeU ,  a(x) >0 (3.8.2) , et en particulier, si 
pour tout i  ,  1^i^n ,  on pose a^=a(x^ ) ,  on a a^> 0 .  Posons 
a= in f a- e t c= su p |c. | . On a a> 0 ,  et si l'on pose a'=- ((c/a)+1)a 

1̂ î n 1̂ i< n 
n 

on vérifie aussitôt que a ' £ n W ,  ce qui démontre la proposition. 
i=l xi>ci 

COROLLAIRE 4.3.1.- Soient E  un R-espace vectoriel de dimension {tnle et < 
une relation d'ordre SUA E  ,  compatible avec sa structure d'espace vectoriel. 
Alors la Camille ( V . ) . n г-ю* &*t un système de générateurs d'un {titre sur x,e x>gи ,£cJK+ 
"E ' 

Démonstration. Si l'on désigne par A l a partie de E  définie par 

A= {x£E : x>E0} , 

on vérifie facilement que A es t convexe et le corollaire résulte aussitôt de la 
proposition 4.3. 

DÉFINITION 4.4.- Soit E  un Ж-espace vectoriel de dimension {Inte. Pour toute 
partie A  de E dont V enveloppe convexe ne contient pas 0 , on désigne par Гд 
(resp. Gp) le {litre sur 5 £ (resp. E*) engendré par la {amllle С\.£^Х£Д eç]R* 
(resp. (Wx.c)x£A с€эд ) •  On dit qu'un {litre F  sur ~ E (resp. un {litre G sur 

E*) est un {litre de Hakn-Banack, s'il existe une partie A de E dont l'enveloppa 
convexe ne contient pas 0 , et telle que F  = Рд (resp. G = Gp) .  Pour toute 
relation d'ordre ^ sur E  ,  compatible avec sa structure d'espace vectoriel, 
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on disiane pax V (resp . G< ) le filtre de Ha.kn-Ba.nack F  . (resp . G F+_RN,) 
=g = g E -{0} E  >-U J 

où E+ = {x€ E : x >p 0} ,  et on dit que F < (resp . G< ) est le filine de 
L = E = E 

Hakn-Banack SUA 5 e (resp . E*) défini pan. la relation d'ordre ^ . Pour tout 
drapeau orienté a de E , on désigne par F  (resp . G) £ e ó̂ £frie F< 

CI O T C I 
(resp.G< )  ,  et on d i t çae F  (resp . G 1 eó£ £e filtre de Hakn-Banack ~a a CL 

sur Eg (resp. E*) défini par le drapeau orienté a . 

Remarque 4.4.1. En gardant les notations de la définition, il résulte de (4.2.2) 

que es t l'image du filtre G ^ pa r la bijection e ^ .  Si A ' désign e une 

partie de E  don t l'enveloppe convexe ne contient pas 0  e t si AcA ' ,  le 

filtre FA , (resp . Ĝ ,) es t plus fin que F A (resp. GA) .  En particulier si 

^ désign e une relation d'ordre sur E , compatible avec sa structure d'espace 

vectoriel et moins fine que la relation <  ,  le filtre F< f (resp . G<T) es t 
* = E = E 

plus fin que F < (resp . G< ) 
=E = E 

PROPOSITION 4.5.- Soient E un H-espace vectoriel de dimension finie et A  une 
partie de E dont V enveloppe convexe ne contient pas 0  . Mors il existe une 
relation d'ordre unique sur E , compatible avec sa structure d'espace vectoriel, 
telle que F. soit le filtre de Hakn-Banack sur ~E défini par cette relation 
d'ordre [ou ce qui est équivalent, G A soit le filtre de Hakn-Banack sur E * 
défini par cette relation d'ordre), et si l'on désigne par <A cette relation 
d'ordre, vour tout x  .  x € E . les conditions suivantes sont éouivalentes : 

i) X>A 0 ; 

ii) x € u u r . A. 
n€N* (Pl,...,pn)€(]R+)n-{0} ̂ P1A+---+PnA J > 

iii) pour tout drapeau orienté a de B tel que AcD ,  on a x€ D - {0} ; 

iv) pour tout e , e € IR* , on a V  . € FA ; 
+ X  J £ A 

v) pour tout c ,  c € IR , on a \.c^Gp^ '> 

vi) x i 0 ,  et il existe e , £ € IR* , tel que V £  FA ; 

vii) x  ̂0 ,  et il existe c  ,  c G IR , tel que W . e GA . 
X ,C i\ 

Démonstration. L'équivalence de (iv) et (v) ainsi que celle de (vi) et (vii) 

résulte de (4.2.1) et (4.1), la condition (ii) implique la condition (v) (4.2.3) 

et la condition (v) implique la condition (vii) (car ^ x . q ^ impliqu e x ^ O ) . 

Soit B  = U  U 
neiN* (Pl,...,p n)e(IR+)n-{0} 

(p.A+.-.+p A) .  On a Ac B ,  B  + BcB , 
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]R*B cB e t l'enveloppe convexe de A ne contenant pas 0 ,  O^B e t Bf l (-B) = 0 . 
Il existe donc une relation d'ordre ^  su r E ,  compatible avec sa structure 

d'espace vectoriel, telle que pour tout x  ,  xeE , 

( 4 . 5 . 1 ) х > д 0 <=»x€B , 

et il résulte de ( 2 . 3 ) et ( 3 . 7 ) que si V désigne l'ensemble des drapeaux orientés 

a d e E tel s que B c D ^ (ou ce qui est équivalent tels que A c D ^ ) , on a 

B = n D - { 0 } ,  ce qui démontre l'équivalence des conditions (ii) et (iii). 

Démontrons que la condition fvii) implique la condition (iii). Soit donc x Q , 

x €E ,  x ¿ 0 ,  tel qu'il existe c  ,  c € ]R ,  tel que IV €  GA et 

\J \J O  O  X _ . C_ I\ 
o o 

supposons qu'i l existe un drapeau orienté a  de E ,  a€V ,  tel que xQ£Da • 
Alors - x ED - { 0 } , et si l'on pose A 1 =Au{-x } ,  on a A 1 c D - { 0 } , ce o o t I  O  I  oc 
qui implique que la famille ( W )x£ a c€jR es t un système de générateurs 

d'un filtre G A su r E* ( 4 . 3 ) , plus1fin que G ^ ( 4 . 4 . 1 ) et en particulier, 

comme W „ €  G. ,  que pour tout c , c € R ,  Wv .„ ntV .  ^ 0 , d'où 
xo,co A xo,co ~ V C 

W ^  0 ( 4 . 2 . 3 ) , ce qui est impossible pour c   ̂-c .  Ceci démontre l'équi-

O , C ^ + 0 , O 

valence des conditions (ii), (iii), (iv), (v), (vi ) et (vii) et ( 4 . 5 . 1 ) impliqu e 

donc que G =  G. . 
=A A Il reste à démontrer que si <^ est une relation d'ordre sur E , compatible 

avec sa structure d'espace vectoriel, telle que G , = G. ,  û\ n'es t autre que 
=A A 

. Soit A ' = {x€E : x> ^ 0 } .  Alors A ' est une partie convexe de E , 

O^A' e t A' = U  U  (p-A'*. . .+p A') .  En appliquant 
nEJN* (Pl,...,p )€(F+)n- { 0 } 1 n 

donc l'équivalence des conditions (ii) et (v) à la partie A ' de E ,  on déduit 

que pour tout x  ,  x€E ,  on a x€A' ,  si et seulement si, pour tout c  , 

c € IR ,  W €GA , , et comme GA I = G. ,  cela équivaut à x£B ,  d'où A' = B , 

ce qui démontre la proposition. 

COROLLAIRE 4 . 5 . 2 . - L'application qui associe à une relation d'ordre sur E , 

compatible avec sa structure d'espace vectoriel, le {litre de Hakn-Banack sur H g 

(resp. E*) , dé{lnl par cette relation d'ordre, est un 1лотогрк1лте d'ensembles 
ordonnés, de Vensemble des relations d'orare sur E , compatibles avec sa struc­

ture d'espace vectoriel, ordonné par la relation "plus {Ine que", sur l'ensemble 

des {litres de Hahn-Banach sur H £ (resp. E*) , ordonné par la relation "moins {In 

que", les éléments maximaux de cet ensemble étant en bisection avec les relations 

d'ordre total sur E , compatibles avec sa structure d'espace vectoriel. 
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Démonstration. Le corollaire est une conséquence directe de 4.S, de 4.4.1 et 

de 2.3. 

C4.61 Soient E  et Ef deu x R-espaces vectoriels de dimension finie et u : E^E' 

une application R-linéaire . Pour tout point x  ,  x € E ,  et tout e , e e R* 

(resp. tout c  ,  c € R) o n a 

Vu (x) ; e r u x̂ ; 

( r e s P - ^ C x ) ; c - t u " 1 c W x ; c » " 

On en déduit que si A (resp . A1) es t une partie de E (resp . E') dont l'en-

veloppe convexe ne contient pas 0 e t si u(A) cA' ,  alors l'image du filtre 

FA, (resp . GA,) par ru (resp^ u ) engendr e un filtre plus fin que FA 

(resp. GAJ ,  ou ce qui est equivalent, l'image réciproque du iiltre 

(resp. GA) par ru (resp.^ u ) engendr e un filtre moins fin que FA , (resp . G Ĵ 

En particulier, si E ' =E et si u es t un automorphisme de E ,  pour tout 

drapeau orienté a  de E l e filtre Fu(a ) (resp . G u ^ ) est l'image réciproque 

du filtre F a (resp . G ^ par la bijection r u (resp . ^i) (3.4). 

LENME 4.6.1.- Soient E  un R-espace vectoriel de dimension finie, H  un hyper­

plan de E , A une partie de E , B V enveloppe convexe de A et 

A' = {x € H : 3x-| ,x2 € A , 3Pl ,p2 € R+ : p.| + p2 = 1 et x = plx1 + p2x2} • 

Alors Bfi H est l'enveloppe convexe de A 1 . 

Démonstration. Soit B ' l'envelopp e convexe de A' . On a A'cBn H ,e t comme 

BflH es t convexe, on en déduit que B'cBflH .  Pour démontrer que BnHcB' , 

il suffit de démontrer que pour tout n  ,  n£ K * ,  si (xi^<i< n es t une famil-

le d'éléments de A e t (Pî i<i< n une famille d'éléments de R + tell e que 

p̂  + ...+Pn = 1 ,  si l'on pose x  = p̂ x̂  + ..-+Pnxn ,  l'hypothèse x€ H impliqu e 

que x€B ' (4.2) . On raisonne par récurrence sur n .S i n=1 o u n = 2 , 

l'assertion est évidente, car alors x€A ' par définition de A' .  Supposons donc 

que n> 2 e t que l'assertion soit établie pour n  - 1 ,  et démontrons la pour 

n .S'i l existe i  ,  1<i<n ,  tel que p^=0 ,  l'hypothèse de récurrence 

implique que x€B' .On peut donc supposer que pour tout i  ,  1^i<n, p^>0. 

Soit a  une forme R-linéair e sur E tell e que Ker(a) = H .  L'hypothèse 
n 

x€H impliqu e que E p- a(x-) =0 .S i pour tout i  ,  1 ^i<n ,  a(x-) = 0 , 
i=i 1  1  1 

pour tout i  ,  1 <i n̂ ,  x^€H don c x^GA ' et x£B' . Supposons donc qu'il 
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n 
existe i Q ,  1  û iQ û n , tel que a(xi )  ̂0 .  Alors l'égalité E p.a(x.) =0 

o i =1 

implique qu'il existe j  ,  1  < j <n ,  tel que a(x. ) / 0 et tel que 
•*o 

a(x. ) ait un signe opposé à celui de a(x. ) (ca r pour tout i  ,  1  <i<n , 
ô 1 o 

P I > 0 ) ,  ce qui implique que si l'on pose r . =  a(x. )/[a(x. ) - a(x. )] et 
1o -*o J o """ o 

r. =  - a(xi )/[a(x. ) -a(x. )] ,  on a r. > 0 ,  r. >0 et r.+r. =1 . 
•'o o  •' o o  o  -' o o-^ o 

Soit y  = r. x . +  r. x. .  On a a  (y) = 0 ,  donc y€ H ,  d'où y€A' 
o o  J o Jo 

D'autre part, soit s  = inf {p. /r. , p. /r. } et supposons par exemple que 
o •' o ̂ o 

s = p. /r^ .  Alors si l'on pose t  = r. (p. /r. -p. /r. ) on a t^O , 
o o ^o^o •' o x o 1o 

s+t+ E p. = 1 et x = sy + tx. +  E p. x-
i€[1,n]-{io,Jo} 1 J 0 i €[1,n]-{io,Jo} 1 1 

Enfin, comme pour tout i  ,  1   ̂i  ̂n ,  p^ > 0 et n> 2 , on a 1  - s > 0 et 

si l'on pose 

y' = [t/(1-s)]x. +  E [p-/(1-s)]x- , 
Jo i €[1,n]-{i0,j0} 1  1 

on a y ' €H (ca r y' = (x-sy)/(1 - s)) e t l'hypothèse de récurrence implique 

que y'GB 1 (ca r t /(1-s) + E p./(1-s) = 1) , et comme 
i€[1,n]-{i0,j0> 1 

x = sy + (1-s)y' ,  on en déduit que xGB' , ce qui démontre le lemme. 

LEMME 4.6.2.- Soient E un JL-espace vectoriel de dimension finie, E ' un 

sous- H-espace vectoriel, a ' une forme 1R-linéaire sur E', A une partie 

finie de E dont Venveloppe convexe ne rencontre pas E ' , et c  un élément de 

K . Alors il existe une forme H-linéaire a  sur E qui prolonge a ' et 

telle que a  € n W  . 
xGA x,c 

Démonstration. Soit aQ un prolongement quelconque de a' en une forme 

IR-linéaire sur E .  On pose a  = sup a (x) .  Soient E " = E/E' ,  TT : E—?E" 
xGA 0 

la surjection canonique et B  = TT(A) . Alors B  est une partie finie de E" dont 

l'enveloppe convexe ne contient pas 0 . 1 1 exist e donc une forme R-linéair e 

3 su r E" telle que $€ n W  ( 4 . 3 ) . On pose a  = a + 3 °  TT .  Alors 

on a a|E ' = a' ,  et pour tout x  ,  x€A ,  a(x) = otQ(x) + $(TT(X)) <C , 

ce qui démontre le lemme. 
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PROPOSITION 4.6.3.- Soient E  un Ж-espace vectoriel de dimension {Inle, E ! un 
sous- Ж-espace vectoriel de E  ,  A une partie de E  dont l1enveloppe convexe 
В ne contient pas 0  et: B ! =BfiEf .  Alors B ' est une partie convexe de E* 
ne contenant pas 0  et le {litre de Hahn-Banach F g , (resp. Ggf ) sur 5E , 

(resp. E1*) est VImage du {litre de Hahn-Banach Рд (resp. Gp) par la surjec­
tion r  (resp . 4 i ) , où u  désigne l1 Injection canonique u : E1 —̂  E 

(cf. 4.1). 

Démonstration. En raisonnant par récurrence sur la codimension de E' dans E , 

on peut supposer que Ef est un hyperplan de E .  D'autre part, l'image du 

filtre GA par la surjection es t un filtre plus fin que Gnf (4.5 et 4.6). 

Il suffit donc de démontrer que si C x ^ ) ^ ^ es t une famille finie d'éléments 

de A  e t ^j)]^^ xme famille d'éléments de 1R ,  il existe une famille finie 

Cy-ĵ i<j<m d'élément s de B* et 1X110 famille tej)^-^  d'élément s de ]R telle s 

que pour toute forme R-linéair e a ' sur E' telle que a1 £ n W  ,  , il 
i=1 yi,c i 

n 
existe une forme R-linéaire a sur E tell e que a€fl W  e t a|E!=a ' 

i=1 i ' i 
Soient A Q = {x1,...,xR} , Bq l'envelopp e convexe de AQ , 

A^ = {x€Ef : 3iri2, 1 <i1 <n, 1 ^i2^n, 3prp2eR+ :p1 + P2 = 1 et.x = p^x± +P2xi2> > 

B^ l'envelopp e convexe de A^ et c= inf c^ .  Alors on a B^=BonE' 

(4.6.1), l'ensemble A ^ est fini et A^cB' . Soit a ' une forme R-linéair e 

sur E ' telle que a1 € D W  .  Nous allons démontrer qu'il existe une forme 
yeA^ y 'c 

n 
R-linéaire a sur E tell e que a € Л W„ e t a|E' = a' .O n distingue 

i=1 i ' i 
deux cas : 

1er cas : Â  = 0 .  Alors B ^ =0 ,  donc BQnE' = 0 ,  et il résulte du lemme 

4.6.2 qu'il existe une forme R-linéaire a sur E qui prolonge a ' tell e que 
n n 

a £ Л W ,  ce qui implique que a€ Л W 
i=1 xi, c i= 1 xi,ci 

2ème cas : Â   ̂0 .O n peut alors qupposer que a1 0̂ (ca r si a1 =0 ,  comme 

A' 7e0 ,  a'€ n W impliqu e que c>0 ,  et on peut prendre a  = 0 ) . Soit 
° VCA ' y;C 

donc e Q , eQeE' ,  tel que a'(eQ ) = c .O n pose A ^ =~e0+AQ ,  B^ = -eQ + BQ , 

A1=~eo+Ao e t ̂ 1 = ~eo+ *o '  Â -ors (resP * es t l'enveloppe convexe 
de A ^ (resp. A.J) , B^B^ f l E ' e t pour tout y  ,  y CA.J ,  a'(y)<0 ,  ce qui 
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implique que pour tout y  ,  yeB^j ,  a'(y) <0 . Soit H ' = Ker(a') . On a donc 

flHf = 0 ,  d'où B1 nH! = 0 (ca r H* cE« e t B 1 nEf = Bp .  On en déduit 

l'existence d'une forme R-linéaire g  sur E tell e que glH1 = 0 e t telle que 

3£ H W  n  (4.6.2) , ce qui implique que pour tout x  ,  xeB1 ,  $(x) <0 . 
xeA1 x' u 1 

Si l'on pose H  = Ker($) on a donc H ' cHnE* ,  et comme ^  0 ,  il existe y  , 

y€ E' ,  tel que a1 (y) <0 e t $(y ) <0 . On en déduit que les hyperplans H  et 

E' d e E son t distincts, que l'hyperplan HnE ' de E' (noya u de $|E' ) n'est 

autre que H' (noya u de a') , et que le demi-espace ouvert de E' où a' est 

strictement négative est le même que celui où $|E ' est strictement négative. 

Soit e 1 , e1 €H ,  e1 £ E' .  On a E  = E' @ Re1 . Soit T T : E —> E' la 

projection parallèlement à IRe ^ . On pose a = a' o TT .  Pour tout x  ,  xçA^ , 

3(TT(X)) = 3(x) <0 , donc a'(7r(x) ) <0 ,  d'où a(x) <0 .  On en déduit que pour 

tout i  ,  1^i<n ,  a(-eQ+xp<0 (ca r -eQ+x^G'Ap ,  d'où a(xp<c<c^ , 

ce qui démontre la proposition. 

COROLLAIRE 4.6.4.- Soient E  un 1R-espace vectoriel de dimension finie, <E une 

relation d'ordre sur E  ,  compatible avec sa structure d'espace vectoriel, E ' 

un sous- M-espace vectoriel de E  et <E, la relation d'ordre sur E ' ,  Induite 

par ^E . Mors le filtre de Hakn-Banack f  (resp . G<M) sur sE 

(resp. E*) est l'Image du filtre de Hakn-Banack F (resp . G, ) peut la surjec-
-E - E 

tion r u (resp. cu) , où u  désigne l'Injection canonique u  : E' —̂  E . 

Démonstration. Le corollaire résulte directement de la proposition 4.6.3. 

(4.7). Soit p  un entier, p  € N .  Pour tout p  ,  p = (p1,... ,pp) , p e (IR*)P , 

si l'on désigne par x l'applicatio n 

X P : RP-*rç , 

définie par 
p x . 

Xn00 = n p, 1 ,  pour x=(x1,...,x ) , xeRp , 
P i= 1 1  1  P 

Xp es t un caractère sur W ,  et si l'on désigne par l'applicatio r 

Sp(p) : Rp R+° 

définie par 

Sp(p) = Xp » Pour p€ (]R*)P , 

Ç es t un isomorphisme du groupe multiplicatif produit (]R*) P su r le groupe 
P - p + 
H .  Pour toute forme 3R-linéair e a sur W ,  si a1,.. . ,a désignen t ses 
TRP '  P 
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coordonnées dans la base duale de la base canonique de W ,  on a 
a1 a 

e Coü = Çfe \...,e p) , 
Rp T 

et en particulier, es t un homeomorphisme. 
Soient q  u n entier, q  G K ,  A=(aij^<i<q 1<j<p 1131 6 à  coefficients 

o A 
dans R  e t p = Cp1, — ,p ) , p £ (R*)4 .  Si Ton désigne par p l'élémen t 

Pf =  (p\,..-,pp d e (Rp p ,  défini par 

q a . . 
P- = n  p/ 3 ,  pour 1  < j <p , 
3 i= 1 1 

on a 
u 

*p ~ x A ' 
où u  désign e l'application R-linéair e , u : R F —* R 4 ,  définie par la matri-

ce A  ,  et si l'on désigne par r . l'applicatio n 

rA : (R* )q •  (RpP , 

définie par 

rA(p) = pA , pour p e (R^)q , 

on a 

EprA=ru°Eq . 

On identifiera désormais H  ^ a (R*) p ,  moyennant 1 ' isomorphisme ^  , 
R 

et le dual de R p (considér é comme l'espace vectoriel des matrices colonnes à 

p lignes) à R p (considér é comme l'espace vectoriel des matrices lignes à 
p colonnes). Modulo ces identifications, on a donc pour tout x  ,  x = (x^,... ,x^)9 

x€Rp ,  et tout e  ,  e € R* ,  (resp. tout c , c  £ R) 

Vx;£ = UPl,. . . ,pp)£(R;)P :  S <  e} 

n p 
resp. W =  {(a1,... ,a ) £ RF :  E a. x. < c}), 

et pour toute partie B  de Rp don t l'enveloppe convexe ne contient pas 0, 

toute relation d'ordre û su r R p compatibl e avec sa structure d'espace 

vectoriel et tout drapeau orienté a  de R p ,  F R , F< e t F 

(resp. GR, G< e t G )  son t des filtres sur (R*) p (resp . Rp) 
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Exemple 4.7.1Le filtre de Hahn-Banach F < sur (R*) p ,  défini par la rela-
tion d'ordre produit S sur R p ,  est la trace sur (R*) p d u filtre des 
voisinages de 0 dans Rp . 

PROPOSITION 4.8.- Soient p  un entiery p  GIN , a un drapeau orienté de R p 
et A  une matrice Inversible définissant la relation d'ordre ̂ a (cf . 3.5). 
Mors le filtre de Hahn-Banach F  (resp. G ) sur (R*)p (resp. Rp) est 
V Image, da fluire, de Hahn-Banach F< _ (resp. G< ) ,  défini par la relation 
d'ordre. antÁJiexlco graphique. ^ sur ]R F (cf. 3.5.3), par la blje,ctlon Гд 
(resp. par Vautomorphlbme, de, Wp défini par la matrice, ̂A ). 

Démonstration. Si e* désigne le drapeau orienté de R F détermin é par la base 

duale de la base canonique de R p , la relation d'ordre antilexicographique 

^ n'es t autre que la relation d'ordre (3.5.3 ) et e*=u(a) , où u désigne 

1'automorphisme de R p défin i par la matrice inversible A ,  et la proposition 
résulte de 4.6. 

(4j_9).- Soient p u n entier, pGN .  Pour tout 6  ,  ô € R+ ,  et tout e , 
e € R* ,  (resp. tout c , c G R) o n désigne par E  . ~ (resp . C ... ) la 

+ p  *  P>ô> £ P >o>c 
partie de (R*) F (resp . RF ) définie par 

Ep;ô;£ = {(Pr...,Pp)e(R;)P : P 2 < Pr-• • >Pp < Pp-1 

(resp. Cp;ô;c = {(ar...,ap) G Rp : a1 <c, a2 < <5a1,... ,ap < ôap-1 } . 

Alors on a 

(4.9.1) e"1 (E x )  = C x  T Rp p;ô;e ' p;ô;Log e 

et 

(4.9.2) e (C x ) = E x Rp^p;ô;cJ p;ô; -

LEMME 4.9.3.- Solent <̂i<m ane óam^^e d'éléments de R + 
êî 1<i<m ane ^am/ ê d'éléments de R+(resp . (ĉ )̂ <i<m une famille d'éléments 

de R ) . SI l'on pose 

ô = sup{ô1,...,ôm} 

et 
e = inf{el,...,em,1} 

(resp. c = inf{c.j,...,cm,0}) 

on a 
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Ep;ô;e' cVx;eEp;ô;e' 

(resp. CL.,, c  n  r .,. ) . 

V>6>c 1<ia n P'6i'ci 

Démonstration. Le lemme découle d'une vérification directe. 

LENME 4.9.4.- Soient x  un élément de ]R p . x = (x^,... ,xp) ,  tel que x  >̂  0 

(cf. 3.5.3) et £ un élément de R * (resp. c un élément de R ) . On pose 

iQ = sup{i : 1 < i < p , xi  ̂o} , 

I =  {i:1 <i<iQ , xi<0} , 

ô =  sup(|x,|/x- ) +1 
ie l o 

(la borne supérieure ci-dessus étant, par convention nulle si I  =0), et. 
Vxi 

e' = inffe 

(resp.c1 = inf {c/x̂  ,0 }) . 
o 

Alors on a 

Ep;ô;e' cVx;e 

^ P - S ^ i c ^ ^ ; ^ • 

Démonstration. Il résulte de (4.9.2) et (4.2.2) qu'il suffit de démontrer que 

p;<5;c' x; c 
Soit donc a  ,  a=(a1,...,a) ,ae(L . o . _ , .  On a i p  p, o >c 

a^c' , a2<6a1,...,ap<ôap_1 , 

ce qui implique que pour tout i  ,  1^i^p ,  a. <c'ô*  ̂(e t en particulier 
i'-i 

que a ^ < 0) et que pour tout i  et i', 1 < i< i'< p ,  a^, < â ô .  D'autre 
part, l'hypothèse x  >T 0 impliqu e que x- >0 .  On a donc 

L .  X o 
P 
2 a i xi = 2 a i xi = ai xi "  2 a i lx i l = i=1 1 1 i= 1 1 1  x o o  ie l 

i -i 
< a x  -  Z (a. /6 ° )|x. | = 

o o  ie l ^ 1 

= a. x . (1 -ôl0 Z  ô^xJ/x . ) < 
xo x o ie l o 
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-o Ìo"1 i 
û a. x . (1 - ô °(ô - 1) E ô1) = 

o o  i= 1 

= ai a ( 1 - ô lo(ô-1)ô(ôl0"1 -D/ C ô-D) = 
o o 

= a. x . ô " ^ o ~ 1 ) <cfx. <c . 
o 1o ^"O 

On en déduit que a€^x.c >  ce Qui démontre le lemme. 

иШЕ^_.Ъ.- La 1аш11г «-,.e;e)6eR+> ̂  (resp.(Ср.,;c)6eR+ ^ R) e*t une 
òaóe de {Шло, бил (F*)P (resp . RP ) QIU. engencke £e {ItOid dd Hann-Banack 
F< (resp . G< ) , défini paA la relation d'ordre antU.exA.cographique ^T sur 
-L = L ^ 

Démonstration. Il résulte du lemme 4.9.3 que la famille (EL ~ )   ̂-m -m * _ - i Tîôî e ôeJR+, e€JR* 

(resp. (Cp-^-c^çR ce]R ) est une base de filtre sur (R*)p (resp. ]Rp ) , et 

du lemme 3.9.4 que le filtre engendré par cette base est plus fin que le filtre 

F< (resp . G< ) •  Pour démontrer le lemme, il suffit donc de démontrer que pour 
=L = L 
tout 6 , 6 € R ,  et tout c  ,  e el , C .*.,,£ G .  Pour tout i + p,o, c 

1  ̂i p̂ ,  on pose x . = (x.. ,... ,x- ) , x. el? ,ou pour tout i et j , 

1*i<p , 1*jSp , 

X y = 1 , pour i  = j 

x^. = -6 ,  pour i  = j + 1 

et 

xij = 0 ' pour e t i^3+1 

et on pose ĉ  =c et c^=0 , pour i^p . Alors pour tout i  , 1  <i<p , 

x. > T 0 , c. £ ] R e t C r = n W  ,ce qui démontre le lemme. 
1 1  P'ô' c 1<i<n xi>c i 

PROPOSITION 4.10.- Soient p  un entier, peN , a an drapeau orienté de lP 

et A  une matrice inversible définissant la relation d'ordre < (cf . 3.5). 

Aù»u la iamlU* ^ v ; 6 ; e » ^ P - ^ S î ô ^ ^ , ce F> U t 
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une base de filtre sur (]R*) P (resp . Rp) qui engendre le filtre de 

Hahn-Banach F (resp . G ) 

Démonstration. La proposition est une conséquence directe de la proposition 4.8 

et du lemme 4.9.5. 

Le lemme suivant précise la proposition 4.10. 

LEMME 4.10.1.- Soient p  un entier, p  e N , a un drapeau orienté de Wp , 

A = (aij^<i<p i<j<p an e m;^ce Inversible à coefficients dans 1R , définissant 

la relation d'ordre ^ (cf . 3.5), fr ^-j^n an e fam^-^ finie d'éléments de 

Rp ,  xk = (xkl,.. . ,x )̂ et (ek)lácán Cresp. Cck) 1 une, famille d'éléments 

de TR* (resp. R) . On suppose que pour tout k  ,  1 <k<n , x v > 0 , et 
+ K ex 

pour tout k  , 1 < k < n ,  on pose y k = (ŷ -j, •. • >Y]qP >  ou pour tout i  , 

U i * P ,  7k i = ^ a ¿ j xkj (y k = Axk), 

ik = sup{i : 1 <i<p , yki + 0} 

Ik = {i : 1<i<ik , yki<0} 

ô = sup su p (|y,. |/y,. ) + 1 
1<k<n i€l k K  k 

[la borne supérieure sup étant par convention nulle si L  = 0) , et 

e = inf{ei 1 , . . . , e n ni^,1 } 

(resp.c = inf{c1/yu ,---,cn/yni ,0}). 

Alors on a 

p,ô'e 1<k< n xk'e k 

(resp.tA(Cn.,.r)c n W ) . 
p,ô,c 1<k< n xk'c k 

Démonstration. Comme xk>^ 0 équivau t à y^^O (3.5.3), il résulte des lemmes 

4.9.3 et 4.9.4 que 

E x c  n V 
p;ô;£ 1<k< n yk;e k 

(resp. C ô  c  n W  )  . 
p'ô'c 1 <sksn yk'ck 
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On a donc 

E x c n  r ' 1 (V ) 
p;ô;e 1<k< n xk;e k 

(resp. C  fi c n  V 1 ™ .r )) 
p'ô,c 1Skâ i xk'c k 

(4.6), ce qui démontre le lemme car A étan t inversible r ^ (resp. A) est 

bijective (4.1). 

LEMME 4.11.- Soient p  un entier, p  € ]N , a un drapeau orienté de ïïP tel que 

la relation d'ordre soit moins fine que la. relation d'ordre produit ^ sur 

W , A= ̂ aiĵ i<i<p i<j<p tm e mûE;t/L̂c-£ inversible à coefficients dans 1R défi­

nissant la relation d'ordre et R un nombre réel, 0<R< 1 .  Pour tout j 

1 û i p̂ , on pose 

=sup{i : 1 SiSp, ¿0 } , 

Ij = U : U i < ij ,  a±.<0} , 

ô = sup su p CI a - -1 /a - •) + 1 
1£jSp iei j 1 J j J 

ila borne supérieure sup étant par convention nulle si I. = 0 , et 
i€I. J 

1 
a = in£ a. -

Mors on a 

rA(Ep;S;R1/a) c«Pr...,p) € (]R;)p : Vj , 1Sj*p ,  P j < R } . 

Démonstration. Si e^,.. . ,ep désign e la base canonique de Rp ,  pour tout j  , 

1  ̂i  ̂p ,  on a e->0 ,  donc e. > 0 ,  et comme 

{(p ,...,p )€(]RPP :  Vj, 1 < j <p , p <R} = n  V 
1 P  J  1<j< p ej'R 

le lemme résulte aussitôt du lemme 4.10.1. 

Remarque 4.11.1.- En gardant les notations du lemme 4.11, il résulte de 4.4.1 et 

4.7.1 que le filtre de Hahn-Banach F  es t plus fin que la trace sur (1R*)P 

du filtre des voisinages de 0 dan s W ,  et le lemme ci-dessus précise ce 

résultat. D'autre part, on remarque que si la matrice A  es t à coefficients dans 

R+ (cf . 3.5.1) alors 6 = 1 . 
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§ 5 . - Filtre associé à une relation d'ordre sur Np 

Dans ce paragraphe, on étudie un cas particulier de filtres de Hahn-Banach, 

ceux définis par une relation d'ordre sur JNP , compatible avec sa structure de 

monoîde. 

LEMME 5.1.1.- Soient p  un entier, p  e K , <' une relation d'ordre sur ]N P , 

compatible avec sa structure de monoZde, et A la panile de ïïP de fiole pan 

A = {x ewP : 3d, d' efP ,  d<f d' e t x = d'-d} . 

Alors 0  n'appartient pas à Venveloppe convexe de A . 

Démonstration. Soient < " la relation dans W défini e par 

d'<;' d" <* 3n £ N * , 3 d e fP , nd' + d <' ndM + d 

et A' la partie de Rp défini e par 

A' = {x€RP-{0} : 3d, d'e!Np , d<"d' et x = d'-d} 

La relation ^" est une relation d'ordre sur ]NP , compatible avec sa structure 

de monoîde, régulière, moins fine que <' , et en particulier, on a 

AcA' . 

En vertu de ( 3 . 9 . 3 ), il existe une relation d'ordre <" ' sur Rp ,  compatible 

avec sa structure d'espace vectoriel sur le corps ordonné ] R et prolongeant 

^" .S i l'on désigne par A" la partie de 1RP définie par 

A" = {x£Rp :  0<"' x} , 

on a 

A' cA" , 

et comme AM est convexe, on en déduit que 0 n'appartient pas à l'enveloppe 

convexe de A . 

PROPOSITION 5.1.2.- Soient p un entier, p e N , et <' une relation d'ordre sur 

]NP ,  compatible avec sa structure de monoZde. Alors la famille 

CVd'-d;£}d<'d', e£]R* 

(resp-(Wd'-d:c)d<'d',c€K) 

est un système de générateurs d'un filtre de Hakn-Banack sur (]R*) P 

(resp. sur Rp ) . 

Démonstration. La proposition résulte de 5.1.1 et de 4.3 (cf. ( 4 . 4 ) ) . 
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DEFINITION 5 . 1 . 3 . - Soient p  un entier, p  eJN , et <' une relation d'ordre 
бил fP , compatible, avec ба 6tructure de monoïde. On désigne рал F ° , 
(resp. G°, ) le {litre de, Hakn-Banack Рд (resp. Gp) , où A dé6lgne la partie 

de, жР dé{lnle рак 

A. = {x €JRP : 3d, d' eNp , d<f d1 et x  = df-d} 

(cf. 5 . 1 . 1 , 5 .1 .2 et 4 . 4 ) , et on dit que F ° , (resp. G°f) ebt le {ittre de 
Hahn-Ba.na.ck détint рал la relation d'ordre <' бия ]NP 

Exemple 5.1.4.- Le filtre de Hahn-Banach F< défin i par la relation d'ordre 

produit û su r n'es t autre que la trace sur (R*) p d u filtre des voisina-

ges de 0 dan s R p .  Si й1 désigne une relation d'ordre sur ]N P ,  compatible 

avec sa structure de monoïde et moins fine que <  ,  alors le filtre de 

Hahn-Banach F ° , défin i par < ' es t plus fin que la trace sur (]R*) P d u filtre 

des voisinages de 0 dan s Жр ( 4 . 4 . 1 ) . 

Remarque 5 . 1 . 5 . Soient й' une relation d'ordre sur ]N P ,  compatible avec sa 

structure de monoïde et й" une relation d'ordre sur жР , compatible avec sa 
structure d'espace vectoriel sur le corps ordonné Ж . Si la relation d'ordre 

induite sur ri»  pa r й" est moins fine que la relation < ' ,  alors le filtre de 

Hahn-Banach F<M (resp. G<ff) défini par <; " est plus fin que le filtre de 

Hahn-Banach po f (resp . G°f) défin i par й' ( 4 . 4 . 1 ) . En général, même si la 
relation d'ordre й' est induite par la relation < " ,  le filtre F<n 
(resp. G<M) es t strictement plus fin que le filtre F<i (resp . G<t) (voi r 

remarque 5 .2 .2 ci-dessous) . Néanmoins,on a la proposition suivante : 

PROPOSITION 5 . 2 . 1 . - Soient p  un entier, p  e IN , et йч une, relation d'ordre 
бил ]NP ,  compatible, avec ба 6tructure de, monoïde,. Il extbte une, relation d'ordre 
unique, <" бил Rp ,  compatible, avec ба 6tructure d'espace, vedo/ilei бил le 
согрб ordonne Ж > telle que F „ = F^f [ou ce qui eòt equivalent, telle que 
G<M = G°? ). En pùjub, on a leb propriété 6ulvante6 : 

i) la. relation d'ordre <" Induit une relation d'ordre molnò {Ine que 
бил ]NP ; 

ii) б1 la relation d'ordre <' ebt régulière (cf . (1 .0) ) , alorb la 

relation d'ordre й" Induit la relation <' бил ]NP ; 
iii) 6l la relation й' eòt une relation d,oлdлe total, rationnette 

(cf. ( 3 . 1 1 ) ) , aJbonA la relation й" eAt une relation d'ordre total, qui n'e6t au­
tre que l'unique prolongement de й' en une relation d'ordre total бил ]RP , 
compatible avec ба 6tructure d'ебрасе vectontel биг le согрб ordonne Ж 
(cf.C3.12), (ii)). 
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Démonstration. Soit A  l a partie de R ^ défini e par 

A = {xeRP : 3d, df e NP , d<! d1 e t x = d'-d} . 

En vertu du lemme 5 . 1 . 1 , 0 n'appartien t pas à l'enveloppe convexe de A . 

L'existence et l'unicité de ^ " résulte alors de la proposition 4 . 5 , appliquée 

à A  (cf . 5 . 1 . 3 ) . Poson s 

A' = U U n (p1 A + . . . + p A) . 
nEN* ( p 1 , . . . , p n ) € R i ; - { 0 } n 

On a A c A ' , et l'assertion (i) résulte de l'équivalence des conditions (i) et 

(ii) de la proposition 4 . 5 . Si l'on suppose que la relation d'ordre < ' est 

régulière, en vertu de ( 3 . 9 . 3 ) , il existe une relation d'ordre <" ' sur Rp , 

compatible avec sa structure d'espace vectoriel sur le corps ordonné R  ,  in-

duisant ^ ' sur fP .  Si l'on désigne par A" la partie de R p défini e par 

A" = {xeRp :  x> ' " 0 } , 

on a donc A'cA " . Soient d  e t d' ,  ,  d'elf ,  tels que d<"d' . 

L'équivalence des conditions (i) et (ii) de la proposition 4 . 5 implique que 

d'-d e A' ,  d'où d'-d€A" ,  autrement dit d<M'd', et comme la relation 

d'ordre ^ ' est induite par <"' sur ,  on en déduit que d < ' d ' ,  ce qui 

démontre l'assertion (ii). Pour démontrer l'assertion (iii), on remarque que 

si < ' est une relation d'ordre total, pour tout drapeau orienté a  d e Rp 

la relation d'ordre û (cf . ( 3 . 2 ) et ( 3 . 2 . 1 ) ) indui t ^ ' sur s i et seule-

ment si A c D ^ - { 0 } . On en déduit que si en plus la relation d'ordre total 

^' es t rationnelle, il existe un drapeau orienté a Q de R P et un seul tel que 

A c D - { 0 } ( ( 3 . 1 2 ) , (iv ) et ( 3 . 7 ) ) , et alors ^  es t l'unique prolongement 
ao a o 

de ^ ' en une relation d'ordre total sur Rp ,  compatible avec sa structure 

d'espace vectoriel sur le corps ordonné R  .  L'équivalence des conditions (i) et 

(iii) de la proposition 4 . 5 implique que la relation d'ordre < " n'est autre que 

^ ,  ce qui démontre la proposition. 

Remarque 5 . 2 . 2 . - L'assertion (iii) de la proposition 5 . 2 . 1 possède une réciproque 

pourvu que la relation ^ ' soi t une relation d'ordre régulière, si la relation 

est une relation d'ordre total, alors ^ ' est une relation d'ordre total, 

rationnelle. En effet, en vertu de l'assertion (ii) de la proposition 5 . 2 . 1 , la 

relation ^ ' est alors induite par ^" ,  et en particulier, elle est une rela-

tion d'ordre total. Il suffit donc de démontrer que si <' désigne une relation 

d'ordre total sur lP ,  compatible avec sa structure de monoîde, qui n'est pas 

rationnelle, et < " une relation d'ordre total sur ,  compatible avec sa 

structure d'espace vectoriel sur le corps ordonné R  ,  induisant < ' sur 
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alors F<M î F ° , Cou ce qui est équivalent G< M  ̂G°,) •  Pour démontrer cette 

assertion, supposons que lfon ait F<M = F<» .E n vertu de la proposition 3.7, 

il existe un drapeau orienté 

a: {0}=E c E c . c E , c:E^ = Rp 
o 1  P" 1 P 

de R P te l que <" soit la relation d'ordre <  .  Alors il existe i  , 
a o 

1 <iQ<p ,  tel que le sous-espace vectoriel E ^ de W n e soit pas rationnel 

(on vérifie facilement que sinon ̂ ' serait rationnelle). 

Soit F  l'adhérenc e de E- 0 QP dan s E - .  L'ensemble F  est un sous-R-espace 
vectoriel de E- distinc t de E. .  On en déduit que l'ensemble 

xo ^ 

I = {i : 1  ̂i < i0 ,  Ei_1 fi F = Eif1F} 

est non vide. On pose i ^ = max(I) .  Soit 

a' :  {0} =  E ' c E ' c . c E ' ^ E ' =  R p J o  1  p- 1 p 

le drapeau orienté de R P ,  tel que 

i) pou r tout i  ,  0  ̂i < p ,  Ej = Ê  ; 

ii) pour tout i  ,  0 < i < p ,  i ^ i ^, E|+ = E* ; 

iii)Eï+ = -E+ (E.' + = {xGRp : - x e E+ }). 

On vérifie facilement que la relation d'ordre S i sur RP indui t < ' sur 
+ a 

Soit x  un élément de E. te l que x^E. .  On a 0<"x (cf.3.2) et 
X1 V ' 

l'hypothèse F.„ = F° impliqu e que V f. (cf . (4.4), d'où V 1 £ F < = =  x , i S  x , i =a , 

(cf. 5.1.5). D'autre part, on a -x£Eï + e t - x £E.' 1  ,  ce qui implique que 
i 1 i f ' 

0< ,- x (cf . 3.2), d'où V ., 6 F. (cf . 4.4), et comme F es t un filtre, 
CL — X I L S , 

a a 
on en déduit que 

V ..nv , £ F ^ x;1 -x; 1 ^  f a 
Or, on a 

Vx;lnV-x;1cV0;1 =0 

(4.2.4), ce qui est absurde. 

COROLLAIRE 5.2.3.- Soient <' une relation d'ordre total sur 3N P ,  compatible 

avec 6a structure de monolde et rationnelle, et A  une matrice Inversible à 

coefficiente dans R définissant cette relation (cf . 3.11) . Alors la famille 
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^A^piôje^ôÉR^ ,e€R* 

(resp. ( V C p . ^ ) ) ^ ^ ) 

est une, base, du {UAtie. F̂ t (resp . G°t) 

Démonstration. Soit ̂ " la relation d'ordre total sur ,  compatible avec sa 

structure d'espace vectoriel sur le corps ordonné 1 R , définie par la matrice A 

(cf. 3.5). La relation ̂ " indui t la relation d'ordre ̂ ' sur e t l'asser-

tion (iii) de la proposition 5.2.1 implique que F°T = F<M (ou ce qui est équiva-
lent que G°, = G<M) . Le corollaire résulte alors de la proposition 4.10. 

Exemple 5.2.4.- Si ̂ ' est la relation d'ordre antilexicographique = T sur 

alors la famille 

^pjô^ôei^ ,e€R* 

(reSP* CCp;6;c3ó€]R+,c<E]R ) 

est une base du filtre (resp . G< ) (cf. 3.12.1). 
=T. =î. 

Remarque 5.2.5.- Si lfon ne suppose pas que la relation d'ordre total S} soit 
rationnelle, le corollaire 5.2.3 est faux. En effet, il résulte de 4.10, 
5.1.5 et 5.2.2 que si =  ' n'est pas rationnelle, la famille 

írAÍEn:6ге б̂еи .e€R* 

resp. ( A(C ))6e R R 

est une base d'un filtre de Hahn-Banach sur (R*) p (resp. sur W) strictemen t 
plus fin que F*? f (resp. G°,) 

COROLLAIRE 5.2.6.- Soient p  un entier, p  € N , <' une relation d'ordre sur 
lP , compatible avec sa structure de monoZde et régulière, T̂r> l'unique rela-
tlon d'ordre sur , compatible avec sa structure d'espace vectoriel sur le 
corps ordonné Q ,  induisant ûy sur 1N P (cf . (2.1)) et 

A' = {xeíf : CK' p x} . 

Alors 0  n'appartient рал à Z'enveloppe convexe de A ' et on a 

F0 = F 
-1 A ' 

(resp. G°, = GA, ) . 
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Démonstration. Soit <ĵ p l'unique relation d'ordre sur ]RP , compatible avec sa 

structure d'espace vectoriel sur le corps ordonné R  ,  telle que 

F° = F 

(cf. 5.2.1) . En vertu de 5 . 2.1, (ii), <* étant régulière, la relation d'ordre 

^ P indui t u' su r ]NP , ce qui implique que < ' p indui t ^  su r qP . 

Alors si l'on pose 

A= (x €]RP : 3d , d'€lNp , d<'d et x = d'-d} 

et 

A" = {x €RP : 0 < ' л x} 
W 

on a 

A c A ' c A " , 

ce qui démontre le corollaire (cf.(4.4), (4.4.1) et ( 5.1 . 3 ) ) . 

PROPOSITION 5 . 3 . - Soient p  et p' des entlens, 0<p' <p , <' une relation 
d'osid/ie бил 1SIP , compatible, avec m òtuictwie de, monoZde et кедиНЫе, <" 
la. relation d'oKdxe indotte рал <' бил fP [Identifie, à ]NP x { 0 } ) . AJbons 
le flWie de Hakn-Banach F°„ (resp. G°„ ) бил (R*)P (resp . sur Жр ) 
est l'Image du flWie de Hakn-Banach F° t (resp . G°, )  рал la pfiemlèKe p>wsec­

tion r : (R*)p >  (R*)pT (resp . тг : R p —* Rp ' ) . 

Démonstration. En raisonnant par récurrence on peut supposer que p  ' = p - 1 .  Soit 

^' (resp . ̂ M , ) l'unique relation d'ordre sur <jP (resp . sur fljP ) compati-

ble avec sa structure d'espace vectoriel et induisant < ' (resp . u" ) sur 
(resp. sur )  (cf. (2.1)). Alors la relation d'ordre < ' indui t ̂ M , 

sur e t si l'on pose 

A= {xeflf : 0 < ' x } 

et 

A' ={xe<QP' : 0 <" .x} 

on a 

A' =Qpl П А = Жр'пА 

et 

F° = F F ° = F 

( 5 . 2 . 6 ) . Soi t В (resp. B' ) l'enveloppe convexe de A (resp . A' ). On a 

В ' с В Л RP' 
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et 

F0 = F F 0 = F 

(4.5). En vertu de (4.6.1), si l'on pose 

A" = {x € R P? :  3x1 ,x2 GA , 3p1 ,p2 GR+ : p1 + p2 = 1 et x = + p2x2} 

alors Bfl]R p es t l'enveloppe convexe de A " . Démontrons que A"cB ' . En effet 

soit x  u n point de R P te l qu'il existe x^ , x2 , x̂  G A , x2 GA , et P-J,P 2 

p̂  € ]R+ ,  p2 £ R+ ,  tels que 

p1 + p2 = 1 e t x  = Pl x1 + p2 x2 . 

On peut supposer que x ^ ^x2 e t que p-j > 0 (ca r sinon x  = x2G RP n A = A! ). 

Soit D  l a droite définie par les points x ^ et x2 . Comme x^ € e t x2 G QP , 

la droite D  es t rationnelle. Si DcR p ,  alors GA ' e t x 2 GA' ,  d'où 

x€B' .S i D ^ R P ,  alors x  es t l'intersection de la droite rationnelle D 

avec l'hyperplan rationnel R P d e RP ,  donc xGQ P . On en déduit que p ^ GQ 

et p£^Q -  Or, x ^ GA e t € A impliqu e que 

0<'nx1 e t 0< ' x9 , 
Q P 1  Q P 2 

d'où 

0<ÔPP1 X1 e t 0  =ÔPP2X2 ' 

donc 

0 < Q P X ' 

c'est-à-dire xG A , d'où xGA ' e t à fortiori xGB 1 . On en déduit que 

B' =B n RP e t la proposition résulte de (4.6.3). 

Remarque 5.3.1.- En suivant de près la démonstration de la proposition 4.6.3, on 

remarquera qu'en fait on a un résultat un peu plus précis : pour toute famille 

finie fr-p-i^^m d'éléments de B  , il existe une famille finie ( x - [ t )i^ i ^» 

d'éléments de B ' tell e que pour toute famille Ce^)^<i<m CresP- ̂ cî i<i<m ^ 

d'éléments de R * (resp . de R ) s i l'on pose 

e = in f e . 
1<i<m 1 

(resp. c  = in f c - )  , 

on a 

n V f cr ( n V ) 
1<i'<m' xi'" e 1̂ i< m xi,e i 

(resp. n W  ,  CZTT ( n W y )  )  . 
1<i'<m' i',L - 1<i< m i " i 
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CHAPITRE II 

VARIATION DES EXPOSANTS PRIVILEGIES 

Dans ce chapitre, on définit la notion des exposants privilégiés minimaux dfun 

idéal cohérent, en un point, et on étudie leur variation en fonction de ce point, 

comme on l'a exposé aux paragraphes 4 et 5 de l'introduction générale. Dans le 

§1, on introduit la notion d'exposant privilégié et on en donne quelques proprié-

tés élémentaires. Dans le § 2 , on définit un foncteur qui permet une étude plus 

fine de cette notion. Ce foncteur joue ici un rôle analogue au gradué associé des 

parties principales. Plus précisément, soit U  u n ouvert de C P .O n définit un 

bifoncteur covariant P  d e la catégorie des (̂ -module s cohérents dans celle des 

Oy[T-j,Tp] -modules gradués par fP ,  à composantes homogènes cohérentes, et 

des morphismes de degré zéro. Si M  e t W désignen t deux (̂ -module s cohérents, 

on a donc 

p =  ft p ^ 

où P. , es t un (?TT-module cohérent, et si u  : M1 —>M e t v  : W —> W désignent 
m;n u 

deux morphismes de fl^-modules cohérents, on a 

P =  e  P  , 

où 

Pd '  Pd —  P d ru;v " rMf;W' M;W 

est un morphisme de O^-modules . En plus, le foncteur p  possèd e les propriétés 

suivantes : 

i) si u  : M1 — *M e t v  : W —> bi désignent des épimorphismes de 

0TT-modules cohérents, alors P  :  P... ... —* ?. . es t un épimorphisme ; 
U UJ V M  '9N M',N 

ii) si M  e t W  désignen t des Oy-modules cohérents et X  u n sous-espace 

analytique fermé de U  te l que M  soi t porté par X  (cf . chapitre 0), alors 

pour tout d  ,  defP ,  le 0^-moâule cohérent Pd. ^ es t porté par X  ,  et 

P̂ .̂  peu t donc être considéré comme un 0^[T^ ,...,T ]-module gradué ; 

m ) V u = w V ' 

En particulier, il résulte de (i) et (iii) que si X  et Y désignen t deux 

sous-espaces analytiques fermés de U  ,  ? n ,  es t un quotient de 
^X'^Y 

OytT^,...,Tp] ;  il est donc muni d'une structure de (̂ -algèbr e graduée de type 
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fini à composantes homogènes cohérentes. On en déduit que P , n es t une 
UX;UY 

(̂ -algèbre graduée de présentation finie ([35], chapitre I, Proposition 1.4), et 

il résulte de (ii) que Pq ,q peu t être considérée comme une (̂ -algèbre graduée 

de présentation finie. Si en plus X  es t réduit, il existe un fermé analytique 

S de X d'intérieu r vide (dans X ) tel que pour tout x  ,  x Q -S ,  Pn ,n 
UX'UY 

soit 0̂ -pla t en x  ([35] , chapitre I, théorème 8.1.3). D'autre part, on démontre 

que si J  désign e un idéal cohérent de 0^ , Y l e sous-espace analytique fermé 

de U  défin i par J  ,  x u n point de U  e t {x } l e sous-espace analytique 

réduit de U  don t le support est formé par le seul point x  ,  alors Pn n , 

qui est donc une -algèbr e graduée, c'est-à-dire une (C-algèbre graduée, est 

isomorphe à C[T]/((T̂ )̂ Ç M ) ,  où T  = (T^,... ,1̂ ) désign e p  indéterminée s et 

l'ensemble fini d'exposants privilégiés minimaux de J  e n x  .  Enfin, on 

démontre (et c'est de loin le résultat le plus difficile) que si xGX- S , 

alors la 0{xj-algèbr e graduée Pq .q es t isomorphe à Pq .q ®q 0^ . 

Au §3, en combinant ces résultats, on en déduit que l'ensemble M x es t constant 

quand le point x  vari e dans X- S ,  et cela permet la construction d'une strati-

fication (C-analytique de U  tell e que l'ensemble des exposants privilégiés mini-

maux d e J  en x  soi t constant sur chaque strate. 
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§ 1. - Exposants privilégiés d'un idéal 

(1.0) Dans ce paragraphe, on se fixe une fois pour toutes un entier p  ,  p € Isi 

et une relation d'ordre total < a sur ïïP , compatible avec sa structure de 

monoîde et moins fine que la relation d'ordre produit й sur isP . On rappelle 

qu'une telle relation d'ordre est une relation de bon ordre (I, 1.5). 

DEFINITION 1.1.- Soient x  an point de (Cp et f  une {onction définie au voi­
sinage de x et analytique au voisinage de x , ou un genme de fonction analy­
tique au voisinage de x (par exemple f  er(U,0 )  , où U es t un ouvert de 

Cp contenan t x  ,  ou f  €B(K) , où К est un polycylindre compact de (Cp 
tel que x 6 К ,ou f  € 0 )  .On désigne рак E (f ) (ou plus simplement par 

CP,x X 
E(f) quand aucune confusion n'en résulte) la partte de W définie рал. 

E ff) = {d€INP : Д (x) ф 0} 
x ЭХа 

(où X = (X̂ ,...,X ) désign e les coordonnées sur Cp) . L'ensemble E^(f) est 

non vide, si et seulement si, le genme de f en x est non nul et dans ce cas 
on désigne рак va.xCf) Co u plus simplement vaCf) , ou même vCf) , quand aucune 

confusion n'en résulte) et on appelle exposant privilégié de f  en x , rela­

tivement à la relation d'ordre , l'élément de INP défini par 

v (f ) = min CE Cf)) . а;х a x 

Si g  vérifi e les mêmes hypothèses que f on a : 

(1.1.1) E(f.g)c=E(f ) + E(g) , 

(1.1.2) E(f+g)cE(f)UE(g ) , 

(1.1.3) v(f.g ) = v(f) + v(g) 

et si le germe de f  + g e n x es t non nul , 

(1.1.4) v( f + g) ^  mina(v(f) , v(g)} 

et 

(1.1.5) v(f+g ) = mina(v(f), v(g)}, si v(f)^v(g) . 

DEFINITION 1.2.- Soient V une partie de 1NP , U un ouvent de (Cp , J un 
Idéal cohérent de 0^ , x un point de U et К un polycylindre compact de (Cp 
tel que x€K et Kc U .On appelle ensemble des V-exposants privilégiés pour 

en x de J (resp . ensemble des V-exposants privilégiés pour йа sur К en 
x de J) et on note P  л , (resp . P ^ T v )  la partie de 1NP définie par 

OtJl /JJJX Ot y U \ J\K\x 
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Pa;P;J;x= **е*Р:3£^х > ^  *  va;x(£ ) = d} 

(resp- Pa;p;j;K;x = Welf : a£eJK : £¿0 , Ex(f) cp et va;x(£ ) = d} )( , ) . 

5ч: V = lP , on notera P  . _ (resp . P . 7„ )  £'enôemb£ e P  ,тР 7 
a,J,x г а» -»Д»х a ;JNi ;J ;x 

(resp. pa-jyp. ^  0K l с̂ лл ̂ -^P^ement exposant privilégié роил. lP -exposant 
privilégié. Enfin, on note M  .я. , (resp . M „  )  £'еп4етЬ£е £6гс 

M(p T.v)(resp . M(P _  T„ ) ) d'éléments minimaux de P  , a,i/jj,x a,l/,j ,iv,x a>I?>J>x 
(resp. P .я. т.̂ .„) роол &i relation d'ordre produit й sur fP (cf . 1,1.3 ) 

&t on appellera les éléments de cet ensemble les V-exposants privilégiés minimaux. 

SI V=fP , on noiera M  ,  (resp . M T  „ )  £'enàewb£e M  ,Tn 7 

(resp. ма.^р &t on dira simplement exposant privilégié minimal pour 

lP -exposant privilégié minimal. 

Remarque 1.3.- En gardant les notations de la définition 1.2, on a 

P c p _  . cD 
a;P;J;K;x a;P;J; x 

et si K' désign e un polycylindre compact de <Cp tel que x€Kf e t K'cK ,  on 

a 

Pa;P;J;K;xcPa;P;J;K';x " 

Si P ' désign e une partie de fP tell e que P с P1 ,  on a 

Pa;P;J;xcPa;P' ;J;x e t Pa;P ; J;K;xcPa;P' ;J;K;x 

et en particulier, 

P с P e t P C P a;V;J;x a;J; x a;P;J;K; x a;J;K; x 

Si J 1 désign e un idéal cohérent de 0^ "te l que jej' , on a 

Pa;P;J;xcPa;P;J';x e t Pa;P;J;K;xcPa;P;J';K; x " 

Enfin, il résulte de (1,1.3 ) que 

P л т с M ^  T +  e t P fl T , c M fl T , +  Np 

et si l'on a V + fP czV ,  J étan t un idéal, on vérifie immédiatement que 

P =  M + NP e t P =  M +  fP 

(1 ) Pour la définition de J s e reporter au chapitre 0. 
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et en particulier, on a 

P T =M T + N P e t P , „ = M , . a;J;x a;J; x a;J;K; x a;J;K; x 

PROroSITION 1.4.- Soient V une partie de lP ,  U un ouvert de dP , J un 
Idéal cohérent de 0^ et x  un point de U  .  S'il existe une famille 
f̂i?1<i<m ^éléments de r(U,J) telle que pour tout i  ,  1 <i<m , le germe 

de en x  *о>6£ non nuX et y f . ) c i ; e £ ;te££e que 

Ma;P ;J;xc{dr-"dm} ' 
ой роил, ;too£ i ,  1 < i <m ,  =  va.x(f )̂ >  alors pour tout polycyllndre com­

pact К de dP tel que KcU et x  € К on a : 
il M  =  M 

ii) si en plus [{V + ( - Й ) n f f ] + Pczp ,  a£ô  pa;n ;j;K;x = Pa;P;J;x * 

Démonstration . On a P ,я . 7.^. CP .я. 7. (1-3) . Or, l'hypothèse que pour tout 

————————— Ot, I / , _/, Jv , X ( X j ï / , _ / , X 

i ,  1^i£m ,  Ex(£i)cp impliqu e que {d1,.. . ,dm> cPa;p. J;K;x ,  et l'hypo-

thèse Ma;P;J;xc{d1>"->dm } 4" e Ma;V;J;xcPa;P;J;K;x e n déduit que 

M -я- i-Y- =  M .я. 7. ,  ce qui démontre l'assertion (i). Supposons maintenant 
qu'en plus [( P + (-P)) n 1̂  ] + PcP ,  et soit d  ,  deP .n. ,. .  Alors il 

Ot » i) > J ,x 
existe d ' ,  d'eM .я , te l que d'<d ,  et comme M  ef). c = {d1,... ,d } , 
il existe i  ,  1  =i = m ,  tel que d. =d' e t si l'on pose d " = d - d1 = d - d. , 

1 d " 
on a d " e (V + (-£)) Л lP .  Soit g l a fonction définie par g(x') = fi(x')(x'-x) , 
pour x ' e U .Alor s g e r ( U , J ) , v n . f g ) =  d. +d" = d e t E  (g) = E (f-) +dM , 

Ot ,X 1  X  X I 

et comme on a E^f^czV ,  d" G CD + (-я)) П ~&P et [  (P + (-P) ) n US? ] + VczV , 
on en déduit que E  (g) czP ,  d'où dçP .fl.T.v. ,  ce qui démontre la proposi-

X CL9V 9 J >iV J X 

tion. 

COROLLAIRE 1.5.- Soient V une partie de fp , U un ouvent de (C p , J an 

Idéal cohérent de 0^ et x un point de и . АХол^ Il existe un ouvent U ' de 
(Cp contenu dans U  contenant x tel que pour tout polycyllndre compact К 
de (C p ;tei. çue KcU ' et x€ K o n ûût : 

i) M  -ГЛ -r TA =  M _  T 
a;P;J;K;x a;P;J; x 

C-WJnrf] +P<= P ,  aeow Pa;p;j;K; x = Pa;P;J;x • 

Démonstration. L'ensemble M  ^  7 étan t fini, il existe un ouvert U ' de (CP 

contenu dans U  e t contenant x  e t une famille f f d'élément s de 
17 '  m 
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r(U',J) tell e que pour tout i  ,  1  <i m̂ ,  E  (f^cfl e t telle que pour tout 

d ,  d€ M T  ,  il existe i  ,  1  ^i m̂ ,  tel que le germe de f . e n x 
OT j v y J jX 1 

soit non nul et va.x(f p = d ,  et alors le corollaire résulte de la proposition 

1.4. 
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§2.- Le foncteur p a 

(2.0) Dans ce paragraphe, on se fixe une fois pour toutes un entier p  ,  p G IN 

et une relation d'ordre total < ^ sur IN p , compatible avec sa structure de 

monoîde, moins fine que la relation d'ordre produit <  sur ]N P . La relation 

^a est donc une relation de bon ordre (1,1.5). On rappelle que si d es t un 

élément de ,  on désigne par sa(d) (ou plus simplement par s(d) quand au-

cune confusion n'en résulte) le successeur de d pou r la relation de bon ordre 

< 
a 

s (d) = min {d'G1NP : d< d'} , 
a a  a  ' 

et alors si d' es t un élément de ,  on a 

s(d + d') < d + s(d') . 
a 

On se fixe aussi un ouvert U  de CP , on considère l'ouvert U  x U d e (C p x (Cp , 

on désigne par p^ (resp. p2) la première (resp. deuxième) projection 

P - j i U x U — > U (resp . p2 : U x U — > U) e t par (X^,.. . ,X ,̂ xy ,... ,XJj) les 

coordonnées sur (C P x (CP .S i d  es t un élément de ]N P ,  on désigne par Jd 
d 

(ou plus simplement par J quan d aucune confusion n'en résulte) l'idéal conerei 

de 0UxT J engendr é par la famille ((X' "X")df)df> d 

(où (X'-X")d l = (Xl,-X,l,)d1... (X^-XpdP ,  si d ' = (d»,...,d£)) .  On remarque 

que : 

i) J ° = 0jjxU (ca r la relation d'ordre <̂  est moins fine que <  )  ; 
ii) pour tout d  et d' ,  d G ÏMP , d' G 1NP s i d < d' ,  on a Jd ? cjd ; 

a 

iii) pour tout d  e t d' ,  dGl^ , d'G Kp o n a J d Jd' c Jd+d' (car 

la relation d'ordre ^  es t compatible avec la structure de monoîde sur ]N P ) . 
Enfin, si M e t W  désignen t deux (̂ -module s cohérents, on désigne par 

M El W l e 0U ̂ -module cohérent p*(M ) pî( W ,  et si u : M' —> M et UXU 1 0Ux U 2 

v : W —• W désignen t deux morphismes de (̂ -modules cohérents, on désigne par 

u£>3 v l e morphisme de 0UxU-module s cohérents pïj(u ) © p2(v) .  On définit ains: 

un bifoncteur covariant de la catégorie des (̂ -modules dans celle des 

0jjxlj-modules, exact à droite et commutant aux sommes directes. 

(2_J). Soit d  u n élément de ]N P . Comme Js^cJ d ,  on a une surjection 

canonique 

-a =  w j S ( d ) — - w j d • 
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Soient M  e t W deu x Oy-module s cohérents. On déduit par tensorisation une 

surjection 

*d 9 M  BW : WJ 9Ö„ „ « Н « — ' 0UxU/J^ 9Ö„ .,(№W) • 
On désigne par Pd.u.i , (o u plus simplement par p d quan d aucune confusion n'en 

résulte) le 0 T .-module défini par 

^ n n = Pi (Ker (TTJ Q id., _,..)) 

Soient u  : M' —> M  e t v  : W1 —> N deu x morphismes de (̂ -modules cohérents. Si 

l'on considère le diagramme commutatif 

0 ^ Kerbrd 8 idM,m,) -+ W j S ( d ) в0 С М ' И Г ) -+ W j d Qû (M'0N,) —' 0 
U M 01N UX U l /yxU UX U UUx U 

0 /JSW 
ТТХТГ 

id , Q (uà v] 

0 ^ Ker(nd в i d ) \ „(MHW) >0„ „ / J % „(MBW ' ° 
UxU UxU UxU 

dont les lignes sont exactes, on déduit que le morphisme î d .,. Q (usv) 
0 / Js w UxU 

induit un morphisme 

<pd : Ker(ird 8 idMI|aWI) — * Keri^ S i d ^ ) . 

On désigne par P̂ .„., r (o u plus simplement par quan d aucune confusion n'er 
Ot jU ) V U j V 

résulte) le morphisme de (̂ -modules 

Pd •  pd »p d 
a;u;v * a;Mf;Wf a;M; W 

défini par ?da;u; v = pu(cpd) . 

Si u f : M"—> M1 e t v ! : W"—> A/f son t deux morphismes de (̂ -module s cohé-

rents, on vérifie immédiatement que 

Pd = P d opd 
uu';wf u; v uT;v f 

On a ainsi défini un bifoncteur covariant de la catégorie de Ĉ -modules cohérents 

dans celle de (̂ -modules. Enfin, il est aisé de vérifier que si M , M ' , M e t 

W1 désignen t desflÎT-modules cohérents, on a 

PD -  PD 9  PD 

et 

pd = pd ft pd 
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(2.2) Soient G  :U—»U*U l'immersio n diagonale et I  l'idéa l cohérent de 

V u qu i la définit. L'idéal I  est engendré par la famille (X | - XV)^<̂  et 

on a I = J S ^ .S i d désign e un élément de lP e t M et N  deux 

(̂ -modules cohérents, le 0uxu-modul e cohérent Ker(îr d © iciMSj\P es t Porte" Par la 

diagonale (cf. Chapitre 0). En effet, considérons la suite exacte 

0 _ j V № — 0 UXU/JSW) - J L , û^/J* 0  . 

On en déduit par tensorisation une suite exacte 

Jd/Js(d)é9n (mha/) —aTXÎÎ/js(d)̂  mvd 1 mti ouxU/j\ (Miaw) —>o , 
Vu u  u V u u  u V u 

d'où une surjection. 

(2.2.1) Jd/Js(d)®0 (MHW ) ̂ Ker(ir d 0 idmN) >0 . 

Pour démontrer que Ker(ïïd 0 ̂ MKIA/̂  es t P°rtê Par la diag°nale> i! suffit de le 

démontrer pour Jd/Js^ 0 , (MBW ) , ou encore pour Jd/Js № ;  il suffit donc 

Vu 
de démontrer que I J d e J s C d ) .Or , I J d = J s ( o ) J d c : J d + s ^ e J s C d ) (2.0) . 

Il en résulte immédiatement les conséquences suivantes : 

i) pjj. ^ est un Ĉ -module cohérent ; 

' D  d  d 

ii) pou r tout ouvert U 1 de (CP contenu dans U  on a ̂ |u f 'MlU' =  *M'N f̂ ' 

iii) si u : M' —M e t v : W —> W son t deux morphismes surjectifs de 

(̂ -modules cohérents, le morphisme Pd. v est surjectif ; 

iv) sup p ( Pd. w) c supp (M) n supp (N) ; 

v) s i Y et Z son t deux sous-espaces analytiques fermés de U e t si 

M e t W son t portés par Y et Z respectivement , alors pjjj. ^ est porté par le 

sous-espace analytique intersection Y  n Z ; 

vi) s i x es t un point de U on a 

CPM;«Px = KerC7rd 0 idp*CM) 8 idMCM))Cx , x ) ; 
vii) PM;N " M V ; 

viii) P̂ .̂  est canoniquement isomorphe à P̂ . ^ . 

(2.3) Soient M  et W deu x Ô -module s cohérents. On désigne par P a . ^ . ^ Co u 

plus simplement par ?.. quan d aucune confusion n'en résulte) le 0TT-module gra-
m;n u 

due (par 

vii) PM;N " M V ; 
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Si u  : M1 —• M  e t v  : AP —> N son t deux morphismes de (̂ -modules cohérents, 

on désigne par P„._.._ _ (o u plus simplement par p  quan d aucune confusion 
CX, U. , V u , v 

n'en résulte) le morphisme de Oy-module s gradués défini par 
p =  @  rfi 
a;u;v d€]N p a;u;v 9 

et les propriétés fonctoriels de Y impliquen t les mêmes propriétés fonctoriels 

pour P  . 

(2.4) Etudions maintenant de plus près le cas où M  = H = 0^ .  Dans ce cas, on a 

?o -a = % P b ( j d / j S ( d ) ) • uv>°u deïP u 

Soient d  et d' deu x éléments de fr e t W  u n ouvert de Ux U .O n remarque 

que : 

i) s i fer(W,Jd) e t g €r(W ,Jd ') , on a f g e r(W,Jd+d') 

car JdJd'cJd+d ' (2.0)) ; 

ii) s i f  er(W,Js(d)) e t ger (W,Jd ' ) ,  on a f g € r(W,Js(d+d,)) (ca r 

Js(d)Jd'cJs(d)+d'cJs(d+d')(^0)] . 

iii) si fer(W,Jd) e t ge r (w , j s (d ! ) ) o n a f g e r(w,js(d+d,)) . 

On en déduit une application O^-bilinéaire 

( A J S № ) x (JD,/JS(D,)) — J ^ ' / J 5 ^ 

qui définit une structure de 0TT-algèbr e graduée sur p . . 
и uv>u\j 

PROroSITION 2.4.1.- La du-algïbK<L gmduéz (рал # )  P tet canonlquwznt 
и v\j>uu 

ллотокрке. à IOL O^-algèbiz gnudmizipaA Np ) 0^ [T] deJ> polynôme* à p  Âjidztan-
тХшгм (ou T  = (T^,... ,T̂ ) dé^lgno, p  лла&глтспггл) 

Démonstration. Pour tout d  ,  dEN*5 ,  on définit un morphisme de 0TT-module s 

Л,—»• P1 (J"3 

en associant à un élément £  d e r(W,0TT), où W  désign e un ouvert de conte -
d 

nu dans U  ,  l'élément g  d e r(WxU , J ), défini par 
(2.4.1.1) g(x],...,x̂ ,x'1',...,x̂ ) = f(x',...,x];)(x'-x")d 

pour x 1 = (x^,... ,x̂ ) € W e t x " = (x^,... ,xjp e U .E n composant ce morphisme 

avec le morphisme canonique 

P^C/) pu(Jd/Js(d) ) , 

on en déduit un morphisme de 0T.-module s 
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: °V^?dOu;Ou • 

En identifiant GlT.T d à  C L e t ClT[T ] à  9 0Tî.T d ,  on déduit un morphisme 
U d£lP U 

de Ĉ -modules 

* : 0 [T] —> ?Q ,Q ,  i|; = 9 ^d , 
U VU U d<E!N P a 

et on vérifie facilement qu'il s'agit d'un morphisme de Ô -algèbre s graduées. 

Pour démontrer que i[ > est un isomorphisme, il suffit de démontrer que pour tout 

d ,  d€]Np ,  \|>d est un isomorphisme de (̂ -modules , c'est-à-dire que pour tout 

x ,  x € U , 

vd,x ' UU,x J(x,x)/J(x,x ) 

est bijectif. Pour démontrer cela, on définit une application 0^ ^-linéaire 

j d • o 

(x,x) U, x 

en associant à tout élément g  d e T(WxW,Jd) ,  où W est un ouvert de (Cp 

contenu dans U  e t contenant x  ,  l'élément f  d e r f W , ^ ) défin i par 
(2.4.1.2) f(x',...,xp ) = ( - 1 ) ! ^ ! -/ (x1-)...,xp,x',...,xp ) , 

pour (x',.. . ,x') € W ,  on vérifie que l'image d'un élément de J^^ \ pa r cette 
l p  i . X , X J 

application est nulle, d'où une application 0^ ̂ .-linéaire 

rA :  Jdr ^/JSrid\ —> 0U Yd,x (x,x) ' (x,x) U, x ' 

et alors on constate facilement que 

V ° *d, x = idTd /Ts(d ) e t ^d,x ° ^d,x = idoTÎ > 
J(x,x)/J(x,x) U' x 

ce qui démontre la proposition. 

( 2 . 4 . 2 ) Soien t M  et W deu x Ĉ -modules cohérents. Il est facile de vérifier que 

P^.|Y es t muni d'une structure de ?Q .Q -module gradué, ce qui fait de P  u n 

bifoncteur de la catégorie des (̂ -module s cohérents dans celle des 

OjjlT^,... ,T ] -modules gradués par !N P e t des morphismes de degré zéro. 

( 2 . 4 . 3 ) Soien t Y  et Z deu x sous-espaces analytiques fermés de U  .  Alors 

PQ . 0 es t une algèbre graduée quotient de 0^[T^ ,...,Tp] (2.2,iii), donc une 

(̂ -algèbre graduée de type fini, et comme pour tout d  ,  d€JNp ,  VQ ,Q es t 
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un (̂ -modul e cohérent (2.2,i), P̂  .  ̂es t une Oy-algèbre graduée de présentation 

finie ( [ 3 5 ] , chapitre I, proposition 1.4). Si X désign e un sous-espace analy-

tique fermé de U te l que pour tout d  ,  d E ̂ P , Á . ñ soit porté par X 

°Y,c;Z 
(par exemple X  = Y n Z = Y Z (cf. (2.2,v))), on en déduit que PQ^.Q EST UNE 

(̂ -algèbre graduée de présentation finie (une présentation finie de la (̂ -algèbre 

graduée P ^ .  ̂indui t par tensorisation une présentation finie de la 
Y Z 

(̂ -algèbre graduée P ^ .  ̂) . 

LEMME 2.5.- Soient d un element de Jp ,  J  un Idéal cohérent de 0^ , x  un 

point de U et {x } le sous-espace analytique réduit de U  dont le support est 

formé par le seul point x  .  Mors : 

i) d i V C ^ y j V * 1 : 

ii) dimïP((P̂  /T ) ) = 0, si et seulement si 9 d e? T 
{x}' U a > J > x 

Démonstration. Si pour tout d 1 ,  d'E ,  on désigne par l'idéa l de 

Û-x enêendr é Par C(X-x ) )d „ > ¿t , où X=(X..,...,X ) désign e les 

coordonnées de Cp ,  il est facile de vérifier que (p , ,  /7) es t isomorphe 
à s C d ) ü { x } ; V J x 

à N r + J /М + x̂ • • L'assertion (i) résulte du fait qu'il existe une surjection 

canonique 

M V ( d ) — ^ + з х ^ а К з х 

et que dm^M^/M5^) = 1 •  Pour démontrer l'assertion (ii) on remarque que 

dimc(^ + Jx/Ms№ + Jx) = 0 équivau t à (X-x)d£Ms № + Jx ,  c'est-à-dire à 

l'existence d'un f ,  f e Jx te l que f  - (X - x)d £ M5 № ,  et il est facile de 

voir que cela équivaut à d E P , 
a;J;x 

PROPOSITION 2.5.1.- Solent J un Idéal cohérent de Ûu , x un point de U e¿ 

{x} le sous-espace analytique réduit de U  dont le support est formé par le seul 

point x  .  Mors la (^-algèbre graduée {par fP) (P , ,л , ) e¿¿ canonlquement 
u{x}>uU/J x 

Isomorphe à la £-algébre graduée (par lP) ^^^^dQA ^ 9 ou 

T = (T1,...,Tp) désigne p  Indéterminées. 

Démonstration. C'est une conséquence immédiate du lemme 2.5, de la proposition 

2.4.1, et de (2.2,iii). 
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LEMME 2.6.- Sott d  un éléme.nt de, ìP -  {0} tei quo, роил tout d * , d' € ]NP , 

d^s(d') . А£ОЛО ¿ 6 existe, une. fomille, (dk)ke] N d % éléme,ntb de. ìP tetle. que 

i ) роил tout к , к € ]Sf , dk <a d ; 

i i ) роил tout к , к £]N , 

/ k e J d + I k , 

ой I  désigne, l'idéal coherent de. 0^x^ engendré рал. la famWLe. CXj ^ - XV)  ̂<¿<p • 

Démonstration. Pour tout k , k € H ,  on pose 

Ek= {d' E fP : d'<a d et |d' | < k} . 

L'ensemble es t fini et si k es t différent de O ,  es t non vide. On 

pose d £ = maxa(Ek) , pour k^O , et -  0 . Si l'on pose d ^ = sa(d£) , pour 

k£ W ,  on a d^ d  ,  et comme pour tout d ' , d'E Jp , d^s^Cd') , on a 

d^<ad . En plus, pour tout d ' , d'G fP ,  tel que d^^d' o n a d ' ^E ,̂ 

d'où d   ̂d ' o u |d' | ^k .  On en déduit que J d k c j d + Ik , ce qui démontre le 

lemme. 

LEMME 2.6.1. - Soient A  un anneau local n02tk2AA.cn, J un Idéal de A  contenu 

dans son Idéal maximal, M et N deux A-modules de type fini, M ' un sous-module 

de M et (M ^)j£j ane famille de sous-modules de M  telle que pouh. tout i  , 

i € I ,  M' et telle que pour tout k , k € IN , U. existe i  , i e I , 

tel que M^ j k M + M' . SI pouh. tout i  , i€I ,  Tor^CM/M^N) = 0 ,  alons 

Tor^CM/M' ,N) = 0 . 

Démonstration. Soit 

0 —> N1 —̂ - v L —v N —* 0 

une suite exacte, où L est un A-module libre de type fini. Alors es t un 

A-module de type fini et pour tout A-module Q  on a 

Tor^(Q,N) = Ker(idQ0u) . 

Il s'agit donc de démontrer que iĉ/jyi » ® u est injective. Soit donc 

X€KER(IDM/M' 0 U) • 

Pour tout k , k e N , il existe i  ,  i€I , tel que M'cM^cJll+M' . 

Soient p  : M/M' —> M/M̂ ,  q : M/M± —> M/JKM + M' e t r : M/M' —^M/ A l + M' les 

surjections canoniques. On a r  = q0p .  Considérons le diagramme commutatif : 
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id.,*,,® u 
M/M' ®A N1 ^ * M/M1 0AL 

P®idN^ p 0 i d L 

M / M ¿ 0 A N 1 £ ^ •  М / М А 0AL 

q ô i d ^ 

( М / Л + М ' ) Q A N 1 

Alors ( i d ^ , 8 u)(x) = 0 implique que ( i d ^ 0  u) o (p Q id^ ) (x) = 0 . 

Comme Tor^M/M^N) = 0 , i d ^ 0  u e s t i n j ec t i ve , donc (p 0 id^ ) (x) = 0 , 

d'où (r® id )(x) = 0  . O r , 

CM/J^+M') 0AN1 = M/M'@AA/JK0AN1 = CM/M'QAN1)/JkCM/M'QAN^ , 

donc xeJ^CM/M' Q^Np , e t cela pour tout k . Le module M/Mf Q^N^ é tant de 

type fini , il est séparé pour l a topologie J-adique, donc x = 0 , ce qui démontre 

l e lemme. 

( 2 . 6 . 2 ) Soient d un élément de INp e t M , M1 , W des (^-modules cohérents. 

On a un morphisme canonique M' —*p- pf(M') e t par t ensor i sa t ion on en déduit 

un morphisme 

pfi... ert M' —> ñ.u вл Pl pï(M') , 

et comme 

»í;W = PuCIfer (WdeidMHM)) , 

en composant avec le morphisme canonique 

р^СКегОгд 0 idMHM)) 0 ^ pup*(M.) — p ^ K e r C d 0 idM0w) 0%XU p*(M')] , 

on en déduit un morphisme 

( 2 . 6 . 2 . 1 ) С X М' -Pljt[KerC,d 9 i W 9 p|(M')] . 

D'autre part, si l'on considère la suite exacte 

o — fere^ 8 idMHW) _ Ö U X U / J S № 0 (МНЮ — e (МНЮ , 

on en déduit uar tensorisation une suite exacte 

Ker(ud0idMSN)8ö P Î C M ' W O / J SU U ® , ((Ш0 M ' ) H W ) ^ Ö . ] . I / J V , Ш Й UfJBNhO, 
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d'où un morphisme 

Ker(*d 6 idMBA? \xUPîCM,) ~* S  "<« W  ' 

d'où un morphisme 

Pr[Ker(^d 8 idMHAf) 8̂  P̂CM1) ] —> Pde^M.; N 

et en composant avec le morphisme (2.6.2.1), on en déduit un morphisme de 

(̂ -modules 

^M; M1 ; w : P A O / \ M ' — * ^ M i N 

et un morphisme de 0 -modules gradués, de degré zéro, 

фм;м';м : РМ;А/ ®О„М' * рме0 M';N ' 
и и 

où ФМ;М';Ы = фМ;М';м ' 

THEOREME 2.6.3.- Solent M , M' , W cte¿ O^j-modules cohérents. Möns 

i) lo, топ.флмте фм;м';м : РМ;А/ ®О„М' * рме0 M';N ' 
и и 

2Jbt suAjecJxí ; 

ii) si x  est un point de U tel qu'il existe, un sous-espace, analytique, 
ienme Y d e U tel que, : 

a) xeY ; 

b) M et M1 soient pontes рак Y ; 

c) Tor°í>x(CPM;W)x, M¿) = 0 ; 

alons l'application 

( ( Р М ; М ' ; Л :  (PM;N \ М ' } х ~ * (р» и ' ; Л 

est blj'e.cttve.. 

Démonstration. Soit x  un point de U e t posons T  = MEN , T = T̂ x x̂  e t pour 

tout d  ,  del? , Ie = JdT et Td = T*L  ̂=  jfv V-J .  Alors pour tout d  , 
d lx>x J ix>x j d 

d € № ,  le 0T T TT-module 0T T TT/J ®- T  est isomorphe à T/T e t en considérant 
uxu ux u Ux U 

la suite exacte 

(2.6.3.1) O — TV^ —  T /r5^ — T/T D — * 0 , 

on déduit que 

Ker(*d0 i ( W -rd/rS(d) 

et que (P̂ .., ) = Td/Tŝ  (2.2,vi) . En tensorisant la suite exacte (2.6.3.1) 
M, N X 
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par p^(Mf ) , on en déduit une suite exacte 

(2.6.3.2) T ^ T ^ ® . p*(M' ) T/Ts(d)@ . pî(M' ) —»T/T^Q, pUMf) 0 

Vu 1  ̂ Ux U 1 ̂ Ux U 1 
et comme pour tout d  ,  d e Np , T/T^ 8,, pîCM1 ) est isomorphe à 

Vu 
0TTVTT/jd®/-i (C M M')i a N) ,  on en déduit une surjection 

U U V u % 

7d/7SCd\xuPî(M,) - > K e r Ud 9  ^w^'V**? ' 

d'où une surjection 

< M > x \ /x — (4,M'^x 
U,X l/y 

(2.2,vi) qui n'est autre que t ^.^ i.^x » ̂ 'oxi lfassertion (i). Pour démontrer 

l'assertion (ii), supposons qu'il existe un sous-espace analytique fermé Y  de U 

vérifiant les conditions (a), (b) et (c), et posons A  = 0yxjj (x x) >  A' = Oy x 

et M' = .  Comme l'hypothèse (b) implique que les -module s cohérents T 

et p^(M' ) son t portés par YxU ,  on en déduit que la suite exacte (2.6.3.2) 

n'est autre que 

(2.6.3.3) 1d/Ts('d\ pî(M' ) —^T/TsCd)@n p*(M' ) T/r\ pUM' ) — 0  , 

d'où une suite exacte 

Tor>Td, A eA,M.) -, (pj.w)x eA,M- -*i?d M , > x - * 0 • 

Ou 

et cela pour tout d  ,  de]Np .  Pour démontrer donc l'assertion (ii), il suffit 

de démontrer que pour tout d  ,  d e * P ,  on a Tor^(T/Td , A @^fM') =0 .Or , 
p 

l'hypothèse (c) implique que pour tout d  ,  dç N ,  on a 

Tor^ (TVT ,M' ) = 0, donc comme A  es t A'-plat,qu'on a 
(2.6.3.4) Tor^(Td/TsCd), A 0A,Mf) = 0 . 

Démontrons par récurrence transfinie que cette hypothèse implique que pour tout 

d ,  d e ]NP , on a Tor^(T/Td , A ®A,M') = 0 .  Pour d  = 0 o n a T d = T ,  donc 

l'assertion est évidente. Démontrons que si d e l^-IO} e t si pour tout d ' , 

d 'e lNP ,  d'<ad o n a Tor^(T/Td? , A ®A,M') = 0 ,  alors Tor^(T/Td , A 0̂ ,M') =0, 

Nous allons distinguer deux cas : 

i) il existe d ' , d'e ]NP , tel que d = s(d') . 

Alors on a une suite exacte 

O >  Td? /Td •  T/Td »  T/Tdf *  0 . 
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d'où une suite exacte 

Tor^(Tdl/Td, ASA, M') — Tor^(T/Td , A ,̂ M') -+ Tor̂ (T/Tdl ,A0A, M') . 

Or, comme d = s(df) , on a Tor^(Tdl/Td,A ® M' ) = 0 (2.6.3.4) , et comme 
A d 1 ' A 

d1 < d ,  on a Tor?(T/ T ,A® . f M') = 0 (hypothès e de récurrence), dfoù 
o» i J\ 

Tor^(T/Td, A0A, M1) = 0 . 

ii) Pour tout d ' ,  d'Gï f ,  d^s(d') . 

Alors il existe une famille W ^ ) ^ ^ d'éléments de iP ,  telle que pour tout 
dV d  V 

k ,  k G N, dv< d e t J  Kcju + r ,  où I  désign e l'idéal cohérent de 
k oc 

(?UxU engendr é par la famille CXj ^ - XV)̂ <̂ <p (lemm e 2.6), ce qui implique que 
\ k  d  1 = 
T cI(x,x)T+ T ' 

Or, Î x x^ es t contenu dans l'idéal maximal de A  qu i est un anneau local 

noetherien, T  e t A  ®A,M' son t des A-modules de type fini, et comme pour tout 

k ,  k€]N , d ^d ,  on a Tdc T k e t Tor^(T/T^ , A ®A,M!) = 0 (hypothès e 

de récurrence). On en déduit que Tor^(T/Td , A ®A,M') =0 (lemm e 2.6.1), ce qui 

démontre le théorème. 
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§ 3 • ~ Variation des exposansts priviligiés d'un idéal 

Dans ce paragraphe, on démontre que si £  désign e une relation d'ordre total 

sur ,  compatible avec sa structure de monoîde, moins fine que la relation 

d'ordre produit ^  su r ]N P , U u n ouvert de C P e t J  u n idéal cohérent de 

, alors il existe une stratification C-analytique 0yi€ I de U tell e que pour 

tout i  ,  ic i ,  et tout x  et x' , xeX. , x'e X. ,  on ait M  = M . 

(ou ce qui est équivalent P  . =  P . . ) .O n démontre aussi un résultat plus 
0t> J>X OL, J,X 

précis (3.6) cité dans l'introduction générale. On gardera les notations et con-

ventions du paragraphe précédent. 

Notation (3.1). Soient J  u n idéal cohérent de 0^ e t Y  u n fermé analytique de 

U . On désigne par S  . ,.Y (o u plus simplement par S  T.Y quan d aucune confusion 
Cx, J , ï J , I 

n'en résulte) la partie de Y  défini e par 

Sa;J;Y= ^ eY :%;0Y;0u/3)y n'est pas <V,y"Plat> > 

où Y  désign e aussi le sous-espace analytique fermé réduit de U  don t le support 

est Y  . 

PROPOSITION 3.2.- Solent J an Idéal cohérent de 0^ et Y  an fermé analytique 
de U  .  Alors Sj. Y est un fermé analytique de Y  d'Intérieur vide [dans Y ), 

Démonstration. Si l'on désigne aussi par Y  l e sous-espace analytique fermé réduit 

de U  don t le support est Y  ,  pour tout d  ,  d € $P ,  p d 7  es t porté 
Y ' U 

par Y  (2.2,v) , don c p . .  , es t une 0Y-algèbre graduée de présentation finie 
Y ' U 

(2.4.3), et la proposition résulte de [ 35 ]  , chapitre I, théorème 8.1.3. 

PROPOSITION 3.3.- Solent J un Idéal cohérent de 0^ et Y  un fermé analytique 
Irréductible de U  .  Alors si x et x1 sont deux points de Y-Sj. Y ,  on a 
P =  P a;J;x a;J;x ' 

Démonstration. Si l'on désigne aussi par Y  l e sous-espace analytique fermé réduit 

de U  don t le support est Y  e t si l'on désigne par {x } (resp.{x'} ) l e 

sous-espace analytique réduit de U  don t le support est formé par le seul point 

x (resp . x ' ) , on a pour tout d  ,  d € IsP , 

iimC((Pö„;a./T V  öix> V - d4((P0„:0.,/A. °{x'}V 

(car ?f .  . es t plat sur Y- S v  qu i est irréductible). Or, p  ,  étan t 
Y ' U '  Y  ' U 

C)Y-plat en x  (resp . xf), il résulte du théorème 2.6.3 que (p^ ,  ® £  ) 
ï Oy^/ J {x } x 
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(resP' ( f S Y ; ( y j % «Wx'î es t isomorphe à СР0{х};^/Л 

(resp. (A .  /7) .) ,  et comme d€P„. - (resp . deP„.T. .) équivaut à 
{x1} U o t , j , x a , j , x 

dlmc((^{x};Vj)x) = ° (Ге5Р' d™c(^{x'};%/j)x' = 0) C2'S)' 0П еП dédUlt 4116 

P =  p a;J;x a;J;x f 

Définition 3.4.- Sôt X a n espace C-anâ t̂cqae. On dc£qu'une. famillej 
de parties de X  eô t ane stratification analytique deX 4> c 

i) роол tout i  ,  i€l ,  X^ (Ut le support d'un sous-espace. <L-analy­
tique localement fermé, lisse, Irréductible de X  et X ^ et X^-X ^ sont des 
fermés C-analytiques de X  ; 

ii) pcat -toat i et j ,i€ l ,  j € I i^ j ,  alors X^ n X̂  = 0 
et X  = и X. ; 

i€l 1 
iii) £a famille (Х^)^ une famille localement finie ; 

iv) pour tout i  et j , i e l , j e I ,  ^ X i n ^ 0 , alors Xj cXi • 

LEMME 3.4.1. - Soient X  an espace ^-analytique de dimension p e t pour tout 
fermé analytique Irréductible Y  de X , Sy an ̂елте* analytique de Y  d'Intérieur 
vide (dans Y ) . A&m ^  existe une stratification ^-analytique O y^j d e 
X telle que pour tout i  ,  ie I , X.cX. - % 

i i Xi 
Démons t rat ion. On raisonne par récurrence sur p .  Supposons le lemme établi рош 
tout espace analytique X 1 d e dimension strictement inférieure à p e t démon-
trons-le pour X  .  Soient O y^j, l a famille des composantes irréductibles de 
X et 

S = Sing(Xred) 

le lieu singulier de Xred . Pour tout i  ,  i G 11 , on pose 

Xi=Yi - [Sy U (Yifl S)] . 
_ _  i 

Alors X^ = Ŷ  et X^ - X̂  = Sy и (Y^nS) est un fermé analytique d1 intérieur vide 
de Y^ .  Posons 1 

X' = X- U X . = ( и SY ) и S . 
i e r ie r i 

Comme la famille ^ У est localement finie, on en déduit que X1 es t un 
fermé analytique de X ,  et si l'on désigne aussi par X ' l e sous-espace analy-
tique réduit de X don t le support est X ' ,  que X' est un espace analytique  85
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de dimension strictement inférieure à p .  Pour tout fermé analytique irréductible 
Y de X1 o n pose 

1Л = { i e l ' :  YcÉ Y,} et S ' = SYU С и (Y n Y. ) ) . 

Alors par hypothèse de récurrence on déduit 1 existence d'une stratification 
^Xi^iel" I? ' est 1311 ensemole disjoint à I ' ) de X' ,  telle que pour tout 

i ,  i € I" , с)0 - Ŝ  .O n pose I = I ' и I" et alors pour tout i  ,  i e I , 
_ i 

on a X- <zX. - SY .  Démontrons que la famille (X.). T est une stratification de 
1 1 1 I C I 

X .  La vérification des conditions (i), (ii) et (iii) de la définition 3.4 est 

immédiate. Il reste à démontrer que pour tout iet j ,  i e l , j e l ,  si 

X^flXj / 0 ,  alors Xj cl .  Supposons d'abord que j e l ' .  Alors si i e l " , 
on a X^cX' e t X' ПХ^ = 0 ,  donc l'hypothèse X^nX^  ̂0 es t impossible ; si 

i e l ' ,  on a L  =  Yi ,  X. = Yj - [Sy U (Ŷ  П S) ] et si i ^j ,  Y ^ L cS , 
donc X^ П Xj ^ 0 impliqu e que i  = j .  Supposons maintenant que j € Iм . Alors 
si i e l " ,  comme la famille (^j^i " est une stratification de X' ,  l'hypo-
thèse )Ô nXj  ̂0 impliqu e que X^ cX. ;  si i e l ' ,  on a X^ = Ŷ  e t si 
Х.ф X. ,  on a X. ф X. ,  donc X. n)C. CStt ,  et comme X.czX. - ,  on a 
1 1 J 1 ^ 1 j 3 3 j 
Х̂  П X^ = 0 ,  ce qui démontre le lemme. 
THEOREME 3.5.- Soient p un entier, p e u , й une relation d'ordre total r r ' a 
sun. W , compatible avec sa structure de monolde, moins fine que la relation 
d'ordre produit й SUA fP , U un ouvert de & , X un sous-espace analyti­
que fermé de U et J un Idéal cohérent de 0^ . Alors II existe une stratifi­
cation ^-analytique (X^)  ̂  ̂de X telle que pour tout i  ,  i e I ,  et tout 
x et x ' ,  x e X. ,  x' e X. .on ait P  ,  =  P T  ,  . 

Démonstration. Le théorème est une conséquence directe de 3.2, 3.3 et 3.4.1. 

Remarque 3.5.1. Le théorème 3.5 est surtout intéressant appliqué à X = U et on 

rappelle que la condition P  . =  P ,  est équivalente à la condition 
CX, J ,X 06, J jX 

M T  = M T  , (1.3). 

PROPOSITION 3.6.- Soient m  un entier, me N ,  ff des éléments de I ' m 
ГШ,0ц) , J VIdéal cohérent de 0^ engendré par £j,...,fm ,  Y un fermé 
analytique Irréductible d e U , U' un ouvert, de Steln connexe de $P , relati­
vement compact dans un ouvert de Steln U" contenu dans U , tel que YnU' ^0 . 

Alors II existe un entier r  ,  relN , une famille ( d ^ ) ^ ^ d'éléments deux 
à deux distincts de fP , une famille (Р-у^ст i<j<r > d'éléments de 
ГШ' XU', 0yx|j)>0u 1 ^ un ensemble fini non vide, et une famille 
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CeijkJi€l,lSJSr,1Sksm а'ШМ & T W xU''W ^ « a e : 

i ) роил tout x , x e Y - S , Y on a M . , = { d 1 , . . . , d } ; 
J, I Ot ? J , X I i 

i i ) р о и л tout i et j , i € l , 1 ^ j ^ r , et tout x ' , x ' eU' , si 
Von désigne рал FJJXÎ Vêlement de Г Ш 1 , ^ ) défini рал 
Fijx'(x,,) = V*''*"* ' P0UA X"eU' '  0ñ а Vx'^ijx ' i £a dj i 

i i i ) роил tout i et j , i e l , 1 <  j <r ,  tout x f , x f eYnU1 et tout 
x " , x " eU1 y on a 

m 

F i : j ( x ' , x " ) = z Ê i j k ( x ' , x " ) £ k ( x M ) ' 
iv) si роил tout i , i e l , on pose ^ | 

S. =  { x ' eu» :  3j 1  S j <r ,  i - i Z i ! ( x ' , x ' ) = 0} 
1 ЭХ" J 

e t Uï = U' - S- ,  alors (Y-ST y) nU1 с UU! . 

Démonstration. Il résulte de la proposition 3 . 3 que si x  et x' son t deux points 

de Y - S T . Y ,  on a P . , = P .  , ,  .  On en déduit l'existence d'une famille 
J j ï Ot ,J jX Ot ,J ,X 

finie Cd j 1  <j <r d'élément s deux à deux distincts de W ,  telle que pour tout 

x , x e Y - S j " ,  M  =  {d ... d } . 
On désignera aussi par Y  l e sous-espace analytique fermé, réduit de U don t 

le support est Y  e t on désignera par J ' l'idéa l cohérent de OJJ qui définit 

Y dan s U ,  par Z l e sous-espace analytique fermé de U défin i par l'idéal 

cohérent J  d e %  ,  pa r J " l'idéa l cohérent de C\jx U qui  définit Y * Z 

dans UxU e t par u  (resp . v) l a surjection canonique u  :  0^—> flY 

(resp. v :  0U —* 07) .  On en déduit une surjection 

Pu;v V u ~ ~ ~ V z С 2 - 2 - ' Ш ) 

et on pose JY. 7 = Ker(P )  .  Mors J v 7 es t un ideal homogene de pA . 
i-yL U,V l9L U U 

(Jv 7 = © 7 , ou 4 . 7 c P ^ .  ) ,  de type fini (cf. ( 2 . 4 . 3 ) ) , e t on a une 
d€JNP Y,Z< Y,Z V ^ U 

suite exacte 

(3.6.1) o - ^ J Y ; Z ^ p  _ > p — о . 

Pour tout d  ,  d  e]NF ,  on en déduit une suite exacte 

(3.6.2) 0 - > 4 z — P i , , , — » 1 ; 0 , — 0 

qui n'est autre que la suite exacte 
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0 - PlJJ d nj'VJ5̂  flJ») p1)t(Jd/JSCd) ) -h- pu(Jd +J'VJ5̂  + J") 0 , 

ce qui est facile à vérifier. On a donc 

(3.6.3) jJ; Z = pu(jdnJ" /Js(d) n J " ) • 

Comme U f es t un ouvert de Stein relativement compact dans l'ouvert de Stein 

U" qu i est contenu dans U  ,  il existe une famille finie (g . ) i^ - . d'élément s 

de r(U",J' ) qu i engendre J ' au-dessu s de U ' .  Pour tout j  ,  1   ̂j ŝ , 

on désigne par g ! l'élémen t de r(UMxU, Qu Tî) défini par gï(x',x" ) = g.(x') , 

pour (x',xM ) eUMxU ,  et pour tout k  ,  1  ^k<m ,  on désigne par f £ l'élé -

ment de r (UxU , 0UxU) défin i par f£(x f ,xM) = fk(x") ,  pour (x',x")eUx U , 

et alors l'idéal J " es t engendré par ĝ j,.. . ,ĝ  , f .j,... ,f̂  au-dessu s de 

U' xU .D e même, comme J Y 7 es t un idéal homogène de type fini de P - n , 

il existe une famille finie (ÇO-..- d'élément s homogènes de r(U',Jv#7) qui 

engendre JY. 7 comm e idéal de p  au-dessu s de U ' .O n peut supposer que 

pour tout i  ,  1   ̂i < n ,  £,^¿0 ,et alors il existe un élément 6• e t un 

D 6i seul de W te l que q e T(U',JY*Z) .  Or, 

ô- 6 . s(ô! ) 
r(U',Jy.z) = r(U'xU, J 1nj"/J 1  nJ") (3.6.3 ) et 

6- s(ô- ) ô - s(ô- ) 
r(U' xU,J 1 nj"/j 1  nj") = r(U'xU',J 1njn/J 1  flJ") (ca r 

ô- s(ô. ) 6 . s(ô- ) 
J / J e t J  1+J"/J +  J" étan t portés par la diagonale de Ux U (2.2) , 

s(ô-) 

J nJ"/ J nJ " l'es t aussi), et comme U' x U' es t un ouvert de Stein, il 

existe un élément F | d e r(U' x U', J i n J") dont l'image dans 

r(U' xU',J 1 n J'yj5̂ 01'* DJ") es t Ç . .  D'autre part, pour tout i  ,  1  <i<n , 

F| étan t en particulier un élément de r(U' xU',J") , J" étan t engendré par 

g' ... ,g', f ' ... ,f ' au-dessus de U' x U' e t U ' x U' étan t un ouvert de Stein, 619 9&s9 1 9 '  m 

il existe des éléments , . . . , a | , 3 ^ , — , 3 ^ d e r(U'x U' ,%xU) tel s que 

s m 

on a donc pour tout x' , x'eynu' , et tout x " ,  x"eU' , 
m 

(3.6.4) Fï(x',x" ) = Z B ' (x',x")fv(x") . 

1 k= 1 l K K 

D'autre part, si pour tout i  ,  1  ^i^n, e t tout x ' , x' eU' ,  on désigne 

par F ï , l'élémen t de r(Uf,0TT) défini par F ! , (x") = F! (x' ,x") , pour x"eU' , 
I U I X 1 

6i 

F| étan t en particulier un élément de r(U'x U',J )  ,  on a 
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(3.6.5) va;x'CFlx')êaôi " 

Soit maintenant x ' u n point de U  .S i l'on désigne par {x' } l e sous-espace 

analytique réduit dont le support est formé par le seul point x ' ,  on obtient 

par tensorisation de la suite exacte (3.6.1) une suite exacte 

UY,Z V V } V - * ^.„U.V^ix-} V ^Y;07öö ,/{x-}Jx' û ' 

Or, il résulte de la proposition 2.4.1 que (pn .  € L Or n) , s'identifie à 
U U  U  ^ 

C[T1,... ,Tp] ,  où CtTp.-.jTp ] désign e l'anneau des polynômes à p  indétermi -

nées T|,..., T à  coefficients dans ( C .S i x'eU ' ,  comme l'idéal gradué 
JY.7 d e ? n ,  es t engendré par Ç Ç _ au-dessu s de U ' ,  et comme pour 
i, L U  U 

tout i  ,  1  <i<n ,  es t l'image de F * ,  on déduit que l'image de 

(JY.Z ®0„ ^ix'^x' dan s CP0TT:a T %„ ^{x'^x ' s'identi£i e à l'idéal de 
Iôil i 

3 F  • ô ' 
£[T,9...,T] engendr é par (  FT^- CX1 , X ' )T X ) (cf . (2.4.1.2)). Si en plus 

i p  37 " 1 1  =!=n 
x:1 €Y-Sj.v, il résulte du théorème 2.6.3 que (P ^ ® ^ ^{x1}^1 eSt canoniclue" 

' Y  ' Z U  H . 
ment isomorphe à (P . ,  ) qu i s'identifie à (C[T1,.. . ,T ]/((T J)1<,<J 

{x1}' Z "  '=j= r 

(proposition 2.5.1). On en déduit que lfidéal de (C[T..,..., T ] engendré par 
d. P 

par ( T J)-|<j<r es t Ie même que l'idéal engendré par 

( g - (x',x') T )-,<-<_ . ,  ce qui implique que pour tout j  ,  1   ̂j r̂ ,  il 
9 X „ X 1=1=11 

3 I U 1 I F : 

existe i  ,  1  <i<n ,  tel que 6 - = d. e t TT-~(X,,X' ) ^  0 (c e qui implique 
i 3 3 x „ 0 i 

m particulier que {d1,..., d }c{ ô . , . . . ,6 }) . 
Pour tout j  ,  1  < j = r ,  on pose Ь = {i : 1=i=n, =  cL} ,  I  = Îx.. . x l ^ 

et on désigne par t ^ l a j-ième projection t j : I —> Ь . Alors I  es t un 

ensemble fini non vide, et si l'on pose pour tout i  ,  i  £ I ,  et tout j  , 

1=j=r '  Fi j = Ft.(i) e t P°ur tout k  >  1<k. m ,  Зцк = В£.Ц),к > on 

constate immédiatement que 3.6.5 implique l'assertion (ii) et (3.6.4) l'assertion 

(iii). Enfin, comme pour tout x ' ,  x' e (Y - Sj. )̂ П U' ,  et tout j  ,  1  = j <r , 

t1* Fij 
il existe i . , 1<i.<n , tel que 6 - =  d. e t • = <x',x' )  ̂0 ,  si l'on 

3 3 i-; 3 V' 

3 3X " j 
pose i  = (i.j,... ,ip ,  on a i€ I e t x ' EUj ,  ce qui démontre l'assertion (iv). 
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COROLLAIRE 3.7.- Solent J un Idéal cohérent de 0U , x  un point de U et 

K un polycyltndre compact de (C F tel que x€K et Kc= U .  Alors on a 

Ma;J;K;x ~ Ma;J;x e t ̂ a;J;K; x " ̂ a;J;x 

Démonstration. Il existe des ouverts de Stein connexes U' , U" et iï" de ([? 

tels que 

K c U f cUMc=Um c U 

et tels que U' (resp . U") soit relativement compact dans U " (resp . U'" ) . A-

lors il existe un entier m  ,  mCIN ,  et une famille (f ^-j-q^ d'élément s de 

r(U",0y) qu i engendre l'idéal J  au-dessu s de U" .E n appliquant la propositio] 

3.6 au fermé analytique irréductible Y  de U" réduit au seul point x  ,  on dé-

duit l'existence d'un entier r  ,  r € N , d'une famille Cd.ĵ -|<j< r d'élément s 

deux à deux distincts de fP ,  d'une famille (F..).p T d'élément s de 
1J ici,i=j=r 

T(U' xU!,0yxy) » où I  est un ensemble fini non vide, et d'une famille 
(3--i)-^t 1 ^ - ^ 1 ^ 1 ^ d'élément s de r(U ' x U' ,0TTvTT) vérifiant les conditions îjk i€I,1^3^r,1^kân '  UXU 

(i), (ii), (iii) et (iv) de la proposition 3.6. Or, comme dans ce cas on a 

ST =0 ,  la condition (i) implique que M T  =  {d1,...,dr} .  D'autre part, 
j j Y ot , j ,x i  A 
si pour tout i  ,  i € I ,  et tout j  ,  1  û j û r ,  on désigne par g^ 

l'élément de TOJ',^) défini par g  y (y) = Fij(x,y) , pour y€U ' ,  la condi-

tion (iii) implique que g^ er(U',J) e t les conditions (ii) et (iv) qu'il existe 

i ,  i € I , tel que pour tout j  ,  1   ̂j ^r, v  (g . .) = d. .  On en déduit 
0 0 OT ,X IqJ J 
*ue Ma;J;K; x = Ma;J;x e t *ue Pa;J;K;x = Pa;J;x °-4)" 

Exemples (3.8). Soient J n 1'idéa l cohérent de 0 ^ engendr é par 
i ç ° 

XZ-Z e t X2-2 X + Y+1 , 

3^ celu i engendré par 

X Z + Y Z + Z -Z 

e t 4 2 2 4 2 7 2 7 ?  7 2 
X + 2X Y + Ŷ  + X Z + YZ -  2T- - 2Ŷ  - ZL + T , 

où X , Y, Z désignen t les coordonnées de (E^ , et posons J  = J1 • J9 .L e 
3 

sous-espace analytique fermé de (C défin i par es t une courbe réduite, réu-

nion de la droite L  parallèl e à l'axe des Z et passant par le point 

A=(1,0,0) , 

et de la parabole P  d u plan des X et Y défini e par 

P= {(a,b,c) €(C5 : a2 - 2a + b+1 = 0 , c = 0} . 
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Le support du sous-espace défini par J ^ es t la sphère unité S  de C3 

S = {(a,b,c)€ (C3 : a2 + b2 + c2 = 1} 

ce sous-espace étant réduit en dehors du cercle 

51 ={(a,b,c)6£3 : a2 + b2 = 1 , c  = 0} . 

On désigne par l e cercle 

52 = {(a,b,c)€(E3 : b2 + c2 = 1 ,  a  = 0} , 

lieu des points de la sphère S  o ù le plan tangent est parallèle à l'axe des X  . 

L'intersection des cercles e t es t formée des deux points 

B= (0,1,0) e t C = (0,-1,0) , 

la droite L  es t tangente à la sphère S  a u point A  e t on a 

Sn P = S1 n P =  {A,C,D,E} , 

où 

D = (e,ê,0), E  = (è",e,0) e t e  = 3/2 + iy/T/2 . 

Enfin, on suppose que < ^ désign e la relation d'ordre antilexicographique < ^ su r 

K3 (cf.(1,3.12.1) . Alors on peut vérifier que : 

I) S i l'on pose 

X0 = (C5-(LUP) , 

X1 = L - {A} ,  X 2 = P - {A} , 

X3 = {A} , 
3 

la famille (Xi)o<i< 3 es t 11116 stratification (E-analytique de ( C satisfaisan t 

aux propriétés du théorème 3.5 pour l'idéal e t on a : 

Ma;Ji;x= '  xeX o • 

Ma;Ji;x = { 0,0,0), (°>1>°)> >  xex ! > 

Ma;J ;x = { 0,0,0), (0,0,1)} ,  x€X2 , 

Ma;Ji;x = {(2>°>°)> 0 ,0,1), (0,1,1)} ,  x€X 3 . 

II) S i l'on pose 

xo = I3 - S , 

x1 = S - (S1 U s2) , 

x2 = s2 - {B,C} , x3 = s1 - {B,C} , 

x4 = {B} ,  x5 = {C} , 
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alors la famille O y ^ ^ e s t une stratification C-analytique de (C3 satisfai-

sant aux propriétés du théorème 3.5 pour l'idéal e t on a : 

Ma;J2;x= {(°'°'°)} > xeX0 ' 

Ma;J2;x= {0 , 0 , 0 ) } , x e X , , 

Ma;J2;x= {^2'°^} > *eX2 ' 

Ma;J2;x = U2,0,0) , (1,0,1) } , x£X3 , 

Ma.j2.x = ((4,0,0),(2,0,1)} , xex4ux5 . 

III) Si l'on pose 

XQ = (C3 - (S U L U P) , 

x1 = s - (s1 us2) , 

X2 = S2 - {B,C} , X3 = S1 - {A,B,C,D,E} , 

X4 = L - {A} , X5 = P - {A,C,D,E} , 

X6 = {A} , X? = {B} , Xg = {C} , Xg = {D} , X1Q = {E} , 

alors la famille (x̂ o<i<-i o est 11116 stratification C-analytique de (C satis-
faisant aux propriétés du théorème 3.5 pour l'idéal J  = •J 2 et on a : 

Ma;J;x = {^0'° }̂ >  x€Xo ' 

Ma;J;x = {^°>°>} > x£X1 > 

Ma;J;x = {(-2'° }̂ >  x£X2 > 

Ma;J;x =  U2,0,0), (1,0,1)} , xÊXj , 

Ma;J;x = < 0, 0 , 0 ) , ( 0 , 1 , 0 ) } ,  x€X4 , 

Ma;J;x = 10 , 0 , 0 ) , ( 0 , 0 , 1 ) } ,  x «5 , 

Ma;J;x = t ( 4 , 0 , 0 ) , ( 3 , 0 , 1 ) , ( 1 , 1 , 1 ) , ( 2 , 0 , 2 ) } ,  x£X6 , 

Ma;J;x = < ( 4 , 0 , 0 ) , ( 2 , 0 , 1 ) } ,  x£X? , 

Ma;J;x = K5, 0 , 0 ) , ( 3 , 0 , 1 ) , ( 2 , 1 , 1 ) , ( 2 , 0 , 2 ) } , x£Xg , 

Ma;J;x = ^3,0,0), (2,0,1), (1,1,1,), (1,0,2)} , xCXgUX^ . 
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CHAPITRE III 

THEOREME DE DIVISION NUMERIQUE UNIFORME PAR UN IDEAL 

Dans ce chapitre, on généralise et on précise le théorème classique de division 

par un idéal. Si p et m désignen t des entiers, p 6 К , m e W ,  et < ^ une 
relation d'ordre total sur lP ,  compatible avec sa structure de monoîde et moins 

fine que la relation d'ordre produit <  sur fP (c e qui implique que la rela-

tion й est une relation de bon ordre ( 1 , 1 . 5 ) ) , ce théorème classique peut 
a (1 ) s'énoncer comme suit : 

THÉORÈME.- Soit ( f ^ - j ^ ^ h&mWLt de séries convergentes non nattes 

f i = d e ^ a idxd > ^ с { х г . . . , х р } , 

et posons 
di =mina{d €JNP : aid / 0} , 1^i<m , 

Д• -à. + lP - U  (d.+*IP ) ,  1<i<m , 
1 1 1<j<i 3 

et 

Д =lP - U  (d . + N P ) . 
0 1<i^p 1 

Alors роил toute série convergente g  ,  g  e C{X^,... ,Xp} ,  Il existe une famille 
unique de séries convergentes Cĝ )Q<̂ < m 

4= S bidx d >  giec{x x } , 

1 d€]N P i a p 

telle que 

i) pour tout i  ,  1 й i йm ,  et tout d , dtlP , tel que d + d^ £ Д^ 
on a 

bid = 0 ; 

ii) pour tout d ,  d € 1NP , tel Que d là on a 

(1) Dans la l i t té ra tu re , on é tab l i t en général ce théorème pour des re la t ions de 
bon ordre ^ pa r t i cu l i è res . 
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od ' 
m 

iii) g= Z f.g . +g . 
i=1 1 1 0 

m utilisant les notations mtroauites au chapitre il, U.iJ, ce théorème peut 
s'énoncer de façon équivalente : 

THÉORÈME .- Soient U un ouvert de Cp ,  x un point de U , (f.)-^.̂  une ' '  '  i  Uiân 
famille d'éléments de r(U,0cp) ;£e££ e que pou* £oo£ i  ,  1 ^i m̂ ,  le germe 
f*ix de e n x no n nu£ et posons 

dï=\;x^ > > 

A =d. + 1NP- U  (d.+HP ) ,  Ui<m , 
1 1 1<j<i 3 

et 

A = ]NP- u  (d . + #) . 

A£o/u> pouA £oo£ ge/ime de $onc£con analytique g en x II existe une famille uni­
que (gj _)0<i<m de germes de fonctions analytiques en x telle que 

i) pour tout i  ,  1 S i  ̂m , 

E (g.)<=-d. +A. ; x &i i  i  ' 

ii) E (g )cA ; J xV6 o o  ' 

m 
iii) g = Z f • g - + g 

' 6 I= 1 I X 61 60 

Pour démontrer ce théorème, on procède en général comme suit. On démontre d'abord 

qu'il existe un système fondamental de voisinages de x dan s U formé de poly-
disques fermés K  d e centre x tel s que pour tout g  ,  g£B(K) ,  il existe 

une famille unique (gî 0<î< m d'élément s de B(K ) satisfaisant aux conditions 

(i), (ii) et (iii) et on conclut par passage à la limite inductive. Dans ce chapi-

tre, on s'intéresse, conformément à l'esprit général de ce travail (développé en 

détail à l'introduction générale), à cette version du théorème de division 

"au-dessus d'un polydisque" (ou plus généralement "au-dessus d'un polycylindre 

compact"). 

Plus précisément, on dira qu'un polydisque fermé K  de centre x conten u dans 

U (o u plus généralement un polycylindre compact pointé en x ,  autrement dit 
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un couple formé d'un polycylindre compact K  e t d'un point x  appartenan t à 

l'intérieur de K  ) satisfait au théorème de division par f  = (f^,...,fm) ,  si 

pour tout g  , g  € B(K) ,  il existe une famille unique Cgi)0<i< m d'élément s de 

B(K) , satisfaisant aux conditions (i), (ii) et (iii) ci-dessus. On désignera alors 

par a (resp . pa r r  ) l'application 

a :  B(K) —•B(K) 

(resp. r  : B(K) —*B(K) ) 

définie par 

o(g) = (g1,… , gm) 

(resp. r(g ) = gQ ) . 

On démontre facilement que les applications a  e t r  son t des applications 

(C-linéaires continues. On s'intéressera plus particulièrement aux questions 

suivantes : 

i) Explicite r des conditions suffisantes sur le polyrayon d'un polydisque 

fermé de centre x  pou r que ce polydisque satisfasse au théorème de division par 

f . 

ii) Etudier la variation de ces conditions en fonction du point x  . 

iii) Trouver une majoration explicite de la norme de a  e t de r  e n fonction 

du polyrayon. 

iv) Etudier la variation de cette majoration en fonction du point x  . 

Le théorème de division est complété par la proposition suivante : 

PROPOSITION.- SI 1<L poly&Uquo, ^vum. K  de. ceutte x  Aa£û>icuU au thionème de. 

CLL\)ÂJ>ÂJOVI pan. f  ,  les conôjj&jonh òulvantes òont équivalentes : 

i) M T cz{v (fj,..., v ( £ )} 
a;J;x u  a;xv r  ' '  a;xv nrJ 9 

où J déòlgne. Indiai coko.K2.nt do. 0^ mgcnd/ii pan. f^,..., ^ (voir ch.II,1 .2); 

ii) a  zòt une. òdbòion de B(K;f ) {autntmtnt dit B(K;f) aB(K;f) = B(K;f) ). 

Cette proposition est le lien entre le théorème de division et l'axe principal de 

ce travail développé dans l'introduction générale. 

Au §1, on étudie les propriétés algébriques des scissions, utiles dans la 

suite. Au § 2 , on introduit les notions qui permettent de s'affranchir du cadre 

des polydisques. La notion de polyrayon se scinde en deux, le polyrayon interne 

p' d'u n polycylindre compact K  point é en x  étan t le polyrayon du plus grand 

polydisque de centre x  conten u dans K  e t le polyrayon externe p " étan t celui 
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du plus petit polydisque fermé de centre x  contenan t K  . On introduit également 

les opérateurs élémentaires de B(K ) utile s par la suite. On démontre que si x 

est un point de ( ? e t si pour tout i  , 1  ^i m̂ ,  f . es t un monôme 
d̂  1 

(X - x) 1 , alors tout polycylindre compact pointé en x  satisfai t au théorème de 

division par f  .  Au §3, on définit un opérateur V £ . ^ :  B(K) —»B(K) don t 

1'inversibilité équivaut à la condition " K satisfai t au théorème de division par 

f " . On se place dans un cadre un peu plus général qui englobe des théorèmes de 

division "homogène" et qui nous permettra au chapitre IV de ramener le cas d'un 

sous-module à celui d'un idéal. Au §4, on étudie 1'inversibilité de V £ . ^ . 

On démontre qu'il existe une partie V  de (JR*) ^ appartenan t au filtre F< ^ 

(cf.1,5.1.3) telle que pour tout polydisque fermé de centre x  e t de polyrayon 

appartenant à V  ,  vf.^ s°i t inversible, ce qui implique que K  satisfai t au 

théorème de division par f  (l a condition pour un polycylindre compact pointé 

étant plus compliquée). Au §5, on expose quelques applications et on retrouve le 

théorème de division classique. On explicite également une majoration de la norme 

de a e t de r  .  Au §6, on étudie la variation de l'ensemble V  ains i que celle 

des majorations des normes de a e t de r  , en fonction du point x  .  Enfin, 

au §7, en combinant les résultats du §6 et du chapitre II, on démontre le théorème 

principal de ce travail (énoncé dans l'introduction générale), dans le cas parti-

culier où n  = 1 . 
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§1.- Scissions 

Dans la suite de ce travail on utilisera constamment la notion de "scission" 

d!un morphisme d'espaces de Banach. C'est un cas particulier de la notion de 

"scission" d'un morphisme dans une catégorie quelconque. Dans ce paragraphe, on 

étudiera quelques propriétés purement algébriques des "scissions" dans la catégorie 

des A-modules, où A  es t un anneau commutât if. 

DÉFINITION 1.1 Soient M  et M ' deux objet* d'une, catégorie, et u  : M ' ^ i M un 

mosipkUmo. de. bounxie. M ' et de. but M  .  On appelle. AcÂAAlon (resp . KétnactLon, 

resp. &e.ctÂJon) du mon.phû>me. u  ,  un moKphume. a  : M—*M' ,  de. ¿ouK.ce. M et de. 

but M ' ,  teJt que. u  o<j ou = u (resp . a °u = id^, , u Qa = id^) .  On dit que. la 

hoJji£>i.on a  du moKphJa>me. u  eAt normale., Ai. u  eAt une. 6CAj>AsLon du motiphlkme, 

a , c ' e A t - à - d J j i e . ¿1 a ou <>a = a . On appelle, nomatué d'une. ^cÂA^on o du 

motiphiùme. u  le, motiphUme. a o u o a . 

(1.1.1) Il est clair qu'une rétraction ou une section d'un morphisme est une scis-

sion normale de ce morphisme, que le normalisé d'une scission d'un morphisme est 

une scission normale de ce morphisme, et qu'une scission d'un morphisme est normale, 

si et seulement si, elle est égale à son normalisé. 

(1 .2) Soien t A  u n anneau commutât if, M  et M' deu x A-modules, u  : M' —> M  u n 

morphisme de A-modules et o :  M— * - M f un e scission de u  dan s la catégorie des 

A-modules (on dira A-scission ou scission A-linéaire). Alors a  o u e t u  o a son t 

des projecteurs de M ' et M respectivemen t et on a donc les décompositions en som-

me directe. 

(1.2.1) 

M' = M] @ M£ 

Mj = Ker(u) = Ker(a°u) = Im(idM, - aou) 

M2 
= Im(cfou) = KerQcL, - a o u) 

(1 . 2 . 2 ) 

M = M Q M2 

№| = Im(u) = Im(u o a ) =  Ker(id^ - u o a ) 

M2 = Ker(u o a ) =  Im(id^ - u o a ) 
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Si en plus a  es t une scission normale de u  ,  on a 

(1.2.3) M£ = Im (a) e t M 2 = Ker(a) . 

PROPOSITION 1.3.- Soient A  un anneau commutati^, M et Mf deux A-module, 

u : M1 —» M et a : M —• Mf de-ò applications* k-tinealn.es. A£O/LÒ £e4 condottano 

suivantes òont équivalentes : 

i) a est une k-Acls^lon de. u ; 

ii) Im(u ) n Im(idM - U o o) = (0} ; 

iii) Ker(u) + Ker(id f - a ou) = M
f 

M 
Démonstration. Si a  es t une A-scission de u o n a (ii) et (iii) (1.2.2) et 

(1.2.1). Df autre part, les égalités u o u - u = u ° (ou - id ,̂ ) = (uo - id )̂ o u 

montrent immédiatement que (ii) ou (iii) implique (i). 

PROPOSITION 1.4.- Soient A  un anneau commutati^, M et W dexxx k-modules, 

u : M' —» M ,  ô  : M1 —> M ,  X : M —• M1 des appJU.catA.ono k-llnéalA.es, 

v = u + ô et v  = id^+ôX 

a) On a : 

i) fsq v(Ker(id^f - Xu)) + Ker(A) cim(v) cv(Im(A)) + ImCid^-uX) ; 

i i ) ^ Vapplication v tòt Injectlve, poux tout g  ,  g  CM , Il existe 

au plus un couple. ( g Q ) ,  gQ€Ker(X) , ĝ  €Ker(id ,̂ - Xu) tel que 

g = v ( g j + g ; 

iii) 6l poux tout g  ,  g€M ,  Il existe au pliu un couple (g Q,g-j) , 

g Q 6 Im(id ĵ - uX) , ĝ  € Im(X) ,  tel que g=v(g.j ) + gQ ,  l'application v est 

injective. 

b) St V application u  est un k-òclsòlon de X  on a : 

i) Vapplication v  est òuxjective, *>l et seulement ¿1, poux tout g  , 

g CM ,11 existe un couple (g Q,g-|) > gQ £
 I m(i^j " jo > g-j € Im(X) , tel que 

g = v(g1) + gQ ; 

ii) Vapplication v  est Injectlve, ¿1 et seulement ¿1, poux tout g  , 

g£M ,11 existe au plxxs un couple (g Q,g-|) , gQ € Im(id -̂ uX) , g-| € Im(X) , 

tel que g=v(g 1) + gQ . 

c) Supposons que Vapplication v òoit Inversible et posons a  = Xv 
-1 

klons on a : 

i) id^j-v a = (id^-uX)v et v  =  id^-óa ; 

ii) Im(a ) = Im(X) et Im(id,,-va ) = Im(icL, - uX) ; 

iii) v est une k-òclsòlon de o , ¿1 et seulement &l , u  est une 
k-òcisòlon de X  ; 
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iv) Ai u  est une k-AciSAix)n de À  ,  pouA tout élément g  de M Ai 

(g >gi) distane l'unique, couple, tel que g Q £ImCid^-uA) , ĝ  £lm(A) e£ 

g = v(g1) +  g (cf . à (b)), on a 

a (g) = g-, e t (ic^-va ) (g) = gQ ; 

v) a est une k-AciSAion de v  , Ai et seulement Ai, 

Im(v) nimCid^j-uX) = {0} ; 

vi) t>i u est une k-AciSAion de X , oJLons a est une k-AciSAion de 

v ,  Ai et seulement Ai, Im(v ) = v(Im(A)) ; 

vii ) Ai X est une k-AcisAion de u  ,  alons a est une k-AciSAion de 

v , Ai et Aeulement Ai., ô(Ker(u) ) cv(Im(u)) . 

Démonstration. Démontrons (a) . Si g  Ev(Ker(idvjt - Au)) + Ker(A) , il existe un 

couple (g 0,g-,) , g0€Ker(A) , g1 € KèrCic ,̂ - Au) , tel que g=v(g 1) + gQ , 

et si l'on pose g ' = u(g.j) + gQ ,  on a 

v(g') = uCg-j) + gQ + ôACuCg-j) + gQ) = 

= u(g l) + g0-ô(id M, -Xu)(g-,) + ôCĝ  + ÔA(gQ) = v(g l) + gQ = g , 

donc g  €Im(v), ce qui prouve que 

vQCerCidj^ - Au)) + Ker(A) clm(v) . 

Si g  Im(v ) , il existe g ' ,  g ' £M ,  tel que g  = v(g') ,  c'est-à-dire que 

g = gt +ôA(g') ,  ou encore g=v(A(g') ) + (ic^-uAHg') , donc 

g£v(Im(A)) + ImCid^j-uA) , 

ce qui démontre l'assertion (i) . Pour démontrer l'assertion (ii) , il suffit de 

démontrer que si l'application v  es t injective et si g Q£Ker(A) , 

g.j E KerCid ,̂ - Au) e t v(g 1)+g Q=0 ,  alors g 0 = 0 e t g ^ =0 . En effet, on 

remarque que comme g ^ EKer(id,vjf - Au) , on a 

AuCg^ = g1 , 

et comme g  EKer(A ) e t v(g.« ) +g = 0 ,  on a 

Av( g l) = A(v(g l) + gQ) = 0 ; 

on a donc 

v(ô( g l)) = ô(g l) + ÔAv(g l) - ÔAu(g l) = 0 

et l'application v  étan t injective on en déduit que 6(g^ ) =0 , d'où 

v(g.j) = u(g-j) , ce qui implique que Av(g^ ) = Au(g )̂ , et comme Av(g^ ) = 0 e t 

Au(g^) = ĝ  ,  il en résulte que g ^ = 0 ,  d'où g Q = 0 .  Pour démontrer l'as-

sertion (iii) , soit g  u n élément de M  e t supposons que v(g) =0 . Alors on a 
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g + 6X(g) = 0 ,  d'où v(X(g) ) Hiĉ  - uX) (g) = 0 .  Or, si l'on pose 

go = (idM"uX)(SJ e t § 1 = x№ > on a fioelmCidj^-uX) ,  g-, Im(X ) gfd et 

vCg-|) + gQ = 0 .  L'hypothèse implique donc que g Q = 0 e t g ^ = 0 ,  c'est-à-dire 

que g-uX(g ) =  0 e t X(g ) = 0 ,  d'où g  = 0 . 

Pour démontrer (b) on remarque que u  étan t une A-scission de X  o n a 

Ker(X) = ImCid^-uX) e t Ker(id^ f - Xu) = Im(X) (1 . 2 ) . L'assertio n (i) résulte 

donc de l'assertion (i) de (a) , et l'assertion (ii) des assertions (ii) et (iii) 

de (a). 

Il reste à démontrer (c). Pour démontrer l'assertion (i) , on remarque que 

idîvI-va = id^4- (u+ô)X(idîvI + ÔX)"1 = (ic^ + ÔX- (u+<S)X) (iĉ  + ÔX)"1 = (id̂ j - uX)v"1 

et que 

v ^ = (id̂  - uX) v 1 + uXv ^  = id̂ j - va + ua = id̂j - 6 a . 

L'assertion (ii) résulte de la définition de a  e t de (i). Pour démontrer l'asser-

tion (iii), on remarque que v  es t une A-scission de a  ,  si et seulement si, 

Ker(a) + Ker(icL,-va) =M (1 . 3 ) . Or , comme 

a = Xv 1 e t id^-v a = (idM~uX)v 1 , 

cela équivaut à Ke r X + Ker(id^- uX) = M ,  condition vérifiée, si et seulement si, 

u es t une A-scission de X  (1 . 3 ) . Pou r démontrer l'assertion (iv) soit g  u n 

élément de M  e t posons 

g1 = a (g) e t g Q = (ic^-vaHg) . 

Alors on a g  = v(gp + gQ ,  et il résulte de l'assertion (ii ) que g Q £ Im(id ĵ - uX) 

et g. j £ Im(X) ,  ce qui, en vertu de (b) , prouve l'assertion (iv). L'assertion (v) 

résulte de la proposition (1 .3) et de l'assertion (ii) . Si u  es t une A-scission 

de X  ,  il résulte de l'assertion (iv ) que (id̂ j - va)(v(Im(X))) = {0} ,  et si 

Im(v) = v(Im(X)) , on en déduit que a  es t une A-scission de v  .  Réciproquement, 

si a  es t une A-scission de v  ,  on a Im(v ) = Im(va) = v(Im(a)) (1 . 2 . 2 ) , e t en 

vertu de l'assertion (ii) , on en déduit que Im(v ) = v(Im(X)) , ce qui démontre 

l'assertion (vi) . Démontrons l'assertion (vii) . En vertu de l'assertion (i) , on a 

v-vav = (i^-va)v = (id^-uX)v v  . 

On en déduit que a  es t une A-scission de v  ,  si et seulement si , 

v"1(u+ô)(M')cKer(id>I-uX) , 

ou encore 

U . 4.1) (u+ô)(M')cv(Im(u)) 

(1 . 2 . 2 ) . D'autr e part, comme d'après (1 .2.1), on a M ' =Ker(u) @ Im(Xu) , (1.4.1) 

équivaut à 
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(1.4.2) 

(u+ô)(Ker(u))cv(Im(u)) 

(u+ô)(Im(Au)) cv(Im(u)) 

qui à son tour équivaut à 

ô(Ker(u))cv(Im(u)) 

et 

(1.4.3) (u+ô)Au(M')c:v(u(M')) . 

Mais comme 

(u+ô)Au = uAu + ôAu = (id^ + oA)u = vu , 

l'inclusion (1.4.3 ) est toujours vraie, ce qui démontre la proposition. 

COROLLAIRE 1.5.- En gardant les notation* da la proposition 1. 4 ,  si X est une 

A-òcisòion nonmale, de u , si v  est inversible et si Von pose o = Av  ̂, 

les conditions suivantes sont équivalentes : 

i) a est une A-scission nonmale de u  ; 

ii) a est une A-scission de u  ; 

iii) Im(v) nIm(icL.-uA) = {0} ; 

iv) pour tout g  ,  g€Im(v ) ,  si (g 0,g-j) désigne l'unique couple tel 

que g Q e Imdc^-uA) , g 1 G Im(A) et g  = v(g1)+g Q (c£. proposition (1.4) , (b) ), 

on a g  =  0 ; 

v) pour tout g  ,  gGIm(v) , i l existe g ^ ,  ĝ  € Im(A) ,  tel que 

g=v(gj ; 

vi) ô(Ker(u))cv(Im(u)) . 

Démonstration. Comme A  es t une A-scission normale de u  ,  il résulte de (1.4), 

(c), (iii) , que v  es t une A-scission de a ,  ce qui prouve l'équivalence des 

conditions (i) et (ii). L'équivalence des conditions (ii), (iii), (v) et (vi) 

résulte de (1.4), (c), (v), (vi) et(vii). L'équivalence des conditions (iv) et 

(v) est une conséquence directe de (1.4) (b) . 

LEMME 1 . 6 . - Soient A un anneau commutati^, M , M' , M" des A-modules, 

u' : M' —> M ,  u " : M" —> M ,  A 1 : M —> M' ,  A " : M — M" des application* 

A-linéaires, u  : M' @M" —» M l'application A-linéaire définie par 

u(x',x") = u'(x')+u"(xn) ,  pour x'eM ' , X " < E M " , 

et o : M — * M' 9 M" l'application définie par 

a =  (A',A"o (idM-u'A')) . 

klons on a : 
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a) s*. A ' et À " sont des A-s eussions de u1 et u " respectivement, les 

propriétés suivantes sont équivalentes : 

i) u'A' et u"A " commutent sur l'Image de u " 

( ( u ' W V -  u"A" ufA!) ou" = 0) ; 

ii) o est une A-sclsslon de u  ; 

b) s i u' et u " sont des A-sclsslons de V et A " respectivement, les 

propriétés suivantes sont équivalentes : 

i) u'A' et u"A " commutent modulo le noyau de A ' 

(A1 o (uf A V A " - u"A" u'A') = 0) ; 

ii) u  est une A-scÀsslon de o ; 

iii) O O U O T =  T  ,  où T  :  M 9 M —• M ' 9 M" désigne l'application 

A-linéaire définie par 

T =  A' 9 (A" o (idM - u'A1)) . 

Démonstration. Démontrons (a). On suppose donc que u'A'u ' = u' e t u"A"u " = u" 

et soit (x',xM ) €M' 9 M" .  Alors on a uau(x',x" ) = ua(u'Cx') + uM(x")) = 

= u(A'u'(x') + A'u"(x") , A"u»(x') + A"u"(x") - A"u'A'u'(x*) - A"u'A'u"(x")) = 

= u(A'u'(x') + A'u"(x") , A"u"(x") - À^'À'irtx")) = 

= u'Afu,(x') +  u' A'u"(x") + uMV'uM(x") - u"A"u'A'uM(x") = 

= u'(x') + u"(x") + u'A'u"(x") - u"A"u'A'u"(x") .  On en déduit que a es t une 

A-scission de u  ,  si et seulement si, u'A'u" - u"A"u'A'u" = 0 .  Or, 

u'A'u" - u"A"u'A'u" = (u'A'u"A" - u"A"u'A') ou", ce qui démontre l'assertion (a). 

Démontrons(b). On suppose donc que A'u'A' = A' e t A"u"A " = A" .  Soient 

i : M —• M 9 M ,  î  : M —> M  9 M, i2 : M •  M 9 M les applications A-linéaires 

définies par i(x ) = (x,x), i ^ (x) = (x,0) , i2(x) = (0,x) , pour x e M .  Alors 

on a i° i =  o ,  T  o =  (A1,0) , T  o i2 = (0,A" o (id̂  - u'A')) , la condition 

(ii) équivaut à 

O o U o T o i =  T o i 

et la condition (iii) équivaut à 

O o U o T o i ^ =  T ° Ì ^ et Q o U o T o i ^ =  T  o i ^ 

Or, on a 

a o U o T o i . , = G U ' A ' =  ( A ' u ' A ' , A"u'A ' -  A"u'A'u'A' ) =  ( A ' ,0) =  T  O 

On déduit que la condition (iii) équivaut à 

O o U o T o i ^ =  T o l 2 

et comme i  = î  + i2 , il en est de même pour la condition (ii). 
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D'autre part, 

Q o U o X o i 2 =GU MÀ"(idM-u'Àl) = 

= (Xtu"XMCidM - u ' A 1 ), Xn(id M - u ' X V) u"X"(idM - u ' A 1) = 

= ( A ' u " X M -  À W ' u ' X ', A M U " X " -  A"uMX"u'X ' -  X"u'X'u"X " +  A ' V X ' u'Vu'A') = 

= (X,(uTXluMXM -  u ' T V A ' ), XM(idM - u'A' ) -  X"u'X' ( u F A V A" -  u"A" u ' X ' )) , 

donc o o U O T O L =  T oL équivau t à X F (uFXfu"X" - u ' W X 1) = 0 ,  ce qu i 

démontre l'assertion (b). 

PROPOSITION 1.7.- En gardant les notation* du lemme 1.6, si X ' et. X M sont des 

A-scisslons normales de u ' et u " respectivement et si u'X ' et u"X " commutent 

entre eux, alors : 

i) a  est une A-scission normale de u  ; 

ii) Im(a) = Im(X' ) 9  A"(Im(idM - u ' X ' )) ; 

iii) Im(idM-u o a) = Im(idM-u'X') D Im(idM-u"X") . 

Démonstration. L'assertion (i ) résulte immédiatement du lemme 1.6. En gardant les 

notations de la démonstration de ce lemme , l'égalité o  = T °i impliqu e que 

Im(a) CIIII(T) e t l'égalité a o U o i =  x (1.6, b, iii) impliqu e que 

Im(T) clm(a) ,  donc Im (a) = Im(T) = Im(X') 9 Im(XM o (id̂  - u'X')) = 

= Im(X') 9 X"(Im(id.>f - u'X')) , ce qui démontre l'assertion (ii) . Pour démontrer 

l'assertion (iii ) on remarque que Imtid ^ - ua) = Ker(a) (1.2.3) et que 

Ker(a) = Ker(X')nKer(XM o (id -  u'X')) = Ker(X') flKer(A") = 

= ImCicL. - u'X') nlm(idAyf -u"A") (1.2.3). 

M M 

COROLLAIRE 1.8.- Soient A un anneau commutati^, M un A-modale, r  un entier, 

r e r f (M:) V 1<i<r 
une iamWLe de A-modules, pour tout i  ,  1  < i < r , 

ui : Mi —* M  aw e ^W^ication A-linéalre, X ^ :  M — * - MI1FSFGQ une A-scAJiS^on normale 

de u- ,  q. = u. o  A- et u : 
r 
9 
i=1 

M . — > M l'application A-linéaire définie par 

u(xr...,xr) d 
r 

d 
i=1 

u.(x-) , pour (x1,...,xr ) e 
r 

d 
1=1 

Mi d On suppose que pour tout 

i et j  ,  1   ̂i  ̂r ,  1  < j < r , q. o  q . = q. o q. et pour tout i , > 1  ̂i  ̂r, 

on pose 

a. =  X -

i-1 
n 
j = 1 

(id - q.) 
M n 

Soit a  : M 
r 

i=1 
M- l'application A-linéalre définie par o  = (o\,...,a ) 

Alors 

i) o  est une A-scisslon normale de u  ; 

103 



G. MALTSINIOm 

ii) Im(a) f 
r 
0 
i=1 

X,( n 
1 < j < i 

Im(idM - q.)) ; 

iii) Im(idM - u o G) d n 
1 ^ r 

Im(idM - q.) . 

Démonstration. On remarque d'abord qu'on a l'identité suivante dans 2 Z [ XX ]  : 

( 1.8 . 1 ) 
n 
n 
i=1 

(1 - X .) = 1 
n 
Z 

i=1 
X. 

i 

i-1 

n 
j = 1 

(1 - x.) 

On la démontre par récurrence sur n .  Pour n  = 0 , 1 ell e est évidente. Supposons-

la établie pour n  - 1 e t démontrons-la pour n  .  En effet, 

n 
n 
i=1 

(1 -X.) f 
n-1 

n 
i=1 

(1 -X,) f f 
n-1 

n 
1=1 

(1 - X .) 

donc par hypothèse de récurrence 
n 
n 

1=1 
(1 - X .) = 1 

n- i 
Z 

1=1 
d 

i-1 
n 

j = 1 
(1 - x.) -X n 

n-1 
n 

1=1 

f 1-X . ) = 1 -
n 
E 

i=1 
s 

i-1 
n 

1=1 (1 - x.) 

Démontrons maintenant le corollaire. On raisonne par récurrence sur r  .  Pour 

r = 1 l e corollaire est évident (pour r  = 2 c'es t la proposition (1.7)). Suppo-

sons-le donc établi pour r  - 1 e t démontrons-le pour r  .  Soient 

M' = 
r-1 

ds 
i=1 

M4 u' : M' —-+ M l'application A-linéaire définie par 

u'(x .., x ) 
r-1 
Z 

1=1 
U.CX.J , pour (x^,... 9xT_^) GM1 a ' = ( a 1 , . . . , a r-1 )J 

Par hypothèse de récurrence a ' es t une A-scission normale de u' 

Im ( a ' ) fd 
r-1 

9 
i=1 

X,( n 
1£i<i 

ImCid. -q.)) et Inaici. - u'o') = n 
1£i<r-1 

ImCid. -q-) 

Démontrons d'abord que o  = (a', X o (idĵ  -u'a')) . Pour cela il suffit de dé-

montrer que ör = Xr ° (ldM " ula?) En effet, 

Xr o (iĉ  -u'a') = X o 
r 

(id 
r-1 
Z 
i=1 

u . a . ) =  X 
1 1 J r 

(oM 
i-1 

f 
i=1 

li 

i-1 
n 

1=1 
(qM - qj)) = 

= Ar 
r-1 

n 
i=1 1ÖH ' V =  ar 

(car les q . commutan t entre eux, on peut appliquer l'identité (1.8 . 1 ) ) .D'autre 

part, comme u ' a ' 
r-1 
Z 

i=1 
q1 

i-1 
n 

1=1 
' i c W et q r commuten t (car les q . commuten t 

entre eux), on déduit de la proposition 1.7 que a es t une A-scission normale de 

u , que 
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Im(cr) = Im(a') 9 A (Im(idM-u'G')) 

r 

d 
i=1 

A- ( fi 
1<j<i 

(Im(idM- q.)) 

et que 

Im(id..- ua) = Im(icL, - u'a1) nim(id,,-u A  ) = n 

1 < i < r 
Im(id - q ) 

ce qui démontre le corollaire. 

PROPOSITION 1. 9 . - Soient A  un anneau commutatli, M  , M' , M" des A-modules, 

u' :M' > M , u" :M" — »M ,  v : M' —» M " , A' : M >  M' et A " : M —> M " 

des applications A-linealn.es telles que u'=u"o v et À " = v o A' .  Alons on a 

a) si À " est une A-sclsslon de u " , À1 est une A-scisslon de u 1; 

b) si À 1 est une A-sclsslon de u ' et si Im(u" ) clm(u') alons 

A" est une A-scission de u " ; 

c) si u 1 est une A-scisslon de A ' , u" est une A-sclsslon de A " ; 

d) si u " &Ó;£ une A-sclsslon de A " et  si Ker(A" ) cKer(A') alons 

u 1 est une A-sclsslon de A 1 . 

Démonstration. Comme u ' =u'V e t A"=vA ' ,  on a , d'une part, 

u'A' =u'VA' =u"A" , 

et d'autre part, 

Im(u')cim(u") 

et 

Ker(A')cKer(A") . 

Or,en vertu de la proposition 1.3, pour que A ' (resp . A") soit une A-scission 

de u ' (resp . u " ) , il faut et il suffit que 

Im(u')n Imtic^-u'A') = {0} 

(resp. Im(u" ) n ImdcLj-u'T') ={0} )  , 

ce qui démontre les assertions (a) et (b). De même, en vertu de la proposition 1.3, 

pour que u ' (resp . u" ) soit une A-scission de A ' (resp . A" ), il faut et il 

suffit que 

Ker(A') + KerficLj-u'A') = M 

(resp. Ker(A" ) + Ker(id -̂ u"A") = M )  , 

ce qui démontre les assertions (c) et (d) . 
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§2.- Opérateurs élémentaires 

(2.0) Soit p  u n entier, p  e K . On rappelle (chapitre 0) qu'on appelle polycylin-

dre compact de (P un e partie K  = K^x...xKp d e (C p ,  où pour tout i  , 

1 ^i p̂ ,1 0 es t un compact convexe d'intérieur non vide de ( C e t qu'on désigne 

par B(K ) l'algèbr e de Banach normée des fonctions continues sur K  e t analyti-
o 

ques sur K  ,  la norme de cette algèbre étant définie par 

P I I K = S U D 

x€K 
|f(x)| pour feB(K ) 

Alors B(K ) es t l'adhérence de l'image de r(K, 0 
fd 

dans l'algèbre de Banach 

C(K) de s fonctions continues sur K 

Soient p ' et p" de s entiers, p ' G IN ,  p " e N ,  et K ' et K" de s polycylin-
t>' D " 

dres compacts de ( 7 e t Cr respectivement . Alors K ' xK" es t un polycylindre 
compact de (C 

nPf+p" et on a 

(2.0.1) B(K ' xK") = B(K') § B(K" ) 

([ 7  ]  , §5, n°1, proposition 2, p.40). 

(On rappelle que si E  et F désignen t deux espaces de Banach normes, on définit 

une norme II-II, 
z 

sur E  8 
Q 

F pa r 

Util e f SUD 

Ç€B *,nGB * 
(£®n) (t) , pour t  € E ®^F 

où BE (resp. B_J désigne la boule unité de l'espace de Banach norme E * 

(resp. F*) dual topologique de E  (resp . F), et on note E  ® F  l e complété de 

E ®ç F pou r cette norme. Si u  : E' —• E  e t v  : F' —> F  désignen t deux morphis-

mes d'espaces de Banach normes, l'application 

u 0 v : E' % F ' E ^ F 

se prolonge d'une façon univoque à une application C-linéaire continue 

u « v E' % F' —> E 0 F 

on a 

(2.0.2) ||u« v|| f || xc ||.||v|| 

et on définit ainsi un bifoncteur de la catégorie des espaces de Banach normes dans 

elle-même (cf.[13 ] 1.3, p.12-15)). 

Enfin, on rappelle que si x = (x^,... ,x )̂ es t un point de CP  e t 

p = (p,j,...,p ) u n élément de (R*) P ,  on appelle polydisque fermé de centre x 

et de polyrayon p  ,  et on désigne par D(x;p ) , la partie de C p défini e par 

D(x;p) = {(y1,...,yn)€C1 4> : Vi, 1 <i<p ,  ly-xj <;Pi} , 
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et il est clair que D(x ;p) es t un polycylindre compact de CP 

(2.1) Soient p  u n entier, p  € N ,  K  = K1x...xKp u n polycylindre compact de 

(Cp e t x  = (x1,... ,x ) u n point de <C P te l que x  € K .O n désigne par p 1 (K;x) 

(resp. p"(K;x)) (o u plus simplement p 1 (resp . p") quan d aucune confusion nfen 

résulte) l'élément (p] (K;x),...,p'(K;x)) (resp.(^'(Kjx),...,(p"(K;x))) d e 

№*) défini par 

pï(K;x) = d(x.,8Ki) = inf 
2€3K, 

|x.-z| , pour 1  < i û p 

(resp. py(K;x) = sup 
zeaK. 

|x r z | pour 1  < i < p) 

où pour tout i 1 < i <p 3K, désigne le bord de K. 
i 

Pour tout i  , 

1 û i û p ,  on a 

pï(K;x) ^pV(K;x) 

et p '(K;x) = p"(K;x) , si et seulement si, K  es t un polydisque fermé de centre 

x e t de polyrayon p  = p' (K;x) = p"(K;x) 

On désigne par e(K;x ) (ou plus simplement par e  quan d aucune confusion n'en 

résulte), et on appelle excentricité du polycylindre K  pa r rapport à x  ,  le 

nombre réel 

e(K;x) = sup 
1<i^p 

(py(K;x)/p!(K;x)) 

et on a 

e(K;x) > 1 

et e(K;x ) =1 ,  si et seulement si, K  es t un polydisque fermé de centre x  . 

(2.2) Soient K  un e partie compacte convexe d'intérieur non vide de Œ  e t x 
o 

un point de ( C te l que x G K .O n désigne par µk,x  l'applicatio n 

MK:x : B(K) —> B(K ) 

définie par 

C M , K:x 
(f))(z) (z-x)f(z) pour feB(K ) e t ze K 

(multiplication par z- x dan s B(K) ) . II est clair que M K;x 
est une application 

C-linéaire continue et que 

(2.2.1) llu 
gf 

) 
K 

= p"(K;x) 

So it f un e fonction, f€B(K) .On considère la fonction g : K - {x} —ï (C 

définie par g(z ) = 
f(z)-f(x) 

z-x 
pour z  € K - {x} .  Comme la limite de g  quan d 

z ten d vers x  exist e (car x  étan t à l'intérieur de K  ,  f es t analytique 
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en ce point et cette limite est égale à f'(x) ) , g s e prolonge à une fonction 

continue sur K  qu i est analytique sur K  (ell e lfest par définition sur 

K -{x} don c aussi sur K  ca r elle est continue) qu'on désigne par TV. (f ) , 
Jv jx 

et qui est donc un élément de B ( K ) .O n vérifie immédiatement que 

TK:x 
: B ( K ) — » B ( K ) 

est une application C-linéaire continue, que 

(2.2.2) 
H V X I I K 

S2/p'(K;x) 

(principe du maximum), et que 

(2.2.3) TK:x o MK:x m idT 
B ( K ) 

Enfin, on désigne par a 
K;x 

l'application 

p K;x : B ( K ) —* CC 

définie par 

ou 
T(;x 

(f) = f (x) , pour f  € B ( K) 

Alors a 
X;x 

est une application (C-linéaire continue, 

(2.2.4) Ha 
K;x 

n 
K 
= 1 

et 

( 2 . 2 . 5 ) a, 
k, x 

o u 
K;x 

= 0 

(2.3) Soient p u n entier, p e K , K = K1x...xK un polycylindre compact de 

CP et x  = (x.,,... ,x ) un point de CP tel que x  e K Pour tout i  ,  1   ̂i < p, 

on désigne par M • 
i;K:x 

(resp. T 
i;K;x 

(ou plus simplement par u . (resp . TO 

quand aucune confusion n'en résulte) l'application C-linéaire continue 

M i;K;x : B ( K ) —» B ( K ) 

(resp. T. 
i;K;x 

: B ( K ) —» B ( K ) ) 

définie par 

h i;K;x = id. B (K1 m q 
A 

.0 
e 
id. 

B (ki;xi 
A 

i 
M 
K- ;x 

A 
K L K(i+1) 0 e m e 

id. 
B(K_) 

(resp. T. 
i;K;x 

=idT B(KJ 

/s 

e 
a 
1 

idT 
B ( K , _ J 

O 
m p 

N î xi 
r 
e 
id. 

B (ki+1 
. 0 

E 
O 
e 
id, 

BCJLJ' 

et il résulte de (2.0.2), (2.2.1) et (2.2.2) que 

(2.3.1) 
I I M K 

= pV(K;x) 

et 
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C2.3.2) IfrJ <2/p!(K;x) ) 

D'autre part, on vérifie immédiatement que pour tout i  et j ,  1  <i <p , 

1 < j < p o n a 

(2.3.3) u - u • = M - M - et TiTi= T i Ti 

et si i  / j ,  on a 

(2.3.4) µi tj = tj µi 

et il résulte de (2.2.3) que pour tout i  ,  1  ^i p̂ ,  on a 

(2.3.5) 
TiMi= idB(K) 

(Les égalités (2.3.3) , (2.3.4) et (2.3.5) montrent que la donnée de 

Cu^1<i< e t CT^)^<^< défini t ce qu'on appelle une structure d'algèbre de 

fermions sur B(K) ) . 

Enfin, on désigne par av, k (o u plus simplement par a  quan d aucune confusion 

n'en résulte) l'application C-linéaire continue 

pK, x : B(K) »  C 

définie par 

^jx aK * ;x̂  

A 

0 
E 

A 

.0 A 
kP, xP 

(a(f) = f(x) , pour f  CB(K)) , et il résulte de (2.0.2) et (2.2.4) que 

(2.3.6) l ia! K 
= 1 

e t de ( 2 . 2 . 5 ) que pour tout i , 1 ^ i ^ p , on a 

(2.3.7) a u - = 0 

(2.4) Soit d  = (d^,... ,d ) , defP .  Comme les (resp . les T^) commuten t 

entre eux (2.3.3) , l'application C-linéaire continue composée 

u 
d 

k, x 
: B(K) —> B(K ) M 

d 

j\.;x 

P 
n 
i=1 

d. 
M . i;K;x 

(resp. T 
d 
K;x 

: B(K) —» B(K ) T 
d 
K:x 

P 
n 
i=1 

T 

ml 
i:K:xy 

(qu'on notera plus simplement u (resp . T ) quan d aucune confusion n'en résulte) 

est bien définie. Il résulte de (2.3.1) et (2.3.2) qu'on a 

(2.4.1) s 
d, 

K < P 
a 
(K;x) 

et 

(2.4.2) h 
d 

K 
< 2 

Id 
y 

e 
(K;x) 
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où p (K;x ) 
P 
n 
i=1 pi 

n; 
(K;x) P 

q1 
(K;x) 

P 
n 
i=1 

pi 

<*i 
,K;x) et | d | 

P 
I 

i=1 
d. 
i 

(cf. chapitre 0), et de (2.3.4) et (2.3.5) qu'on a 

(2.4.3) T 
d 
o M E = id. 

B(K) 

D'autre part, on désigne par q^.^. x (°
u plus simplement par q ^ quan d aucune 

confusion n'en résulte) l'application C-linéaire continue 

sd;K;x : B(K) —> B(K) 

définie par 

qd:K;x 
LJ. 
d 
K ; X m 

d 
K;x 

Il résulte de (2.4.1) et (2.4.2) qu'on a 

(2.4.4) || jd ||k < 2 Id •p 
.d 

CK;x)/p 
q 
(K;x) <2 

Idl 
e 
Idl 

(K;x> 

et en particulier si K  es t un polydisque fermé de centre x ,  on a 

(2.4.5) l|q d l l K 
<2 I d l 

Soit d ' = (d',...,d') d'€1N P On a 

(2.4.6) 
d d 
u u 

cr a 
U M 

u d + d -

et 

(2.4.7) 
d df d ' 

T T = T 
d d+d ' 

T =  T 

D'autre part, démontrons qu'on a 

(2.4.8) qd qd' ~  qd' qd ~  qsup{d,d'} 

la borne supérieure étant pour la relation d'ordre produit ^  su r NP  (cf . 

chapitre 0). En effet, on a 

qdqd' 
d d d* d 1 

M T  M x 
qd 

M1 µ 
d 

l1 

d1 
•v 

d 
M1 

dî 
•M 1 

d' 
T1 

d; 
mp 

d-
p 

Il résulte donc de (2.3.3) et (2.3.4) que 

qdqd' w1 

dq 
T1 
da 

M1 

d î 
T1 

dî 
dp 
dt 

D 

d 
P 
dr 

d 1 

. P 
T P 
P 

Il suffit donc de démontrer que pour tout i  ,  1  ^i<p ,  on a 

Mi 

d. 
i 

T i 

d. 

fd 
dî 

dz 
m 

dfs 
sup{d,,d!} 

tp 
sup{d,,d!} 

Pour cela, supposons par exenple que d . idl .  Alors on a 

M i 

d. 
i qs 
d. 

1 
M i 

d! 

fa 
dï 
i 

ay 
d. 

1 

pu 
El 

M i 

d. 

mo 
d! 
i 
•d. 

gf 
d! 
1 

M i 

d. 

aj 
d!-d. 

qa 

d! i 
= Mi 

d! 
1 

T i 

dï 

(2.3.5), ce qu'il fallait démontrer. Enfin, on démontre d'une façon analogue qu'on 
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a 

(2.4.9) 
d d' 

T u 
= T 

d-inf{d,d'} 
M 
d'-inf{d,d'} 

= u 
d'-inf{d,d'} 

T 
d-inf{d,d'} 

On désigne par a-'d;K;x 
(ou plus simplement par a 

d 
quand aucune confusion 

n'en résulte) l'application (E-linéaire continue 

a d:K:x 
: B(K) —> C 

définie par 

a 
'd;K;x 

= a 
K/,x 

d 
lK;x 

Il résulte de (2.3.6) et (2.4.2) qu'on a 

(2.4.10) l ia 
d || K 

^ 2 m 
/P 

.d 
(K;x) 

de (2.4.7) qu'on a 

(2.4.11) a. mo 
d 

= Ci 
"d+d' 

de (2.4.9) et (2.3.7) qu'on a 

(2.4.12) a CT • M 
A i 

a 
d-d' 

si d'< d 

0 sino n 

de (2.4.11) et (2.4.12) qu'on a 

(2.4.13) a d 
q ld' 

a si d'^ d 

0 sino n 

et de (2.4.13) qu'on a 

(2.4.14) = d (id B(K) " qd 

0 s i d'< d 

a 
a 

sinon 

(2.5) Si K ' es t un polycylindre compact de C ? conten u dans K e t si f  es t un 

élément de B(K ) ,  alors f|K ' es t un élément de B(K' ) .  On désigne par 

qi K';K l'application 

rT. K\K 
B(K) —> B(K' ) 

définie par 

r K, (f ) = f|K' ,  pour f  e B00 

et on vérifie immédiatement que rk, k,  est un morphisme de C-algèbres de Banach, 

que 

(2.5.1) Ilr K',K"K',K < 1 
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et que si K " es t un polycylindre compact de C P conten u dans K f ,  on a 

rK M,K f °rK',K rK M,K On en déduit que si lfon considère un système fondamental 

de voisinages de x  , <hha , formé par des polycylindres compacts, on a 
un système inductif 

C(B(K.))-„ ,  (r 
lK.,K. K . e K , 

de C-algèbres, et on vérifie que 

¥ \ x = lim B(K.) 

On désignera par r „ l'applicatio n canonique 

rK,x 
• Rfm v  n 

(TP v 

qui n'est autre que l'application qui associe à une fonction f  d e B(K ) so n 

germe en x 

D'autre part, on vérifie immédiatement que si K ' es t un polycylindre compact 
p ° 

de (C F conten u dans K  e t tel que x€K ' ,  on a 

(2.5.2) 
r K \ K M , 

d 
N ; X 

MI 
d 

K';x K', K 

(2.5.3) rK'.K T 
d 
K : X 

= T 
d 

K':x 
rK',K 

(2.5.4) rK',K qd;K;x qd;K;x rK',K 

(2.5.5) ad;K;x ad;K';x rK',K 

On pose 

M , 
d 
'x 

lim M 
d 
K;x 

T 
d 
x 

lim i d 
LK;x 

a ld:x = lim w ld;K;x 

ad:x 
lim a 

i;K;x 

(les limites inductives étant prises sur un système fondamental de voisinages de 

x form é par des polycylindres de (P ,  ces limites étant indépendantes du choix 

d'un tel système). Si l'on identifie 0 

a 
,p 

x 

à l'anneau des séries convergentes 

(CiX) = (CiX1,...,X } e n associant à un germe de fonction analytique f  en x s a 

série de Taylor F y. 

d€N jP 

1 
d! 

q 
d f 

w a 
(x) X 

wa en x  ,  ou inversement à une série 
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convergente F  = E 

dew 
a 
d 

xd le germe de fonction analytique f  en x défini e au 

voisinage de x  pa r f(y ) y. 

dew 
sa (y-x)' 

d 
on vérifie facilement que u 

d 
x 

est la multiplication par X 
„d 

et si F  = E 

d'€W P 
a d' X 

,d 
est une série convergente, on 

a 

(2.5.6) M 
qa 
x 

:F) E 

d'ew 
A A X 

,d'+d 
= X rd 

.F 

(2.5.7) T 
d 
X 

F) E 

d'^d 
a 
d' 
Xv d'-d 

(2.5.8) qr d;x 
(F) y 

d'>d 
ga Y * ' 

et 

(2.5.9) a 
d:x 

(F) = a 
qe 

1 
d! 

3 ha f 

9X 
Si 

(x) 

où f  es t le germe de fonction analytique au voisinage de x  associ é à F  . 

(2.6) Soient K  u n polycylindre compact de $s ,  x u n point de C F te l que 

x € K e t A un e partie de 1NF qu'o n considérera, le cas échéant, plongé dans 

Hp .  On désigne par B A (K ) (o u plus simplement par B A(K) ,  quand aucune con-

fusion n'en résulte) la partie de B(K ) défini e par 

B A 
A ; X no n 

d € № - A 
Ker (a 

*d:K:x' 
=(feB(K) vd,deN P-A 

3 
d f ( V 

3X' 
= 0} 

Comme pour tout d  ,  d  e Ir f 
ad:K;x 

est une application C-linéaire continue, 

BA:x ( I° 
est un sous-espace vectoriel fermé de B(K ) ,  donc en particulier, un 

espace de Banach. On a 

(2.6.1) B p (K) = B(K) 

et 

(2.6.2) B0(K) = {0} 

(principe du prolongement analytique). Si A ' désign e une partie de NP,  o n a 

(2.6.3) B 
Afl A' 

(K) =  B A ( K ) M B A , ( K ) 

(2.6.4) B A(K) +B A,(K)c:BAUA,(K) 

fa 

(2.6.5) B ( K ) . B , ( K ) c B A+A, (K) 

En particulier, si A ' c A ,  on a 

(2.6.6) B A,(K)cB A(K) 
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et si A + fpa A BA(K) es t un idéal fermé de l'algèbre de Banach B(K ) .  Si 

K' désign e un polycylindre compact de Np tel que K'c K e t x€K ' ,  en vertu 

de (2.5.5) , on a 

(2.6.7) V , K C B A ; x ( K » c B A ; x ( K t ) 

D'autre part, il résulte de (2.4.11), (2.4.12) , (2.4.13 ) et (2.4.14) que si 

d désign e un élément de lP ,  on a 

(2.6.8) M (BA(K))czBd+A(K ) 

(2.6.9) T (B A (K) ) c B 
(-d+A)n№ (K) 

(2.6.10) qd(BA(K))czBAn(d+№) (K) 

(2.6.11) (idB(K)-qd)(BA(K)) C BAV(Np - -d +Np)) (K) 

et il résulte de (2.4.13), (2.4.14 ) et du principe du prolongement analytique que 

(2.6.12) sd B 
d+lf 

(K) = id 
Dd+NP (K) 

et 

(2.6.13) (id, 
B(K) Hd J 

B 

w- (d+NF ) 

(K) = icL 
*T- (d+Np) 

(K; 

On déduit de (2.6.12) et (2.6.9) que 

R 
d+Av 

:K) qd qd+A (K) = M 
H d 
r 

fR 
" cl+Av 

(K) cru d. U*AUUJ 
donc 

(2.6.14) M 
d 
:BA(K) = B d+1 (K) 

de (2.4.3) , (2.6.8) et (2.6.6) que 

B 
5(-d+A)f1KP 

'(K) = x 
d 
q d. a -d+A)n№ uP cm C T 

d. 
: B A ( K ) ) 

donc 

(2.6.15) T h BA(K)) = R 
f»d+A)n]NJ 

TP(K) 

de (2.6.12) et (2.6.6) que 

T5 
An Id+JN^ J 

mi «d 
qAR (d+Np) (K)) cq,(B (K)) 

donc 

(2.6.16) qd (Ba(K)) = R JAn(d+№' (K) 

et de (2.6.13) et (2.6.6) que 

B 
WlfflP- fd+TNp)) (K) = (id. *B(K) - a, (BAnrwp-rd+NPv 

[K))c=(idB(K) -qd)(BA(K)) 
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donc 

(2.6.17) (idB(K)-qd)CVK)) =  BAn(NP-(d+NP)) CK) 

En particulier, on a 

(2.6.18) Im(ua) = Im(qd) = Bd+;Np (K) 

et 

(2.6.19) Im(idB(K)-qd) = B ^ p . y ĵ (K) 

et alors il résulte de (2.4.3) et (1.2) que 

(2.6.20) Ker(x ) = Ker(qd) = Bflp.^jjpj (K) 

et que 

(2.6.21) Ker(id, 
JB(K) "  V qd + Np (K) 

D'autre part, il résulte de (2.6.14), (2.6.15), (2.6.16), (2.6.17) et (2.6.3) que, 

qd 
^(-d+A)nNP 

№)) = BA (K) fi Im(pa) 

a 
T ^fd+AÌUC * p - ( d + ] N P ) ; 

(K)) = BA(K) 

qd (BAU(Np- (d+Np))(k)) = В. (К) nlm(cb) 

et 

(idBfKÌ - V :в(ди(а+#)) (к)) = V ю л Im(idB(K) + qd) 
et de (2.6.20), (2.6.21) et (2.6.6) que 

Ker(T )eBfd+AÌ fïJp , d + wP))(K) , 

Ker^d)cBAU(*iP-(d+NP)) « 

et 

Ker(idB(K)-qd)cBAu(d+NP) (K) 

On en déduit que 

(2.6.22) (маГ1(вд(Ю) = B, d+A)nlip(K) , 

(2.6.23) ( T )  i :в.(ю) B(d+A)U(l^-(d+]^))CK) 

(2.6.24) qd 
-1 :вд(Ю) : B A U C N P - ( d + ] N P ) ) (K) 

et 

(2.6.25) ( icL QB(K)"qdJ 
. -1 

СВд(К)) = BAlir , Np) (K) 
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PROPOSITION 2.6.26.- Soient p ' et p M deux entier, p'el M ,  p " e IN 

une partie de W x  W ,  K f (resp . K") un poluculindre compact de C p 

(resp. Cp ) et x ' un point de K f . SI 

[(Kp,x N P " ) - A ] + ( { 0 } x /) c:(]Np, x ]NpM)- A 

alors pour tout x y et x'2 » ,  x y £ K" ,  x'2'eKM ,  on a 

sd 
AÎU^XVJFD 

[K1 x K") = B. 
~A;(x',x") 

(K?x KM ) . 

Démonstration. Par symétrie il suffit de démontrer l'inclusion 

B A ; ( X ' . X V ) ( K , X K " ) C B A : ( X - . X " ) ( K , X K " ^ 

Soient donc f  e B 
A;(x',xV) (K» x K") e t (d » ,d") e (NP?x Np") - A ; 

il s'agit de démontrer que 

ald'I + ld'-L 

S) d' SX d" 
[x+,xV) =0 

Soit g  : K" —> JC la fonction définie par 

g(x") 
d 

d'| + |d"L 

3X,a ax,,a 
(x',x") pour x " e K" 

Alors g  es t une fonction analytique, et comme 

ílP x N P ) - л]+ ({0} x к? ) cz (iP'x к р М) - Д , 

pour tout d  ,  d e lSr ,  on a 

a d f 

ax" 
.xv. 

df|+|d"+d 

3X' 
ar 

3X,r 
fd"+d 

(x',xV) = 0 . 

La fonction g  es t donc identiquement nulle (principe du prolongement analytique). 

On en déduit que 

3 df + d" f 
3XT f 3X" s 

(x',x") = g(x") = 0 

ce qui démontre la proposition. 

COROLLAIRE 2.6.27.- SolX A  une partie de W telle que ( K F -A) + W c  W -  A 

Alors pour tout point x f de K on a 

B. 
A;x* 

(K) = B 
A;xv 

(D) 

Démonstration. Le corollaire est un cas particulier de la proposition 2.6.26, pour 

pf = 0 e t p " =p . 
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Remarque 2.6.28.- L'hypothèse ( F - A ) + F c r -  A impliqu e que 

N P - A = U 

dEM 
[d + W) où M  désign e l'ensemble (fini ) d'éléments minimaux de 

N p - A pou r la relation d'ordre produit <  su r ]N P (I , 1.3). On en déduit que 

A = W - ( U 
deM 

:d + Np)i et conformément à la démonstration de la proposition 

2.6.26,on a 

B (K) = {f £B(K) :  Vd, d£M a"a"f 

ax 
- 0 } 

(2.7) Soient p  e t m  de s entiers, p  e W ,  m  £ N ,  d  = (d1,... ,dm) , 

de(Kp)m ,  d , £# ,  1 < i < p ,  a=(alf...,a j ,  a  e (C*)m ,  K  u n poly-

cylindre compact de (C p e t x  u n point de C p te l que x  e K .O n désigne par 

Ma;d;K;x 
(resp. i 

' a i d i K i x ' 
(ou plus simplement par ua. d (resp . T A . ^ ) ,  quand 

aucune confusion n'en résulte) l'application C-linéaire continue 

Ma;d;K;x 
: B(K) 

m 
B(K) 

(resp. T 
a;d;K;x : B(K) —> B  (K) ) 

définie par 

Ma;d;K;xCSr -" 'V 

m 

a 
1=1 

a a 

d. 

K;x^gr > pour (gp...^ ) €B(K)m 

(resp. T 
a;d;K;x ada a;d;K;x;i 1^iân 

où T 
a;d;K;x;i = a i 

- 1 
q 

K;x 

i-1 
n 

3=1 

(id 
mi mu nd.;K;^ 

et il résulte de 2.4.1 que 

(2.7.1) K : d l l K < 
m 
o 
i=1 

lai P 
d. 

<m sup 
1 <ism 

:|a,|p' 
d. 

et de 2.4.2 et 2.4.4 que 

(2.7.2) 
llTa;d;illK 

< 2 
di + . . . + di +i-1 

P /P 

d +...+d 
;i/|a-|p' 

d. 

i' 2 
dl + . . .+ d. 

i l+i-1 
e 

d di 
( 1/|a . | p ' 

d . 

et 

(2.7.3) Ta;d K 
< 2 

s d + m - 1 

I p ' V p ' . 

d., + . ..-KÎ 

A m sup 
1<i<m 

1/|a,|p" 

d. 

< 2 
ds d 

m 
nn - 1 

e 
d , + . . . + d m 

sup 
1^i<m 

1 /la. P 

d. 

(où p " / p ' = ( p y / p j ,...,pp/Pp) ) .  En particulier, si K  es t un polydisque fermé 

de centre x  e t de polyrayon p ,  on a 
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(2.7 .4 ) ||ta;d;i|| K < 22 
| d J + . . . + | d , | + i- 1 

U/ a. p j 
d. 

et 

(2.7.5) 
K-AW K  * 2 

Id- |+... + |d I  + m- 1 
sup 
1^i<m 

: v|a , ip 
a. 

D'autre part, comme 

idB(K; "Ma;d Ta;d " idB(K) 

m 
Z 

i=1 
<*d. 

i 

i-1 
n 

j=1 
fid 
*B(K) " qd. 

il résulte de (2.4.4) que 

(2.7.6) 
UidB(K)-Ma;d Ta;d K 

< 1 + m 2 
di dm + m -1 

e 
EU d m 

et si K  es t un polydisque de centre x  ,  on a 

(2.7.7) ||idB(K) - µa;d|| K < 1 + m 2 lp d1 dm + m -1 

Enfin, il résulte de 2.5.2, 2.5.3 et 2.5.4 que si K 1 désign e un polycylindre 

compact de (C p tel que K'cK et x G K1 , on a 

(2.7.8) 
rKl,K Ma;d;K;x " Ma;d;K';x 

m 
9 rK\Kj 

et 

(2.7.9) M 9 xKf.K Ta;d;K;x T 
a;d;Kf;x 

r K\K 

On remarquera que si pour tout i  ,  1   ̂i m̂ ,  on pose 

I± =  supp(di) = (j E [1,p] : d . * 0} 

où d . = ( d . d- ) ,  et I = U 
1<i<m 

I. et si lfon désigne par TT la projection 

i : CP CT alors pour tout point x 1 ,  x 1 € K ,  tel que T T ( X T ) =  TT(X ) o n a 

(2.7.101 
Ma;d;K;xT Ma;d;K; x e t Ta;d;K;x f Ta;d;K; x 

Pour tout i  ,  1  ^ i m̂ ,  on désigne par A^(d) la partie de fP défini e par 

(2.7.11) Ai(d) = (di + Wp) 
i-1 
U 

1=1 
(d. + NP)) 

et on pose 

(2.7.12) A  (d) = W-
m 
U 

i=1 
A.(d) = W 

m 
U 
i=1 

[d. + W) 

PROPOSITION 2.7.13.- L'application T  ,  est une scission normale, C-linéalre a 9Q 
continue de M , et on a : 
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i) I IÏICT 
a;d' 

m 
n 

i=1 
B 
-d,+A, CdJ 

CK) 

iii Imfid,. 
BCK) "Ma:d Ta;d' 

B 
Ar*' :d) 

CK) 

Démonstration. On remarque que pour tout i  ,  1  <i <m a. 
i 

-1 
T 1 est une ré-

traction de a. M 
q (2.4.3) Cet en particulier, une scission normale) et que 

sar 
<4 

(a, 
-1 di 

= qd Or, comme les s commutent entre eux (2.4.8) , on 

peut appliquer le corollaire 1.8. On en déduit que Ta. ^ es t une scission normale 

de 
Ma:d et que : 

i) Dm (ta;d) 
m 
n 

i=1 
Tdi fi 

1<i<i 
ImCid 

BOO ~qd 
J 

ii) Im(idT 
B(K) "Ma:d Ta;d^ 

n 
1̂ i <m 

ImCicL 
B(K) 4d , 

et alors les assertions (i) et (ii) de la proposition résultent de 2.6.19, 2.6.3, 

et 2.6.15. 

Remarque 2.7.14. Comme A (d) = № 
m 
U 

i=1 
Cd. + W) , on a W A0Cd) 

m 
U 

i=1 
d. +NP) 

ce qui implique que (1SF-A0(d) ) +W cTNF - AQ(d) .  On en déduit que pour tout 

x' ,  x ' eK ,  on a 

E 
AoUU;x' 

(K) = B. 
A (d) ;x 

(K) 

(2.6.27). De même, pour tout i  ,  1  <i<m , 

- d . +A -Cd) = W 
i-1 
U 
1=1 

C-d, +d. + NP) n F ) 

et on a donc 

] N P - ( - d . +A. Cd)) 
i-1 
U 
i = 1 

C-d. +d. +]MP) nNp 

dfoù 

[KP - C - d i + AiCd))] + ] NPcKP - C - di+A i C d ) ) 

ce qui implique que pour tout x ' x'eK on a 

B 
-d.+A-(d);x' 

fKI = R 
-d.+A-Cd);x 

CK) 

C2.6.27).Qn en déduit que l'image de l'application T  .J .^. r  > ainsi que celle 

de l'application id , 
BCK) " Ma;d;K;x' Ta;d;K;x' 

ne dépend pas du point x ' de K 

(2.7.13). 
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C2.8) En gardant les notations de 2.7, soit V= (V,,...9V ,P') ,  où pour tout 

i ,  1 < i < m ,  V^cjp e t V* ajp ,  tel que pour tout i  ,  1 ^i<m ,  on 

ait 

(2.8.1) P' riAi(d) cdi + V±cVi 

Il résulte de l'inclusion d . + V.cV' e t de (2.6.14) et (2.6.4) que 

Ma;d 

m 
n 
i=1 

B« CK))c B ,00 

et de l'inclusion Vy DA, (d)cd- + V- e t de (2.6.17) et (2.6.15) que 

Ta;d (Br;l (K) = 
m 
n 
i=1 

5 
12 

(j) 

On désigne par u<) >;a;d:K;x 
fresn. T 

lP;a:d:K:x-
(ou plus simplement par up.a.^ 

fresn. 
TP;a:d quand aucune confusion n'en résulte) l'application (C-linéaire 

continue 

V,a;d;K;x 

m 
n 
i=1 

B„ 
Kx, Xi 

(K) M 
V1 ;x 

;K) 

(resp. T. 
P;a;d;K;x 

: B. 
P';x' 

(K) 
m 
n 
i=1 

B. 
V. ;x 

x n 

induite par u 
Ma;d;K;x (resP' Ta;d:K:x} 

PROPOSITION 2.8.2. Vapplication T f ì l o . j est une scission normale, C-linéaire ( / . a i e 
continue de u 

P ; a ; d 
et on a : 

i) Im d 
P;a;d' 

m 
n 
i=1 

B 
-di+CP1 nAi(d): 

(K) 

ii) Im(id. 
0 ' 

" Mp;a:dTi7;a;d^ BD nA0(d) (K) 

Démonstration. Le fait que Tp.a.c j es t une scission normale de Pp^. ^ résulte 

aussitôt de la proposition 2.7.13. On a donc 

Im(Tp.a.d) = Ker(id n 
1^i^m 

BD (Kl tD;a;d µD;a;d) = lpm 

= Kerfid 
BCK) 

m ~ Ta;d Ma;d' 

m 
n 
i=1 

li (K) = Im(T , 
m 
n 
i=1 

Bv (K) 

m 
n 
i=1 

B 
-d4+A, (d) 

CK) 

m 
n 
i=1 

Bu (K) 
m 
n 
i=1 

Bri nC-d.+ A: Cd)) 
CK) CCI .23 , C2.7.13) 

et C2.6.3)). Or, il résulte de 2.8.1 que TJ L n A12 + A^d)) = - d^CP'n A^d)) 

ce qui démontre l'assertion Ci) . De même, on a 
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Im(icL 
BD, (K) MP;a;d TP;a;dj 

= Ker(TP;a:d} Ker(xa.d) flBpl(K) 

= Im(idB(K) -Ma;d T A ; D ) nBp t (K) = BA (d)(K)nBp)(K) = Bp, n A (d ) CK) Cl-2 , 2.7.13 

et 2.6.3), ce qui démontre la preposition. 

Remarque 2.8.2.1. Si x f désign e un point de K  différen t de x  ,  on n'a pas 

en général 

V f l A Cd);x CK] = BD 'flA fd);x CK) 

ni 

B 
-d.+CP'nA.(d));x« 

: CK) = B 
-d.+CP'flA. Cd));x 

CK) 

et l'image de l'application ains i que celle de 
i/,a ,Q,Jv,x 

id, 
~BflfCK) MP;a;d;K;x ' LP;a;d;K;x' 

n'est pas indépendante du point x ' de K .E n 

revanche, comme en vertu de 2.8.1 -d ^ + (P' n A^(d)) = £L n C - d ^ A ^ d ) ), il en est 

ainsi si pour tout i  ,  1 < i <m ,  (N P - +  N PC - Vi e t (]NP -Pf) + N pc ]NP -V1 

CC2.6.27), (2.7.14) et (2.6.3)). Plus généralement, soient p ' et p" deu x entiers, 

p' £ W , p"€ IN ,  tels que p' +p"=p ,  K' Cresp. K") un polycylindre compact de CF 

(resp. <CP ) , x' un point de K' et supposons que pour tout i  , 1 ^i m̂ , 

[(NP x № )  - V. ] f(0> x NP Ì ( N P x  ]NP ) - V-

et 
[(̂ pt x JNP ) - V ] + ( { 0}x]Np ) c ( * F x  1NP ) - P' 

Alors pour tout xy et x'2' ,  x'jeK " ,  x'2'€ K" , en vertu de 2.8.1, 2.6.26 , 

2.7.14 et 2.6.3, on a 

^d^CP'nA.Cd)) ; (x' ,x'')(K' x K") ~ ^^(p'nA^d)); (x' ,x'2')(K, x K"} 

et 

BP'nAo(d);(x',x'')(K'xKM) = BP'nAo(d);(x',x'2')CKf XKM) 

et il résulte de 2.8.2 que 

Im TP;a;d;K' xK";(x',x") ~ Im TP;a;d;K'xK"; (x' ,x'p 

et 

Im(idT 
% t ( K ' x K " ) MP ;a;d;K'xK";(x',xV) LP;a;d;K'xK";(x',xï) = 

= ImCid^ Bp, (K'xK") "MP;a;d;K'xK";(x',x^) TP;a;d;K'xK"; (x',x'2')J 
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Corollaire 2.8.3.- On a 

IIÏICLU 
T > ; a ; d ' " BP'nCNp- A (dV 

CK) = B 
U 

1<iân 
cd.+p.; 

CK) 

Démonstration. On a 

ImCMi -P ;a ;d^ 
c B , 

'd,+lV 
00 + ...+B, 

d + V 
m m 

(10 e B U 
1^i<m 

(d.+P.) 
CK) 

(2.6.14 et 2.6.4) . Soit f  € B = 
1<i<mv 

(d,+P4) 
[K) .  Si l'on pose 

g = (id 
BD, (K ~MP;a;d TP;a;d} 

Cf) on a donc g  € B 
U 

1<i<m 
(di+Di) ,00 

et il résul-

te de la proposition 2.8.2 que g  € B. 
'P'n A CdJ 

CK) donc 

g E BD flA (d) 0 ( U 
1<i<m 

(di + Di) 
(K) (2.6.3) , et en vertu de 2.7.12, on a 

g € B 0 0 d'où g  = 0 C2.6.2). On en déduit que £  = Mp.a.d Tp-a-d^ '  ce 

prouve que Im(u . 
D;a;d 

= B n 
1<i<m 

(d4+P4) 
(K) . Or, il résulte de 2.8.1 et 2.7.12 que 

U (d . +P.) = P' n (î̂  - A (d)) , ce qui démontre le corollaire. 

1<ian 

Remarque 2.8.4. Soient D1 , , Dm  de s parties de N p . Pour qu'il existe une par-

tie P ' d e W satisfaisan t à la condition 2.8.1, il faut et il suffit que pour 

tout ie t j  ,  1  ̂i < j  ̂m ,  on ait 

(2.8.5) (d, +P.) nAi(d)cdi+Pi 

En effet, s'il existe une partie P ' d e iP satisfaisan t à la condition 2.8.1, 

pour tout j  ,  1   ̂j <m ,  on a d . + p. c P' e t pour tout i  ,  1   ̂j <m ,  on a 

P' n A. (d) c d. +P- ,  d'où (d . +P.) n A. (d) c d. +P- .  Réciproquement, si pour tout 

i et j ,  1   ̂i < j m̂ ,  on a (d - + p.) n A - (d) c d. + P. e t si l'on pose 

P1 = U 
1^i<m 

Cd,+P,) pour tout i  ,  1  < i < m o n a d ^ + P̂  c P ' e t 

P' n A, (d) = [( U 
1<j<i 

:d.+ P,)) U (d.+p.) u ( u 
i<j<m 

(d,+P,))]n[(d,+ NP)-C U 
1<i<i 

Cd,+NP))] c 

c d . +p. . 

Si pour tout i  ,  1^i^ m ,  p . = INP ,i l est clair que la famille 

(PJ 1^i<m 
satisfait à la condition 2.8.5 et si P ' es t une partie de 1N P conte -

nant U 
1<iân 

Cd, + W) , par exemple P ' = W ,  P ' satisfai t à la condition 

2.8.1. La proposition 2.7.13 est ainsi un cas particulier de la proposition 2.8.2. 
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COROLLAIRE 2.8.6.- Soient D1, …, Dm des partie* de NP telles que pour tout 

i et j , 1 < i < i < m on ait 

(d- + P-) nA^d) czdi+Pi 

Alors on a : 

•i µa;d 
m 
n 
i=l 

B„ (K)) = B QII 
1 < i < m 

di + Di (K) 

ii (Ta;d Wa;d 

m 
n 
i=1 

D 
i 

00 = 
m 
n 
i=1 

D n(-d,+A.(d)) (K) 

Démonstration. Il existe une partie P ! d e W satisfaisan t à la condition 

2.8.1 (cf . 2.8.4). Posons P  = (P1 ,... ,Pm, Pf ) . Alors on a 

Ma;d 

m 
n 
i=1 

Bdi(K)) =  M ( p , a J = B u 
1 < =i < m 

cdi+0i) 
(K) 

(2.8.3) et 

tTa;d Ma;dJ 

m 
n 
i=1 

B, 
31 

(K)) 
= Im(TP:a:d MP:a:d3 = ImCTP:a:d} 

m 
n 
i=1 

B- l.+(P'n A^djr 
(K) 

(2.8.2 et 1.2). Or, il résulte de 2.8.1 que ^ +  (P'nA^d)) = Vi n (̂  +  Aj[(d)) , 

ce qui démontre le corollaire. 

Remarque 2.8.7.- Soit P 1 un e partie de ]N P . Il existe une famille 

^i^1<i<m ^ e Parties de ^ P satisfaisan t à la condition 2.8.1. En effet, il 

suffit de poser pour tout i  ,  1  < i <m ,  P ^ = (-d̂  +Pf) n JNP 

COROLLAIRE 2.8.8.- Soit P ' une partie de iP .  Alors on a : 

i) Ta;dCVCK)) = 
m 
n 
i=1 B-d. i+(P'f1Ai(d)) 

(K) 

ii) (idB(K)-Ma;d W (Bn,(K)J = B_ 
hs :d) 

(K) 

iii) Ma:d Ta:dJ 
B„. (K) = B. U ' f H l N -A («D) 

(K) 

iv) fid 
B(K) "Ma;d a;dJ 

-1, 
(BB,(K)) Vu(lNp-A„(d)) (K) 

v) (µa;d ta;d) -q :BFL,(K)) =  B „, 'UA„ (d) (K) 

Démonstration. Il existe une famille CP^)q<i< m d e parties de lP satisfaisan t 

à la condition 2.8.1 (cf. 2.8.7). Posons V = (.Vy..,V, fdsV) • Alors on a 
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Ta;d(VK)) = Im^V,a;J e t (idB(K ) " "a;d Ta;d} (V (K» = 

=Im(id 
"Bpl(K) "MP;a;d TP;a;dJ et les assertions (i) et (ii) résultent de la pro-

position 2.8.2. De même, on a (ua; d T A ; D ) (Bpl (K)) = ImCUp.a;d Tp;a.d) =Im(Mp;a.d) 

(2.8.2 e t 1.2), et l'assertion (iii ) résulte du corollaire 2.8.3. D'autre part, 

il résulte de l'assertion (ii) que 

(idB(K) "Ma;d Ta;dKBP-u(MP-A fd))(K) ) = 1W (d)(K ) = 

" Bpt(K) uBA (d)(K) = Bp,(K) nlm(idB(K) -pa;d xa;d) 

et de 2.7.13, de (1.2) et de l'assertion (iii) que 

KerCidg^ -ua;d xa;d) = lm(ua;d Ta;d) = B p̂ (d ) (K) 

donc Ker(idB(K)-Ma;d Ta;d)eBpiu (KP.A (d))(K) 

(2.6.6), ce qui démontre l'assertion (iv). De même, il résulte de l'assertion 

(iii) que (Ma; d Ta;d)(Bp, d)(K) ) =Bp,n(Np d))(K ) = Bp,(K) n B p̂ d ) (K) = 

= B0,CK)nim(u ,  r :d) et de 2.7.13 et de (1.2) que 

Ker(Ma;d Ta;d} = Im(idB(K) " Ma;d Ta;d} = BA (d) 00 
, donc 

KerCu 
Ma;d Ta;d^ cVuA_ Cd)(K) 

(2.6.6), ce qui démontre l'assertion (v). 

COROLLAIRE 2.8.9 Soient V*,... ,P des parties de Ir . Alors on a 

(ta;d) 
-1 

m 
n 
i=1 

B-n 
i 
(K)) =BA 

X ( d ) U[ U 
1<i<m 

((d.+ VJ nA.(d))] 
(K) 

Démonstration. On a 

Ta;d(V(d)Ul U 
1£iân 

((d,+A,)nA,(d))] 
(K)) 

m 
n 
i=1 

B 
•d.+ŒA (d)U( u 

1^i<m 
ïd, +P,)nA,0)))]nA-(d)] E U 

m 
n 

1=1 
BP,n(-d4 +A,Cd)) 

:K) 

m 

n 
i=1 

B^ (K)n 
m 
ïï 
i=1 

B 
-d,+A, Cd) 

CK) 
m 
n 
i=1 

d1 
V 

(K) n IIÏICT^ . j) 

C2.8.8, 2.6.3 et 2.7.13) et 

Kerfx 
a;d 

i = ImficL 
BCK) •Ma:d W 

= B. 
Ao (d) 

(K) c R . 
Ao [d)U[ 

1<1 <TTI 

II [Cd. +P-)nA. Cd))] 
CK) 

(2.7.13, 1.2 et 2.6.6), ce qui démontre le corollaire. 
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Remarque 2.8.10.- Si la famille ^p-\<±<m satisfait à la condition 2.8.5, on 

vérifie facilement que 

A 0(d)U U 
1==i==m 

(Cd, +V.) n A. (d)) ] = A (d ) U ( U 
1<i<m 

(d, + P,)) 

et on a donc 

.-1 
a;d 

m 
n 
i=1 

Bd (K) = B 
\ ( d ) U U 

1£iân 
(di , + Di) 

CK) 
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§3.- Théorème de division conditionnel 

(3.0) Dans ce paragraphe, on se fixe une fois pour toutes deux entiers p  et m , 

p € K ,  m  € N ,  un élément d  = (d-,... ,d ) d e ( N p ) m ,  un élément 

a=( a i,...,aj d e «C*) m un ouvert U  d e C F ,  un point x  de U ,  un poly-

cylindre compact K  de C conten u dans U  e t tel que x  € K ,  une famille 

f = (f.j,... ,f"m) d'élément s de r(U , 0 )  e t on désigne par J  l'idéa l cohérent 

de Ou1  engendr é par f^,...,f m .O n rappelle (chapitre 0) qu'on désigne par 

B(K;f) l'applicatio n (C-linéaire continue 

B(K;f) : B(K)m —• B(K ) 

définie par 

B(K;f)(g1,...,gm) = 
m 
Z 
=1 

(fi|K)gi ,  pour (g 1,...,g m)€B(K)
m 

et par J „ l'imag e de T(K,J ) 
T (K,0TÎ) 

B(K) dans B(K ) , qui n'est autre que 

l'image de l'application B(K;f ) . Enfin, on remarque que 

(3.0.1) l | B ( K ; f ) | | 
K 

m 
Z 

1=1 
HfJI K 

<m sup 
1=a<m 

fi 
K 

et si K ' désign e un polycylindre compact de C P conten u dans K  e t tel que 
o 

x€K', on vérifie aisément que 

(3.0.2) rK' .K 
B(K;f) B(K';f) 

m 

rK'.K J 

Enfin, on rappelle (2.7.14) que le sous-espace B A 
n̂(d) ;x' 

(K) 

(resp. B 
• d ^ W î x 

(K) pour 1  == i ^m) d e B(K ) n e dépend pas du point 

x' de K . On le désignera simplement par B, 
V d ) 

(K) (resp. B 
-d.+A.(d) 

(K)) 

(3.1) On désigne nar vf:a:d:K:x 
l'application C-linéaire continue 

vf;a:d:K;x 
: B(K) —> B(K ) 

définie par 

v£;a;d;K;x =  i d B ( K ) + ( B C K ; £ ) "  ^ d ; ^ o Ta;d;K;x 

Si K ' désign e un polycylindre compact de (C P conten u dans K  e t tel que 

x E K' , en vertu de (2.7.8) , (2.7.9)et (3.0.2) , on a 

(3.1.1) rK',K vf;a;d;K;x vf;a;d;K';x rK',K ' 
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PROPOSITION 3.1.2. - Les conditions suivantes sont équivalentes : 

i) v £;a;d;K;x 
est Inversible (en tant que morpklsme d'espaces de Banack) 

ii) v 
f;a;d;K;x 

est bljective. 

iii) pouJi tout g  , g € B(K), Il existe une Camille unique Cgi)0<iâ n 

d'éléments de B(K ) telle que pour tout i , 1  ^ i m̂ ,  g- € B -di+Ai(d) 
CK) 

g C B 
V d ) 

CK) et 

g = 

m 

E 
1=1 

gi (fi|K) + g0 

Démonstration. L'équivalence des conditions Ci) et Cii) résulte du théorème de 

Banach et l'équivalence des conditions Cii) et Ciii) des propositions 2.-7.13 

et (1.4) , Cb). 

PROPOSITION 3.1.3.- SI l'on suppose que V r . ^ . i . v ^ est Inversible et s i l'on pose — — — — — — — — — — — — t , a, o., J \ . , X 

a f ; a ; d ; K ; x T a ; d ; K ; x ° v f ; a ; d ; K ; x 

on a i 

i) Im (of;a;d;K;x) 
m 
n 
i=1 

B-d. ii+Ai(dj 
(K) 

ii) Im(i d 
" B O O 

- B(K;f) oo 
'f ;a;d:K;xy 

= B 
A^CdJ 

(K) 

iii) pour tout g  ,  gEB(K ) ,  s i (g. ) 
0<i<m 

désigne l'unique Camille 

d'éléments de B(K ) telle que pour tout i  ,1==i^ m ,  g. eB 
-d.+A,(d] 

(K) 

g0 E BAo (d) (K) et g 
m 

E 
i=1 

giCfi|K)+go (cf. 3.1.2) , on a 

af;a;d;K;xC^ = (g1, …, gm) 

e t 

(idB(K)-B(K;f)oaf;a;d;K;x)(g) =gQ 

iv) B(K;f ) est une scission de a 
f;a;d;K;x 

v) les conditions suivantes sont équivalentes : 

a) a. 
f;a;d;K;x 

est une scission [t-Linéaire continue, normale) de 

B(K;f) ; 
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b) Im(B(K;f)) nB 
'Aid) 

(K) ={0} ; 

c) pour tout g  ,  g e JK ,  tí existe une famille Cg¿) ̂ <i<m d'^™2-^ 

de B(K ) telle que pour tout i  ,  1  < i <m g ^ B . d.+A-Cd)' 
CK) at 

g = 
m 
Z 

1=1 

g^Cf-lK) 

d) pour tout g  ,  g e J ,  si Cg , ) 
0<i<m désigne V unique Camille 

d'éléments de BCK ) telle que pour tout i  ,  1 £ i <m g, €B_ 
d.+A. Cd] 

CK) 

geBA. (d)CK) et g  = 
m 
Z 
i=1 

g,Cf-|K) + go Cc£ . 3.1.2 ) on a g o = 0 

Démonstration. Les assertions Ci) et Cii) résultent de (2.7.13) et C1.4), Ce) , 

Cii), l'assertion (iii ) de (2.7.13) et (1.4),Ce), (iv), l'assertion (iv) de 

(2.7.13) et (1.4), (c), (iii) et l'assertion (v) de (2.7.13), de (1.5) et du fait 

que JK = Im(B(K;f)) . 

Exemple 3.1.4. En gardant les hypothèses et les notations de la proposition 3.1.3, 

si m= 1 ,  comme B_ , .  CA^OO =  B̂  »  i]L résulte de (3.1.3), (i) que 

af;a;d;K;x est surjective et de 3.1.3, (iv) que °f.a.¿.j(.x ° B(K;f) = idg^Q 

c'est-à-dire que o " t. a, Q , A. ,x, est une rétraction de B(K;f) . E n particulier, 

°f-a'd'K-x es t une sc^ss^on normale de B(K;f ) e t on a 

Im(B(K;f)) n B 
Ao(d) 

m =  ini 

(3.1.3, (v)) . 

COROLLAIRE 3.1.5.- SI l'on suppose que vf'a'd'K'x eqt ^v&is^^* alors pour tout 

a' ,  a' € (C*) , et tout x ' , x'eK t.A.V.VI &>t Inversible et si t , a , 0 . , j \ , x 
l'on pose 

°î;a' ;d;K;x' Ta';d;K;x' ° vf ;a' ;d;K;x' 

öf;a';d;K;x' 
ne dépend ni de a ' ni de x' 

limons tr at ion. Comme 
v£:a:d:K;x 

est inversible, il résulte de la proposition 

3.1.2 que pour tout g  ,  g£B(K ) ,  il existe une famille unique Cg -
*rO<iäii 

d'éléments de BCK ) tell e que pour tout i  ,  1  ^ i m̂ 8ñ €B_ d.+A, Cd; 
CK) 

êo€BA fdl(K ) e t § 

m 
Z 
i=1 

gn-CfjK) + g„ Par une nouvelle application de la pro-

position 3.1.2, en vertu de 3.7.14, on en déduit que pour tout a ' ,  a ' € (C*) 

et tout x ' x' £K 
vf;a';d;K;x' 

est inversible. D'autre part, il résulte 
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de 3.1.3, Ciii) que 

of;a';d;K;x'' (g) = (g1, ...., gm) = af;a;d;K;x̂  

ce qui démontre le corollaire. 

(3.1.6) S'il existe a ' ,  a ' e(C*) m et x ' ,  x ' £K ,  tels que 

vr ,  , v ,  soi t inversible (dans quel cas, en vertu de 3.1.5, pour tout a " , 
xja jajJv̂ x 

a"e(C*) ,  et tout x " ,  x"e K ,  vf . n . d . K . » . est inversible), on désigne 

par Gr.i , l'applicatio n C-linéaire continue 

Or.j.v :  B ( K ) >  BCK)in 

définie par 

a£:d:K " Ta';d;K;x' ° v£;af ;d;K;xf 

(qui,en vertu de 3.1.5, est indépendante de a 1 e t x ! ). 

^Ë^SèË-AiLûL" Supposons m > 2 e t soit i  ,  1<iQ< m .  S'il existe j Q , 

1 =30<i0 >  tel Que d . ^d ^ ,  et si l'on pose 

d' = (di, ......, di-1, di+1, ...., dmdmdm) 

il résulte de 2.7.11 et 2.7.12 que 

Ai(d) = Ai(dI) ,  0^i<i Q 

Ai0(d) = 0 , 

A. (d) = A. -(d1) ,  in<i^m 

Si en plus, on pose 

a' - (a1,...,ai _1, a± +1,...,am) 

et 

f = ( £ v . . . , f i _ 1 t £ + 1 , . . . , y 

on a 

vf';a';d';K;x v£;a;d;K; x 

En effet, 

vf;a;d;K;x = ldB(K)+ CB(K;f) " Ma;d;K;x3 oTa;d;K;x = 

idB(K) 

m 
E 
i=1 

:BCK;£.; 

d. 

aiMK;x Ta;d;K;x;i 
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où 

Ta;d;K;x;i 
a. 
î 
-1 d. 

TK;x 

î-l 
n 
j=1 

f i d 
-UB(K) 4d.;K;x J 

(2.7). Or, il est clair que pour tout i  ,  1  <i<i , 

Ta;d;K;x;i Taf;df;K;x; i 

D1autre part, il résulte de 2.6.17 que 

Im 
ift-1 

n 
j=1 

(idB(K) - %;K;x 
= B 

I M P . u 
1<j <r 

;d.+ir" 
1 

(K) 

et en vertu de 2.6.20, on a 

KerC 
di„ 

lK;xJ 
= KerCq 

d. ;K;x' 
= B 

W- (d 
*o 

NP 
CK) 

Comme l'hypothèse implique que 

d. + W c d + W 
i-1 

M 

i=1 
(d+np) 

d'où 

B 
NP U 

1^j<i0 

Cd,+1NP) 
(K)cB 

N p - f d . 
1 
+NP; 

(K) 

on en déduit que 

Ta;d;K ;x;i = 0 

et que pour tout i  ,  iQ < i  ̂m , 

Ta:d:K:x:i a. 
i 

-1 
d. 

TK;x n 
1<i<i-1 

1*0 

(io B(K) "qd-;K;x- Taf:d!;K:x;i-1 

ce qui démontre que 

vf';a';d';K;x v£;a;d;K; x 

En particulier, 
V j a ' j d 1 ;K;x 

est inversible, si et seulement si, il en est de 

de même pour 
vf;a;d:K;x 

et sous cette hypothèse, il résulte de ce qui précède 

que si l'on pose 

of;d;k = (oi, ........, om) 

on a 

Gi = 0 '  Gf';d';K = (öV->Gi -1> Gi +r---am3 
o 7 7 o  o 
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et 

idB(K) - B(K;f) af':d';K = ldBCK)"B(K;f) °a£;d;K 

Dans la plupart des questions, on peut donc supposer, sans perte de généralité, 

que pour tout i  et j ,  1  < j < i <m, on a dj < ^di 

(3.2) Pour tout i  ,  1  ^i=$m ,  on désigne par E . (f ) (o u plus simplement 

par E.(f ) ,  quand aucune confusion n'en résulte) la partie de W défini e par 

E. (f) = E (f.) 
i;xv x  i 

{deiNP 
3 
Id 

f. 

g 
.d 

h 
(x) t 0} 

(cf. 11,1.1). 

Soit V = (D1,…,Dm,, D') , où pour tout i  ,  1 <i^m ,  V^lNP e t 

P'clP ,  tel que pour tout i  ,  1  <i^m ,  on ait 

Di + Ei ; x (f) C D' 

Alors on a 

B(K;f) 
m 
n 
i=1 

BCi;x(K) CB x(K) 

(2.6.5 et 2.6.4) et on désigne par BD;K̂ . (K;f) (ou plus simplement par B^(K;f) , 

quand aucune confusion n'en résulte) l'application C-linéaire continue 

BD;x(K;f) 
m 
n 
i=1 

Bdi :x 
(K) BD';x(k) 

induite par B(K;f) . Si en plus pour tout i  ,  1  S i m̂ , on a 

V1 nAi(d)cdi+Pic:P' 

on a 

vf;a;d;K;x(V;x(K))cV;x« 

(2.8), et on désigne alors par v^.r . .i.v. l'applicatio n C-linéaire continue 

v0;f;a;d;K;x : V;x(K) V;xTO 

induite par V r , o . , „. .  Dan s la suite du n°3.2, on supposera que V satisfai t 

aux conditions précédentes. 

PROPOSITION 3.2.1.- Les propriétés suivantes sont équivalentes : 

i) vP;f;a;d;K;x 
est inversible [en tant que morpiaisme d'espaces de Banack) ; 
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ii) \ 
P;£;a;d;K;x 

est bl\active ; 

iii) роил tout g  ,  g€Bpl%x(K) , i l exista una famille unlqua Cgi)0<i< m 

d'éléments da B(K) telle qua pour, tout i  ,  1 <i m̂ ,  qgi EB , R  , LPOI (ЛSSЛЛ, (К), 

g o € l W (d);x(K ) ^ 

g = 
m 
Y. 

1=1 
gi(fi|K)+g0 

ÎïHÎ IajLï0_n• propositio n résulte du théorème de Banach et des propositions 

2.8.2 et 1.4,(b). 

PROPOSITION 3.2.2.- SI l'on supposa qua v„.r ,A.V. ast Inversible at si l'on 
I/;r ;a ;а;к;х 

posa 

aP;£;a;d;K;x TP;a;d;K; x ° vP;£;a;d;K;x ' 

on a : 

i) Im (oD; f; a; d; K; x) 
m 
Z 
i=1 

В 
-d^CP'nA^d))^ 

(K) 

ii) IrnCid, , 
BD',x (K) - B1 D,x 

(K;f) 
aP;f;a;d;K;x3 " V n A fdl:x(K) 

iii) pour tout g  ,  geBpf.x(K ) ,  si Cgi)0<i< m désigne l'unique famille 

d'éléments de B(K ) telle que pour tout i  ,  1 < i ^ m ,  g i e B_d +(p»n д .(d))- *J® 9 

%eBP-nA0(d);x(K) et e  = 
m 
E 
i=1 

g1(fi|K) + g0 (cf. 3.2.1), OKi а 

aP;£:a;d;K;xtgj = cgp...^ ) 

et 

(id 
DV';x{ (K) 

- V(K*>f) ^îfiaidîKix3 :g) = gn 

iv) Bp.x(K;f ) est una scission da °p. f .a.d.j(.x 

v) les conditions suivantes sont équivalentes : 

a) cu r. .j.v. est  иле. sct&òlon (t-Lináalnc continua, normale) da 
v \ т. ja ja. \ jv jx 

B0;x(K;f) 

b) Im(BD;x (K;f))nD'UAo (d) ;x (¿wx (К) = {0} ; 
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c) pouA touX g  ,  g€Im(B p (K;f) ) il exista une famille Cgi)1<i< m 

d'éléments de B(K ) telle que pour tout i  , 1 < i ^ m , giGB-d.-KP'nA, (d));xCK) 

et g  = 
m 
Z 
i=1 

giC£±|K) 

d) pou*, ;too£ g  ,  g e Im(Bp.x(K;f}) ,  si (g-^osiâ n désigne l'unique 

famille d'éléments de B(K ) ;te££ e que poa* ;tou£ i  , 1 ^ i ^ m , 

gi€B-d. + a?'MA; (d));xCK) g 0 e V n A f d ) ; x ( » 
et e = 

m 
Z 
i=1 

g^£,|K) +gn 

(cf. 3.2.1) , on a g Q =0 

Démonstration. La proposition résulte de 2.8.2, (1.4), (c) et (1.5) . 

Exemple 3.2.3. En gardant les hypothèses et les notations de la proposition 3.2.2, 

si m= 1 ,  comme en vertu de 2.8.1, on a 

- d - + (P'flA ( d ) } = V n  ( - d - +A (d) ) = V 

il résulte de 3.2.2 (i) , que °p. f .a.d-K*x es t surjective et de 3.2.2,(iv) qu e 

aP;f;a;d;K;x°BP;xCK;f) 
= icL 

BD1;x (K) 

En particulier, °f)'f'a'd'K'x es t 11116 scissi°n normale de Bp.x(K;f ) e t on a 

Im(Bp;x(K;f))nBptnA (d);x(K ) = {0} 

(3.2.2, (v)). 

COROLLAIRE 3.2.4.- SI l'on suppose que v ^ . f , a . j . K . x ^  >cnve^6^ò^e, O £ O / LÓ pou/i 

*ou* a 1 ,  a* E (C*) 
,m v^.r. Î.J.T^ . &>t Inversible et si l'on pose 

QP;f ;a' ;d;K;x Tfl;a ' ;d;K;x ° vP;f;a';d;K;x 

P;f;a';d;K;x 
ne dépend de a 1 

Démonstration. La démonstration est analogue à celle du corollaire 3.1.5 par 

une double application de 3.2.1 et 3.2.2, (iii) . 

(3.2.5) S'il existe a ' ,  a ' € (C*)m ,  tel que Vp.f.a, .d.K.x S01 t inversible 

(dans quel cas, en vertu de 3.2.4, pour tout a " ,  a " € (C*)m ,  vp.£.a".d.j(.x 

est inversible), on désigne par Op-f.^.x-x 1'application C-linéaire continue 

aP;f;d;K;x :  BP';x(K) 

m 
n 
i=1 

Bd ;x CK) 

définie par 
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aP;f;d;K;x TP;a';d;K;x vD 
-1 

;f;a';d;K;x 

(qui en vertu de 3.2.4, est indépendante de a 1 ). 

LEMME 3.2.6.- Pour tout point x f x' €K les conditions suivantes sont 

équivalentes : 

i) роил tout i  ,1 < i < m ,  V- +E, .  (f) cW ; 

ii) B(K;£) 
m 
П 

i=1 
4 ;x' 

(K)) c V ; x ' (K) 

Démonstration. Il suffit de démontrer que la condition (ii) implique la condition 

(i) (3.2). Or, lfinclusion 

B(K;f) 
m 
TT 

1=1 
*1 i,x 

(Ю)сВ я, 
v* :x" 

(K) 

implique en particulier que pour tout i  ,  1 û i û m ,  et tout d  ,  d  e 

si lfon désigne par g  l a fonction g  : K —* C défini e par 

g(y) = (y-x') ,  pour y e K , 

on a f i g € B D ' ; x' (К) (car g  € В 
v. ;x-

(K) et comme Е х Д ^ ) = d + Ei. x,(f) , on 

en déduit que d  + E.. ,(f)czt? ! ,  ce qui démontre le lemme, 
i ;x 

PROPOSITION 3.2.7.- Soient p f et p M des entiers, p ! e IN , p" € К , tels que 
p=p' +p" ,  ir : Cp — • (C p la première projection, et supposons que pour tout 

i ,  1 < i <m 

(CN P x Np ) - V-) + ({0} x ]NP ) с C N P X  ] N P )  - P , 

et 
C(1N P x Np ) -P') + ({0} x Г ) с (rf x l̂ P ) - p» 

A & V L Ó роил ̂ oot posent x'de К £e£ que тг(х') = тг(х) on a : 

i) pour tout i  ,  1 й i == m , 

Р, + Еi;x, (f)eP' ; 

ii) B « ,(K;£ ) = Bv (K;f ) ; 

iii) si _c ,  „ eòt Inversible, II en est de même pour v̂ , . , t/,r,a,Q,is.,x t/ , г ,а ,a, д. ,x 
^ on a 

GP;f;d;K;x' aP;f;d;K;x 
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Démonstration. Il résulte de 2.6.26 que pour tout i 1 < m 

dq qz 
(K) = B, 

v-;x 
(K) 

et 

R. 
Vlm

9x' 
(K) = B, 

D;x 
(K) 

On en déduit que 

B(K:f) 
m 
n 
i=1 

R 
Di;x 

c B 
P';x' 

ce qui démontre l'assertion (i) , l'assertion (ii ) en découle aussitôt, et l'asser-

tion (iii) en résulte par une double application de 3.2.1 et 3.2.2,(iii). 

Remarque 3.2.8.- Supposons m > 2 e t soit i  ,  1 <i ^ m .  S'il existe j 

1  ̂<  1 tel que d . ^  d. et si l'on pose 

d' = (d'1,...,d'm-1) = (d1, ..., di0 - 1, di0 + 1, ..., d m) 

et 

D = (D1,...,Dm-1,D') = (D1,...,Di0-1,Dio + 1, ..., D m , D"') 

il résulte de 3.1.7 que pour tout i  ,  1  ^i^m-1 

P' n A - Cdf) e d ] + p . c p ' 

Si en plus, on pose 

a' - (a1,...,ai _ 1,a ± + 1,...,a m) 
r» n 

et 

f =  (f1,...,fi.1,f i+ r . . . , y 

il est clair que pour tout i  ,  1  < i <m-1 ,  on a 

V. +E.i,x (f')cP' 

et on démontre comme dans 3.1.7, que 

vP:f';af;d':K;x vP;f;a:d;K;x 

et que si 
'P:f:a:d:K:x 

est inversible et si l'on pose 

aP;f;d;K;x = C a1 '"->V 
on a 

a. = u 0P;f;d';K;x C a1 — '° i -1> °i +1'-"'
am ) 

O O 
et 

id 
"P f ;x 

[K) -B, (K;f ) ,0P;f';d';K;x: id, 
V:x< 

(K) - B >;x' .(K;f) ap;f;d;K;x 
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^Ë^I?^.^JL 3 . 2 . 9 I ^ ' ~ L'hypothèse que les fonctions fp..., f son t définies et analy-

tiques sur un ouvert de (C P contenan t le polydylindre K  n'es t pas indispensable 

pour les résultats des nos (3.1) et (3.2) . Il suffit de disposer simplement que 

pour tout i  ,  1 < i ^ m ,  fiGB(K) ,  définir l'application B(K;f ) pa r 

B(K;f)Cg1,...,gm) 
m 
1 
i=1 

gi £i pour (g1,...,gm ) e всю m 

et poser J K = Im(B(K;f)) 

(3.3) Dans la suite de ce paragraphe, on se fixe une fois pour toutes une relation 

d'ordre total < a  sur NP,  compatibl e avec sa structure de monoîde et moins 

fine que la relation d'ordre produit û su r ]N P . Pour toute fonction analytique 

g su r U  o n désigne par g x l e germe de g  a u point x  . 

LEMME 3.3.1.- Soit P  = (P^,... ,t?m, P') 9 où роил tout i  ,  1^i=$ m 

Р ^ с М р et P'cl^ P ,  toi que роил tout i  ,  1  ^ i m̂ ,  on att 

Vi + Ei;x(f^'D' 

et considérons les assertions suivantes :  (cf. 11,1.1 et II, 1.2 ) 

0 Ma;P';J;K;xc{d1>-">dm } ' 

ii} Pa;P';J;K:xnVd) = 9 ' 

iii) Im(Bp;x(K;f))nBp, лд (d);x(K) = 0 

Alors on a 

a) (i) =>(ii) => (iii) ; 

b) si {dr...,dm}cPa;1?f;J;K; x ,  alors (i ) » (ii ) ; 

c) si Von suppose que 

où pour tout i  , 1 < i <m ,  P  ' П A^ (d) с d^ + P̂  с p ' ; 

3) pour tout i  , 1 < i <m ,  f - И0 et v  (f, ) = d, ; 

1 ,X 01 , X X  X 

Y) vp.f. -d'K'X EST ̂ПИЕЛ̂^̂Е > 
6) ImCB (K;f) ) - JKnBp, (Ю 

а£олб (ii) <=> (iii). 

Démonstration. Pour démontrer (a), on remarque que M^.p, . j.j£.x<= (d^,... ,dm> 

implique que Pa;p,;J;K; x c= U 
Ш < т 

(d, +]NP) (1,1.2) , et comme 
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A n(d) = IT u 
1<i<m 

(d. + W] , on en déduit que (i) implique (ii). Démontrons que 

(ii) implique (iii) . Soit g  e Im(Bp.x(K;f)) n Bp ,̂  ^ # X ( K ) e t supposons que 

g^O .  Alors on a v a ; x(g) e AQ(d) ,  et comme g  € Im(Bp.x(K;f)) , on a g e J K 

et g e B p t ; x ( K ) ,don c E x ( g ) e ^ , d'o ù V a ; x ( g ) E P a ; p f ; J ; K ; x .  On en déduit 

que P  . f l,. T. v, YnA . ( c l ) i $ ,  ce qui prouve (a). Pour démontrer (b), il suffit 

de démontrer que si {d1,.,...,dm}cP a.«ni.T.if-v > alors (ii) implique (i). Soit 

d£M ,. T.„ .  Alors d€ P . f l l . T . v # Y e t (ii) implique que d € U  (d.+]N p) , 
CLfV JJJA-J-X . 0L9V >J>J^>x 1<i< m 1 

donc il existe i  ,  1 < i < m ,  tel que d .  ̂d ,  et comme d . € P > f l,. 7 > l f ,  on 

a d . =d ,  ce qui prouve (b). Il reste à démontrer que sous les hypothèses de (c) 

on a (iii) => (ii). Supposons que P  l f li. 7.if. YnA n(d) i 0 .  Alors il existe g  , 

g e j K g£B .  CK ) g^O ,  tel que v a. x(g) € AQ(d) .  Or, en vertu de 

l'hypothèse (ô) , g€Im(B (K;f) ) et en vertu des hypothèses (a ) et (y), 

l'assertion (iii) entraîne l'existence d'une famille ( g x ) 1 < i < m d'élément s de 

B(K) tell e que pour tout i  ,  1   ̂i ^ m ,  g i e B _ d + ^,nA № j  ; x(K) et 

g = 
m 

E 
i=1 

gi (fi|k) (3.2.2), (v), D'autre part, en vertu de l'hypothèse ($ ) et de 

(II, 1.1.3), pour tout i  ,  1^i< m ,  v  . x(g i(f i|K)) € P
1 n Ai(d) ,  et comme la 

famille ( Al(d)) 1̂ î m 
est formée de parties deux à deux disjointes de N p ,  pour 

tout i  et j U i < m ,  U j < m ,  i^ j , o n a v a ; x(g iC£ i| K)) f v^.Jg. ( f j K)), 

d'où v 
a;x 

Ce) min 
1^iân 

V 
a;x 

(g,(f,|K)) (II, 1.1.5). On en déduit qu'il existe i 

1 < i < m ,  tel que v 
a;x 

(g) G P1 fi A - (d) ce qui est absurde, car Vrt:x (g) €A_(d) 

et A,(d ) n A (d) = 0 

Remarque 3.3.2. L'hypothèse {cL,..., d }c Pa;D' , J;K;x „, d e 3.3.1, (b) es t en par-

ticulier vérifiée si pour tout i  ,  1  ^i m̂ ,  f . ^ 0 ,  v . (f.) = d. e t 

Ei; x(f)C D D'autre part, comme l'inclusion 

Im(B D;x CK;f))eJKnB d';x(K) 

est toujours vérifiée, l'hypothèse (ô ) de (3.3.1) , (c) signifi e que pour tout 

g .  g € B 0 . 0 0 s'il existe une famille (gp-^i ^ d'éléments de B(K ) 

telle que 

g = 
m 
E 
i=1 

Sibilo 
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alors il existe une famille (gj)i<-;< m d'élément s de B(K ) tell e que pour tout 

i ,  1 < i < m ,  g{eBp ; x a O e t 

g = 

m 
Z 

i=1 
gi ( fi|K) 

On peut démontrer que cela est vrai sous des hypothèses assez générales sur V et 

J ,  par exemple si V satisfai t aux hypothèses de 7.1.0 et JK  es t engendré 

comme idéal de B(K ) pa r JKnBpt>x(K ) .  (Voir aussi 3.3.5) . 

PROroSITION 3.3.3.- SI poux tout i  ,  1  ̂i <m ,  f . ¿0 at v . ( f .) = d. , 

at Jbt Vr .41i(1/.v abt tnva/UÂbta, Za& conditions AulvantoA sf 6ont aqulvalantoA : x , a, Q j j\,x 

i) af-d- K ^ unz ^c^^°n te B(K;f ) ; 

ii} Ma ;J;K;xc{dV->dm} ' 

iii)Ma;J;x-{dV-dm> i 

iv) Pa ;J;K;xnV<» = 0 ' > 

v) Pa ;J;xnVd) = * • 

Démonstration. En vertu de 3.1.3, (v) et 3.1.6, l'équivalence de (i), (ii) et (iv) 

résulte de 3.3.1 et 3.3.2 appliqués à =  ... = Vm = V% = 1 ? .  DTautre part, 

l'équivalence de (ii) et (iii) et de (iv) et (v) résulte de (II, 3.7). 

PROPOSITION 3.3.4.- Solent V = (P-j,... >\>V%) , ou poux tout i  ,  1 < i йm , 

^ с К р at V <=lP ,  at J1 un Idéal cokaxant da 0^ toi qua J a . On 

шррола qua : 

a) poux tout i  ,  1 < i й m , 

V1 flAi(d) cdi + t?icP» ; 

b) роал touxt i  ,  1 < i < m , 

V E i ; x ( f ) c P ' ; 

c) vP;f;a;d;K;x ut *^>еллМл. •> 

d) Pa;P';J';K;xnAo(d) =0 • 

Alors : 
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i) °r> .e A v ^  un e òcÀMòÀjovi de B ^ (K;f ) ; 

i / J l J O . J J v J X i / , X 

ii) J,^nBpt.x(K) = Im(Bp;x(K;f)) . 

Démonstration. L'inclusion JcJ ' impliqu e que 

Pa;Pf ;J;K;x<=Pa;Pl;J,;K;x 

(11,1.3), et en vertu de l'hypothèse (d) , on a 

Pa;P';J;K;xnVd) =0 

On en déduit que Ofl .f.j.v. es t une scission de B ^ (K;f ) ((3.3.1),(a) et 

(3.2.2),(v) ). D'autre part, 1 ' inclusion J c= J1 impliqu e que 

(3.3.4.1) Im(Bp.x(K;f ))eJKnBpt.x(K)c:J^nBpl.x(K) . 

Pour démontrer l'assertion (ii) , il suffit donc de vérifier que 

JKnV;xCK)cIm(V(K;f)) • 

Soit g  ,  g€J^nBp,.x(K ) ,  et posons 

h = g-Bp.xCK;f)oOp;f;d;K;x(g) 

En vertu de 3.5.4.1, on a h€J ' nBflf, (K) , et si h^ O ,  on en déduit que 
Jv 1 / , X 

va;x(h)£Pa;P';J';K:x '  et CQnme 

I m ( i \ . (K ) -BP;x(K;f) °°V,£;à;Yi;x> " V nio(d);x(K) 

((3.2.2), (ii)) , on a va.x(h ) € ^0(d) >  ce qui est contraire à l'hypothèse (d). 

On a donc h  = 0 , d'où g  € Im(Bp.x(K;f) ) , ce qui démontre la proposition . 

Remarque 3.3.5. On peut remplacer l'hypothèse (d ) de la proposition 3.3.4 par 

l'hypothèse plus forte 

Ma;P,;J,;K;xC{d1""'dm} 

D'autre part, en appliquant la proposition 3.3.4 à J'= J ,  on en déduit que si 

VP;f;a;d;K;x es t inversible et si Pa;P ; J)K;x n V d ) = 9 o n a 

ImCBp CK;f) ) = V B p. 0 0 

(voir remarque 3.3.2) . 
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ÇÇ^Çtt^IÇë^L?!^*" EN Q^dant 1<LS notations et IQJ> hypothèses de. la proposition 

3.3.4 ,  on a 

Pa;P»;J';K;x Pa;P';J;K; x e t Ma;P';J';K; x Ma;P',J;K; x ' 

Ç̂Jl̂ tlit.i0-1!- E*1 vertu de 3.3.4.1, il résulte de 3.3.4 ,(ii) que 

J'K U BD';x (K) = JKOBD';x(K) 

ce qui démontre le corollaire. 

^ ^ J A I ^ J L I A L I ' " En gardant les notations d e >£a proposition 3.3. 4 , 4x si 

^uppo^e en p&tô que J £ eô; t engendsie comm e ^déa£ de B(K ) pan. ^nBp?.x^K ) 

on a J £ = JK . 

Démonstration. Comme l'inclusion J c j ' impliqu e que L c j ' ,  et comme J ' 

est engendré par J ' nB^t. (K) ,  le corollaire résulte de 3.3.4, (ii). 

COROLLAIRE,^._8.- Soit J * un Idéal cohémnt d e 0^ tel quz 3^3X .  On suppose, 

que. : 

a) V r . ^ . j . T r . eô t XnveAô>cb£e ; 

b) P a ; J ' ; K ; x N V D) =  <* • 

Alors 

i) a£.j.j( est  une- soÁMSloví dz B(K;£ ) ; 

ü ) J¿ = JK 
^^^tl^-ti0-1!- Le corollaire est un cas particulier de la proposition 3.3.4 appli-

quée à P 1 = ... = Vm = V ' = Np . 

Rejnarque^S^. En vertu de (II, 3.7), l'hypothèse (b ) du corollaire 3.3.8 peut 

être remplacée par la condition équivalente 

P a ; j ' ; x N V D ) =0 

ou par l'une des hypothèses plus fortes (et équivalentes entre elles) 

Ma;J';K;x 1 ' '  m 

ou 

M a ; J 1 ; x e { d l ) . . . , d m } 

Bien entendu, si l'on suppose en plus que pour tout i  ,  1  < i m̂ ,  f - ^ 0 
i ,x 

et v  . (f.) = d. ,  ces quatre conditions sont équivalentes (3.3.3 et 3.3.6). 
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§4. Inversibilité de v r ,  v 
I i a J Q J J v J X 

Dans la plupart des propositions du paragraphe précédent on suppose que 

"Vr. .A.y. 1 1 es t inversible (inversibilité qui équivaut à la possibilité de 

"diviser" par f  (cf.(3.1.2))) . Il est donc primordial d'étudier des conditions 

suffisantes pour qu'il en soit ainsi. Dans ce paragraphe, on étudie de telles con-

ditions suffisantes pour des polycylindres "petits". Vu l'importance capitale de 

cette question, on la développera très en détail et on exposera trois versions 

différentes des résultats obtenus. La première (prop. 4.3.1) énonce les conditions 

suffisantes les plus faibles qu'on puisse obtenir par nos méthodes. La deuxième 

(prop. 4.4.3) met en évidence la variation "continue" de ces conditions en fonction 

du point x  ,  et la troisième (prop. 4.4.5) nous fournit explicitement des poly-

cylindres compacts K  pou r lesquels ces conditions sont vérifiées. Les résultats 

de ce paragraphe étant très techniques, on intercalera quelques commentaires 

informels pour en faciliter, si possible, la lecture. Dans les paragraphes suivants, 

on en exposera une formulation plus agréable (mais aussi moins précise) en termes 

de filtres. Néanmoins, les énoncés techniques de ce paragraphe sont incontourna-

bles pour la démonstration de certains de nos résultats. 

(4.1) Soient p  u n entier, p  € ]N ,  S un e relation d'ordre total sur NP 

et d  u n élément de NP .  On désigne par Sa (d) l a partie de NP  défini e par 

S (d ) = {d't ]NP : d<„a d'} 

par ra;d i l e nombre d'éléments de l'ensemble fini M( S (d)) (cf. (1,1.3)) 

r ,  = card(M(S (d))) 
a;d a 

et pour tout i  ,  1  <i<ra.̂  ,  par sa.-^(d ) l'élémen t de JN P défin i par 

récurrence sur i  pa r 

s -Cd) = min (M(S (d))) 

CX, I e x e x 
et 

Sa;i(d) =mina(M(Sa№)-{Sa;1(d)-"'Sa;i-1(d)}) ' 

Si en plus < a es t moins fine que <  ,  ce qui implique que < ^ es t une relation 

de bon ordre (1,1.5) , on a s^.^fd ) = s^(d) ,  où s^(d ) désign e le successeur 

de d  pou r <  (chapitr e 0), et 

(4.1.1) Sa (d) = U 
1^i^r 

a;d 

C s . C d ) + # ) 
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(1,1.3). 

Exemple 4.1.2. Si û es t la relation df ordre antilexicographique < T su r ]N P 

(cf. 1,3.12.1), on vérifie facilement que pour d  ,  d e F ,  d  = (d1,... ,dp) , 

on a r^ .  ̂= p e t pour tout i  ,  1  û i < p , 

s -(d) = ( ô - , 6. ) 
a;i il ' '  îp 

où 

Si, j 

0 ,  pour 1   ̂j < i 

dj + 1 ,  pour j  = 1 

d - ,  pour i  < j < p . 

(4_i2) Dans la suite de ce paragraphe, on se fixe une fois pour toutes un entier 

p ,  p  € N ,  et une relation d!ordre total û su r NP,  compatibl e avec sa 

structure de monoïde et moins fine que la relation d'ordre produit <  su r 1N P . 

On rappelle (chapitre 0) qu'on désigne par d(.,. ) la distance sur C p défini e 

par la norme sup : 

d(x,v) = sup 

1̂ 1<P 
X i - V i pour x  = (x1,... ,x ) eCp et y = (y1,... ,y ) € <CP. 

Si x  es t un point de C p e t A  un e partie de C p ,  on pose 

d(x,A) = inf 
ytA 

(d(x,y)) 

Si B  es t une partie de C p , on pose 

d(A.B) = inf 
x£A 

(d(x,B)) = inf 
xeA.yeB 

(d(x,y)) 

On a d(Â,B ) = d(A,B) , et si Â  es t compact on a d(A,B ) =0 ,  si et seulement 

si Â n B i 0  . 

Si A  désign e une partie de C p e t L  un e partie compacte de A  ,  on désigne 

par II-H L ^ a semi"norme sur l'algèbre C(A ) de s fonctions continues sur A 

à valeur dans C  ,  définie par 

||f |L =  sup 
y€L 

|f(y) I ,  pour f  £C(A) 

qui est une norme, si et seulement si , A  = L . Bien entendu, si L  es t un poly-

cylindre compact de C p , et feB(K ) ,  on retrouve la norme définie dans le 

chapitre 0 . 

LEMME 4.2.1. - Solent K un polijc.ijZA.nd/Ki compact de C p ,  x  un point de K  et 

f un élément de B(K ) , f 0̂ .  On pose d  = va>xfd(f) ,  r=ra,dfd f , poux tout i  , 

1 < i , r ,  6 i =  sa;i(d), 6  = ( 6 r . . . , 6 r ) UX ^ = T l [ ; 6 " i ; x ; i ( f ) ,  oû 

11 = (1,...,1) , 11 e (C*)r .  MOKS on a : 
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i) роил tout y  , y G К 

f(y) 
1 

d! 
a^f 
Skdd 

[x) (y-x) 
d r 

E 
i=1 

fi (y ) (y -x) 
Si 

ii) роил, tout i  ,  1   ̂i й r , 

№ * 2 
S1 |+ +| Si | +i-1 

e(K;x) 
S1 |+...+| Si 

1/P' 

6. 
к ;х ) ) Il fil 

•к 

Démonstration. L'assertion (ii ) résulte de ( 2 . 7 . 2 ) . Pour démontrer l'assertion (i), 

considérons l'élément g  d e B(K ) défin i par 

g(y) = 
1 

d! 
Э 1 d. tr 

3XÛ 
x) (y-x) d pour y  e К 

On remarque que 

8 е В Ш ; х ( К ) с В Д Ш (K) 

et 

f-geB„ 
a4 
(d);xl 

(K) = В 
14F-Ads„(ô);x 

(K) 

(4.1.1) , et comme 

К е ^ И ; 6 ; К ; х ) = В Д „ ( « ) < » 

et 

Ker(idBm -  Pïï:S:K:x ттг s.K:x =  , 
W-sà A0 (6);x 

(K) 

((1.2), (2.7.13 ) et (2.8.3)) , on а 

CidB(K)- MU:6:K;x T1I;ô;K; x Kf-*> = 0 

d'où 

(idB(K) - W1I;ô;K;x TU;6;K;xKf) = « 

ce qui démontre le lemme. 

PROPOSITION 4.2.2 .- Solent U un auvent de (C p ,  L  un e pantle compacte de U  , 

Rq = d(L,(Cp-U) ( R Q > 0 ,  car L  es t compact) , R  a n nombre *ée£, R € ] 0 , 1 ] , 

tel oue R < R ,  L' la nantie de C p déklnle pan 

L' = {y € (Cp : d(y,L) <R} 

(L' &Ô;£ une pantle compacte de C p ^  on a LcL'cL'clI ) et f un élément de 

r(U,0 D) .  Роил tout x  ,  x e L ,  tel que f  f- 0 et tout polycytindxe compact 
W ^ p x 

К de C p tel que xe K e t tel que роил tout i  ,  1   ̂i <p ,  pV (K;x) <R 

(ce qui Implique que KcL ' ) , si Von pose 
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d " W « > r  = r , 
' a; d 

6. = s .(d ) 
i a; i 

1  ̂i r̂ 

M = sup 
1<i<r 

Si 

oX si Von désigne peut g  Vêlement de r(U,( ) J défini pan. 

g(y) 
1 
d! 

aldlf 
3Xd 

(x) (y-x)d pour y  € U 

On CL 

llf-gllf * ( 2 

ôJ+...4|ôr|+r-1 

l|f|U/R" 
r 
Z 
i=1 

p" 

6, 
(K;x) 

Démonstration» Soit D  l e polydisque fermé de centre x  e t de polyrayon 

(R,R,... ,R) .  Alors on a 

K c D c L ' 

et si l'on applique le lemme 4.2.1 à la restriction de f  à  D  ,  on en déduit 

qu'il existe une famille ^\}-\<^< T d'élément s de B(D ) tell e que : 

i) pour tout y  ,  y  € D 

f(y) - g (y) 
r 
Z 
i=1 

f • (y) (y-x) 
Si 

ii) pour tout i  ,  1  < i < r 

HfillD^2 

lô]l+...+lôil+i-1 
(1/R 

Si 
)||f|ln 

Comme K c D c L ' ,  on en déduit que 

llf-g II v*1 
r 
E 
i=1 

||fi|| K p' 
Si 

:K;x) S 
r 
E 
i=1 

P i Un P " 

Si 
(K;x) < 

r 
E 
i=1 

So 16,1+.--+|Sil+i-1 
(1/R 

Kl 
) №||D P " 

Si 
(K;x) < 

S (2 
|ô1|+... + |ôr| T - 1 

||£|| /R" ) 

r 
Z 
i=1 

P " 

Si 
(K;x) 

ce qui démontre la proposition. 

144 



DIVISION NUMERIQUE UNIFORME 

(4.3) Soient m  u n entier, m  > 0 ,  et d  = (d^,... ,dm) ,  d^ = (d^ ,... ..d )̂ 

1 <i m̂ ,  un élément de (l^P) m .  On désigne par |d | l'entie r défini par 

|d| 
m 
Z 
i=1 

Idil 

m 
Z 
i=1 

p 
Z 
j=1 

dij 

et si l'on pose 

r. = r j , 1 < i <m , 
i a;d . ' 

ô.. = s .(d. ) 
n a;i i 

1 < i <m ,  1  < j ̂ r^ , 

et 

6± =  (ôi r--->ô i r.) >  1  SiSm , 

on désignera par M(d) (resp. N(d)) l'entier défini par 

M(d) = sup 
1^iân 

sup 
1*3^r. 

ôiil 

(resp. N(d) =2 

sup 
1<i<m 

(|ô. |+r.-1)+ d +m m 
Z 
i=1 

ri) 

Si ^  es t la relation d'ordre antilexicographique < T su r NP ,  on vérifie 

facilement en vertu de 4.1.2 , que 

M(d) = sup 
1^iâm 

| d . | + 1 

et 

N(d) = 2 

sup i 

1<i<m 

P 
Z 
3=1 

jd. J + 2p - 1 + | d | + m 

.pm 

PROPOSITION 4.3.1.- Scient U  u n ouvert d e C p ,  L une partie compacte de 

U ,  R Q = d(L,C
p-U) , R  un nombre Keel , Re]0,1] ,  tel que R < R Q ,  L 1 

la partie de C p définie pan. 

L' = {y € (Cp : d(y,L) < R} 

m a n entier, m  > 0 , et d  = (d-,...,d ) a n élément de (]N p) m .  On po4e 

ri = r a ; d . ,  1 < i >  m, 

et 

6. - = s -  (d.) ,  1 < i m̂ ,  1^i ^ r. 
IJ a; j i  '  J i 

PoaA ;tou£ élément f  = (£.,...,f ) d e (r(U, 0 ) ) m , t:oat po^nt x  de L e t 

i m  cp 
^oat polycylindJie compact K  d e (C P tels que 
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i) pour tout i  ,  1 î <m ,  £ . / 0 ^  v  . (f.) = d. 

ii) x€K ,  et pouA tout i  ,  1 <i <p ,  pV(K;x ) < RR ; 

si l'on pose 

ai 
1 

d. ! 
l 

a 
| d , | 

fi 

ax 
d. 

(x) 1 si <m, e t a  = (a_ ,...,a ) 

1 m 

oJLou l<u> inégaLLtéi 

(4.3.1.1) e(K;x) 
|d |+...+|d | 

(p" 
6ii (K;x)/P' 

d. 
(KpO^CR1 

M d ) 
CNCd)|[f | | L , ^ | a ± | , 

1 < i £m ,  1  < j <r̂  , 

Impliquent que : 

a) ||(B(K;f ) -Ma.d.K;x)oXa.d;K;x||K <1/ 2 ; 

b) vr A y est inversible et | |v ^ 
I J â J Q JlV JX " f ;a:d;K;x 

il 
K 
^2 

Démonstration . Remarquons d'abord que comme B(K ) es t un espace de Banach, l'as-

sertion (b) résulte de l'assertion (a) . Or, si pour tout i  ,  1  <i m̂ ,  on 

désigne par g . l'élémen t de T0J90 )  défin i par 

g±(y) = ai(y-x) 
d. 

Ï i pour y  e u 

on a 

ll^^ad;K;x)W -a;d:K:xll K 

m 
Z 
i=1 

||fi-gi||K lTa;d;K;x;illK 

D'autre part, il résulte de la proposition 4.2.2, que pour tout i  ,  1  <i<m , 

on a 

l l * i - M K S < 2 
l«ill + - +  l«irj+ri-1 

f l l L . / R 
M(d) ri 

E 
j=1 

p" 
6.. 

(K;x) 

et comme 

Ta;d;K;d;iJlK= 2 

| d1 |+ . . . + |d . !+ i-1 
e(K;x) 

d J + . . . + | d . | 
( V C a . p" 

d. 
. i 

[K;x))] 

(2.7.2) , on en déduit que 

||CBCK;£) - M A ; D ; K ; X) oTa;d;K;x||K < 

S(1/(2 
m 
Z 
1=1 

rA)3 
m 
Z 
i=1 

ri 
Z (N(d)||f|L,/(RJ 

,M(d) 
a,|))e(K;x) 

|d1| + ... + |di| 
p" 

6. -
. 1 1 

(K;x)/p" 
di 

(K;x) 
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et les inégalités 4.3.1 .1. impliquent que 

|| (B(K;f) - µa;d;kd;x V,d;K;xHK =1/Z ' 

ce qui démontre la proposition. 

COROLLAIRE 4.3.2.- En QOA.da.nt les notations de la proposition 4.3.1 , soit 

V = (2^,... ,0,0' ), où pour tout i , 1 < i ^ m ,  Di cNP at î?'cKp ,  tel que 

pour tout i  ,  1   ̂i m̂ t on ait 

P' n A- Cd) ed. + V- aV1 

St en plus des conditions (i ) et (ii ) de la proposition 4.3. 1 ,  on a 

iii) pouA tout i  , 1 < i m̂ ,  P, +E,.x(f) cp1 ; 

alors les Inégalités (4.3.1.1 ) impliquent que v f ì . . , „v est Inversible 
i/,r ,a,Q,js. ,x 

et VD 
- 1 
f;a;d;K;x"K 

< 2 

Démonstration. On a 

vP;£;a;d;K;x- idBpl .x(K) + (BP;x(K;f)"MP;a;d;K;x3 °TP;a;d;K;x 

et CB p (K;£ ) - Mp.a;d;K;x) o Tp;a;d;K;x es t la restriction de 

(B(K;f) - p .A.V. ) ox .A.v- à  Bn « • ^ >   ̂es t sta°le par cet opérateur (3.2) . ajQjiv^x a j d j J v j x u j x 

Les inégalités (4.3.1.1) impliquent donc que 

(B ( K ; f ) - Mp;a ;d ;K ;x ) TPD;a;d ;K ;x l lK -1 /2 

(4.3), et comme B^T.XQ 0 es t un espace de Banach (2.6) , on en déduit le corollai-

re. 

Remarque 4.3.3.- La proposition 4.3.1 ains i que son corollaire 4.3.2 seraient vides 

de sens, si la conjonction des inégalités (4.3.1.1) était impossible. En fait, 

pour tout élément f  de (r(U,0 ï)m e t tout point x  de L ,  satisfaisant à la 

condition (i) de la proposition 4.3.1, il existe un système fondamental de voisi-

nages de x  form é de polycylindres compacts de (C p satisfaisan t à la condition 

(ii) de la proposition 4.3.1 ains i qu'aux inégalités (4.3.1.1) . En effet, soit 

C u n nombre réel, C > 1 .On peut d'abord se limiter aux polycylindres compacts K 

tels que x€ K e t e(K;x ) <C .  Cet ensemble forme un système fondamental de 

voisinages de x  ,  car il contient tous les polydisques fermés de centre x 

(2.1). Ensuite, on remarque que si pour tout i  ,  1  ^ i m̂ ,  on pose 

e. = [ R " W / ( C 
|dJ+... + |d.| 

NCd) llflL.nia-l 
la condition (i) de la proposition 4.3.1 impliqu e que £^> 0 ,  et alors les iné-
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galités (4.3.1.1) sont impliquées par la condition 

(4.3.3.1) p"(K;x ) e n 

1 <i<m 
n 

1<j<rj 
V 

Sij-di;Ei 

(pour les polycylindres tels que e(K;x ) < C ) (cf. 1,4.7), 

Or, comme pour tout i  et i ,  1  < i m̂ ,  1  < j <r- .  on a d. < ô  - • ,  et 

comme la relation d'ordre < ^ es t compatible avec la structure de monoïde de ]N P 

et moins fine que la relation d'ordre produit ^  ,  il résulte de (1,5.1.2 ) 

et (1,5.1.4 ) que pour tout nombre réel R ' , R ' >0 ,  on a 

( n 
1^iân 

n 
1<j<r 

VS 
ij 

-di;ei n{ipï,...,p") e (IR*) p Vi , 1 ^ p, p"<inf{Rn,R'}} ^ 0, 

ce qui démontre l'existence d'un système fondamental de voisinages de x  form é de 

polycylindres compacts de C P satisfaisan t à la condition (ii) de la proposition 

4.3.1 ains i qu'aux inégalités (4.3.1.1) . 

En particulier, on en déduit, en appliquant la proposition 4.3.1 à un compact L 

réduit à un seul point x  ,  que pour tout point x  d e U  e t tout élément f  d e 

(r(U,0 )) m satisfaisan t à la condition (i) de la proposition 4.3.1, il existe un 

système fondamental de voisinages de x  form é de polycylindres compacts K  d e 

Cp ,  contenus dans U  ,  tels que Vr.,.ilV. Y (o u v^ . r.0. -,.v.__ , si l'on se 

place sous les hypothèses du corollaire 4.3.2) soit inversible. 

(4.4). La proposition 4.3.1 fourni t des conditions suffisantes pour l'inversibilit é 

de Vr ._.jdssfs.^. ,  uniformes sur un compact contenu dans U  .  On désire obtenir 

des conditions uniformes sur l'ouvert U  .  Pour cela, on énoncera une variante 

de cette proposition, en remplaçant certaines des constantes, intervenant dans les 

conditions, par des fonctions continues sur U  ,  selon un procédé bien classique. 

En vue des applications, il faudra expliciter ces fonctions, de même que dans la 

proposition 4.3.1, on a explicité les constantes, au lieu de se borner à affirmer 

leur existence . On est ainsi amené à introduire les définitions et notations 

suivantes. 

(4.4.1). Soit U  u n ouvert de (C p .O n désigne par RU  l a fonction 

RU ; U R* + 

définie par 

Ry(x) = inf{d(x,(CP-U)/2,1} 

(Si U  = (Cp ,  la fonction es t constante, égale à 1). La fonction RU  es t une 

fonction continue. Pour tout x  ,  x e U ,  si D  désign e le polydisque fermé de 

centre x  e t de polyrayon (R^(x),.. . ,Ry(x)) e (]R*)P ,  on a D c U .  Si U ' dé -
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signe un ouvert de (C p conten u dans U  ,  pour tout x  ,  x  €Uf ,  on a 

(4.4.1.1) ^ , (x) ^ïUx) 

Si p f et pM désignen t deux entiers, p' e IN ,  p" £]N ,  tels que p'+p " = p , 

et U ! et U" de s ouverts de (C p e t (C p respectivement , et si U  = U'x U" , 

alors pour tout x ' et x" ,  x1 eU ,  x " EU" ,  on a 

(4.4.1.2) yx',x") = i n f ^ . U ' ), L,(x") } 

si en plus U " = (Cp o n a 

(4.4.1.3) yx',^' ) = RUT(x') 

(4.4.2) Soient U  u n ouvert de (C p ,  m  u n entier, m e IN ,  et £  u n élément de 

(C(U))m ,  où C(U ) désign e l'algèbre des fonctions continues sur U  à  valeurs 

dans ( E .  On désigne par A f l a fonction 

A£ : U —-> F* 

définie par 

Af(x) = sup{||f||D ,1} ,  pour x6" U , 

où D  désign e le polydisque fermé de centre x  e t de polyrayon 

(Ry(x),...,R^(x)) e (]R*)P .  La fonction A £ es t continue. (Cela résulte de la con-

tinuité des fonctions RU  e t f  ,  et du fait qu'une fonction continue sur un 

compact y  es t uniformément continue). Si U ' désign e un ouvert de CP  conten u 

dans U  pou r tout x  ,  x  € U ' ,  on a 

(4.4.2.1) A£[U'Cx ) = Af(x) 

(L'opérateur qui associe à f  ,  A £ n'es t pas local, c'est-à-dire qu'on n'a pas 

en général A£|U t = A£|U'). 

Si g  désign e un élément de (C(U) ) ,  on a 

(4.4.2.2) Af+g < Af + Ag 

et si a  désign e un élément de C  ,  on a 

(4.4.2.3) Aa f ^sup{|a| ,1}.Af 

Si m ' et m" désignen t deux entiers, m ' £ IN ,  m " t ]N ,  tels que m'+m " = m , 

et f  e t f" de s éléments de (C(U))jfq m e t (C(U))m " respectivement , tels que 

f = (f',f") , alors on a 

(4.4.2.4) A £ = sup{A£l,A£„} 

Si h  désign e un élément de C(U ) , on a 
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(4.4.2.5) Ah f = Ah *Af 

PROPOSITION 4.4.3.- Solent U un ouvert de (C p ,  m  un entier, m > 0 , et 

d = (d^.-.jd^) un élément de (]Np) m .  On pose 

r. = r ,  ,  1 ^ i m̂ , 
i a;d . ' * 

et 

Sij = Sa;j (di) , 1 < i < m , 1 < j < ri . 

VOUA tout élément £  = ( ff ) de (r(U, 0 J )m t:out point x  d e U e t £out 

polycylindre compact K  d e C p t:e£ ô que 

i) pou* , toot i ,  1<i< m ,  f. i 0 e * v f f .) = d. ; 

J- j A O t j A J L 1 ii) x eK ,  et pour tout i  ,  1  <i<p ,  pV(K;x ) < Rn(x) (c e qux Implique, 

en particulier, que Kc U (cf . 4.4.1)); si Von pose 

ai 
1 

d.! 
i 

3 
di 

Fi 

3X 
d. 

(x) 1 s i sm 

et 

a = (a1, .... , am) , 

alors les inegalités 

e(K;x) 
|d |+...+|d.| 

P" 
Sij 

:K;x)/p" 
d. 

(K;x) < 

(4.4.3.1) 1 < i<m ,  1  û j <r-

< (RU 
Jvl(d) 

(x)/(N(d) A,(x))) 
1 

d.» 
i 

S 
Id , 

fi 
(x) 

3X 
d. 

Impliquent que : 

a)||(B(K;£) - M A ; D ; K ; X ) °  T , ; K ; X | | K< 1/ 2 ; 

b) Vr fds dsj eô£ Inversible et v1 -1 
;a;d;K;x "K 

< 2 

Démonstration. La proposition 4.4.3 résulte aussitôt de la proposition 4.3.1 appli-

quée à L  = {x} et R = Ry(x) , en tenant compte de 4.4.1 et 4.4.2. 

COROLLAIRE 4.4.4.- En gardant les notations de la proposition 4.4.3 , soit 

V = ( P P m , P f) ,  où pour tout i  ,  1^i< m ,  PiC]N p QX V1 c 1NP ,  tel 

que pour tout i  ,  1 < i < m , on ait 
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P' fiAi(d) czdi + P.cP' 

Ŝ c en vins des conditions (i ) et (ii) de la proposition 4.4. 3 ,  on a 

iii) pour tout i  ,  1<i< m ,  p . + E.. (f)cp' ;  alors les inégalités 

(4.4.3.1) impliquent que vp.f .a.d.j(-x ^ est inversible et̂ Il vp-f-a-d-K-x"K = 2 * 

Remarque 4.4.5.- En raisonnant comme dans la remarque 4.3.3, on constate que pour 

tout élément f  de (r(U, 0^)) m e t tout point x  d e U  ,  satisfaisant à la con-

dition (i) de la proposition 4.4.3, il existe un système fondamental de voisinages 

de x  form é de polycylindres compacts de (C P satisfaisan t à la condition (ii) 

de la proposition 4.4.3 ainsi qu'aux inégalités (4.4.3.1) . Le point crucial de la 

proposition 4.4.3 est que les seconds membres des inégalités figurant dans la 

condition (ii) sont des fonctions continues, à valeurs strictement positives, et 

que ceux des inégalités (4.4.3.1) sont le produit d'une fonction continue sur U 

à valeurs strictement positives, RU 
Mfd) 

(N(dlA£ 
, par la valeur absolue d'une 

fonction analytique sur U 
1 

a. i i 
3 
|d,l 

fi 

Sx 
d. 

ne s'annulant qu'à des points de U 

ne satisfaisant pas à la condition (i). 

(4.5) Pourvu que la condition (i) de la proposition 4.4.3 soit satisfaite, la con-

jonction des inégalités figurant dans la condition (ii) et des inégalités 

(4.4.3.1) est impliquée par une condition de la forme 

e(K;x) < C e t p"(K;x ) GV 

où C  es t un nombre réel arbitraire tel que 1  < C e t V  un e partie de (]R*) P 

appartenant au filtre de Hahn-Banach F 
o 

~Of. 
sur (]R*J défini par la relation 

d'ordre ^  su r 
a 

NP (cf. (1,5.1. 3 ) 

V = ( n 
1£i<m 

n 
1<j<r 

Vo.-d.;'-.-
n l ' 1 

n ( n 
1<i<p 

V 
ei;RLf(x) 

(cf. (1,4 .7)) ,  où 

ui = (RU 
J V Ï ( d ) 

(x)/(C 
IdJ +...+ |dJ 

N(d) A,(x))) 
1 

d.! 

S |di| fi 
(x) 

3X 
di 

et (e^,...,ep ) désign e la base canonique de R p ) . Cette formulation, tout en 

nous assurant que l'ensemble V es t non vide, ne nous permet pas d'exhiber un 

élément p " d e (R*) P appartenant à V  .  En revanche, si A  désign e une matri-

ce inversible à p  ligne s et p  colonne s à coefficients dans 1 R définissan t 

la relation d'ordre <  su r ]N P (cf . (1,3.11) et (1,3.12)) , et <  , l a rela-

tion d'ordre sur W défini e par cette matrice (cf.(1,3.5)) (qui induit <^<a sur 

]Np) ,  le filtre de Hahn-Banach F < a, sur (]R*) p défin i pa r cette relation 
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d'ordre (cf.(1,4.3.1 ) et (1,4.4)) est plus fin que le filtre F ° (1,5.1. 5 ) et 

la famille ~ a 

(rA(Ep;ô;£):)ôe]R+, eçlR* 

en est une base (1,4.10) ; les lemmes (1,4.10.1) et (1,4.11) permettent de déterminer 

explicitement 6 e t e ,  ô  €1R+ ,  e ç]R* ,  tels que 

rA(Ep;S;E) CV , 

et comme 1'ouvert 

Ep;S;E = {(p1, ... ; pp) E (R+*)p : p1 < e, p2 < p1S, ... , pp < pp - 1} 

de (]R*)p es t défini de façon simple, on obtient une paramétrisation particulière-

ment pertinente d'un ouvert non vide de (]R*) p (l'ensembl e rA( E r  )  es t un 
+ A  P ; Ô ; E : 

ouvert, car r ^ es t un homéomorphisme) contenu dans V  .  Bien entendu, l'ensemble 
rA(E . x )  n'appartien t pas en général au filtre F < (cf . I, 5.1.5), mais 
A p,o, e = a 

cela importe peu. En vue des applications, il faudra entièrement expliciter ce 

procédé, et on est ainsi amené à introduire les définitions et notations suivantes. 

Dans ce qui suit, on aura à considérer à plusieurs reprises des bornes supérieures 

de familles de nombres réels positifs ou nuls, indexées par des ensembles finis. 

Par convention, si l'ensemble d'indices est vide, la borne supérieure sera égale 

à zéro. 

(4.5.1) Soient A  = (a, rt)-^,  ̂ A^n^ un e matrice inversible à coefficients dans 
kit 1^k<p,1<£<p 

R définissan t la relation d'ordre ^  (cf . (1,3.11) et (1,3.12)) et m  u n 

entier, m > 0 . On définit deux fonctions 

QA;m : (NP)m R+*R+* 

et 

^A-m 1 (1̂ )in x (R+)m x R+xR+ * R+fq* 

comme suit. Pour tout i ,  1   ̂l S p ,  on pose 

k£ = sup{k:1 <k<;p ,  ak£ t 0} 

I£ = { k : U k < k £ , a k £ < 0 } 

b = sup 
1<£<P 

sup 
k E Il63 

(|akl| / akl,l) + 1 

et 

n = in f 
1<£<P 

(akl,l 

On remarque que comme la relation d'ordre < ̂ <a est moins fine que la relation 
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d'ordre produit <  su r ]N P ,  pour tout l ,  1  <£<p ,  on a a v > 0 ,  ce 
l 

qui implique que b  Z 1 e t n > 0 
D'autre part, soit d  ,  d  € (]Np) m ,  d  = (d1,... ,dm) ,  d ji €1N

P , 

d- = ( d . d. )  .  Pour tout i  ,  1<i^ m ,  o n pose 
i i l ' '  îp y r 

r. = r , 
i a;d . 

et pour tout j  ,  1   ̂j  ̂r̂  , 

Sij = Sa ; j (d i) , Sij = ( sij1, ... , Sijp)qsf 

k|j = sup{k : 1 <k <p 
P 
I 

£=1 
akl (Si jl - dil ) + 0)}fads 

Iï . = {k : 1 <k < k! . 
n i l 

P 
E 

£=1 
akl (Sijl - dil) < 0 }fds 

et 

T'ij(d) = 
p 
E 

£=1 
ak'ij, l (Sijl - dil) 

On remarque que comme pour tout i  e t j  ,  1  û i m̂ ,  1  < j <r̂  ,  d̂  <^ ô — 

on a n!.(d)> 0 .Le s fonctions $ A . m e t ^ A . m son t définies par 

V j d ) = S UP< S^P 
1<i<m 

sup 
1<j<r-

sup 
keiï, 

p 
z 
£=1 

ak «iii^l^ijCd)) + 1 , b ] 

et 

W d > £ > R ) = i n £ inf 
1^iân 

inf 
1 < j < ri 

£i 

1/n^Cd) 
RVn } 

pour e = (e l f...,e m) € ( R * )m e t R e F 

On remarque que 

(4.5.1.1) Q A;m W ^ 1 

D'autre part, comme pour tout i  et j , 1 < i < m ,  1   ̂j < r̂  ,  nj j (d) >0 e t 

n > 0 ,  la fonction T A es t croissante en R  e t e - ,  et si R < 1 
9 A; m i 

(resp. R<1 ) ou s'il existe i  ,  1^i^ m te l que Ei  < 1 (resp . ei<1) o n a 

(4.5.1.2) Y A. m(d ,E,R)<1 

(resp. Va;ms (d,e,R) <1). 

Si pour tout i  ,  1  < i<m ,  e . < 1 ,  et si l'on pose 

nï(d) = in f 

1 < j < ri 
nj.Cd) 

on a 
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(4.5.1.3) ¥ A (d,e,R } = inf{ inf 
1̂ iâr 

e. V n ! ( d ) ( R V n} 

Remarque 4.5.2.- Ce qu'il faut surtout retenir de la définition de la fonction 

y. ,  c'est qu'il existe un nombre réel n  ,  n  > 0 ,  et pour tout d  , 

de (1№j ,  et tout i  ,  1 ^i<m ,  un entier r ^ , r^>0 ,  et pour tout j 

1 < j < r̂  ,  un nombre réel nj j > 0 >  tels qu e pour tout e ,  e  e (]R*)m , 

s =  (e-|,...,em) e t tout R  ,  R e R * ,  on ait 

(4.5.2.1) Y A (d,£,R ) = inf{ inf 
1^i<m 

inf 

1 < j < ri 
eii 1/N'ij , R1 / n} 

En plus, pour tout d  ,  de (Np)m ,  et tout i  ,  1  <i<m ,  il existe un nom-

bre reel n[ , r)[>0 ,  tel que pour tout e  ,  etdR*)" 1 ,  e  = Ce1,... 9e^ 

tel que pour tout i  ,  1  < i m̂ ,  Ei < 1 ,  et pour tout R  ,  R  e JR* ,  on ait 

(4.5.2.2) yA;m (d,c,R) = inf{ inf 
1<i<m 

£i 

1/ni 
R V n } 

On remarquera que n  dépen d uniquement de la matrice A  ,  r ^ uniquemen t de d 

(et de la relation d'ordre < ^ ) tandis que nj j o u n j dépen d aussi bien de 

A qu e de d  (mai s bien entendu ni de e  n i de R  ) . 

Remarque 4.5.3.- Si la matrice A  es t à coefficients dans ]R + (cf . (1,3.12), 

(ii)), on a b  = 1 ,  d'où 

(4.5.3.1) *A-m(d) = SU D 
Uiân 

sup 
1<j*r. 

sup 

k€l! 

P 
Z 
£=1 

akl (Sijl - dil):n'ij (d))))))) + 1 

pour d e (]Np)m 

Si < ; es t la relation d'ordre antilexicographique < ^ su r K p e t A  l a 

matrice unité I  (cf . (1,3.12.1)) , on vérifie facilement, en vertu de 4.1.2, que 

pour tout d  ,  d e (!Np)m ,  on a 

(4.5.3.2) *!.m(d ) = sup 
1^iân 

sup 
1<j<p 

d. . + 1 
1 1 

et 

(4.5.3.3) Vm(d,e,R) =  inf< inf 
1<i<m 

Ei , R } 

pour e = (er...,em) e (R*)m e t Re R* . 

LEMME 4.5.4.- Soient A  une matrice inversible à co évidents dans 1 R définis­

sant la relation d1 ordre ^ ,  d = (d-,... ,d ) un élément de (Np) m ,  R 

un nombre réel, 0 < R < 1 , et e = (£i>'-->em) un élément de (]R*) m .  SI l'on 

pose 
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r. = r j  ,  1   ̂i  ̂m , 
i a;d . '  ' 

Sii ' s < x ; № ( d i ) • 1=iS m '  1SjSr i ' 

6o = *A:m № 

et 
£o = Wd'e ,R) 

OZOA>6 pouA. t:ou£ élément p , p = (p.j,...,pp) , de (R*) p £a condition 

(4.5.4.1) P " A ( E P - Ô - e 3 

>tmp&cqu.e que 

i) pour tout i  , 1  ̂i  ̂p ,  p^< R ; 

ii) pour tout i e £ j , 1 < i < m ,  1   ̂j  ̂r̂  , P€V5 
irûi;ei 

[c1 ost-à-dlAC 

P 
ôii 

/1 
d 

L < £ , ) 

Démonstration. Comm e R< 1 ,  en vertu de (1.4.9.3), la condition (4.5.4.1 ) impli-

que (i) (1,4.11) et (ii) (1,4.10.1). 

PROPOSITION 4.5.5.- Soient A  une matrice Inversible à coefficients dans R . 

définissant la relation d'ordre z , U  un ouvert de C p , m  un entier ,  m >0 , 

et d  = (dr...,dm) un élément de (1NP ) m .  Pour tout élément f  = (f-j,...,^) d e 

(lXLi() p))m ,  tout point x de U tel que pour tout i  ,  1 <i m̂ ,  f. ¿ 0 

et v^^Cf^ ) =  ̂ t tout poli/cylindre compact K  de CF t:e £ que x  e K et tioot nom­

bre réel C  ,  1 Ĉ , si Von pose 

ai = 
1 

d.! 
3 
d. 

fi 
( X ) 

3X 
a. 

1 û i m̂ 

a = C a r . . . , a m ) 

ei (x) = [RU 
Mfd' 

(x)/(C 
dJ+... + |d. 

N(d) Af(x))]|a. 1  ̂i < m 

e(x) = (e-(x),...,e (x)) 

So = QA;m (d) 

£ofx) = *A.m(d'eW'RU(x) ) 

et .i-t Von iuppoiz que. 
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(4.5.5.1) e(K;x)^ C et p n(K;x) 6r.(Ei 
p;6 0;e 0(x)^ 

alo>a> on a 

x) K<= U ; 

ii) ll(B(K;£)-Ma.d;K;x)oxa;d;K.x||KÊ 1/2 milh1/2 ; 

iii)v£;a;d;K;x 
est inversible, et l|vf 

- 1 
;a;d;K;x"K 

< 2 

Démonstration. Comme R, t(x) 1̂ (4.4.1) , la proposition résulte de 4.4.3 et 4.5.4. 

COROLLAIRE 4.5.6.- En QOA.da.nt les notations de la proposition 4.4.5 , soit 

V =(Vy >v

m>
v'^ > ou pour, tout i  ,  1^i^m ,  V±clP et V1 c ] N p , tel 

que pour tout i  , 1  ̂i û m ,  on ait 

V n  Ai(d) cd± + V±cV' 

Si en plus des hypothèses de la proposition 4.5.5 , pour tout i  ,  1 < i < m 

on a 

V, + E . x ( f ) e P . 

alors la condition (4.5.5.1 ) implique que K<= U 9 que vp.f.a-j.](.x wvest eA-

^ £ e e t | | v - ! £ ; a ; d ; K ; x | | K < 2 . 

Remarque 4.5.7.- Si ^  es t la relation d'ordre antilexicographique <L  su r 

iP ,  en vertu de 4.5.3, la condition (4.5.5.1) peut s'énoncer plus simplement 

(4.5.7.1) e(K;x) Ĉ ,  p'^Kjx) < CQ ( X ) ,  P^(K;x)<P'1' 
6 

(K;x),...,p''(K;x; < Pp 
So 
f(K;x) 

où 

S =  sup 
1<iân 

sup 
1^1<P 

d. . + 1 

et 

c (x ) = inf{inf 
1^iân 

c i(x), ^(x)} 

Si en plus on se limite aux polydisques fermés de centre x  e t de polyrayon 

p = (p1,...,p ) ,  p £ (]R*)P ,  cette condition devient tout simplement 

(4.5.7.2) P l <  eQ(x) , p2 < P l 

6 
n , Pp < Pp-

nqd 
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§ 5 . - Théorème de division numérique en un point 

Dans ce paragraphe, on pourrait énoncer tous les résultats du § 3 , où figure 

l'hypothèse "KLv,~f;a;d;K; x inversible " (resp."v^.,-D;f;a;d;K;x inversible"), en rem-

plaçant cette hypothèse par les conditions des propositions ( 4 . 3 . 1 ) , ( 4 . 4 . 3 ) o u 

( 4 . 5 . 5 ) (resp . des corollaires ( 4 . 3 . 2 ) , ( 4 . 4 . 4 ) o u ( 4 . 5 . 6 ) ) . Cel a serait fastidieux 

et inutile. En revanche, on traduira ces conditions en termes de filtres, ce qui 

permettra d'énoncer les résultats les plus importants sous une forme moins techni-

que. E n particulier, on déduira, des résultats des paragraphes précédents, les théo-

rèmes classiques de division par une famille de fonctions analytiques ou par un 

idéal, sous une forme néanmoins plus précise, la forme "numérique". Ces théorèmes 

sont des cas particuliers des théorèmes "uniformes" qu'on démontrera auxparagraphes 

suivants.Mais comme ces derniers dépendent des résultats difficiles du Chapitre II, 

il est intéressant de montrer comment les théorèmes "ponctuels" découlent directe-

ment des résultats du Chapitre III et de ceux, élémentaires, du §1 du Chapitre II. 

Enfin, on donnera quelques applications. 

( 5 . 1 ) Soi t p  u n entier, p  G Isl . O n désigne par K p l'ensembl e des polycylin-

dres compacts de C P e t par K p l a partie de K p x CP défini e par 

K? = í(K,x) G Kp x cp :  x G h 

ensemble des polycylindres compacts pointés, c'est-à-dire des couples d'un poly-

cylindre compact K  e t d'un point x  appartenan t à l'intérieur de K  . Pour tout 

point x  , x  G Cp , on pose 

KP = {K G KP :  x G K} t 

l'ensemble K? s'identifian t à la fibre de la deuxième projection 

KP — CP 

au-dessus du point x  . Plus généralement, pour toute partie A  d e (C p , on dési-

gne par K p l'imag e réciproque de A  pa r cette deuxième projection 

KP = {(K,x) G Kp : x G A} , 

et on dit que KPA  es t l'ensemble des polycylindres compacts pointés par un point 

de A , ou plus simplement, pointés dans A  . 

Au paragraphe 2 , on a défini deux applications 

p" :  Kp —> (R*)l P 

et 

e : Kp —> [1,+œ[ 

( 2 . 1 ) .On désigne par p " l'applicatio n 
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p" : KK —• n,+-[ x  (R*) P 

définie par 

£"(K;x) = (e(K;x) , p"(K;x)) , pour (K,x ) € Kp 

Pour tout point x  , x  € C ,  on désigne par p " (resp . p " , resp. e  ) l a res-

triction de l'application p " (resp . p " , resp. e  ) à  K P . L'application p ^ 

(et a. fomtloKÀ. p ^ e t e ^ ) est surjective. (Si x  = (x..,...,x ) es t un point de 

Cp , C  u n élément de [ 1 ,+«>[ e t p = (pp...,p ) u n élément de (R*) P , si 

pour tout i  , 1  ^ i û p , K . désign e la partie compacte de C  don t le bord 

8K^ es t une ellipse de < C (identifi é à R2 )  d e centre x ^ , de demi-grand-axe 

p ^ e t de demi-petit-axe p^/C e t si l'on pose K  = K1 x ... x KP , alors K  es t 

un polycylindre compact de <C p don t l'intérieur contient x  e t tel que 

>(K;x) = (C ,p) cds .) (1) 

L'image réciproque de {1 } x (R*)p pa r l'application p ^ es t l'ensemble des poly-

disques fermés de centre x  , et la restriction de p ^ à  cet ensemble est bijec-

tive (c'est l'application qui associe à un polydisque fermé de centre x  so n poly-

rayon). 

(5.1.1) Soient p  u n entier, p  € *I , et x  u n point de C p . S i F  désign e un 

filtre sur [1 ,-K»[x (R*)p , l'application p " étan t surjective, p " " ' ' (F) es t une 

base de filtre sur K p . D e même, si F ' (resp . F " ) désigne un filtre sur 

[1 ,+<*>[ (resp. (R*+) P ), e"1^' ) (resp . p "~1 (F") ) est une base de filtre sur 

Kp . En plus, la famille 

( e x V ) n p f ( n ) v , £ jlP,£p, " 

est aussi une base de filtre sur K p , autrement dit, si l'on désigne par F ' 

(resp. F ^ ) le filtre sur K ^ engendr é par la base de filtre e ~ (F') (resp . 

P"x\fM) ) y alors l'ensemble {F̂ . , F"} adme t une borne supérieure dans l'ensem-

ble de tous les filtres sur K p , pour la relation d'ordre "moins fin que". En ef-

fet, si l'on désigne par F ^ l e filtre sur K p engendr é par la base de filtre 

Px~1(Ff x F") (o ù F ' x F" désign e le filtre sur [1,+oo [x (R*)p , produit des 

filtres F ' e t F " ), alors F ^ es t la borne supérieure de {F ^ , F }̂ . 

(5.1.2) On appelle filtre d'excentricité sur K p l e filtre engendré par l'image 

réciproque par e ^ d u filtre sur [1,+°° [ form é des voisinages de 1  dan s 

[1,+°°[ . La famille 

(D L'excentricité d u compact K i ,  selon la définition (2.1), est égale à C  , 
tandis qu e l'excentricité de l'ellipse 9Ki ,  selon la théorie des coniques, 

est égale à / 1 - \/Cz .  La fonction C  I •  /1 - 1/Ĉ  étan t croissante (pour 
C ^ 1  ), notre terminologie se trouve néanmoins justifiée . 
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({K£ K x :  e(K;x) < «) CE]1, ̂ + ( 

en est une base. On dira qu'une propriété d'un polycylindre compact est satisfaite 

pour tout polycylindre compact suffisamment centré en x  , si l'ensemble des poly-

cylindres compacts, dont l'intérieur contient x  , satisfaisant à cette propriété 

appartient au filtre d'excentricité sur K p . 

(5.1.3) On dit qu'un filtre H  su r KX p es t un filtre d'effilements, s'il est en-

gendré par l'image réciproque par p"x  d'u n filtre de Hahn-Banach F  su r (R*)P 

(cf. (1,4.4 ) et (1,4.7)) . Si A  désign e une partie de R p don t l'enveloppe conve-

xe ne contient pas 0  e t si F  = F^ (cf. (1,4.4)) , on dira que H  es t le filtre 

d'effilements sur Kp défin i par A  . La famille 

(Pif ( n 
1 < i < n 

V. 
a- : e. 
i ' i n€K, (a1,...,an)€A

n, (^ ,... ,en)€ (R*)
n 

en est alors une base. On s'intéresse plus spécialement à deux cas particuliers. 

Le premier est le cas où 

A = {a € Rp :  Ed , d' € Np , d <' d' e t a  = d'- d} , 

où <^'  désign e une relation d'ordre sur NP ,  compatible avec sa structure de mo-

noîde, autrement dit le cas où F  = F<, (cf. (1,5.1.1 ) et (1,5.1.3)). On dira 

alors que H  es t le filtre d'effilements sur K p défin i par la relation d'ordre 

sur 1N P . 

Le deuxième cas est le cas où 

A = {a e R p :  a >" 0} , 

où < S11 désign e une relation d'ordre sur RP ,  compatible avec sa structure d'espa-

ce vectoriel, autrement dit, le cas où F  = F< n (cf. (1,4.4)) . On dira alors que 

H es t le filtre d'effilements sur « p défin i par la relation d'ordre < " su r 

R p .  Si la relation ^ " es t une relation d'ordre total et si B  e n est une ma-

trice de définition (cf. (1,3.5)) , la famille 

(p" ^ Hx 
.-1 

rB f Ep;ô;e^^€R + ,  e€R* 

est une base du filtre d'effilements sur KPX  défin i par cette relation d'ordre 

(cf. (1,4.10)) . Si < " indui t < ' su r № ,  alors le filtre d'effilements sur K p 

défini par < " es t plus fin que celui défini par £ f (cf. (1,5.1.5)) . 

On dira qu'une propriété d'un polycylindre compact est satisfaite pour tout po-

lycylindre compact suffisamment effilé pour A  (resp . pour ^ ' , resp. pour ^ " ) 

en x  , si l'ensemble des polycylindres compacts, dont l'intérieur contient x  , 

satisfaisant à cette propriété, appartient au filtre d'effilements défini par A 

(resp. < ' , resp. < " ) sur K p .  De même, on dira qu'une telle propriété est sa-

tisfaite pour tout polycylindre suffisamment centré et effilé pour A  (resp . ^ ' , 

resp. < " ) en x  , si l'ensemble des polycylindres compacts, dont l'intérieur 
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contient x  , satisfaisant à cette propriété, appartient au filtre sur K P ,  borne 

supérieure du filtre d'excentricité et du filtre d'effilements défini par A  (resp . 

S 1 ,  resp. <" )  (c^. (5.1.1)). Si l'on désigne par V  l'ensembl e de ces polycylin-

dres, cette condition équivaut à l'existence d'un ensemble V  appartenan t au fil-

tre d'excentricité et d'un ensemble V " appartenan t au filtre d'effilements défini 

par A  , tels que 

V n V" c V . 

(5.1.4) On remarque que si V  désign e un ensemble de polycylindres compacts appar-

tenant au filtre d'excentricité sur KPx , alors V'  contien t l'ensemble des poly-

disques fermés de centre x  . Autrement dit, la trace du filtre d'excentricité sur 

l'ensemble des polydisques fermés de centre x  es t le filtre dont le seul élément 

est l'ensemble de tous les polydisques fermés de centre x  . 

Si H désign e un filtre d'effilements sur K P , engendré par l'image réciproque 

par p ^ d'u n filtre de Hahn-Banach F  su r (R+*) p , la trace de H su r l'ensemble 

des polydisques fermés de centre x  es t un filtre, qui n'est autre que l'image ré-

ciproque de F  pa r la bijection définie par la restriction de p " su r cet ensem-

ble (5.1) . En gardant les notations de (5.1.3) , on dira qu'une propriété d'un poly-

disque fermé est satisfaite pour tout polydisque fermé, de centre x  , suffisamment 

effilé pour A  (resp . pour < ? , resp. pour < " ), si l'ensemble des polydisques 

fermés de centre x  , satisfaisant à cette propriété, appartient à la trace du fil-

tre d'effilements défini par A  (resp . par S1 ,  resp. par < " ) sur l'ensemble 

des polydisques fermés de centre x  . Si l'on désigne par V  l'ensembl e des élé-

ments p  d e (1R*) P tel s que le polydisque fermé de centre x  e t de polyrayon p 

satisfasse à cette propriété, cette condition équivaut à V  G F^ (resp . V  £ F°, , 

resp. V € F<„ ). 

Il résulte de ce qui précède que si une propriété d'un polycylindre compact est 

satisfaite pour tout polycylindre compact suffisamment centré en x  , alors cette 

propriété est satisfaite pour tout polydisque fermé de centre x  . De même, si une 

telle propriété est satisfaite pour tout polycylindre compact suffisamment centré 

et effilé pour A  (resp . pour < ' , resp. pour < " ) en x  , alors cette propriété 

est satisfaite pour tout polydisque fermé, de centre x  , suffisamment effilé pour 

A (resp . pour ̂ ' , resp. pour ^ " ). 

(5.1.5) Soient ̂ ' un e relation d'ordre total sur N p ,  compatible avec sa stru-

ture de monoîde, et A  un e matrice de définition de <' (cf. (1,3.11)) . Si l'on 

suppose que ^ ' es t rationnelle (cf> (1,3.11)), alors la famille 

( c px" 1 ( rA C E

P;6;e
) } )«ei>R+ eeK* 

est une base du filtre d'effilements sur K p défin i par cette relation d'ordre 
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(1,5.2.3). (Si < ' n'es t pas rationnelle, cette famille est une base d'un filtre 

d'effilements sur KPx strictement plus fin que le filtre d'effilements défini par 

cette relation d'ordre (cf. (1,5.2.5)). ) En particulier, si ^ ' es t la relation 

d'ordre antilexicographique < ^ su r ^NP (ĉ « (I > 3. 1 2 . 1 ) ) , dir e qu'une propriété 

d'un polycylindre compact est satisfaite pour tout polycylindre compact suffisam-

ment effilé pour ^  e n x  9 équivaut à affirmer l'existence de e , e € IR* , 

et ô  ,  6  GIR+ ,  tels que tout polycylindre compact K  vérifian t 

x € К et Py(K;x) < e , p'2'(K;x) < p»° (K;x),... ,p£(K;x) <  P^QCjx) 

satisfasse à cette propriété. 

(5.2) Les propositions suivantes, qui sont des reformulations de résultats déjà dé-

montrés, servent à illustrer le langage introduit ci-dessus. 

PROPOSITION 5.2.1.- Soient p  un entier , p  € N ,  < ' (resp . < " ) une relation 

d'ordre sur N p (resp . Rp ) , compatible avec sa structure de monoZde (resp. d'es­

pace vectoriel) et moins fine que la relation d'ordre produit ^ sur fP (resp . 

sur R p ) , x  un point de C p et e = (e1.,...,e ) un élément de (R*) P . Alors 

pour tout polycylindre compact de C P ,  suffisamment effilé pour < ' (resp . pour 

<" ) en x , on a 

pV(K;x) < e1 ,  1 < i <p 

Démonstration. La proposition résulte de (1,5.1.4), (1,4.4.1 ) et (1,4.7.1). 

COROLLAIRE 5 . 2 . 1 . 1 . - Soient p  un entier, p  £ U, < ' (resp . < " ) une relation 

d'ordre sur Ыр (resp. Rp ) , compatible avec sa structure de monoZde (resp. 

d'espace vectoriel) et moins fine que la relation d'ordre produit й sur 

(resp. sur R p ) , U  un ouvert de CP et x un point de U .  Alors tout poly­

cylindre compact de C p ,  suffisamment effilé pour < ' (resp . pour <" ) en x , 

est contenu dans U  . 

Démonstration. Si l'on pose R  = d(x , Cp - U) , en remarquant que pour tout poly-

cylindre compact K  d e ,  tel que x € K ,  les conditions 

pV(K;x) < R ,  1SiS p 

impliquent que K  <= U ,  le corollaire résulte de la proposition (5.2 .1) appliqué e 

à e = (R , R,...,R) . 

Remarque 5.2.1.2. Le corollaire (5.2 . 1 . 1 ) signifi e que l'ensemble des polycylindres 

compacts de C P ,  tels que K  c U e t x  € K ,  appartient au filtre d'effilements 

sur K p défin i par la relation d'ordre S' su r 1NP (resp. ^ " su r Rp ). En 

particulier, sous les hypothèses du corollaire ( 5 . 2 . 1 . 1 ) , s i une propriété d'un 

polycylindre compact est satisfaite pour tout polycylindre compact suffisamment 

centré et effilé pour ^ ' (resp . < " ) en x  , alors l'ensemble des polycylindres 
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compacts K  d e CP,  tel s que x € K ,  satisfaisant à cette propriété forme un 

système fondamental de voisinages de x  . 

PROPOSITION 5 . 2 . 2 . - Soient p  un entier, p  € N ,  ^  une relation d'ordre total 

sur JSp , compatible avec sa structure de monoZde et moins fine que la relation 

d'ordre produit ^ sur K p ,  U un ouvert de C p ,  x  un point de U ,  m  un 

entier, m  e Isf , et f  = (f^,... ,fm) un élément de (T( U , 0^))M TEL 4 a e PouA 

tout i  ,  1 ^ i ^ m ,  f ^ x f 0 . SI V on pose 

d. = v (f. ) 
i a ; x̂  î r 

1 < i m̂ , 

d - Cd1f....<y 

a. 
i 

1 

cTT 
1 

Idil 
3 1  f L -

1 

SX d1 
(x): 1  ̂i <m 

a = (ai,...,a ) 

a & m pou/i tottt polycylindre compact K d e Cp suffisamment centré et effilé 

pour ^<a en x on a 

i) K  c U 

ii^ vf;a;d;K; x est inversible et ||Vf;a;d;K;xll KKK ^ 2 . 

Démonstration. La proposition ( 5 . 2 . 2 ) es t simplement une forme moins précise de la 

proposition ( 4 . 4 . 3 ) . 

( 5 . 3 ) Le s deux propositions suivantes sont des versions "numériques" des théorèmes 

classiques de division au-dessus dTun compact, dans un cadre légèrement plus géné-

ral. 

PROPOSITION 5 . 3 . 1 . - Soient p  un entier, p  € N , <  une relation d'ordre total 

sur iP ,  compatible avec sa structure de monoZde et moins fine que la relation 

d'ordre produit ^ sur 1NP , U  un ouvert de G? , x un point de U , m  un 

entier, m  > 0 , et f  = (f^...,^) un élément de (r( u , 0 p))m tel que pour 

tout i  ,  1 ^ i £ m ,  f . ï 0 . On pose 
i ,x 

di = va ; x (fi) , 1 << i << m 

et 

d = (d1, ....., dm 

Alors II existe des constantes A  et B  ,  A e R * ,  B  ER* , telles que pour 

tout polycylindre compact K  de C p suffisamment centré et effilé pour <^ en 

x , on ait z 

i) K  cz U ; 
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ii) pour tout g  ,  geB(K ) ,  Il existe une famille unique Cgi)0<i< m 

d'elements de B(K ) telle que pour tout i  ,  1 ^i<m ,  gi e B_d +A ^ (K ) 

g G B. ,„(K ) 
5o A  (d) 

et 

g = 

m 
E 

i=1 
giCfilK) +g0 

iii) si Von désigne par Û £ . d . K (resp . pa/i r£.j.^ ) Vapplication 

°f-d-K : B(K) —*B(I°m 

(resp. rf.d;K : B(K) —> B(K ) ) 

définie pan. 

of;d;k(g) = (g1, ..., gm)q 

(resP- rf:d;K(S) = So } 

où poux tout g  ,  g€B(K) ,  (gj)o<i<m désigne Vunlque famille d'éléments de 

B(K) telle que pour tout i  ,  1 < i < m ,  g . e B , ^  (K ) ,  g  e B (d ) (K) 

i i ^ o 
et 

g = 

m 
Z 

i=1 
gufilo + g0 

(cf. à (ii)) ,  en a : 

a) o*f ,d.K est  une application C-Linéaire continue et 

li*f;d;KllK=A/p 

do 
(K;x) 

où d ^ = sup 
1<iâm 

d^ (la bonne supérieure étant relative à la relation d'ordre pro­

duit < Sur W ) ; 

b) r£ .d . j ( &>t une application £-linéaire continue et 

Ur£:d:KMB 

c) Vapplication a£.d.j ( est  une scission [normale] de B(K;f ) si 

et seulement si 

M 7  c{û,,...,d } 
a; J;x 1  ' ' m 

où J désigne l'idéal coherent de OU engendré par £.,...,f m ; 

iv) si J' désigne un idéal cohérent de 0U tel que pour tout i  , 
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1^i^m ,  f.er(U,J') ,  la condition 

a; J';f ;x C(d1 ' '  mJ 

Implique que 11 = Im(B(K;f)) 
(1) 

Démonstration. Soit C  u n nombre réel, 1  < C ,  et posons 

a- = 
1 

d.! 
i 

S 
d. 

fi 

SX 
d . 

i 

( x ) , 1  S i £ m 

a = (ar...,am) 

A = 2l 
| d | + m J d | 

sup 
1<i<m 

:v|a.|) 

et 

B = 2(1+m2ldl+m-1 C ^ ) 

En vertu de (5.1.2) , (5.2.1) et (5.2.2), pour tout polycylindre compact K  d e 

(P suffisammen t centré et effilé pour ^  e n x  o n a : 
a 

a) KcU ; 

3) pour tout i  ,  1  < i <p ,  pV(K;x ) < 1 ; 

y) e(K;x) < C ; 

^ vf*a*d*K* x es t inversible > 

e) vf 
-1 
;a:d:K:x"K 

< 2 

Alors l'assertion (i) résulte de (a) et l'assertion (ii) de (y ) et de (3.1.2). 

Pour démontrer l'assertion (iii) , on remarque qu'en vertu de (3.1.3),(iii) et de 

(1.4), (c), (i), on a 

O - T 

f;d;K a;d;K; x 

v"1 
f ;a;d;K;x 

et 

rf ;d;K (ldB(K ) " Ma;d;K;x Ta;d;K;x) ° Vf ;a;d;K;x 

L'assertion (a) résulte donc de (3) , (Y), (£) et de (2.7.3), l'assertion (b) de 

(1) Pour l a définition J ' s e reporter a u chapitre 0. 
K 
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(y) > (e) et de (2.7.6) et l'assertion (c) de (ô) et de (3.3.3). L'assertion 

(iv) résulte de (ô) et de (3.3.8) (cf. (3.3.9)) . 

Remarque 5.3.1.1.- En gardant les notations de la proposition 5.3.1, on peut vé-

rifier facilement que l'assertion (ii ) implique que 

a) B(K;f) es t une scission de ° Ç . A . V '> 

b) Im (of;d;K) 
m 
n 

i=1 
B , 
-di+Ai(d)v 

(K) ; 

C) Im(rf;d;K} =BA (d)œ > 

propriétés qui résultent aussi de la proposition 3.1.3. 

Remarque 5.3.1.2.- Dans la démonstration de la proposition 5.3.1, on utilise, à 

travers la proposition 3.3.3 et la remarque 3.3.9, le corollaire (11,3.7) qui 

affirme que 

M T  v =  M T a;J;K;x a;J; x 

et qu'on a déduit des résultats difficiles du chapitre II. En fait, d'une part, 

ce corollaire peut être démontré directement, et d'autre part, les affirmations 

de la proposition 5.3.1 concernant des polycylindres compacts suffisamment 

"petits", on peut utiliser à la place le corollaire (11,1.5) qui est élémentaire. 

PROPOSITION 5.3.2.- Soient p  un entier, p  € IN ,  ^  une relation d'ordre our 

W , compatible avec sa structure de monoZde et moins fine que la relaiœn 

d'ordre produit â sur IN P ,  U un ouvert de (C p ,  J  un idéal cohérent de 

0U et x un point de U .On pose (cf . (11,1.2)) 

A = NP - P T 
a; J;x 

et 

d = ^ a î J j x 3 

[la borne supérieure étant relative à la relation d'ordre produit < sur 1NP ) . 

Alors il existe des constantes A et B , A £ IR* , BeR* , telles que pour tout 

polycylindre compact K  de C p suffisamment centré et effilé pour <^ en x 

on ait : 

i) Kc U ; 

ii) B(K ) = BA(K) © JK ;  (1 ) 

(1) Pour la définition de J  s e reporter au chapitre 0. 
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iii) si Von désigne par u (resp . rJ le projecteur de B(K ) 

TTt : B(K) —• B(K ) 

(resp. Tj : B(K) >  B(K)) 

SUA J K (resp . SUA BA(K) ) parallèlement à B^(K ) (resp. a JK) (cf. à (ii)) , on a 

a) i i , eô£ une application C-linéaire continue et 

HirJL ^ VP " Q ( K ; X ) ; 

b) r, e6£ une application £-linéaire continue et 

l|rT||KSB 

Démonstration. Soit m  l e nombre d'éléments de l'ensemble fini Nf.T. v 

(cf. 11,1.2) . Il existe un ouvert U ' de Cp ,  U'c U ,  tel que x e U ' ,  et un 

élément f  = ( ff )  d e r(U' , Q )m te l que pour tout i  ,  1 < i ^ m , 
m c p 

f - er(U',J), f. f 0 e t tel que si l'on pose d - = v (f. ) o n ait 

1 i> x 1  01, X 1 

a;J;x 1  ' '  mJ 

Soit U " u n ouvert de (C P relativement compact dans U ' e t tel que X < E U " .O n 

pose 

A =  m sup 
l^iân 

sup 
xeU" 

|f;Cx)| 

En vertu de la proposition 5.3.1 appliquée à l'ouvert U " (e t cf. 5.3.1.1) , il 

existe des constantes A ^ et B ,  A^eR * ,  B  € R* ,  telles que pour tout 

polycylindre compact K  d e (C p suffisammen t centré et effilé pour ^ a e n x 

on ait 

a ) Kc=U " ; 

3) il existe des applications C-linéaire s continues 

a f . d . K :  B(K) —> B(K) m 

rf;d;K : B<» -> BT O 

telles que 

31} B(K;£) oQf;d;K + rf;d;K = idB(K) ; 

32) af.^-K es t une scission normale de B (K;f) ; 

M WTfdfds) - BA(K) ; 
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34) lk£.d.KH K *  A  P"u(K;x ) 

*5} Hr£;d;KllK^ B 

y) Im(B(K;f)) = JK 

(La condition ( 3 ) résume les assertions (ii) et (iii) de la proposition 5.3.1 

(cf. 5.3.1.1) et la condition (y) résulte de l'assertion (iv ) de la proposition 

(5.3.1), appliquée à l'idéal cohérent J d e 0^).L'assertion (i) résulte de la 

condition (a) . Les conditions (3- , ) et ( 3 2 ) impliquent que 

B(K) =(Im(r£.d.K)) 0 (Im(B(K;f))) 

(1.2), ce qui en vertu de (3^) et de (y) démontre l'assertion (ii) . Alors l'appli-

cation B(K;f ) °o"£.d.K (resp . r£.d. )̂ n'es t autre que le projecteur TTJ 

(resp. rj) (cf.1.2) et si l'on pose A  = AQ Â  ,  l'assertion (iii) , (a) résulte 

des conditions (a) et ( 3 4 ) et l'assertion (ii) , (b) de ( 3 r ) 

Remarque 5.3.3.- En vertu de 5.2.1.2, les propositions 5.3.1 et 5.3.2 nous per-

mettent de démontrer, par passage à la limite inductive, les théorèmes de 

division dans l'anneau des germes de fonctions analytiques au voisinage d'un 

point de C p ,  autrement dit l'anneau des séries convergentes. 

(5.4) La proposition suivante est une généralisation d'un résultat bien connu 

(corollaire 5.4.3) . 

PROPOSITION 5.4.1.- Soient p  un entier, p ç H ,  <̂  une relation d'ordre total 

sur N p ,  compatible avec sa structure de monoZde et moins fine que la relation 

d'ordre produit < sur ivP , V une partie de 1N p ,  U  un ouvert de C p 

x un point de U  ,  J un Idéal cohérent de 0^ et f  = (f.j,...,fm) une 

famille finie d'éléments de r(U,J ) telle que pour tout i  ,  1  <i m̂ , le 

germe de f- en x soit non nul. On pose 

di=va;x(fiJ '  1  = i = m 

d = (dr...,d ) , 

et on suppose que 

a) pour tout i  ,  1  < i  ̂m 

-d± + ( P ' fi A ^ ( d ) ) + E i . x ( f ) c : p ' ; 

b) la fibre J x de l'Idéal J en x est engendrée, comme Idéal de 

CLu,X , par l'ensemble Jfì,D,xd s défini par 
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JD' ; x = {g EJx : Ex (g) C D'} 

c) Ma;D';J;x C {d1, .... , dm } 

Alors l'Idéal J est engendré par la famille ^j.^<i^R ^  v;0^6^na5e - du P°Znt 

x . 

Démonstration. Soit J' l'idéal cohérent de 0^ engendré par la famille 
fi) 1< i <m. On a 

(5.4.1.1) J'c J 

Il suffit de démontrer qu'au voisinage de x  o n a J ' = J . On remarque d'abord 

que l'hypothèse (c ) implique que P  fqahefd̂t.-r. DA (d ) ^ 0 (11,1. 2 et 1,1.2). On en 

déduit que pour tout polycylindre compact K  ,  K c U ,  tel que xç K ,  on a 

(5.4.1.2) 
Pa;P';J;K;xnAo№ = 0 

(cf. 11,1.3) . D'autre part, il résulte de l'hypothèse (b ) qu'il existe un ouvert 

U' de Cp ,  U ' c U ,  tel que xeU ' ,  et une famille finie (g-)i<j< n d'élément s 

de T(U',J ) tell e que pour tout j  ,  1  < j <n ,  E  (g.)cp ' e t qui engendre 

l'idéal J  au-dessu s de U ' .  On en déduit que pour tout polycylindre compact 

K ,  K c U ' , tel que xe K o n a : 

(5.4.1.3) J K es t engendré par J K n ..x(K ) 

(comme idéal de B(K) ) (cf . chapitre 0). Posons 

V- = -d, + (p' nA.(d)) , 1 ^ i m̂ . 

Pour tout i  ,  1   ̂i < m ,  on a 

(5.4.1.4) V f!Ai(d)cd i +  V^czV 

et il résulte de l'hypothèse (a ) que 

(5.4.1.5) V± + Ei.x(f)cp' . 

Enfin, si l'on pose 

D = (D1, .... , Dm, D') , 

a-
i 

ldiL 3 1  fi 

3X 
d. 

- 1 

-(x) , 1  < i <m 

et 

a = (ar...,am) 
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il existe un polycylindre compact K  ,  KcU ' ,  tel que x£ K e t tel que l'on 

ait : 

(5.4.1.6) r es t inversible 
VV;£;a;d;K;x 

((4.4.4) et (4.4.5)) . Alors, en vertu de la proposition 3.3.4 e t son corollaire 

3.3.7, les conditions (5.4 .1.1) à (5.4.1.6) impliquent que j £ = JK .  On en dé-

duit que si l'on pose g  = (gp..-,^) ,  on a Im(B(K;f) ) = Im(B(K;g)) 

(chapitre 0 ), ce qui implique que J'| K = j|K e t démontre la proposition. 

Remarque 5.4.2.- Dans la proposition 5.4.1, on peut remplacer, sans perte de 

généralité, l'hypothèse (c ) par la condition 

(c,) Ma;P';J; x = {di'-">dm} 

Comme M  ,  c p ' (cf . (11,1.3)), la condition (c') implique que pour tout i  , 

1 < i ^ m ,  di€P ' ,  d'où O C ^ +  (p'flA^d)) (ca r d ^ A ^ d ) ) ,  et l'hypothè-

se (a) implique que E . . (f)cp' .O n peut alors remplacer l'hypothèse (a ) par 

i jx 
les deux conditions 

(a') Ei>x(f)cp ' 

et 

(a") [  (P' + (-P'))nKp] + p ' c p' 

(dont la conjonction est, bien entendu, plus forte que l'hypothèse (a)) . On a 

déjà rencontré la condition (a") dans (11,1.4) et (11 ,1.5). Cette condition 

qui paraît compliquée de prime abord est en fait assez naturelle (comme on le 

verra dans le chapitre IV ) . Une partie P ' de NP  satisfaisan t à cette condition 

est un "bon candidat" pour définir une notion de fonction analytique "homogène", 

du moins pour les questions relatives aux théorèmes de division. 

COROLLAIRE 5.4.3.- Soient p  un entier, peJ N ,  < une relation d'ordre total 

òur W , compatible avec sa structure de monoZde et moins fine que la relation 

d'ordre produit < sur ]N p ,  U un ouvert de C p ,  x  un point de U  , 

J un Idéal cohérent de 0^ it ( f ^ i ^ ^ ane famille finie d'éléments de 

r(U,J) telle que pour tout i  ,  1  < i m̂ , le germe de en x  soit non 

nul. On pose 

d. = v (f. ) ,  1 < i<m i a: x \ J >  -  -

Mors si Mjpajoe  c{d.1,,...,dm } ,  l'Idéal J est engendré par la famille 

(f-j_)-|<;j<m m voisinage du point x  . 
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Démonstration. Le corollaire 5.4.3 est un cas particulier de la proposition 5.4.1 

appliquée à P ' = NP . 

Commentaires sur le §5. Le but de ce paragraphe était de formuler, en termes de 

filtres, des conditions suffisantes pour qu'un polycylindre compact satisfasse 

"au théorème de division" (on devrait plutôt dire "pour qu'on puisse diviser au-

dessus de ce polycylindre"). Afin d'obtenir des énoncés simples, on n'a pas 

cherché à rendre ces conditions minimales (et de loin). Cependant, il y a un point 

qui mérite d'être signalé. Dans les propositions 5.2.2, 5.3.1 et 5.3.2, on affirme 

que "pour tout polycylindre compact K  de Cp ,  suffisamment centré et effilé 

pour ^ a e n x  " certaine s propriétés sont satisfaites ("inversibilité de 

VJ:. .J. v . " o u "théorème de division par une famille finie de fonctions analy-

tiques" ou "théorème de division par un idéal cohérent"). Conformément à 5.1.2 

et 5.1.3, cette condition signifie qu'il existe C  ,  C e ] 1 , + °°[et V , V e F _o < 
a 

tels que pour tout polycylindre compact K  d e C p ,  tel que 

x € K ,  e(K;x ) < C e t p"(K;x ) € V 

ces propriétés soient satisfaites. En réalité, la forme des inégalités (4.4.3.1) 

de la proposition 4.4.3 nous permet d'affirmer, en raisonnant exactement comme 

dans les démonstrations des propositions 5.1.2 et 5.1.3, que pour tout C , 

C€]1,+ °°[, il existe V , V e F < a ,  (dépendant de C ) tel que pour tout 

polycylindre compact K  d e (C p ,  tel que 

x€K ,  e(K:x) < C e t p"(K;x ) € V , 

ces propriétés soient satisfaites. Néanmoins, on a préféré énoncer les "théorèmes 

ponctuels" dans la version la plus faible, d'une part, pour sa simplicité, et 

d'autre part, parce qu'elle suffit largement pour les applications les plus cou-

rantes, où l'on s'intéresse le plus souvent aux polydisques, dans quel cas les 

deux versions se confondent. Sans se limiter strictement aux polydisques, on 

affirme que pour tout polycylindre compact "suffisamment proche" d'un polydisque 

les mêmes "conditions d'effilement" suffisent. En revanche, dans les paragraphes 

suivants, où l'on énoncera les théorèmes "uniformes", on ne fera pas cette simpli-

fication. 
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§6.- Théorème de division numérique uniforme 

Dans ce paragraphe, on commence à exposer les théorèmes uniformes. Pour cela, 

on introduit d'abord une version uniforme des filtres d'effilements, et puis on 

démontre les résultats ne dépendant que de la partie élémentaire du chapitre II, 

en réservant les théorèmes les plus profonds pour le paragraphe suivant. A partir 

de ce paragraphe on utilise constamment la notion de fonction modérée (ayant une 

croissance polynomiale) le long d'un fermé analytique. Le lecteur non familier avec 

cette notion devra se reporter à l'appendice I, qui est bien entendu indépendant du 

reste de ce travail. 

(6 .1) Pou r introduire une version uniforme des filtres d'effilements, on part de 

la remarque triviale suivante. Soient E  et Y deu x ensembles non vides, F  u n 

filtre sur E  e t A  u n ensemble d'applications de Y  dan s F  (un e application 

appartenant à A  associ e à chaque élément de Y  un e partie de E  appartenan t 

au filtre F  ) . Alors si pour tout F  ,  F e A ,  on pose 

VF ={(x,y) € Ex Y : x€F(y)} 

la famille de parties de E x Y 

(VF)FEA 

est un système de générateurs d'un filtre sur E x Y ,  filtre qu'on désignera par 

F x. Y . Pour tout y  ,  y € Y ,  si l'on désigne par i  l'injectio n canonique 

i :  E > Ex Y 
y 

définie par 

i (x) = (x,y) , pour x € E 

alors F  x̂  Y induit par i  u n filtre sur E  ,  qu i est moins fin que le filtre 

F . Si la famille 

(F(y))F£A 

est un système de générateurs du filtre F  ,  alor s i  ( F x̂  Y) n'es t autre que 

F . 

(6 . 1 . 1 ) Soien t X  u n espace C-analytique^1 \ Z  u n fermé analytique d'intérieur 

vide de X  ,  Y  l'ouver t dense de X  défin i par Y  = X-Z ,  C  l'ensembl e 

des fonctions continues c p , 

cp : Y —> R * 

(1) Tous les espaces analytiques considérés sont supposés séparés et dénombrable 
à l'infini. 
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tels que 1/c p soi t modérée le long de Z  e t p  u n entier, p  € K .  Pour toute 

partie A  d e Hp don t l'enveloppe convexe ne contient pas 0 ,  on désigne par 

AA l'ensembl e des applications F  d e Y  dan s le filtre de Hahn-Banach F A 

(cf. 1,4.4) telles qu'il existe a  ,  a€A ,  et c p ,  cpeC ^ ,  tels que pour 

tout y  ,  y e Y ,  on ait 

F ^ "  Va;cp(y) 

(cf. (1,4.2) , (1,4.7)) . Conformément à 6.1, l'ensemble A A défini t un filtre 

F. x Y su r (R*) p X Y e t si pour tout a  ,  a£A ,  et tout cp ,  cp€ C 

on désigne par V l a partie de (]R * )p x Y défini e par a jcp + 

V a;p = -{(p,yK(*:)PxY : p£Va ; p(y) } 

alors la famille 

1 a;cp̂ a€A,cp€C 

en est un système de générateurs. 

LENME 6.1.2.- Soient A  et A ' deux parties de ïïP dont l'enveloppe convexe res­

pectif ne contient pas 0  et telles que F A = FA, .  Alors on a 

FA XA Y  = FA' XA Y A A  AA ' 

Démonstration. Si l'on pose 

B = u 
nelN* 

U 
(rr...,rn)€(]R+)n-{0} 

(r1A+...+ r A) 

et 

B' = U 
n'eN* 

U 

(r',...,r' )e(R r -{0 } 

(rj A' + ...+ r\A') 

il résulte de l'hypothèse F ^ = F .̂ e t de la proposition (1,4.5) que B = B' et 

que F ^ = Fg .  Par symétrie, il suffit donc de démontrer que 

FA × AA Y = FB × ABY 

Comme A c B ,  on a AAcA R ,  ce qui implique que le filtre FB x AB Y est plus 

fin que le filtre F A x Y  .1 1 reste à démontrer que pour tout b  ,  b eB , 
A A  A 

et tout c p ,  tp£C m ,  on a V^ . E FA x̂  Y .Or , b €B impliqu e qu'il existe 

n ,  n€lN * ,  (rv...,rn ) e (R*)n e t (ar...,an ) eAn tel s que 
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b = r a1 + ...+ rnan 

Si pour tout i  ,  1  ú i  ̂n ,  on pose 

cp = cp 
1/nri 

la fonction cp̂  es t continue, 1 /cp^ es t modérée le long de Z  (App . 1,1. 2 .2 , (vii)) 

et il résulte de ( 1 , 4 . 2 . 4 ) qu e 

n 
1<i<n 

V 
ai'CPi 

bien 

ce qui démontre le lemme. 

DEFINITION 6.1.3.- Solent X un espace ^-analytique, Z  un fermé analytique d'In­

térieur vide de X , Y V ouvert de X défini par Y = X-Z ,  p un entier, 

peJN , et F un filtre de Hakn-Banack sur (R*j P .  On désigne par F(Y/Z) le 

filtre sur CR*f x Y tel que pour toute partie A  de R p ,  dont V enveloppe con­

vexe ne contient pas 0 et telle que F = F , on ait 

F(Y/Z) = F x 
F, 

A 

Y 

(cf. 6.1 . 2 ) . 

Remarque 6.1.4.- Si F1 désign e un filtre de Hahn-Banach sur ( R * ) p ,  plus fin 

que F ,  alors F'(Y/Z) es t plus fin que F(Y/Z) . (Cela résulte de la proposi-

tion (1,4.5)). Si x  désign e un point de Y e t si l'on identifie ( R * ) p x {x } 

à ( R * ) p ,  le filtre F(Y/Z) indui t F su r ( R * ) p .  (Conformément à (6.1) 

cela est une conséquence du fait que les fonctions constantes sont modérées). 

(6.1.5). En gardant les notations de (6.1.1) , pour tout ô , ô € R+ ,  et tout 

cp , cpEC ,  on désigne par E ~  l a partie de ( R * ) p x Y défini e par 
m p ; o ,cp + 

E P ; 6 ; C P = { ^ ^ ) € ( ] r : ) P x Y : ^ E P ; ô ; c p ( y ) } 

(cf. ( 1 , 4 . 9 ) ) . 

PROPOSITION 6.1.6.- Soient <" une relation d'ordre total sur R p compatible 

avec sa structure d'espace vecl:orlel [sur R  ) , A  une matrJjce Inversible à 

coefficients dans R  définissant la relation d'ordre < " (cf . ( 1 , 3 . 5 ) ) et 

F le filtre de Hahn Ranach sur (R*) p défini par cette relation d'ordre 

(cf. ( 1 , 4 . 4 ) . Mors la famille 

( ( r A X I V (Ep ;6;cp»6c£R+,cp€Cm 

est une base du filtre F(Y/Z) sur ( R * ) p x Y 
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Démonstration. Démontrons d'abord que pour tout ô , ô e R+ ,  et tout cp 

cpe Cm ,  o n a 

(rAxidY} ( V , ô J €F (Y/Z) 

Pour tout i  et j ,  1   ̂i  ̂p ,  1   ̂j < p ,o n pose 

b y = 1 ,  pour i = j , 

b y = -ô ,  pour i = j+1 , 

b y = 0 ,  pour i ф j e t i  И j+1 , 

bi = (bil ' '  ip7) ' 

ai = A-1bi. 

On a b^>L 0 ,  où ^ L désign e l'ordre antilexicographique sur Wp (cf . (1,3.5.3)J , 

d'où a i >"0 (cf . (1,3.5.3)). Pour tout i , 1   ̂i p̂ ,  o n désigne par Cp i l a 

fonction 

cp. : Y >  R* 
i + 

définie par 

<4>± = cp ,  pour i  = 1 , 

cp- = 1 ,  pour i  ^ 1 

On a cp - € C e t pour tout y  ,  y  e Y 

Ep;ô;<p(y) 
n 

1£i£p 
V 

b- ;cp- (y) 

d'où 

rA(Ep;ô;,(y)) = n 
Ui^p 

V 
ai;cp-(y) 

((1,4.6), (1,4.7) et (1,4.1)) , ce qui implique que 

(rAxidY} ( EP;Ô;C P } n 
1<i<p 

V 
ai;cpi 

et démontre que 

(rAxidY)(Ep;S;P)GF(Y/Z) 

Il reste à démontrer que pour toute famille finie ̂ a\̂ -\<\̂ < n d'élément s de W 

tels que a^.>" 0 e t toute famille ^^<jc<n d'élément s de cm i l existe ô , 

6E R+ ,  et c p , <P£ C >  te ŝ Que 

(r. x idj ( E .  )  c 
A Y  p;6;cp ^ 0 

1<k<n 
V 
ak;cpk 
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Pour tout k  ,  1^k< n ,  soit t> k l'élémen t t> k = (bK1>—  ,bkp ^ de R? dé~ 

fini par 

bk = Aak 

On pose 

ik = sup{i : 1 < i  ̂p ,  bRi t 0} ,  1 < k < n 

Ik = {i : 1 <i<ik ,  bki < 0} , 1 < k < n 

et 

ô = sup 
l£kâi 

sup 

ieiv 
^ k i ^ k i 

k 
) + 1 

Comme a k >" 0 , on a b k >L 0 (cf. (1,3.5.3)), d'où bk i >  0 et en particulier 

6*0 .  k 

Si pour tout y  ,  y e Y ,  on pose 

cp(y) = mficp-, ( y ) 
1/bii, 

, ...., Pn 

1/bni 
n 

( y ) 1} 

la fonction 

tp : Y —> 1R* 

est donc une fonction continue telle que 1  /cp soi t modérée le long de Z 

(App. 1,1.2.2,(vii), 1.3.3) et il résulte de (1,4.10.1) que pour tout y  ,  yç Y 

on a 

r A ( E p ; ô ; c p ( y ) ) c : n 
1̂ k<n 

v 
a k ; c p k w 

d'où 

( r A x i d Y ) ( E p ; 6 ; c p ) c n 
1<k<r 

v 
ak;c*k 

ce qui démontre la proposition. 

Remarque 6.1.7.- Soient ^ ' un e relation d'ordre total sur NP ,  compatible avec 

sa structure de monoïde, A  un e matrice de définition de < ' (cf. (1,3.11)), et 

F l e filtre de Hahn-Banach F< , défin i par cette relation d'ordre 

(cf. (1,5.1.3)). Alors il résulte de la proposition 6.1.6 (cf . (1,3.5)) que la 

famille 

((rAxidY^;ô;a>}) Ô€R+ ,cp€Cm 

est une base d'un filtre sur (R*) P xY ,  plus fin que F(Y/Z) (cf. (1,5.1.5) et. 

(6.1.4)), qui lui est égal si et seulement si la relation d'ordre £ ' es t 

rationnelle (cf. (1,3.11), (1,5.2.1), (1,5.2.2) et (6.1.4)). En particulier, si 
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<' désign e l'ordre antilexicographique <*L  su r WNP (cf . ( 1 , 3 . 1 2 . 1 ) ) , l a 

famille 

(Ep;ô;cp} Ô€R+ ,cp€Cm 

est une base du filtre F(Y/Z ) 

( 6 . 2 ) . Soien t p  u n entier, p  Glsf ,  et A  un e partie non vide de Cp .O n rap-

pelle (cf. 5 . 1) que K P désign e l'ensemble des polycylindres compacts pointés 

par un point de A  ,  autrement dit l'ensemble des couples (K,x ) formé s d'un 

polycylindre K  de CP  e t d'un point x  appartenan t à l'intérieur de K  , 

tel que x £ A .  L'application qui associe à tout polydisque fermé de centre ap-

partenant à A  l e couple formé de ce polydisque et de son centre, identifie 

l'ensemble de ces polydisques à une partie de K P .  De même, pour tout point x  , 

x €A ,  l'application qui associe à tout polycylindre compact K  de ^ ,  tel que 

xe K ,  le couple (K,x ) , identifie K P à  une partie de KPA  (cf . 5 . 1 ) . 

On désigne par p ^ l'applicatio n 

PA : ^A > № * ) p x A 

définie par 

p"(K;x) = (p"(K;x),x), pour (Kfx)€K ? 

L'application p ^ es t surjective et induit une bijection de l'ensemble des poly-

disques fermés de centre appartenant à A su r l'ensemble ( R * ) P X A (c'es t la 

bijection qui associe à un polydisque fermé le couple formé de son polyrayon et 

de son centre). En particulier, si F désign e un filtre sur ( R * ) p x A ,  alors 

PA-1 (F) es t une ^ase ^e fi-ltre sur KPA . 

( 6 . 2 . 1 ) . Soien t p  u n entier, p  E IN ,  X  u n sous-espace analytique localement 

fermé de (E p ,  Z  u n fermé analytique de X  d'intérieu r vide (dans X  ) et Y 

l'ouvert dense de X  défin i par Y  = X-Z .  On dit qu'un filtre H  su r K P 

est un filtre d'effilements modérés le long de Z  ,  s'il existe un filtre de 

Hahn-Banach F su r ( R * ) p te l que H soi t engendré par la base de filtre 

Py"1(F(Y/Z)) su r KPY  (cf . 6.1.3 et 6 . 2 ) . S i A  désign e une partie de R p don t 

l'enveloppe convexe ne contient pas 0  e t si F = F^ (cf . ( 1 , 4 . 4 ) ) , on dira que 

H es t le filtre d'effilements modérés le long de Z  su r KPY,  défin i par A  . 

La famille 

(P^ 
,-1 

n 
1<i^n 

V 

ai; Pi n€N, (ar...,an) € An , ( ^ ,... ,cpn) € Cm 

en est alors une base (cf. 6 . 1 . 1 ) . O n s'intéresse plus spécialement à deux cas 
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particuliers. 

Le premier est celui où 

A = {a 6 R .  3d, d1 e ]N ,  d <' d' e t a  = d'-d} 

où ûx désign e une relation d'ordre sur ]N P ,  compatible avec sa structure de 

monoïde, autrement dit le cas où F  = F°, (cf . (1,5.1.1) et (1,5.1.3)) . On dira 

alors que H  es t le filtre d'effilements modérés le long de Z  su r Ky , défini 

par la relation d'ordre < ' sur NP . 

Le deuxième cas est celui où 

A = {a 6 R .  a>"0} 

où ^ " désign e une relation d'ordre sur M P compatibl e avec sa structure d'es-

pace vectoriel, autrement dit le cas où F  = F<M (cf . (1,4.4)). On dira alors que 

H es t le filtre d'effilements modérés le long de Z  su r /( Ç , défini par cette 

relation d'ordre. Si < " indui t ^ ' su r NP,  alor s le filtre d'effilements 

modérés le long de Z  su r KPY  défin i par < " es t plu s fin que celui défini 

par < ' (cf . (1,5.1.5) et (6.1.4)) . 

On dira qu'une propriété d'un polycylindre compact pointé est satisfaite pour tout 

polycylindre compact pointé dans Y  ,  suffisamment effilé pour A  (resp . pour 

^', resp. pour < " ), modérément le long de Z  ,  si l'ensemble des polycylindres 

compacts pointés appartenant à K p ,  satisfaisant à cette propriété, appartient 

au filtre d'effilements modérés le long de Z  ,  défini par A  (resp . par < ' , 

resp. par ^ " )  , sur K p . 

(6.2.2). Si < " désign e une relation d'ordre total sur ïïP , compatible avec 

sa structure d'espace vectoriel et A  un e matrice de définition de < " 

(cf. (1,3.5)) , une propriété d'un polycylindre compact pointé est satisfaite pour 

tout polycylindre compact pointé dans Y  ,  suffisamment effilé pour < " , modéré-

ment le long de Z  ,  si et seulement si il existe un nombre réel 6 ,  ô  £ JR+ , 

et une fonction continue cp , 

P : Y R* + R+ 

telle que la fonction 1 /cp soi t modérée le long de Z  ,  tels que pour tout point 

y ,  y e Y ,  et tout polycylindre compact K  ,  tel que y  e K e t 

P " ( K ^ e r A ( E p ; 5 : c p ( y ) ) 

le polycylindre pointé (K,y ) satisfass e à cette propriété (6.1.6). 

(6.2.3). Si ^ ' désign e une relation d'ordre total sur 1N p ,  compatible avec sa 

structure de monoïde et A  un e matrice de définition de < ' (cf . (1,3.11)), pour 

qu'une propriété d'un polycylindre compact pointé soit satisfaite pour tout 
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polycylindre compact pointé dans Y  ,  suffisamment effilé pour £ f ,  modérément 

le long de Z  , il fau t qu'i l existe un nombre réel ô ,  6 € ]R+ ,  et une fonction 

continue c p , 

cp : Y —- R * 

telle que 1 /cp soi t une fonction modérée le long de Z  ,  tels que pour tout point 

y ,  y e Y ,  et tout polycylindre K  ,  tel que y  tK e t 

p" (K;y) E rA(Ep;S;P(y)) 

le polycylindre pointé (K,y ) satisfass e à cette propriété ( 6 . 1 . 7 ) ; ce s conditions 

étant équivalentes si et seulement si la relation d'ordre total ^ ' est rationnelle 

(cf. ( 1 , 3 . 1 1 ) et ( 6 . 1 . 7 ) ) . E n particulier, si < ' es t la relation d'ordre anti-

lexicographique < L su r ]N p (cf . ( 1 , 3 . 1 2 . 1 ) ) , une propriété d'un polycylindre 

compact pointé est satisfaite pour tout polycylindre compact pointé dans Y  , 

suffisamment effilé pour ^  >  modérément le long de Z  ,  si et seulement si il 

existe un nombre réel 6 ,  ô  € R+ ,  et une fonction continue c p , 

cp : Y —> R * 

telle que 1 /cp soi t une fonction modérée le long de Z  ,  tels que pour tout point 

y ,  y c Y ,  et tout polycylindre compact K  ,  tel que y £ K e t 

p ' ^ K j y ) < c p ( y ) , p'2'(K;y) < p f ( K ; y ) , . . . , p ' ' ( K ; y ) < p ^ 1 ( K ; y ) 

le polycylindre pointé (K,y ) satisfass e à cette propriété. 

( 6 . 2 . 4 ) . S i H  désign e un filtre d'effilements modérés le long de Z  su r K Ç , 

engendré par p y (F(Y/Z) ) , où F  désign e un filtre de Hahn-Banach sur 

(R*)p ,  la trace de H su r l'ensemble des polydisques fermés de centre appar-

tenant à Y  es t un filtre, qui n'est autre que l'image réciproque du filtre 

F(Y/Z) pa r la bijection définie par la restriction de p y su r cet ensemble 

(cf. (6.2)) . En gardant les notations de 6 . 2 . 1 , on dira qu'une propriété d'un 

polydisque fermé est satisfaite pour tout polydisque fermé de centre appartenant à 

Y ,  suffisamment effilé pour A  (resp . pour ^ ' , resp. pour < " ) , modérément 

le long de Z  ,  si l'ensemble des polydisques fermés de centre appartenant à Y  , 

satisfaisant à cette propriété, appartient à la trace du filtre d'effilements mo-

dérés le long de Z  su r K p ,  défini par A  (resp . par ^ ' ,  resp. par < " ) 

sur l'ensemble des polydisques fermés de centre appartenant à Y  .  Si l'on dési-

gne par V  l'ensembl e des éléments (p,y ) de (R*) p xY tel s que le polydisque 

fermé de centre y  e t de polyrayon p  satisfass e à cette propriété, cette con-

dition équivaut à V€FA(Y/Z ) (resp . à V€F°,(Y/Z ) , resp. à VeF<„(Y/Z) ) . 
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(6.2.5). Si H désign e un filtre d'effilements modérés le long de Z  su r K p » 

pour tout point y  ,  y £ Y ,  la trace du filtre H  su r K p (cf . 6.2) es t un 

filtre d'effilements sur K p (cf.(6. 1.4) et (5 .1.3)). Plus précisément, en gar-

dant les notations de (6.2 .1), si И désigne le filtre d'effilements modérés le 

long de Z  su r KPY,  défin i par A  (resp . par < ' , resp. par <M) , la trace 

du filtre H  su r KPY  n'es t autre que le filtre d'effilements sur KPY,  défin i 

par A  (resp . par u' , resp. par u") 

(6.3). Par abus de langage, on dira qu'une propriété d'un polycylindre compact est 

satisfaite par un polycylindre compact pointé (K,x ) ,  si К satisfait à cette 

propriété. 

PROPOSITION 6.3.1.- Soient p  un entier, p  € IN ,  <' (resp. <") une relation 

d'ordre sur NP (resp . Rp )  ,  compatible avec sa structure de monoïde 

(resp. d'espace vectoriel) et moins fine que la relation d'ordre produit й sur 

fP (resp . sur R p )  ,  U un ouvert de (C p ,  X un sous-espace analytique 

fermé de U  ,  1 un fermé analytique de X  d'Intérieur vide [dans X  )  et Y 

l'ouvert dense de X  défini par Y  = X-Z .  Alors tout polycylindre compact de 

Cp pointé dans Y  ,  suffisamment effilé pour < ' (resp. pour <"), modérément 

le long de Z  ,  est contenu dans U  . 

Démonstration. Soit cp ' l a fonction 

cp' : X >  R* 

définie par 

cp'(x) = inf {d(x,Cp-U), 1} ,  pour x Q 

La fonction cp ' (ains i que la fonction 1 /cp') es t une fonction continue sur X 

On en déduit que si l'on désigne par c p l a restriction de cp ' à  Y  ,  t p es t 

une fonction continue et 1 /cp une fonction modérée le long de Z  (App . I, 

1.2.1 ). Soit ep.. . ,ê  l a base canonique de R p .  Pour tout i  ,  1   ̂i  ̂p , 

on a e - >' 0 (resp . e. >"0 ). Alors pour tout point y  de Y e t tout polycylindre 

compact K  de G/ te l que y  C K l a condition 

p"(K;y) e n 
Ш < р 

V 
e^cply ) 

implique que Kc= U ,  ce qui démontre la proposition. 

Remarque 6.3.2.- Plus généralement, si (tPj_)-|<j < désign e une famille de fonctions 

continues 

cp. : Y —* R * 

telle que pour tout i  ,  1  ^i p̂ ,  la fonction 1 /cpî  soi t modérée le long de 

Z (conditio n qui est, en particulier, vérifiée si cpi . es t la restriction d'une 
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fonction continue de X dan s R * ) ,  pour tout polycylindre compact de (CP 

pointé dans Y  ,  (K,y ) ,  suffisamment effilé pour s 1 (resp . ) , modéré-

ment le long de Z ,  on a 

pV(K;y) < cpi(y) , pour 1 <i p̂ e t y E Y 

En effet, en gardant les notations de la démonstration de la proposition 6.3 .1, 

cette condition est équivalente à la condition 

PM(K;y) <E n 
1^iâ) 

V 
ei;cp-(yj 

(6.4). Le lemme suivant résume l'essentiel des résultats démontrés jusqu'ici, dans 

le chapitre III, et constitue la forme la plus précise du théorème de division 

numérique uniforme par une famille finie de fonctions analytiques. On utilise la 

plupart des notations introduites dans ce travail et plus spécialement celles 

introduites au §1 du chapitre II et aux §2 et §4 du chapitre III. Le théorème qui 

le suit en est une forme moins précise mais plus "lisible". 

LEMME 6.4. 1 . - Soient p  un entier, p  t isf , â une relation d'ordre sur NPfds , f a 

compatible avec sa structure de monoZde et moins fine que la relation d'ordre 

produit ^ sur ]N P ,  m un entier, m  G ]N ,  d  = (d^,... ,dm) un élément de 

(]Np)m ,  V = (V^9 . . . , V,Wf))))lp , où pour tout i , 1 ^ i < m ,  p-clf et 

V c]N p ,  U  un ouvert de C p , X un sous-espace analytique fermé de U  , Z 

un fermé analytique de X d'Intérieur vide [dans x )  ,  Y l'ouvert dense de X 

défini par. Y  = X-Z et f  = (£-,...,f ) un élément de (r(U, 0 ) ) m . On suppose 

i m  ç P 
que 

i) pour tout i  ,  1  ̂i < m , 

P' DPi(d) cdi + V±czV' 

ii) pour tout i  ,  1 S i  ̂m ,  et tout y  ,  y  t Y 

h +  Ei;y(£)cp' 

iii) pour tout i  ,  1 ^i m̂ ,  et tout y  ,  y € Y ,  le germe f . de 

f. en y est non nul et 

V«:v<£i> '  di 

On pose 

r. = r - , ,  1  ̂i < m 
i a;d . 

et 

6- . = sa;j.(d.) , 1  ̂i <m ,  1 < j <r. 
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Alors роил, tout point y de, Y et tout polycylindre. compact К de. CP tel que. 

y € К , les conditions 

a ) PV(K;y) < К и ( у ) , 1  <; i < pp (D 

b ) e ( K ; y ) Idi 
P 
«ii 

C K ; y ) / p " 
d . 
1 ( K ; y ) й 1<i <m , 1<j <ri 

< (RU 
M f r h 

( y ) / ( N ( d ) y U y ) ) ) 1 
d.! 

3 
d . 

1 fi 
(y) 

axdi 

Impliquent que. 

i ) pour tout g , g e В . (К) , 1 1 existe, une. f anulle unique. 
v \y 

( g - ) ^ - ^ d'éléments de B(K) telle que pour tout i , 1  < i ^ m , 

81ев^п(-а.+л.(а));У(к) *o€lW.Cd);y(K) 
et 

g = 
m 
Z 

i=1 
g i C f J K ) + gQfq 

i i ) 4 ^ £ ' o n désigne par о r.A.v... ( resp. par r ^ . J . V . V ) l'applica-

tlon 

о 
P ; f ; d ; K ; y V;y(K) — » 

m 
n 

1=1 
BDi;y(k) 

( res P - rt>;f;d;K;y : V ;y® — V ; У « ) 
définie par 

aV;f;d;K;y(g)^df =  («1 gmp «m5 

( res P - r0 : f : d : K : v ( ^ = « о } 

ой роал. ^ o c t t g , g € B p T > ^ ( K ) , ^g i^O<i<m désigne l'unique famWLe d'éléments 

d e В (К) t e & t e que pour tout i , 1  < i й m , 

gi€BOin(-di+Ai(d)};y(K) S 0 € V n A ( d ) ; y f f i et 

g = 
m 
Z 

i=1 
« i ( f i | K ) + fafq00*0 

( c f . à ( i ) ) , on a : 

(1) On rappelle que cette conditio n impliqu e qu e К <=U (cf . (4.4.1)). 
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a^ GP-f-d*K*y est une application ^-Linéaire continue et 

löP;f;d;K;yllK 
^2 

d| +m 
e(K;y) 

Idi 
sup 

1<i<m 
di Э 

d. 

fi 
(y: 

эх 
d. / р " 

do 
(K;yj 

ou d0o = sup 

1<i<m 
d. [la bonne supérieure étant relative à la relation d'ordre pro­

duit < sur. Np ) 

b) rp.£.¿.j(.y est une application ([-linéaire continue et 

lr0 . f : d : K : v l l K - 2 ( 1 + m2 
ldl-nn-1 

e(K;y) 
dl 

c) Im(oD;f;d;K;y) 
m 
П 

i=1 
BD 

n(-di+Ai(d);y CK) 

d) Im(r^ r л v gfd ) = Ker (ov, - , v )  = B ,̂ , ,лл (K) 

e) B .̂ (K;£) est une scission de o- , r A v u,y v,t;a;K;y 

£) ол.г,j\.v..r est une scission de В (K;f) , si et seulement si 
U j I , Q , K,y 1 Л У 

Ker (rD;f;d;k;y) = Im(BD;y (K;f)) 

g) ¿¿ £'on désigne par J l'Idéal cokénent de 0^ engendré par 

f-j,... ,f et si 

M ^. T  „ с{d1,...,d } 
a;Pf;J;K;y 1 ' ' m 

alors o«s r A v &>t une scission de B _ (K:f ) ;  réciproquement si ал , __ 

eót une scission de В (K;f) e£ -òX £'OKI >барро-бе que 

Im(Bp;y(K;f)) =  JKnBpf;y(K) 

alors 

Ma;P';J;K;yc{dr---'dm} 

iii) ¿¿ J' désigne un Idéal coherent de 0^ tel que pour tout i  , 1 < i , 

f • G r(U,J') ,  la condition 

Ma;P';J';K;yc{dr--dm} 

¿mp&cque que 

J K n V ; y ( K ) = ^y/K;f)) 
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Démonstration. Pour tout i  ,  1   ̂i â p ,  et tout y  ,  y G Y ,  on pose 

ai (y) 
1 

di! 
0 

d. 
fi 

(y) 

3X 
di 

et 

a (y) =(a1(y),...,a (y)) 

En vertu de 4 . 4 . 4 , pour tout polycylindre compact K de (Cp , tel que y e K ,  satis-

faisant aux conditions (a) et (b), v-.o. . R ^.J.V . es t inversible et on a 

( 6 . 4 . 1 . 1 ) vd 
-1 

f;a(y);d;K;y"K 
< 2 

D'autre part, l'hypothèse (i ) implique que pour tout i  ,  1  ^i p̂ ,  on a 

( 6 . 4 . 1 . 2 ) Vin(-di + Ai(d)) = -di + (P' nAi(d)) 

Alors l'assertion (i ) résulte de la proposition 3 . 2 . 1 . Pour démontrer l'assertion 

(ii), on remarque qu'en vertu de 3 . 2 . 2 , (iii) , et de (1.4 ),(c), (i) , on a 

öP;f;d;K;y TP;a(y);d;K;y ° VV 
-1 

;f;a(y);d;K;y 

et 

rP;f;d;K;y = (ldBp (K ) " MP;a(y);d;K;y TP;a(y);d;K;y } ° VV;f;a(y);d;K;y ' 

Comme la condition (a) implique que pour tout i  ,  1  û i  ̂p 

P̂ f(K;y) < 1 

(cf. 4 . 4 . 1 ) , l'assertio n (a ) résulte de ( 2 . 7 . 3 ) et de ( 6 . 4 . 1 . 1 ) . L'assertio n (b) 

résulte de ( 2 . 7 . 6 ) et de ( 6 . 4 . 1 . 1 ) , l'assertio n (c ) de 3 . 2 . 2 , (i ) et de 

( 6 . 4 . 1 . 2 ) , l'assertio n (e ) de 3 . 2 . 2 , (iv ) et l'assertion (d ) de 3 . 2 . 2 , (ii) , de 

( 1 . 2 ) et de l'assertion (e) . D'autre part, en vertu de la définition de 

rftf:d:K;y '  on a 

Ker^;f;d;K;y)cIm(BP;/K;£» 

et l'assertion (f ) résulte de l'équivalence des conditions (a) et (d) de 3.2.2, (v). 

L'assertion (g ) découle de 3.3. 1 e t de l'équivalence des conditions (a) et (b) de 

3 . 2 . 2 , (v) . Enfin, l'assertion (iii ) résulte de 3.3. 1 e t de 3 . 3 . 4 . 

THEOREME 6.4.2 .- Soient p  un entier, p  G IN , û une relation d1 ordre total sur JN P , 

compatible, avec sa structure, de. monoZde. et moins fine. que. la relation d'ordre, pro­

duit ^ sur ]N P ,  m un entier, m  G IN ,  d = (d..,...,dm) un élément de (]NP)M , 

U un ouvert de (C p ,  X un sous-espace analytique fermé de U  ,  Z un fermé 

1 8 3 



G. MALTSINJOTIS 

analytlque de X  d'¿nte.sUe.uA vide, [dans X  )  , Y  Vouvent dense, de X  deflnl 

pan Y  = X-Z ,  f  = (£-,...,£) an ele.me.nl de (r(U, 0 )) m et c p une fonctlon 

continue 

cp : Y — » [ ! , + »[ 

moden.ee le long de Z  .  cVt suppose que poun tout i  ,  1^ i <m ,  et tout y  , 

y € Y ,  le genme f.i,y  de fi £. e n y  e^ t now nul et que 

v (f. ) = d. 
a;y 1  1 

klons 11 existe des fonations continues 

^ :  Y > R* ,  ^  :  Y —* R* 

modenees le long de Z  teiles que poun tout polycylindn.e compact de C p polnte 

dans Y  ,  (K,y ) ,  sufflsamment ef&ile poun S , modenement le long de 1 

la condition 

e(K;y) <cp(y) 

Implique que : 

i) Kc U ; 

ii) poun tout g  ,  geB(K) ,  11 exlste une famille unique Cg^o <i<m 

d'e£emeKi£6 de B(K ) telle que poun tout i  ,  1 < i < m ,  g ^eB.^ +A ^ CK ) , 

SoeBA (d)T O ^ 

g = 

m 
Z 
i=1 

g i ( f i l K ) +  g0 

iii) 4̂  £'on deslgne pan Of.^.y^ (resp. if.^.^ ) I'application 

° f ; d : K : B(K) — * B(K) 
m 

(resp. r£.d. K : B(K) >  B(K) ) 

deflnle pan. 

of;d;k(g) = (g1,....,gm)tp 

(resp. r£;d;K(g ) = gQ ) 

od pouA tout g  , g£B(K ) ,  (gi)Q<i<p deslgne Vunlque farnUle d'elements de 

B(K) telle que poun tout i  ,  1  ̂i <p , 
gi^B-d.+ A-(d)TO '  ̂ c-  ̂BA (d)( « 

et 

g = 

m 
Z 
i=1 

g^filK) + gQ 
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(cf. à (ii)) , on a : 

a) O f . ^ . j ç &*>i une application C-llnéalre continue et 

|of;d;k|| K< W1(y) /p 
d 

n (K;y) 

où d  =  sup 

1<i <m 
d^ (la borne supérieure étant relative à la relation d'ordre pro­

duit Ï sur W ) 

b) T£.AL.Y^ EST UNE application ^-linéaire continue et 

lr£:d;Kll K ^ 2 ^ 

c) Im(of; d;k) 
m 

n 
i=1 

B-d.+A. (d) 
(K) 

d) ^ f j d t f* =Ker(0£;d;K ^ = BA (d)(K) 

e) B(K;f) est une scission de 0 £ . ^ . K 

f) si l'on désigne par J  l'Idéal cohérent de 0^ engendré par 

f ^,... ,fm ,  les conditions suivantes sont équivalentes : 

a) Mo;J;y c { d 1 — 'dm } 

W Ker(rf;d;K 3 =  JK 

y ) c F £ . d . K eó£ cine scission de B(K;f ) ; 

iv) si J' désigne un Idéal cohérent de O y tel que pour tout i  ,  1  ̂i<m, 

fiGrW.J') ,  la condition 

M 7 I c{d1,..., d } 
a;J';y 1 ' ' m 

implique que 

J£ = Im(B(K;f)) . 

Démonstration. Soit W1^  (resp . î ) l a fonction 

W1 : Y R+*R+ 

(resp. xp2 : Y >  JR* ) 

définie par 
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*i (y) = 2 
d| +m P|d (y) S U D 

l^iân 
di! 

13' 
di 

fi 
:y) 

3X 
d. 

(resp. ^2(y ) = 2(1+m 2ldl+m_1 ipldl(y) ) ) 

pour y  £ Y .  Les fonctions ij ^ et i|>2 son t continues, modérées le long de Z 

(App.1,1.2.1,1.3.3 et 1.3.2 ) . Pour tout i  ,  1 s i < m ,  soit cp . l a fonction 

^ : Y — » ]R* 

définie par 

PI(y) = (RU 
M(d) 

(y)/(N(d)Af(y) (p' 
Idi 

(y))) 
1 

d.! 

3 
d. 

1 

Ii 
(y) 

3X 
a: 

pour y € Y .L a fonction cp ^ es t continue et 1/Pi  es t modérée le long de Z 

(App.I, 1.2.1 et 1.3.2 ). Alors si l'on pose 

r- = r ,  ,  1  < i <m 
i a;d . 

ôij ^ « i 5 ' 1=i = m '  U ^ r i 

on a ô^ j >a d ^ e t on en déduit que pour tout polycylindre compact de (C p centr é 

dans Y  ,  (K,y ) ,  suffisammen t effilé pour <^a ,  modérément le long de Z  , 

on a 

a) pour tout i  ,  1^i< p ,  pV(K;y ) < ^(y) 

b) pour tout i  et j ,  1   ̂i < m ,  1   ̂j  ̂r̂  , 

P" 
i n fdi CK;y) < cp.(y) 

(cf. 6.3.2 et (6.2.1)) . La condition (a) implique que Kc U (4.4.1) , d'où l'as-

sertion (i). Si l'on suppose en plus que 

e(K;y) <cp(y) 

les conditions ci-dessus impliquent les conditions (a) et (b) du lemme 6.4.1. En 

appliquant ce lemme à 

Vi = NP ,  1   ̂i<p ,  e t p ' = Np 

on en déduit aussitôt les assertions (ii) et (iii) , (a), (b), (c), (d), (e) du 

théorème. Pour démontrer l'assertion (iii) , (f), on remarque que 

M a;J;K;y = M a;J;y 
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(11,3.7) et que 

JK = Im(B(K;f)) 

(chapitre 0). L'assertion (iii) , (£) résulte alors des assertions (ii), (f) et 

(ii), (g) du lemme 6.4.1. De même, l'assertion (iv ) résulte de l'assertion (iii ) 

du lemme en remarquant que 

Ma;J';K;y = Ma;J';y 

(11,3.7), ce qui démontre le théorème. 

Remarque 6.4.3.- Dans les applications, la fonction c p sera , le plus souvent, 

supposée constante et il découle de la démonstration qu'on pourra alors choisir la 

fonction ij ^ constant e également (mais non pas la fonction i^ ) .E n appliquant 

le théorème à c p = 1 ,  on obtient un cas particulier important concernant les 

polydisques : 

PROPOSITION 6.4.4.- En gardant les notations et les hypothèses au théorème 6.4.2 , 

Il existe une fonction continue 

W1 : Y R+* 

modérée le long de Z et une constante ^2 , jmR+ * telles que pour tout 

polydisque fermé K  de centre y appartenant à jmY ,  suffisamment effilé pour 

<a , modérément le long de Z , les conditions jmqs(i), (ii) , (iii) et (iv ) du 

théorème 6.4. 2 soient satisfaites. 

Remarque 6.4.5.- En utilisant la proposition 4.5.5 ainsi que les fonctions intro-

duites dans 4.5.1, on peut donner une forme "paramétrique" explicite à la condi-

tion "suffisamment effilé pour <  ,  modérément le long de Y  " du théorème 6.4.2. 

Plus précisément, si A  désign e une matrice de définition de la relation d'ordre 

£ su r N p (cf . (1,3.11)) et si l'on pose 

6o = *A;mW 

et pour tout y  ,  y  e Y , 

Si (y) = (RU 
,M(d) 

(y)/(N(d)A,(y) cp|d|(y))) 
1 

d. ! 

S 
d. 

f. 
1 y] 

3X 
d. 1 < i m̂ 

e (y) = (e1(y),...,em(y)) 

et 

eoW = V,m W >£Q>0>Ru(y3) . 

alors on peut remplacer cette condition par la condition (plus forte) 
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P"«;y) erA(Ep;6 ; e RETF ) 

On remarquera que la fonction 

e :  Y —> R* 
o + 

est continue et que 1 /e0 est modérée le long de Z (App .1,1.2.2, (vii), 1.2.1, 1.3.3, 1.3.2) 

(ce qui est conforme à 6.2.3). En particulier, si û n'es t autre que la relation 

d1ordre antilexicographique ^  e t A l a matrice unité (cf. (1,3.12.1)), on 

obtient l'énoncé suivant. 

PROPOSITION 6.4.6.- En gardant les notations et les hypothèses au théorème 6.4.2 , 

si <A est la relation d'ordre antltexico graphique ^ 4U/L ^ » ^ PouA tout 

i ,  1 < i <m 

di= Wir-'V 
et si l'on pose 

ô =  sup 
ISiSm 

sup 
1<j<p 

dIJ +1 

alors II existe des fonctions continues 

i>Q : Y —> R* ,   ̂:  Y —* R* , ^ : Y —»IÇ 

modérées le long de 1 , telles que pour tout point y  de Y  et tout polycylindre 

compact K de № , tel que y€ K , les conditions 

e(K;y) ^cp(y) 

et 

p»'(K;y) < 1/i|;0(y), p^(K;y) < p» 
sO 

;K;y),...,p"(K;y) < p» 
ô 
o :K;y) 

Impliquent les assertions (i) , (ii), (iii) et (iv ) au théorème 6.4.2 . 

Démonstration. En vertu de la remarque 6.4.5, la proposition résulte de 4.5.3 
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§7. Théorème de privilège numérique uniforme pour un idéal 

Dans ce paragraphe, on démontre le théorème de "privilège numérique uniforme", 

dans le cas particulier d'un morphisme f  d e (̂ j-module s cohérents de la forme 

f : OmU OgfU 

le cas général d'un morphisme 

f:OmU gfOnU 

étant démontré au chapitre suivant. On démontre aussi une version uniforme de la 

proposition 5.3.2, qu'on pourrait appeler théorème de division numérique uniforme 

par un idéal. 

(7.1.0). Dans ce numéro, on se fixe un entier p  , p 6 IN ,  une relation d'ordre 

total ^ a sur 1N P ,  compatible avec sa structure de monoïde, moins fine que la 

relation d'ordre produit ^  su r NP ,  et une partie p ' de ]NP tell e que 

(7.1.0.1) [(P' + (-P')) nKp] + P' c p ' 

(voir remarque (5.4.2)) . On désigne par V l a partie de NP  défini e par 

P =  (P' + (-P')) nif 

et pour tout entier m  , m E ]N ,  on pose 

Dm = (D1, ...., Dm, D' 

où pour tout i  , 1 £ i < m ,  ^ i = ^ 0 •  On a 

(7.1.0.2) VQ + P' c=P' 

(7.1.0.3) P  + V <=P 

et si d = (d-j,...,dm) désign e un élément de (l^) m te l que pour tout i  , 

1  ̂i <m ,  di EP' , alors 

(7.1.0.4) P ' n Ai(d)czdi+Poc:P' , 

c'est-à-dire que v e t d  satisfon t à la condition 2.8.1. 

Si U  désign e un ouvert de (C P ,  K  u n polycylindre compact de C p conten u 
o 

dans U  ,  x  u n point de U  appartenan t à K  e t f  = (f...... ,f) u n élément 

de r(U,( ) ) m te l que pour tout i  , 1 ^i<rn ,  E  ( f . ) c p ' ,  alors l'application 
fl]P x  i 

B(K;f) indui t une application 

B 
fix 

(K:fì : (B D0;x (1K) 
.m Bd''x(K) 

(cf.(3.2)). 

(7.1.1). Soient U  u n ouvert de (C p , X  u n sous-espace analytique fermé de U  , 

Z u n fermé analytique de X  d'intérieu r vide (dans X ) et Y  l'ouver t dense 
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de X  défin i par Y = X-Z . 

DEFINITION 7.1.1.1,- Soient m  un entier, m  £ N ,  et f  = (f 1,... ,f ) un élé­

ment de r (U, ^ p ) m • On dit qu'un ouvert U' de <Cp contenu dans U est distin­

gué pour ( < ; P';X;Z;f) , s ' i l existe des constantes G  , H , G E 1* ,  H e R* , 

une fonction continue 

Ф : Y nU 1 —> R* + 
modéViée £e £ong de ZDU ' , un entier r  ,  r € N ,  une famille (d-)^ . 

d'éléments de ]N p e t deô fœmWLes 

( gj y31 £ j r̂ ,y€YflU1 ^  fdsf(h j iy31 hloglm, 1 <i<m ,y£YnU1 

d?e£émeft£ô de r(U', 0 p ) fe££e< 5 çae : 

a) pour tout y , y e Y n U ' , 

M .n , T =  {d 1,... ,d } 

ou J désigne VIdéal cohérent de 0„ engendré par f 1 f fd ; 

b) pour tout y , y e Y n U 1 , et tout j , 1  < j ^r 

gjy 

m 
Z 
i=1 

h., f . 
iiv i 

c) pouA tout y , y e Y n U ! , et tout i et j , 1  ̂i  ̂m ,  1  ̂j < r 

E (g. ) aV1 et E  (h.. ) ŒV 
У b j y У J iy о 

d) pour tout y  , y€ Y n U ' , tout x , x £U' , et tout i  et j  , 

1й i < m , 1  < j< r 

|g.(x)|<G et |h..(x)|< H ; 

e) pour tout y , y e Y n U' , et tout j , 1  ^ j ^ r , 

va;y (g. ) =d. i t 1 
Ъ 
ч 

hgf 
:у) 

эх 
d. 

й Ф ( у ) 

SI V =fP ,  on dira plus simplement que U ' est distingué pour ( < ;X;Z;f) . 

DEFINITION 7.1.1.2.- Soit J un idéal cohérent de 0U . On dit qu'un ouvert U f 

de (C p contenu dans U  est distingué pour (^;£>';X;Z;J ) ,  s ' i l existe un 

entier m  ,  m  e IN , et un élément f  = (f 1,... ,fm) d e r(U !,G>p) m tels que 

a) la famille £^,.. . ,£fm^ds engendre l'Idéal J  au-dessus de U 1 ; 

b) l'ouvert U » est distingué pour ( S ;V ;X П U f ;Z П U' ;f) . 
Ŝc P' = Np ,  on dira р£аб simplement que 1Г e-ôt distingué pour ( < ;X;Z;J) 
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Remarque 7.1.1,5.- En gardant les notations de la définition (7.1.1.1) 

(resp. d e la définition (7 .1.1 .2 ) ), si U M désign e un ouvert de (C p conten u dans 

U' e t si U f es t distingué pour (va;Pf;X;Z;f ) (resp . pour (va;Pf ;X;Z;J)) , 

alors il en est de même pour U " . D'autre part, on remarque que si U ' nY = 0 , 

alors U ' es t distingué pour (x<a;P';X;Z;f ) (resp . U 1 es t distingué pour 

(^a;P';X;Z; J) s i et seulement si il existe une famille finie d'éléments de 

r(U',0^p) qu i engendre J  au-dessu s de U ' ). En particulier, pour tout point x 

de U  te l que xg X i l existe un voisinage ouvert de x  conten u dans U  , 

distingué pour (<^;P';X;Z;f ) (resp . pour (va;P';X;Z;J) ) . 

Remarque 7.1.1.4.- En gardant les notations de la définition (7.1.1.1) soit y  u n 

point de Y  . S'il existe un ouvert U ' de (Cp conten u dans U  ,  distingué pour 

(< ;P';X;Z;f) , tel que y€U ' ,  alors en vertu de (7.1.0.2) le s conditions (b) 

et (c) de la définition (7.1.1.1 ) impliquent que pour tout i  , 1 <i<m ,  on a 

V f i ) c p ' d f s 

LEMME 7 .1 .2 . - Solent U un ouvert de (C p ,  X  un sous-espace analytique fermé de 

U ,  Z  un fermé analytique de X  ,  d'Intérieur vide (dans X  ) , Y l'ouvert 

dense de X  défini par Y  = X - Z ,  m  un entier, m  £ \ N , f = ( f ^ , . . . , f ) un 

élément de r ( U , c p )m , J l'Idéal cohérent de 0^ engendré par £ j , . . . , f m , 

r un entier, r  € IN , et d  = (d^,... ,dr) un élément de (!Np) r .  On suppose 

que : 

i) pour tout y  , y€Y ,  Ma;pt.J; y = Wr...,dr} ; 

ii) U est distingué pour (<a;P';X;Z;f ) 

On pose 

d = sup 
1<j£r 

d. 

[la borne supérieure étant relative à la relation d'ordre produit ^ sur WNP 

r. = r ,  ,  1   ̂i  ̂r , 
i cr,d . ' ' 

ô . . =s .(d. ) , 1 <i<r ,  1  û j <r. , 

(cf. (4.1)). Alors il existe une fonction continue 

R : X —• ]0,1[ 

et des fonctions continues 

cp : Y — • R* , i}> : Y — * R* , ijj' : Y — • R* 

modérées le long de Z  ,  telles que pour 
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tout point y de Y et tout polycylindxe compact K  de C P tel que ye K ,  les 

conditions 

a) pV(K;y) <R(y) , 1 <i<p ; 

b) e(K;y) l d lp " lj(K;y)/p " i(K;y) <1/cp(y ) , 1 < i <r ,  1<j<r . 

impliquent que : 

i) Kcz U ; 

ii) Im( B m 
V : y 

(K;f)) = JKnB (K ) (1) 

iii) il existe une scission (C-linéaire continue normale a v 
K 
de B 

P'";y 
(K;f) 

a K : V ; y ( K ) - " {\ ;y(K) ; 
,m 

teJULz quo. 

||oK||K S *(y) e(K;y) |d| p' 
do 

:K;y) 

iv) Bpl;y(K ) = (JKnBp,;y(K)) 9 BM (D);Y (K) 

et si l'on déòlgm pan. '"pi.j .^.y (resp. par rpl;J;K;y ) le projecteur de 

V ; y W 

V;J;K;y : V ; y W V ;y(K) 
(resp. 

V;J;K;y : V ; y ( K ) ^ V ; y ( K ) > 

&UK JKnBp , ;y(K) (resp . su r Bp,n A (d);y(K)) paAaMUejmant à BpIf1 A № ;y№) 

(resp. à  L d B ., (K ) ) , on a 
K v ,y 

a) V;J;K;y 
eit une application C-£óiéaxAe continue et 

V;J;K;yl'K 
S ^'(y) e(K;y) d|/p"d°(K;y) 

b) rpi.j.K.y est une app-òtcotxon t-tinzoMiz continat e t 

HV;J;K;yllK<=2(1-2|d|+r"1W*1) 
Démonstration. Les hypothèses (i) et (ii) impliquent qu'il existe des constantes 

G , H , G E ]R* ,  H £ ]R* ,  une fonction continue 

cp, : Y —> ]R* 
1 + 

modérée le long de Z  e t des familles 

(1) voir (7 .1.0) et remarque (7 .1.1.4); pou r la définition de JK  s e reporter au 
chapitre 0. 

192 



DIVISION NUMÉRIQUE UNIFORME 

(gjy^1<j <r,y€Y e t (h j iy 1̂ ^ r, 1 ^i<m,y£Y 

d'éléments de r(U,( ) p) , telles que 

a) pour tout y  , y e Y , et tout j  , 1 < j < r , 

gjy = 
m 
Z 
i=1 

h., f. 
iiy i 

3) pour tout y  ,  y  € Y ,  et tout i et j , 1 < i  ̂m ,  1  < j < r 

E (g. ) cp1 e t E (h.. ) ŒV 

y) pour tout y  , y e Y , tout x  , x € U , et tout i  et j , 1  < i  ̂m , 

1 * j *r , 

|g-Cx)|^G e t |hjiy(x)|< H 

ô) pour tout y  ,  y G Y , et tout j  , 1 û j  ̂r , 

v (g . ) = d. e t 1 
ry.:v &iv i 

9 

d. 

giy 

ax 
d. (y) ̂  ^(y ) 

On pose 

G' = sup{rG,1} 

et on désigne par R  l a fonction 

R : X —• ]0,1 [ 

restriction de la fonction RU à  X (cf . (4.4.1)) et par ( p ,  i f e t f  le s 

fonctions 

cp : Y —> R*+ ,  13 : Y —> R * ,   ̂:  Y —• R * 

définies par 

cp = sup 

1<j<r 
(d !) N(d) G'cp / (R|Y)MCd3 

(cf. (4.3)) , 

* = r.H 2ldl+r sup 
1<j<r 

( d ^ 

et 

f = r G 2 Idl+r sup 
1<j<r 

(di!) p1 

On remarque que la fonction R  es t continue (cf. (4.4.1)) et que les fonctions c p 

i|; et son t continues, modérées le long de Z  (App.I , 1.2.1 et 1.3.2) . 

Soient y  u n point de Y  et K u n polycylindre compact de CP  te l que y€ K , 
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satisfaisant aux conditions (a) et (b). L'assertion (i ) résulte de la condition 

(a) et de (4.4.1) . Considérons l'élément g y = (gly,•••,gry) de rttJ,^)1 * .  La 

condition (3) implique que l'application B(K;g ) indui t une application 

B . 

Dr;y 
CK;gy) : (B do;y (K))r -> B  D';y (K) 

(cf. (7.1.0)) . La condition (y) implique que 

l|B(K;gl|lK S rG 

et a fortiori que 

(7.1.2.1) IIB _ 

Dr;y 
CK;e Jll *  rG 

On appliquera le lemme 6.4.1 à  V° e t g y .E n effet, les hypothèses (i), (ii) 

et (iii) du lemme 6.4.1 son t satisfaites, en vertu de (7.1.0.4) , de (7.1.0.2) et 

des conditions (3) et (6) ci-dessus. En plus, les conditions (a) et (b) du lemme 

6.4.1 son t impliquées par les conditions (a) et (b) du présent lemme, en vertu des 

définitions de R  e t de t p e t des conditions (y) et (ô) , en remarquant que la 

condition (y) implique que A  (y ) <G' (cf . (4.4.2)). 

Alors il résulte du lemme 6.4.1 qu'i l existe des applications (C-linéaires conti-

nues 

a „ 
vT;gy;d;K;y 

: Bpf;y(K)-» (Bp ;y(K))r e t 
Vr;gv;d;K;y 

:Bpi;y(KWBpl;y(K) 

telles que 

a') r 
P;g:d;K;y 

id B 
D' ; y 0 0 "  B Dr ; y 

(K;gy a 
Dr; gy ; d;K;y 

e*) l ia 
VL;gv;d;K;y K 

< 2ldl + r sup 
1<j<r 

d.! 
3 
d. 

giv 
(y: 

3X 
d. 

e(K;y)ldl/p,,dO(K;y) 

Y') r 
Pr;gv;d;K;y * 

< 2C1+r2ldl +r"1 e(K;y] 
d 

ô') Im(r 
P ;g,,;d;K; y 

= Ker(a 
P ;g,,;d;K; y 

= VnA (d);y(K ) 

e') o 
P »g,,;d;K; y 

est une scission normale de B 
V ;y 

CK;g) ; 

E') JKPBD' ; y (k) Im(B 
D£:v 

(K;gy)) 
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En effet, les conditions (a') , ($'), (y1) et (ô1) sont des conséquences immédiates 

des assertions (i ) et (ii), (a), (b) et (d) du lemme 6.4.1. D'autre part, on 

remarque que si l'on désigne par J ' l'idéa l cohérent de O y engendr é par 

g1y>--->gry > la condition (a) implique que 

J' c J , 

d'où 

(7.1.2.2) 
Pa;P';J';K;ycPa;P';J;K;y 

(cf. (11,1.3)), et la condition (ô) implique que 

(7.1.2.3) {dr-VcPa;l?';J';K;y ' 

Or, en vertu de (11,1.4), les conditions (a) et (ô) et l'hypothèse (i ) impliquent 

que 

(7.1.2.4) 
Ma;P';J;K;y Ma;P';J;y 

{dr...,dr} . 

Alors il résulte de (7.1.2.2) , (7.1.2.3) et (7.1.2.4) que 

Ma;P';J';K;y { d r . . . , d r } . 

La condition (e') résulte donc des assertions (ii), (g) et (ii), (e) du lemme 

6.4.1, et en vertu de (7.1.2.4) , la condition (ç') résulte de l'assertion (iii ) du 

même lemme. 

On pose 

V ;J;K ;y 
= B dr ; y ( K ; gy) O 0 dr 

; gy ; d ; k ; y 
et 

V;J;K;y = 
r Dr;gy;d;K;y. 

Alors, en vertu de (1.2) , les conditions (a'), (ô'), (e') et (ç') impliquent que 

Bd' 
;y 

(K) = (JKmBp, 
;y 

(K)) 0 BP'nAo(d) ;y 
(K) 

et que II D ;J;K;y 
(resp. 

r D' ;J;K;y 
) est le projecteur de 

B D' ;y 
(K) sur 

J K n B d ' 
; y 

(K) (resp. sur 
V n A Q ( d ) ;y 

(K) ) parallèlement à 
BD'M A O 

(d) ;y 
(K) 

(resp. à 
JK m B d' ;y 

(K) ). L'assertion (iv) , (a) résulte de (B') , de (O) et de 

(7.1.2.1) et l'assertion (iv) , (b) de (y!) , ce qui démontre l'assertion (iv). 

Considérons maintenant le morphisme de Ou-module s 

h 
y 

: 
Oru 

— > 
Oum 

défini par la matrice transposée de la matrice 
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(hjiy) 1<j<r, 1<i<m. 

Il résulte de (3) et de (7.1.0.3) que l'application B(K;hy ) indui t une applica-

tion C-linéaire continue 

BDo 
; y 

(K;h ) : (Bp 
o ;y 

(K))r — » 
B D O ;y 

(K))m. 

En vertu de (y), on a 

l|B(K;hy)|| 
K 
< rH 

et a fortiori 

(7.1.2.5) H » * 
Bdo 
;y 
(K;hy) 

1 1 K 
< rH , 

et en vertu de (a), on a 

B(K ; gy) = B (K;f) o B (K;hy) 9 

d'où 

(7.1.2.6) B dr 

;y 

(K ; gy) BDm 

;y 

(K;f) o 
Bd o ;y 

(K;hy) . 

En particulier, on a 

Im(B 
; y 

(K;gy))cIm(B dm 
;y 
(K;f)) , 

et comme 

Im(B Dm 
;y 
(K;f))cJKnBD 

;y 
(K) , 

la condition (ç') implique que 

(7.1.2.7) Im(B m 
pm 

;y 

(K ;£ ) ) = Im(B 

;y 
(K ; g y)) = JKnBdt 

;y 
(K) , 

ce qui prouve l'assertion (ii) . Enfin, si l'on pose 

oK = BDo 
;y 
(K;hy) 

o O Dr 
; gy ;d;K;y 

, 

en vertu de (7.1.2.6) et (7.1.2.7), il résulte de la proposition 1.9 que 
°K 

est 

une scission (C-linéaire continue, normale de 
B dm ;y 

(K;f) , et en vertu de (7.1.2.5) , 

de (3') et de (ô) , on a 

||I oK || K 
< *(y) e(K;y) |d| /P" 

do 

(K;y) , 

ce qui démontre le lemme. 

PROPOSITION 7.1.3.- Sole.nt U  un ouveAt de. e? y X un 6ouA-eJ>pac£ analytique. 

&QAmé de. U Z un ioAmo, analytique, dt X , d'tntihleuA vide. (dan¿ X ) Y 

l'ouveAt den&e. de. X  devint pah. Y = X-Z ,  m un e.ntteA, me JSÍ ; 
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un ite.mQ.nt do. r ( u , o ) m 
9 

J V Idéal cohéKcnt do. m Q.ngo.ndAQ pan f.,... , ± , 

r un Q.ntLQA, r m oX 
d = (d^,... ,dr) un QJLo.mo.nt do. off m 

On òuppoòo, quo. : 

i) pouK tout y , y £ Y 9 Ma;t>';J;y 
m m 9 

ii) II oxÀJïtQ. un Ko.couvKQmo.nt do. U  lohmé d'ouvoAtA do. Cp conto.nuò dam 

U 
m 

dlòtlnguéò pouKm m 
a9 P';X;Z;f) m 

On pOÒQ 

m m m m d-
1 

m9 
1 î r̂ 

m9 

m m MS a;j Cd.) m9 1 < i n r 9 1 < j < r. 1 9 

(cf. (4.1)). AIOKÒ, Il zxlbto. uno. fonction continuo. 

R X n ]0,1[ 

ot doò fio netto nò continuo*n 

n n Y * g 
g f d Y d IR* 

+ 

modo.KQ.QA lo long do. Z  , tolto* quo. pouK tout point y  do. Y tout pour  polycytln-

dho. compact K de e? tot quo. y£K > Iti, conditions 

a) pV(K;y) < R(y) 9 1 sai sp b 

b) e(K;y) | d | 
P" 

6. 
ij (K;y)/ P" 

d. 
, i (K;y) s 1/(p(y) b 1<1i<r 9 1 1<d< 9 

Impliquent quo. 

i) KcU ; 

ii) Im B 
b 

;y 
(K;f) b n V ;y 

(K) b 
( 1 ) 

ili) Al QXÀAtO. Uno. ÒCÀMòlon C-tlnéalno. continuo, no Amalo. 
°K 

de B 
b 

;y 

(K;f) 

b b B b ;y 
(K) bcf (B 

*o ;y 
(K)) 

m 

;£e££e que 

b 
HK 

b b (y) e (K ;y) 
| d | 

/p" 

d 
o (K ;y) b 

OU SS ssa 
1 < j < r 

d. Ila boKno. òupQKlouKo. étant Kolatlvo. à la KoXation d^oKdAo. pKodulX 

< ÒUA if ) 

Démonstration. Soit ( u k ) b 
k€l 

un recouvrement de U formé d'ouverts de e? rang 

tenus dans U 
9 
distingués pour b V1 9 X > z b f) b En vertu de (7.1.1.3), U étant 

paracompact, on peut supposer que le recouvrement <Uk ̂kei 
est localement fini. 

( 1 ) voir (7.1.0) et remarque (7 .1 .1.4) pour la définition de 
JK se reporter au 

chapitre 0. 
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Il résulte du lemme 7.1.2 que pour tout k , k € l ,  il existe une fonction conti-

nue 

R k k x nu, 
k 

» ]0,1[ 

et des fonctions continues 

k : Y n U k k » R* + et ijjk k YnU, 
k — » + 

modérées le long de z n u k telles que pour tout point y  de 
Y n u k et tout poly-

cylindre compact K de CP tel que y€ K 9 les conditions 

k 
pi (K;y) < k 

(y) 9 1 
< i k p J 

k e (K;y) 
k 

P" 
5ij (K;y) / P " 

d i (K ;y) k 1 / ( pk (y) 9 1 < i < r 9 1 k J < r. i k 

impliquent que : 

k k 
u k 9k 

i i k ) 
Im (B 

k 
;y 

« ; £ ) ) k J K 
n B p i 

;y 
(K) k 

i ü k ) il existe une scission C-linéaire continue normale k de 

B 
k 

;y 
(K ;f) telle que 

k 
1 1 K k k (y) e(K ;y) 

| d | 
/p" 

k 

(K;y) k 

Or, u étant paracompact, il existe un recouvrement ouvert k 
ke i de U te l que 

pour tout k 9 
k e i 9 

k 
C U k k Alors il existe une fonction continue 

R k X k ]0,1[ 

et des fonctions continues 

k k Y k R* et k k Y k R* + 

telles que pour tout k 9 k€ I 9 et tout y 9 y e v n v k 

R(y) < Rk (y) 9 

k (y) < <p(y) 

et 

*k (y) < k (y) 

(App.I, 1. 3 . 4 , 1 .3 .6 ) . Soient y  u n point de Y  et K u n polycylindre compact de 
k tel que y e K 9 satisfaisant aux conditions (a ) et (b).k Il existe k 9 k € I k 
tel que y e v k k On en déduit que y € Y n U k et que y et K satisfont au x 

conditions k et (bk) k L'assertion (i ) résulte alors de k 
9 l'assertion (ii ) 

de (iik) et l'assertion (iii) de (iü^) 9 ce qui démontre la proposition. 

PROPOSITION 7.1 . 4 . - Solent U un ouveAt de. cP k X un òouò-eòpaee analytique. 

fieAmé de. U 9 
Z un loAmé analytique de X y d}IntéAleuA vide (aanò X ), Y 

198 



DIVISION NUMÉRIQUE UNIFORME 

l'ouvent den*e de X  dé&lnl рал Y = X-Z l J un Idéal cokéKent do. l *l 
Г Un jntiOJly r e t t , e X d=(dr...,dr) un élément de (Np)r l Ön òuppoòe que : 

i) роил -tout y  , y £Y 9 M a; 
df ds ldf fdsf dfsdfd 

ii) Il exlòte un лесои\)летеп1 de U tonmé d'ouvent* de contenu* dan* U , 

dl*tlnguéò роил bbjhk P';X;Z;J). 

On роде 

r. 
i 

l r 
a; 
d. 
i 

> 1 < i < r 9 

fdf l S 
a sdf (dp 9 

l < i < r 9 D 
< j < r. 

i 

(cf. (4.1)). klon* il extòte une fonction continue 

R dfd X — > ]0,1[ 

et do* onction* continue* 

Ф l Y l R* + 
sdf Ф fsdfdl Y lfdfdf R* + 

modéKéeò le long de Z l telle que роил tout point y de Y et tout polycyltndne 

compact К de l tel que y €K l -C&4 conditiom 

a) l (K;y) < R(y) l 1 < i l l l 

b) e (K;y) 
l 

P" 
dfds 

(K;y) /p" 

d. 
i 
(K;y) < 1 /Ф(У) 9 1 < i < r 9 1 < J < r. 

1 
l 

Impliquent que : 

i) KcU l 

ii) fdfsd ;y 
(K) dfd lfd lfdfd 

;y 
(K)) 9 

V l (d) l 
(K) ( D 

et Von déòlgne рал s f s ;y 
(resp. pa r f s d ;y 

s £e p/iojtctui/i de. 

dfd ;y 
CK) 

dfd s ;K ;y 
s 
sdd ;y 

(K) sdf sfd ;y 
(K) 

(resp. 
rt>' ;K ;y 

ds 
sd ;y 

(K) • V ;y 
(K) ) 

sdd JK 
ssdf 

;y 
(K) (resp. sur sdfdf 

(d) ;y 
(K) ) pawJULeltrntftt à 

W0f (d);y 
(K) 

(resp. à 
JK 

sdfd 
;y 
(K)) fd on a 

a) V s ;к ;y e*t une application C-llnéalne continue et 

I l V ;J s ;y 
s < s (y) e(K;y) HI /p" 

d 
i о (K;y) 9 

( 1 ) Pou r la définition de Jj^ s e reporter au chapitre 0. 
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où d 
o 

sup d. 
3 

[la botine. òupésUcune. étant KeXjoutisjd à la KoXaXÂAn d'oidno. psw-

duuit < ÒLLA if 

b) r 
V1 

r J;K;y 
Ut unz application <L-LinéaÀAe. continue, ut 

l l r r r rrrr 
< 2(1 +r 2 |d| +r-1 e (K;y) |d| ) 

Démonstration. En vertu de lfhypothèse (ii) y de la remarque (7.1.1.3) et de la 

paracompacité de U 
9 il existe un recouvrement localement fini 

Uk 
k€I 

de U 

formé dTouverts de Cp contenus dans U 
9 
distingués pour (rdsk ;P';X;Z;J) Alors 

pour tout k  , k € I , il existe un entier m , ,  m , 6 N ,  et un élément 

fk ) = f1,..., fkmk de r(u k, 
V) 

mk tel que : 

a) la famille f^,...^ ^ engendr e l'idéal J  au-dessu s de Uk ; 

b) l'ouvert U k es t distingué pour (^;P' ;XnUk;ZflUk;fk) . 

En appliquant le lemme 7.1.2 (assertion s (i) et (iv)) à chacun des ouverts U k 

pour f k ,  on termine la démonstration en raisonnant comme dans la démonstration 

de la proposition 7.1.3. 

Remarque 7.1.5.- Dans les énoncés des propositions 7.1.3 et 7.1.4 on peut rempla-

cer les conditions (a) et (b) par des conditions "paramétriques" en utilisant 

la proposition 4.5.5 ainsi que les fonctions introduites dans 4.5.1. De même, on 

peut les traduire dans le langage des effilements, comme dans le théorèpe 6.4.2. 

Remarque 7.1.6.- En gardant les notations du lemme 7.1.2, ainsi que celles de sa 

démonstration, on remarque que comme la scission Ok  es t définie par 

Ok = Bdo'; y (K;h ) o Dr 
;gy;d;K;y 

9 

en vertu de (7.1.2.6) , on a 

B 
Dm ; y 

(K;f) o Ok B 
vT;y 

(K ; gy) o 
V ; gy ; d ; k ; y >;J;K;y 

De même, on a 

id B 

V';y 
B 
Dm ; y 

(K;f) o Ok = r d' 
;J;K;y 

On en déduit que les projecteurs 

B 
dm ; y 

(K;f) o °K et id 

Bd'; 
y K - B 

Dm ; y 
(K;f) O Ok 

de Bp,. (K) son t indépendants de f  (pourv u que £^,...,f m engendr e l'idéal 

J) , que 
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(7.1.6.1) Ker(a K) - Im(rp i. J ; K ; y ) =  ( d ) ; y ( K ) 

(cf. (1.2)) et que 

(7.1.6.2) ||i d г Ю -
В т CK;f) <.0K||K S2(1+r2l

dl + r _ 1 e(K;y)l dl) . 

(7.2) Dans la suite, on étudiera le cas particulier où P ' = W ,  dans quel cas 

on a également p 

LEMME 7.2.1.- Soient U  a n ouvert de C p ,  X  a n bous-espace analytique fermé 

Irréductible de U  ,  Z a n $елте analytique de X  distinct de X  ,  U f a n 

ouvert de $P relativement compact dans U  ,  m  a n entier, f  = (f ^,... ,£m) a n 

élément de (r(U,0^p)) m et J  VIdéal cohérent de 0^ engendré par la famille 

f f .On шрро&е que : 

i) S  ,c Z (c£.(II,3.1)) ; 

ii) Il existe deux ouverts de Stein connexes U " et U' " de d / contenus 

dans U  tels que U' AOÂX relativement compact dan* U " et U " relativement 

compact dans U" f 

А£оЛб Vouvert U ' ^  distingué pour (<^;X ;Z;f) . 

Démonstration. En vertu de (7.1.1.3), on peut supposer que U ' DX^ÇI . Alors il 

résulte de (11,3.6) qu'il existe un entier r  , r € N ,  une famille C< 1 ĵ 1 <j<r 

d'éléments deux à deux distincts de ,  en ensemble fini non vide I et des fa-

milles 

C F k j Ìkei,1<j < r e t ( 3 k j k€I,1<j ^r,1<i<m 

d'éléments de r (U"xU" , 0 y ) telles que : 

a) pour tout y  , y € X -S .  , Y ,  on а 
OLI J 1л. 

Ma;j;y = { d 1'"-' dr> • 

3) pour tout k e t j , k € I , l £ j < r , e t tou t x ' , x' CU" , si l'on 

désigne par F, . f l'élémen t de r(U",0TT) défin i par 

F k j x,(x") = Fk (x',x" ) , pour x"£U " , 

on a 

va;x' ( Fkjx'^a ^  '> 

y) pour tout к et j , k e l , Hjûr ,  tout x ' , x' G X n U " ,  et tout 

x" , xM €U" , on a 
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Fkj (x',x") 
m 
E 
i=1 

Bkji (x',x") f. 
î 
(x") 9 

ô) si pour tout k  , k E I , on pose 

Sk = {x' EUM : 3 j , 1 ^ j  ̂r 9 

a 
|dj| 

Fki 

3X" 
dj 

(x',x') 0} 

(la dérivation étant relative au deuxième paquet de variables) et U £ = U" - Sk , 

alors 

(X-S 
a; J;x 

) nU"c U 
k e i uk 

(ou, ce qui est équivalent, ( n 
k€I 

Sk )fl XcS 
a; J;X 

n U ) . 

On pose 

G sup 
k a 

sup 
1<j^r 

sup 
X ' E I T 

sup 
x"EU' 

| Fkj (x',x")| 

et 

H sup 
k a 

sup 
1^j<r 

sup 
1^i<m 

sup 
x'EU' 

sup 
x"EU' 

|3kji(x',x")| 

(les bornes supérieures étant finies, car U ! es t relativement compact dans U" ) , 

et pour tout k  , kE I , on désigne par cp ^ l a fonction 

Ok : uk 
R* + 

définie par 

Ok (x) sup 
1^j<r 

(1 

/ | 

a 
a |dj| 

Fkj 

3X" 
d. 
r J 

(x,x) 

| 

) 

pour x E U'' k . 

La fonction cp ^ es t continue, modérée le long de Sk  (App.I , 1.2.1, 1.3.3). On 

en déduit qu'il existe une fonction continue 

cp' U 
ke i 

uk 
R* + 

modérée le long de n 
kEI 

Sk 
telle que pour tout x  ,  XE U 

kEI 
Uk 

il existe k 
x 9 

k 
x 
E I , te l que xE 

uk 
x 

et 

(7.2.1.1) 
*k 

x 

(x)<(p'(x) 

(App. I, 1.6.1 ). En vertu de l'hypothèse (i ) et de la condition (ô), on a 

X n ( n 
kEI 

Sk) cZflU" , 
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et si l'on désigne par Y  l'ouver t dense de X  défin i par Y  = X-Z , la restric-

tion 

cp" : Y nUM —> K * 

de cp ' à  Y  flU" es t une fonction continue, modérée le long de Z  flU" (App.I , 

1 . 2 . 2 , (iii ) et (iv)) . On désigne par c p l a restriction 

cp : Y DU' — * R * 

de cp " à  YflU ' . La fonction c p est continue, modérée le long de Z  DU' (App. I 

1.2.2,(ii)). Pour tout i  et j, 1 <i<m ,  1 <j <r ,  et tout point y  de YflU' o n 

pose 

gjy 
= 

FKy 
jy1 

et Hjiy = Bky 
jiy 

l u -

où Fky 
j y 

(resp. 

Bky 
jiy 

) désigne l'élément de r d J " , ^ ) défini par 

Fk 
jy 

(x) = Fk 
y 

3 
Cy,x) 9 pour x€U" 

9 

(resp. 
\ 

jiy 
(x) 

ji 
Cy,x) 9 pour x e u M 

On a gjy erCU',0 ) 
e? 

et 
hJiy 

e r o j ' , ^ ) 

Démontrons que l'ouvert U ' satisfai t aux conditions (a), (b), (c), (d) et (e) de 

la définition (7.1.1.1). La condition (a) résulte de l'hypothèse (i ) et de la con-

dition (a) ci-dessus, la condition (b) résulte de la condition (y), la condition 

(c) se réduit à néant car P ' = NP  e t la condition (d) est évidente. Pour 

démontrer la condition (e), on remarque d'abord que pour tout j  , 1 < j % r , et 

tout y 9 y e Y n u ' > on a 

(7 .2.1 .2 ) 
a 
idji 

gjy 

a x 
d. 
j 

(y) 

a 
|dj| 

Fkyj 

3X" dJ 
Cy,y) 

D'autre part, la condition (3) implique que v  (g . ) > d . , et comme 
r n n a . y o-jy a j 

y y e u y 

y 
9 

en vertu de ( 7 . 2.1 . 2 ) , o n a v 
a;y 

d. 
J 

Enfin, l'inégalité 

1 
/ 

adj| gjy 

a x 
^7 
J 

(y) ^cp(y) 

résulte de (7.2.1.1) et ( 7 . 2.1 . 2 ) , c e qui prouve que U ' es t distingué pour 
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(^;X;Z;f) e t démontre le lemme. 

LEMME 7.2.2.- En QOA.da.wt le* notation* da lemme. 7.2. 1, aln*l que. Vhypotké*e (i) 

ht K  daigne, un polycyUndne compact de. Cp contenu dan* U  ,  a &m ¿£ existe 

un ouveAt de. Çp , contenu dan* U  ,  contenant K  ,  distingué. pouA U^;X;Z;f) . 

Démonstration. Il existe des polycylindres compacts K T ,  K" , Kf" de CP tel s 

que 

KcK' cK' cK, ,cK , ,c:K M ! cK'"c U . 

Alors si l!on pose 

U' =K' , U" = K" e t U" 1 = K"' , 

les ouverts U f ,  U" , U"1 satisfon t à la condition (ii) du lemme 7.2.1, ce qui 

implique que U 1 es t distingué pour (< a;X;Z;f) . 

LEMME 7.2.3.- Solent U un ouveAt de. Cp ,  X  un *ou*-e*pace analytique. faenmé 

InAéductlble de. U ,  Z  un {(¿Amé analytique de, X dl*tlnct de. X ,  K  un 

polycylindAe. compact de. Cp contenu dan* U et J un Idéal cohénent de 0^ 

tel que 

S 
a ;J;X 

cZ 

Mon* Il existe un ouveAt de C p contenu dan* U  ,  contenant K  ,  distingué poun 

( â;X;Z;J) . 

Démonstration. Soit K f u n polycylindre compact de <C P te l que 

KczK'czK'cU . 

Il existe un entier m  , m E ]N , et un élément f = (f r...,f m) de (r(K',0 ) )m 

C p 

tel 

que l'idéal J  soi t engendré par 
1 ' ' m 

au-dessus de o 
K' 

Alors il résulte 

de 7.2.2 qu'il existe un ouvert de C p conten u dans o contenant K  , distingué 

pour XflK' ;ZnK';£) 9 ce qui démontre le lemme (cf. (7.1.1.2)). 

(7.3). Soient U  u n ouvert de C p , X u n sous-espace analytique fermé irréducti-

ble de U  e t J  u n idéal cohérent de 0^ . En vertu de (11,3.3), l'ensemble 

P _ 
a;J;y 

des exposants privilégiés pour <; 
a 

de J  e n y n e dépend pas du point 

y , pour y E X - Sa;J;X 
On désignera cet ensemble par 

Pa;J; X 
gen 

. De même, 

si l'on désigne par M 
a; 

J ; Xgen 
l'ensemble (fini ) des éléments minimaux de 

P 
a; J ; Xgen 

pour la relation d'ordre produit <  sur NP 
, pour tout point y  , 

yE X- S -T. Y 9 

M . 
ot;J;y 

M 
a; J;x 

gen 
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(cf. (11,1.2)) , et on a 

P 
a; 

J;X 
gen 

M 
a;j;x gen 

+ NP 

(cf. (11,1.3)) . L'ensemble S 
a; 

j ; x 
étant un fermé analytique de X  ,  d'intérieur 

vide dans X (11,3.2), P 
a; J ; Xgen 

(resp. M 
a; J ; Xgen 

) est l'ensemble des exposants 

privilégiés (resp. des exposants privilégiés minimaux) de J  e n un point "général" 

de X  . 

THEOREME 7.3.1.- Soient p  et m de* entlen*, < 
a 

une relation d'ondAe total AUX 

NP compatible avec *a *tnuctuAe de monoZde, moin* ilne que la relation d}ondAe 

produit < AUA NP 
> U un ouvent de CP X un *ou*-e*pace analytique ienmé 

InAéductlble de U Z un &2Amé analytique de X distinct de X Y Vou-

vent den*e de X défini paA Y = X - Z 9 f = ( f r . . . , y un élément de r (U, O CP)m 

et J  V Idéal cokéAent de Uo engendné pan. f1>"-> £m 
On AuppoAe que 

S 
a; 
J ; X c Z • 

Mo AS pouA toute fonction continue 

cp : Y —• [1, + oo[ , 

modelée le long de Z  ,  Il exl*te de* fonction* continue* 

y1 : Y —> R * + y2 : Y-+ R * , 

modelées le long de Z  ,  telle* que pouA tout polycylindAe compact de (C p pointé 

dan* Y  ,  (K,y ) , Aufâlsamment eiillé pouA <a, modérément le long de Z  , 

*atl*{aÂjsant à la condition 

e(K;y) <cp(y) 

on ait : 

i) Kcz U ; 

ii) Il existe une *cls*lon t-JUnéalne continue, nonmale a K de B(K;f ) 

a K :  B(K) —• B(K) m 

telle que : 

a) Ker(aK) = BAo (K) , 

où Ao NP P 
a; 

J ; Xgen 

b) !|oK 1 1 K 
< 
*1 (y) /p" 

d 
, o (K;y) 9 

OÙ d o = sup 
(M 
a; -J»xgen) 

(la bonne *upénleune étant nelatlve à la nelatlon d'ondAe 

pnodult < *UA wP) ; 
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c) D i d B (K) 
B(K;£) O °K II K 

< y2 (y) 

Démonstration. L'hypothèse S 
a; J;X 

cZ implique qu'il existe un recouvrement de U 

formé d'ouverts de CP contenus dans U , distingués pour (*a;X;Z;f) (7.2.2). 

Soient 

r = card (M 
a; •^'Xgen 

) 

et d = (d r...,d r) un élément de (NP)r tel que 

M 
a; J ; Xgen 

= {d r...,d r} 

Pour tout point y , y £ Y , 

M 
a; J;y 

= {d r...,d r} 

(car S 
a; J;x 

cZ) (cf.(7.3)) et on a 

d 
o 

sup 
1 ^ r 

d. et Ao 
A G(d) 

(cf.(7.3) et (2.7.12)) . On pose 

r. 
i 

r .A 
a;di 

1 ú i < r , 

6ij 
s 
a;;j 

( d i ) 9 1 ú i Ú r 1  ̂j  ̂ T± 

(cf. (4.1)) . En vertu de (7.1.3) , (7.1.6.1) et (7.1.6.2) (appliqués à P'=]N P) , 

il existe une fonction continue 

R : X >  ]0,1[ 

et des fonctions continue s 

o' : Y > R* 
+ 

et y' : Y >R * , 

modérées le long de Z  , telles que pour tout point y  de Y e t tout polycylindre 

compact K  de Cp te l que y  € K le s conditions 

a) pV(K;y) <R(y) 1 á i s p ; 

b) e(K;y) 
|d| 

P" 

oij-di 
(K;y) ú 1 / v ' i y ) 9 1 < i < r , 1 < j < ri ; 

impliquent que 

i) Kc u ; 

ii) il existe une scission C-linéaire continue, normale ok  d e B(K;f ) tell e 

que 

a) Ker(oK) = BAo 
(d) (K) J 

b) I I ok 
IIK 

< y' (y) e(K;y) 1*1 /P" 
d 
o 
(K;y) ; 
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c) 
H i dB(K) -

B(K;f) ° Ok UK <: 2(1 +r 2 
|d|+r-1 

e(K;y) 
|d| 

) 

On pose 

cp" = cp *cp |d| 
J *1 

= y' o |d| et y2 = 2(1 +r 2 
|d| +r -1 o |d| 

) 

Les fonctions 

ip" Y >  R* 
, 

y1 : Y > R* et 
^2 

Y — • R* + 

sont continues, modérées le long de Z  (App. I, 1.3.2). Or, pour tout polycylindre 

compact de CP pointé dans Y , CK.y) suffisamment effilé modérément le long de 

Z les conditions (a ) et (b') 

(b') p'' 
oij-di 

(K;y) < 1/cp" 1  ̂i r̂ , 1 < ri 

sont satisfaites (cf . (6.3.2) et (6.2.1)) . En remarquant que si en plus on a 

e(K;y)^cp(y) , 

la condition (b') implique la condition (b) , on en déduit le théorème. 

Remarque 7.3.2.- En vertu de (1.2) , il résulte de (7.3.1) , (ii) que 

B(K) = JK 9 
BAo 
(K) ( 1 ) 

et que l'application 

B(K;f) o Ok B(K) •  B(K) 

(resp. l dB(K) 
B(K;f) o Ok B(K) —• B ( K ) 

est le projecteur de B(K ) sur JK 
(resp. sur 

BAO 
(K) ) parallèlement à 

BAO 
(K) 

(resp. à J K ) 

En particulier, ces projecteurs ne dépendent que de l'idéal J  ,  et non pas du 

système de générateurs 
f1 ' ... 'fm 

L'ensemble sa ; 
J;X 

étant un fermé analytique d'intérieur vide de X  (11,3.2) , 

on peut appliquer le théorème à Z = S 
a; 

; j ; x . 
Dans la plupart des applications, la fonction c p est supposée constante, et il 

découle de la démonstration du théorème 7.3.1 qu'on peut alors choisir la fonction 

constante également. En appliquant le théorème à c p =1 ,  on obtient un cas par-

ticulier important concernant les polydisques : 

PROPOSITION 7.3.3. - En gcuidant IQJ> notation* et le* kypotkèòe* du théonème 7.3.1 

Il existe une fonction continue 

*1 
Y > R* 

( 1 ) Pou r la définition de J  s e reporter au chapitre 0 
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то dénie le long de Z et une constante y1 , y2 e n * + , telZeA que pour tout 

polydJjsque fermé К de centre y  appartenant à Y  ,  Aufflsamment effilé poux 

<a У modérément le long de Z  ,  le* condition* (i) et (ii) du théorème 7.3.1 

òotent AotisfaJXeA. 

COROLLAIRE 7.3.4.- En gardant le* notation* et le* kypotké*e* au théorème 7.3.1 , 

*l A  déAlgne une matrice Inversible à coefficient* dan* Ж , déflnlsAant la 

relation d'ordre < 
"a 

AUT NP 
y alors pour toute fonction continue 

Ф : Y > [1, +oo[ 

modérée le long de Z  II existe de* fonction* continue* 

y : Y >  JR* *1 : Y •  R* et y2 : Y — » R* + 

modérée* le long de Z et une со ПА tante 5o 5o 
e R* telleA que pour tout 

point- y de Y et tout polycyllndre compact К de tel que y о 
G К ICA 

condition* 

а) e(K;y) йф(у) ; 

b) р"(К;у) е г А (Ep ;б0;1/ф(у)} ; 

Impliquent leA oAAertlonA (i ) eX (ii) au théorème 7.3.1. 

Démonstration. Le corollaire est une conséquence directe du théorème 7.3.1 

(cf.(6.2.3)). 

Remarque 7.3.5,- Si au lieu d'obtenir (7.3.4 ) comme corollaire du théorème (7.3.1) , 

on le démontre directement à partir de la proposition (7.1.3) , en raisonnant comme 

dans la démonstration du théorème (7.3.1) et en utilisant la proposition (4,5.5) , 

on obtient une formule explicite pour la constante 6o , à savoir 

6o = oA; 
r(d) 

(cf. (4.5.1)), où 

r = card (Ma;J;Xgen > 

et d = (d r...,d r) désigne un élément de ( N P ) r tel que 

M 
a; Jj^gen 

w r...,d r} 

En particulier, si < 
a 

n'est autre que la relation d'ordre antilexicographique 

< L sur NP et A l a matrice unité (cf. (1.3.12.1)), en se limitant aux polydis-

ques, on obtient l'énoncé suivant. 

PROPOSITION 7.3.6,- En gardant les notation* et le* hypothèAeA du théorème 7.3. 1 

Al 
<a 

eAt la relation d'ordre antilexicographique < 
=L 

АиГ NP et ii Von роле 

d o = sup(M a ; 

7;Xgen^ 

208 



PRIVILEGE NUMÉRIQUE UNIFORME 

[la bonne Aupérleure étant relative à la relation d'ordre produit. < AULA NP 

et 

ôo sup 
1^i<p 

(d .) ол/ + 1 9 

OÙ do = (do1 ' ... ' op) 9 
alo h* Il existe deb fonction* continue* 

y : Y »  Ж* et 
*1 

Y — , 

modérée* le long de Z  ,  et une con*tante y2 f y2 E R*+ 9 telle* que pour tout 

point y de Y et tout polydisque fermé de centre y et de polyrayon 

P = (p1, . . . , pp) 9 p e ж* + 9 le* condition* 

p1 < 1/Ф(у) , P2 <1 
Ô 
о '•">0p < 

qo 
pp-1 

Impliquent le* a**ertlon* (i) e£ (ii) du théorème 7.3.1. 

Démonstration. En vertu de (7.3.2), de (7.3.5) et de (4.5.3.2) , la proposition est 

un cas particulier du corollaire (7.3.4) . 

THEOREME 7.4.- Soient p  un entier, < 
a 

une relation d'ordre total sur NP 

compatible avec *a *tructure de monoZde, moin* fine que la relation d'ordre produit 

< *ur NP 
> и un ouvert de CP X un *ou*-e*pace analytique fermé Irréduc­

tible de U Z un fermé analytique de X * distinct de X Y l'ouvent 

dense de X défini par Y = X - Z et J un Idéal cohérent de Ou On *uppo*e que 

S 
a; 

j ; X cZ . 

Alors pour toute fonction continue 

Ф : Y —> [1, +oo[ , 

modérée le long de Z Il existe de* fonction* continue* 

*1 
Y > Ж* 

+ 
et 2̂ Y — * R * , 

modéwéeÂ le long de Z , tellzi que роил, tout polycyltndut compact de 
CP 

pointé 

dan* Y (K,y) t Aufflsamment effilé pour < 
a 

modérément le long de Z , 

Aatlsfaisant à la condition 

e(K;y) < Ф(у) 

on ait : 

i) Kc U ; 

ii) BOO J K 
o в 

AO 
(K) (1) 

OU Ao = NP - P 
a;j ;x gen 

, et Al l'on déAlgne par ii J ; K Cresp. рал 
rJ;K 

.) le 

( 1 ) Pou r la définition de JK se reporter au chapitre 0. 
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phojeateuA de B(K) 

ii j ; k : B ( K ) — * B O O 

(resp. 
rJ;K 

B(K) —> B(K) ) 

sur J K 
(resp. -òuA B 

A 
o 
(K) ) paralJle.Zejne.nt à B 

A 
o 
(K) (resp. à JK 

) on a 

a) ii j ; k eii une. appticatwn H-LLnécuAe. continue et 

||iij 
;K II K 

< ^ C y W ' ' 
do 

(K;y) 

OÙ d 
o 
= sup CM a; J 9 %en 

) (la borne. Aupérteure. étant relative, à la relation d'ordre. 

produit < sur if 

b) r j ;K 
eAt une application C-LLnécuAe. continue et 

\\Tj ;K 
||k < y2 Cy) . 

Démonstration. La démonstration du théorème (7.4) est rigoureusement analogue à celle 

du théorème (7.3.1) en utilisant le lemme (7.2.3) à la place du lemme (7.2.2) et 

la proposition (7.1.4) à la place de la proposition (7.1.3) . 

Remarque 7.4.1.- L'ensemble S 
a; J;x 

étant un fermé analytique d'intérieur vide de 

X (11,3.2), on peut appliquer le théorème à Z = S 
a; 
J;X 

Dans la plupart des applications, la fonction c p es t supposée constante, et 

on peut alors choisir la fonction 
^2 

constante également (cf. (7.3.2)) . En 

appliquant le théorème (7.4) à c p =1 ,  on obtient un cas particulier concernant 

les polydisques, analogue à la proposition (7.3.3) . 

De même, en vertu de (6.2.3), on peut formuler une variante "paramétrique" de la 

condition "suffisamment effilé" et obtenir un énoncé analogue au corollaire (7.3.4 ) 

remarquer qu'en vertu de la proposition (4.5.5) , on peut alors expliciter la 

constante qo (cf. (7.3.5)) , et enfin donner une version simple dans le cas où 

< 
a 

est la relation d'ordre antilexicographique < 
=L 

sur HP (analogue à la 

proposition (7.3.6)) . On n'explicitera pas plus tous ces énoncés importants, que 

le lecteur pourra reconstituer sans difficulté. 
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CHAPITRE I V 

THEOREME DE PRIVILEGE NUMERIQUE UNIFORME 

Dans ce chapitre, on étend aux sous-modules les résultats du chapitre précédent 

et on démontre le théorème principal de ce travail (théorème 4.4.1 et ses corol-

laires). La philosophie générale de ce chapitre est qu'un module cohérent sur un 

espace analytique peut toujours être considéré comme un idéal du faisceau structu-

ral d'un autre espace analytique. Il y a des questions dont le contexte naturel 

est celui des modules, les idéaux n'étant qu'un cas particulier. Ce n'est pas le 

cas pour les théorèmes de division dont le cadre approprié est celui des idéaux. 

S'il y a des théorèmes de division pour les modules, c'est uniquement parce qu'un 

module peut être considéré comme un idéal. C'est pour cette raison d'ailleurs que 

les théorèmes de division par un sous-module paraissent moins naturels que ceux 

par un idéal. C'est également une des raisons qui m'a conduit à les démontrer 

d'abord pour un idéal et à en déduire le cas général. En effet, une partie des 

résultats aurait pu être établie directement pour les sous-modules. En revanche, 

les résultats du chapitre II, essentiels pour les versions uniformes, ne peuvent 

pas, à ma connaissance, être démontrés directement, la notion d'exposant privilé-

gié d'un sous-module étant trop artificielle. 

La méthode la plus connue pour considérer un module comme un idéal est celle qui 

découle du "principe d'idéalisation" de Nagata, qui consiste à considérer un module 

comme un idéal de carré nul. Cette méthode n'est point adaptée pour les questions 

de division car cet idéal est un idéal du faisceau structural d'un espace qui n'est 

pas réduit et qui est donc singulier (voir [44] ,  §1, pp.383-384). 

C'est une autre construction qui sera utilisée. Soient X  u n espace analytique 

et M  u n (̂ .-module cohérent. On cherche à définir un espace analytique X ' e t 

pour tout sous-(^-module cohérent M ' de M u n idéal cohérent J d e 0^f d e sorte 

que la donnée de l'idéal J  de 0^ , fourniss e "les mêmes informations" que la 

donnée du sous-0-^-module M ' de M .  L'espace X ' ser a l'espace défini par 

X' =Specan(S(M)) , 

où S(M ) désign e l'algèbre symétrique de M  ,  et on associera à un sous-0 x-module 

M' d e M l'idéa l J(M' ) de 0^ , , idéal de définition de l'immersion fermée 

Specan(S(M')) –> X' 

déduite de la surjection canonique 
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M •  M/M' . 

Si X  es t un ouvert U de C p et M  u n Ou -module libre 0N , l'espace analytique 

X' s'identifi e à l'ouvert U x Cn de C P
+ n et en appliquant le théorème de divi-

sion à l'idéal J(M') de Ou x Cn 9 on en déduit un théorème de division pour le 

sous-module M' de Ûn 

Au §1, on expose un "dictionnaire" traduisant les propriétés de l'idéal J(M' ) 

en des propriétés du sous-module M ' .  Aux §2 et §3, on établit le théorème de 

division par un sous-module, et au §4, on démontre le théorème de "privilège numé-

rique uniforme", objet principal de ce travail. 

§1. Opérateurs élémentaires et exposants privilégiés d'un sous-module 

Dans ce paragraphe, on introduit les opérateurs qui permettent de ramener 1'étu-

de des théorèmes de division par un sous-module cohérent à celle des théorèmes 

de division par un idéal, et on définit la notion d'exposant privilégié minimal 

d'un sous-module, qui généralise les définitions du §1 du chapitre II concernant 

un idéal. 

(1.0). Dans ce paragraphe, on se fixe deux entiers p  e t n  ,  p G N ,n€lSf * , 

une relation d'ordre total < 
a 

sur N p+n , compatible avec sa structure de 

monoïde et moins fine que la relation d'ordre produit ^  su r Np+n . Pour tout 

i ,  1  ^i n̂ ,  on désigne par e ^ l'élémen t de u P + n défini par 

e- = (e-A ,...,e- )  , 
i i l ' '  i,p+n ' 

où pour tout j  ,  1   ̂j û p+n , 

©ij = 0 y J t P + i y 

e- -  = 1 
i,p+i 

et on pose 
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e = Ce 1,...,en) , 

e € C Np + n ) n .  On désigne par VQ l a partie de ]N p + n défini e par 

V = fP x  {0} 

et par P ' cell e définie par 

V1 = U 
1<i<n 

(ei + Do) . 

Alors pour tout i  ,  1   ̂i  ̂n ,  on a 

(1.0.1) P' D Ai(e) = ei +  P0<=P' . 

Pour tout m  ,  m  € IN ,  on pose 

dm = wv...,vm,v') , 

où pour tout i  ,  1   ̂i  ̂m , 

V. 

i 
= Do 

Si m  = n ,  on pose plus simplement 

V if 

et alors, en vertu de (1.0.1) , V satisfai t aux conditions 2.8.1 du chapitre III 

pour d  = e . Enfin, on désignera par X1 ,... ,Xp les coordonnées de (C P e t par 

T r...,T n celle s de C n . 

(1.1.0) Soient K  u n polycylindre compact de CP et K' un polycylindre compact 

de Cn tel que 0 € K ? En vertu de (111,2.6.26), pour toute partie A  d e NP+n 

telle que 

(1.1.0.1) 3A' , A' cz Nn 
A = N P x A f 

le sous-espace BA 
(x,o) 

(K x K ' ) o 
de B(KxK' ) es t indépendant du point x  de K . 

On désignera alors ce sous-espace, plus simplement, par BA 
(Kx KT) . On remarquera 

que l'ensemble des parties de Np+n satisfaisant à la condition (1.1.0.1) est 

stable par addition, réunion, intersection et passage au complémentaire et que 

VQ e t V1 appartiennen t à cet ensemble. 

De même, il résulte de (111,2.7.10) que l'application C-linéaire continue 

M1I;e;KxK';(x,o) 
B(KxK') n –> B(KxK') 

(resp. Tïï;e;KxK';(x,o) 
B(KxK') >  B(KxK')n )  , 

o 
où 11 = (1,...,1) , 11 E (C*)n ,  est indépendante du point de x  de K . On désignera 
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donc, plus simplement, cette application par M u . e . K x K , (resp . T ï ï . e . K x K . ) , 

ou même par M-JJ.e (resp . T-jj.e )  > quand aucune confusion n'en résulte. 

Dans la suite, on identifiera B(K ) à  son image dans B (KxK') pa r l'isométrie 

canonique (qu i associe à une fonction f  ,  f  €B(K) ,  la fonction f  ' , 

f €  B (K x K ' ) , définie par f'(x,x' ) = f(x) , pour (x,x' ) €KxK') ,  image qui 

n'est autre que B p (K x K') ,  on notera £ K t . K l'inclusio n 

£K';K 
: BOO — > B( K xK') 

et on désignera par 
^KjK' 

l'application C-linéaire continue 

ÏÏK;K' 
: B(KxK') >  B(K) 

définie par 

(7TK;K' 
(g))(x) = g(x,0) , 

pour g  € B(K x K') e t x E K .  Alors on a 

(1.1.0.2) 
K ; K ' HKXK' 1 , 

(1.1.0.3) iik;k' o eK';K = i d B(K) 

et eK';K °  ^KjK' est un projecteur dont l'image est B(K ) e t le noyau 

B 
N p + n - P 

o 

(K x K') . On pose 

9K;K' GK';K °  ^KjK' 

et on a 

(1.1.0.4) 
l l 6 K ; K ' I'KXK1 

= 1 . 

En vertu de l'identification ci-dessus, l'application 
W1I ; e 

(resp. T1I;e } 

induit une application C-linéaire continue 

V , 1I;e 
B(K) n — > Bp.CKxK») 

(resp. td 1I;e B P ' 
(K x K') B(K) n ) 

(cf. (111,2.8 ) et (1.0)) . On remarquera que pour tout élément (f r...,f n) de 

B(K) n on a 

(1.1.0.5) 
M P; l l ;e (f r...,£ n) 

n 
E 
i=1 

f. 
1 
T. 
1 
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PROPOSITION 1.1.1.- L'application 
MP;1I;e 

eJ>t un tsomoH.phJj>mo, d'espace* de 

Banach de B(K)n *UK B 
Hi 

(KxK') et en c*t VU>omoH.phU>mc InvcAAc. 

En plu*, on a 

a) HMP;ir ;el l KxK' 

n 

1=1 
Pi 

(K';0) 

b) 
I^PjlIjejillKxK1 

22l"1e(K»;0)l/p,i'(K»;0) 

c) HTp;ïï;e ¡1 KxK' 
22n 1 e(K';0)n sup 

1<i<n 
(1/pV(K';0)l . 

Démonstration. L'injectivité de Mp.-|j. e résult e de (1.1.0.5) et la surjectivité 

de (111,2.8.3). On en déduit que up.fj-.e es t un isomorphisme d'espaces de 

Banach (théorème de Banach). D'autre part, Tp.^j. e es t une scission de V<p.j[.e 

(111,2.8.2), ce qui implique . e étan t bijective) que 

TP;ïï;e ° MP;ïï;e 
id 
B(K)n 

et 
MP;lI;e oTP;1I;e 

icL 
(KxK*) 

L'assertion (a ) résulte de (1.1.0.5), l'assertion (b ) de (111,2.7.2) et l'asser-

tion (c) de (b). 

Remarque 1.1.2.- Dans la suite, il aurait été pratique de pouvoir identifier 

B (K)n à  Bp , (K x K ' ) pa r 1 ' isomorphisme Up. ^ . e .  Néanmoins, Up. ^. e n  ' étant 

pas une isométrie, cela entraînerait une ambiguité sur la norme. 

(1.2). On désigne par X^.^t l'applicatio n (C-linéaire continue 

XK;K, :  B(KxK') —> B(KxK« ) 

définie par 
n 

XK;K' = M1I;e ° (® 6K;K-} ° T1I;e • 

PROPOSITION 1.2.1.- L'application t-lÀnéalKe continue X^-j^ et  un pKojecteuA et 

on a : 

i) HxK;K.llKxK. ^  22n" 1 e(K';0)n ; 

ii) Im (xK K.) = Bpt (KxK') ; 

iii) KerCx,,^,) = B n +n (KxK' ) ; 

Démonstration. On a 
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XK;K' °XK;K' = MH;e° (@ £K';K} o(@ ^K;K'} °T1I;e0 Mll;e °C§ eK';K} ° C® ^ K '3 ° T1I;e ' 

Or, 

(® \;K^° Tïï;e ° Mïï;e°(§ eK' ;K} = TV;ïï;e ° MP;ïï;e = idB(K)n 

(1.1.1), donc 

XK;K' ° XK;K' xK;K f 9 

ce qui démontre que X^-K» est un projecteur. D'autre part, pour tout £  , 

f eB(KxK') , on a 

xK;K,Cf) 
n 
E 

i=1 
(6K;K' OTlI;e;i)C£)Ti 

(1.1.0.5), d'où 

H X K ; K ' HKXK' = 

n 
Z 
i=1 

li^;e;illKxK' P -'CK';0)< n 22n"1e(K';0)n 

((1.1.0.4) et (111,2.7.2)), ce qui démontre l'assertion (i) . Pour démontrer 

l'assertion (ii) , on remarque que 

n 
n 
i=1 

B-e.+A.(e)CKxK'> 
i i 

(111,2.7.13), et comme pour tout i  ,  1^i^n , 

Voc-e± + Ai Ce) 

(1.0.1), on a, en vertu de l'identification de B(K) à Bp (KxK') , 
o 

B(K)ncIm(TÏÏ;E) , 

d'où 

mal eK;K.) o T u . e ) = B(K)n 

et l'assertion (ii) résulte de (111,2.8.6). Enfin la bijectivité de Mp.-jj. e 

(1.1.1) implique que M^ J .E |B(K)N es t injective. On en déduit que 

KER<XK;K,) = T1[;E-1 (Ker(0 eK;K,)) « TI;;1 C B̂  (KxK')n ) 

(1.1.0) et l'assertion (iii ) résulte de (111,2.8.9) et (111,2.8.10). 
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COROLLAIRE 1.2.2.- On a 

8K;K' ° XK;K' " XK;K* ° 6K;K' 0  * 

Démonstrat ion. Comm e 

K e r O - ^ ) = B ^  (KxK' ) e t Im ( e „ „ f ) =  Вя (KxK') 
9 E p n - P K, K о 

о 
(cf. 1.1.0)) , le corollaire résulte de la proposition 1.2.1 et des inclusions 

P'e^P+n-P e t V c=Np+n-P' . о о 
о 

COROLLAIRE 1.2.5,- Soit x  un point de К . SI poun tout d  = (d^ ,d2) , 

d£]Np+n ,  d1 € Wp ,  d2ENm ,  on désigne рал. 6^ V application C-linéalne 

continue 
6d;x : B(K) -> Œ 

définie pan. 

6d (f ) = d d î d (x,0 ) , pour f  €B(K> K1) , 

ЭХ 1ЭТ 2 
on a 

a)  ̂dGP ' ,  ôd; x о xK;Kt = ôd;x ; 

b) bl d€KP+n-P ' ,  ôd; x о xK =  0 . 

Démonstration. L'assertion (b) résulte de (1 .2.1), (ii). Pour démontrer l'assertion 

(a), on remarque que, X K.£t étan t un projecteur, on a 

Im(idB(K*K') - =  Ker(%;K^ =  Vn - P - CKXK, ) 

((1.2.1), (iii)), ce qui implique que si d£P ' , 

6d;x° (idB(KxK')" XKJK' ) = 0 • 

O 

COROLLAIRE 1.2.4.- Voun tout point x de K et tout élément h  d e B(KxK' ) tel 

que h  i 0 on a : 

i) U X K;K,(h)^0 , alou va.(X)0)(h ) <a va;(x>0)(xK;K,(h)) ; 

ii) poun que v  ,  пл (h) €P' ¿ 6 £au£ et il suffit que Xv viOO ^0 e t 
Ot, X̂ ,UJ R  JJ\. 

Va;(x,0)(h) = Va;(x,0)(%;K-(h)) • 
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Démonstration. En vertu du corollaire 1.2.3, on a 

E(x,0) ( XK;K' ( h» = E ( x , 0 ) ( h ) n P ' 

et le corollaire 1.2.4 en découle directement (cf . (11,1.1)). 

COROLLAIRE 1.2.5.- Soient f et g deux élément* de B(KxK') . Mon* on a 

\;K^f'& = 9 K;K' ( f ) 'XK ; K.(g)
 + X K ; K » ( f ) '  6 K ; K ' ( ^ • 

Démonstration. En vertu du corollaire 1.2.2, on a 

l d B(KxK') " eK;K' " XK;K' *" l dB(KxK1) " QK;K'^ ° ( l d B ( K x K ' ) ~ X K;K' ) " 

" ( i d B ( K x K ' ) " X K;K , ; ) ° ^ ( K x K M " e K ; K ' } -

On en déduit que 

(1.2.5.1) I m ( i d B ( K x K ' ) - e K ; K ' - X K ; K ^ \ P + n _
 (KxK"' 

O 

((1.2.1), (1.1.0) et (111,2.6.3)) . On pose 

£ ' = f - e K ; K f ( f ) - x K ; K . C f ) 

et 

g* = g - e K ; K , ( g ) - X K - . K ' ^ • 

Alors on a 

(1.2.5.2) fg * £'g+(f-f )g'+e co e (g) +x K ; K f(f) x K K,(g) + 

+ 9 K;K' C £ ) XK;K' C^ + x K ; K ' C f ) 9 K;K' C^ ' 

Or, i l résulte de (1.2.5.1) et (II, 2.6.5) que 

f'gEB ^  _ (KxK') 
W P + n - ( P o U P ' ) ) + # + n 

( f - f ' ) g ' e B (KxK-) 
( w P + n - № o u P ' ) ) + # + n 

et de(1.10),(1.2.1) et (11,2.6.5) que 

eK;K' ( £ ) 9 K ; K ' ^ e B

V ^ o C K > < K , ) ' 

X K ; K ' ( £ ) x K ; K ' ^ e B p ' + p >
( K x K , ) > 

6 K ; K , ( f ) X K ; K . ^ e B

V P , C K X K , ) ' 

x K ; K ' ( f ) 9K ; K ' ( g ) 6 V ( K X K , ) ' 
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et comme 

( N P + n - № UP')) + J NP + n e î j P + n -  V 9 

V + V aV c H P + n - D ' 
0 0  0 9 

V1 + V1 c Np + n - V1 

et 

o 9 

ce qui démontre le corollaire. 

il résulte de la proposition 1.2.1 et de (1.2.5.2) que 

X K ; K,(f-g) =
 eK;K , ( f ; ) x K;K , ( g ; ) + X K ; K , m 9 K ; K | ( g ) ' 

(1.3.1). Soient m  u n entier, m € K ,  U  u n ouvert de C P e t f  : 0™ —* 0^ 

un morphisme de Oy-modules , f  = (f^) 1 <^<nf-\<jm > fy^rCU,^ ) .  On désigne 

par £  l e morphisme de 0 ^ ^-modules 

f : 0

M

 n  0 N 

UxflT Ux( T 

défini par £  = (F^,... ,F ) ,  où pour tout j  ,  1  < j < m , 

Soient K  u n polycylindre compact de C P conten u dans U  e t K f u n polycylindre 

compact de Œ 11 te l que O C K .  Alors on a 

(1.3.1.1) B(KxK';£) = ; e °(B(K;f ) ê£ idg ^.j) 

(cf. chapitre 0 et (111,2.0)). D'autre part, on remarque que pour tout j  , 
o 

1 û j û m ,  et tout point x  d e K  o n a 

P O + E ( X , 0 ) ^ c P ' 
ì 

l'application B(KxK f;f) indui t donc une application C-linéaire continue 

B fKxK'jf ) :  B ( K )m — • Bp f (Kx K
1) 

pin v 

(cf. (1.0), (1.1.0) et (111,3.2)), et il résulte de (1.3.1.1) et de (1.1.1) qufon 

a 

(1.3.1.2) B^QCxK';?) - u p ; 1 1 ; e o B (K; f) 
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et 

(1.3.1.3) B(K;£) = T P;1I;e° 
B JKxK';f) 

(c'est-à-dire que si l'on identifiait B (K) à  son image Bp, (KxK') pa r 

1 'isomorphisme M-p.-n-.̂  on aurait B  (KxK ';f) = B(K;f) (voi r 1.1.2)) . 
i/, u.,e pi n 

De même, pour tout j  ,  1   ̂j  ̂m ,  et tout point x  de K o n a 

( * p + n - V + E ( x , o ) ( I У c : I r n - p , 

On en déduit que si l'on pose 

* ) P + n - P™ = ( K P + n - v,,..., w P + n - V , # + n - P ' ) , 
1 m  '  J 9 

où pour tout j  ,  1  û j m̂ ,  =  PQ ,  l'application B(KxK ';f) indui t une 

application C-linéaire continue 

B p +n ^ n ( K x K I ; £ ) :  ( B p +n (KxK'))
m •  B (KxK' ) 

# n - IT ]NP n - V 1N P n - P ' 
o 

(cf. (111,3.2) ) et il résulte de (1.1.0) et de (1.2.1) que 

(1.3.1.4) B(KxK';f) = B (KxK ';f) @ B ^ (KxK ';f) . 
1T W -  ÏT 

PROPOSITION 1.3.2.- Solent o : Bp, (KxK') — » B( K ) m une application (L-Unéalne 

continue et a ' : B( K ) n — » B (K) m l'application définie pan. 

a ' = °° M P;1I;e ' 

Mon* 

i) a ' e4 £ une application t-tinéalne continue et 

||a'|| < I  pV (K';0)||a|| ; 
* i= 1 1 KxK ' 

ii) poun que a ' boiX. une bclsàlon de B(K;f ) Il faut et II suffit que 

boit une 6cl6*lon de B^(KxK';f ) ; 

iii) poun que B(K;f ) boit une Acl&blon de a ' Il faut et II suffit que 

B (KxK';f ) ¿0>Lt une AclbAlon de a  . 
tr 

Démonstration. L'assertion (i) résulte de (1.1.1) , (a) et les assertions (ii) et 

(iii) de (1.3.1.2) et de (1.1.1) . 

Remarque 1.3.3.- La proposition 1.3.2 permet de ramener la construction de scis-

sions (resp. de scissions normales) de B(K;f ) a u cas où n= 1 . 

(1.3.4.). Soient U  u n ouvert de (C p , M u n sous-(^-module cohérent de , 
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i : M c — > l e morphisme cTinclusion, Q  I e conoyau de i  e t t  : — £ 

la surjection canonique, de telle sorte qu'on ait une suite exacte 

0 — v M  2  —• 0 

On en déduit une surjection 

S(t) : S((£) —• S(Q) 

de l'algèbre symétrique de û |j su r celle de Q  ,  d'où une immersion fermée 

Specan(S(£)) *  Specan(S((^) ) 

Or, 

Specan(S((^)) = U x (Cn 

et si l'on pose 

Y = Specan(S(Q)) , 

Y s'identifi e à un sous-espace analytique fermé de U  x df1 .O n désigne par 

J(M) l'idéal de définition de Y  dan s UxC 1 1 .S i U ' es t un ouvert de U  te l 

qu'il existe un entier m  ,  m  C K ,  et un morphisme de 0^,-module s 

£ : 4 — <Ç. 

tels que M|U ' = Im(f) , alors on a 

(1.3.4.1) J(M)|U' x Cn =  Im(f) 

(1.4.1). Soient x  u n point de Cy e t f  = (f^,... , )̂ ,  où pour tout i  , 

1 <i<n ,  es t une fonction définie au voisinage de x  e t analytique au 

voisinage de x  ,  ou un germe de fonction analytique au voisinage de x  (pa r 

exemple f  er(U,0^) ,  où U es t un ouvert de C p contenan t x  ,  o u f  e B(K) n , 

où K  es t un polycylindre compact de (C p te l que X  C K ,  ou f  € 0n ) 
(CP, x 

On désigne par E x(f) l a partie de lsP + n défini e par 

E (f) = U  (e . + (E if.)x{0})) 
x 1<;j<; n 3 x  3 

(cf. (11,1.1)), et si le germe de f  e n x  es t non nul, ce qui équivaut à 

Ex(f) ¿ 0 ,  on pose 

v (f ) = min (E (f)) 
a;x a  x v 

On a 

(1.4.1.1) E x(£)cP' 

et 

(1.4.1.2) v a ; x(f)€P' 
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On remarquera que si l'on pose 

F 
n 

j=1 
f. 

3 
T. 

3 

et si x ' désign e le point de cp+n défin i par x ' = (x,0) , alors F  es t une 

fonction (ou un germe de fonction) définie et analytique au voisinage de x ' dan s 
Œp+n 

, et conformément à (11,1.1), on a 

(1.4.1.3) E X , ( F ) = E X ( £ ) 

et 

(1.4.1.4) v ,  (F) = v ( f ) 
a;x' a;x v 

(1.4.2) Soient U  u n ouvert de C p ,  M  u n sous-0TT-module cohérent de (f ! , 
u o u 

x u n point de U  e t K  u n polycylindre compact de C F te l que x€ K e t Kcl l . 

On appelle ensemble des exposants privilégiés pour < ^ e n x  d e M  dan s 

(resp. ensemble des exposants privilégiés pour <^ su r K  e n x  d e M  dan s (̂ ) 

et on note P  (resp . P  v  )  la partie de ]Np+ n défini e par 

p u {delNp+n :  3f £IL , f /  0 e t v  (f ) = d} 
X CL ,X 

(reSP" Pa;M;K;x = {d £  ̂:  3f e % >  £ * 0 e t va;x(f ) = d» ^  ' 

On note M  (resp . M v  )  l'ensembl e fini M( P . . ) (resp . M( P . . v )  ) 

des éléments minimaux de P  (resp . P v  )  pou r la relation d'ordre pro-

duit û su r W e t on appellera les éléments de cet ensemble les exposants 

privilégiés minimaux. 

En vertu de (1.4.1.2) , on a 

(1.4.2.1) 
a;M;K;x a;M; x 

(on verra plus loin qu'en fait P  v  =  P )  e t comme M  es t un sous-module 
n a;M;«\j x a;Mj x 

de (J y , on a 

(1.4.2.2) P u =  M . 1 +  P 
a;M;x a;M; x o 

et 

(1.4.2.3) 
a;M;K;x a;M;K; x o . 

D'autre part, si M ' désign e un sous-(^-module cohérent de 0^ te l que M e M' , 

( 1 ) Pou r la définition de s e reporter au chapitre 0. 
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on a 

(1.4.2.4) P c  P 
a;M;x a;M!; x 

et 

(1.4.2.5) 
Pa;M;K;xcPa;M';K;x 

Remarque 1.4.3.- Dans le cas où n  = 1 (c e qui implique que M  es t un idéal co-

hérent J  d e t̂ j ) , les définitions et notations de (1.4.1) et (1.4.2) ne coïn-

cident avec celles de (11,1.1) et (11,1.2) que si l'on identifie $P à  la partie 

Npx {1 } d e Np+ 1 . 

PROPOSITION 1.4.4.- Soient U  un ouvent de (C p ,  M  un *OUA-0^-module cohérent 

de 0?r ,  x  un point de U , K  a n polycylindre compact de C p tel que 

Kcll et x £ K , et K ' un polycylindre compact de C tel que 0€K ' .  Moro 

on a : 

l} Pa;M;K; x Pa;P ' ; J(M) ;K x K' ; (x,0) Pa;J(M);KxK';(x,0 ) nP' ; 

113 Ma;M;K;x Ma;p ' ; J(M) ;KxK' ; (x,0) Ma ; J(M) ;KxK'; (x,0) n P' ' 

Démonstration. Il existe un ouvert U ' conten u dans U  contenan t K  ,  un entier 

m ,  m  e K ,  et un morphisme de 0^, -modules 

f : OmU' —> OnU, 

tel que 

M|U' = Im(f) . 

Alors, on a 

J(M))U' xCn= Im(f ) , 

MK = Im(B(K;f)) 

et 

(J(M))K = Im(B(KxK';f)) 

(cf.(1.3.4.1) et chapitre 0). On en déduit que 

P .if-K- v = (d^^P+n: 3gelm(B(K;f)), g^O e t v  (g ) = d} 

et 

Pa;P';J(M);KxK';(x,0)={de^+n: h e Im(B(KxK-;£)) n Bpf (KxK-) f WO e t v (  Q)(h ) = d}. 

(cf. (1.4.2), (11,1.2) et (111,2.6)). Or il résulte de (1.3.1.4) que 
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Im(B(KxK';f)) = Im(B ( K x K';f)) 0 Im(B n+T i JKxK';?) ) , 
p»1 |̂ P+ n .p111 

d'où 

Im(B(KxK';f))nBfì,(KxK») = Im(B (K x K';£)) 
v pin 

et en vertu de (1.3.1.2) , on a 

Im(B(K x K' ;f)) n Bp. (K x K') = Up;1I ;e(Im(B(K;f))) . 

D'autre part, l'application Up.-Q - .e es t bijective (1.1.1) , et pour tout g  , 

g€B(K)n ,  g/ 0 ,  on a 

Va;x(g) = Va;(x,0)(MP;1I;e(g)) 

((1.1.0.5) et (1.4.1.4)) . On en déduit que 

Pa;M;K;x Pa;P' ;J(M);KxK';(x,0) 

et il s'ensuit que 

a;M;K;x Wa;P';J(M);KxK';(x,0) 

Démontrons que 

Pa;P';J(M);KxK';(x,0) Pa;J(M);KxK';(x,0)nP' 

L'inclusion 

Pa;P' ; J(M) ;KxK' ; (x,0) cPa; J(M) ;KxK' ; (x,0) n V' 

est évidente (cf. (11,1.3)). Réciproquement, soit d  ,  d  G Pa. .}(xK ' * (x 0) n '̂ * 

Alors il existe h  ,  h  £ Im(B(K x K' ;f)) , ĥ O ,  tel que 

va;(x,0)W = d • 

On pose 

h- =xK;K,Ch) . 

En vertu de(1.2.1)et de (1.3.1.4), on a 

h'€ Bp, (KxK') e t h' £ Im(B(KxK';f)) , 

et il résulte de 1.2.4 que 

h' ^° e t va;Cx,0)« ^ = d • 

On en déduit que d e Pa;p, ;J(M) ;KxK,. (x>Q) . 

Il reste à démontrer que 

Ma;P';J(M);KxK';(x,0) " Ma;J(M);KxK';(x,0) 0 V% ' 
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L'égalité 

Pa;P' ; JCM) ;K*K' ; (x,0) Pa;J(M ) ;KxK' ; (x,0)n P' 

implique que 

Ma; J(M) ;KxK' ; (x,0) 0 P? cMa;£" ; J(M) ;KxK' ; (x,0) " 

Réciproquement, soit d  ,  d  € Ma;p». J(M) ;KxK'; (x,0) *  Alors d€p f e t 

d€Pa;J(M);KxK';(x,0) "  Soit d ' >  d' 6 Pa;J(M) ;KxK' ; (x,0) ,e t supposons que 

d1 <d .  Les conditions d€P ' e t d*< d impliquen t que d' €VQ o u d'EP ' e t 

comme d '6 pa; ;KxK » ; (x,0) ' 11 existe h  > h  e Im(B(KxKf ;£)) , h Ô ,  tel 

«ue Va;(x,0)(h ) = d' •  0r > 

Im(B(KxK';f))cIm(Mïï ) 

(1.3.1.1) et 

l i . e (dkd) 1мР+т_п (kkdkdd) 

(111,2.8.3). On en déduit que d ! £VQ ,  donc d f e P ' , 

d'où d'€Pa;J(M);IMCf;(Xf0)n ^ ,  c'est-à-dire d ? ^ a ;̂  .J(M) ;KxK̂  (x,0) >  ce 

qui est absurde. On en déduit que d£ M T.i n v r  n . ,  ce qui démontre la 
a;JlMj;KXK ;tx,u j 

proposition. 

COROLLAIRE 1.4.5.- En gardant lQJ> notation* dt la proposition 1.4.4, on a 

l} Pa;M;K; x Pa;M; x Pa;J(M);(x,0 ) nP' ; 

iiJ a;M;K;x a;M; x a;J(M);(x,0 ) 

Démonstration. En vertu de (11,3.7) , on a 

Pa;J(M);(x,0) Pa;J(M) ;KxK';(x,0) 

et 

Ma; J(M) ; (x,0) Ma ; J(M) ;KxK' ; (x,0) 

On en déduit que 

P =  P nu ' 
a;M;K;x a;J(M);(x,0 ) M " 

et 

Ma;M;K;x " Ma;J(M);(x,0) n P' 

(1.4.4). D'autre part, l'ensemble M  .. . étan t fini, il existe un ouvert U ' de 
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CP te l que xGU ' e t U'c U e t une famille finie (f-)1<r.. - d'élément s de 
i l^i^ m 

r(U',M) tell e que pour tout d  ,  d€Ma.^. x ,  il existe i  ,  1  Éiû m ,  tel 

que f . î 0 e t v  . (f.) = d .  Alors, si K 1 désign e un polycylindre compact 
de (C p te l que xEK- j e t K^cU ' ,  on a 

M . / <= P „ 
a;M;x a;M;K. . ;x 

et comme 

P c z P 
a;M;K-;x a;M; x 

(1.4.2.1), on en déduit que 

M A i =  M A i Y 

dfoù 

P =  P 
a;M;x a;M;K-; x 

((1.4.2.2) et (1.4.2.3)). Or, il résulte de la première partie de la démonstration 

que 

Pa;M;K-;x " Pa;J(M);(x,0) n V* 

et 

Ma;M;K-;x " Ma;J(M);(x,0) 0 P? ' 

ce qui démontre le corollaire. 

Remarque 1.4.6.- Le corollaire 1.4.5 permet de ramener l'étude des exposants 

privilégiés d'un sous-module de ûj 1 à  celle des exposants privilégiés d'un idéal. 
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§2. Division par un sous-module en un point 

En utilisant les résultats du paragraphe précédent, qui permettent de ramener 

l'étude d'un sous-module à celle d'un idéal, on démontre dans ce paragraphe des 

énoncés concernant un sous-module, analogues aux principaux résultats des paragra-

phes 3, 4 et 5 du chapitre III, relatifs à un idéal. 

(2^0) Dans ce paragraphe, on garde les notations du paragraphe précèdent et en 

particulier celles du n°(1.0). On rappelle que P ' désign e la partie de 

définie par 

D' и 
1<j<n 

NPx {ej} , 

où e^,...,e n désign e la "base" canonique de K  ,  et P Q cell e définie par 

P 
o X {0} 

(qu'on identifiera parfois à IN? ) . On remarque que la partie P ' d e ]N p + n sa -

tisfait à la condition (111,7.1.0.1) 

[(P' + (-P')) ()W n ] +  P'cp' , 

et on vérifie facilement que 

P 
o 

(P' + (-P')) n # + n 

En particulier, pour tout élément d = (cL,...,d ) d e (J№ )  ,  tel que pour tout 

i ,  1 £ i £m ,  d - £ P' , on a 

P' n A. (d) cd.+ P cp ' 
i i o 

(cf. (III, 7.1.0.4)). Si d  désign e un tel élément de (1N p + n) m ,  pour tout i  , 

1 ^i m̂ ,  il existe un élément d j de N p e t un entier ,  1  <j^<n , (uniques) 

tels que 

d. = (d!,e. ) 

On désigne par A^(d ) l a partie de 1N P défini e par 

A.(d) = dï + KP - U  (d ! + NP ) 
1<i'<i 

et pour tout j  , 1 S j  ̂n , par A  .(d) cell e définie par 

A .(d ) = W- U  (d ï + W) . 
1Siân 

j - j 

On remarque que pour tout j  , 1 û j  ̂n , (resp. pour tout i , 1 < i  ̂ m ), on a 
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(NP - A^ (d)) + NP c ]NP - A^ (d) 

(resp. [W- (-d | + Ai(d))] + W c]Np - (-dj+A^d)) )  , 

ce qui implique que pour tout polycylindre compact K  de C^ l e sous-espace 

B- (dj.-x-O O (resp . ^.¿1+ ^ (d)-x^ 3  d e B^K 3 n e déPend Pas du point x  d e 

o 3 
K (111,2.6.27) . On le désignera simplement par B - ^  (K ) (resp . par 

B-di+Ai (d) (K) ). 

(2.1) Soient U  u n ouvert de C p , 

f : OmU –> OnU 

un morphisme de O^-modules , x  u n point de U  , K u n polycylindre compact de 

<CP conten u dans U  te l que x € K ,  K 1 u n polycylindre compact de C1 1 te l que 

0 G K' , d  = (d1,... ,d ) u n élément de (Kp+n) m te l que pour tout i  , 1  < i < m , 

d^ € P' e t a=(ap.. . ,am) u n élément de (C*) m , et considérons l'applicatio n 

C-linéaire continue 

>;f;a;d;K*K';(x,o) =  V * * * ' 3 — Bp , (KxK' ) 

définie, conformément à (111,3.1) et (111,3.2) , par 

v m ~ =id n r^«i"( B mCKxK ';f)-n )C T 
îT ; f ;a ;d;KxK ' ; (x ,o ) V 1 J tfV;d;KxK» ; (x ,o ) ;a ;d;KxK ' ; P;a;d;KxK'; ( x ,o ) ' 

On en déduit une application C-linéaire continue 

Tfl-1I-e ° v m~ °^-1T -e: B(K) •  B(K) 
p ' U , e î f : f :a :d:KxK ' : (x .o ) p ' U ' e 

(cf. (1.1.0)). On remarquera que cette application est indépendante du choix du 

polycylindre K ' de (C11 (te l que OEK') . En effet, il suffit de le vérifier pour 

un polycylindre compact K " te l que K'cK " (ca r étant donné deux polycylindres 

compacts, leur intersection est aussi un polycylindre compact) et cela résulte 

de (111,3.1.1), (111,2.7.8) et (111,2.7.9) et du fait que l'application de 

restriction 

rKxK' KxK" : B(K x K") •  B(KxK') 

respecte l'identification de B(K ) à  B  (KxK' ) o u à B  (KxK" ) .  On pose 

Vf;a;d;K;x = TP;ïï;e ° > ;f ;a;d;KxK-(x,o) °^;1I;e ' 

et on vérifie aisément que si n  = 1 , on retrouve la définition de (3.1) (en iden-

tifiant Npx {1 } à  fP ) . 
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PROPOSITION 2.1.1.- Le* condition* suivante* sont équivalente* : 

i) Vf ;a;d;K;x 
est Invencible. ; 

ii) v£;a;d;K;x 
est b*.jectxve ; 

iii) poux tout g  , g€B(K) ,  Il exA*te un couple unique ( g ,g-J tel que 

«о e 
n 
П 
j=1 Ol 

Baoj (К) 9 *1 
e 

m 
П 
i=1 

В-<1!+Д.((Ц(К) 

et 

g = B(K;f)(g ) + g 

(où di désigne VImage de d . par la première projection W —• W 

Démonstration. L'équivalence des conditions (i) et (ii) résulte du théorème de 

Banach. D'autre part, en vertu de (1.1.1) , pour que 
vf;a;d;K;x 

soit inversible 

il faut et il suffit que v 
Pm;f;a;d;KxK';(x,o) 

le soit, où K ' désign e un poly-

cylindre compact de ( L te l que 0  €K' . L'équivalence des conditions (i) et (iii) 

résulte alors de (111,3.2.1), (1.3.1.1) et (1.1.1) en remarquant que 

(2.1.1.1) -di+ (P' HAt(d)) =PQn (-di+Ai(d)) =-dî +Ai(d) , U i m̂ , 

et que 

(2.1.1.2) Pon(-e,+Ao(d)) = A-(d) ,  1 < j <n , 

ce qui en vertu de (111,2.8.8), implique que 

(2.1.1.3) 
^ ; U ; e ( I W (d)CKxK'» 

n 
n 
j=1 

(d) 
(K) 

Remarque 2.1.2.- Si ( f f )  désign e un élément de r(U,0TT) e t 

f • <f • (f1 

le morphisme de ^-module s défini par cet élément, la condition (iii) signifie que 

pour tout élément g = (g^,...,gn) d e B(K) n i l existe un élément unique 

h = (h1,... ,hm) d e B(K) m e t un élément unique g ' = (g*,... ,g )̂ d e B(K) n tel s 

que : 

a) pour tout i  , 1 й i й m 9 

VB-d!«S.(d)<» 
1 1 

b) pour tout j  ,  1  £ j £ n , 

gJ ebaoj (d) (K) > 
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c) g = 
m 
Z 
i=1 

V f j K ) +  g» 

c'est-à-dire que la condition (iii) est une condition de "division". 

COROLLAIRE 2.1.3.- SI Von suppose, que. Vr . A.v. e*t Invexslble., alors poux tout 

o r,a,a,K,x 
a1 ,  a f € (C*) ,  et tout x 1 , x f €K ,  v£ ,   ̂K ,  égatoien t ZnveAôxMe. 

Démonstration. En effet, la condition (iii) de la proposition (2.1.1) est indépen-

dante de a  et de x (cf.(2.0)) . 

PROPOSITION 2.1.4.- Si Von suppose, que. v*. .A.v. et>t inversible, et si Von 

désigne, pax Of.j.v (resp . T£.A.Y )  Vapplication 

Or,.v : B(K) — * B(K ) 

(resp. r , , „ : B(K) >  B(K) ) 

définie, pax 

of ; d ; k ; (g) = g1 

(reSP- Tf:d:№ =  î  . 

°û (gn>gi ) déiigne l'unique couple tel que 

go E n II J = 1 baoj (d) (k) 
, g i E A B-dUÂ,cd) №) 

et 

g = B(K;f)(gJ + g„ 

(cf. (2.1.1)), alou on a : 

i) Vapplication af. ,.K (resp . r f ,  „ )  ut une application C-linéaiAe 

continue ; 

ii) i d B m n =  B(K;£)oa£;d;K + r£;d;K ' 

iii) Imiaf;d;^ =  .« B-d!+Â-(d)(K ) : 

iv) 
^^fîdjK1 =  ^ d ;^ =  U= } BÂ .(d)(K ) ; 

v) B(K;f) ut une icliilon de ; 

vi) l u conditions iuivantu 6ont équivalentes : 

a) Or.i.K Ut une iCAAiwn [nofunale) de B(K;£ ) ; 

b) Im(B(K;f)) n n B - (d ) 0 0 =  {0} ; 
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c) Im(B(K;f)) = Im(B(K;f) o of.d.v) ; 

d) Im(B(K;f))cKer(r£.d.K) . 

Démonstration. Soit K ' u n polycylindre compact de df 1 te l que 0  €K' . Alors 

v ^  es t inversible (1.1.1) , et en vertu de (1.1.1), (1 .3.1.1), 
V;f;a;d;KxK';(x,o) 

(2.1.1.1) et (2.1.1.3) la proposition (2.1.4) résulte de la proposition (111,3.2.2 ) 

en remarquant que 

(2.1.4.1) Qf;d;K 
0 m ~ 
P;f;a;d;KxK';(x,o) 

° MP;1I;e 

et que 

(2.1.4.2) r£;d;K TP;1I;e o 
( i d B f ì , ( K ) - V K ; ? ) ° G m  - j 

2T :f:a:d:KxK';(x,o) 
°MP;1I:e 

(2.2) En gardant les notations de (2 .1), soient < 
a 

une relation d'ordre total sur 
Np+n 

9 compatible avec sa structure de monoïde, moins fine que la relation d'ordre 

produit < sur N P + n 

9 (f1, . . . , fm) un élément de ( r(u,o'p)) m , 

UÏT TT 

le morphisme de (^-module s défini par cet élément et M  l e sous-(^-module 

cohérent de (ft engendr é par f 1,...,f ( M = Im(f)) . 

PROPOSITION 2.2.1.- SI pour tout i  ,  1  < i m̂ , le germe de. f.. en x  e*t non 

nul et v  (f. ) = d. , et si v r - , v est Inversible., le* conditions suivante* 
a;x i  i  ' f;a;d;K; x ' 

sont équivalentes : 

i) Of.^.K et une scission de B(K;f ) ; 

ii) Ma;m;x c {d-,... ,dm} . 

n ° 

Démonstration. Soit K ' u n polycylindre compact de ( C te l que 0£K ' .  Il résul-

te de (1.1.1) que v  es t inversible et en vertu de (2 .1.4.1), 

V :f:a:d :KxK':fx.ol on a 

öf;d;K - >; f ; a ; d ; K x K . ; ( X f 0 ) °  Mp ïï  . 

On en déduit que ov , „ es t une scission de B(K;f ) s i et seulement si 

a es t une scission de B  (KxK ';f) (1 .3.2). Or, si 
îT;f;a;d;KxK':(x,o) t T 

f = (f 1,... ,f ) ,  pour tout i  , 1  ̂i < m ,  on a 

v ,  ,(f. ) = v (f. ) 
a;(x,o) r  a; x r 

(cf. (1 .4.1.4) et (1 .3.1)). D'autre part, si l'on désigne par J  l'idéa l cohérent 
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de tfyx^n engendré par f^,..., ^ ,  on a J = J(M) ( 1 . 3 . 4 . 1 ) , et il résulte de 

( 1 . 3 . 1 . 4 ) que 

J K x K, nBp t(KxK') =Im(B (KxK';£) ) 

(car J  =Im (B(KxK';f)) ) On en déduit que 0 m ~ 
P :f:a:d:KxK':(x.o ) 

est une 

scission de BDm KxK';f) si et seulement si 

Ma;d'•TfM)-KxK'• fv C ^ d1 >* ' * >dm} 

fflll.3.3.1) et (III.3.2.2).(v)). Or. 

Ma;d';j (M); k x k' ; (x, o) = Ma; M; x 

( ( 1 . 4 . 4 ) e t ( 1 . 4 . 5 ) ) , ce qui démontre la proposition. 

PROPOSITION 2 . 2 . 2 . - En gardant les notations et les hypothèses de la proposition 

( 2 . 2 . 1 ) , si M ' désigne un sous-module cohérent de 0^ tel que M<=M ' ,  la 

condition 

MA;D'ul c{d 1,...,d } 
a:M' :x 1 ' ' m 

Implique que 

M'k = Mk (1) 

Démonstration. En gardant les notations de la démonstration de la proposition 

2 . 2 . 1 , s i l'on désigne par J ' l'idéa l cohérent J(M' ) de C^^ n (cf . ( 1 . 3 . 4 ) ) , 

on a Jc=J f e t en vertu de f 1 . 4 . 4 ) et C1.4.5) . 

Ma:M':x Na:fl':JfM'):KxK':fx.o) ' 

d'où 

Ma:fl':JfM1):KxK':fx.o)c { d1''"*>dm} ' 

On en déduit que 

J£ x K, nBp l(KxK') = Im(B (KxK»;f) ) 

( ( 1 1 1 , 3 . 3 . 4 ) e t ( 1 1 1 , 3 . 3 . 5 ) ) . Or, il existe un ouvert U ' de CF conten u dans U 

contenant K  e t un morphisme de 0]V -modules 

g : 0 W »  0n T 

tel que M'|U ' =Im(g) , et il résulte de ( 1 . 3 . 4 . 1 ) e t de ( 1 . 3 . 1 . 4 ) que 

J K x K ' n V ( K x K , ) =  I m ( B j n ( K X K , ; 8 ) } * 

On en déduit que 

( 1 ) Pou r la définition de M  s e reporter au chapitre 0 . 
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Im(B m(KxK' ; gO) =  Im(B JKxK'jf)) , 

d'où 

Im(B(K;g)) = Im(B(K;£)) 

(1.3.1.3), ce qui démontre la proposition (cf. chapitre 0). 

PROPOSITION 2.3. - Soient p , m, n dea entiers, p€] N ,  m€JN ,  n € IN ,  â une 

relation d'ordre total sur lP+n ,  comptatlble avec sa structure de monolde et 

moins fine que la relation d'ordre produit < sur 1Np+ n ,  <  , la relation 

d'ordre total Induite par <^ sur 1N P ,  U un ouvert de C p ,  x  un point de 

U , ( ff )  un élément de (r(U,OnJ) m , 
i m 

£ • О • О 

le morphisme de 0^-modules défini par cet élément et a un élément de (C* ) 

On suppose que pour tout i  ,  1  < i <m , le germe de en x  est non nul et 

on pose 

v U . J = d- = (d: ,e. ) , l  < i <m , 

où d ! € № et e ^ est le j.-éme élément de la "base" canonique de № 
i J i i 

(cf. (1.4.1 ) et (2.0)) , et 

d - C c L , . . . , * ! ) . 

Alors pour tout polycylindre compact K  de C1 ,  suffisamment centré et effilé pour 

< , (cf. (111,5.1.3)) on a 
~a 

i) Kc= U ; 

ii) vr j  T/- est Inversible. 
T : a :n:K:x 

Démonstration. En vertu de (1.1.1) , pour tout polycylindre K  de Cp te l que 
5 ^ n ° 

xEK e t Kc= U e t tout polycylindre compact K ' de C te l que 0€K ' , 

vr A v es t inversible si et seulement si v  m „ l'est . Or, si 
J ; a ; l ; K ; X „ P m;f;a;d;KxK';(x,o) 
f = (f1,...,f ) , pour tout i  ,  1  < i < m ,  on a 

v .  .(£. ) = v (f. ) =d. 
a: (x.o) i  a: x i  i 

(cf.(1.4.1.4) et (1.3.1)) . Alors il résulte de (111,4.4.4) et de (111,3.2.4) qu'il 

existe une constante C , C€]1, + °°[, et une partie V  de (]R*) p+n ,  appartenant 

au filtre de Hahn-Banach F ° (cf.(1,5.1.3)) , telles que pour tout polycylindre 
=a 

compact K " de Cp+n ,  tel que (x,o ) G K" , satisfaisant à 

e(K":(x,o)) <C 
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et 

p"(K";(x,o)) €V 

on ait 

i) K'-cUxC1 1 ; 

ii) v ^  es t inversible. 
Ü :f:a:d:K":fx.o) 

Or, si l'on désigne par r  l a première projection 

r : (R*)p 11 >  (R*)p , 

il existe une partie V  d e (R*) p appartenan t au filtre de Hahn-Banach F< 

telle que a 

V1 cr(V) 

(1,5.3). Alors pour tout polycylindre compact K  de (CP , tel que x € K ,  satisfai-

sant à 

eiK:x) < C 

et 

p"(K;x) ev 

il existe p  , p€(R*) ,  tel que 

(p"(K;x),p)€V , 

et si l'on designe par K ' l e polydisque fermé de C  d e centre 0 et de polyrayon 

p , on a 

e(KxK';(x,o)) = e(K;x) 

et 

p"(KxK';(x,o)) = (p"(K;x),p) , 

ce qui implique que 

i) K x K ' c U x T ; 

ii) v es t inversible; 
P:f:a:d:KxK':(x.o) 

d'où 

i) Kc U ; 

ii) vf.o.d.r. es t inversible; 

ce qui démontre la proposition. 
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COROLLAIRE 2 . 3 , 1 , - Soient p eX n dej> гп£сель, p £ ]N , n € JN , < ^ un e KeJUvtlon 
d'окдле. total бил lP+n , compatible, avec ба 6tnu.ctune, de, monoZde. et molnà ibie. 
que, Ы filiation d*oKdn& produit й бил NP=1 ,  U un ouveM, de C p . x un 

point de, U ,  M  u n боиб-O^-module, cohérent do, 0J] et Cf ^3  ̂<i<m an e &am^-2-

{Inle, d'éléments de r(U,M) telle, que, роил tout i  ,  1 й i ,  le. делте, de. 
f^ e n x  6olt non nul. On робе. 

d. = v Cf. ) , 1 <i<m . 
i a: x i  ' 

klohA 6l 

Ma ; M ; x u {d1, . . . , dm} , 

le, б оub-module M  eMt тдгпсле рал la ^атиХе ^ i ^ i ^ m ш ^олл^паде, da point 
x . 

Démonstration. En gardant les notations de la proposition 2 . 3 , i l résulte de cette 
o 

dernière qu'il existe un polycylindre compact K  de (C1^ tel que x £ K ,  KcU ,  et 
tel que v,, . ,A.V. soi t inversible. Alors si l'on désigne par M 1 l e sous-0TÎ-

ji j a j ci j ix. j x u 

module de 0ÏÎ engendr é par la famille (£.)•]<• < au-dessu s de U  , on a 

M1 c z M , 

et en vertu de ( 2 . 2 . 2 ) , o n en déduit que 

Mk = M'k , 

ce qui démontre l e corollaire. 

Remarque 2 . 3 . 2 . - E n combinant les propositions 2 . 3 et 2 . 1 . 4 , o n obtient aussitôt 

un théorème de division par un sous-module. Dans le paragraphe suivant on en dé-

montrera une version "numérique uniforme"qui nécessite quelques développements 

sunolémentaires. 
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§3. Théorème de division numérique uniforme par un sous-module. 

Dans ce paragraphe, on étend aux sous-modules les résultats établis au paragra-

phe 6 du chapitre III. 

(3.0) Soient p  et n de s entiers, p  £ ]N ,  n £ ]N* ,  et ^ a un e relation d'ordre 

total sur NP+n ,  compatible avec sa structure de monoïde et moins fine que la 

relation d'ordre produit <  su r NP+n .  La relation d'ordre <  indui t une 

relation d'ordre <  a1(resp . <  a2) sur JN P (identifi é à 1N P x {0} Nn ) 

(resp. sur IN1 1 (identifi é à {0 } x ) ) .On remarquera que les relations d'or-

dre <  a1 et <  a2 ne déterminent pas, en général, la relation d'ordre < 

La notion fondamentale (introduite dans (1.4.1)) est celle de l'exposant privi-

légié pour ^  e n x  d'u n élément f  =(f1,...,f ) d e (r(U,() )) n ,  où U 
CL I n  ̂ , p 

désigne un ouvert de £p e t x  u n point de U  ,  exposant noté va.x(f ) e t °iu^ 

satisfait, comme il est facile de vérifier, à l'identité 

v (f ) = mi n ( v (f.),e. ) = 
a;x a  v OL ;XV I  '  i/ 

1<i<n 1 

= mina {dew NP+n : 3d' £ W ,  3i, 1 <i<n :  d= (d',e.) et 

3ldTlf. 

aXd' 
(x) ¿0} , 

où e..,..., e désign e la "base" canonique de ! M 

On remarquera que v  .  (f) n e depend que de la restriction de la relation ^  a 
ot jx a 

p' = W x{e^,...,e }  .  Cette restriction n'est pas non plus déterminée, en géné-

ral, par les relations ^  e t < .  Néanmoins, si l'on veut "privilégier les 
«1 <» 2 

exposants par rapport aux indices" il est naturel de supposer que si d ^ et d̂ j 

désignent deux éléments de fP tel s que d ^ <a d̂ j ,  alors pour tout d^ et d£, 

d0 £ fP ,  di £ 3Nn ,  on ait 1 

(d1fd7) <„ (d',d«) . 

Sous cette hypothèse, pour tout d ^ et d̂ j , d̂  £ W ,  dj £ W ,  et tout d^ et d^, 

d. £ 1Nn ,  di £ JNn ,  on a 

(d1,d2)<a(d^,dp^(dl< d' ) o u [(d1=d p e t (d2 ^ a d p] , 

et alors la relation d'ordre <  (e t en particulier sa restriction à p ' ) es t 

déterminée par les relations d'ordre %a1  e t %a2  .O n ne fera pas cette hypo-
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thèse en général car les théorèmes "uniformes" ne la nécessitent pas. En revanche, 

cette hypothèse sera utile dans la partie "numérique" de ces théorèmes car elle 

permet d'obtenir des majorations plus simples et canoniques. On est ainsi conduit 

à formuler la définition suivante : 

DEFINITION 3.O.1.- Sole.nl p  et n  dej> entleAA, p  e N ,  n € N , et s  une, rela­

tion d'ordre, total hur lP+n ,  compatible, avec m structure de, monolde.. On dîna 

que, la relation d1ordre <^ privilégie le, t>ouA-monolde, 1N P = iP x  {0} de, 

lP+n U pour tout d1 , d], d2 e t d £ ,  d^eiP ,  d] € iP ,  d2 £ fP ,  d£ <E Nn , 

on a 

(d.,0) < (d2,0)-.(dlfd2) < (d'd' ) . 

PROPOSITION 3.0.2.- En gardant le* notation* de, la définition 3.0.1 ,  ¿1 la rela­

tion dorare, <a privilégie, le, òouA-monolde, fP de, JNp+n e t ¿1 Von désigne, 

par < (resp . par S )  la restriction de, < à iP {Identifié à ïPx {0}) 

Ot-j 0 ^ o t 

(resp. à iP (Identifié à {0 } x Jp )) , pour tout d^ , dj, d2, d£ , d ^ € Kp , 

di € iP , d0 e IN11 , d'€ Nn on a 

^ d r d 2 ^ a C d r d 2 ^ ( d 1 V d P ° " [Cd1 = d P * (d 2 ^ d2) ] ' 

Démonstration. Si d ^ <^ d j , on a (d ^ ,0) <a (d^ ,0) e t ^  privilégian t le 

sous-monoîde F  d e F  ,  on en déduit que (d ^ ,d2) < (d. j ,dp .  Si d ^ =dj 

et d 9 ^ d l , on a (0,d? ) < (0,dl ) e t <  étan t compatible avec la structure 
z & 2 z  z  o t z  a 

de monoîde de ,  on ne déduit que (d ^ ,d2) £ (d. j ,dp .  Réciproquement, si 

(d1 ,d?)  ̂(d i ,dl) , on en peut avoir d i < d 1 car , en vertu de ce qui précède, 

on aurait (d i ,d') < (d1,d0 J .  La relation ^  étan t une relation d'ordre total, 
\ z  a  1  z  a 

on en déduit que d i < dì ou d i =d' .  Si d i =d' ,  la relation d'ordre ^ 
n 1  a-j 1  1 1 1 1 ' a 

étant régulière (cf. (1,1.0)) on en déduit que (0,d9 )  ̂(0,dl ) , d'où d ? ^ d' , 
z 0 » z  z  o u z 

ce qui démontre la proposition. 

Remarque 5.0.5.- En gardant les notations de la proposition 3.0.2, si la relation 

d'ordre < a privilégi e le sous-monoïde fP d e lP+n ,  la restriction de < ^ à 

P' = iP x{e^...,enl ,  où e1,...,e n désign e la "base" canonique de fP ,  est 

déterminée par la relation d'ordre ^  e t la restriction de la relation d'ordre 

s a  l'ensemble i e 1 . . ,ê> .  (Quitte a changer, le cas échéant, l'ordre des c*2 i  n 

indices, on peut supposer que 

e. < e ~ < .. . < e 
1 o u z  o u o u n 
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et alors la restriction de <  a2 à {e1,..., e } n'es t autre que la restriction 
1 n  n 

de l'ordre antilexicographique ̂ T su r Nn  (cf . (1,3.12.1)). La notion 

d'"exposant privilégié" ne dépendant que de la restriction de <^ a V ,  on peut 

alors supposer, sans perte de généralité que ^  n'es t autre que ̂ T .1 1 sera 
a2 L 

donc utile d'introduire la notation suivante. 

(3.0.4) Soient p  et n de s entiers, p  € JN ,  n  € U ,  et <A  un e relation d'ordre 

total sur Nn ,  compatible avec sa structure de monoïde. On désigne par < _ l a 

relation dans JNp+ n défini e par 

(d ,d2) < (d»,djp~( d < a d') ou [(d =d' ) et (d < d') ] , 

pour d. j € W ,  d̂j € W ,  d2 € IN ,  d£ £ JN ,  où < L désign e la relation d'ordre 

antilexicographique sur ff1 (cf(1,3.12.1)) . La relation < _ es t une relation 

d'ordre total sur JN̂ + n ,  compatible avec sa structure de monoïde, privilégiant 

le sous-monoîde fP d e fP+n ,  induisant <  su r lP e t si <  es t moins fine 
a a 

que la relation d'ordre produit ^  su r W ,  <_ es t moins fine que la relation 

d'ordre produit <  su r ! \ P + n 
LEMME 3.1.- Solent X un espace ̂ -analytique, Z  un fermé analytique d'Intérieur 

vide de X  , Y l'ouvert den*e de X  défini par Y  = X-Z ,  n un entier, n  G IN , 

^a une relation d'ordre total our JNn ,  compatible avec òa structure de monoïde 

et F  le filtre de Hakn-Banach F ? òur (R*)n défini par cette relation d'or­
ba + 

dre (cf . (1,5.1.3)). Alors pour tout ensemble V  appartenant au filtre F(Y/Z ) 

òur (JR*)n xY (cf . (111,6.1.3)) Il existe une famille (pj)1<j< n de fonctions 

caviti vin p A 

p. : Y —• R * , 

telle que pour tout j , 1  < j n̂ ,  p j et l/p^ boxent modérée* le long de 

Z .  ot tplïïp mio venir tout nnivit v  HP Y nvi ait 

(Pi(y),...,Pn(yJ,yJ€V . 

Démonstration. En vertu de (111,6.1.7), si A = (a — )-j<i<n l<j<n désign e une natri-

ce de définition de < ^ (cf . (1,3.11 )), il existe ô  ,  ô  € IR+ ,  et une fonction 

continue e n 

cp : Y >  ]R* , 

telle que 1/c p soi t modérée le long de Z  , et telle que 

(rAx i<V « п ; б ; Ф ) с У • 

On peut supposer que la fonction c p soi t également modérée le long de Z  e n la 

remplaçant par la fonction cp ' défini e par 
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cp'(y) = inf{œ(y),1} , pour yG Y 

(car alors ^ . ^ . ^ t c^1-ô-Cp Pou r tout 1  9 =!= n >  on désigne par p j la 

fonction 

pï :  Y >  R* 

définie par 

pï = c p /2 1+o+o+ ...+ oi-1 

La fonction p j es t continue, modérée le long de Z  , 1/pj es t également modérée 

le long de Z  (App.I , 1.2.2,(vii)) e t on vérifie facilement que pour tout y  , 

y G Y ,  on a 

( P ^ y ) , . . . , P j ; ( y ) ) e E n ; ô ; , y ) , 

autrement dit 

CPÍCy),...,P¿(y:>,y)eEn(S . 

Si pour tout j  , 1  < j <n ,  on désigne par p . l a fonction 

Pj : Y –> R*+ 

définie par 

n aij 
Pi = n Pi1J Pi , 

la fonction p_ j es t continue, modérée le long de Z  , 1 /p.j es t également modérée 

le long de Z  (App.I , 1.2.2,(vii) et (1.3.2)) et pour tout y  , y €Y ,  on a 

rA(p](y),...,p¿(y)) = (p1(y),...,pn(y)) 

(cf. (I, 4.7)), d'où 

Cp1Cy),...,PnCy))erA(En () ) , 

autrement dit 

(P1(y),...,Pn(y),y)e(rAxidY)E(rA x idY) (En ; o ; o) , 

ce qui demontre le lemme. 

Remarque 3.1.1.- En gardant les notations du lemme 3.1, il en résulte immédiatement 

que si X  es t un sous-espace analytique localement fermé de C1 1 e t si une pro-

priété d'un polycylindre compact pointé est satisfaite pour tout polycylindre com-

pact de C1 1 point é dans Y  , suffisamment effilé pour < a ,  modérément le long de 

Z (cf . (111,6.2.1)), alors il existe une famille (pj)-|<j< n d e fonctions conti-

nues 

P-; : * JR * , 
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telle que pour tout j  ,  1 < j <n ,  p j et 1/p^ soien t modérées le long de Z  e t 

telle que pour tout point y  de Y l e polycylindre compact pointé (K(y),y ) , où 

K(y) désign e le polydisque fermé de C1 1 d e centre y  e t de polyrayon 

(p-. (y),... ,p (y)) , satisfasse à la propriété. 

(3.2) Soient p  et n de s entiers, p  € IN ,  n € Isf , < ^ un e relation d'ordre total 

sur NP+n ,  compatibl e avec sa structure de monoïde, <  t l a relation d'ordre 

induite par <  su r IN* 3 ,  X  u n sous-espace analytique localement fermé de 

(Ĉ  ,  Z  u n fermé analytique de X  d'intérieu r vide (dan s X  ), Y  l'ouver t 

dense de X  défin i par Y  = X-Z ,  X' l e sous-espace analytique localement fermé 

de çP+n défin i par 

X'=Xx{0} , 

Z' l e fermé analytique d'intérieur vide de X ' défin i par 

Z' = Z x {0} 

et Y ' l'ouver t dense de X ' défin i par 

Y' =Yx {0} = X' - Z' . 

LEMvffi 3.2.1.- SI une propnlete d'un polycytindre compact polnte e*t *atlsialte роил 

tout polycylindJie compact de Cp+ n polnte. dan* Y ' ,  *Щ1ьаттеп1 еЦИе роил 

, moderement le long de Z ' (cf. (111,6.2.1)), аЛол* роил, tout polycylindre 

compact de. (Cp polnte dan* Y  , (K,y ) ,  *uffl*amment еЦИе роил < , mode-

rement le long de Z  ,  11 exlste p  ,  p€ (R*)n ,  tel que le polycyllndre com­

pact polnte (KxK';(y,0) ) , ой K' deblgne le polydl*que fenme de (C1 1 de centre 

0 et de polyrayon p  ,  *аХ1*£а**е a cette proprlete. 

Démonstration. Soit ^  ^  (resp .  ̂,  ~ ) l'uniqu e prolongement de <  (resp . 
a>x a  V+TI p  a 

de <  f ) en une relation d'ordre total sur (resp . su r )  , compatible 

avec sa structure d'espace vectoriel (cf. (1,2.1)) et posons 

B = { a € ^ + n :  a > Q Q0} 

et 

B' = {a'€ QP+n : a' > Q0} . 

Il existe un entier m  ,  m a N ,  une famille Câ D i<î<m d'élément s de B  e t une 

famille (to-)-./• / d e fonctions continues 

Ф. : Y > Ж* 
i + 

modérées le long de Z  ,  telles que pour tout point y  de Y e t tout polycylindre 

compact K  (resp . K' ) de (C p (resp . de (P )  , tel que y € K (resp . tel que 
O 

0€K' ) , la condition 
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p"(KxK.;(y,0))e n V  y ) 

implique que le polycylindre compact pointé (KxK',(y,0) ) satisfait à la proprié-

té (cf. (111,6.2.1) et (1,5.2.6)). En vertu de (1,5.3.1), il existe une famille 

finie ( a | f ) I ^ Î ^ I d'élément s de B 1 tell e que si l'on désigne par c p l a 

fonction 

cp : Y >  R * 

définie par 

tp(y) =  sup cp, (y) ,  pour y e Y , 
1 <î <m 

on ait 

aj,;V,(y)cr l V ; i / , ( y ) J • 

où r  désign e la première projection 

r : (R* )p+n —> (R*) P . 

La fonction c p est une fonction continue, modérée le long de Z  (App . I, 1.3.3) 

et pour tout point y  de Y e t tout polycylindre compact K  de CP ,  tel que 

o 
y G K ,  la condition 

p"(K;y)€ n v , y M 
1<i'<m' a i " ' W J 

implique qu'il existe p  ,  p  e (]R*) ,  tel que 

Cp"CK;y),p)e n V  (y ) , 

ce qui implique que si l'on désigne par K ' l e polydisque fermé de ( ET d e centre 

0 et de polyrayon p  on a 

p"(KxK ' ; ( y,0 ) ) e n V . y ( j , 
1<i^m ai'l/(pily j 

et démontre le lemme (cf. (111,6.2.1) et (1,5.2.6)). 

LEMNIE 3.2.2.- SI Von &uppot>e que la relation d}oxdxe <^ privilégie le 

*ou6-monoZde 1N P de ]Np+ n ,  OIOAA ¿1 une pxopsUété d'un polycylindxe compact 

pointé QJ>t ^atl^^aite poux tout polycylindxe compact de (Ep+n pointé dan* Y' , 

Au^lbamment ei{llé poux < , mod2.Kim2.nt le long de Z1 , IL existe une Camille 

( p - ) ^ ^ dz fonction** continuer 

p. : Y —• R * , 

telle que poux tout j  ,  1  ̂j <n ,  p̂ . et 1/p j Aolent modérées le long de Z 

et telle que poux tout polycylindxe compact de pointe dan* Y  ,  (K,y ) , 

àu^Lbamment e^llé poux , modérément le long de Z  , le polycylindxe 

compact pointé ( K x K' (y), (y,0)) , où Kr(y ) désigne le polyduque &2Xmé de C1 1 
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de. cetóte 0 et de, polynayon (p ^ (y),... ,pn(y)) ,  *cuLLi>icu>4e, à cette, propriéte. 

Démonstration. Il existe un entier m , m € ]N ,  des familles (d.).,^ . e t 
+ 1  1<i<m 

( < U i^^n d'élément s de W telle s que pour tout i  , 1 <i<m ,  d. < 6-î isi< m 1  r ' i  a i 
et une famille C<P̂ D -| <j_̂ I1 d e fonctions continues 

<p :  Y >  R* 

modérées le long de Z  , telles que pour tout point de Y e t tout polycylindre 

compact K  (resp . K' ) de (Cp (resp. de i f ) tel que y €K (resp. tel que 
o 

0€Kf ) , la condition 

p " ( K x K ' ; ( y , 0 ) ) e i i V i ^ v ^ 

implique que le polycylindre compact pointé (KxK',(y ,0)) satisfai t à la proprié-

té (cf. (111,6.2.1)). Posons 

di=(d|,dV) , d ! er ,  dVGK1 ,  1 < i < m , 

et 

ôi=(ô[,ôV) , ô ! 6F ,  ÔVCN11 , 1 ^i<m . 

La relation d1 ordre < ^ privilégiant le sous-monoïde W d e W ,  si l'on 

désigne par ^  fl l a relation d'ordre sur induit e par <  ,  pour tout i  , 

1 S i  ̂m ,  on a 

(d!<a, ô!) o u [(d!=ô!) et (dV<„6V)] • 

Quitte à changer, le cas échéant, l'ordre des indices, on peut donc supposer qu'il 

existe m' , 1 <m' <m te l que 

( 3 . 2 . 2 . 1 ) d!_ < f 6[ , 1 <i<m' , 

et 

( 3 . 2 . 2 . 2 ) d i = ôi et d±< » ô ï >  m'<i<m . 

En vertu du lemme 3 . 1 , i l existe une famille (p-)^. ^ d e fonctions continues 
' H  1<i^n 

telle que pour tout j  , 1  ̂j < n ,  p̂  et 1/p.. soien t modérées le long de Z  , 

et telle que pour tout point y  de Y o n ait 

( 3 . 2 . 2 . 3 ) ( P l ( y ) , . . . , p n ( y ) ) € n V . 
m'<i<m i  ±9 7 

Pour tout i  , 1 ^i^m1 ,  on désigne par tp j l a fonction 

cpï : Y —• R* 

définie par 
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ф! = Ф1 p 1 1  , 

où p  désign e la fonction 

p : Y >  (R*)n 

définie par 

p = Cp-i,... ,p J . 

La fonction <p ! es t continue, modérée le long de Z (App . I, 1.3.2) , et pour 

tout point y  de Y e t tout polycylindre compact Kd e C 1 ,  tel que y  € K ,  la 

condition 

p'' (K;y) n 1<i<m, Vq'i-d'i; 1/q'i (Y) 

implique que si l'on désigne par K'(y ) l e polydisque fermé de C  d e centre 0 

et de polyrayon p(y ) , on a 

Р'4кхк4у);(у,0))€n 1<i<m' Voi-di ; 1/qi yJ . 

Or, en vertu de (3.2.2.2) et de (3.2.2.3), on a 

р » ( К х к Ч у ) ; ( у , о ) ) е n vô _ v , 
m'<i<m i  i  ' ^ i J 

ce qui démontre le lemme (cf. (111,6.2.1)). 

THEOREME 3.3.- Soient p , m, n doA entleAb, p  € К , m €W ,  n£]N* ,  < une rela­
tion d'ordre total ыхл ]Np+n ,  compatible avec m btxuctxxAe de, monoZde et moln& 
£lne que, la relation d'ordre produit < hur la relation d'ordre 
Induite, рал <^ ьиг 1MP ,  d  = (d^,... ,dm) un élément de, (#+п)ш tel que, 

¿1 e^,..., e désigne, la. "babe" canonique, de. ]Nn ,  роил tout i  ,  1  <i<m , 

on ait 

di=(d!,e )  , 
Ji 

où d^£]N p et 1  ^ j n̂ ,  U  un ouvert de $P , X un .ьоиь-елрасе analytique. 
f^eAmé de, U ,  Z un {erme analytique, de, X d'Intérieur vide, [danò X ), Y 

l'ouvert denbe de, X défini рал Y = X - Z , 

Ф : Y —ь [1,+ <4 

une fonction continue,, modérée, le, long de, Z ,  (fp...,fm) a n élément de. 

(r(U,0np))m et 

f . < f 0* 

£e morpklj>me défini рал cet élément. On шрроье que. роил tout i  ,  1   ̂i<m 

tout y , y € Y ,  le. germe f . de, f- e n y  et  no n nul et que. 
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v (f.) = d. . 
a;y î  î 

I) Pour tout polycylindre compact de fl/  pointe dans Y  ,  (K;y ) ,  su^lbam-

ment e^lté роил < , , modérément le long de Z , la condition 

e(K;y) <ф(у) 

Implique que 

i) Kc U ; 

il) роил, tout élément g  de B(K ) Il existe un couple unique Cg(),g1 ) tel 
que 

11 Ш 
g ° € ^ \.(d)CK ) >  « 1 * . ^ B-d!+ï.(d)(K) 

(cf. (2.0)) U 

g = B(K;f)(gl)+go 

et si Von désigne рал ov.d.K (resp . par , K ) Vapplication 

о, ,.K : B(K) — * B(K ) 

(resp. r£ , :  B(K) — • B(K ) ) 

définie pan. 

J£:d:KC^ = «1 

(resp. rf d (g ) = g )  , 

on a 

a) ^£.d.K et r£.j. K d& 6 applications (C-linéaire* continue* ; 

b) Im(af;d;K) = 
m 
П 
i=1 

^dï+A^d)00 ; 

C) ^ f i d i K^ ^ f W = 

n 
П 
j=1 

BAo (d) (K) 

d) B(K;f) est une sclbslon de G R A V ; 
f;d;K 

e) Al Von désigne par M  le sous-O^-module cohérent de öjj engendré par 

f -j,..., fm les conditions suivantes sont équivalentes 

a) Ma:M:vc{d1*-">dm} ; 

3) ör est une scission de B(K;f ) ; 

iii) si M ' désigne un sous-ûu-module cohérent de d\ tel que pour tout i  , 
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1 ^ m ,  £. er(U,M') , la condition 

M , /t с {cL ,... ,d } 
a: M' ;v 1 9 '  m 

Implique que 

^ =  Im(B(K;f)) U ; 

II) SI l'on *uppo*e en р1ш> que la relation d'ordre ^a privilégie le *ou*-mo-

nolde iïP de JN p + n il existe dos fonctions continue* 

Ф 1 :  Y > Ж* et ф 2 : Y —> R * , 

modérée* le long de Z  ,  telles que pour tout polycylindre compact de C p pointé 

dans Y  ,  (K;y ) ,  *uffisamment effilé pour , modérément le long de Z , 

la condition 

e(K;y) ̂ Ф(у) 

Implique le* assertion* (i), (ii) et (iii) de la partie (I) au théorème, où Von 

remplace Va**ertlon (ii) , (a) par Va**ertlon pia* précise 

a') a £ . j . K d r£.^.K *ont de* application* <L-linéaire* contenues et on 

a 

||of;d;k|| <y1 (y)/p'' do (K;y) , 

ou d =  sup dï (la borne Supérieure étant relative à la relation d'ordre produit 
0 Ш<т 1 

й *ur W ) , et 

l | r f ; d ; K M * 2 W « 

Démonstration. Soient U 1 l'ouver t de <C P défin i par U ' = Ux C ,  X ' l e 

sous-espace analytique fermé de U ' défin i par X ' = Xx{0} ,  Z ' le fermé analy-

tique d'intérieur vide de X ' défin i par Z ' =Zx {0} ,  Y' l'ouver t dense de 

X' défin i par Y ' = X' - Z' = Y x {0} e t cp ' l a fonction 

Ф' : Y' —* [ 1 , +«>[ 

définie par 

Ф'(у,0) = Ф(у) , pour y€ Y . 

La fonction cp ' es t continue, modérée le long de Z ' (ca r < p l'est ) .  Considé-

rons l'élément f  = (f^..., )̂ d e (r(U', 0p + n ) ) m défin i dans ( 1.3 . 1 ) . O n remar-

que que pour tout i  ,  1  ̂i < m ,  et pour tout y  , y € Y ,  on a 

(1) Pour la définition de M A s e reporter au chapitre 0. 
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Va; (y,o) (fi) = va; y (fi) = di 

(cf. (1.4.1.4) et ( 1.3 . 1 ) ) . E n appliquant le lemme (III, 6.4.1) à f  e t en raison-

nant comme dans la démonstration du théorème (III, 6.4.2), on en déduit l'existence 

de fonctions continues 

№ :  Y' —> R * e t № :  Y' —> R * , r1 +  r 2 +  ' 

modérées le long de Z 1 ,  telles que pour tout polycylindre compact d e G/ 

pointé dans Y f ,  (K",y! ) ,  suffisamment effilé pour < a ,  modérément le long 

de Z f , la propriété (P ) ci-dessou s soit satisfaite : 

(P) La condition 

A) e(K";y' ) Sip'(y') 

implique, que. : 

K"cU' 

B2) pour tout g 1 ,  g1 eBp,(K") ,  il existe un couple, unique. 

(g'g') tel que 

S o € V n A n ( d ) ^ So€VnAn(d) ̂n \ n ( - d . + A . (d))»"3(1) 

et 

g1 =B(K";ï)(gp+g£ , 

et s il'on désigne, pan o m ~ (resp . pax. r m ~ )  l'application 

^;ï;d;K»;y P ' 

m 
n 
i=1 

Bp (K") 
o 

(resp. r :  Bpf(K") —• Bp.CK" ) ) 

définie, pan. 

tr:f;d;Kff:yf ° 

C^esp. r So€VnAn(d)  ̂(g') = g' )  , 
^fidi^'iy' 0 

a£a>L& a  (resp . r m „ 
t ^ f ^ K " ^ ' P  lf;f;d;K";y ' 

ne. continue , 

) est une application fc-linéai-

( 1 ) Pou r la définition de PQ , V e t P s e reporter à ( 1 . 0 ) . 
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||o-So€VnAn(d)̂  Il s*Uy')/p " °CK";y') , 

où ô  =  su p d - (l a borne supérieure étant relative à la relation 
0 1<i<m 1 

d'ordre produit û su r lsP+ n )  ,  et: 

I | r m ~ Il S^Cy') -
fl;f;d;K":y' K" 

En vertu de (111,3.2.1), la condition (B2) de la propriété (P ) implique en particu-

lier que pour tout a  ,  a  £ (C*) ,  v  ~  es t inversible. 
t^if :a:d:K":v' 

Pour démontrer la partie (I) du théorème, on remarque qu'en vertu du lemme 

3.2.1, pou r tout polycylindre compact de &  point é dans Y  ,  (K,y ) ,  suffi-

samment effilé pour <  , ,  modérément le long de Z  ,  il existe p  ,  p £ (]R*)n , 
a + 

tel que le polycylindre compact pointé (KxK ';(y,0)) , où K ' désign e le poly-

disque fermé de C n d e centre 0 et de polyrayon p  ,  satisfasse à la propriété 

(P). Comme 

e(KxK';(y,0)) = e(K;y) , 

si e(K;y)<tp(y ) , alors (KxK ';(y,0) satisfai t à la condition (A) de la proprié-

té (P) , donc également aux conditions (B^ ) et (B^) , et en particulier 

v ^  es t inversible (pour tout a  , a G (C*)m ) , ce qui implique 
Pm;f;a;d;KxK';(y,0) 

que V f . n . j . v - , es t inversible et la partie (I) du théorème résulte de (2 .1.4), r ,a,û,iv,y 

(2 .1.4 .1) , (2 .1.4.2), (2.2 .1) e t (2.2.2) . 

Pour démontrer la partie (II) du théorème, on remarque d'abord que si l'on 

suppose que la relation d'ordre ^  privilégi e le sous-monoïde NP  d e W 

en vertu du lemme 3.2.2, il existe une famille (P-J-\<'<n de fonctions continues 

pj : y –> R*+ 

telle que pour tout j  ,  1  ̂j n̂ ,  p j et 1/pj soien t modérées le long de Z 

et telle que pour tout polycylindre compact de C ? point é dans Y  ,  (K,y ) , 

suffisamment effilé pour ^  t ,  modérément le long de Z  , le polycylindre compact 

pointé ( K x K'(y), (y,0)) , où K'(y ) désign e le polydisque fermé de C1 1 d e centre 

0 et de polyrayon (p- , (y),... ,p (y) ) , satisfasse à la propriété (P) . Comme 

e(KxK'(y);(y,0)) = e(K;y) , 

si e(K;y ) ^cp(y) , alors (K xK'(y),(y,0)) satisfait à la condition (A ) de la 

propriété (P) , donc également aux conditions (B^ ) et (B^) . Ensuite, on remarque 

qu'en vertu des définitions de d  e t 6 ,  on a 
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qo = (do; do') 

OÙ 

ô' = E  e . 
0 j€ J J 

et 

J = {j : 1 <j :  3i, 1 <i<m ,  j = ji} . 

Soit (resp . 2̂ ) la fonction 

î̂l : Y —» R * (resp . ^ 2 : Y —* R * ) 

définie par 

•i(y) =*Uy,0)( Z p . (y))/ n p . (y) , pour y € Y , 
1 1  j= 1 3  j€ J 3 

(resp. *7(y)=*Uy,0 ) 22n~1( z p  (y)) sup (1 /p . (y ) ) ,  pour y  G Y ,  ) . 
Z Z  i= 1 3  1<i< n J 

Les fonctions e t ^2 son t continues, modérées le long de Z  (App.I,(1.3.2 ) 

et (1.3.3 ) ) . Enfin , il résulte de (2.1.4.1) et de (1.1.1) que 

llaf;d;KllK - 'Vf -d-KxK'fvWv о i K X K ' W ||мР;И;е»1&<кчу) й 

^ [ipUy,0)/pn °(KxK'(y);(y,0))] I pV(K'(y);0) . 
1 i=1 J 

De même, il résulte de (2.1.4.2) et de (1.1.1) que 

Hrf-d-KllK = HTï?-lT-ellKxK'rvJlr m - Dm;f;d;KxK' (y) ; (y,O)Il HMfl-ïï-eHKxK' M * 

^ 22n~1. sup (1/pV(K'(y);0)) ^ ( y,0) Z  pV(K» (y) ;0) . 
1<i<n 3  z  i= 1 3 

En observant que 

ô_ a 
p" °(KxK'(y);(y,0)) = p" °(K;y) n  p . (y) 

et que 

Pv(K'(y);0) = p (y) 

on en déduit l'assertion (a1) , ce qui démontre le théorème. 

Remarque 5.3.1,- Dans la plupart des applications, la fonction c p es t supposée 

constante. En appliquant le théorème à c p = 1 , on obtient un cas particulier con-

cernant les polydisques. De même, en vertu de (III, 6.2.3), on peut formuler une 

version "paramétrique" de la condition "suffisamment effilé" et obtenir un énoncé 
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plus explicite. En particulier, si ^  f n'es t autre que la relation d'ordre anti-

lexicographique sur ,  on obtient un énoncé analogue à la proposition (III, 

6.4.6). 
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§4.- Théorème de privilège numérique uniforme (ca s général). 

Dans ce paragraphe, on démontre le théorème de "privilège numérique uniforme", 

résultat principal de ce travail. On en expose plusieurs variantes, et on énonce 

explicitement les cas particuliers les plus importants, la version la plus générale 

étant le théorème 4.4.1, e t la plus concrète le corollaire 4.4.7. Par ailleurs, 

on démontre un théorème de "division numériqu e uniforme" par un sous-module 

(théorème 4.3.2). 

(4.1). Soient p  et n deu x entiers, p  € ]N ,  n £F ,  < ^ une relation d'ordre 

total sur ,  compatible avec sa structure de monoïde et moins fine que la 

relation d'ordre produit û su r fP+n ,  U  u n ouvert de C ? ,  M  u n 

sous-Oy-module cohérent de tf^ ,  X  u n fermé analytique irréductible de U  e t 

X' l e fermé analytique de Ux(C n défin i par 

X'=Xx{0} . 

On désigne par S  „  „ l a partie de X  défini e par 

Sa;M;X ~ ^aiJCM) ;X'3 

(cf. (11,3.1 ) et (1.3.4)) , où T T désigne la première projection 

ÏÏ : U x t1 •  U . 

Remarque 4. 1 . 1 . - On démontre que dans le cas où n  = 1 (don c où M  es t un idéal 

cohérent de 0.. ) la définition ci-dessus coïncide avec celle de (11,3 .1). 

PROPOSITION 4.1 .2.- En gardant le* notation* da (4 .1) , Vensemble ^.^-x u n 

^ojvmé analytique. d'Intérieur vide. de. X et ¿1 y et y' désignent deux points 

de X  - S v ,  on a 

M n  =  M ,  et P  =  P ,  -a;M;y a;M;y ' a;M; y a;M;y ' 

Démonstration. La proposition est une conséquence directe de (11,3.2) , (11,3.3) et 

(1.4.5). 

(4.1.3) En gardant les notations de (4 . 1 ) , on désigne par M  ... Y (resp . pa r 06 ,M ,A 
een 

P .. . „ )  la partie de W défini e par 
a ' '  gen 

a;M;X a;M; y 

(resp. P  u  v =  P n  ) 
F a ; M ; X

2 e n
 a ; M ; y 

où y  désign e un point quelconque de Y- S ,   ̂(cf . (4 .1.2)). 
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THEOREME 4.1.4.- Soient p  et n des entier*, p  G N ,  n  G IN* ,  < ^ une rela­

tion d'ordre total *ur , compatible avec *a *tructure de monoZde et moin* 

fine que la relation d'ordre produit < *ur 3N̂ + n ,  U  un ouvert de CP et 

M un Ojj-module cohérent. Mor* Il existe une stratification ^-analytique 

O y i€j ^  u  teM*- que pour tout i , i  GI ,  et tout y et y' , y GŶ  , 

y'G Y. ,  on ait 

ot:M:v a;M;y' 
et p .1 

a:M:v 
Pa;M;yf " 

Démonstration. Le théorème est une conséquence directe de (11,3.4.1) et de (4.1.2) . 

(4.2) Soient p  , n de s entiers, p G K ,  n G K* ,  < a un e relation d'ordre total 

sur lsP+n ,  compatible avec sa structure de monoïde, moins fine que la relation 

d'ordre produit <  su r IsP+n , U u n ouvert de ,  X  u n sous-espace ana-

lytique fermé irréductible de U  ,  Z  u n fermé analytique de X  distinc t de X  , 

U' l'ouver t de cP+n défin i par U ' = Ux(Cn ,  X ' l e sous-espace fermé de U ' 

défini par X ' = Xx {0} e t Z ' l e fermé analytique de X ' défin i par Z ' = Z x {0}. 

LEMME 4.2.1.- Solent m un entier, m G IN , 

f: OmU — OnU 

un morphlòme de 0^-module* et M le *ou*-0^-module cohérent de OJj , Image de 

f .  SI l'on *uppo*e que 

Srt ,,YcZ 

olor* Il existe un recouvrement de U ' formé par de* ouverts de <(/ contenu* 

dan* U ' distingué* pour ( < ;P';X';Z';f) . 

Démonstration. En vertu de (111,7.1.1.3), il suffit de démontrer que pour tout 

point x  de U i l existe un voisinage ouvert de (x,0 ) dan s U ' distingu é pour 

(̂  ;P';X';Z';f) .  Soient K  u n polycylindre compact de (C P contenu dans U  te l 
a °  n  ° 

que X G K e t K ' u n polycylindre de C te l que O G K ' . Nous allons démontrer 

que l'ouvert V  d e U' défin i par 

o 
V =  KxK' 

est un ouvert distingué pour ( ^ ;P';X';Z';f) .  En vertu de (4.1) , l'hypothèse 

a:M:X 

implique que 

Sa;J(m) ; X,EZ', 

(1) Pour la définition de V s e reporter à (1.0), pour celle de f  à  (1.3.1 ) 

et pour celle des ouverts distingués à (111,7.1.1.1). 
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et comme J(M ) es t 11 idéal de ^jxC n engendr é par ,.. . (o ù f  = (̂  ,... ,£̂ 3) 

(cf. (1.3.4.1)) , il résulte de (7.2.2) qu'il existe un ouvert V  de (Cp+n ,  conte-

nu dans U 1 ,  contenant K  x K' e t distingué pour ( < ; ]Np+n ; X';Z';f) ,  autrement 

dit il existe des constantes G  , H , G 6M* ,  H GR* , une fonction continue 

cp : Y' DV >  R* 

(où Y ' =X' - Z' ) , modérée le long de Z 'fl V ,  un entier r  , r € JN ,  une famille 

(d-)l<-<r d'élément s de NP+ n e t des familles 

^ i y ^ j ^ y e Y ' n V e t ^ i i y ^ i ^ r ^ i ^ y e Y ' n V 

d'éléments de T(V, 0 )  ,  telles que : 

a) pour tout y  , y € Y ' n V , 

Ma;J(M);y = « r —V ; 

3) pour tout y , y G Y' n V , et tout j , 1  ^ j < r , 

g. =  Z  h. , f  - ; 
&jy i= 1 3i y i 

y) pour tout y , y € Y * n v ,  tout x ' , x' GV , et tout i e t j , 

1 < i ^m ,  1  < j <r , 

|gjy(x')|<G e t |hjiy(x')|^ H ; 

ô) pour tout y  , y€Y' nV ,  et tout j , 1  < j <r , 

v (g - ) = d. e t 
3 3 g-

a. 
x J 

(y) ^<p(y) 9 

où X  = (X.J,... ,X , X +i,... ,X )  désign e les coordonnées de (CP+ n . 

Soit 

r' =Card({dr...,dr}nP') . 

On a r ' r̂ ,  et quitte à changer l'ordre des indices, on peut supposer, en vertu 

de (a) , que pour tout y ,  y G Y ' n V ,  on a 

Ma; J(M); y MD' = (d1,....,dr,) , 

et alors il résulte de (1.4.4) , (1.4.5) et (11,3.7) que 

(4.2.1.1) 
Ma;P';J(M);y = {d1'"-'dr'} • 

On pose 
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G' =n 22n" e(K';0)nG 

et 

cp' =cp|Y' nV . 

La fonction cp ' es t continue, modérée le long de Z ' flV (App.1,1.2.2 , (ii)). Pour 

tout y  ,  y € Y1 n V e t tout i  et j , 1  ̂i  ̂m ,  1   ̂j  ̂r ' ,o n pose 

V =  XK;K,(gjy|KxK') 

(cf. (1.2)) , 

n-- =  Qv iriCh.. KxK» ) 'j iy K;K ' jiy 1 

(cf. (1.1.0)) , 

g- =  Y- |Vf 

et 

u y 'j iy1 

On a g ! € r ( V , 0 1 , hï . er(Vf, 0 ) e t il résulte de (3) et de (1.2.5) que 
J/ (T P J Y (r P 11 

Xк;K•%ylKxK,>.yVк•(hзiylKxK,)Xк;K.^ilKxK,^Xк;K•(hjiylKxK•)eK;K•(?ilKxK,^ 

Or, £ , |KxK' €B (KxK' ) (cf . (1.3.1)), ce qui implique que 

XK;K'(?ilKxK,;) = ?ilKxK' 

(1.2.1), et que 

6K;X'(?i|KXl[,) = ° 

(cf. (1.1.0) ) (car V'^Wn- p  ) . On en déduit que 

Yjy = i = 1 njiy. (fi[KxK'), 

ce qui implique que 

(4.2.1.2) g! = Z  h! . -  (f. IV) . 
i = i 11 

D'autre part, il résulte de (1.2.1) et de (y) que 

H V U ' £ n 2 eCK';0 )n||gjy||KxK,£G' . 

De même, il résulte de (1.1.0.4) et de (y) que 

I h i y l l i c x K ' s H h i i v HKXK- £ H • 
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On en déduit que pour tout y  , y€Y' nV ,  tout x ' ,  x' £V ,  et tout i  et 

j ,  1 <i£m ,  1 £ j <rf , 

(4.2.1.3) |g! (x')|<C e t |h ! (x')|< H . 

Par ailleurs, en vertu de (1.2.1) et de (1.1.0), 

Yjy £ Bp, (K x KT) e t njiy£B p ( K x K') . 

On en déduit que 

(4.2.1.4) E (gì }cp' e t E (h!. )cD . 
y S3Y V u y o 

Enfin il résulte de (1.2.4) et de (ô) que pour tout y  ,  y(EY' fìV , et tout j  , 

1Sj£r' , 

v ( y - ) = v ( g . ) = d . 

(car d . €P') , d'où 

(4.2.1.5) v (g ! ) = d. , 
a;y 6jy J  ' 

et en vertu de (1.2.3) , on a 

9 
|dj' 

g1-
5jy 

3X 

cT7 
3 

(y) 
a 

"djl 

3X 
d. 

C 3 

(y) 
3 

l<V 
gjy 

3X 
d. 
3 

(y) 

(car d. € P») ,  d'où 

(4.2.1.6) 
v 

a 
i d j i 

g-

ax 
d. 
• 3 

(y) 

(par (6)) . Les conditions (4.2.1.1) , (4.2.1.2), (4.2.1.3), (4.2.1.4), (4.2.1.5) 

et (4.2.1.6) impliquent que V  es t distingué pour (^;P';X';Z ' ;f) , ce qui 

démontre le lemme. 

LEMME 4.2.2.- Soit M  un *ou*-0r]-module coko.ro.nt de. Ô„ . Si Von *uppo*e que. 

a:M:X 

a£û/Lo existe, un recouvrement de U ' ̂ e/tm é paA d&ó ouvert* de d / contenu* 

dan* U ' dcó^ngiie* poetai (̂  ;P';X';Z';J(M))(1 } . 

(1) Pour la définition de V1 s e reporter à (1.0), pour celle de J(M ) à (1.3.4) 
et pour celle des ouverts distingués à (111,7.1.1.2). 
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Démonstration. En vertu de (111,7.1.1.3), il suffit de démontrer que pour tout 

point x  d e U  i l existe un voisinage ouvert de (x,0 ) dan s U ' distingu é pour 

(̂  ;P';Xf;Zf;J(M) ) . Soit V  u n voisinage ouvert de x  dans U te l qu'il existe 

un entier m  ,  m  G Isf , et un morphisme de CL-module s 

f: OmV — OnV 

tel que Im(f ) = M|V .E n vertu de (4.2.1), il existe un voisinage ouvert de 

(x,0) dan s VxC1 1 distingu é pour (£ ; V ;X'n(V x C11) ; Z' n (Vx d1) ;ï) ,  ce qui 

démontre le lemme, en remarquant que Im(f ) = J(M)|Vx(Cn (1.3.4.1) . 

THEOREME 4.3.1.- Soient p , m, n des entiers, p  с IN ,  m ç W, n c F, < a une 

relation d*ordre total sur lP+n , compatible avec sa structure de monolde, moins 

fine que la relation d'ordre produit й sur fP+n et privilégiant le sous-mo-

nolde de JNp+ n ,  <  , la relation d'ordre Induite par < sur 1N P ,  U 

un ouvert de ( / ,  X  un sous-espace analytique fermé Irréductible de U  ,  Z 

un fermé analytique de X  ,  distinct de X  ,  Y  l'ouvert dense de X  défini 

par Y  = X - Z , 

r . uX] uu 

un morpkisme de 0^-modules et M  le sous-0^-module coherent de 0^ , image de 

f .  On suppose que 

Sa:M:XcZ ' 

Alors pour toute fonction continue 

Ф : Y —* [1, + »[ , 

modérée le long de Z  ,11 existe des fonctions continues 

ф1 : Y —» R * et i K : Y — • F * , 

modérées le long de Z  ,  telles que pour tout polycylindre compact de (P pointé 

dans Y  ,  (K,y ) ,  suffisamment effilé pour < f , modérément le long de Z  , 

satisfaisant à la condition 

e(K;y) £ip(y) 

on ail 

i) Kc U ; 

ii) il existe une scission ^-linéaire continue, normale de B(K;f ) 

a :  B(K)n —• B(K) m 

telle que : 

a) ||oK||K S ф^у) /р" (K;y) , 
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où 

V sup Or CM ) ) , 
' '  gen 

TT désignant la première projection 

II: NP+n — NP 

[la borne supérieure étant relative à la relation d'ordre produit S sur ]Np ) ; 

b) y  id B(k)n - B(K;f) oa y  S * (y) . 

c) Ker(aK) 
n 
n 
j=1 

(K) , 

où pour tout j  ,  1   ̂j < n , 

A. ={d(:JNp :(d,e.) j£P Y  } 
J 3  a,M,Xge n 

et ep..., e désigne la "base" canonique de ftn 

Démonstration. Soient U T l'ouver t de CD+ n défin i par U^UxC1 1 ,  X ' l e 

sous-espace analytique fermé de U ' défin i par X ' = Xx {0} ,  Z ' l e fermé analy-

tique de X ' défin i par Z ' = Zx {0} ,  Y ' l'ouver t dense de X ' défin i par 

Y' =X' - Z' = Y x {0} e t cp ' l a fonction 

cp' : Y' >  [1 , +»[ 

définie par 

cp'(y,0) = cp(y) , pour y  G Y . 

La fonction <p ' es t continue, modérée le long de Z ' (ca r c p l'est ) . Considérons 

1'élément f  = (f^,...,?m) défin i dans (1.3.1) . La famille f^,..., f engendr e 

l'idéal cohérent J (M) d e 0^, (1.3.4.1 ) et pour tout y ' ,  y' €Y' ,  on a 

Pa;P';J(M);y' Pa;M;Xgen 
et M 

a;P';J(M) ;yf 
M H.Y 

ot;MiX 
gen 

((1.4.4), (1.4.5) , (11,3.7) et (4.1.3)) . Soient 

r = Card (Ni ., Y ) 
a;M;X 
' ge n 

et d  = (d^,... ,d )̂ u n élément de (I\fp+n) r te l que 

a M X 
gen 

{dr...,dr} . 

Alors pour tout y ' ,  y' 6Y' ,  on a 

Ma;P*;J(M);y' 
{dr...,dr} 
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et on vérifie facilement que 

(4.3.1.1) P'nAo(d) =*'-Pa;M;Xgen-

On pose 

ôo = ™ ? d i = suP(Ma;M;X J 
1^i^r '  ' gen 

(la borne supérieure étant relative à la relation d'ordre produit ^  su r Np+11 

En vertu de (4.2 .1), i l existe un recouvrement de U ' par des ouverts de <C P 

contenus dans U ' , distingués pour ( < ;Pf;X!;Z!;f) .  En appliquant la proposi-

tion (III,7.1.3) à f , e n tenan t compte de la remarque (111,7 .1.6) et en raison-

nant comme dans la démonstration du théorème (111,7.3 .1), on en déduit l'existence 

de fonctions continues 

^ :  Y' *  R* e t * 2 : Y1 —» R * , 

modérées le long de Z ' , telles que pour tout polycylindre compact de d / 

pointé dans Y ' ,  (K",y' ) , suffisamment effilé pour ^ a ,  modérément le long de 

Z' , la propriété (P ) ci-après soit satisfaite : 

(P) La condition 

A) e(K";y' ) ^cp'(y') 

implique que 

B-j) K"<=U' ; 

B0) il existe une scission ̂ -linéaire continue normale â , , de B  (K";f ) z JV p m 

a£„ : B (K" ) B  CK") m 
o 

telle que 

a) ||a« ,|| <  ip'Cy'O/p" o(K";y) ; 

B ) HÌdBfì,(K")- B (K";?)oa^||K„.^(y' ) ; 

c) Ker(a£„) = BA (K") , 

où A  =  P ' - P . 11. y (cf. (4.3.1.1) et (111,7 .1.6)). 

En vertu du lemme 3.2.2, il existe une famille (pj)-|<j< n d e fonctions continues 

p. : Y —> R * 

telle pour tout j  ,  1 û j  ̂n ,  p ^ e t 1/p^ soien t modérées le long de Z  e t 

telle que pour tout polycylindre compact de C p point é dans Y  ,  (K,y ) ,  suf-

257 



G. MALTSINIOTIS 

fisamment effilé pour ,  modérément le long de Z ,  le polycylindre compact 

pointé (K x K'(y), (y,0)) , où K'(y ) désign e le polydisque fermé de C1 1 de centre 

0 e t de polyrayon (p.|(Y),..., p (y)) satisfass e à la propriété (P). Comme 

e(KxK!(y)ï(y,0)) = e(K;y) , 

si e (K;y)<tp(y) , alors (K x K1 (y), (y,0)) satisfait à la condition (A) de la 
propriété (P), donc également aux conditions (B^) et (B2). Or, en vertu des défi-
nitions de d et ô ,  on a 

o o  ' 
do = (do, d'o), 

où 

ôo= Z e i ' 0 jGJ 3 

ep...,e désign e la "base" canonique de Nn et J une partie de [1,n ] . Soit 

i)̂  (resp . )  la fonction 

^ : Y — * R* (resp . : Y — R * ) 

définie par 

(y) = ^ ( y,0) 
n 

( Z 
j=1 

p , ( y ) ) / n p,(y ) ,  pour y e Y , 
3 j e j J 

(resp. i|;2(y ) =^(y,0)22n"1 
n 

( Z 
j=1 

p. (y ) ) sup (1 /p . (y ) ) ,  pour y e Y ) . 
J 1  < j <n J 

Les fonctions ij ^ et son t continues, modérées le long de Z (App . I, (1.3.2) 

et (1.3.3) ) . En vertu de la proposition (1.3.2) , il résulte de la condition 

B2 (en tenant compte de l'identification de B ^ (KxK'(y)) à B(K) (cf . 1.1.0)) 

que si l'on pose 0 

öK"aKxK'(y) °MP;1I;e 

alors o ^ est une scission (C-linéaire continue, normale de B(K;f ) et 

||0K[[k< 
n 
Z 

j=1 
pV(K'(y);0) l|aixK,(y)|^K,(y) i 

< 
n 
Z 

j=1 

o a 
pV(K'(y);0) ^(y ,0)/p" °(KxK'(y),(y,0)) Ŝ Cyi/p" °(K,y) 

(car pV(K'(y);0) = p . ( y ) e t p" °(Kx K'(y) , (y,0)) =p" °(K;y) n p.Cyî) . 
3 3 j€ J 3 

D'autre part, il résulte de (1.1.1) et de (1.3.1.3) que 

idB(K)n-B№f)öK = TP;1I;eo[idBp,(KxK'(y))-VCKxK'(y);f)aKxK'(y)] °MP;U;e 
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ce qui implique en vertu de (1.1.1) que 

H id - B(K;f)cUL ^2Zn_1. 5ир(1/р"(КЧу);0))ф'(у,0) 
n 
Z 
j=1 

pM(K4y);0) < ф 7 ( у ) 
J z 

(car pV(K'(y );0) = p.. (y)) . 

Enfin on a 

Ker(aK) =M-1;1I.e (Ker(a'xK,(y)))(KerCo£xK, (y))) ^ . ^ ( B ^ C K X K ' C y ) )) 

(1.1.1) et en vertu de (111,2.8.8), (i), on en déduit que 

Ker(aK) = 
n 
П 

j=1 

ce qui démontre le théorème. 

THEOREME 4.3.2.- Soient p  et n cfoó entiers, p  £H ,  n EN* ,  ^ a une relation 

d'ordre total sur lP+n ,  compatible avec sa structure de monolde, moins fine que 

la relation d'ordre produit й sur lP+ti et privilégiant le sous-monoZde fP de 

lP+n , <a , la relation d'ordre Induite par йа sur fP , U un ouvert de 

(P , X  un sous-espace analytique fermé Irréductible de U  ,  Z un fermé ana­

lytique de X  ,  distinct de X  ,  Y  l'ouvert dense de X  défini par Y  = X-Z 

et M  un sous-Oy-modale cohérent de 0^ .  On suppose que 

a;M;X 

Alors pour toute fonction continue 

Ф : Y >  [!,+«[ , 

modérée le long de Z , il existe des fonctions continues 

Ф1 : Y —• F * ^  ф 2 : Y —> R * , 

modérées le long de Z , telles que pour tout polycylindre compact de Qp pointé 

dans Y  ,  (K,y ) ,  suffisamment effilé pour < , , modérément le long de Z , 

satisfaisant à la condition 

e(K;y) ^cp(y) 

on ail : 

i) Kcz U ; 

ii) B(K)n = мк@ 
n 
П 
j = 1 

(K)(1) , 

(1) Pour la définition de M_ _ s e reporter au chapitre 0. 
К 
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OÙ pOUA tOUt j  ,  1  ̂j  ̂n , 

A. = { d € # : ( d , . ^ ^ } 

et e^,...,e n désigne, la "base" canonique de ] N ,  et si Von désigne paA T T ^ . ^ 

(resp. pa r r^. K )  le projecteur de B(K) n 

T T M ; K :  B(K)n —» B(K) n 

(resp. r M. K :  B(K)n —* B(K) n ) 

sur (resp . sur 
n 
n 

j=1 J 

(K) ) parallèlement à 
n 
n 
j=1 

(K) (resp . à M K ), 

on a 

a ) ÏÏ M;K 
&6<£ une application C-linéaire continue et 

||IIM;k[[ < w1 (y)/p' 
d 
« o (K;y) , 

où d  =sup(ir( M Y ) ) ,  IT désignant la première projection 

O Ot i i M « A 
' '  pen 
II: NP+n — NP 

(£a bo^ne supérieure étant relative à la relation d'ordre produit ^ sur $P ] 

b) un e application C-llnéalre continue et 

l k M : K M * 2 C y D • 

Démonstration. La démonstration du théorème (4.3.2) est tout à fait analogue à 

celle du théorème (4.3 .1), en utilisant le lemme (4.2.2) à la place du lemme 

(4.2.1) e t la proposition (111,7 .1.4) à la place de la proposition (111,7 .1.3). 

Remarque 4.3.3.- Si l'on ne suppose plus que la relation d'ordre < ^ privilégi e 

le sous -mono ïde lP d e ,  on peut obtenir des versions plus faibles des 

théorèmes (4.3 .1) e t (4.3.2) en utilisant le lemme (3.2 .1) à  la place du lemme 

(3.2.2) et en raisonnant comme dans la démonstration de la partie (I) du théorème 

(3.3). Dans le théorème (4.3 .1) on aboutit à l'existence de la scission C-linéaire 

continue normale, o ^ d e B(K;f ) satisfaisan t à l'assertion (ii), (c) mais pas 

aux majorations (ii), (a) et (ii),(b). De même, dans l'assertion (ii ) du théorème 

(4.3.2), on obtient la décomposition en somme directe de B(K) n ,  ainsi que la 

continuité des projecteurs, mais non pas les majorations (ii), (a) et (ii),(b). 

COROLLAIRE 4.3.4.- En gardant les notations du théorème (4.3.1), soient S  g une 

relation d'ordre total sur l \ P + m , compatible avec sa structure de monoZde, 

260 



PRIVILEGE NUMÉRIQUE UNIFORME 

moins fino, que la nelatlon d'ondne pnodull < sun. W , la relation 

d'ondne Induite pan ^ sun iP , M ' le sous-0 ̂-module cokénent de , 

noyau du monpklsme £ , et 

cp : Y —* [1 ,+ » [ 

une fonction continue, modérée le long de Z .On suppose que 

S 3 ; M ' ; X c Z ' 

Alors poun tout polycylindxe compact de (P pointé dans Y  ,  (K,y ) ,  suffisam­

ment effilé poun < f , modérément le long de Z , satisfaisant à la condition 

e(K;y) <tp(y) 

on a : 

i) KciU ; 

ii) M£ = Ker(B(K;£))( 1 ) . 

Démonstration. En vertu de la définition de M £ ,  l'inclusion 

M£<=Ker(B(K;f)) 

est vraie pour tout polycylindre compact de C p conten u dans U  .  D'autre part, 

il résulte du théorème (4.3.2) appliqué à M ' (e t en tenant compte de la remar-

que (4.3.3)) que pour tout polycylindre compact de <C P point é dans Y  ,  (K,y ) , 

suffisamment effilé pour <  , ,  modérément le long de Z  ,  satisfaisant à la 
P 

condition 

e(K;y) <cp(y) 

On a : 

i) K c U 

ii) B(K)m = M£ © 
m 
n 
i=1 

(K) , 

où pour tout i  , 1  ̂i  ̂m , 

A = { d e # : (d,e.) t P R. M,. X } i i  S,M , x g e n 

et ep...,e m désign e la "base" canonique de J N .  En particulier, l'ensemble 

des polycylindres compact K ' de tel s que y£K ' ,  K'c K e t tels que 

( 1 ) Pou r la définition de M' s e reporter au chapitre 0 . 
K 
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B(K') m = 
m 
n 

i=1 

(K') 

forme un système fondamental de voisinages de y  (cf . (111,6.2.5) et 

(111,5.2.1.2)). Cette décomposition en somme directe commutant avec les morphismes 

de restriction, on en déduit, par passage à la limite inductive, une décomposition 

en somme directe 

(4.3.4.1) om (limM£ f) 0 (lim 
m 
n 

i=1 

Ba1 (K')) . 

Or, 

(4.3.4.2) l u i M^, = My =  Ker(f ) , 

où £  désign e le germe du morphisme f  e n y  . Soit g  u n élément de 

Ker(B(K;f)). Alors il existe g . et g- tel s que 

g = ET + g2 ,  g ! € Ul e t g 2 e 
m 
n 
i=1 % 

(K) . 

Si lfon désigne par g ^ , e t le s germes en y  de g  , ĝ  et g2 respecti -

vement , 1 f hypothèse g  € Ker(B(K;f)) impliqu e que g ^ GKer(f )̂ , 11hypothèse 

g-|€M£ implique , en vertu de (4.3.4.2), que g 1^€Ker(f y) e t comme g y = g-]y
 + g2y 

on en déduit que g 2 GKer( f ) .Or , l'hypothèse g 2 G n  B . (K) impliqu e que 
y y  i= 1 i 

m 
g 2 €  lim n  B A (K' ) e t il résulte de (4.3.4.1) que g 2 = 0 ,  d'où g 2 = 0 (prin -

y *  i=i i  y 

cipe du prolongement analytique). On en déduit que g  € M£ ,  ce qui démontre le 

corollaire. 

THEOREME 4.3.5.- Soient p , m, n de* entier, p€l N ,  m  G IN* ,  n  G IN* , 

(resp. ^ a„ ) une relation d'ordre total sur ]N p + n (resp . sur J N p + m ) , 

compatible avec sa structure de monoZde, moins ilne que la relation d'ordre pro­

duit S  sur (resp . S MA l*?"™ ) eX pfuL\jiMQÀja.vvt £e iouM-monoZdz iP 

de *J p + n (resp . de N p + m ) , U  un ouvert de (C p ,  X  a n sous-espace analyti­

que ienmé Irréductible de U  ,  Z  a n analytique de X  ,  distinct de X  , 

Y l'ouvert dense de X  défini par Y  = X-Z 

f • fl m »  0

n 

an morphisme de O^-modules, M  l'Image de f et H' son noyau. On suppose que 

les rotations d'ordre ^ . et S ,. Induisent la même relation d'ordre û sur 
a' a  a 

W et que 

Sa';M;X U Sa";M';X C = Z ' 

Alors pour toute fonction continue 
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Ф : Y >  [1, + œ [ , 

modérée le long de, Z ,  Il existe des fonctions continues 

ф 1 :  Y >  R* et ф 2 : Y —> Ж* , 

modérées le, long de. Z ,  telles que, poun. tout polycijllndre compact de 0? pointé 

dans Y  ,  (K,y ) , suffisamment effilé poun, <^ , modérément le long de Z  , 

satisfaisant à 

e(K;y) £<p(y) 

on dit : 

i) Kc U ; 

ii) >c£ existe une scission (L-llnéalre continue, nonmale, unique de 

B(K;£) 

a K :B(K)
n —> B(K) m 

telle que 

Ker(oK) = 
n 
П 

j=1 
(K) ct f Im(a K) = 

m 
П 
i=1 

(K) , 

ou poun. tout j , 1  й j й n , 

Л = { d € # : (d, e ) i P , M;Xgen } , 

роил, tout i  ,  1   ̂i , 

Д! -{derf: (d,e!) t Pa„;M,x }  , 

e 1,...,e n (resp . е^,...,е^) désignant la "base" canonique de IN 11 (resp . de 

if1 ) , et on a : 
a 

a) ||a K||K S il^CyVp" °(K;y) , 

ou 

d 0 = sup(7r(M ,  M x ) ) 
gen 

ïï désignant la pnemléne projection 

II: Np+n — NP 

(&x bonne supérieure étant relative à la relation d'ordre produit й sur W ) ; 

Ь ) l | Ì d

B ( K ) n - B ( K ; £ ) ° a K Ì l K ^ 2 ^ • 
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Démonstration. En vertu du théorème (4.3.1) , du théorème (4.3.2) et du corollaire 

(4.3.4) , il existe des fonctions continues 

ty\ : Y —» R * ,  \p2 : Y —• R * e t ^  :  Y —* R * 

modérées le long de Z  , telles que pour tout polycylindre compact de <C P point é 

dans Y  ,  (K,y ) ,  suffisamment effilé pour £  ,  modérément le long de Z  , 

satisfaisant à la condition 

e(K;y) <cp(y) 

on ait : 

i) Kc U ; 

ii) il existe une scission (C-linéaire continue, normale c £ d e B(K;f ) tell e 

que 

a) ||o£| | < i|/'(y)/p" °(K;y) ; 

b) ||id n -  B(K;f) o0^\\K <i(;2(y) ; 
B(K) 

c) Ker(c£) = 
n 
n 
j=1 

(K) ; 

iii) B(K)m = M£ © 
m 
n 
i=1 

(K) 

et si l'on désigne par r ^ l e projecteur de B(K) m su r 
m 
n 
i=1 1 

(K) parallèlement 

à M£ , r ^ es t une application C-linéaire continu e et 

l|r K|| K^(y) ; 

iv) M£ = Ker(B(K;f)) . 

Comme Im(B(K;f) ) = (cf . chapitre 0), il résulte de (111,1.2) et de la condi-

tion (ii) ci-dessus que 

(4.3.5.1) B(K) n = Im(B(K;f)) 0 
n 
n 

j=1 

(K) 

et 

(4.3.5.2) B(K) m = Ker(B(K;f)) © Im(a£) . 

De même, il résulte des conditions (iii) et (iv) ci-dessus que 

(4.3.5.3) B(K) m = Ker(B(K;f)) 0 
m 
n 
i=1 

(K) 

et que 
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(4.3.5.4) B(K;f) ° rK = B(K;f) 

On déduit de (4.3.5.1) et (4.3.5.3) qu'il existe au plus une scission satisfai-

sant aux conditions du théorème et si l'on pose 

°K = rK °°K 

en vertu de (4.3.5.4) on a 

B(K;f) aK B(K;f) = B(K;f) a£ B(K;f) = B(K;f) 

et 

a K B(K;f ) aK =  rK a£ B(K;f) a£
 = r

K

 a ^ = ° K • 

L'application o ^ es t donc une scission (C-linéaire continue, normale, de B(K;f ) 

et comme en vertu de (4.3.5.2) et (4.3.5.3) r „ indui t une bijection de l'image 
m K 

de o ' su r n  B A f (K) , on a 
i=1 Ai 

Im(aK) = 
m 
n 
i=1 

(K) e t Ker(a K) = Ker(c£) = 
n 
n 
3=1 3 

(K) . 

Enfin, on a 

Il id n 

B(K) 
- B(K;f) ooK|| K = ||id n - B(K;f ) oa£||K< ^(y) 

B(K) 

et si l'on désigne par ifi j l a fonction 

^ :  Y —* ]R * 

définie par 

Y1 = Y'1 Y'2 , 

la fonction ip 1 es t continue, modérée le long de Z  (App.I , 1.3.1), et on a 

K H c S  H r K l k ||a£|| K S ^(y)/p"
do(K;y) , 

ce qui démontre le théorème. 

Remarque 4.3.6.- De même que pour les théorèmes (4.3.1) et (4.3.2) , si l'on ne 

suppose plus que les relations e t privilégien t le sous-monoïde fP , 

on obtient une version plus faible du théorème (4.3.5) . On aboutit aux mêmes affir-

mations, sans toutefois les majorations (ii), (a) et (ii), (b) . 

Remarque 4.3.7.- Dans la plupart des applications des théorèmes (4.3.1) , (4.3.2) 

et (4.3.5) , la fonction c p es t supposée constante. J'ignore si l'on peut alors 

choisir la fonction i/ ^ constant e (comme c'est le cas pour un idéal). En appli-

quant ces théorèmes à c p = 1 ,  on obtient des cas particuliers concernant les 

polydisques. 
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D'autre part, en vertu de (111,6.2.3), on peut en formuler des variantes 

' 'paramétriques ' '. 

Remarque 4.3.8.- On peut trouver étrange le rôle joué par le point y  qu i "pointe" 

le polycylindre compact K  dan s les théorèmes (4.3.1) , (4.3.2) et (4.3.5) , et 

encore plus dans le corollaire (4.3.4) (ou les versions faibles des théorèmes 

précités) où y  n e figure pas du tout dans la conclusion. Ce rôle est purement 

auxilliaire. Néanmoins, il permet de simplifier les énoncés, qui restent ainsi pro-

ches du cas particulier où K  es t un polydisque fermé de centre y  .  Ce qu'il 

faut retenir est que la décomposition en somme directe définie dans le théorème 

(4.3.2), ainsi que la scission dans le théorème (4.3.5) sont indépendantes du 

point y  . 

THÉORÈME 4.4.1.- Soient p , m, n des entiers, p  eJM ,  m eJN ,  n GIN ,  й une 

relation d1 ordre sur NP., compatible avec sa structure de monoZde et moins fine 

que la relation d'ordre produit < sur NP., U  un ouvert de (P et 

f.0m >  ön 

un motipkiòme, dz О^-тоаиЛел. KJLohJb it exÁAte. unz òtAuti^ication С-analytique. 
(YJ. T de. U et роил tout i , i€I , un élíme.nt d. de. W , teZb que. 

роил toute, fonction continue. 

Ф1 : Yi —* [1,+œ [ 

modérée le long de Y ^ - Y ^ 1 ^ , ^ existe deux fonctions continues 

ф. л : Y. —> R * et ф. 0 : Y. —» R * 
yi1 i  +  yi 2 i  + 

modérées le long de 7 7 - Y. ,  telles que pour tout polycylindre compact de C p 

pointé dans ,  (K,y ) ,  suffisamment effilé pour ^ , modérément le long 

de Yi  " Yi * satisfaisant à la condition 

e(K;y) ̂ ф1(у) 

on ail : 

i) Kc U ; 

ii) il existe une scission ̂ -linéaire continue, normale de B(K;f ) 

ак : B(K)n —* B(K) m 

telle que 

a) ||ак||к й ф11(у)/ри i(K;y) ; 

Ь) l|idB(K)n"BCK;£)oaK"K" ^i2Cy) 

( 1 ) Yj _ désignera toujour s l'adhérenc e de dan s U (e t non pa s dan s Cp ) . 
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Démons t rat ion. S i n  = 0 l e théorème est trivial. On peut donc supposer que n€JN* . 

Soient M  l e sous-0{j-module cohérent de d\ ,  image de f  ,  e t < _ l a relation 
p+n ® 

d'ordre total sur W ,  définie dans ( 3 . 0 . 4 ) . E n vertu de ( 4 . 1 . 2 ) e t de 

( 1 1 , 3 . 4 . 1 ) , i l existe une stratification C-analytique 0 ^ ) J £ T teH e que pour 

tout i  , i € I 

S- v - с Y. - Y. . 
a;M;Yi i  i 

Comme la relation d'ordre ^ _ privilégi e le sous-monoïde d e fP+n e t induit 

<a su r iP (cf . ( 3 . 0 . 4 ) ) , s i l'on pose 

(4.4.1.1) di = sup(,0/fe;M;(Y-)gJ) , 

où ÏÏ  désign e la première projection 

II : NP+n — Np 

(la borne supérieure étant relative à la relation d'ordre produit ^  su r N P ) , 

le théorème (4.4.1) résulte du théorème (4 .3.1). 

COROLLAIRE 4.4.2.- En gardant le* notations du théorème, (4.4.1) , Il existe une. 

stratification ̂ -analytique O y ^ Q de U , et pour tout i  ,  i  €1 , un élé­

ment d ^ de fP et de* fonction* continue* 

*ii: Yi  —* R : h z : Y i -* к > 

modérée* le long de Y ^ - Ŷ  , tel* que pour tout polydisque fermé К de <CP de 

centre y appartenant à Y  ,  suffisamment effilé pour < , modérément le long 

de Y 7 - Y i (cf . (III, 6 . 2 . 4 ) ) , on alt : 

i) Kc U ; 

ii) Il existe une scission C-llnéalre continue, normale de B(K;f ) 

aK : B(K)n —* B(K) m 

telle que 
d. 

a) ||ак||к й ̂ (уЭ/р 1 , 

où p  désigne le polyrayon de К ; 

Ь) l|ÌdRnnn-B(K;£)o акЧк S*i2(y). 

Démonstration. C'es t un cas particulier du théorème (4.4.1) appliqué à cp ^ = 1 , 

compte tenu du fait que pour tout polydisque fermé K  de (CP d e centre y  e t de 

polyrayon p  o n a 

p"(K;y) = p . 
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COROLLAIRE 4.4.3.- Soient p , m, n des entiers, p  £ ]N ,  m eU ,  n € N ,  A  une 

matrice, à p  lignes et p colonnes, Inversible, à coefficients dans ]R + ,  U 

un ouvert de Cp et 

f (ep;oi,1/yi (y)) 

un morpklsme de 0^-то dûtes. Alors II existe une stratification ^-analytique 
(Y^) de U  ,  et pour tout i  ,  i  € I , un élément c L de fP u n nombre 

réel ,  €  R+ ,  tels que pour toute fonction continue 

ф 1 : Yi — * ' 

modérée le long de Y ^ - Ŷ  ,11 existe des fonctions continues 

^ : YI -> Ж*+ ,   ̂:  Y. — » * U ^ : Y^ *• R* , 

modelée* £e &mg d e Y^-Y . ,  telles que pour tout point y de Y. et tout polycy-
1 о 1 

lindre compact К de (C? que y  E К £e4 conditions 
a) e(K;y) <ф^у) ; 

b) р ' Ч К ; у ) е г А ( Б р ; 0 _ ; 1 / ^ ( у ) ) ; 

Impliquent les assertions (i) et (ii) au théorème (4.4.1). 

Démonstration. Si l'on désigne par ^  l a relation d'ordre total sur fP défini e 

par la matrice A  (cf.(I,3.11)) , cette relation est compatible avec la structure 

de monoîde de ,  et moins fine que la relation d'ordre produit ^  su r 

(car les coefficients de la matrice A  son t positifs ou nuls). En vertu de 

(111,6.2.3), l e corollaire résulte donc du théorème (4.4.1) . 

COROLLAIRE 4.4.4.- En gardant les notations du corollaire (4.4.3) , Il existe une 

stratification ̂ -analytique О ^ ) ^ de U et pour tout i  ,  i£ l , un élément 

d^ de fP , un élément de R + et des fonctions continues 

ф. : Y. •  R* ,  ф м :  Y. —* R* ,  ф. 9 :  Y. —* R * , 
ri i  +  '  ri1 i  +  '  ri2 i  +  ' 

modérées le long de Y ^ - Ŷ  ,  telles que pour tout point y de Ŷ  et tout poly-

dlsque К de $P de centre y et de polyrayon p  ,  p  £ (R*)p ,  la condition 

pera (ep;oi,1/yi (y)) 

Implique les assertions (i) et (ii) du corollaire (4.4.2). 

Démonstration. C'est un cas particulier du corollaire (4.4.3) appliqué à ф^ = 1 . 

Remarque 4.4.5.- Dans les corollaires (4.4.3) et (4.4.4) , on peut remplacer 

l'hypothèse que les coefficients de A  son t positifs ou nuls, par l'hypothèse plus 

faible que la relation d'ordre total sur iP défini e par la matrice A  es t moins 
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fine que la relation d'ordre produit sur 

COROLLAIRE 4.4.6.- Soient p , m, n de* entiers, p  € 3N ,  raeK ,  n 6 IN , U  un 

cuvent de (C p et 

f . om •  0 N 

un morpkisme de 0^-modules. A &m II existe une stratification (C-analytique 

( Y i ) i ç I d e U  ,   ̂pou A toot i ,  i€ l ,  an élément d i d e 1N P e t an nombre 

réel ,  6̂  € ]R+ ,  te£ô que pour toute fonction continue 

ф 1 : Yi l^>** 1 ' 

modérée le long de Y ^ - Ŷ  ,  Il existe des fonctions continues 

Yi : Yi –> R*+ , yi1 : Yi –> R*+ et Yi2 : Yi –>R*+ , 

modérées le long de Y ^ - Ŷ  , telles que pour tout point y  de Ŷ  et tout poly-

cylindre compact К de A/ t:e £ que y  e К les conditions 

а) e(K;y) <Ф 1(у) ; 

b) р'1ЧК;у)<1/ф.(у) , р ,

2ЧК;у)< Ру lCK;y),...,p^(K;y)<^ 1(K;y) ; 

Impliquent les assertions (i) et (ii) da théorème (4.4.1). 

Démonstration. C'est un cas particulier du corollaire (4.4.3) appliqué à la matrice 

unité. 

COROLLAIRE 4.4.7.- En gardant, les notations du corollaire (4.4.6) , Il existe une 

stratification OfO-^j d e U  ,  et pour tout i  ,  i€I ,  an élément d. de 

, an nombre réel ô - , 6. e]R+ , et des fonctions continues 

wi : yi –>R*+ , wi1 : yi –>R*+ et wi2 : yi –>R*+ 

modérée le long de -  Ŷ  , tetb que pour tout point y de Yj_ et : tout polydisque 

fermé К de (Cp d e centre y  et : de polyrayon p  = (p1,... ,pp) ,  p  e (R * )p , 

£e^ conditions 

ù i òi 
P 1 < V ^ i ( y ) ,  P 2

< P 1 '•••'Рр<Рр-1 

Impliquent 1ол assertions (i) et: (ii) da corollaire (4.4.2). 

Démonstration. C'est un cas particulier du corollaire (4.4.6 ) appliqué à cp ^ = 1 . 

Remarque 4.4.8.- En relisant attentivement les démonstrations des théorèmes et 

propositions conduisant aux corollaires (4.4.3 ) et (4.4.4) , on peut obtenir des 

formules explicites pour d ^ e t e n fonction de la matrice A  e t de l'ensem-

ble M_... . rv Ï ,  où <  désign e la relation d'ordre total sur N p défin i 
a ' M ' ( V g e n a 

par la matrice A  et M l e sous-(^-module cohérent de tf^ ,  image du morphisme f 
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(ce qui implique en particulier que cL e t 6 ^ n e dépendent pas du morphisme £ 

lui-même mais uniquement de son image). L'élément d ^ de iP es t défini par 

(4.4.1.1). La formule pour es t plus complexe. On utilise pour cela les fonc-

tions introduites dans (111,4.5.1) . On remarque d'abord que si A  = (a..)1 . 1  . 

îj i=i=p,i=j =p 

et si l'on désigne par A l a matrice à p + n lignes et p +n colonne s définie 

par 
A ^ij^lSiSp+njSjSp+ n ' 

où 

a. . =0 
i) 

, 1 £ i < n ,  j  i p+i , 

a. . = 1 , 1 < iZ n ,  j  = p+i , 

a- . = a. 
ij i-n, 3 

, n<i^p+n ,  1 < p , 

a. . = 0 , n < i < p+n , p < j < p+n y 

alors A  es t une matrice de définition de la relation d'ordre total ^ _ sur 

lPfn (cf . (3.0.4) et (1,3.11)). Si l'on pose 

R. = CARD( M _ u rXF ̂  Ï 

et si d | = (d̂  ,... jd̂  ) désign e un élément de (]NP+n ) i te l que 

M ^ w { d i i ' - - - ' V > 

alors 

i A; r • i 

(cf.(111,4.5.1)). Dans le cas particulier des corollaires (4.4.6 ) et (4.4.7) , où 

A es t la matrice unité on obtient une formule remarquablement plus simple. En 

effet on vérifie facilement dans ce cas que 

ô. = su p d. , + 1 , 
1 1^1< P 1J 

où di = (dil,...,d. ) désign e l'élément de iP défin i par (4.4.1.1) (la relation 

^a étan t la relation d'ordre antilexicographique). 

Remarque 4.4.9.- Si n  = 1 l a fonction wi2  Peu t être chosie constante dans les 

corollaires (4.4.2) , (4.4.4) et (4.4.7) (cf. (4.3.3)). J'ignore si cela est vrai 

pour n  quelconque . 

Remarque 4.4.10.- On peut énoncer une version "stratifiée" du théorème (4.3.2) , 

comme on l'a fait pour le théorème (4.3.1) . De même, on peut formuler une variante 

plus précise du théorème (4.4.1) en utilisant le théorème (4.3.5) à la place du 

théorème (4.3.1) . On laissera le soin au lecteur d'expliciter ces énoncés. 
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APPENDICE I 

FONCTIONS MODEREES 

Dans cet appendice on définit la notion de fonction modérée et on démontre les 

propriétés utilisées dans ce travail. Intuitivement une fonction modérée est une 

fonction qui croît comme un polynôme quand on "s'approche" d'un sous-espace analy-

tique, vu comme étant à l'infini. Par exemple, une fonction définie sur un espace 

affine est modérée le long de "l'hyperplan à l'infini" si et seulement si sa va-

leur absolue est majorée par la valeur absolue d'une fonction polynomiale. Au § 1 , 

on démontre les propriétés élémentaires et au §2, celles qui découlent des inéga-

lités de tojasiewicz. 
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§1.- Propriétés élémentaires de fonctions modérées 

(1.0) Tous les espaces analytiques considérés sont des (C-espaces analytiques sépa­
rés, dénombrables à l'infini, et en particulier , paracompacts. Dans la suite, on 
ut i l i sera fréquemment les propriétés topologiques suivantes : 

i) pour tout recouvrement ouvert localement fini (^L).^ d'un espace 
analytique, il existe un recouvrement ouvert (U'i)iEI tel que pour tout i , i€I, 
U'icUi; 

i i ) s i U et U' désignent des ouverts d'un espace analytique X , te ls que 
D^cU , i l existe un ouvert W de X te l que ÎF'cW et WcU ; 

i i i ) s i FQ et F1 désignent des fermés d'un espace analytique X , te ls que 
FQ n = 0 , i l existe une fonction continue 

x : x —* [0,1 ] 

telle que 

x|Fo=0 et x|F-,=1 • 

Enfin, on rappelle que s i C^ )̂̂  j désigne une famille de fermés analytiques d'un 
espace analytique X , l'ensemble 

z = n z. 
iEI 1 

est un fermé analytique de X et pour tout point x de X i l existe un voisinage 
ouvert U de x et une partie finie I de I te ls que 

znu = (n 
ieIx 

z p n u . 

(1.1) Dans ce paragraphe, on se fixe un espace analytique X , un fermé analytique 
Z de X et on désigne par Y l'ouvert X-Z de X . S i U désigne un ouvert 
de X on appellera fonction (C-analytique sur U un élément de r(U,0Y ) . 

red 
Les notions que nous définirons ne dépendent que de la structure réduite sous-
jacente à X . Néanmoins, on ne supposera pas que X soit réduit car ces notions 
peuvent être ut i les même si 0^ possède des éléments nilpotents. 

DEFINITION 1.2.- Soient 

cp : Y—> R 

une fonction continue et z un point de Z .On dit que cp est modérée le long 

de Z en z , s1 it existe un voisinage ouvert U de z dans X et une famille 

finie Cg.)-j<j<n , neJN , de fonctions ^-analytiques sur U , n'ayant pas de 

zéro commun dans Y DU , satisfaisant à la condition 
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0 0 pour tout compact K  de U II extòte 

deh constantes A et N , A  € R+ ,  N € R+ 

telles que 

vy€YnK : 
n 

( I I 
j=1 

gj (y) I ^ ) ^| cp(y) |  ̂A . 

On dut que la fonction c p est modérée le long de Z  , si elle Vest en tout 

point de 1 .  SI E désigne une partie de R  et 

: Y — * E 

une fonction continue, on dot que ip eAt modérée le long de Z  , si la fonction 

cp obtenue en composant avec VInjection canonique de E dans R  est 

modérée le long de Z  . 

Exemples 1.2.1.— Une fonction continue 

cp : Y —> R 

localement bornée sur X  (e t en particulier, la restriction d'une fonction 

continue sur X  ) es t modérée le long de Z  .  Si g  es t une fonction C-analyti-

que sur X  n e s'annulant pas dans Y  , la fonction c p ,  définie par 

cp(y) = V|g(y)| ,  pour y € Y , 

est modérée le long de Z  . Si Cg j 1 <j <n désign e une famille finie de fonctions 

C-analytiques sur X  , n'ayant pas de zéro commun dans Y  , la fonction c p , 

définie par 

cp(y) = V 
n 
( I I 
j=1 

gjCy)!2) , pour y€ Y , 

est modérée le long de Z  .S i Z  =0 tout e fonction continue sur Y  es t modérée 

le long de Z  . 

Remarque 1.2.2.- Pour des raisons techniques on ne supposera pas que Z  soi t 

d'intérieur vide dans X  .  Néanmoins, si z  es t un point de Z  te l que zg Y , 

toute fonction continue 

cp : Y —* R 

est modérée le long de Z  en z .  (Il existe un voisinage ouvert U  de z dan s X 

tel que Y  n U = 0 ,  ce qui implique que la fonction identiquement nulle sur U 

n'a pas de zéro dans Y  DU ). La notion de fonction modérée n'est donc intéressante 

que si Y  es t dense dans X  . Les propriétés suivanges découlent aussitôt de la 

définition. 

i) Une fonction continue 

cp : Y —• R 
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est modérée le long de Z  s i et seulement si il existe un recouvrement ouvert 

localement fini (I L )  ̂d e X  te l que pour tout i  , i € I , il existe une famil-

le finie (êij)-|<j< n ^ e fonctions C-analytiques sur I L n'ayan t pas de zéro 

commun dans Yfll L e t satisfaisant à la condition (M) de la définition (1.2). 

ii) S i pour tout ouvert U  de X o n désigne par C  .Y.7(U) l'ensembl e des 

fonctions continues 

cp : YnU — » R 

modérées le long de Zfl U , pour tout ouvert U f de X conten u dans U  et tout 

élément c p de C  v  7(U) o n a m:X:Z 

*lYnU'eCm;X;zaJ'> 

et Cm.x -z es t 1111 fai-sceau sur X  ,  sous-faisceau de i*(Cy ) , où désign e le 

faisceau des fonctions continues sur Y  e t i  l'injectio n canonique i  : Y c—*X . 

iii) Si Z ' désign e un fermé analytique de X  te l que ZcZ ' ,  Y ' l'ou -

vert de X  défin i par Y ' =X - Z' e t 

cp : Y * R 

une fonction continue, modérée le long de Z  , alors la fonction 

cp|Y' : Y' —> R 

est continue, modérée le long de Z ' . 

iv) Si X ' désign e un sous-espace analytique fermé de X  , Z' l e fermé 

analytique de X ' défin i par Z ' =X' HZ ,  Y ' l'ouver t de X ' défin i par 

Y' =X' flY = X' - Z' 

et 

cp : Y —> R 

une fonction continue, modérée le long de Z  ,  alors la fonction 

cp|Y' : Y' — R 

est continue, modérée le long de Z ' . 

v) Une fonction continue 

cp : Y —> R 

est modérée le long de Z  s i et seulement si il en est de même pour |cp | 

vi) Soient 

cp1 : Y —* R  e t cp 2 : Y —* R 
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deux fonctions continues telles que 

Vy€Y :  |cp2(y) I < |cp1 Cy) | . 

Alors si cp.j est modérée le long de Z  i l en est de même pour cp2 • 

vii) Soient 

cp : Y >  R+ 

une fonction continue et a  u n nombre réel, a^ O .S i cp es t modérée le long 

de Z  ,  il en est de même pour cp 

PROPOSITION 1.3.- Soient 

cp1 : Y »  R et cp 2 : Y —> R 

deux fonctions continues. SI cp^ et cp2 sont modérées te long de Z  , Il en est 

de même pour cp^ + c p 2 

Démonstration. Pour tout point z  de Z i l existe un voisinage ouvert U  de z dan s 

X e t une famille finie Cĝ D -j <î I1 CresP - ^nj^i<j< n ^ ê foncti°ns <C-analytiques 

sur U  ,  n'ayant pas de zéro commun dans Yfl U ,  tels que pour tout compact K 

de U i l existe des constantes A  et M (resp . B et N ) , A € R+ ,  M £ R + , 

(resp. B € R+ ,  N e R+ ) telle s que 

y € Y D K : 
m 

( £ 
i=1 

|gi(y)|2)M I ^ W I S A 

(resp. Vy€YH K : 
n 

( £ 
j=1 

|hj(y)|2)N |cp2(y)| B̂ )  . 

Pour tout i  et j , U i m̂ ,  1  £ j £ n , o n pose 

IJ 6 i j 

La famille (f . J^.. .... . es t une famille de fonctions Œ-analytiques sur U  , 

ij 1Siân,1Sjâi 7  M  ' 
n'ayant pas de zéro commun dans YD U ,  et si l'on pose 

L = sup{ M,N } 

et 

C = sup [ 
x€K 

m 
( Z 
i=1 

|gi(x)i2)L-M 

n 

C £ 

j=1 

|hj(x)|2)LA + 
m 

C 2 i 
i=1 

gi(x)|2)L 
n 

C Z I 
j=1 

hjCx)!2)1"^] , 

pour tout point y  de Y n K o n a 
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с z If.-Cy)!2)1 к (y) +Ф2(У)| й 
1<i<m 
1<j<m 

* ( 2  |giCy)|2) L ( 2  |h.(y)|2)L (|Ф (у)| + |Ф (y)|) ^ 
Ш а п -1 1£j<n 3  1 

* ( Z  |gi(y)|2)L"M ( Z  | h (y)|2)L A+( Z  |g.(y)|2)L ( Z  |h.(y)|2)L-NB<C , 
1ui<m 1^j<n J  1<i<n 1  1<j<n 3 

ce qui démontre la proposition. 

COROLLAIRE 1.3 . 1 . - Soient 

Ф1 : Y — » R et Ф2 : Y —• R 

deux fonctions continues. Si ф^ et Ф2 4ont modérées le long de Z  , il. en est 

de тете роил tp-j^ 

Démonstration. On a 

2 2 |ф1 Ф2| ̂ ф-, + Ф2 

et en vertu de (1.2.2), (vii ) et (vi), le corollaire (1.3 .1) résult e de la propo-

sition (1.3). 

COROLLAIRE 1.3.2. - Soient n  un entier, n€] N ,  P un polynôme à n  indétermi­

nées à coefficients dans Ж et ^^<^,<п unQ- famille de fonctions continues 

ф. : y —* Ж 
Si pour tout i  ,  1 ^i<n , la fonction ф^ est modérée le long de Z  , il en 

est de même pour Р(ф^,...,ф^) 

Démonstration. En raisonnant par récurrence, le corollaire (1.3.2) résulte de la 

proposition (1.3) et du corollaire ( 1.3 . 1 ) . 

COROLLAIRE 1.3.3. - Soit ( Ф ^ ) ^ ипг iam^^(L de fonctions continues 

ф. : y —* Ж 

localement finie sur X  (1)  .Si pour tout i , i € I , la fonction ф. est 

modérée le long de Z  il en est de même pour sup ф. et Z  Ф -
i e i 1 i e i 1 

Démonstration. En vertu de (1.2.2), (ii) , on peut supposer que la famille ^i^ç l 

est finie. Alors il résulte du corollaire (1.3.2) que Z  cp . es t modérée le 
i€l 1 

( 1 ) Cel a signifie que pour tout point x  de X i l existe un voisinage ouvert U  de 
x dan s X  te l que l'ensemble des indices i  , i€I ,  tels que la fonction cp . 
ne soit pas identiquement nulle sur Yfl U , soit fini. 
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long de Z  . D'autre part, en vertu de (1.2.2) , (v) , pour tout i , i € I , la fonc-

tion |cp̂ | es t modérée le long de Z  e t il en est donc de même pour I  |cp̂ | 

Or, l€ l 

| s u p ф . | < Z I cp- J . 
i € i 1 i e i 1 

On en déduit que sup cp. es t modérée le long de Z  ((1.2.2) , (vi)) . 
i€I 1 

COROLLAIRE 1.3.4.- Soient ( U ^ ç j un recouvrement ouvert localement fini de X 

et pour tout i  ,  i  € I ,  une fonction continue 

i i  ' 

modérée le long de ZniL . Alors pour tout recouvrement O / ^ i e i ^e x tel que 

pour tout i , i € I , 

vicUi ' 

il existe une fonction continue 

Ф • Y —* Ж , 

modérée le long de Z  ,  teULe que pour tout i , i E I , et tout y , y € Y П , 
on ait 

Ф1(у)^ф(у ) . 

Démonstration. Pour tout i , i  € I , il existe un ouvert d e X te l que 

V. с W. cW. cU-i i l i 

et une fonction continue 

Xi : X [0,1 ] 

telle que 

Xi|Vi = 1 e t Xi|X-W . = 0 

(cf.(1.0)). Soit Ф | la fonction 

Ф| : Y >R 

définie par 

Ф-lYniL = (Xi |YnU) •  фА 

et 

cp||Yfl ( X - I L ) = 0 . 

La fonction cp | es t continue, modérée le long de Z  .  En effet, cpj|Ynu\ es t 

modérée le long de Z  n IL ((1.2.1 ) et (1.3.1)) , cp||Yn (X -ÏÏ:) =0 es t modérée 
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le long de Z  fl(X-W^) ,  et comme X  es t la réunion des ouverts U . et X-W. , 

il résulte de (1.2.2), (ii ) que cp | es t modérée le long de Z  . La famille 

(cpï)-pT étan t localement finie sur X  , la fonction c p défini e par c p = sup cp! 
i îti ie I i 

est continue, modérée le long de Z  (1.3.3), et pour tout i  , i € I , et tout y  , 

y€YnVi ,  on a 

cp(y) >cp[(y) = Xi(y) ̂  (y) = ^(y) , 

ce qui démontre le corollaire. 

Remarque 1.3.5.- En gardant les notations de la démonstration du corollaire (1.3.4), 

si pour tout y  , y €Y ,  on désigne par I  l a partie de I  défini e par 

Iy = {iei :  y e iy , 

l'ensemble I  es t fini et on a 
y 

cp(y) < sup cp. (y) . 
i€I 1 

y 
En particulier, s'il existe une constante A  , AGIR ,  telle que pour tout i  , 

i € I , et tout y  , y G IL , 

cpi(y)<A , 

alors pour tout y  , y G Y , on a 

cp(y) < A . 

COROLLAIRE 1.3.6.- En gardant les notations du corollaire (1.3.4) , si pour tout 

i ,  i G I , 

*i :Ui *  ]0'1[ 

désigne une fonction continue, Il existe des fonctions continues 

ij,' : X -+ ]0 ,1 [ U i/; " : X— ]0 ,1 [ 

telles que pour tout i  , i  G I , et tout x , x  €V̂  , on ait 

(x) Sii^Cx)  ̂ipf,(x) . 

Démonstration. En vertu de (1.3.5), l'existence de i// ' résulte de (1.3.4) appliqué 

à Y  = 0 e t l'existence de ty' e n découle, en remarquant que pour tout i  , i  El, 

la fonction es t une fonction continue de I L dan s ]0 ,1[ . 

(1.4) Soient U  u n ouvert de X  e t ( h ^ - j ^ ^ un e famille finie de fonctions 

C-analytiques sur U  . On dit que la famille - j ^ ^ es t famill e d'équa-

tions C-analytiques de Z  dan s U  s i 

ZniJ= { x GX :Vk, 1 <k m̂ ,  hk(x ) =0} . 
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Pour tout point x  de X i l existe un voisinage ouvert U  de x dan s X  e t une 

famille finie d'équations (C-analytiques de Z  dans U . 

LEMME 1 . 4 . 1 . - Solent U un ouvert de X  ,  ^gj^l<j< n un e iamMQ- &¿n¿£ ̂ e 

fonctions ̂ -analytiques sur U  n'ayant pas de zéro commun dans Yfl U et 

Oi]<Jl<k<m une f amitié finie d'équations (C-analytiques de Z  dans U  .  Alors 

pour tout compact К de U ,  H existe des constantes С et M ,  С 6R* ,  MER* , 

telles que 
Vx eK : 

m 
( £ 
k=1 

|hk(x)|2)M^C 
n 
Z 

j=1 

|gjW|2 . 

Démonstration. Si l'on désigne par Z ' l e fermé analytique de U  défin i par 

Z' = {x € U : Vj ,  1 < j  ̂n ,  g  (x) = 0} 

on a Z ' cZ flU e t en particulier pour tout k  ,  1 ^k m̂ ,  la fonction s'an -

nule sur Z ' .En vertu du Nullstellensatz (E-analytique, pour tout point x  de U 

il existe un voisinage ouvert d e x dans U ,  un entier ,  G  N* ,  et une 

famille Cot^ j )  ̂<k<m 1<j<n ^ e f°ncti°ns Œ-analytiques sur ,  telle que pour 

tout k  ,  1 < k < m ,  o n ait 

N 

hk lUx = 
n 
Z 

j=1 
«xkj ' (Sj lUx} • 

L'ensemble K  étan t compact, il existe une famille finie (xi^<i< r ^ e points ^e 

U tell e que 

К c= и U 
Шйт xi 

Posons 

N = sup N 
Ш < г xi 

et pour tout i , j , k , 1  ̂i  ̂r ,  1  ̂j  ̂n ,  1  ̂k < m , 

6ikj = 

N-N~ 

(hk > x . J 
1 

La fonction es t une fonction (C-analytique sur e t pour tout i  et k , 

U i ^ r ,  H k <i ,  on a 1 

1 

П 
= Z 

j=1 
^ikj •CgjlUx.î • 

Il existe un recouvrement ouvert (vp-|<i<r de K  te l Quo pour tout i  , 

1 ^i r̂ ,  V 7 c U ,  et si l'on pose K . = K n VT ,  l'ensembl e K . es t compact 
et on a 
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K = u K. . 
i 

Soit S  u n entier, S  G IM , tel que 

2S n̂ + 1 

et posons 

R = NS e t M  = m(R-1) + 1 . 

On remarque que si , . . . ,Xm (resp . Y1,...,Y n ) désignen t des indéterminées, 

il existe une famille de polynômes (P^CX^,.. . >xm)) 1<k<m 

(resp. (Q. . (Y1,... ,Yn) ) -|<j<n ) à  coefficients dans I N tell e que 

m M  m  R 
( Z xk)M = Z P (X , . . . , X ) • Xf 
k=1 K  k= 1 K  ' 

(resp. 
n 2 S n  2 

C . ^ V =.h Q.Cï1....,Yn).Y . )  . 

Posons 

C =  su p su p P  (|h (x)|2,...,| h (x)|2) , 
1 1<k< m xG K m 

C? = su p su p su p 
i<i<r i<jâi XGIC 

m 
Z 

k=1 
Q jCI ß i k 1 ( x ) g l ( x ) | , . . . , | 3 i k n ( x ) g n ( x ) | ) | 3 i k j ( x ) | 2 

et 

C_C1 * C2 * 

Alors pour tout x  , x G K , il existe i  , 1 û i û r ,  tel que x 6 L e t on a 

m 
( Z 
k=1 

|hk(x)|2)M = 
m 
Z 

k=1 
Pk(|h1(x)|2,...,|hm(x)|2)|hk(x)|2R< 

< C 
m 
Z 

k=1 
|hk(x)|2R = C1 

m 
Z 

k=1 

\ißr -\ i 2S |hk(x)| = 

= C1 
m n 
Z | Z 

k=1 j =l 

Bikj (x)gj(x)|2S<C1 m 
Z 

k=1 

n 
( Z 
3=1 

2S 
|ßikj(x)gj(x)|) = 

= c1 

m 
Z 

k=1 

n 
Z 

j=1 
Qj ( 13ik1 W gl (x) | ,..., | 3ikn(x)gn(x) | ) 1 3 i k j (x)g. (x) |2 = 

= C1 
n 
Z 

j = 1 

m 
[ Z 
k=1 

Qj ( 1 3 i k l (x)gl (x) | ,..., 13ikn(x)gn(x) | ) | 3ikj (x) |2] | g. (x)|2 < 
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C1 

n 
Z 

3=1 
C2|gj(x)|2 = С 

n 
Z 

j = l 

|gj (x)|2, 

ce qui démontre le lemme. 

PROPOSITION 1. 4 . 2 . - Soient ф : Y —* R une fonction continue, modérée le long de 

Z , U un ouvert de X et ^\^-\<^^a ипг- famMe finie d1 équations Œ-analytiques 

de Y dans U . Pour tout compact К de U II existe des constantes A et N 

A e R , N € R telles que 

Vy € Y П К : 
m 

( Z 
k=1 

|hk(y)|2)N |Ф(у)| <A .  |gj (x)|2, 

Démonstration. En vertu de (1 . 2 . 2 ) , (i) , il existe un recouvrement ouvert fini 

^Vl<i<r ^e K ^ue Pour tout '   ̂=i=r ?  il existe une famille finie ^^-^-|<-<n 

de fonctions Œ-analytiques sur I L n'ayan t pas de zéro commun dans Y  DLL * 

telle que pour tout compact K ' de IL i l existe des constantes M  et B , M G R + , 

B € R+ , telles que 

Vy G Y П K' : 
ni 

( £ 
j=1 

|gij(y)|2)M |Ф(У) I = в . |gj (x)|2, 

Soit (VjO^<^< r u n recouvrement ouvert de K  te l que pour tout i  , H i r̂ , 

VTcU. e t posons K^=VTn K .L a partie I L de IL étan t compacte il existe des 

constantes N . et A. , N . € R ,  A. € R telle s que 
i i  ' i  +  '  i  +  H 

VyEYniC : 
ni 
Z 
j=1 

? N. 

|gij(y)n 1 | Ф ( У ) | S A I . 

D'autre part, il résulte de (1 .4.1) que pour tout i  , 1 Si r̂ ,  il existe des 

constantes M . et C. ,  M . € R ,  C. € R ,  telles que 
i i  *  i  +  '  i  +  *  H 

Vx € 10 : 
m 

( Z 
k=1 

? M. 
|hk(x)|Z) ^ C. 

n. 
i 

Z 
j=1 

[gij (x)|2. 

On pose 

N = sup M. N. 
1<i<r 1  1 

et 

A = sup [A. С.1 sup ( Z |hv(x)|2)N""MiNi ] . 
Ш<г 1 1  X6I C k=1 K 

Alors pour tout point y  de Y  П К il existe i  , 1 < i < r ,  tel que y  £ 1С e t 

on a 
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m ?  M 
( Z |hk(y)|Z) N |<p(y)| = 
k=1 K 

m ,  M. N. m  y  N-M.N. 
= (( Z |hk(y )iZ) X) 1 |«p(y)| •  (S |hk(y)|Z ) 1  1 S 

- C ^ (? |gijCy)|2)Ni | «P(y) | . ^\\(y)\2)N-Mini * N-Mi-Ni; 

^ i V k ; ihk(y),2)N-MiNi,A , 

ce qui démontre la proposition. 

PROPOSITION 1.5.- Soient 1^ et Z2 deux fermés analytiques de X  teU que 

Z = Z1 n Z2 e t 

cp : Y •  R 

une fonction continue. SI les restrictions cp|(X-Z.j ) et cp | (X-Z2) sont des 

fonctions modérées le long de 1^ et 1^ respectivement, alors la fonction c p est 

modérée le long de Z  . 

Démonstration. Pour tout point z  , z G Z , il existe un voisinage ouvert U  de z 

dans X  e t des familles finies Cg^)^<i< m e t ^j ^1<j<n d'équation s (C-analyti-

ques de Z ^ et Z2 respectivemen t dans U  . En vertu de la proposition (1.4.2), 

pour tout compact K  de U i l existe des constantes M , A, N, B, M  € R+ ,  A  G R+ , 

N G R+ ,  B  G R+ , telles que 

Vy G (X- Zp flK : 
m 

( Z 
i=1 

|gi(y)|2)M|cpCy)| ^ 

et 

VyG(X-Z2) flK : 
n 

( Z 
j=1 

l y y D l V * |<P(y) | SB , 

et comme pour tout i  , 1 <i <m ,  (resp . pour tout j  ,  1 £j <n )  l a fonction 

g^ (resp . lu ) s'annul e sur Z ^ flU (resp . sur Z 2 nu ) , on a 

Vy GY nK : 
m 

( Z 
i=1 

|gi(y)|2)M |cp(y)|<A 

et 

Vy GY RK : 
n 

( Z 
j=1 

|hj(y) |2)N| <P(y)|*B . 

Soit 1 <k<m+n 1S i f31111!!6 définie par 

fk = gk ,  1 < k < m , 

f, =h , ,  m  < k m̂ + n 
k k- m ' 
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La famille (f̂ J  ̂<k<m+n eSt une ̂ am̂ L̂ -le finie de fonctions (C-analytiques sur U 

n'ayant pas de zéro commun dans Yfl U .  Soient M ' et N' de s entiers, M ' £ JN* , 

N' £ lsf* , tels que M' ==M et N' .S i ,  X2 désignen t des indéterminés et 

si l'on pose 

L =M' +N' - 1 

il existe des polynômes P(X . ,X2) e t Q(X.j,X2 ) à  coefficients dans I N tel s que 

(X1 +X2)L = PCX1,X2)3Ç' +Q(X1,X2)X '̂ . 

Posons 
m 7  n  ~  m  ?  M» M 

C ^ s u p t P C l |g-(x)|Z , Z|h.(x)|Z).( Z |  g • 0 0 | ) ] 
1 xE K i= 1 1  j= 1 J i= 1 1 

C?=sup[Q(Z |g.(x)|2 , Z  |h,(x)|2M Z |h.(x)|2)N'"N] 
L x£ K i= 1 1  j= 1 J j= 1 3 

et 

C = C| A+ C2B . 

Alors pour tout y  , y£YflK , on a 

m+n 7  T 
C 2 I fk(y) rr |w(y)| = 
k=1 K 

m ~  n  j m  ?  M» 
= PC Z |g-(x)|Z , Z |h,Cx)|Z)( Z |g.(x)|Z) M |cp(y) | + 

i=1 1  j= 1 3 i= 1 1 

m 2  N  ?  N  ?  M» 
+ Q(Z|g.(x)| ,  Z |h-(x)| )( Z |h. (x)| ) |<p(y)|* 

i=1 1  j= 1 J j= 1 J 

< C1 A + C2 B = C , 

ce qui démontre la proposition. 

COROLLAIRE 1.5.1.- Soient (Z^-^ j une. famille de. fermés analytiques de. X telle, 

que. 

z= n z. 
i£l 1 

et 

cp : Y — >R 

une fonction continue telle que poun. tout i  ,  i£I ,  la restriction cp|X-

soit une fonction modérée le long de Z^ .  Alors la fonction cp est modérée le 

283 



G. MALTSINIOTIS 

long de Z  . 

Démonstration. Pour tout point x  de X i l existe un voisinage ouvert U de x e t 

une partie finie I 1 de I tel s que 

z nu = ( n z, ) n u 
i€I' 

(cf.(1.0)). En vertu de (1.2.2), (ii), le corollaire résulte alors de la proposi-

tion (1.5), en raisonnant par récurrence. 

LEMME 1 .6 . - II existe mne fonction continue 

ф : y —> R , 

moden.ee le long de Z  ,  telle que роил, tout z  ,  z  € Z , et toute constante A 

A € R* , il existe un voisinage ouvert U de z dans X  tel que роил tout y  , 

y € Y n U , on ait 

Ф(у) г A . 

Démonstration. Soit (tL)^ j u n recouvrement ouvert localement fini de X  te l que 

pour tout i  , i € I , il existe une famille finie ^>\^\<^^ . d'équation s 

C-analytiques de Y dans U^ ,  et soit 

Ф. : Y n u . — > R* 
i i + 

la fonction définie par 

n. 
Ф^У) = 1 / ( Z * |gij(y)|2) ,  pour у б У П Ш . 

La fonction tp ^ es t continue, modérée le long de ZnU^ (1.2 . 1 ) . Soi t (V^)^^ 

un recouvrement ouvert de X  te l que pour tout i  , iGI ,  V ^ U ^ (cf . (1.0), (i)). 

En vertu de (1.3.4), il existe une fonction continue 

Ф : Y * R , 

modérée le long de Z  ,  telle que pour tout i  , i € I , et tout y  , y £ ,  on 

ait 

Ф1(у) й ф(у) . 

Soit z  u n point de Z  . U exist e i  , i€I ,  tel que z£V . .  Si l'on désigne 

par ij ^ l a fonction 

ф. : V. —* R 
yi i  + 

définie par 

ф1(х) = 
ni 
Z 
j=1 

2 
|gijW| >  Pour x€V i > 
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la fonction es t continue et i|̂ (z ) =0 .O n en déduit que pour toute constante 

A , A € R* ,  il existe un voisinage ouvert U  de z dan s X  conten u dans 

tel que pour tout x  ,  x € U , 

0^ф1(х) < 1/A , 

ce qui implique que pour tout y  , y E Y H U , 

Yj (y) < Q (y) 

d'où 

Ф (У) г A , 

ce qui démontre le lemme. 

PROPOSITION 1.6 . 1 . - Soient (Zi)iei une famille finie de fermés analytiques de 

X tels que 

z = n Z . 
i€I 1 

et роил tout i  ,  i  € I ,  une fonction continue 

ф. : X- Z. >Ж , 
i i  ' 

modérée le long de Z ^ .  Alors II existe une fonction continue 

Ф : Y —* Ж , 

modérée le long de Z  ,  telle que pour tout y  ,  y  G Y ,11 existe i  ,  i  € I , 

tel que y  € X - Z± et 

Ф^уЗ^фСу) . 

Démonstration. En vertu du lemme (1.6), pour tout i  , i € I , il existe une fonc-

tion continue 

ф. : X- Z. —- Ж , 
Yi i  ' 

modérée le long de Z ^ , tell e que pour tout z  , z£Z. ,  et toute constante A , 

A £ R* ,  il existe un voisinage ouvert U  de z dan s X  te l que pour tout y  , 

y e (X - Zi) n U ,  on ait 

Ф 1 ( У ) ^ А . 

Posons 

Ф| = зир{ф1,ф1,0} . 

La fonction 

Ф? : X- Z. —* Ж 
i 

est continue, modérée le long de Z ^ (1.3.3). Pour tout y  , y€Y ,  on pose 
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Iy = {i€ l : ytZ^ 

et 

cp(y) = in f cp!(y ) . 
i€I 1 

y 
Démontrons que la fonction 

cp : Y —• R 

est continue. En effet, soit y  u n point de Y  . 

Alors y  € X - u 
i e i 

y 

Z. .  Soit 
i 

il) :  X-U 
i e i 

y 

Z. > R 
i 

la fonction définie par 

Kyf) = inf 
i € l 

y 

cpjCy1) , pour y ' ex - u 
iei 

y 

Z. . 
1 

La fonction i) est continue. 11 suffit donc de démontrer que cp et coïnciden t 

au voisinage de y  . Soit A  , A € R * ,  te l que iKy ) <A .L a fonction \p étant 

continue il existe un voisinage ouvert U  de y dan s X  - . U Z . te l que pour tout 
y' , y' eu ,  l€I y 

iKy')<A . 

D'autre part, comme y e n Z ^ ,  il existe un voisinage ouvert U ' de y dans 

X te l que pour tout i  , i e I - Iy , et tout y ' ,  y'e (X - Z^) nU' 

^(y') ^A 

et a fortiori 

cp^y'^A . 

Alors il découle aussitôt des définitions de c p et ^ qu e 

cp|unu' =ip|unuf , 

ce qui démontre la continuité de c p .  Enfin, pour tout i  , i  G I , et tout y  , 

y € X - Ẑ  ,  on a 

cp(y)^cp|(y) , 

et comme cp(y ) 0̂ ,  il résulte de (1.2.2), (vi) que cp|X -Z^ es t modérée le long 

de Z ^ .O n en déduit que c p es t modérée le long de Z  ( 1.5 . 1 ) , c e qui démontre 

la proposition. 
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Remarque 1.6.2.- La proposition (1.6 .1) demeur e vraie, même si l'on ne suppose pas 

que la famille (Ẑ )ĵ - j soi t finie. En effet, il existe alors un recouvrement 

ouvert localement fini (U.)-c T d e X  te l que pour tout j  , j G J , il existe 

une partie finie I . de I tell e que 

z n u . =( n z . ) n u . 
3 i€l . 1 3 

3 

(cf.(1.0)). En vertu de la proposition ( 1.6 . 1 ) , i l existe donc une fonction conti-

nue 

: Y n U . »  R , 
3 3 

modérée le long de ZHU.. ,  telle que pour tout y  , y G Y n U.. ,  il existe i  , 

i € I j , tel que y  G X - 1^ e t 

cpi (y) <  ̂(y) . 

Soit (Vj)jç j u n recouvrement ouvert de X  te l que pour tout j  , j G J , VjCiU. . 

(cf.(1.0),(i)). En vertu du corollaire (1.3.4), il existe une fonction continue 

c(? : Y •  R , 

modérée le long de Z  , telle que pour tout j  , j  G J , et tout y  , y G V\ , 

Yj (y) < Q (y) 

Alors pour tout point y  de Y i l existe j  , j GJ ,  tel que y^V j e t i  , i G I j, 

tel que y  G X - Ẑ  e t 

cpi(y) <^(y) , 

ce qui implique que 

cpi(y) ^cp(y) . 

PROPOSITION 1.7 . 1 . - Solent X' un sous-espace analytique fermé de X , Y'= YnX', 

Z'= ZnX' et 

cp' : Y' —• R 

une fonction continue, modérée le long de Z ' . Alors II existe une fonction con­

tinue 

cp : Y —* F , 

modérée le long de Z  ,  telle que 

cp|Y' = cp' . 

Démonstration. Soient (^L). ^ u n recouvrement localement fini de X  form é par 

des ouverts relativement compacts dans X  tel s que pour tout i  ,  i  G I ,  il 

existe une famille finie d'équations C-analytiques de Z  dan s Ui ,  e t W p^çj 
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un recouvrement ouvert de X  te l que pour tout i  ,  i  € I ,  U j c .  Démon-

trons que pour tout i  , i € I , il existe une fonction continue 

<Pi : YHUï y R , 

modérée le long de Z  n Uj ,  telle que 

cpi|Y' nUj =  cp'|Y' HUÍ . 

En effet, soit ^nk^<k< m xm e famille d'équations C-analytiques de Z  dan s U. . 

La famille (h ]Jx,nUi)i<k<m es t une famille d'équations C-analytiques de Z ' 

dans X' DLL ,  e t comme X' nOT es t une partie compacte de X' flU^ ,  il existe 

des constantes A  et M ,  A € R + ,  M  € R+ ,  telles que 

Vy € Y ' n U j : 
m 

( £ 
k=1 

|hk(y)|2)M|cp'(y)| SA 

(1.4.2), ce qui implique que la fonction 

ipî : X' nu.' — » R 
ri i 

définie par 

^î(y) = 
m 
Z 

k=l 
|hk(y)|2)M+1 cp'(y) ,  pour yCY'flU Ï , 

et 

^j(y) =0 ,  pour y e Z ' n u j , 

est continue. On en déduit qu'il existe une fonction continue 

: Uï >R 
ri i 

telle que |  XT n =  e t alors la fonction 

tp : YDUj — * R 

définie par 

cp^y) = ^ ( y )/ 
m 

( Z 
k=1 

|hk(y)|2)M+1 ,  pour y e Y f l U ' , 

est une fonction continue, modérée le long de ZDU ' ( (1.2 .1) e t ( 1.3 , 1 ) ) , tell e 

que 

(1.7 .1 .1) cpi|Y' RU! = cp'|Y' f1U| . 

Soit Wjpie j w recouvremen t ouvert de X  te l que pour tout i  , i€ l , 

ïrVcUj .  En vertu de (1.3.4) et (1.3.5), il existe une fonction continue 

cp : Y —* R , 

modérée le long de Z  ,  telle que pour tout point y  de Y le s deux propriétés 
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suivantes soient satisfaites : 

a) pour tout i  , i G I , tel que y  G UV ,  on a 

w(y) < wi, (y) . 

b) il existe i  ' , i ' G I ,  tel que y  G U?, ,  et tel que 

cp(y) <cpit (y) . 

La famille (U'i)iEI étant un recouvrement de Y ' plu s fin que le recouvrement 

(U|)^j ,  il résulte de (1.7 .1 .1) qu e les conditions (a) et (b) impliquent que 

pour tout point y  de Y1 o n a 

cp» (y) = cp(y) , 

ce qui démontre la proposition . 

Remarque 1.7.2.- Si la fonction cp ' es t positive, on peut supposer qu'il en est 

de même pour c p .  (Il suffit de prendre sa valeur absolue). De même, si la 

fonction cp ' es t strictement positive, on peut supposer que c p l'es t également. 

En effet, on peut d'abord supposer que c p es t positive, et il suffit de lui ajou-

ter la restriction sur Y  d'un e fonction continue sur X  s'annulan t exactement 

sur le fermé X ' de X (l'espac e X  étan t métrisable on peut par exemple lui 

ajouter la fonction x  i—• d(x,X' ) ,  où d  désign e une distance sur X  , 

compatible avec sa topologie). 
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§2.- Fonctions modérées sur un ouvert de (P . 

(2.0) Dans ce paragraphe, on étudie les fonctions modérées sur un ouvert de $P . 

On utilise un théorème de fcojasiewicz [38] qui permet de majorer localement les 

fonctions modérées par une puissance de la distance à 1T"infini". On se fixe un 

ouvert U  de ,  un fermé analytique Z  d'intérieu r vide de U  e t l'on pose 

Y = U-Z .  L'ensemble Y  es t un ouvert de Çp dens e dans U  .  On désigne par 

d(.,.) l a distance sur ([P déduit e de la norme sup. On rappelle (cf. (111,4.4.1)) 

que pour tout ouvert U ' de (P o n désigne par R^ , l a fonction 

Ry' : U' —* R * 

définie par 

Rut(x) = inf{d(x,Cp-U')/2,1} . 

On remarque aussitôt que pour tout y  , y €Y , 

(2.0.1) Ry(y) = inf{Ru(y), d(y,Z)/2} . 

Pour que certains énoncés demeurent vrais même si Z = 0 ,  on aimerait que d(x ,0) 

ait une valeur finie. On peut choisir n'importe quelle constante strictement 

positive. Par convention, on posera 

d(x,0) =  2 . 

(C'est la plus petite valeur pour laquelle la formule (2.0.1) reste vraie si 

Z = 0 ) . 

PROPOSITION 2.1.- La fonction 

cp : Y —• R * 

définie, peut 

cp(y) = 1/d(y,Z) , pouA y C Y , 

est une. fonction continue, modérée, le long de Z  . 

Démonstration. La continuité de c p es t évidente. Soit Z q u n point de Z  e t U ' 

un voisinage ouvert de z  dan s U te l qu'il existe une famille finie d'équations 

C-analytiques Ch^ ) ^<i m̂ ^ e Z  c*an s U * *  11 existe e  >  e  € R* ,  tel que 

D(zo;8e)cU' 

(où £  = (e,...,e) e (R*)P ) e t tel que pour tout i  , 1  S i Sm ,  si l'on désigne 

par h ^ l a fonction (C-analytique 

hi : D(Zq;3£) xD(0;5e) — > C 

définie par 
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h ^ t ) =  h^x+t) -h^x) , 

il existe des fonctions (0-analytiques 

hy :D(zo;3e ) xD(0,5e) —> C  , 1   ̂J = P , 

telles que pour tout x  , x€D(zo;3e) , et tout t  , t = (t1,... ,t ) , t €D(0;5e) 

on ait 

h¿(x,t) = 
P 
Z 

3=1 

t. h..(x,t) . 
3 i j 

On pose 

F = sup su p |h. (x) I 
1<i<m x€D(z o;2£) 1 

H= sup sup sup sup I h . . (x,t)| 
1<i<m 1<j<p xeD(z Q;2e) t€D(zo;4e) 1J 

et 

A = FHmp . 

Alors pour tout x , x = (x^, . . . ,Xp) , x € D(zQ;2e), et tout z ,  z  = (z^,...,z^), 

z GD(zo;2e) n Z , on a 

m 
Z 
i=1 

L ^ C X ) ! 2 ^ 

m 
Z 
1=1 

|h.Cx)| = F 
m 
Z 
i=1 

|h±Cx) -h±Cz) I = 

= F 
m 
Z 
i=1 

|liiCz,x-zD I <F 
m 
Z 
i=1 

P 
Z 

3=1 

|Xj-z.| |HI:J(Z ,x-Z)| < 

FH 
m 
Z 

i=1 

P 
Z 

3=1 

|XJ-Z^ I IkA d ( x , z ) . 

On en déduit que pour tout x  , X € D ( Z q ; 2 ¿ ) , 

m 
Z 
i=1 

I ^ C x J f ^ A d(x,D(z o,2e) HZ) 

et il en découle que pour tout x  , x€D( z o ; e ) 

m 
Z 
i=1 

|hi(x)|2<A d(x,Z) , 

ce qui démontre la proposition ( ( 1 .2 .1 ) e t ( 1 . 2 . 2 ) , (ii), (vi)) . 

COROLLAIRE 2 . 1 . 1 . - La fonction 

cp : Y —> R * 

291 



G. MALTSINIOT7S 

définie par 

Ф(у) = VRyCy) ={sup 2/d(y,(D-Y),1} 

(cf. (111,4.4.1) ) est continue, modérée le long de Z . 

Démonstration. En effet, pour tout y  , y €Y , 

ф(у) = sup{2/d(y,Z) , 1/Ки(у)} 

(2.0.1) et le corollaire résulte de (111,4.4.1), (2.1), (1.2.1) et (1.3.3) . 

/ 4  n 
THEOREME 2.2.- (tojasiewicz). Soient n  un entier, V  un ouvert de Ж , К 
un compact de V  ,  f  : V —• R  une fonction T<-analytique, et E  le fermé de 

V défini par 

E= {x€V :  f(x) = 0} . 

Mors II existe des constantes A et U , A € R* ,  M € R * ,  telles que pour tout 

x ,  x  € К , 

|f(x)| >A de(x,E)M , 

où de(.,. ) désigne la distance euclidienne sur ]R n (1) . 

Démonstration. [38] , théorème 2, p. 85. 

COROLLAIRE 2.2.1.- Soit U 1 un ouvert de U  tel qu'il existe une famlMe finie 

d1 équations t-analytlques (h^)^^. ^ de Z dans U ! .  Alors pour toute partie 

compacte K  de U' Il existe des constantes A et M , A  € R* ,  M G R * ,  telles 

que 

Vx€K : 
n 
Z 
j=1 

|^(х)|2>А d(x,Z)M . 

Démonstration. Si ZnU' = 0 i l suffit de poser M  = 1 e t 

A=inf 
x€K 

n 
[ £ 
j=1 

|h(x)|2/d(x,Z)] . 

Supposons donc que ZnU1 ¿ 0 .E n remarquant que la fonction 

f : U? —* R 

définie par 

f(x) = 
n 
Z 
j=1 

|1ь(х)|2 , pour x€U ' , 

est une fonction R-analytique (e n identifiant (C p à R p ) et que 

ZflU' = {х€1Г : f(x) = 0} , 

( 1 ) L e théorème est vrai même si E  =0 ,  en convenant que d  (x ,0) es t une 
constante strictement positive quelconque, par exemple de(x ,0)=2 (cf. (2.0)). 
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il résulte du théorème ( 2 .2 ) quTil existe des constantes A  et M , A G R* ,  M G R* , 

telles que 

VxGK : Z  |h-(x)|2^ A d (x,ZnUf) , 
i=1 3 e 

où de(.,. ) désign e la distance hermitienne sur (C F .Or , pour tout x  , xGUf , 

on a 

d(x,Z) ^d(x,ZflUf) <d (x ,ZnU') , 

ce qui démontre le corollaire. 

PROPOSITION 2 . 2 . 2 . - Soit 

cp : Y —» R 

une fonction continue, modérée le long de Z  .  Mon* pour tout compact K  d e U 

il existe des constantes A  et M , A GR ,  M GR ,  telles que 

Vy G Y fi K : |cp(y)| <A/d(y,Z)lx . 

Démonstration. Il existe un recouvrement ouvert fini (U.)..^ . . d e K  te l que 

pour tout i  , 1 ^i m̂ , il existe une famille finie d'équations (C-analytiques 

^ij^1<j<n- d e Z  dan s Ui  '  ^°*t ^Vi ^1<i<m ^  recouvremen t ouvert de K  te l 

que pour tout i  ,1 £ i < m ,  V^cU^ e t posons K^=V^nK .L a partie 1C de 

U- étan t compacte il existe des constantes A . et M. , A. G R ,  M. G R , 
i r  i  i  ' i  +  '  i  +  ' 

telles que 

( 2 . 2 . 2 . 1 ) VyeYflK, : ( Z |h,,(y )r) 1 |«pCy)| S A -
-1- -1 x 

( 1 . 4 . 2 ) , e t des constantes B . et N. , B . G R* ,  N . G R* ,  telles que 

( 2 . 2 . 2 . 2 ) VxGK. :  Z 1 |h..(x)|2 >B. d(x,Z) 1 
1 n =1 X 3 1 

( 2 . 2 . 1 ) . O n pose 

M = su p M . N. 
1<i<TTi 1  1 

et 

1*1 . 1 H n. IN . 
A= sup [(A./B.1) sup d(x,Z ) 1  x] . 

1<i<m 1 1 xGK . 

Alors pour tout point y  de Y n K i l existe i  , 1 û i û m ,  tel que y  G IC e t 

il résulte de ( 2 . 2 . 2 . 1 ) e t ( 2 . 2 . 2 . 2 ) que 

? M. M . M . IN. 

|<P(y)| SA./( Z |hi:J(y)|Z ) x< (A^B.VdCy.Z) 1 1 = 

- (A,/B\ d (yiM-MiNi/d(y,Z)M=<A/d(y,Z)M , 
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ce qui demontre la proposition. 

PROPOSITION 2 . 2 . 3 . - Soient 

(p : Y —* R * 

une fonction contenue, modérée le lona de Z  ,  et ( E ^ ) u n e famille de panties 

de Y  telle que pour tout i ,  i£I , et tout y  ,  y  CE. ,  on ait 

E. cD(y;p(y)) , 

où 

p(y) = (p(y)....,o(y)) 

e t 

P(y) =RY(y) =in£{d(y,CF-Y)/2,1} 

(cf. (111,4.4.1)). A£O;LÓ ¿£ existe une fonction continue 

<p' Y  —*• R* , 

modérée le long de Z , telle que pour tout i  , i E I , 

sup cp(y ) S inf cp 1 (y) . 
y€h. yeb. 

Démonstration. Soit (U. ) .pl u n recouvrement localement fini de U  pa r des 

ouverts relativement compacts dans U e t posons 

K. = {xGCp : 3xf € U . d(x,xf ) < ^(x')} . 

En vertu de (111,4.4.1) , K. . cU ,  et comme I L es t compact et la fonction 

continue (111,4.4.1) , l'ensemble I C es t un compact de U  .  On en déduit qu'il 

existe des constantes A.  et M. ,  A . € R* ,  M . € R telle s que 
i i 9 i + 9 i + n 

m. 
Vy G Y fi K. cp(y ) <A /d(y,Z) J 

( 2 . 2 . 2 ) . Soi t (p . l a fonction 

cp. : Y n u . —» J K 

définie par 

M. M. 
cp (y) = 2 3 A /d(y,Z) 3 ,  pour y G Y n U , . 

(1) Le recouvrement (U.).^ T es t localement fini sur U  e t non pas dans C 
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La fonction cp. es t continue, modérée le long de z nu. 
3 

((2.1) et (1.2.2),(vii)). 

Soit (U!) i e j 
un recouvrement ouvert de U  te l que pour tout 3 , J£J > 

U! cU. 
3 3 

, En vertu de (1.3.4), il existe une fonction continue 

cp' : Y )m 

9 

modérée le long de Z  ,  telle que pour tout j  , j G J ,  et tout y  , y € Y n Uj , 

<P,(y) ^ c p ' ( y ) 

Soient i  , i £ I , et y  et y' deu x points de E ^ .  Il existe j  , j €J , tel que 

y' G Uj , ce qui implique que 

(2.2.3.1) c p j t y 1 ) ^ c p ' ( y ' ) . 

Or, 1Thypothèse 

Eic=D(y
î;p(y')) 

implique que 

(2.2.3.2) d(y,yf) SRyCy') =inf{Ru(y'),d(y
t,Z)/2} 

(cf.(2.0.1)) et en particulier y e K . On en déduit que 

(2.2.3.3) 
M. 

cp(y) SA./d(y,Z) 3 

D'autre part, on a 

d(y',Z) Sd(y,y') +d(y,Z) 

et l'inégalité (2.2.3.2) implique que 

d(y,Z) >d(y',Z)/2 

(inégalité vraie même si Z= 0 (cf.2.0)) , d'où 

(2.2.3.4) A /d(y,Z) ï M 3 Ú 2 
Mj 
2 J A./d(y',Z)MJ =  cp (y') . 

Alors il résulte de (2.2.3.1), (2.2.3.3) et (2.2.3.4) que 

cp(y) < c p ' ( y ' ) , 

ce qui démontre la proposition. 
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APPENDICE II 

THEOREME DE PRIVILEGE NUMERIQUE 

UNIFORME POUR UN MORPHISME 

DE MODULES COHERENTS 

Dans cet appendice, on généralise le résultat principal de ce travail aux mor-

phismes de modules cohérents. Au § 1, on expose quelques compléments sur les pro-

priétés algébriques des scissions. Au §2, on définit les notions nécessaires à la 

généralisation du théorème principal. En particulier, on définit la notion de 

polycylindre privilégié. Notre définition n!est pas la même que celle de Douady, 

qui a introduit cette notion dans [7], mais elle est équivalente (voir [48]). 

Dans le §3, on démontre le théorème de privilège numérique uniforme pour un mor-

phisme de modules cohérents. On remarquera que le théorème d'existence de polycy-

lindres privilégiés de Douady en résulte. On obtient ainsi une autre démonstration 

de ce théorème en utilisant des théorèmes de division au lieu d'utiliser le 

théorème de platitude et privilège. Au §4, on démontre une variante du théorème 

principal, variante qui ne fait pas intervenir de stratifications. 
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§1.- Compléments sur les scissions. 

PROPOSITION 1.1- Soient A  un anneau commutatii, M , M' et M" deA A-modules, 

v : M1 • M , u : M- • M1 et a ' :M- M1 de¿ application A-linéaiAeA. On 

AuppoAe que. la AuiXe 

M' 
v 
* M • u M" 0 

eAt un<¿ AuiXe exacte et quo, a' eAt une. AciAAion de. v .  Au) su il existe une. 

A-AcisAion unique, a  de, u ^  telle que. 

a o u = id̂ j - v o a1 

Démonstration. L'application u  étan t surjective l'unicité de a es t évidente. 

Pour démontrer l'existence on remarque qu'en vertu de (111,1.2) , 

Ker(id^j - va') = Im(v) , 

et comme 

Im(v) = Ker(u) , 

l'application id^-va ' s e "factorise à travers u  " , autrement dit il existe 

une application A-linéaire a  tell e que 

a o u = idjvI - va ' 

ce qui implique que 

U o Q o u = U- Uo V o a' =u 

et démontrer la proposition. 

LENJME 1.2.- Soient A un anneau commutati^, M, M', N et N ' deA A-modules, 

u : M' M ,  v : N' N , w : N - M ,  w' : N' M' , A :M- N et 

u : N N' deA application* A-linéaiAeA. On AuppoAe que le diagnarwie 

N' 

w' 

M' 

v 

u 

N 

w 

M 

eAt commutatifi et Von poAe 

o = W'UÀ . 

MOKA on a : 

i) ¿i X et u  ¿ont deA A-AciSAionA de w  et v respectivement et. Ai 

(1) qui en est une section puisque u  es t surjective. 
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a) Im(u) dm(w) 

b) Im(v) = w~1(Im(u)) , 

V apptication o eMt une. A-¿c¿i>¿¿on de. u  et 

(i^j - ua) o w = w o (idN - vu) ; 

ii) ¿>í w et v  bout deA A-ocÁJ>¿iono de. A  et u ie¿pe.ctíveme.nt et oí 

c) Ker(u)c:Im(A) , 

V application u eJ>t une. A-òcAj>òJjon de. a  . 

Démonstration. Démontrons l'assertion (i) . L'application À  étan t une A-scission 

de w  ,  l'hypothèse (a) implique que 

(1.2.1) wAu = u . 

En particulier, 

Im(Au) cw" (Im(u)) 

et en vertu de l'hypothèse (b), 

Im(Au) clm(v) . 

L'application u  étan t une A-scission de v  o n en déduit que 

(1.2.2) vuAu = Au . 

Alors il résulte de (1.2.1) et (1.2.2) que 

ucu = uw'uAu = wvuAu = wAu = u , 

ce qui démontre que a  es t une A-scission de u  .  D'autre part, on a 

(id̂ j - ua)w = w - uw'uAw = wAw - wvuAw = w(idj. - vu)Aw . 

Or, l'hypothèse (b) implique que 

Ker(w) clm(v) 

et en vertu de (111,1.2) on a 

Im(idN - Aw) cKer (idN - vu) , 

d'où 

(idN-vu)(idN- Aw) = 0 , 

autrement dit 

(idN-vu)Aw = idN-vu . 

On en déduit que 
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(id̂ j - ua)w = w(idN - vu) , 

ce qui démontre l'assertion (i) . Pour démontrer l'assertion (ii) , on remarque que 

si w  et v son t des A-scissions de A  et M respectivement , l'hypothèse (c) 

implique, en vertu de (111,1.2), que 

ImCic^ - vu) Ke r (idĵ  - Aw) . 

On en déduit que 

(idN - Aw) (iĉ  - vu) = 0 , 

d'où 

Awvu = Aw+vp - id̂  

On a donc 

oua = W'MAUW'MA = w'uAwvuA = w'u(Aw + vu - idN) A = 

= w'uAwA + w'uvuA -w'uA =W'MA = a , 

ce qui démontre le lemme. 

PROPOSITION 1.3'.- Soient A un anneau commutati^, M , M', N, N' et N" doA 

A-modules, u : M' M , v' : N' • N , v" : N" - N , w : N M et 

w» : N' - M' dej> appLication* A-linéaires, p ' :N'@N" N' la première, pro­

jection, p " : N' QN" —> N" la deuxième, projection, v  : N' @N" —• N Vapplication 

définie par 

v = v'p' + v"p" , 

x une A-6cii>Aion de. v" et u  une. A-&cÂj>&ion de. v .On buppo&e. que. le. diagram­

me. 

N' 

w' 

M' 

0 

v' 

u 

N" 

v" 

> N 

w 

M 

0 

eAt un diagramme, commutait^ dont le* colonnes tant deM butter exactes. Si Von 

désigne, par A  l'unique. A-AciàAion de. w  telle que. 

Aw = idN - VMT 
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(cf. proposition (1.1)) et òi Von poòc 

o = w'p'uÀ , 

on a : 

i) Vapplication o est un e A-ocÂA&ion de u  ; 

ii) (ià^-ua) ow = wo (idN-v|j) ; 

iii) òi les òcÀAòionò i et u d e v " et v /teopect̂ cuemeia t hont nonmatcò et 

Ker M c Ker T , 

alons a  eót une A-òcisòion normale d e u  . 

Démonstration. On a 

wv=wv'p' + wv"p" = wv'p' = uw'p' 

autrement dit, le diagramme 

N' ©N" 

w'p' 

M' • 

v 

u 

• N 

w 

M 

est commutatif. Dfautre part, 

Ker(w) = Im(v")clm(v) 

et comme l'application w'p 1 es t surjective on en déduit que 

Im(v) = w" (Im(u)) . 

De même, l'application w  étan t surjective on a 

Im(u)czlm(w) . 

Les assertions (i) et (ii) résultent donc du lemme (1.2) , (i). Sous les hypothèses 

de l'assertion (iii) , on a 

Ker(i) = Im(idN-v"T) 

(111,1.2) et comme 

idN~V"T = ÀW ' 

on a 

Ker(T) = Im(X) 

(car w  es t surjective). On en déduit que 

Ker(u)<=Im(A) 

et l'assertion (iii) résulte du lemme (1.2) , (ii) . 
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§2.- Polycylindres privilégiés 

(2.1). Soient p  u n entier, p  € IN ,  U  u n ouvert de (C p , K  u n polycylindre 

compact de (C p conten u dans U  e t 

£ : M' — » M 

un morphisme de (^-module s cohérents. On désigne par B(K;£ ) l'applicatio n 

C-linéaire T(K,£ ) 0 idßQQ 

B(K;£) : W) ^) : W) ^) : W) ^ BCK) F(K,M) xT(K,OU) B(K) . 

(On remarque que s'il existe des entiers m  et m' tel s que M=Om et 
M=Om'U 

alors TK;£) : W) ^) : W) ^) s'identifie à B(K) m r ( K > r ) 8 r ( K , a / ( K ) à 

B(K)m , et dans ce cas la définition ci-dessus coïncide avec celle du chapitre 0). 

Si M " désign e un Ön-module cohérent et 

f1 : M" »M1 

un morphisme de (^-modules, on a 

B(K;fof) = B(K;f) oB(K;f«) . 

Le compact K  étan t un compact de Stein, si f  es t un épimorphisme, r(K;f) 

l'est également, donc B(K;f ) auss i (exactitude à droite du produit tensoriel). 

En particulier, pour tout épimorphisme 

n : 
m 
U M - 0 

on en déduit un épimorphisme 

B(K;n) : B(K)m T(K,M) 0 (K,Ou) )B(K) . 

On désigne par B  (K;M) l e (C-espace vectoriel T(K,M) 0 (k,Ou .BCK) , muni de la 

semi-norme + n;k 
définie par 

s 'n;K 
inf 

t€B(K)m 
l|t||K , 

B(K;n)(t)=s 

la norme \\»\\ v su r B(K) m étan t celle définie au chapitre 0. (On remarque que 

si M  = Oy e t n = id^m ,  alors B ^ (K;0y ) n'es t autre que B(K ) muni  de 

Ou 

la norme \\*\\ K )• La topologie définie par la semi-norme I I . Il „  su r B  (K;M) 

est la topologie quotient définie par 1'épimorphisme B(K;n ) 

Si 

nf : U™' — • M' — * 0 
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désigne un autre épimorphisme et L(B , (K;M'); B (K;M)) l'espac e vectoriel des 

applications C-linéaires continues de B ,(K;M') dan s B  (K;M) , on note 
||. ||n;n';k la semi-norme sur L(B ,(K;M'); B (K;M)) déduit e des semi-normes 

||. ||n;n';k et ||. ||n;n';k sur B (K;M) et B.KiM1) respectivement .(Si M = cfj et 

n = id (resp. si M' = 0U et n ' = id m, ) la semi-norme l l - I L . ^ » . ^ es t no-
.-«m u  •sin Ujn 

tée plus simplement ll-lln'jic 
(resp. ||.|ln;K)). Pour toute application C-linéaire 

continue 

X : B f(K;Mf) —> B (K;Mf) 

on a 

(2.1.1) llxlln;n';K=llÀoB^^^ln;K 

(C'est un résultat général sur les semi-normes quotient, facile à vérifier). 

En particulier, on a 

(2.1.2) ||B(K;n)||n;K= HidB (K;M)lln;Ti;K * 1 • 

(En fait, l|idB fK;M) H n ; n ; K = 1 > sauf si la semi-norme 
||. ||n;n';k 

est identique-

ment nulle dans quel cas ldBn(K;M) n;n;K = o ) . 

(2.2) Soient p un entier, p € N ,  U un ouvert de G? et K un polycylindre 

compact de DP contenu dans U  . 

LEMME 2.2.1.- Soient m et m' des entiers, m  e K ,  m'e IN , 

f : Mf —*M 

un morpkisme de. 0 ̂ -modules cohérents et 

n : tf" — » M —> 0 

ET 

n' : 0™'—> M' — - 0 

des épÂjnorpkismes. klons Vapplication 

B(K;f) : B,(K;H») — B^(K;M ) 

eót; cine application fc-linéaire continue. 

Démonstration. Soit U ' un ouvert de Stein contenu dans U  et contenant K  . 

Alors il existe un morphisme de OU'-modules 

.,m ' ̂ m 

tel que le diagramme 
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Om' 

h ' | U ' 

M' |Uf 

g 

flU' 

Om' 

n | u ' 

• M|U' 

soit commutâtif. On en déduit que le diagramme 

m' 
B(K) 

B(K;riT) 

В ,(K;M') 

B(k;g) 

B(K;f) 

B(K)m 

B(K;n) 

Bn(K;M) 

est également commutatif. Or, l'application B(K;g ) est continue (cf. chapitre 0) 

et la topologie définie sur B^f(K;M') (resp . sur Bf)(K;M) ) par la semi-norme 

l l ' l l n f . K (resp . Il - 1 1 n - K  ̂est la t0P°l°gie Quotient définie par la surjection 

B(K;n'j (resp . B(K;n) )' (cf. (2.1)) . On en déduit que l'application B(K;f ) 

est continue. 

PROPOSITION 2.2.2,- Soit M  un 0 .-module. cohérent. Il e.xtbte. une, topologie, unique. 
T бил Г (К,M) @Г(К ф jB(K) telle, que. роил tout ouvext U ' de. Cp contem. dans 

U e £ contenant К , -£ou£ еп£сел m , m G Isf , et -tout épimorpkiòme. de. 

0ц-modules 

Ç —  M| U —. о , 
T 40Xx t £a topologie, définie, pan. la semi-nonme, I I . Il „  . En plus, T muni 

Г(К,М) ®г^к ̂  ^B(K) d'un e stnacture, d'espace. ve.ctosU.el. topologique., dont le. séparé 

алло dé. est un espace, de. Banack. 

Démonstration. L'existence de T résult e du lemme (2.2.1) appliqué à M' = M et 

f = id̂  .  L'unicité est évidente. La topologie T étan t définie par une semi-nor-

me, elle est compatible avec la structure de (C-espace vectoriel, et l'espace sépa-

ré associé étant muni de la topologie quotient, par transitivité des topologies 

quotient et conformément à (2.1), il est un quotient séparé d'un espace de Banach, 

donc lui-même un espace de Banach. 

DEFINITION 2.2.3.- Soit M  un O^-module. cokére.nt. On désigne, рал. B(K;M) Г espace, 
vectoriel topologique, dont V espace ve.ctosU.eJt sous-jacent est Г (К,M) ^ ^В(К) 
et dont la topologie. eJbt Vunique, topologie, T satib faisant aux conditions de. 
la proposition (2.2.2) . 
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Remarque 2.2.4.- Soient M  et M' des (̂ -modules cohérents et £  : M' — *M u n 

morphisme de (XT-modules. Il résulte aussitôt du lemme (2.2.1) que l'application 

B(K;£) : B(K;M') —> B(K;M ) 

est une application (C-linéaire continue. Si M" désigne un (̂ -module cohérent 

et g  : M *  M" un morphisme de (̂ .-module s tel que la suite 

M' f. M M" о 

soit une suite exacte, le compact K  étan t un compact de Stein, on en déduit 

une suite exacte 

r(K,M') R (K>f)> roc,M) rCK?g) > r(K,MN) » 0 , 

d'où une suite exacte 

B(K;M') BCK;f) * B(K;M) B(K^> B(K;MM) •  O0 

(exactitude à droite du produit tensoriel). Si U' désign e un ouvert de G? tel 

que KcU'c U e t 

n :OnU' —> M|U ' —* 0 

un épimorphisme, le morphisme (g|U' ) o n es t également un épimorphisme et B(K;M ) 

(resp. B(K;M" ) ) est l'espace vectoriel topologique sous-jacent à l'espace 

semi-normé B  (K;M) (resp . Br ,m (K;M" ) ). 
n r (g|U)°n 

En vertu de la transitivité des topologies quotients et de (2.1), on en déduit que 

la topologie de B(K;M" ) es t la topologie quotient définie par la surjection 

B(K;g) . En revanche, la topologie sur Im(B(K;£) ) induit e par celle de B(K;M) 

n'est pas en général la topologie quotient définie par la surjection 

B(K;f) : B(K;M') —> Im(B(K;f) ) . 

DEFINITION 2.2.5.- Soît M  un Q^-modulo, cohérent. On cUt que K  est psUvllégié 

pour M  *i l'espace vectoriel topologique B(K;M ) est réparé. 

REMARQUE 2.2.6.- Un quotient séparé d'un espace de Banach étant un espace de 

Banach, pour que K soi t privilégié pour M  ,  il faut et il suffit que B(K;M) 

soit un espace de Banach. Si 

n :0™ — M 

désigne un épimorphisme de C)TT-modules et si W désign e le noyau de n alor s K 

est privilégié pour M  s i et seulement si ^ es t un sous-espace fermé de 

B(K) .En effet, il existe un ouvert U ' de U ,  contenant K  ,  et un épimorphisme 

(1) Pour la définition de W s e reporter au chapitre 0. 
K 
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o g , — • W|U ' 

On en déduit une suite exacte 

O(U)n > O(U)m B(K>n)> M|U — B(K>n) 

où Im(f ) = W|Uf ,  dfoù une suite exacte 

B(K)n B(K?f ) > B(K)m B(K>n) > B(K;M) —---- 0 

(cf. (2.2.4)). On a donc 

Ker(B(K;n)) = Im(B(K;f)) = WR 

(cf. chapitre 0). La topologie sur B(K;M ) étan t la topologie quotient définie 

par la surjection B(K;n ) (cf . (2.1)), on en déduit que B(K;M ) es t séparé si 

et seulement si NK  es t fermé dans B(K) m . 
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§3.- Théorème de privilège numérique uniforme pour un morphisme. 

LEMME 3.1.- Soient p  et n des entiers, ^ une relation d'ordre total sur 

3Sp+n ,  compatible avec sa structure de monoZde, moins fine que la relation d'or­

dre produit < sur ]Np+ n ,  privilégiant le sous-monoZde fP de Kp+ n <a , 

la relation d'ordre induite par < sur LtP , U un ouvert de (Cp , X un 

sous-espace analytique {erme irréductible de U , Z un fermé analytique de X 

distinct de X , Y V ouvert dense de X défini par Y = X-Z ,  (U^€I un 

recouvrement de U {orme par des ouverte de (Cp contenus dans U , M un 

sous-Oy-module cohérent de ,  Cmi)jLeI u-ne famille d'entiers , nue W , 

(fj^çj une Camille de morphismes de 0^ -modules 

m-
£ i : 0 ц . 1 

1 
°iï. • 

1 
On suppose que pour tout i  , i e I , 

Im(f.) = M|U. 

et que 

S vc Z . 

Alors pour toute {onction continue 

cp : Y —* [1,+œ [ , 

modérée le long de Z , il existe des {onctions continues 

^1 : Y —» R* ,  *2 : Y—-> R* 

modérées le long de Z ,  telles que pour tout polycylindre compact de Cp pointé 

dans Y , (K,y) , suffisamment effilé pour û , , modérément le long de Z , 

satisfaisant à la condition 

e(K;y) <cp(y) 

-c£. existe i  , i € I ,  £e£ Que : 

i ) KczU. ; 

ii) il existe une scission linéaire continue normale a de B(K;f^) 
n m -

a : B(K) —• B(K) 1 

£e££e que : 

a) ||a||K 2 i ^ C yW °CK;y) , 

où 

do = sup(u(M ) ) 
' ' gen 
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TT désignant la ph.mio.Ko, projection 

H id n- BCK;^H id n- BCK0|^ 

(̂a bo/me iupé>u.m/LZ étant lelattvt à la fielatton d'ofidxz piodwùt < 6uA ) ; 

b) H id n- BCK;^) o0|^^2(y) ; 
B(K) 

c) Ker(a) 
n 
n 
j=1 

Ba_CK) , 

où poux, tout j  , 1  û j S n , 

A. 
3 

{delP : (d,e.) £ P .y.y > J a,M,Xge n 

et ê ,...,e n désigne, la "base," canonique, de, Nn 

Démonstration. L'espace U  étan t paracompact, on peut supposer, quitte à remplacer 

le recouvrement CUi)i€ I pa r un recouvrement plus fin, que la famille (U^^j 

est localement finie (dans U  ). Posons 

I1 = {i€l : U. flX * 0} 

et 

A = {a€]Rp : 3d, d'€]Np , d < ,d' et a=d'-d} . 

En remarquant que pour tout i  , i £ 11 , 

P ^ lui;«nVgen Pa;M;Xgen > 

^ M i u ^ c x n u . ) ^ = M -Ai-Y 
a M X 

gen et 

^MlU^xnih " Sa;M;XnUi ' 

il résulte du théorème (IV,4.3.1) (cf. (III,6.2.1)) que pour tout i , i€lf , il 

existe un ensemble fini J - ,  une famille (a-J-^ , d'élément s de A , une 

famille frp.-).cT d e fonctions continues 

<p. . : Y nu. • R* , 
il i  +  ' 

modérées le long de ZDU. ,  et des fonctions continues 

: Y OU. —> R* , f , : YOU. * ]R* , 
ri1 i  +  ' ri2 i  +  ' 

modérées le long de ZnU^ tel s que pour tout point y  de YnU^ e t tout poly-

cylindre compact K  de <CP , tel que y € K ,  les conditions 
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e(K;y) <<p(y) 

et 

B(K)n-B(K;£i)oöllK^i2W lK^i2W 2W lK^i2 

impliquent que 

i) KcU . ; 

ii) il existe une scission C-linéaire continue normale a  d e B(K;f^ ) tell e 

que : d 
a) ||a||K £ i^Cyi/p" °(K;y) ; 

b) l|idB(K)n-B(K;£i)oöllK^i2W ï 

c) Ker(a; 
n 
n 

3=1 

Ba (K) . 

Le point crucial pour la suite est de remarquer, en suivant la démonstration du 

théorème (IV,4.3.1), ainsi que celles des énoncés qui y conduisent, que la famille 

(a..).̂ .T n e dépend que de l'ensemble M  .... . rvr.TT . e t de la relation 
ij j€J. a;MlUi^XnUi)gen 

d'ordre ^  .  L'ensemble M  ,/lT Î rvnTÎ . étan t indépendant de i  ,  i€I' , a aiMlU^CXniL) ^ 

on peut donc supposer qu'il existe un ensemble fini J  e t une famille (a.).C T 

d'éléments de A tel s que pour tout i  , i€l f ,  J^=J e t pour tout j  , 

j G J ,  â j = a_. .Or , U étan t paracompact, il existe un recouvrement ouvert 

(Up^çj d e U te l que pour tout i  , i€I , Û ^ U^ .E n remarquant que 

(IL nX) p̂ e t n-^iç i i son t des recouvrements ouverts localement finis de 

X e t que pour tout i  , i€I' , ÏÏpTXclLnX  ,  il résulte de (App . I, 1.3.4) 

qu'il existe une famille ̂ j€ J ^e f°nc1:îons continues 

cp. : Y >  R* , 

modérées le long de Z  ,  et des fonctions continues 

ip1 : Y —> R * e t :  Y —• R * 

modérées le long de Z  ,  telles que pour tout i  , i G I' , tout j  , j G J , et 

tout point y  de Y  D U| ,  on ait 

tPiiCy) ̂ cp- (y) 

^ (y ) ^ ( y) 

et 

*i2(y)Stf2(y) . 
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Alors pour tout point y  de Y et tout polycylindre compact K  de CP , tel que 
o 

yçK , satisfaisant à 
е(К;у) <ф(у) 

et 

e(K;y) <ф(e(K;y) <ф(у)у) 

il existe i  , i G 11 , tel que y € Y n U j ,  ce qui implique que 

e(K;y) <ф(e(K;y) <ф(у)у)< 

On en déduit que le polycylindre compact pointé (K,y ) satisfait aux conditions 

(i) et (ii), (a), (b), (c) du lemme, ce qui démontre le lemme (cf. (111,6.2.1)). 

PROPOSITION 3.2.- Soient p , n, n' des entiers, p 6 H , n 6 N ,n »6N ,  <f 

(resp. <  ,, ) une relation d'ordre total sur JNp+ n (resp . sur lSp+ n )  , 
a 

compatible avec sa structure de monoZde, moins fine que la relation d'ordre pro­

duit. < sur ]Np+ n (resp . sur ) , p>UvÂJL£gÂjant Iz tiOuA-monolde. lP 

de lP+n (resp . de. Np+n )  , U un ouvert de X  un sous-espace ana­

lytique fermé, Irréductible de U  ,  Z un fermé analytique de X  distinct de 

X , Y  l'ouvert dense de X  défini par Y  = X - Z . 

f : N' —> W 

un morphisme de 0„-modules cohérents, 

n: Oun N' 
et 

л : Ou N 

des épimorphlsmes de 0^-modules. On suppose que les relations d'ordre ^ f et 

< Induisent la même relation d'ordre < sur FP et que 
a a 

Sa";M';XUSa';M;Xu Sa';M";XcZ ' 

où 

M» = Ker(n') , M = Ker(n) et M " = rf1(Im(f)) . 

Alors pour toute fonction continue 

Ф : Y —• [1 ,+oo[ , 

modérée le long de Z  ,11 existe des fonctions continues 

ф : y —* ,  ф : Y — R * , 

modérées le long de Z  ,  telles que pour tout polycylindre compact de C P pointé 
dans Y ,  (K;y ) , suffisamment effilé pour й , modérément le long de Z  , 

310 



PRIVILÈGE NUMÉRIQUE UNIFORME POUR UN MORPHISME 

satisfaisant à 

e(K;y) <cp(y) 

on ait : 

i) Kc U ; 

ii) K  est privilégié pour N et N1 ; 

iii) ¿1 existe une scission ^-linéaire continue normale o de B(K;f ) 

a : B(K;W) —• B(K;M 1 ) 

telle que : 
d 

a) l|a||nt;n;K S ^Cyi/p" °(K;y) , 

où 

d0-sup(T(Mo,;J,. ;X ) ) 

TT désignant la première projection 

<ф(у)у)up(T(Mo,;J,. ;X )) 

(£a bobine supérieure étant relative à la relation d'ordre produit ^ sur W ) ; 

b) ||idB(K;NrBCK;f)o0 lln;n;KM2(y) • 

Démonstration. Il existe un recouvrement ouvert WPiei d e U form é par des 

ouverts de Stein de U ,  une famille ̂ mî i£ l d'entiers , nu G ]N , et une famille 

^i^iGI d'épimorphism e s de -module s 

No 
mi 

1 
m|ua . 

En composant n - ave c l'injection canonique 

Np 
<ф(у)1 9ON 

on en déduit un morphisme de -module s 

m. 
U. 
i 

on 
. 

D'autre part,1'ouvert I L étan t de Stein et n|lL un épimorphisme, il existe un 

morphisme 

f. 
i U. 

iU. 
i 

U. 
i1 tel que 

(nlup of. = (f|U±) o (n ' iup . 
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On en déduit un diagramme commutâtif 

U. 
i 

n'IUi 

U. 
iU. 
i 

0 

fi 

f|U. 

m. 

1 

8i 

ft 
U. 
i 

N|u\ 

0 

dont les colonnes sont exactes. Soient 

pi 

U. 
i 

m. 

i 

U. 
i 

(resp. pV 
4J. 1 

m. 

i 

m. 
U. 
i 

la première (resp . la deuxième ) projection et 

h. : 
i 

i 

m-

i 

U. 
i 

le morphisme de -module s défini par 
i 

h. = f .p! + g.p" . 
i i* i 6i F 

On remarque que pour tout i  , i € I , on a 

Im(gi) = e t ImOi ^ = M"|lL . 

En vertu de (3.1) et de (IV,4.3.2),il existe des fonctions continues 

ty\ : Y —• R* ,  *  :  Y— R * ,  r2 : Y —* R* , 

modérées le long de Z  ,  telles que pour tout polycylindre compact de C P point é 

dans Y  ,  (K,y ) ,  suffisamment effilé pour û ,  modérément le long de Z  , 

satisfaisant à 

e(K;y) <cp(y) 

il existe i , i € I , tel que 

i) KcU. ; 

ii) il existe une scission C-linéaire continue, normale M  d e B(K;hi ) tell e 
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que a) ||u||K < ^(y)/p"d°(K;y) ; 

b) I id - B(K;h. ) oM I 
B(K) 1 

lK s *2(y) ; 

c) Ker(u) = 
n 
n 
j=1 

Ba (K ) , 

où pour tout j  , 1   ̂j £ n , 

A =  idetP: (d, e ) ?Pa,;M.,;X } 
gen 

et e^,.. . ,en désign e la "base" canonique de K1 1 ; 

iii) il existe une scission (C-linéaire continue, normale x  d e B(K;g^ ) 

telle que 

a) id - B(K;g ) oT| 
B(IOn 1 

U.- B(K;g ) 

b) Ker(x) = 
n 
n 
j=1 

BAI(K) , 

j 

où pour tout j  , 1 £ j  ̂n , 

A! - W e n " : (d,e.) ^po, Mx }  ; 
gen 

nf 
iv) M £ es t un facteur direct (topologique) de B(K) 

On remarque que M' étan t un facteur direct de B(K ) ,  es t un sous-espa-
n1 

ce vectoriel fermé de B(K ) ,  donc K  es t privilégié pour A/ ' (cf. (2.2.6)). 

De même, il résulte de (iii) que Im(B(K;g^) ) es t un facteur direct (topologique) 

de B(K) n , et comme 
Im(B(K;gi)) = MK 

(cf. chapitre 0), on en déduit que K es t privilégié pour N ,  ce qui démontre 

l'assertion (ii ) de la proposition. 

D'autre part, en vertu de (2.2.4), le diagramme 
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B(K)nî 

B(K;nf) 

B(K;W) -

0 

B(K;fV) 

B(K;f) 

B(K)mi 

B(K;gi) 

+ B(K)n 

B(K;n) 

B(K;N) 

0 

est un diagramme commutatif dont les colonnes sont exactes. En plus, B(K;p! ) 

(resp. B(K;pV) ) n'est autre que la première (resp. deuxième) projection 

B(K)nt 0 B(K)mi »  B(K)nt 

n ? m  • m . 
(resp. B(K ) 0  B(K) 1 *  B(K) 1 ) 

et 

BCK;^) = BCK; )̂ o B(K;p|) +B(K;gji) o B(K;pV) . 

D'autre part, comme 

MczM" , 

on a 

' ge n '  '  gen 

ce qui implique que pour tout j  , 1   ̂j n̂ , 

A.cAÏ , 
J 3 

et en vertu des conditions (ii), (c) et (iii), (b) ci-dessus, on a 

Ker(u)cKer(x) . 

Alors il résulte de la proposition (1.3) que si l'on désigne par A l'uniqu e 

(C-scission de B(K;n ) tell e que 

(3.2.1) ÀoB(K;n) = id -B(K;g) o T 
B(K) 1 

(cf. (1.1)) et si l'on pose 

o = B(K;n») oB(K;p|) o UÀ , 
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a es t une scission C-linéaire normale de B(K;f ) et 

(3.2.2) (icW*n -BCK;£)a) °B(K;n) = B(K;n) о (id -B(K;h.)u) . 
dLK,NJ B(K ) 

L'application i d -B(K;g.) i étan t continue et la topologie de B(K;W) 
B(K) 1 

étant la topologie quotient définie par la surjection B(K;n ) (c£.(2.1)) , l'ap-

plication X est continue et en vertu de (3.2.1), de (2.1.1) et de la condition 

(iii), (a) ci-dessus, on a 

(3.2.3) 1Ип';п;К£ imin;Kimin;K .NIKimin;K 1Ип';п 

On en déduit que l'application a  est continue et comme 

1|ВСК;Л*) |]Л,;К̂  1 

(cf.(2.1.2) et 

l|B(K;p!)||K = 1 , 

on а 

1Ип';п;К£ NIKimin;K . 

et il résulte de (3.2.3) et de la condition (ii), (a) ci-dessus que 

||a|| imin;K .„ й ф-су) шУ)/Р"\К;У) . 

Si l'on pose ф1 = ф| iĵ  ' la fonction 

^ : Y —* R* 

est continue, modérée le long de Z (App . I, 1.3.1) et 

1Ип';п;К£ imin;K .NIKimin;K . 

ce qui démontre l'assertion (iii), (a) de la proposition. 

De même, il résulte de (3.2.2), (2.1.1), (2.1.2) et de la condition (ii), (b) 

ci-dessus que 

l|idB(K;W) 
B(K;f)c|| l ( i d B ( K ; M ) - B C K î f ) a ) o B C K ^ H n ; K = 

= ||B(K;n) о (id 
В(К)П 

- B ^ M l L . ^ H i d 
B(K)n 

B(K;h.)u|| < ф2(у), 

ce qui démontre la proposition. 

THÉORÈME 3.3.- Soient p , n, n' des entiers, p  e W ,  ne IN , n1 €N , ^. une 

relation d'ordre total sur JN P ,  compatible avec sa structure de monoZde, moins 

fine que la relation d'ordre produit й sur K P ,  U un ouvent de C P , 
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£ : W — * Ы 

un толр1ш>та da O^-modulas coharants, 

—Ф1 : Yi—* [1,+cot , 

et 

Ф1 : Yi—* [1,+cot , 

deà apimosiphibmas de O^-modulas. Alors II exista una stratification £-analytiqua 

(Yi)i€I d e U  e t pour tout i  , i€ l , an alamant da , tatb qua 

роил touta fonction continua 

Ф1 : Y i — * [1 ,+cot ,1Yi— 

modanaa la long da Y . - Y . , i l axÂJbtc dos fonctions continuas 

- B(K;f) оа||л;л;К< ф±2Су) .< фB(K;f) оа||л;л;КСу 

modaraas la long daB(K;f) о> tcllas qua роил tout polycylmdKc compact da (Dp 

pointa dans ,  (K,y ) ,  suffisamment affila роил. <a , modaramant la long da 
Y"i~Yi , satisfaisant à la condition 

e(K;y) <ф. (y) 

on ait : 

i) Kciu ; 

ii) К ast privilégia роил. W et W 

iii) i l axistc una scission fc-linaobia continua, nonmala a  d e B(K;£ ) 

a : B(K;W) —• B(K;W ) 

t:e££e que : 

imin;K : B(K;W) —• B(K;W) —• B(K;W 

b) 1 1 ^ В С К ; Ю - B(K;f) оа | |л;л;К< ф±2Су) . 

Démonstration. Soit <a f (resp . ^  „ ) l a relation d'ordre total < — su r 

l ^ + n (resp . sur Np+n ' )  définie dans (IV,3.0.4) et posons 

M = Ker(n) , M' =Ker(nf) e t M " = n"1 (Im(£)) . 

En vertu de (IV,4.1.2) et de (11,3.4.1), il existe une stratification (C-analytique 

( Y p ^ j tell e que pour tout i  , i€I , 

—• B—• B(K;W 
a1 \\K\X^ USa';M";Y7c V Y i 

et le théorème résulte aussitôt de la proposition 3.2. 
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Remarque 3.3.1,- On peut énoncer des corollaires de ce théorème, analogues aux 

corollaires du théorème (IV,4.4.1). On laissera le soin au lecteur de le faire et 

on se bornera d'énoncer le cas particulier où la relation d'ordre ^  es t la rela-

tion d'ordre antilexicographique et où on se limite aux polydisques : 

COROLLAIRE 3.3.2.- Soient p , n, n' des entiers, p  e K ,  n£ K , n' € IN ,  U 

un ouvert de $P , 

f : W —* W 

un morphisme de 0 ̂ -modules cohérents, 

n» 
R* 
R* 

W1 

et 
R* 

R* R* 

des éptmorphismes de 0^-modules. Alors ¿1 existe une stratification (E-analytique 

^Yi^iei ^e u ^ PouA ^oa^ i > i c i , un élément d̂  de Np , un nombre réel 

, € R+ , et des fonctions continues 

: Y. 
ri i 

• R* , :Y . + ' Yi1 i 
•*R* et ij ; • Y. + ri 2 i R* 

+ 
modérées le long de Y ^ - Ŷ  , telò que pour tout point y de et tout polydlsque 

fermé K de (Ep de centre y et de polyrayon p = (p1,...,prk) , pe (R*)p , 

£e>6 conditions 

P-, < V^i(y), p2 

R* 
y), 
y), 

y) 
y),, 

6. 

:PP-I 

Impliquent que 

i) K^U ; 

ii) K est privilégié pour N et N' ; 

iii) Il existe une scission ^-linéaire continue, normale o  de B(K;f ) telle 

que 

a) N l n ' ; n ; K ^ i i ^ d l > 

b) ilidB(K;W)" B(K;f) «g 
b) ilidB(K;W)"b) 
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§4.- Théorème de privilège numérique uniforme le long d'un "diviseur à l'infini". 

Dans ce paragraphe, on démontre une conséquence du théorème de privilège numé-

rique uniforme (3.3), utile à l'étude de la variation de la norme des scissions 

construites dans ce théorème, quand "on s'approche" d'un fermé analytique. Dans 

l'appendice III, on esquissera comment on peut appliquer ce résultat pour établir 

une théorie de cohomologie à croissance des modules cohérents. 

(4.1) On rappelle que d(.,.) désign e la distance sur déduit e de la norme 

sup. 

THEOREME 4 . 1 . 1 . - SolfLWt p , m, m1 deM e.ntleAA, p  € W ,  m € IN , m'eJN ,  U 

un ouveAt de ,  Z  un ^ejimé anaZyttque. d'AjntQ.HA.dun. vtde. da U  ,  Y Z'ouveAt 

den6e.de. U défini peut Y  = U-Z , C M ^ ^ ^ une ̂ awwX̂ e de Q^-moduleA cohen.e.nti>, 

^k'^1<k TâTi f u n e * 5 a m ' ^ e ^ e moKpkÀAmeA de, O^-moduleA cokétie.nti> 

b) ilidB(K;W)"b) ilidB(K;W)" 

eX. poux tout k  ' , 1   ̂k1  ̂m1 ,  ru , , t dej> e.ntlexi>, n , ,6ÎJ ,  6ÎJn ' e ]N , 

et 

b) ilidB nk' 
o *wk' 

et 
b) ilidB( 
K;W)" 

nk' 
0 ^k' 

dzi IpÀjnoKphÂAmeA de 0^-modulu. Mou poux toute, fonction continue. 

ip : Y b) ilidB(K;W)" 

modéKée. le. long de Z  ,  Il existe. dej> ̂ oncttotu contenue* 

(p1 : Y • b) ilidB(K;W)" b) ilidB(K;W)"b) ilidB(K;W)" 

modérées la long de Z , et une famiZla (K.). T de polydisques formas de OP 

contenus dans Y ,  £e£ó que : 

i) pour tout point y da Y on a : 

o 
a) pour tout i  , i € I ,  t:e£ qua y £ IC 

K.czD(y;(1My),...,1/cp(y))) ; 

o 
b) il existe i  ,  i € I ,  tal qua y £ e t 

D(y;(1/cp'(y),...,1/cp'(y)))c=Ki 

(et en particulier (K.)-c T ast un recouvrement de Y  ) ; 

ii) pour tout i  ,  i £ I ,  on a : 

a) pouA. tout k  ,  1   ̂k  ̂m ,  est privilégie pour M^ 
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b) poux tout k ' , 1 <kf £mf , est privilégié poux et 
Nk.:;; 

iii) poux tout i  ,  i€ I ,  et £oct£ k ' , 1  ^k' ^m' , il existe, une 

scission ^-luiéaixe continue, normale o de BOC;^, ) 

a : BUC;^,) BOCjA/^,) 

telle que 

a) ||o|| , . K 
\ " V 1 

in£ Cy ) 

b) llidB(Ki;Nk,) - B(Ki;fkJ oa | | . 
V ; V ; K i ' 

inf 
yeKi 

K»2(y) 

Démonstration. La démonstration repose uniquement sur le corollaire (3.3.2) et sur 

les résultats du §2 de l'appendice I, découlant de l'inégalité de -Lojasiewicz. 

Néanmoins, elle est longue et technique. On procédera par plusieurs réductions. 

I) On peut supposer que m=m' =1. En effet, si l'on pose 

M = 
m 
@ 
k=1 

N = 
m' 
@ 

k'=1 
Nie- b) ilidB( 

m' 
9 

k'=1 
Wk' • 

n = 
m' 
E 

k'=1 
nk' 

et n' = 
m' 
Z 

k'=1 
nk' 

et si l'on considère les morphismes de (^-modules 

f : N' •N , 

b) ilidB(K;W)" *$* 

et 

n' : < n* 

définis par 

f 
m' 

k'=1 
fk' fh 

m' 

k'=1 nk' 
et 

m' 

k'=1 
v$^^ .. 

on remarque que n e t n1 son t des épimorphismes et il résulte du cas particu-

lier du théorème ( m = m' =1) qu'i l existe des fonctions continues 

cp' : Y R* + 
b) ilidB R* + *2:Y K;W 

modérées le long de Z  , et une familleb) ilidB(K;W)"de polydisques fermés de C p , 

contenus dans Y  satisfaisan t à l'assertion (i) du théorème et tels que : 
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ii') pou r tout i  , i€l , IC es t privilégié pour M , H et N1 ; 

iii') pour tout i  , i € I , il existe une scission (C-linéaire continue, 

normale 

o' :B(K.;N) 
B(KÌ;W)B(KÌ;W) " " 

de BOCjf ) tell e que 

a') B(KÌ;W) " < inf 
y£Ki 

*j(y) 

< s 
idB(K.;N) 

B(KÌ;W) "B(KÌ;W) " 
B(KÌ;W) " inf ^2 (Y) • 

La condition (ii1) implique aussitôt l'assertion (ii) du théorème, en remarquant 

que B(Ki;M ) (resp . BflCjN ) , resp. B(IC;W') ) est somme directe topologique 

de la famille d'espaces vectoriels topologiques (BUC;^)) 1̂ k<m (resp. 

( B O C ; ^ , ) ) 1̂ k'<m' 9 
resp. ( B U C ; ^ , ) ) 1<k'<m' D'autre part, la scission 

a' es t définie par une matrice 

(ak'kM)1̂ k*âri',1̂ kM<mf ' 

où 

ok,k„ : BCK^^,,) B(Ki;wk.) 

est une application C-linéaire continue. On vérifie aussitôt que 

ak'k" nk,;nk";Ki 
< a' B(KÌ;W) " 

et que 7k'k' est une scission de B K. ;f, f i' k' ipas nécessairement normale). 

Soit k ' , 1 <k' <m' , e t posons 

a °k-k- B(Ki;fkt)akIk, . 

En vertu de CHI,1.1.1), a  est une scission C-linéaire continue, normale de 

BOCjf^) e t on a 

idB(Ki;wk,)" B(Ki;fk,)a nk,;nk,;Ki 

+ id, B(Ki;Nk,) B(Ki;fkj -r ' 
Jk'k' V ; V ; K i 

< id, 
B(KÌ;W) " B(K.;f)a'| B(KÌ;W) " < inf 

y€Ki 
*2№ , 

ce qui démontre l'assertion (iii), (b) du théorème. Enfin, si l'on pose 
B(KÌ;W) "B(KÌ;W) "B(KÌ;W) " , la fonction 
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: Y • R* 

est continue, modérée le long de Z (App.I , 1.3.2), et on a 

liai 
nk''V;Ki ' iK'k-B(Ki;£k.)ok-k- ln^,;nk,;Ki = 

^llaMln,;n;KiO + l|idBCKi.NrB(K;f) a'||n;(K;f) a'||n;Ti;idBCKi.NrB(K;f) a'||n;Ti;idBCKi.NrB(K;||, 

^llaMln,;n;KiO + l|idBCKi.NrB(K;f) a ' | | n ; T i ; K i , 

< in£ i|/'(y) (1+ inf ij;7(y))£ illf  ̂(y) , 
yGlL y€K i yGI C 1 

ce qui démontre l'assertion (iii), (a) du théorème. 

Désormais on supposera donc que m=m ' =1 e t on omettra l'indice 1 en posant 

M = IVL , £ = f̂  et ainsi de suite. 

II) Il suffit de démontrer le théorème localement sur U .  En effet, soit 

(U.).CT u n recouvrement localement fini (su r U ) de U , par des ouverts rela-
3 3tJ 

tivement compacts dans U , satisfaisant au théorème. Soit 

cp. : Y OU. —*R* 
J 3 + 

la fonction définie par 

cp (y) = sup{cp(y), 1/R (y)} = sup{cp(y),2/d(y,Cp-U ),1> 
3 3 J 

(cf. (111,4.4.1)). En vertu de (111,4.4.1) et (App.I, 1.2.1, 1.3.3), la fonction 

cp.. es t continue, modérée le long de Z n Û  .  Alors par hypothèse, pour tout j  , 

j G J , il existe des fonctions continues 

cp! :YnUj — R * , ^ : Ynu. — R* , ^. : Y n U j — R * , 

modérées le long de Z n Û  , et une famille (ViGl . 
3 

de polydisques fermés de 

CP , contenus dans Y n U. ,  tels que : 

ij) pour tout point y  de YnUj o n a : 

a.) pour tout i  , i G I. ,  tel que y G IC 

Kic=D(y;(1/cp (y),...,1/cp,(y))) ; 

o 
bj) il existe i  , i € I ̂- , tel que yGlC et 
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D(y;(1/cpïCy),...,1/cpî(y)))cKi ; 

iij) pour tout i  , i € Ij , es t privilégié pour M , W et W1 ; 

iii.) pour tout i  , i  € I. , il existe une scission (C-linéaire continue, 

normale a  d e B(K;f ) 

a : B(K;M —>B(K;Nf) 

telle que 

idBCKi.NrB(K;f) a'||n;Ti; inf ^j(y) ; 

V llWBff.;W)-B«ii«0lln;T,;KiS 
inf ¥2j.(y) • 

Soit (U'.).ç j un recouvrement ouvert de U  te l que pour tout j  , j €J , 

U! <=U. e t nosons 

e. = d(Uï, Cp-U.) . 

On a e . € R* ,  car U . étan t relativement compact dans U  , U ! es t compact. 

On pose 

Vj = {y€(Ep : d(y,Uj) < £j/2} . 

L'ensemble V . es t une partie ouverte de U . e t on a U î cV. e t V.cU . 
3 F 3 3 3 3 3 Soit 

Iï = {i€ I. : K. DUÏ t 0 } 
3 3 i  3 

et démontrons que pour tout i  , i€l ï ,  L c V . . 

En effet, Uj étan t ouvert il existe y  te l que y€U j flIO , et en vertu de 

(ij), (a.) , on a 

KiCD(y;(1/cp (y),...,1/cp.(y))) , 

ce qui implique que pour tout y ' , y' € , 

d(y,y') <d(y,(CP-U,)/2 < e /2 

(car y€u\! ) . On en déduit que yîeV j > dfoù Kic^ j *  En vertu de CApp. 

1.3.4), il existe des fonctions continues 

<p. :Y—*R* ,  !p1 : Y —* R * ,  ̂:  Y—* R̂  , 

modérées le long de Z ,  telles que pour tout j , j e J ,  et tout y , y € Y n Vj, 

on ait 

322 



PRIVILÈGE NUMÉRIQUE UNIFORME POUR UN MORPHISME 

<pj(y) Stp'CyD , ^ ( y) ^ ( y) e t ^2j(y)^2(y ) . 

Enfin,posons 

I : U 
j€J 

Ii 
3 

(en supposant pour simplifier que la famille (I!) . T est formée d'ensembles deux 
J 3tJ 

à deux disjoints) et considérons la famille de polydisques (Kpie j •  Porrne pour 

tout j , j e J , et tout y , y e Y n IL o n a 

Cp(y) û CPj (y) , 

l'assertion (i), (a) du théorème résulte aussitôt des conditions (ij)> (aj) • Pour 

démontrer l'assertion (i), (b), on remarque que pour tout point y  de Y il 

existe j  , j €J ,  tel que y€U! ,  et en vertu de (i.) , (b.) , il existe i  , 
o J J J 

i e I. , tel que y € K. et 
D(y;(1Ap!(y) , . . . , 1 / ^ ) ) )̂  . 

Comme idBCKi.;Ti;y£U! , on aidBCKi.NrB(K;f) , donc i  € I j , d'où i£ I ,  et comme U j cV. , 

on a 

(pj Cy)  ̂cp' (y) , 

ce qui démontre l'assertion (i), (b), du théorème. L'assertion (ii) résulte aussi-

tôt des conditions (iij) • Enfin, pour démontrer l'assertion (iii), on remarque 

que pour tout i  , i  € I ,  il existe j  , j € J ,  tel que i  € Ij , et que la 

condition (iiij) entraine l'existence d'une scission (C-linéaire continue, normale 

o d e B(K^;f ) , satisfaisant aux inégalités (iiî .), (â ) et (iii^), (b-j). 0r> on 

a démontré que pour tout i  , i  G 11 , on a K̂ cV. . >  ce °iu^ implique que 

inf \\j..(y3< in f ^ ( y ) e t in f }j>7 .(y)  ̂inf i|;?(y) , 
yeio ^ y€K. yeic ^ yeK± 

et démontre l'assertion (iii) du théorème. 

III) On peut supposer que m = 0 e t m ' = 1 (autremen t dit on peut "oublier" 

M )  . En effet, en vertu de la réduction (II), on peut supposer qu'il existe un 

entier n " et un épimorphisme de (X.-module s 

n" : 
$* 
$* 

M . 

Si l'on pose n 2 = n̂  = n" ,  W2 = =  M , n2 = n2 = n" e t f 2 = id̂  o n remarque 

qu'il suffit de démontrer le théorème pour m  = 0 e t m ' = 2 e t en raisonnant com-

me dans la réduction (I), on se ramène au cas m = 0 e t m ' = 1 

IV) Dans les inégalités (iii), (a), et (iii), (b) du théorème, on peut remplacer 

les bornes inférieures par des bornes supérieures. En effet, supposons qu'on ait 
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démontré la forme la plus faible du théorème (majorations par des bornes supé-

rieures) , et considérons la fonction 

<pj : Y — R * , 

définie par 

<pj(y) ={sup cp(y), VRyCy}} 

(cf. (111,4.4.1)). La fonction cp ^ est continue, modérée le long de Z (App . I, 

2.1.1, 1.3.3), et par hypothèse il existe des fonctions continues 

cp' : Y —• R* ,   ̂:  Y —* R* ,   ̂:  Y —» R * , 

modérées le long de Z ,  et une famille (K.).^ d e polydisques fermés de C p , 

contenus dans Y  ,  satisfaisant 

a) à l'assertion (i) du théorème où l'on a remplacé c p par cp 1 ; 

b) à l'assertion (ii) du théorème; 

c) à l'assertion (iii) du théorème où l'on a remplacé les bornes 

inférieures par des bornes supérieures, pa r e t pa r ^  . 

Comme tp̂ cp ^ ,  l'assertion (i) du théorème résulte de la condition (a). D'autre 

part, comme cp<1/R y ,  la condition (a) implique que pour tout i  , i€l , et 

tout y , y e i C , 

KiC:D(y;(RY(y),...,RY(y))) 

et en vertu de (App.l, 2.2.3), il existe des fonctions continues 

^ :  y R * ,  ^  :  Y — R * , 

modérées le long de Z ,  telle que pour tout i  ,  i  € I , 

SUp i(;Uy ) < inf ^(y) e t SU p ljj'(y) < inf i|;7(y) , 
yeKi yeiL yeKi yeic 

et alors l'assertion (iii) du théorème résulte de la condition (c) ci-dessus. 

V) En vertu du corollaire (3.3.2) , il existe une stratification (C-analytique 

(Y.).CT de U e t pour tout j  ,  j  € J ,  un nombre réel 6 - , ô. € R ,  un élé-
3 JtJ D  1  " * 

ment d . d e w e t des fonctions continues 
3 

cp. :Y. — * R* ,  il,, . :Y. —• R* ,  û0. : Y. —- R* , 
3 3 + 9 3 + 2 j 3 + 

modérées le long de Z. , où Z. =X. - Y. e t X . désign e l'adhérence de Y . dans 
3 3 3 3 3 3 p 

U ,  tels que pour tout y  , yCY. . ,  et tout p , p = ( p r . . . , p n ) , p€ (R* r 

tel que 

(Aj) p1 <Vcp^y) , p2<PlJ>---Jpp<pp: 1 
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si l'on pose K  = D(y;p) , on ait : 

ij) Kc U ; 

ii'.) K es t privilégié pour M  et W 

iii'.) il existe une scission (C-linéaire continue, normale a d e B(K;f ) 

telle que : 

a P I M I n ' ; n ; K s V y ) / p 3 ; 

: U - Z. • R* , ib1 . : U - Z. —> Z. Z. 

En vertu de (App.I, 1.7.1 et 1.7.2), on peut supposer que les fonctions cp ^ , iĵj , 

ty?. sont des restrictions de fonctions continues sur U  - Z. ,  modérées le long 
3̂ 3 

de Z . ,  à valeurs strictement positives. On désignera également ces prolongements 

par 

cp. : U - Z. •  R* ,  ib1 . : U - Z. —> R* ,  ip9 . : U 
3 3  +  v1 j 3  +  2 3 

VI) En vertu de la réduction (II), il suffit de démontrer le théorème localement 

sur U  .  En gardant les notations de (V), on peut donc supposer que : 

a) J  es t fini ; 

3) pour tout x  et x' , x£U , x' EU , on a d(x,x' ) <1 ; 

y) il existe des constantes positives C  et L telle s que 

VyGY : cp(y) <C/d(y,Z)L ; 

6) pour tout j  ,  j  € J , il existe des constantes positives A ^ , hU, 
B1 . , N.. . , B~. et N0 . telle s que 1i 1 j 2 i 2 i 

a) VyeU-Z. :cp.(y) <A./d(y,Z.) 3 ; 
3 3  3  N- j • 

b) VyEU-Z. : ̂ ( y ) ^ . / d ^ Z . ) 1 3 ; 

N 
c) VyeU-Z. : ^ ( y ) <B2j/d(y,Z.) ¿3 ; 

(cf. (App.I,2.2.2)). 

On remarque que la condition ($) implique que pour tout point x  de U e t toute 

partie F  de U , on a d(x,F )  ̂1 (e n convenant que d(x,0 ) = 1  ̂)  et en parti-

culier pour tout M  et M' , MG R ,  M' € R ,  M<M' impliqu e que 

(1) Cette convention est différente de celle de (App.I,2.0). Néanmoins, la validité 
des théorèmes du §2 de l'appendice I est indépendante de la valeur strictement 
positive, arbitraire, constante attribuée à d(x ,0) (cf . (App.1,2.0)). 
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(4.1.1.1) M' M 
d(x,F)U ^d(x,F)U . 

Alors il résulte de (V) qufil existe des constantes ô , A, M, , , B2, N2 , 

supérieures ou égales à 1, et un élément d  de iP tel s que pour tout j  , j  €J, 

tout y , y€Y, , et tout p , p = ( p r . . . , p ) , p€(]R*)p , tel que 

(AV) P1 < d(y,Z )M/A , P2<P ^ >--->Pp<Pp_1 > 

si l'on pose K = D(y;p) , les conditions Cij), Ciij) et (iii.!) de (V) soient 

satisfaites, en remplaçant dans (iii!) les inégalités (a.!) et (bï) par les 

inégalités : 

aV) kl {j € J 
N1 A 

B ^ d t y ^ . ) V ) ; 

by) idB(K;N)~ B(K;£) ° n ;n;K B2/d(y,z.) 
{j € 
£µ£ 

En effet, il suffit de poser 

ô = sup{sup ô.,1} 
jGJ 3 

, A= supisup A.,1} 
j€J 3 

, M = supisup M. ,1} , 
j€J J 

B. = supisup B..,1} 
1 j€ J 1 3 

, N. = supisup N..,1] 
1 j€ J 1 3 

, i  = 1,2 

et 

d = sup d. , 
i€J 3 

cette dernière borne supérieure étant relative à l'ordre produit û su r N° 

(VII) E n gardant les notations et les hypothèses de (V) et (VI), pour tout k  , 

0 S k  ̂p ,  on pose 

Jv = {j € J : dim Y. =k}= {j € J : dim X. = k} 
K J  J 

et 

Fk= U  U  X 
K 0̂ k'< k j€Jk , 3 

L'ensemble es t un fermé analytique de U  e t on a 

y {j € J : di 

Par convention, on pose 

Z. {j € J : dim Y. =k}j 

On remarque que pour tout j  , j € ,  on a 

(4.1.1.2) Z.cR ,  . i k- 1 

(Le fermé analytique étan t le bord d'une strate de dimension k  , il est 
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réunion de strates de dimension strictement inférieure à k ) 

Pour tout entier k  , -1 <k<p ,  on considère l'assertion suivante : 

(Â ) II existe des constantes A £ , M£, ,  Rjk , ,  ,  supérieures ou 

égales à 1 , et une. famille (K.).cT de, polydlsques fermés de, (CP conte-
î itî. 

nus dans Y tels que, : 
î.) a )̂ pour tout i  ,  i  G1^ y et tout y  ,  y € ,  on a 

K.cD(y;(1/(p(y),...,1/(p(y))) ; 

b^) pour tout y , y G Y n , Il existe, i , i e 1̂  , tel que 

yeK. et 
M' M » 

D(y;(d(y,Z) k/Â ,...,d(y,Z ) K/A())cKi ; 

iî .) pour tout i  , i € 1̂  , 10 est privilégié pour H et H1 ; 

iiijç) pour tout i , i e 1̂  , Il existe une scission £-linéalre continue, 

normale o de B(K . ;f) telle que : 

ak) IML..n.K *  sup(B' /d(y,Z) 1k) ; 

V HidB(K.;W)- BtKi'£^CTHn;n;K. 5 (B^/dCy.z) 2k) . 
i i  ye*-

On remarque qu'en vertu de (App.I,2.1) et des réductions (III) et (IV), l'assertion 

(A ) impliqu e le théorème, et que l'assertion (A_̂ ) est évidente. Il suffit donc 

de démontrer : 

(VIII) Pour tout k  , 0<k<p ,  ( A ^ p => (AR) .  Soit k  , 0<k^p ,  et sup-

posons qu'on ait démontré l'assertion (A^_-|). En gardant les notations de (V), 

(VI) et (VII), considérons l'ouvert d e YflF^ défin i par 

Vk = {y € Y n Fk : d(y ,Y n F̂  ) < d(y ,Z) 
Mk M £ +1 
) / 2 A¿_1 } , 

et posons 

I£ = { (y , j)€YxJ :  j e Jk , yeYnY. e t y t \ i , 

y,j)€YxJ : jeJk , 

A' =sup{A,2LC} e t M' = sup{M,L} . 
p 

Pour tout i  , i=(y,j) , i G U ,  on désigne par p. l'élémen t de (R * ) défin i 
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par 

pi = (pi1,---,pip) , 

où pour tout r  , 1  ^ r < p , 

pir = d(y,ZUZ..) 

r-1 
^M'ô /2l+6+...+ôr-] Ai6r-1 f 

et l'on pose 

y,j)€YxJ : jeJk , 

En vertu de (4.1.1.1), on remarque que satisfai t à la condition (AV) de (VI), 

et en particulier il résulte de la condition (iï) de (V) que 

K. <=u . 
i 

De même, comme A '  ̂1 , M'  ̂1 e t ô ^ 1 

(4.1.1.3) p <p <...<Pil<d(y,Z)/ 2 , 

ce qui implique que 

(4.1.1.4) D(y;Pip - H)^Kic:D(y;pi1 . u) 

p 
(où 1 1 désigne l'élément (1,...,1 ) de (JR* ) e t que 

K. cY . 

D'autre part, démontrons que pour tout j  , j  € J, ,  et tout y  , y G Y n Y. , tel 
K J que yjÉV , ,  on a 

(4.1.1.5) d(y,Zj UZ) >d(y,Z) ̂-1 ^-l* 1 
;) / 2 A ' 

En effet, en vertu de (4.1.1.2), on a 

Z. U Z c F̂  UZ = ( Y n F ^ ) UZ , 

d'où 

d(y,Z UZ) > d(y, (Y n Fk_-j) U Z) = 

= inf{d(y,YflF )  , d(y,Z)} , 

et comme y,j)€ , on a 

y,j)€YxJ : jeJk y,j)€YxJ : jeJk , , 
/z Ak- 1 3 

ce qui démontre (4.1.1.5) (conformément à (4.1.1.1), car y,j)€YxJ : jeJk y,j)€YxJ : 

Enfin, posons 
p-i 

M¿=M¿_1M'6 
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p-1 

Ak = 2y,j)€YxJ : jeJk y,j)€YxJ : jeJk , , 

p-1 

• 1+6+...+ ô M,fip -1 p- 1 

\-1 A 

a = d1 + (1 + ô)d2+...+ (1 + ô + ...+ÔP_1)dp 

(où d=(d^,..., d ) désign e l'élément de N p défin i dans VI), 

g = d1 + ôd2 + ...+ôp_1 dp , 

y,j)€YxJ : jeJk y,j)€YxJ : jeJk , , 

Bîk = suP{Bî,k-r 2 

a + (M/ +1)(N1+S^* ) N..+BM' g 

^ - 1 A ' V • 

NÂ-suP{N2,k-i'Mk-i1 

et 

B2k=SUP{Bî,k-1 > 2y,j)€YxJ : jeJk y,j)€YxJ : jeJk , , Ak-1 V • 

Pour démontrer la condition (i^), (â ) de l'assertion (A^), soient i G 1̂ . et 

y G IL . Si i€lj ^ ,  la condition résulte de la condition Cî _-|) >(ak--p de 

l'assertion (Ak_̂ ) . Supposons donc que iGI £ .  Alors il existe j  , j €Ĵ. , 

et y' , y  ' G Y n Y ̂  , y* t \ ,  tels que i  = (y',j) et K.^Cy'jp^ . 1 1 

s'agit de démontrer que pour tout point y " d e I L o n a 

d(y,y") S1/<p(y) • 

Or, 

d(y,y") Sd(y',y) + d(y',y") ±2 sup p. = 

= 2Pil = dCy'^UZ^'/A' <d(y',Z)L/2LC 

(cf. (4.1.1.3) et (4.1.1.1)). D'autre part, 

d(y',Z) <d(y,y') + d(y,Z) < 

<p.1 + d(y,Z) <d(y',Z)/2+d(y,Z) 

(cf. (4.1.1.3)), d'où 

d(y',Z)/2^d(y,Z) 

et 
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d(y' ,Z)L/2LC ï d(y,Z)L/C < 1/cpCy) 

(en vertu de la condition (y) de (VI)). 

Démontrons la condition (î .), (b^). Pour cela, soit y  u n point de YflF ^ . 

On distingue deux cas : 

1er cas : y€Vk .  Alors il existe un point y f de YflF^ ^ te l que 

(4.1.1.6) d(y,y') <d(y,Z) t ' A 1 * ' , ^ ád(y,Z)/2 

(conformément à la définition de V k e t à (4.1.1.1) car M/_ ^ >1 e t AJ * >1). 

En vertu de la condition (i, . ) , (b , , ) , il existe i  ,  i U , .  ,  tel que 

^-1 
D(y';(d(y',Z) / A K _ 1 ) - A ) e l ^ . 

Or, 

d(y,Z) <d(y,y') +d(y',Z) =sd(y,Z)/2+d(y*,Z) 

(cf.(4.1.1.6)), d'où 

d(y,Z)/2ád(y',Z) , 

ce qui implique que 

D(y';(d(y,Z) K-L/2*-\_^ •  U ) <= , 

et en vertu de (4.1.1.6), 

^-1 "k -r1 D(y;(d(y,Z) / 2 A¿_p • I J ĉ  , 

d'où 

D(y;(d(y,Z) 
y,Z 
y,Z ...,d(y,Z) ) V A -))cL 

(conformément à (4.1.1.1), car M! iU. e t A'>2 
H' 1+1 

H' 1+1 

2ème cas : y¿Vk . On remarque qu'en vertu de (4.1.1.2), on a 

(YDFk) - (YflFk U  ( Y n Y. ) , 
J€Jk 

et comme 

YnFk-i cVk • 

on en déduit qu'il existe j  , j £ Jv ,  tel que y€YnY . ,  ce qui implique que 

si l'on pose i = (y,j) , on a ie I£ .  Or, en vertu de (4.1.1.4) ,on a 

D(y;pip • IIJcK. , 
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et comme 

Pip = d(y)ZUZ.)M'ôP"1/21^-+ôP"1 A.*P"1 , 

il résulte de (4.1.1.5) que 

Pip^d(y,Z) k/A£ , 

ce qui prouve que 

K K 
D(y;(d(y,Z) K/A£,...,d(y,Z) K/A£)) CK± . 

Pour démontrer les conditions (iî ) et (iiî ) de l'assertion (Â ) , soit i  , 

i € Î. .Si i  € Î _̂  , ces conditions résultent aussitôt des conditions (iî -j) 

et (iii^) de l'assertion (Â -j) (conformément à (4.1.1.1), et en remarquant que 

par définition B ' j ^ B ' ^ , N ' ^ N ' ^ ,  B ^ S B '^ e t N ^ N ^ ) . 

Supposons donc que i  € I£ .  Alors il existe j  , j € ,  et y , y € Y fl Y.. , 

y£Vv , tel que i  = (y,j) . Comme p . satisfai t à la condition (AV) de (VI), la 
K 1  J 

condition (iiv) résulte de (ii.) de (V), et il résulte de (VI) qu'il existe 

une scission (E-linéaire continue, normale a  d e B(K . ;f) tell e que 

l|a|ln';n;K- = 2aA'3yd(y'V W.ZU 

et 

HidB(K,;A/)-B(Ki^o0lln;n;K^ V ^ ' 2 / ' 

(inégalités (aV) et (bV) de (VI)). Conformément à la définition de p . , a et 3 , 

on a donc 

JN 
l|a|ln';n;K- = 2 a A ' 3 y d ( y ' V W . Z U Z ^ ' S 

< 2 A'^/dCy^UZ )̂ ' 

ce qui implique (en vertu de (4.1.1.5) et (4.1.1.1), et conformément à la défini-

tion de Bj k et N )̂ que 

N l n . ; n ; K ^ B ï k / d ^ Z ) 

N' 
,ï 1k 

N' 
; sup (B' /d(y',Z) 1k) 

et démontre l'inégalité (iii^), (a^). De même, en vertu de (4.1.1.5) et (4.1.1.1), 

et conformément à la définition de BĴ . et N2K ' on a 
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d(y'V W.ZUsup (B' /d(y',Z) 2k) ,sup (B' /d(y',Z) 
N2 

S B^/d(y,Z) 2k sup (B' /d(y',Z) 2k) , 

ce qui démontre l'inégalité (iii^), (b̂ ) et termine la démonstration du théorème. 
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APPENDICE III 

COHONPLOGIE MODEREE ET GAGA NON PROPRE 

Dans cet appendice, on esquisse une application des résultats de l'appendice 

précédent, afin d'établir des théories cohomologiques des faisceaux analytiques 

cohérents, avec conditions de croissance à "l'infini". On définit en particulier 

une cohomologie "modérée" qui permet d'énoncer un GAGA non propre généralisant 

[50] .On s'inspire de la notion de section modérée d'un faisceau localement libre, 

définie dans [6 ], qu'on généralise pour les faisceaux cohérents. A la fin de 

l'appendice on indique une approche possible pour l'établissement des théories 

cohomologiques pour des conditions de croissance plus générales. Les résultats sont 

énoncés sans démonstration, sauf pour expliquer comment les résultats de ce travail 

interviennent. Un exposé détaillé sera fait dans une publication ultérieure. Ici 

on se limitera aux espaces analytiques réguliers. Le cas singulier n'est pas es-

sentiellement plus difficile mais les définitions sont plus techniques, nécessitant 

des plongements locaux dans des réguliers. 

(1.1.1) Tous les espaces analytiques considérés sont des espaces C-analytiques 

séparés, dénombrables à l'infini. Soit Y  un e variété analytique (espace analyti-

que régulier). On appelle compactification partielle de Y  un e immersion ouverte 

i : Y <—>X 

telle que X  soi t un espace analytique réduit et X-i(Y ) u n fermé analytique 

d'intérieur vide de X  .  On identifiera Y  à  l'ouvert dense i(Y ) de X e t le 

fermé analytique Z=X- Y d e X  ser a vu comme étant à "l'infini". On dira qu'un 

couple (Y,X ) es t une compactification partielle, si X  es t un espace analytique 

réduit, Y  u n ouvert régulier de X  ,  et l'immersion canonique i  : Yc—• X un e 

compactification partielle de Y  .U n morphisme d'une compactification partielle 

(Y',X') dan s une compactification partielle (Y,X ) es t un morphisme d'espaces 

analytiques 

u : X' — *X 

tel que u(Y')c Y .O n dira que le morphisme u  es t strict (ou qu'il conserve 

l'infini), si l'on a en plus 

u(Z')cZ , 

où Z=X- Y e t Z ' =X' - Y' .O n dira que le morphisme u  es t une immersion 

ouverte de compactifications partielles, s'il existe une famille finie Cû )̂ <i< n 
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de morphismes stricts de compactifications partielles 

sup (B' /d(y',Z) 2k) ,sup (B' /d(y' 

telle que : 

i) ( Y ,X ) = (Y,X) et ( Y Xn) = (Y',X') ; 

ii) u = u.j o u2 o ... o un ; 

iii) pour tout i  , 1  ^i<n ,  le morphisme d'espaces analytiques 

u^ : X —̂ es t ou bien une immersion ouverte, ou bien un morphisme propre, in-

duisant un isomorphisme de Y. sur Y. A . 
v i  i- 1 

On remarque que si u es t une immersion ouverte de compact ificat ions partielles, 

alors Y 1 s'identifi e à un ouvert de Y , et que le composé de deux immersions 

ouvertes de compactifications partielles en est une également. 

On démontre que si 

u' : (Y',X') >(Y,X ) e t u" : (Y",X") »(Y,X ) 

désignent deux immersions ouvertes de compactifications partielles, il existe au 

plus un morphisme de compactifications partielles 

u : (Y",Xn) >(Y',X' ) 

tel que 

U"=u'oU , 

qui est alors une immersion ouverte. On dira, dans ce cas, que uM s e factorise 

à travers u ' . Plus généralement, il existe une immersion de compactifications 

partielles unique (à isomorphisme près) 

v : (Y-,X J >(Y,X ) 

se factorisant à travers u ' et u" satisfaisan t à la propriété que toute immer-

sion ouverte de compactifications partielles 

v' : (Y^xp —>(Y,X) , 

se factorisant à travers u ' et u" ,  se factorise à travers v  (produi t fibre 

de (Y',X' ) et (YM,X") au-dessu s de (Y,X ) dans la catégorie de compactifications 

partielles). 

On dit qu'une famille ̂ uî i€ l d e morPni-smes de compactifications partielles 

u. : (Yi>X.) —>(Y,X) 

est un recouvrement ouvert de (Y,X ) si : 

i) pou r tout i  , i€I , u. est une immersion ouverte de compactifications 
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partielles; 

ii) pour tout compact K  de X i l existe une partie finie I 1 de I et pour 

tout i ,  iel1 , un compact K . de X. tel s que 

Kc U u.(K. ) . 
i€lf 1  1 

Si ^u{î i»£X' désigne un deuxième recouvrement ouvert de (Y,X ) , on dit qu'il est 

plus fin que le recouvrement ouvert (u^) ^ j , si pour tout i  ', i' €1 , il 

existe i  , i € I , tel que uj. se factorise à travers u ^ . 

La notion de recouvrement ouvert d'une compactification partielle définit une 

topologie de Grothendieck qu'on appellera topologie de Grothendieck-Hironakâ  

ou plus simplement topologie G.H. de cette compactification partielle. (Intui-

tivement cette topologie peut être considérée comme intermédiaire entre celle de 

Y et de X). La topologie G.H. a des propriétés très proches de celles de la 

topologie ordinaire. Par exemple, on a la propriété de paracompacité suivante : 

pour tout recouvrement ouvert ^ u|^jçj d'un e compactification partielle (Y,X ) , 

il existe un recouvrement ouvert tui'i»ci 1 ^ e ^,X) ,  plus fin que ( u ^ ) ^ , 

tel que pour tout compact K  de X l'ensembl e 

I£ = U' <EI' : uï](K) / 0} 

soit fini. 

(1.1.2) Soient Y  une variété analytique et (Y,X ) et (Y,X' ) deu x compactifica-
tions partielles de Y . On dit que ces compactifications partielles sont équiva-
lentes, s'il existe des recouvrements ouverts (u.)-r- T e t (u.').-. T , 

' i  i€I i  i€I 

u± : (Y^X^ — (Y,X ) , uï : (Yj,X!) *(Y,X' ) 

de (Y,X ) et (Y,X') respectivemen t et pour tout i  , i€I , un isomorphisme de 

compactifications partielles 

v. : (Y.,X.) •(Y!,X! ) , 
i i ' i i ' i ' 

tel que 

uì|yì = {uvYV °  (vi|Yi} • 

On appelle variété analytique avec infini une variété analytique Y  muni e d'une 

classe d'équivalence de compactifications partielles. Si (Y,X ) est une compac-

tification partielle appartenant à cette classe, on dira qu'elle définit sa struc-

(1) En effet, Hironaka introduit une notion analogue dans [27], où il étudie la 
"voûte étoilée". 
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ture de variété analytique avec infini. 

(1.1.3) Soit (Y,X ) une compactification partielle. On désigne par Mody „ l'en -

semble des fonctions continues 

cp : Y —> R , 

modérées le long de Z  , où Z  = X-Y . Pour tout morphisme de compactifications 

partielles 

u : (Y',X') —• (Y,X) 

et tout cp , epe Mody.x , on a 

epo (u|Y») €ModY,.xî . 

On démontre que le foncteur qui associe à toute immersion ouverte de compactifi-

cations partielles 

u : (Y',X')—» (Y,X) 

l'anneau Mod^,. ^ es t un faisceau pour la topologie G.H . sur (Y,X ) . Autre-

ment dit, pour tout recouvrement ouvert ( u-)- ft de (Y,X ) , 

u . : ( y ^ x . ) —->(Y,X) 

et toute famille ((p.). , cp- EMocL .Y ,  telle que pour tout i  et i' , i€l, 
i it i i  i ' i 

i' €l , et toute immersion ouverte de compactifications partielles 

u: (Y',X') »(Y,X ) 

se factorisant à travers u ^ et u ,̂ ,  si l'on désigne par v (resp . v' ) l'unique 

morphisme de compactifications partielles tel que u=u^ °v (resp . u=u^ t °v'), 

on ait 

cp io (v|Y') = cp i f o (v'|Y') , 

il existe une fonction unique cp , cp € Mody. y ,  telle que pour tout i  , i€l , 

cpi=cpo (ui|Yi) . 

Enfin, si (Y,X' ) désign e une compactification partielle de Y équivalent e à 

(Y,X) , on a 

Mody-X' Mody.x , 

ce qui permet de définir une notion de fonction continue, modérée sur une variété 

avec infini . 

(1.1.4) Soient (Y,X ) une compactification partielle et d^ et d2 deu x distances 

sur Y  . On dit que d. . et d~ son t équivalentes, s'il existe un recouvrement 

336 



COHOMOLOGIE MODÉRÉE 

ouvert (U -̂ iej d e ( Y>x) y 

u± : (Yi,Xi) >  (Y,X) , 

et pour tout i  , i G I , des fonctions continues 

cp. : Y. x Y. 1 1 1 R* e t \B. : Y. x Y. + ri i  i R* , 

modérées le long de (X^Z.) U (Z.xX.) , où Z i=X i-Y i telles que pour tout 

y et y' , yeYi , y' €Yi ,  on ait 

(LjCiuCy), u^y')) ^cpi(y,y')d2(ui(y),ui(y')) 

et 

d2(ui(y),ui(y')) < î(y,y')d1(ui(y),ui(y')) . 

On démontre la proposition suivante : 

PROPOSITION 1,1,5,— II existe une classe d'équivalence unique de dis tances SUA Y 

telle que pouA toute distance d appartenant à cette classe et toute immersion 

ouverte de compactiRicattons partielles 

u : (Y',X') —> (Y,X) 

telle que X 1 soit un ouvert de $P , la distance Induite par d sur Y ' soit 

équivalente à la distance Induite sur Y ' par la distance sur G? déduite de la 

norme sup. 

On dit qu'une distance sur Y es t modérée le long de Z (o ù Z=X-Y) , si elle 

appartient à la classe dTéquivalence définie dans la proposition ci-dessus. On 

remarque qu'une telle distance est compatible avec la topologie de Y . Si 

u : (Y',X') *(Y,X ) 

désigne une immersion ouverte de compactifications partielles et d une distance 

sur Y  , modérée le long de Z , alors la distance induite par d su r Y' est 

modérée le long de Z ' (o ù Z' =X'-Y') . 

(1.1.6) Soient Y  une variété analytique, d une distance sur Y e t (Y,X ) et 

(Y,Xf) deu x compactifications partielles équivalentes de Y . Alors la distance 

d es t modérée le long de Z  (o ù Z=X-YJ s i et seulement si elle est modérée 

le long de Z ' (o ù Z' =X'-Y) . Cela permet de définir une notion de distance 

modérée sur une variété avec infini. 

(1.2.1) Soient (Y,X ) une compactification partielle, M un Ĉ -module cohérent et 

et M 2 deu x (̂ .-module s cohérents prolongeant M  ,  autrement dit tels que 

M-| |Y = M = M2|Y .S i l'on désigne par i : Y
c—*X l'injectio n canonique, on a 

337 



G. MALTSINIOTIS 

donc des morphismes de Ĉ -module s 

J1:M1 —>i*(M) e t J2:M 2 —*i*(M) . 

(On remarque que i*(M ) n!est pas en général un (̂ -modul e cohérent). On démontre 

que les propriétés suivantes sont équivalentes : 

i) i l existe un (̂ -module cohérent M ' prolongeant M  e t des morphismes 

de (̂ -module s 

u1 : M1 —* W ,  u2 : M2 —-M1 

induisant l'identité au-dessus de Y . 

ii) i l existe un ^-module cohérent M " prolongeant M  e t des morphismes 

de (̂ -modules 

v1 : M" —>M1 , v2 : M" —- M2 

induisant l'identité au-dessus de Y . 

iii) le sous-(̂ -module ImCj^ ) +Im(j2) de i*(M ) est un (̂ -module cohérent. 

On dit que les prolongements e t M2 son t équivalents, si les conditions 

équivalentes ci-dessus sont satisfaites. On démontre que si ^ui^ç l désign e un 

recouvrement ouvert de (Y,X ) , 

u± : CY..^) — (Y,X ) , 

pour que les prolongements e t M2 de M  soien t équivalents, il faut et il suf-

fit que pour tout i  , i e l ,  les prolongements u?(M.j ) et u?(M2 ) de 

(ui|Yi)*(M) l e soient. 

On appelle prolongement local de M  l a donnée d'un recouvrement ouvert ( u ^ )̂  

de (Y,X ) , 

u :  (Y X ) (Y,X ) , 

et pour tout i  , i€l , d'un 0V -module cohérent M - ,  prolongeant (u.|Y.)*(M) , 
i 

tels que pour tout i e t i ' , i e i , i ' e i,et toute immersion ouverte de compac-
tifications partielles 

u: (Y',X') •—*CY,X) 

se factorisant à travers u ^ et u., , si l'on désigne par v (resp . v' ) l'unique 

morphisme de compactifications partielles tel que u=u- °v (resp . u=u. , °v' ), 

les prolongements v * (M. ) e t v 1 * (M. t ) de ( u | Y ' ) * (M) soien t équivalents. 

Si t uî1 i 'El1 9 ^i'^i 'ei' désign e un autre prolongement local de M ,  on 
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dira qu'il est équivalent au précédent si pour tout i  , i€l , tout i ' , i' El' , 

et toute immersion ouverte de compactifications partielles 

u : (Y',X') —>(Y,X) 

se factorisant à travers u ^ et u|f , si l'on désigne par v (resp . v' ) l'unique 

morphisme de compactifications partielles tel que u=u . °v (resp . u=uj, °v' ) , 

les prolongements v*(M^ ) et v'*(Mjt) de (u|Y')*(M ) son t équivalents. 

On appelle Ĉ -module cohérent méromorphe le long de Z  (où Z = X-Y) un 

Oy-module cohérent muni d'une classe d'équivalence de prolongements locaux. On dit 

qu'il est effectivement méromorphe s'il existe un (̂ -module cohérent M ' prolon-

geant M  te l que (id ^ , M') appartient à cette classe (en considèrent id ^ comme 

un recouvrement ouvert de la compactification partielle (Y,X ) formé de la seule 

immersion ouverte id ^ ). On ignore si tout Oy-modul e cohérent méromorphe le long 

de Z  est effectivement méromorphe  ̂.S i M =dJ ,  où me K , le (̂ -module 

cohérent prolong e ,  et munit canoniquement d'un e structure de 

Oy-module effectivement méromorphe le long de Z  .  Sauf mention expresse du con-

traire, ser a toujours considéré comme muni de cette structure méromorphe. 

(1.2.2) Soient (Y,X ) une compactification partielle de Y , Z=X- Y ,  M et M' 

deux Oy-modules cohérents, méromorphes le long de Z  , et f : M' — >M un mor-

phisme de Oy-modules. On dit que f  es t un morphisme de Oy-module s méromorphes, 

ou plus simplement un morphisme méromorphe, s'il existe un recouvrement ouvert 

fru^iGI de la compactification partielle (Y,X ) , 

u± : (Yi,X.) —>CY,X) 

et pour tout i  , i€ I , des 0 -module s cohérents M . et M-' e t un morphisme de 

x 
£L -modules f . : M! —*M. tel s que : 

i) ^ui^iei ' ^Viei^ (resP - ̂ uî iei > ^Piei ^ est ^ Proiongemen t local 
de M  (resp . de M' ) définissant sa structure méromorphe; 

ii) pou r tout i  , i€I , f. |Y. = (u. |Y.)*(f) . 

On dit qu'une section s  du Oy-module méromorphe M  ,  s€T(Y,M) , est méro-

morphe, si le morphisme 

oY —+ M 

défini par cette section est méromorphe. On vérifie facilement que le composé de 

(1) Voir néanmoins, [51], théorème 1, p.364 et [15], corollaires(VI.4), (VII.5) et 
(VII.6), p.342. 

339 



G. MALTSINIOTIS 

deux morphismes méromorphes est méromorphe. 

(1.2.3) Soient (Y,X ) un e compactification partielle, M u n Ĉ -module cohérent, 

méromorphe le long de Z  ,  où Z=X- Y , et W  u n sous-Ĉ -module cohérent. On dé-

montre que les conditions suivantes sont équivalentes. 

i) I l existe une structure de (̂ -module méromorphe le long de Z  su r W 

telle que l'injection canonique 

W «—»M 

soit un morphisme méromorphe. 

ii) Il existe une structure de 0y-module méromorphe le long de Z  su r M/ W 

telle que la surjection canonique 

M —> M/M 

soit un morphisme méromorphe. 

On dit que W  es t un sous -(̂ -module méromorphe de M  ,  si les conditions équi-

valentes ci-dessus sont satisfaites, et alors la structure méromorphe sur W 

(resp. sur M/ W )  satisfaisant à la condition (i) (resp . à la condition (ii) ) 

est unique. On dira que cette structure est induite (resp . déduite ) de celle de 

M . 

Si f  : M1 — *M désign e un morphisme de (̂ -module s cohérents méromorphes le 

long de Z  , alors Ker(f ) (resp . Im(f) est un sous-Oy-module méromorphe de M ' 

(resp. de M ) . On en déduit que Ker(f ) , Im(f) , Coker(f) et Coim(f) son t munis 

naturellement d'une structure d e Oy-module méromorphe le long de Z  e t on démon-

tre que 1 ' isomorphisme canonique de 0Y-modules 

Coim(f) —• Im(f) 

est un isomorphisme de fly-modules méromorphes le long de Z  . On peut donc définir 

une notion de suite exacte dans la catégorie de (̂ -module s cohérents, méromorphes 

le long de Z  , et une telle suite sera exacte si et seulement si la suite 

sous-jacente de Oy-module s cohérents est exacte. 

(1.2.4) Soient (Y,X ) un e compactif ication partielle, Z=X- Y ,  M  u n Oy-module 

cohérent méromorphe le long de Z  e t u  : (Y',X') —> (Y,X) une immersion ouverte 

de compactifications partielles. Alors le 0y,-modul e cohérent (u|Y')*(M ) es t 

muni naturellement d'une structure de 0y,-module méromorphe le long de Z ' 

(où Z ' =X'-Y') et si f  : M' — »M désign e un morphisme de (̂ -module s cohérents, 

méromorphes le long de Z  , 

(u|Y')*(f) : (u|Y')*(Mf) —> (u|Y')*(M ) 

est un morphisme de 0y,-module s méromorphes le long de Z ' . En particulier, pour 
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toute section s  ,  scr(Y,M) , méromorphe le long de Z  , la section 

s1 = s|Y' = (u|Y')*(s) , s ' er(Yf ,(u|Y')*(M)) es t méromorphe le long de Z ' , et 

on démontre que le foncteur qui associe à l'immersion ouverte 

u : (Y',X') •  (Y,X) 

l'ensemble des sections méromorphes de (u|Y)*(M ) l e long de Z ' es t un faisceau 

pour la topologie G.H . d e la compactification partielle (Y,X). 

(1.2.5) Soient Y  un e variété analytique, M  u n Oy-module cohérent et (Y,X ) et 

(Y,XT) deux compactifications partielles équivalentes de Y  . Pour toute structure 

de (̂ -modul e méromorphe le long de Z  (o ù Z  = X-Y) su r M  ,  on peut définir 

naturellement une structure de Oy-modul e méromorphe le long de Z ' 

(où Z ' =X'-Y') , ce qui permet de définir une notion de Ĉ -modul e cohérent méro-

morphe sur une variété avec infini, ainsi qu'une notion de morphisme méromorphe. 

(1.3.1) Soient Y  un e variété analytique et K  un e partie de Y  . On dit que 

K es t un compact polycylindrique, s'il existe un ouvert U  de Y te l que Kc U 

et une carte w  : U' — >U (isomorphism e analytique), où U ' es t un ouvert de 

, telle que w  ^ (K) soi t un polycylindre compact de $P .  Si K  es t un com-

pact polycylindrique de Y  , on désigne par B(K ) l'algèbr e de Banach des fonc-
o 

tions continues sur K  , analytiques sur K  ,  munie de la norme sup. Si M  dési -

gne un fly-module cohérent, on définit comme dans l'appendice II, (2.2.3) l'espace 

vectoriel topologique B(K;M ) dont l'espace vectoriel sous-jacent est 

T(K,M) ®j<(K 0 ) B^ e t ^ont ̂ a topologie est définie par la semi-norme II " lln.K » 
n : (f\ > M|U 

désigne un épimorphisme au voisinage de K  e t | | . || „ es t définie comme dans 

l'appendice II, (2.1). On démontre que cette topologie est indépendante de 1'épi-

morphisme n  (cf . App.II,2.2.2) et on dit que K  es t privilégié pour M  ,  si 

B(K;M) est séparé, dans quel cas B(K;M ) es t un espace de Banach (cf. App. II, 

2.2.5, 2.2.6). Pour tout morphisme f  : Mf —»-M d e ĉ -modules cohérents on 

désigne par B(K;f ) l'applicatio n 

B(K:f) : B(K;Mf) —+ B(K;M) 

définie par 

B(K;f) = r(K,f) 0 idB(K) 

(cf. App.II,2.1). qui est une application C-linéaire continue (cf. App.II,2.2.4). 

On désigne par /(P(Y ) l'ensembl e des compacts polycylindriques de Y  e t on 

appelle semi-norme sur M  un e famille (Il • II^KEKPCY) '  °̂  Pour tout ^  » 

KGKP(Y) , Il «lift désign e une semi-norme sur B(K;M ) qui en définit la topologie. 
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Afin de simplifier les notations, pour toute section s  de M au-dessu s de Y , 

ser(Y,M) , on désignera par ||s||K l a semi-norme de l'image de s dan s B(K;M) . 

(1.3.2) Soient (Y,X) une compactif ication partielle de Y , M un Oy-modul e 

cohérent et ( ||. Hĵ KeKPCY) et ^Il * I|K̂ K€KP(Y) cieux SEMI"NORMES SUR M  .  On dit 
qu'elles sont équivalentes, s'il existe un recouvrement ouvert (U^)^ Q de (Y,X), 

u :  (Y X ) —>(Y,X) , 

et pour tout i  , i £ I ,  des fonctions continues 

ф. :Y. — e t ^ :Yi — R ^ 

modérées le long de Z. , où Z . =X.-Y. , 
i 9 i i i ' telles que pour tout K  , K G KPCY^ , 

on ait 

||.|| I sup ф (y) 
к уек 1 K 

et 

||.|ГК S sup ip.(y) ||.|L 
y€K 

(en remarquant que comme u . indui t un isomorphisme analytique de Y., sur un 

ouvert de Y , K?(Y^) s'identifi e par 

К i—-u^K) 

à un sous-ensemble de KP(Y) ) . On démontre la proposition suivante : 

PROPOSITION 1.3.3.- Soit M  un Comodale, cohérent, méromorphe le long de. Z , 

où Z  = X-Y .  Alors il existe, une. classo d'équivalence, unique, de. semi-normes SUA 

M telle, que. pouA toute, semi-nome. ( | | . Il^KGKP(Y) aPPaÂ enaKI-* : ^ztte classe., 

toute. immersion ouverte de. compacta.ficattons partielles 

u : (Y',X') —> (Y,X) , 

tout prolongement M ' de M|Y' = (u|Y')*(M) SUA X' définissant la structure méro­

morphe de M|Y ' le long de Z ' (o ù Z' = X'-Y') déduite de celle de W et tout 

épimorphisme de CL, -modules 

n : (Й, —>M' 

les semi-normes sup (B' /d(y',Z) 2k) , et Cil • II^KefCPCY1) sur M IY' soient équi­

valentes . 

On dit qu'une semi-norme sur M es t modérée le long de Z ,  si elle appartient 

à la classe d'équivalence définie dans la proposition ci-dessus. Si 

u : (Y',X') — (Y,X ) 

désigne une immersion ouverte de compactifications partielles et (|| . || °)y£.KPÇi} 
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une semi-norme sur M ,  modérée le long de Z  , alors la semi-norme 

^ '  MK^KEKP(Y') SU R es t m°dérée le long de Zf . 

Enfin, on étend facilement la notion de semi-norme modérée aux modules cohérents, 

méromorphes sur une variété avec infini, en remarquant que cette notion est indé-

pendante des compactifications partielles équivalentes choisies. 

(1.4.1) Soient Y  une variété analytique, K un compact polycylindrique de Y 

et d  une distance sur Y , compatible avec sa topologie. Pour tout point y  , 
o 

y € K , on pose 
p'(K;y) = d(y,3K) = inf d(y,y')=inf d(y,y') 
Q y'E8 K y'g K 

et 

p"(K;y) = sup d(y,y')=sup d(y,y' ) . 
Q y'ES K y'E K 

On remarque que si Y es t un ouvert de tiP , K un polycylindre compact et d 

la distance déduite de la norme su p sur ,  alors on a 

p'(K;y) = inf p ! (K;y) 
1^i^p 

et 

p''(K;y)= sup p'.'(K;y) 
1<i^p 

(cf.(111,2.1)). 

(1.4.2) Soient (Y,X ) une compactification partielle et d une distance sur Y , 

modérée le long de Z  , où Z=X- Y . On dit qu'un ensemble K de compacts polycy-

lyndriques, de Y es t suffisant le long de Z ,  si les conditions suivantes 

sont satisfaites : 

i) pou r tout K  , K £ K ,  et tout K ' , K'€ KP(Y) te l que K'cK , on a 

K' £ K ; 

ii) il existe une fonction continue 

cp : Y —• IR* , 

modérée le long de Z , telle que pour tout y  , y £ Y , il existe K  , K £ K tel 

que 

a) y£K 

B) 1/ep(y)Sp£(K;y) . 

On démontre que cette notion est indépendante de la distance modérée d  . En uti-

lisant les résultats du paragraphe 2 de l'appendice I, on démontre que l'ensemble 
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KP(Y) est suffisant le long de Z et qu'une intersection finie d'ensembles suf-

fisants est un ensemble suffisant. En particulier, l'ensemble des parties de KP(Y) 

qui sont des ensembles suffisants le long de Z est une base de filtre sur KP(Y) . 

Pour tout ensemble K ,  KcKP(Y) , suffisant le long de Z , et toute immersion 

ouverte de compactifications partielles 

u : (Y',X') —> (Y,X) 

l'ensemble K ' de compacts polycylindriques K  de Y' tel s que u(K) € K est un 

ensemble suffisant le long de Z' , où Z ' =X'-Y' . Réciproquement, si (U-̂ iç j 

désigne un recouvrement ouvert de (Y,X ) , 

u. : (Y X ) >(Y,X ) , 

et pour tout i  , i € I , u n ensemble de compacts polycylindriques de Y^ , 

suffisant le long de Z. , où Z . =X.-Y. , alors l'ensemble & i  ' i  i  i ' 

K = { KGKP(Y) : 3i€l , u_1(K.) € K - } 

est suffisant le long de Z . 

Soit (K.).C T une famille de compacts polycylindriques de Y . On dit que 
3 3tJ 

(K.). T est un recouvrement de Y , suffisant le long de Z , si l'ensemble 

K ={ K€KP(Y) : 3j € J , KczK̂  } 

est suffisant le long de Z . Pour cela, il faut et il suffit que l'ensemble 

K1 ={K€KP(Y) : 3j €J , K = K.} 

satisfasse à la condition (ii) ci-dessus. 

Enfin, en utilisant la proposition (2.2.3) de l'appendice I, on démontre le 

lemme suivant : 

LEMME 1.4.3.- Soient (Y,X ) une. compactification partielle., K un ensemble, de 

compacts polycylindnlques de Y  ,  suffisant le long de Z , où Z=X- Y ,  et 

cp : Y —» R* 

une fonction continue, moden.ee le long de Z  .  Alors il existe un ensemble K1 , 

K'c/c ,  suffisant le long de Z  ,  et une fonction continue 

cp' : Y —* R* 

modérée le long de Z , telle que pour tout K  ,  K£K' , 

sup cp(y)  ̂inf cp' (y) . 
y€K y€ K 

(1.4.4) Soient Y  une variété analytique, K un ensemble de compacts polycylin-

driques de Y e t (Y,X ) et (Y,X') deu x compactifications partielles équivalentes 
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de Y  . On démontre que pour que K soi t suffisant le long de Z  , où Z  = X-Y , 

il faut et il suffit que K soi t suffisant le long de Z f , où Z ' =X'-Y . Cela 

permet de définir une notion d'ensemble de compacts polycylindriques, suffisant, 

sur une variété avec infini. 

(1.5.1) Soient (Y,X ) une compactification partielle, M  u n Ĉ -module cohérent 

méromorphe le long de Z  , où Z=X- Y , C| | • HK^KCKPCY) Une semi~norme sur M  , 

modérée le long de Z  ,  et s  un e section de M  au-dessu s de Y  , s€r(Y,M) . 

On démontre que les conditions suivantes sont équivalentes : 

i) i l existe une fonction continue 

cp : Y —*• R* , 

modérée le long de Z  , et un ensemble K ,  KcKP(Y ) , suffisant le long de Z  , 

tels que pour tout K  , K  € K , 

I l s II ^  sup cp(y) ; 
v€K 

ii) il existe une fonction continue 

cp : Y —» R* , 

modérée le long de Z  , et une famille (K.).̂ T d e compacts polycylindriques de 

Y , formant un recouvrement suffisant de Y  l e long de Z  , telles que pour tout 

j , j € J , 

||s|L ^ sup cp(y) ; 
3 v& 

et que ces conditions sont équivalentes aux conditions (i1) et (ii') obtenues en 

remplaçant dans les inégalités des conditions (i) et (ii) les bornes supérieures 

par des bornes inférieures. (Ces équivalences résultent essentiellement du lemme 

1.4.3 ) . On dit qu'une section s  de M  au-dessu s de Y  , sGT(Y,M ) , est mo-

dérée le long de Z  ,  si elle satisfait aux conditions équivalentes ci-dessus, et 

on démontre que cette notion est indépendante de la semi-norme modérée sur M  . 

L'ensemble des sections modérées le long de Z  form e un sous-groupe additif de 

T(Y,M) qu'on désigne par Mody.^CM ) . On vérifie facilement que Mody^Wy ) (o ù 

fly est muni de sa structure méromorphe canonique (cf. (1.2.1))) est un sous-anneau 

de r(Y,CU e t que MocL. Y (M) es t un sous-Mod (0)-module de r(Y,M) . Si 
i ï,à YjX Y 

f : M' — *M désign e un morphisme de cy-modules cohérents, méromorphes le long de 

Z ,  pour tout s  , s€Mody>x(Mf ) ,  on a f  (s) € Mody.^W) e t l'application 

s i—f(s) 

définit un morphisme de ModY.^OOy)-modules , et ceci fonctoriellement. 

Pour toute immersion ouverte de compactifications partielles 
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u : (Y',X') —»(Y,X) 

et toute section s  de M modéré e le long de Z  , s  €Mody.x(M) , la section 

sf =s|Y'= (u|Y')*(s) , s f er(Y',(u|Y')*(M)) ,  est modérée ie long de Z f ,  où 

Zf = X'-Y' , (la structure méromorphe sur (u|Y')*(M ) étan t déduite de celle de M 

(cf. (1 .2 .4) ) ) . On démontre que le foncteur qui associe à 1!immersion ouverte de 

compactifications partielles 

u : (Y',X') —^(Y,X) 

le groupe Mody , .x, ((u| Y)*(M)) es t un faisceau de groupes pour la topologie G.H . 

de (Y,X ) , qu!on désigne par 

Pour tout 0y-modul e cohérent M  ,  méromorphe le long de Z  , et tout m  , 

m € IN ,  on appelle m-ième groupe de cohomologie modérée de M  e t on désigne par 

H™ô ((Y,X) ,M) l e m-ième groupe de cohomologie du faisceau pou r la topologie 

G.H. , 

OCY,X),M) =H G . H . « Y ^ > W ' 

En particulier, on a donc 

H°od((Y,X),M) = Mody.^M) . 

(1.5.2) Soient Y  un e variété analytique, (Y,X ) et (Y,Xf) deu x compactifications 

partielles équivalentes de Y  e t M u n Oy-module cohérent, méromorphe le long de 

Z , où Z=X- Y . Conformément à (1.2.5) , on en déduit une structure de Oy-modul e 

méromorphe le long de Z 1 (o ù Z f =X*-Y) sur M  ,  et on vérifie aussitôt que 

Mody.x(M) = Mody.̂  (M) . 

Plus généralement, on démontre (en utilisant la méthode de calcule de la cohomolo-
V 

gie par Cech) que pour tout m  , m  € ~N , on a 
C d C C Y , X ) , M ) = t f o d ( C Y , X - ) , M ) . 

Cela permet de définir les groupes de cohomologie modérée d!un module cohérent M 

méromorphe sur une variété analytique avec infini y qu fon désignera par 

sup (B' /d(y',Z) 2 

) , 

THEOREME 1.5.3.- Soient (Y,X ) une compacttflacuUon pcvuUeMe et Z=X- Y .  Le 

foncteuA qui associe à un Oy-modute cohérent M  ,  méromorphe le long de Z  , 

le Mody. xC0y)-modale Mody. x(M) est exact à gauche. 

Ce théorème est le résultat "clef" de la théorie et se démontre en utilisant le 

théorème (4.1.1) de l'appendice II. On en esquissera la démonstration pour indiquer 

comment les résultats de ce travail s'appliquent à la théorie de la cohomologie 
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modérée. 

Après plusieurs réductions faciles on est amené à démontrer le lemme suivant : 

LEMME 1.5.4,- Soient p , m, m' des entiers, p  € N , m € K , m' € IN , U un ou-
p 

vent de C  ,  Z un fermé analytique d'intérieur vide de U  ,  Y = U - Z , 

f : M' —* M 

un morphisme de 0^-modules cohérents tel que f| Y soit Injectlf, 

n : — * M 

et 

n' iflg'—>M' 

des éptmorphlsmes de O^-modules. Alors pour toute section s  de M ' , s€r(Y,M') , 

telle qu'Ai existe un ensemble K  , KcKP(Y ) , suffisant le long de Z  ,  et une 

fonction continue 

i|> : Y —* R* , 

modérée le long de Z  ,  tels que pour tout K  ,  K € K , on ait 

Il f (s) H <  inf i|,(y) , 
n' N v€ K 

Il existe un ensemble K f, K1 cKP(Y) ,  suffisant le long de Z  ,  et une fonc­

tion continue 

^ : Y — * R * , 

modérée le long de Z  ,  tels que pour tout K ' , K' eK , on ait 

||s|| *  inf *'Cy) . 
vfK' 

Démonstration. L'ensemble K  étan t suffisant, on vérifie facilement qu'il existe 

une fonction continue 

cp : Y — , 

o 

modérée le long de Z , telle que pour tout K  , K  e KP(Y) , et tout y  , y £ K 

la condition 
K<=D(y;(1/cp(y),...,1/cp(y))) 

ijnplique que KGK (cf . (1.1.5), (1.4.1) et (1.4.2)). On pose 

M" = Coker(f) . 

En vertu du théorème (4.1.1) de l'appendice II, il existe des fonctions continues 

cp' : Y —> R* e t ^ :  Y —* R* , 
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modérées le long de Z , et une famille (K.).^ T d e polydisques fermés de CP 

contenus dans Y  tel s que : 

i) pou r tout point y  de Y on a : 

a) pour tout i  , i€I , tel que y€K. 

KicD(y;(1/<p(y),...J/<p(y))) ; 

o 
b) il existe i  , i € I , tel que y 610 et 
D(y;(1/cpï(y),...,1/cp»(y)))cKi ; 

ii) pou r tout i  , i € I , IL es t privilégié pour M , M* et M" ; 

iii) pour tout i  , i € I , il existe une scission C-linéaire continue d e 

B(K.;£) tell e que 

1 T] ,71,^ y £ K ^ I 

On remarque que la condition (i), (a) implique que pour tout i  , i € I , Kj€ K 

DTautre part, comme par hypothèse f| Y est injectif, la suite 

0 —>M'|Y f iY > M|Y >  M"|Y —+ 0 

est exacte et la condition (ii) implique que B(K.;f ) est injectif ([ 7], §7, n°3, 
(1) 1 

proposition 3, p.56) .O n en déduit que la scission a i d e la condition (iii) 

est une section de B(K.;f) ,  autrement dit 

idB(K.;M') = °i°*&i>V , 

dfoù 

N l n ^ s u p ( B ' / d ( y ' , Z) 2 k ) ,l l « « l l n ; K i

s 

^ inf ^(y) .  in f i/;(y)< inf (̂ -CyJiKy)) . 
yGK, 1 y€K. y€K , 

Posons 
sup (B' /d(y' 
,Z) 2k) , 

et 

K' = {KCKP(Y) : 3i€I , KcK.} . 

La fonction 

(1) La définition (2.2.5) de lfappendice II est équivalente à la définition 1, §7, 
n°1, p.54 de [ 7 ] (cf.[48 ] , théorème du §1, p.146). 
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ф' : Y — • R* 

est continue, modérée le long de Z  (App.I,1.3.1) , et la condition (i), (b) impli-

que que K' est un ensemble suffisant le long de Z  . Enfin, pour tout K  , K€K', 

il existe i  , iel , tel que KcIC , d'où 

II s|| <  M s II й inf фЧу) Sinf афЧу) , 
n >K n  'i v€K. v€ K 

ce qui démontre le lemme. 

THEOREME 1.5.5.- Soient (Y,X ) une compactif Ication pantletle, Z  = X-Y ,  M  un 

Oy-module cohérent, méromorphe le long de Z et s une section de M  au-dessus 

de Y , se r(Y,M) .  Pour que la section s  soit modérée le long de 1 , Il 

faut et II suffit que s  soit méromorphe le long de Z  . 

Le plan de la démonstration de ce théorème est le suivant. On le démontre d'a-

bord, dans le cas où M = Oj\Y , T étan t un sous-espace analytique fermé réduit 

de X  e t la structure méromorphe de M étan t celle définie par le prolongement 

Oj de Oj\Y .  Ensuite, on en déduit le cas général en considérant un "dévissage" 

local d'un prolongement local de M définissan t sa structure méromorphe et en 

utilisant le théorème (1.5.3). 

COROLLAIRE 1.5.6.- En gardant les notations da théorème (1.5.5) , le faisceau 

Hnod n'est autre que le faisceau pour la topologle G. H de (Y,X) 

formé des sections méromorphes de M  le long de Z  (cf . (1.2.4)). 

(1.6.1) Soit Y  un schéma algébrique lisse sur (C . D'après Nagata [46] , Y 

s'identifie à un ouvert de Zariski dense d'un schéma X  propr e sur (C (qu'on peut 

supposer réduit, et même lisse par la théorie de désingularisation de Hironaka 

[24]) .De plus, si X^ et X2 son t deux telles "compact ificat ions" de Y , il en 

existe une troisième X  , et des morphismes de (C-schémas 

u1 : X —» e t u2 : X —> X2 

(forcément propres), tels que 

uT'CY) = Y , i  = 1,2 

et induisant l'identité sur Y .  (On peut prendre X  l'adhérenc e schématique de 

1'image diagonale de Y dan s X ^ x X2 ). On en déduit que la variété (C-analytique 

Ym associ é est munie d'une structure de variété avec infini, qu'on désignera par 
'vian 

Y .  En effet, il résulte de ce qui précède que les compactifications partielles 

(Y3*1,̂ 11) et (Yan,X2n ) (o n dira plus simpleme compactifications , puisque 
Xan e t X̂ f 1 sont compacts) sont équivalentes. 

(1.6.2) Soient Y  un schéma algébrique lisse sur Œ , X un Œ-schéma algébrique 

réduit contenant Y  comm e ouvert de Zariski dense et M un Ĉ -module cohérent. 
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Le Oy-modul e M  peu t se prolonger en un (̂ -module cohérent M 1 ([23] , 6.9.8), 

et on vérifie facilement que si l'on considère la compactification partielle 
^an^an^ ^ les prolongements d e 

ainsi obtenus sont tous équivalents. 

On définit ainsi sur un e structure de 0 ^-module cohérent effectivement 
méromorphe le long de Z  = X^-Y311 . 

(1.6.3) Soit Y  u n schéma algébrique lisse sur (C . Conformément à (1.6.2), pour 

tout Oy-modul e cohérent M  ,  es t muni d'une structure de 0Yan~m°dul e 

cohérent effectivement méromorphe sur Yan .  On déduit de plus aussitôt de GAGA 

[50] (et cf. [6 ] ) que : 

PROPOSITION 1.6.4.- Le fondeur M  —»• M311 Induit une équivalence de catégorie 

entre la catégorie des 0y~ modules cohérents et celle des 0 an-modules cohérents 
~an Y 

effectivement méromorphes sur Y 

La proposition suivante généralise la proposition 2.24, p.71 de [6 ]. 

PROPOSITION 1.6.5.- Soient Y  un schéma algébrique Usse sur С et M  un 
Oy-module cohérent. Une section s  de Ma n ,  ser(Yan,Man) ,  est algébrique 

si et seulement si elle est modérée sur Ya n . 

Cette proposition résulte du théorème (1.5.5) et de GAGA [50] et est un cas 

particulier du théorème suivant. 

THÉORÈME 1.6.6.- Soient Y  un schéma algébrique lisse sur d et H un O^-module 

cohérent. Alors pour tout m , m  G N ,  on a 

sup (B' /d(y',Z) 2k) ,sup (B' 

Le plan de la démonstration est le suivant. Il existe un schéma propre et lisse 

X sur (C tel que Y s'identifi e à un ouvert de Zariski de X e t Z=X- Y soi t un 

diviseur de X .  Si l'on désigne par i : Y c—>X l'injectio n canonique on démon-

tre que pour tout m  , m G N , 

Hm(Y,M) = rf(X,iJM)) . 

Or, il résulte de [23] (6.9.2 ) et (6.9.9) que i*(M) est limite inductive d'une 

famille M . de 0Y-modules cohérents tels que M . |Y = M .  Comme X  es t noetherien i à i 
on a 

H"4x,i*(M)) = lim rfn(X,Mi) 

et il resuite de GAGA L bUj que 

bf (X,M.) = rfn(Xan,Man) 

L'espace X  étan t compact, on a 
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lim f f c X ^ M f ) = t f c x ^ l m Alf) . 

On vérifie que li m nfes t autre que le faisceau sur X  de s sections méromor-

phes de l e long de Z  e t on démontre que sa cohomologie pour la topologie 

ordinaire de X  es t la même que pour la topologie G.H. On termine la démonstra-

tion en utilisant le corollaire (1.5.6). 

(1.7.1) On appelle condition de croissance à l'infini la donnée pour toute compac-

tif ication partielle (Y,X ) , d'un ensemble My. x d e fonctions continues de Y 

dans IR satisfaisant aux axiomes suivants : 

i) My -x es t 1111 sous-anneau de l'anneau C y de s fonctions continues sur 

Y à  valeurs dans I R . 

ii) My. x contien t l'ensemble des fonctions continues sur Y  à  valeurs dans 

R ,  modérées le long de Z  , où Z  = X-Y . 

iii) Pour tout cp.| et cp2 , tp-j € Cy > ^^^Y-X conditio n 

sup (B' /d(y',Z 

implique que tP-j^My^ • 

iv) Pou r tout morphisme de compact ificat ions partielles 

u : (Y',X') —*(Y;X) 

et tout cp , cpGMy>Y ,  on a cpou (foncto r ialite). 

v) Pou r toute compactification partielle (Y,X ) l e foncteur qui associe à 

une immersion ouverte de compactifications partielles 

u : (Y',X') —* (Y,X) 

l'anneau Myt „f es t un faisceau pour la topologie G.H. de (Y,X ) 

On dit qu'une fonction continue 

cp : Y *R 

est M-modérée le long de Z  s i cp€My. ^ .E n vertu des axiomes (iv) et (v) , si 

(Y,X) et (Y,X') son t deux compactifications partielles équivalentes de Y  , on 

a My.- ^ = My#̂ f ,  ce qui permet de définir une notion de fonction M-modérée sur 

une variété analytique avec infini. 

Exemples 1.7.2.- Si pour toute compactification partielle (Y,X ) o n pose 

\ x =  №dY;X 
(cf. (1.1.3)), alors M  es t une condition de croissance à l'infini (appelée 

croissance polynomiale). Il en est de même si l'on pose 
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\X = CY • 

C'est les deux cas extrêmes. On peut donner d'autres exemples de croissance à 

l'infini comme la croissance exponentielle : 

My.x = {ipeCy : Log(1 + |cp|) eMody^} . 

(1.7.3) Soient (Y,X ) une compactification partielle et M un Oy-module cohérent 

méromorphe le long de Z  = X-Y .  On définit la notion de section de M au-dessu s 

de Y  , M-modérée le long de Z , exactement comme dans (1.5.1) en remplaçant dans 

la définition "fonction modérée" par "fonction M-modérée". On désigne l'ensemble 

de ces sections par My>x(M) . Le théorème (1.5.3) reste vrai, autrement dit le 

foncteur 

M i—> My.x(M) 

est exact à gauche, et la démonstration en est rigoureusement identique. On définit 

également le faisceau (pour la topologie G.H.) des sections M-modérées, ^ . ^̂  

et la cohomologie M-modérée par 

sup (B' /d(y',Z) 2k) ,sup (B' /d(y',Z) 2k) , 
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|d| ,  d ! ,  a d (d€lNp ) :  O . 

s relatio n de bon ordre) : 0 . 
a a 

BUO ,  ||.|| K : O . 

B(K;f) ( f matrice de fonctions analytiques) : 0 . 

MK ,  J K :0 . 

M(A) ( A elf) : 1,1.3. 
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a a 

ST : 1,3.5.3, 1,3.12.1 . 
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ru ( u applicatio n R-linéair e ) : 1,4.1. 

V ,  W (e€R * ,  c€l« :  1,4.2. x:r '  v: c +  '  ' 

Xp (pe(H*)P) : 1,4.7., W (e€R* , 

, W (e€R* , c€l« , W (e€R* , 

Xp (pe(H*)P) :  1,4.7. 

C :  1,4.7. 
P 

rA ( A matric e à coefficients dans R ) : 1,4.7. 

W ' Cd;ô:c ( 6 6 R+ • e e K > c€^ : I>4-9' 

F°, ,  G°, : 1,5.1.3. 
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Ex(£) ,  E(£) (£ fonction analytique) : 11,1.1 . 

va;x(f), va(f) ,  v(f) ( f fonction analytique) : 11,1.1. 

Pa;P;J;x '  Pa;P;J;K; x '  Pa;J;x '  Pa;J;K;x ( J idéa l cohérent) : 11,1.2. 

Ma;P;J;x >  Ma;P;J;K;x >  Ma;J;x >  Ma;J;K;x < J idéa l cohérent) : 11,1.2. 

Jd : 11,2.0 . 

Mis N ,  uisv :  11,2.0. 

d̂ :  11,2.1. 

y T T ? 1 
a;M;W 9 a;u; v *  ii>z-1-

Pa;M;W 9 Pa;u; v :  n>2-3-

, W (e€R* , c€l« W 9 Pa;u; 

S<rJ*Y '  SJ-Y ^  idéa l cohérent) : 11,3.1. 

E S F  :  111,2.0. 

ïï(x;p) : 111,2.0. 

p»(K;x) ,  pM(K;x) ,  e(K;x) :  111,2.1. 

yK-x '  TK*x '  aK*x ̂ K compact convexe de C) : 111,2.2. 

yi;K;x '  yi *  Ti*K*x '  Ti '  aK*x '  a ̂ K Polycylindre compact) : 111,2.3. 

4;x > ^ >  TK;x >  ^ >  ^d;K;x >  °*d '  ad;K;x > ad :  m>2-4-
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A (d) (d€(]Np)m ) : 111,2.7.12. 

uP;a;d;K;x '  TP;a;d;K; x :  m>2-8-
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A£ :  111,4.4.2. 

*A:m >  :  ni,4.5.1. 

KP ,  K P ,  « P ,  $ :  111,5.1. 

P" »  P x '  P x '  ex :  HI'5-1-

Cm ,  V (  cp € CJ :  111,6.1.1. 

FCY/Z) ( F filtr e de Hahn-Banach) :  111,6.1.3 . 

W . < „ («P £V :  "1.6.1-4. 

p£ :  111,6.2 . 
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VQ , îf :  111,7.1.0. 

P . t.y > M . 7.y U idéal cohérent) : 111,7.2 
gen '  ' gen 

e , VO , V , V :  IV,1.0. 

P1I ;e;KxK' '  p1I;e '  ^jejKxK' '  T1I;e :  Iv»1-1-0-

eK';K '  '  6K;K' :  IV,1.1.0 . 

v0;1I;e '  TP;1I;e :  IV.1-1.0. 

XK;K, =  IV,1 .2. 

¥ ( f matrice de fonctions analytiques) :  VI, 1.3.1. 

B (KxK';t ) ,  B (KxK';£ > :  IV,1.3.1. 
ff ]N P n-îT 

JCM) :  IV,1.3.4. 

E (f) ,  v (f ) x '  a; x J (f matrice colonne de fonctions analytiques) :  VI, 1.4.1. 

a;M;x Pa;M;K;x ' M ii 
a;M;x 

M .  v (M modul e cohérent) : IV,1.4.2. 

Ai(d) ,  A (d ) :  IV,2.0. 

Vr. C f matrice de fonctions analytiques) : IV,2.1. r j a j q j i\.,x 

<_ ( < relatio n d'ordre total sur 1NP ) : IV,3.0.4. 
a a 

S v  ( M modul e cohérent) :  IV,4.1. 

Ma;M;X ' ' gen Pa;M;X ' ' gen 
(M modul e cohérent) : IV,4.1.3 . 

B(K;f) i [f morphisme de modules cohérents) : App.I 1,2.1. 

ll-lln;K 
(ri épimorphisme ) : App .11,2.1. 

Bn(K;M) (M modul e cohérent) : App.11,2.1. 
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IML-n'-r ( n >  n ' épiinorphismes ) : App.II,2.1. 

B(K;M) ( M modul e cohérent) : App.II,2.2.3. 

Mody.x :  App. 111,1.1.3. 

KP(Y) :  App. 111,1.3.1. 

p'(K;y) , p"(K;y) :  App.III,1.4.1. 
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Filtre d'effilements modérés le long de Z  :  111,6.2.1. 
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Recouvrement ouvert d'une compactification partielle : App.III,1.1.1. 

Relation d'ordr e antilexicographique sur 1N P :  1,3.12,1, 

Relation d'ordre antilexicographique sur H? : 1.3.5.3. 
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Variété analytique avec infini : App.III,1.1.2. 

360 



BIBLIOGRAPHIE 

[1] J.M . AROCA, H. HIRONAKA et J.L. VINCENTE, The theory of the maximal contact. 

Memorias de matematica del instituto "Jorge Juan", Vol. 29, Madrid 

(1975). 

[2] J.M . AROCA, H. HIRONAKA et J.L. VINCENTE, Desingularization therems. 

Memorias de matematica del instituto "Jorge Juan", Vol. 30, Madrid 

(1977). 

[3] D.A . BAYER, The division algorithm and the Hilbert scheme. Ph.D . Thesis, 

Harvard (1982) . 

[4] J . BRIANÇON, Weierstrass préparé, à la Hironaka. Astérisqu e n° 7 et 8, Paris 

(1973), 67-73. 

[5] J . BRIANÇON et A. GALLIGO, Déformations distinguées d'un point de $ ou 

R2. Astérisqu e n°7 et 8, Paris (1973), 129-138. 

[6] P . DELIGNE, Equations différentielles à points singuliers réguliers. Lectur e 

Notes in Mathematics, 163, Springer-Verlag, Berlin-Heidelberg-New York 

(1970). 

[7] A . DOUADY, Le problème des modules pour les sous-espaces analytiques com­

pacts d'un espace analytique donné. Ann. Inst. Fourier, Grenoble, 16, 1 

(1966), 1-95. 

[8] A . DOUADY, Platitude et privilège. L'enseignemen t Mathématique, Monographie 

n° 17. 

[9] A . DOUADY, Le théorème des images directes de Grauert. Astérisqu e n° 16, 

Paris (1974), 49-62. 

[10] A . DOUADY, Le problème des modules locaux pour les espaces C-analytiques 

compacts. Ann. Scient. Ec. Norm. Sup. 4ème série, t. 7 (1974) , 569-602. 

[11] A . DOUADY, J. FRISCH et A. HIRSCHOWITZ, Recouvrements privilégiés. Ann. Inst. 

Fourier, Grenoble, 22, 4 (1972) , 59-96. 

[12] R . DOUADY, Petites perturbations d'une suite exacte et d'une suite 

quasi-exacte. Séminair e d'Analyse, Nice (1966). 

[13] R . DOUADY, Produits tensoriels topologiques et espaces nucléaires. Astéris -

que n°16, Paris (1974), 7-32.  361

http://the.0A.em


G. MALTSINIOTIS 

[14] O.  FORSTER et K . KNORR, Ein Beweis des Grauertschen Bildgarbensatzes пасh 
Ideen vom B. Malgrange. Manuscripta Math., vol.5 (1971), 19-44. 

[15] J. FRISCH et J. GUENOT, Prolongements de faisceaux analytiques cohérents. 

Inventiones Math. 7 (1969) , 321-343. 

[16] A . GALLIGO, A propos du théorème de préparation. Lectur e Notes in Mathema-

tics, 409, Springer-Verlag, Berlin-Heidelberg-New York (1973), 543-579. 

[17] A . GALLIGO, Sur le théorème de préparation de Weierstrass pour un Idéal de 

$$. Astérisqu e n°7 et 8, Paris (1973), 165-169. 

[18] A . GALLIGO, Théorème de division et stabilité en géométrie analytique lo­

cale. Ann. Inst. Fourier, Grenoble, 29, 2 (1979) , 107-184. 

[19] A . GALLIGO, Algorithmes de calcul de base standards. Publication s Mathéma-

tiques, université de Nice, vol. n° 9 (1983) . 

[20] A . GALLIGO et C. HOUZEL, Module des singularités Isolées d'après Merdier 

et Grauert. Astérisqu e n° 7 et 8, Paris (1973), 139-163. 

[21] J . GIRAUD, Sur la théorie du contact maximal. Math. Z. 137 (1974) , 285-

310. 

[22] H . GRAUERT, Ein Theorem der analytischen Garbentheorie und die Modulräume 

komplexer Strukturen. Publ. Math. I.H.E.S., 5, Bures-sur-Yvette (1960). 

[23] A. GROTHENDIECK et J.A. DIEUDONNÉ, Eléments de Géométrie Algébrique I . 

Die Grundlehren der mathematischen Wissenschaften, Band 166, Springer-

Verlag, Berlin-Heidelberg-New York (1971). 

[24] H. HIRONAKA, Resolution of singularities of an algebraic variety over a 

field of characteristic zero, I  et II . Ann. of Math. 79 (1964) , 

109-326. 

[25] H. HIRONAKA, Characteristic polyhedra of singularities. J. Math. Kyoto 

Univ., vol.7, n° 3 (1967), 251-293. 

[26] H. HIRONAKA, Bimeromorphic smoothing of complex analytic spaces. Preprint , 

Université de Warwick (1971). 

[27] H . HIRONAKA, La voûte étoilée. Astérisqu e n° 7 et 8, Paris (1973), 415-440. 

[28] H . HIRONAKA, Introduction to the theory of Infinitely near singular points. 

Memorias de matematica del instituto "Jorge Juan", vol. 28, Madrid 

(1974). 

[29] H. HIRONAKA, Flattening theorem in complex-analytic geometry, Am . J. of 

Math, vol.97, n° 2 (1975), 503-547. 

362 



BIBLIOGRAPHIE 

[30] H . HIRONAKA, M. LEJEUNE et B. TEISSIER, Platiflcateur local en géométrie 

analytique. Astérisqu e n° 7 et 8, Paris (1973), 441-463. 

[31] L . HÖRMANDER, On the division of distributions by polynomials. Arkiv för 

Mathematik, 3 (1958) , 555-568. 

[32] R . KIEHL et J.L. VERDIER, Ein einfacher Beweis des Kohärensatzes von 

Grauert. Math. Ann. 195 (1971) , 24-50. 

[33] M . LEJEUNE et B. TEISSIER, Normal cones and sheaves of relative jets. 

Preprint, Université de Warwick (1971). 

[34] M . LEJEUNE et B. TEISSIER, Quelques calculs utiles pour la résolution des 

singularités. Séminair e Ecole Polytechnique (1972). 

[35] M . LEJEUNE et B. TEISSIER, Contribution à l' étude des singularités. 

Thèses Université de Paris VII (1973). 

[36] M . LEJEUNE et B. TEISSIER, Transversalité, polygone de Newton, et instal­

lations. Astérisqu e n° 7 et 8, Paris (1973), 75-119. 

[37] S . LOJASIEWICZ, Sur le problème de la division. Studi a Math. 18 (1959) , 

87-136. 

[38] S . LOJASIEWICZ, Ensembles semi-analytiques. Note s miméographiées par 

l'I.H.E.S, Bures-Sur-Yvette (1965). 

[39] B . MALGRANGE, D i v i s i on des distributions. Séminair e Bourbaki 1959/60, 

n° 203. 

[40] B . MALGRANGE, Sur les fonctions différentiables et les ensembles analyti­

ques. Bull . Soc. Math. France, 91 (1963) , 113-127. 

[41] B . MALGRANGE, Ideals of differentiable functions. Oxford Univ. Press (1966), 

[42] G . MALTSINIOTIS, Precise vanishing theorem. Astérisque n°17, Paris (1974), 

51-67. 

[43] G . MALTSINIOTIS, G.A.G.A. affine (d'aprè s Pierre Deligne). Astérisque 

n° 17, Paris (1974), 141-160. 

[44] G . MALTSINIOTIS, Transvensalité obtenue par éclatements permis. Bull . Soc. 

Math. France, 108 (1980) , 365-400. 

[45] J . MATHER, On the preparation theorem of Malgrange : Stractural stability 

of mappings. Note s miméographiées, Princeton (1966). 

[46] M . NAGATA, Embeding of an abstract variety in a complete variety. J . Math. 

Kyoto 2, 1 (1962) , 1-10. 

363 



G. MALTSINIOTIS 

[47] G . POURCIN, Théorème de Douady au-dessus de S.  Annali della Scuola 

Normale Superiore di Pisa, t. 23 (1969) , 451-459. 

[48] G . POURCIN, Polycylindre pr i v i l ég iés . Astérisqu e n° 16, Paris (1974), 

145-160. 

[49] G . POURCIN, Sous-espaces pr i v i l ég ié s d'un polycylindre. Ann. Inst. Fourier, 

Grenoble, 25, 1 (1975) , 151-193. 

[50] J.P . SERRE, Géométrie algébrique, et géométrique analytique. Ann. Inst. 

Fourier, Grenoble, 6 (1956) , 1-42. 

[51] J.P . SERRE, Prolongements de faisceaux analytiques cohérents. Ann. Inst. 

Fourier, Grenoble, 16, 1 (1966) , 363-374. 

[52] H . SPÄTH, Ver Weierstrassche vorbereitungssatz. Crelle Journ., 161, (1929), 

95-100. 

[53] K . WEIERSTRASS, Einige auf die Theorie der analytischen Functionen mehrerer 

Veränderlichen sich beziehende Sätze. Mathematisch e Werke von Karl 

Weierstrass, Vol. II, Berlin (1895), 135-188. 

[54] H . CARTAN, Idéaux de fonctions analytiques de n variables complexes. 

Annales E.N.S., 61 (1944), 149-197. 

[55] H . GRAUERT, über die Deformation i s o l i e r t e r Singularitäten analytischer 

Mengen. Inventiones Math. 15 (1972), 171-198. 

[56] B . MALGRANGE, Frobenius avec s ingulari tés . Publ. Math. I.H.E.S., 46, 

Bures sur Yvette (1976), 163-173. 

364 



POSTFACE 

Après avoir terminé la rédaction de ce livre, j'ai appris que E. Bierstone 
et P. D. Milman avaient obtenu [57], de façon indépendante, des résultats de 
semi-continuité du diagramme de Newton analogues à ceux du chapitre II de 
ce livre. Leurs résultats sont à la fois beaucoup plus généraux et précis que 
ceux du chapitre II, et insuffisants pour les applications en vue dans ce livre. 

Ils se placent dans le cadre suivant. Ils considèrent un morphisme d'espaces 
analytiques (j> : X —• Y, M (resp. J\f) un (9x-module (resp. Oy-module) 
cohérent et / : J\f —• </>*(wM) un morhisme de Oy-modules (on remarquera 
que (f)*(A4) n'est pas forcément un module cohérent). On en déduit, pour 
tout a, a G X , une application Oy^a)-linéaire fa : A/^( a) —• M a - Soient 
s G N et Xfp le produit fibre s-uple de X au dessus de Y 

X^ = {a = (a i , . . . , a s ) G Xs : 0(ai) = . . . = <l>(as)} . 

Pour tout a = (a i , . . . , a 5 ) G X ^ , on pose 1Za 

s 

f] Ker( / a . ) . Bierstone et 
i=l 

Milman étudient la variation de 7£a en fonction du point a de X ^ . Le cas qui 
nous intéresse ici est celui où Y est un ouvert U de C p et où J\f est égal à O y . 
Si l'on désigne par < L B la relation d'ordre sur N p + n définie par 

d <lb d! {dM\)<L{d\\df\) , 

où < l désigne l'ordre antilexicographique sur N p + n + 1 , on note IHa l'ensemble 
des exposants privilégiés du sous-module TZa de O y 6 , relativement à la relation 
d'ordre <lb, où si a = (a i , . . . , a n ) , alors b = 0(ai) = . . . = (f>(an). Sous ces 
hypothèses, Bierstone et Milman démontrent que !SHa est semi-continu comme 
fonction de a dans les cas suivants: 

(a) Cas algébrique: (f> est un morphisme d'espaces algébriques, A4 et Af 

sont algébriques cohérents, et f est algébrique. 
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(b) Cas régulier: X est régulier, (f) est régulier et f est le morphisme 

f : Oy —> <t>*(Ox), déduit de 6. 

(c) Cas fini: X est de Cohen-Macauley et (j) est localement fini. 

(d) Cas cohérent: X = Y et 4> = idx-

En plus, ils démontrent, dans ces cas, un théorème analogue à la propositior 
3.6 du chapitre II. 

Le cas étudié au chapitre II de ce livre est le cas (d) ci-dessus. Ce ca 
est trivial et classique pour la relation d'ordre <lb utilisée par Bierstone € 
Milman, qui ne le citent d'ailleurs que pour mémoire. En effet, l'argument d 
platitude utilisé dans le chapitre II est alors immédiat, sans aucun passage à 1 
limite. Il en est de même pour toute relation de bon ordre sur N p (compatibl 
avec sa structure de monoïde et moins fine que le relation d'ordre produit < ] 
telle que N p muni de cette relation d'ordre soit isomorphe, en tant qu'ensembl 
ordonné, à N muni de sa relation d'ordre naturel. Les difficultés commencer 
quand il existe des suites strictement croissantes infinies mais bornées, comm 
il en existe dans le cas de l'ordre antilexicographique pur <l> La raison pou 
laquelle on s'intéresse particulièrement à ce cas est que c'est le seul cas où l'o 
obtient des majorations s'exprimant de façon vraiement simple. 

J'ignore si les méthodes de Bierstone et Milman peuvent s'adapter à ce caj 
A priori dans leurs article on utilise explicitement l'hypothèse qu'il n'y a pa 
de suite infinie strictement croissante et bornée. Néanmoins, en étudiant 1 
façon dont le diagramme de Newton dépend de la relation d'ordre on pourraii 
peut être, contourner cette difficulté. 

[57] E. Bierstone, P. D. Milman, Relations among analytic functions I. 

Ann. Inst. Fourier, 37, 1 (1987), 187-239. 
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ABSTRACT 

The object of this book is the study of the following problem. Consider a 
domain U of Cp and a linear system with coefficients in T ( U , O 1 ^ ) , in other 
words, a matrix (fij)i<i<n,i<j<m, where fa E T(U, Op

c), or equivalently an 
(9(/-module morphism 

W 9 Pa;u;W)m —» B(K)n 9 P 

For every compact polycylinder i f of Cp contained in [/, if we denote by 
B(K) the normed Banach algebra of functions continuous on i f and analytic 
in the interior of if, the morphism / defines, by restriction of the fij to if, a 
B(K)-linear continuous map 

B(K;f) : B(K)m —» B(K)n 

which can be considered as a linear system of n equations in m unknowns, 
with coefficients in B(K). We want to define a C-linear continuous procedure 
associating to every g E B(K)n an element h E B(K)m, which is a solution of 
the system if g E Im(B(K; / ) ) , in other words, to define a C-linear continuous 
map 

a : B(K)n B(K)m 

such that 
B(K;f)oaoB(K;f) = B(K;f) 

We then say that a is a scission of B(K;f). This is not always possible. If 
we denote by Q the (9[/-coherent module cokernel of the morphism / , the 
existence of such a a is equivalent to the assertion that К is Q-privileged in 
the sense of Douady. The aim of this book is to define C-linear, continuous 
scissions а к of В (if, / ) , in such a way that we can "control" the growth of 
the norm of o k , when i f varies, at least for "sufficiently small" if. We obtain 
the following theorem: 
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Theorem.- Let U be a domain ofCp and f : O™ —• O7^ a morphism ojO\j-
modules. There exist a C-analytic stratification (XJ)J^J of U and for every 
j , j G J, an element dj = ( c ^ , . . . ,djp) of Np, a real number 6j, 6j G 
and two continuous functions 

<Pj : Xj - RI and : Xj -> R ; 

with polynomial growth along Xj — Xj (Xj being the closure of Xj in U), 
such that for every point x of Xj and every closed poly disk K of center x and 
polyradius p = ( p i , . . . , p p ) , p G ( R + ) p , the inequalities 

P2 < Pi ,pp < pp-i 

imply that K is contained in U and that there exists a C-linear continuous 
scission ax ofB(K;f) such that 

\WK\\K < 4>j(x)/pdi 

P d 

(where pdi = Y[ Pi3*)-
2=1 

In fact, we prove a more precise and more general result. More precise, 
because we give explicit formulas for dj and 6j, in terms of the minimal privi­
leged exponents of the sub-module Im(/) of Ou, and for cpj and ^ j , in terms 
of the partial derivatives of the coefficients of the matrix defining the mor­
phism / , the stratification (Xj)j^j being canonically constructed, depending 
only on the sub-module Im(/) of Ou- More general, because we replace the 
inequalities (I) by more general conditions, depending on the choice of an 
order on N p , and the polydisks by poly cylinders. 

The main two ingredients of the proof of this theorem are a precise numerical 

and uniform version of Hironaka's division theorem, proved in chapter III, 

and the construction of a stratification such that the set of minimal privileged 

exponents is constant on every stratum, in chapter II. 

In appendix III, we sketch an application of our theorem to a generaliza­

tion of Serre's "GAGA" theorem for non-proper C-algebraic schemes. We 

define a notion of moderate section of a coherent sheaf, with respect to a 

partial compactification, and hence a functor of "global moderate sections". 

We use the results of appendix II to prove that this functor is left exact. 

We define a "moderate cohomology" corresponding to right derived functors, 

which is technically defined by the use of some Grothendieck topology. This 

cohomology is used to state a generalization of the GAGA theorem the proof 

of which depends on the results of this book and a subtle version of Hironaka's 

theory of the "voûte étoilée", to be published elsewhere. 
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