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PREFACE

Ce livre est consacré a I’étude de majorations uniformes de solutions parti-
culiéres de systémes d’équations linéaires a coefficients holomorphes, qui sont
présentés en détail dans la premiére page de I'introduction. Bien qu'’il s’agisse
d’une question élémentaire et fondamentale, on ne disposait, jusqu’a ce jour,
d’aucune étude compléte de ce probleme. J’espére que cet ouvrage servira a
combler cette lacune. Le champ d’applications directes est vaste. En appen-
dice III, on en esquisse une plus indirecte. On y explique comment on pourrait
procéder pour fonder une théorie de cohomologie modérée permettant de gé-
néraliser le “GAGA” de J. P. Serre [50] dans le cas non propre.

L’outil mathématique qui est au centre de ce travail est le théoreme de
division de Hironaka avec ses diverses variantes. Les idées de base sont la
semi-continuité du polygone de Newton, la stratification qui la manifeste et
le “comportement modéré” de la division de Hironaka sur chaque strate. Des
méthodes analogues ont été utilisées dans le passé (par Hironaka entre autres!)
et plus récemment par E. Bierstone et P. D. Milman [57], dans un contexte
différent. Dans une postface, j’expliquerai le rapport qui existe entre leur
travail et le mien. Au chapitre IV, une “astuce” permet de ramener toute
division par un sous-module & une division par un idéal (sur un autre espace),
ce qui s’avere crucial pour la démonstration de certains résultats. Je pense
d’ailleurs que le cadre naturel du théoreme de division est celui des idéaux, le
chapitre IV étant une illustration de cette affirmation (mais cela n’est peut étre
qu’une question de gotit). Ce point de vue permet, en tout cas, de démontrer
une version plus générale de ce théoreme.

Toutes les démonstrations dans ce travail sont détaillées et aussi completes
que possible. C’est un pari volontaire, méme si cela est aux dépens de la
concision du texte. Cette regle ne s’applique évidemment pas a ’appendice III
qui n’est que le plan d’un travail qui fera 'objet d’une publication ultérieure.
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La démonstration des énoncés de cet appendice nécessite, en plus des résultats
du présent travail, une version tres fine de la théorie de la voite étoilée de
Hironaka. Par ailleurs, les définitions qui y figurent ont été volontairement
“simplifiées” pour éviter d’introduire la notion d’éclatements permis.

Les références internes sont données suivant le systéme décimal. Par exemple,
dans III, 4.3.2, le chifre III indique le chapitre, le chiffre 4 le paragraphe et
le chiffre 3 la section du paragraphe. A lintérieur du méme chapitre, on sup-
primera la mention du chapitre. On se référe aux appendices selon le méme
principe en ajoutant le préfixe App. Les chiffres entre crochets correspondent
aux ouvrages cités dans la bibliographie.

Je remercie Adrien Douady qui m’a initié a la géométrie analytique, ainsi
que Jean Giraud qui m’a guidé dans les “foréts” et autres “jardins”, “bos-
quets” et “polybosquets” de Hironaka. Je remercie Chantal Postadjian qui
a assumé courageusement la tache ingrate et particulierement difficile de la
frappe de ce texte rempli de formules et de symboles.

Ce livre est dédié a la mémoire de Jean-Louis Verdier. Au cours des années,
ses encouragements, ses conseils, sa rigueur et son perfectionnisme, aussi bien
sur le fond que sur la forme, m’ont aidé a achever cet ouvrage. Sans lui, ce
travail n’aurait sans doute jamais eu sa forme actuelle et serait resté au stade
des versions préliminaires et incomplétes.



INTRODUCTION

1. L'axe principal de ce travail est 1'étude du probléme suivant. On considére
un ouvert U de €° et un systéme d'équations linéaires a coefficients dans

N e
, ou f1 F(U’OCP) , ou

F(U,Ocp) , C'est-a-dire une matrice (fij) :

1<isn,1<jsm
encore, ce qui est équivalent, un morphisme de OU-modules

f :OE S OE
Pour tout polycylindre compact K de (g (K==K1><...><Kp , ol pour tout i ,
lsisp , K, est un compact convexe d'intérieur non vide de C ) contenu dans

U, si 1'on désigne par B(K) 1'algébre de Banach normée des fonctions continues
sur K et analytiques sur K , munie de la norme H.|k , définie par

llgll = suplgx)| , pour g€B(K) ,
X€K

le morphisme f définit, par restriction des fij sur K, une application

B(K)-linéaire continue
B(K;£):B(K)™ — BE)"

qu'on peut aussi considérer comme un systéme de n équations linéaires a m

inconnues a coefficients dans B(K) . On cherche un procédé permettant d'associer
C-lin€airement a tout élément g de B(K)", c'est-a-dire & tout second membre de
notre systéme d'équations, un élément h de B(K)m qui en soit une solution,
si g€ Im(B(K;f)) , et cela d'une facon continue. Cela équivaut a définir une

application C-linéaire continue
o : BK) —> B(K)"
telle que
B(K;£f) eo o B(K;f) = B(K;f)

On dit alors que o est une scission de B(K;f) . Cela n'est pas toujours possi-
ble. Si 1'on désigne par Q le OU-module cohérent conoyau du morphisme f |,
1'existence d'un tel ¢ équivaut a affirmer que le polycylindre K est privilé-
gié pour Q , au sens de Douady [7]. Le but de ce travail est de définir des
scissions C-lin€aires continues % de B(K;f) , de telle sorte qu'on puisse
"contrbler' la croissance de la norme de o en fonction du polycylindre pri-
vilégié K , du moins pour K '"assez petit'. En termes de systéme d'équations
linéaires, il s'agit de trouver un procédé C-linéaire continu de détermination
d'une solution particuliére, avec ''contrdle' de sa norme, en fonction de celle

du second membre et cela d'une fagon "uniforme" en fonction du compact privilégié
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K

I1 existe un cas simple. C'est le cas ol le conoyau Q de f est un O -module

U
localement libre. Dans ce cas, tout polycylindre compact de €® contenu dans U
est privilégié pour Q , et comme f posséde localement des scissions OU—linéai-

res, il est facile de voir qu'il existe une fonction continue

Y :U—> Eq

et un recouvrement ouvert (U.l)iEI de U tel que pour tout polycylindre compact
K de @P , contenu dans au moins un des Ui , 11 existe une scission €-linéaire
continue ok de B(K;f) (qui peut méme étre, dans ce cas, choisie B(K)-linéaire)

telle que

logll < sup w(x)
x€K

Le cas général est beaucoup plus difficile. Le résultat le plus fin obtenu dans
cette direction, avant ce travail, est df a J.L. Verdier qui s'inspirant des
méthodes de B. Malgrange [56] et A. Douady [7] démontre, dans un texte inédit, le
théoréme suivant :

THEOREME (J.L. Verdier).- Sodient U un ouvert de e et f: 03 — OE un mor-
phisme de OU—moduleA. Alons pourn tout point x de U AL existe des nombres néeds
e, § et A, €€R} ,S€R, , A€R, et un élément d=(d1,...,dp)
de NP tels que pour tout polydisque fermé K de centre x et de polyrayon
0 = (pyseespy) > 0€(RDP , Les infgakites
. § 9

p1<e, pz<o1,...,pp<pp_1

Ampliquent que K s04it contenu dans U et qu'il existe une scission C-Lindaire

continue o, de B(K;f) zelle que

K

d
loglly < Ao
1%
(0L pd -1 d.

Le but principal de cet ouvrage est d'é€tudier la variation de ¢ , § , A et
d en fonction du point x de U . On obtient le théoréme suivant :
THEOREME.- Soient U un ouvert de € et f: OE — OE un morphisme de
OU—moduleA. 12 existe une stratification C-analytique (Xj)j€J de U et pour
tout j , jEJ , un éLément d5 de NP, un nombre réel 6j , dj eER; , et

deux fonctions continues

tpj:Xj—vR: et l"'j:xj_’]R: ,


http://ouve.it
http://�le.me.nt
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modéndes (& croissance polynomiale) Le Long de X.-X. , ol X. désigne £'adhé-
rence de X. dans U , Ztels que pour tout point x de X. et tout polydisque
fermé K de centre x et de polyrayon p = (01,...,pp) , PE (Rj)p , Les
Anegalites

§. §.
(D py<1/05() pz<p13,.--,op<op21
impliquent que K 404t contenu dans U et qu'dil existe une scission C-Linlaire
continue oy de B(K;f) teﬁledque

loyll = v;00/0 )

On remarque que les inégalités ci-dessus impliquent, en particulier, que le
polydisque compact K est privilégié pour le conoyau de f . C'est pour cette
raison qu'on appellera ce théoréme, théoréme de "privilége numérique uniforme'.

En fait, on obtient un énoncé plus précis et plus général. Plus précis, car on
donne des formules explicites de d. et §; en fonction des exposants privilé-
giés minimaux du sous-module Im(f) de 03 '(définis dans le chapitre 1V) et on
exprime . et Y. en fonction des dérivées partielles des coefficients de la
matrice définissant le morphisme f , la stratification (X.).EJ étant cons-
truite canoniquement et ne dépendant que du sous-module Im(f) de OB . D'autre
part, on remplace les inégalités (I) par des conditions plus générales (dépendant
du choix d'une relation de bon ordre sur NP ), conditions qu'on étend aux
polycylindres (tandis que dans 1'énoncé précédent on se limite aux polydisques ).
La version précise du théoréme est nouvelle méme dans le cas ''ponctuel’, et peut
étre utile 3 la majoration uniforme des normes des scissions des morphismes ap-
partenant 3 une famille infinie.

L'approche de J.L. Verdier ne peut pas étre adaptée pour démontrer le théorcéme
de privilége numérique uniforme. En effet, elle repose sur un dévissage du co-
noyau de f qui dépend du point x et se préte fort mal 3 une &tude uniforme.
La stratégie adoptée ici est basée sur le théoréme de division par un idéal de
Hironaka ([24] et [1]) et Grauert [55] . On en démontre une forme plus précise
(numérique uniforme) généralisant la version Hironaka du théoréme.

Le théoréme de privilége numérique uniforme peut s'appliquer a 1'étude de
nombreux problémes en rapport avec la majoration uniforme de solutions de systcémes
d'équations linéaires a coefficients C-analytiques. La principale application
esquissée dans ce travail concerne 1'établissement de thcories cohomologiques
"avec conditions de croissance'. Pour cela, on étend le théor¢me de privilcge
numérique uniforme aux morphismes de modules cohérents (pas forcément libres), en
suivant d'assez prés des idées de J.L. Verdier, et ensuite on en déduit une

~

variante utile 4 1'étude de la variation de la norme des scissions construites
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dans ce théoréme quand ''on s'approche" d'un fermé analytique. On utilise ce
résultat pour démontrer 1'exactitude 3 gauche d'un foncteur "sections modérées' ,
ce qui permet de définir une cohomologie '"modérée'. On en déduit une généralisation
du théoréme de ''GAGA" de J.-P. Serre [50] pour les variétés algébriques non
nécessairement propres.

Pour résumer, les deux théories qui ont le plus influencé ce travail sont la
théorie du 'privilége' et la théorie de "division". Les premiers ''théorémes des
voisinages privilégiés" sont dus a H. Cartan [54] et H. Grauert [22] . La notion
de compact privilégié€ qui est implicite tout le long de cet ouvrage (bien qu'elle
ne soit explicitement mentionnée qu'a partir de 1'appendice II) a été introduite
par A. Douady [7] a qui 1'on doit 1'utilisation systématique des techniques des
espaces de Banach en g€ométrie analytique. Une caractérisation particuliérement
€légante des polycylindres privilégiés a été obtenue par G. Pourcin [48] . Le
théoréme de division de Hironaka ([24] et [1]) et Grauert [55] , descendant
lointain du th€oréme de préparation de Weierstrass [53] , a été amélioré et sim-
plifié par A. Galligo ([16] et [18]). Le lien entre ces deux théories est la
notion de scission continue introduite par B. Malgrange [56] dont la contribution
est grande aussi bien dans la théorie du privilége que dans le développement de
versions différentiables du théoréme de division. La notion de scission a &té
exploitée dans 1'étude numérique du privilége par J.L. Verdier.

Le concept de fonction modérée a été introduit par P. Deligne [6] , et son in-
térét découle des inégalités de kojasiewicz [38]. Les travaux de Deligne, en vue
d'une généralisation du fameux 'GAGA' de J.-P. Serre [50], ainsi que la théorie
de la vofite étoilée de Hironaka [27], inspirent largement les idées développées
dans 1'appendice III.

Les techniques utilisées dans ce travail sont cellesde la géométrie analytique.
Ce sont Henri Cartan et ses éléves qui en ont posé les fondements dans le célébre
séminaire & 1'Ecole Normale Supérieure. Des théorémes devenus classiques comme
les théorémes A et B de Cartan ou le théoréme de cohérence de Oka sont utilisés
sans référence. Les contributions ultérieures de Grauert et de Hironaka sont
capitales. Les théorémes de 1'image directe de Grauert et de désingularisation
de Hironaka sont implicitement utilisés dans 1'appendice III.

Dans la suite de cette introduction, on exposera sommairement les notions et
les méthodes utilisées pour démontrer le théoréme de privilége numérique uniforme,
ainsi que les résultats intermédiaires présentant un intérét indépendant.
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2. Pour toute relation de bon ordre ga sur NP , compatible avec sa structure
de monoide et moins fine que la relation d'ordre produit < sur N (il en
existe et on en donnera une classification compléte au chapitre I, §3, 1'exemple
le plus simple étant celui de 1'ordre antilexicographique < L défini par

d = d'e>(d=d') ou [3i, 1<i sp : [(di0<dio) et (vi, io<i§p:di=di')]]
pour d=(d1,...,dp) , d'= (d"""dl')) , d€ NP , df ENP) et toute série con-
vergente 2 p variables f , f£#0 , f= & ay Xd ,

a4 d deN’
(ot X =X1 .....pr si d= (d1,...,dp)) , on définit 1'exposant privilégié de
f pour Soz comme étant le plus petit élément de 1'ensemble

E(f) = (de N : ay #0}

pour la relation de bon ordre ga , noté Va(f) . Pour tout ¢ , eE]R: , et
tout detd ,d=(dp,...,d), d'=(df,e000dp) denN , d'eN , on
pose

di—d.

1
Py

n s

[ = «\P .
\/d'-d;E = {(01,...,pp) € (]R+) :

i=1

Au chapitre I, §4, on démontre que la famille

)

Var-a;elaen’, a'eN?, d< d', ceR:

est un systéme de générateurs d'un filtre sur (]Rj:)p , noté Fy , plus fin que
la trace sur (]R:)p du filtre des voisinages de zéro dans R°
Si 1'on désigne par N 1'application de (€*)P dans (IR’J:)p , définie par
- * P
N(x1,...,xp) = (|x1|,...,|xp|) , pour (x1,...,xp)€(¢) ,

on vérifie aisément que la famille

-1

N (A))AGF
est une base d'un filtre sur (C*)P , noté F4 , tel que pour toute série con-
vergente f , f#£0 , fszZNp ach‘l , on ait

lim, (/a4 Xdo) =1 ,
o o
ol d0=va(f) . En plus, le filtre F& est la trace sur (G*)p d'un filtre plus
fin que le filtre des voisinages de zéro, possédant une base formécde parties
ouvertes de (P
Dans ce travail on s'intéresse davantage au filtre Foc qu'au filtre FO'L et

on a besoin d'une description parfaitement explicite d'une base de ce filtre.

Ce sera le but principal du chapitre I. On signale simplement ici que dans le cas

ou la relation d'ordre ga est la relation d'ordre antilexicographique S
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le filtre Fu. est le filtre engendré par la base de filtre (E6;3)6€]R+;e€IR: ,

ou pour tout ¢ et ¢ , 6€R,_, e€RY ,

g = pP. § §
Eé;t—: {(p1,...,pp)€(]RI) 01 <€, p2<p1,...,pp<pp_.l}

3. Dans le chapitre II, §1, on introduit la notion de 1'ensemble des exposants
privilégiés d'un idéal. Etant domné un idéal I de 1'anneau des séries convergen-
tes a p variables C{X} = C{X1,...,Xp} , on dit que d , de NP , est un
exposant privilégié de I pour Sa s'il existe une série convergente f ,

f£40 , fel , telle que d=Va(f) et on désigne par Pa‘I
b
exposants privilégiés. Si I est un idéal principal engendré par la série con-

1'ensemble de ces

vergente £ , f£#0 , alors il est facile de voir que

P .= d+ NP
(X)
ou d=V (f) . Dans le cas général, si 1l'on désigne par Vl 1'ensemble des

31
elements minimaux de P .1 pour la relation d'ordre prodult < sur N

(qui est un ensemble fml (I,1.1)), on vérifie tout aussi facilement que
Pyp = . U (@)
’ deM
a3l
Mais alors il n'est pas toujours vrai que si (fi) <ig désigne un systéeme de

générateurs de 1'idéal I , on ait
M ,IC{dV'"’dm} ,

ou pour tout i , 1<igm , dizvo.(fi) . En revanche, on démontre (III,5.4.3)
que si (fi)1<i<m désigne une famille d'éléments de I telle que

Ma;IC{dT""’dm}

ou pour tout i , 1£ism , di=va(fi) , alors la famille (f ) 1<i
engendre 1'idéal I

4. Soit U un ouvert de P . Pour tout point x de U et toute fonction analyti-
que £ , fer,o p) , on désigne par fx la série de Taylor de f au point x
C

= X
X genp 9xa
d, +.
. p aldlf 5 1 pf .
(o dl'=1m d.! et q d , si d=(d1,...,dp)) et pour tout
= X, ax P
p
idéal cohérent J de 0y »on désigne par Iy 1'idéal de C{X} engendré par

10
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les séries convergentes fx pour fer(',7y , ot U' est un ouvert de c?
contenu dans U et contenant x (ces notations sont conformes aux notations

classiques modulo 1'identification de 0 a C{X} moyennant les coordonnées
C,x

)(1,...,Xp de € . L'objet du chapitre II est 1'étude de la variation de

P ou, ce qui revient au méme, de M _, quand x varie dans U

oL;JX o) JX

Dans le cas ot J est un idéal principal (qu'on supposera, pour simplifier,
nul sur aucune composante connexe de U ) , c'est-a-dire ou il existe f ,
ferT(U,n , (identiquement nul sur aucune composante connexe de U ) qui engendre
J au-dessus de U , cette étude est simple. En effet dans ce cas, comme pour

= = p 4 d= i i
tout x , xeU , Moa;Jx {d} et POL,JX d+ N ,ou d Va(fx) , 11 suffit
d'étudier la v:'ar‘iation de Va(fx) . Or, si pour tout d , de€ NP , on désigne

par J4 1'idéal cohérent de OU engendré par la famille

et par Y d le sous-espace analytique fermé de U défini par 1'idéal J 4 alors
la famille (Y d) dnNP indexée par 1'ensemble bien ordonné N par éoc , est

une famille décroissante pour la relation d'inclusion, on a YO =U ,

n Y, =@ ; et sipour tout d , de€ N , On pose
e ¢
fa=Ya Vs @

ou Sa(d) désigne le successeur de d pour la relation de bon ordre S la

famille (Z est localement finie, et pour tout x , x€U , ona

Pde NP
XE Zd , Si1 et seulement si Va(fx) =d . On en déduit d'une part, qu'il existe
une stratification C-analytique (ZJ'.)J.EJ , telle que pour tout j , jedJ ,
et tout xet x' , Xx¢€ ZJ! , X'€ ZJ'. , on ait Va(fx) = Va(fx') et d'autre

part, que pout tout point Xy xer , il existe un ouvert U'de P contenu
dans U et contenant Xy s et une famille finie (di)1§i§m d'éléments de NP
tels que pour tout i , 1<ism , on ait di <o d0 , ol do=va(fx ) , et

tels que pour tout x , Xx€U' , il existe i , 0<izm , tel que Vq(fx)zdi’

Dans le cas général, 1'étude de la variation de Ma (ou de P ) est

3 J. a;J.

beaucoup plus difficile. On est amené a introduire un bi)f(oncteur covariznt de la
catégorie des (-modules cohérents dans celle des modules gradués sur la 0Oy-algebre
des polyndmes a p indéterminées OU[T1 yoon ,Tp] , graduée par NP,

En démontrant un théoréme de commutativité de ce foncteur au produit tensoriel,
sous des hypotheses de transversalité, par un argument délicat de passage a la

limite par récurrence transfinie et platitude supérieure (I11,2.6.3), on établit

11
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dans le cas général aussi, 1l'existence d'une stratification C-analytique (Zj)j eJ
de U telle que pour tout j , jeJ , et tout x et x' , xe€Z. , X'€Z.

J
on ait M =M = 3. . C'
i b3, ‘a;Jx' T Pa;JX') (I1, 3.5 ). C'est 1le
premier résultat important de ce travail. En fait c'est un résultat beaucoup plus

précis que 1'on démontre (II, 3.6 ).

PROPOSITION.- bour tout feamé analytique innéductible Y de U , 4L existe un
fjermé analytique S de Y d'intérnieun vide (dans Y ) et une famille ginie
(dj)1 $jsm d'éeements deux a deux distincts de N tels que pour tout x ,

X€Y-S , onait M 5 = {d1,...,dm} , et pour tout ouvert de Stein U' nela-
b

(donc aussi Pa

tivement compact dans U nencontrant Y , 4L existe un ensemble find 1 , une
famille (S;) i€1 de fermés analytiques d'intérnieur vide de YNU' et une famille

(Fij)iEI,1§j§m d'éféments de F(U'XU',OUXU) teks que :

i) n SicSﬂU' 5
i€l
ii) powr tout ietj , i€l , 1sjsm , et tout x  , X,€YNU' ,
84 L'on désigne par fi' L'élément de I‘(U’,OU) dégini par fij(x)=Fij(xo,x) s

J
pour x€U' , ona :

b) Va(fijxo) 2, dj et Va(fijxo) = dj » 44 x €YNU'-S;

5. Les chapitres III et IV sont consacrés a la démonstration du théoréme énoncé
au paragraphe 1, sous une forme un peu plus générale. Pour ne pas trop charger
cet exposé préliminaire, on se limitera au cas des polycylindres particuliers que
sont les polydisques fermés. On rappelle qu'un polydisque fermé de centre x et
de polyrayon p , ou x=(x1,...,xp) , xecP et p = (p.l,...,p ),

= P
pEeE (]R’+‘)p , est la partie D(x;p) de c® définie par
Dx30) = {(yqpeey )€ cvi, T5isp  [y;-x;] 505}

Etant donné une relation de bon ordre < sur N , compatible avec sa
structure de monoide et moins fine que la relation d'ordre produit < sur N
et un point x de P , on dira qu'une propriété est satisfaite pour tout poly-
disque fermé de centre x et de polyrayon suffisamment effilé pour S4 ? si 1'en-
semble des polyrayons p , pE€ (]R:‘_)p , pour lesquels le polydisque D(x;p)
satisfait a cette propriété, appartient au filtre Fo défini précédemment. Au

chapitre IV on démontre le théoréme suivant (IV, 4.4.2).

12
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THEQBEME.— Soient U un ouwvert de €° et £ :Og-——aoﬁ un morphisme de
OU—moduKQA. 1L existe une stratification C-analytique (Xj)jEJ de U et pour
tout j , jE€J , un élément dj de N et une fonction continue

3 :X; —> RY , modénée Le Long de Xﬂ-Xj , tels que pour tout point X de
Xj et tout polydisque fermé K de centre x et 4@ polyrayon p subisamment
e44Le pour S K 504t contenu dans U et qu'il exdiste une scission

C-Lindaire continue o de B(K;f) ztelle que
HOKHK < ‘Pj(x)/pdj

En fait, on démontre un résultat beaucoup plus précis en donnant explicitement,
en fonction du point x , un ensemble appartenant au filtre Fa , tel que si
le polyrayon p appartient a cet ensemble, le polydisque fermé D(x;p) satisfasse
a la conclusion du théoréme,et en explicitant d; et wj - résultat qui est
d'ailleurs essentiel dans les applications. L'énoncé du théoréme donné au paragra-
phe 1 est le cas particulier du théoréme dans le cas de la relation d'ordre
antilexicographique.

Dans le chapitre III, on étudie le cas ot n=1 . Alors la matrice du morphis-

me

f:dS—»OU

est une matrice ligne (f1,...,fm) et son image un idéal cohérent J de OU

Dans ce chapitre on établit une forme extrémement précise du théoréme de division
par un idéal (théoréme de "division numérique uniforme' par un idéal (III,6.4.2 )).
Pour tout point x de U , tel que pour tout i , 1<is<m , fix £0 , et

pour tout polydisque fermé K , de centre x et de polyrayon p = (p1,...,pp)
suffisamment effilé pour s, »On construit une application C-lin€aire continue

op.y @ BK) — B(O™

(absolument explicite) telle que

[dy[+...+|]d |+ m d
L ™ sup (V/[ayD1/0 0,

Log. gl s2
£5KTK 1<igm .
ol pour tout i , 1<ism , di::vd(fix)’ d; =(dil""’dip)’ ldil = ji1 dij ,
gdﬁf

- i - s ; ;

ai""di (x) et do'(doP"”dqQ , ot pour tout j , 1<jsp ,
oX

do.= sup d.. (d = sup d. pour la relation d'ordre produit < sur NPy

I 1<iem M © 1<izm

et telle que

of;}\,oB(}\';f) OOf;K = Of)]\

13
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(c'est-a-dire telle que B(K;f) soit une scission de °f°K) . La difficulté
3
réside dans le fait que généralement Of.x n'est pas une scission de B(K;f) .
’

On démontre que les conditions suivantes sont équivalentes

i) Og.x ©st une scission de B(K;f) ;

b
ii) Ma c{d1,.”,dm} .

3y

Or, on 1'a déja signalé, la condition (ii) n'est pas en général satisfaite par un
systeme de générateurs quelconque de 1'idéal J , et 1'application 9.k ne
satisfait donc pas en général a la conclusion du théoréme. Pour contourner cette
difficulté on procede de la facon suivante. On considere une stratification
C-analytique (Xj)jEJ de U telle que pour tout j , JeJ , et tout x et x',

xe€X. , x'e€X. ,onait M . =M , dont 1'existence est démontrée au
J J or.,Jx a,Jx.
chapitre II. Pour tout point x , Xx€X. , on peut choisir un systéme de

générateurs (gi) de J au voisinage de x tel que

1<ism!
My.g = (dfedid
X
ou pour tout i , 1<gism' , d{ = Va(gix) . Si 1'on désigne par g le mor-

phisme de OU—modules

]
g

défini par la matrice ligne (g1,...,gm,) au voisinage de x , pour tout poly-

> OU

disque fermé K de centre x et de polyrayon suffisamment effilé pour S
Og'K est une scission C-lin€aire continue de B(K;g) , et par une méthode stan-
dard on peut en déduire une scission C-linéaire continue de B(K;f) . Mais si
arbitrairement, comme la
4]
3 " 8ix)
d|

1'on choisit la famiile de générateurs (gi)1si§m'

majoration de la norme de Og'K

dépend des dérivées , on n'obtient

ax *

aucun résultat uniforme. C'est 1la qu'intervient la proposition 3.6 du chapitre

II, énoncée ci-dessus, et en surmontant de nombreuses difficultés techniques

@'autant plus que 1l'on cherche a expliciter un ensemble appartenant au filtre

Fa qui précise le ''suffisamment effilé'), on arrive a en déduire le théoréme pour

le cas n=1 . On serait tenté d'en déduire le cas général par dévissage du

OU-module cohérent Im(f) . Mais en procédant ainsi on ne parviendrait a définir
la stratification que localement, stratification qui serait d'ailleurs dépourvue

de toute signification intrinséque. On procéde donc autrement et cela est dévelop-

pé au chapitre IV. On y définit la notion des exposants privilégiés d'un sous-
OU-module cohérent de OE et on y démontre un théoréme de 'division numérique

uniforme' par un tel sous-module, en se ramenant au cas d'un idéal comme suit.

14
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Soient
f:d;}—»oll}

un morphisme de OU-modules, M = Im(f) et Q = coker(f) . La surjection
f— oo

définit une surjection
S — S — 0

ol S(OE) (resp. S(Q)) désigne 1'algébre symétrique de OE (resp. de Q ).
On en déduit une immersion fermée

Specan(S(Q)) «—— Specan(S(OB))

Or, Specan(S(OG)) est canoniquement isomorphe a Uuxgh et Specan(S(Q)) s'iden-
tifie par cette immersion a un sous-espace analytique fermé Y de Ux ¢

Si 1'on désigne par J(M) 1'idéal de définition de Y dans Uxg , J(M) est
un idéal cohérent de OUan et on raméne la '"division'" par le sous-module M de
08 a la ''division'" par 1'idéal J(M) de OUXCn . On en déduit le théoréeme dans

le cas général, d'une facon analogue a celle décrite ci-dessus dans le cas ol

n=1

6. Dans 1'appendice I, on démontre les propriétés des fonctions modérées (a crois-
sance polynomiale) utilisées dans ce travail. Dans 1'appendice II, on généralise
le théoréme principal au cas d'un morphisme de faisceaux cohérents et on en donne
une formulation non-stratifiée. Dans 1'appendice III, on esquisse une application
en vue d'établir des théories de cohomologie avec des conditions de croissance

a "1'infini" et on obtient unc généralisation de "GAGA" de J.-P. Serre pour les

variétés algébriques non nécessairement propres.

15
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CHAPITRE O

PRELIMINAIRES

Dans ce chapitre on rassemble quelques notations, conventions et définitions
utilisées tout le long de ce travail.
Soit p un entier, p€N . Pour tout élément d , d-= (d1,...,dp), de NP

on pose

o
g=}

4| =
1

n o™

A , da =71 d! ,
1 i=

pour tout a , a= (a1,...,ap) , ol aT,...,ap sont des éléments d'un monoide

noté multiplicativement, on pose

a4 dp

a = 1 oo -ap
et pour toute fonction C-analytique de p variables X1 yeoesX b on note
oldle e .
—F la dérivée partielle
X Idl d.l Fooo +d
2 YE 9 Pg
axd d1 d

D
3)(1 -...oBXp

Pour tout ensemble A , si Sy désigne une relation d'ordre, on désignera par

<a’ga s>y ,infa,supa , Mmax
relation d'ordre. Si <

o mina les notions correspondant a cette
est une relation de bon ordre, pour tout d , d€A ,
on désignera par sy(d) le successeur de d pour cette relation de bon ordre.

Si A=W , A= zP , A=Qp ou A=RP on désignera par < la relation d'ordre

produit sur A définie par

d .,dp)g(d',...,dI'))@vi,1§i§p: dsd;

120
pour (d1,...,dp) €EA et (d1’,..
lation d'ordre partiel et 1l'ensemble ordonné (A,s<) est un treillis, c'est-a-dire,

"dI;) €A . La relation d'ordre < est une re-

toute partie finie non vide de A posséde une borne inférieure et une borne su-
périeure. On réservera les notations inf et sup pour cette relation d'ordre.

désignera par P 1'espace de Banach normé, muni de la norme notée €également

Pour tout espace de Banach normé E , muni d'une norme notée K »on

l| “K , définie par
[NCTR Nl P 12‘;§p||f1”1< s pour (£q,.0,5) eEP
En particulier, on considérera toujours C° mmni de la norme ||.|| , définie

par

I (x],...,xp)H:éLilrS)p |xi| , pour (x],...,xp)E(IIp s

17
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(et jamais de la norme euclidienne) et on désignera par d(.,.) 1la distance
sur €P définie par cette norme

dx,y) = |lx-y|| , pour x€cP , yecP

On dira qu'une partie K de @® est un polycylindre compact si K= Kyx.. .><Kp ,
ou pour tout i , 1gisp , Ki est une partie compacte, convexe, d'intérieur
non vide de € , et on désignera par B(K) 1'algebre de Banach normée des fonc-
tions continues sur K et analytiques sur K mnie de la norme ||. “K définie
par

||f||K =sup |f(x)| , pour fe€B(K)
x€K

) a

p . P .
Pour tout ouvert U de C , si f désigne une matrice (f 1gizn,1<jsn

ij
coefficients dans T (U, (i: p) ou un morphisme de OU—modules
.M

f: OU —_ OE
et K un polycylindre compact de ¢® contenu dans U on désignera par B(K;f)
1'application C-linéaire continue

B(K;£) : BK)" —— BK)"
définie par la matrice (file)1§i§n,1§j§m . En particulier, si f désigne une

famille finie (fi) d'éléments de T(U, Op) ou une matrice ligne
C

1sism
(f1,...,fm) a coefficients dans (U,Ocp) ou un morphisme de OU—modules
f: 03——) OU
on désignera par B(K;f) 1'application C-linéaire continue définie par
m
B(K;£)(gq,--+»8) = I (£|Kg; , pour (g;,...,g) €BE"
i=1
Si M désigne un sous-OU-module cohérent de 0{} , on désignera par MK le
sous-B(K)-module de B(K)™ (non nécessairement fermé) image de
I'(x,Mm 8 B(K) dans B(K)" et s'il existe un morphisme de 0 -modules
F(K,OU) U
L4 n
f: OU o ()U
tel que M= Im(f) , on a M¢ = Im(B(K;£)) . En particulier si J désigne un
idéal cohérent de OU , JK est un idéal de 1'algébre B(K) et si

€ 15im :
la famille (filK)1§i§m engendre 1'idéal Jy

est un systeéme de générateurs de 1'idéal J au voisinage de K , alors

Si X désigne un espace analytique, Y un sous-espace analytique fermé de X ,
i:Ye~— Y 1'immersion canonique et M un OX—module cohérent, on dira que M
est porté par Y , si le morphisme canonique M — i,i*(M) est un isomorphisme.
Cela équivaut a 1'existence d'un OY-module cohérent M' tel que M soit isomorphe

18
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a i,(M') , ouencore a3 JM=0 , o J désigne 1'idéal de définition de

Y dans X . Si M est porté par Y , alors tout quotient de M 1'est aussi

ainsi que tout produit tensoriel M @0 N par un Ox-module cohérent N . Si M
X

est porté par Y , on a l'inclusion ensembliste supp(M)<Y , la réciproque
étant évidemment fausse.
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RELATIONS D'ORDRE ET FILTRES ASSOCIES

CHAPITRE I
RELATIONS D'ORDRE ET FILTRES ASSOCIES

On connait 1'importance de la notion de degré dans 1'étude des polyndmes,
ou de la notion de 1'ordre d'une série convergente & une variable dans 1'étude
locale des fonctions analytiques d'une variable. On rappelle que 1'ordre d'une
série convergente 2 une variable est égal a 1'ordre de multiplicité du zéro a
1'origine de la fonction analytique définie par cette série au voisinage de zéro,
ou encore au degré du mondme dominant de cette série au voisinage de zéro (qui
n'est autre que le mondme non nul de plus petit degré) ; de méme que le degré
d'un polyndme & une variable est égal a 1'ordre de multiplicité du pdle a 1'infini
de la fonction méromorphe sur la droite projective définie par ce polyndme, ou
encore au degré du mondme dominant de ce polynSme au voisinage de 1'infini (qui
n'est autre que le mondme non nul de plus grand degré). Si 1'on veut généraliser
la notion de 1'ordre d'une série convergente aux sé€ries convergentes a plusieurs
variables, on obtient deux notions différentes selon qu'on généralise la premiére
ou la deuxiéme définition. Dans le premier cas, on obtient 1'ordre de multiplicité
de la singularité a 1'origine du diviseur des zéros de la fontion analytique
définie au voisinage de zéro par la série convergente (ordre égal & zéro si le
support de ce diviseur ne passe pas par l'origine) qui est un nombre entier supé-
rieur ou égal a zéro, qu'on appelle ordre de la série convergente, et qui corres-
pond a la notion du degré total d'un polynSme a plusieurs variables. Dans le
deuxieme cas, si 1'on cherche le mondme dominant d'une série a plusieurs variables
au voisinage de zéro, on s'apercoit aussitdt que cela dépend de ''la facon' dont
on tend vers zéro. On cherchera donc des filtres plus fins que le filtre des
voisinages de zéro tels que, pour toute série convergente (non nulle), il existe
un mondme dominant de cette série quand on tend vers zéro suivant ce filtre.
Plus précisément, soient p un entier , pe€N , et C{X} = C{X1,...,Xp}
1'anneau des séries convergentesdé p variables. Pour toute série convergente

d d 1

d
x4 (o x%=Xx .....xpp si d=(dy,...,d)) , on désigne

f , £f= 1 3y 1

deNP
par E(f) 1la partie de NP définie par

E(f) = {deNP: ay #0}

Alors on cherche des filtres F sur €° , plus fins que le filtre des voisinages

de zéro, possédant une base formée de parties ouvertes de ® et tels que pour

toute série convergente f , f = [ adXd , £#0 , il existe d , deE(f),

deNP
tel que
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1im (£/a, b= g

FlenP
ol F(E*)p désigne la trace du filtre F sur (tE*)p (qui est un filtre, car

F possédant une base formée d'ouverts de CF pour tout A , A€F , il existe
un ouvert non vide U de P tel que UcA , et alors come Un (C*)P#0 ,
ona An (C*)p#o ) . Supposons qu'un tel filtre F existe (on verra que c'est

bien le cas), et soient d et d' deux éléments distincts de NP . Considérons

la série convergente g =Xd +Xd' . Alors
E(g) = {d,d'}
et on a donc
1
Lim (/X% = 1 ou lim, @y =1,
(c*) c*)
ce qui implique que
2.1 tim, o8 ah =0 o oum, odnd <o
On en déduit que pour toute série convergente f , f = g pa dXd , £#0,
de N
1'élément d de E(f) tel que
. d
1lim (f/a,X) =1
F(E*)p d
est unique, car si d'€E(f), il résulte de (2.1) qu'on ne peut avoir
. d d'
lim (a,X/a,,X ) =1
F(@*)P d d
que si d=d' . On appelle cet élément de NP exposant privilégié de f sui-

vant le filtre F et on le note ‘/F(f) . C'est la notion de 1'exposant privilégié

d'une série convergente a plusieurs variables qui constitue la deuxiéme généralisa-
tion de la notion de 1l'ordre d'une série convergente a une variable (la termino-
logie établie d'exposant privilégié n'est pas trés heureuse mais il est sans doute
trop tard pour y remédier). Ensuite, on définit une relation éF dans NP par
d s dles [(d=d") ou 1mF(C*)p(xd'/xd) -0 .

On vérifie aussitdt que la relation $p est une relation d'ordre sur NP ,
compatible avec sa structure de monoide et il résulte de (2.1) que cette relation
d'ordre est une relation d'ordre total, et du fait que le filtre F est plus fin
que le filtre des voisinages de zéro dans ? , qu'elle est moins fine que la
relation d'ordre produit < sur NP . On démontrera ( I,1.5) qu'une telle
relation d'ordre sur N’ est une relation de bon ordre et alors pour toute série

convergente f , f= % _a Xd , £#0 , si d_ désigne le plus petit élément
denP ¢ ©
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de E(f) pour la relation de bon ordre < , ona VF(f) =d, - En effet,on

démontre (III,4.2.1)qu'il existe un nombre fini d'éléments d1 ,..._.dm de NP
tels que pour tout i , 1<gism , do <Fdi et des séries convergentes

f1,...,fm telles que
do m di
f=ad X"+ ¢ £.X ,
R |
o i=1
et comme pour tout i , 1gism ,
d;: d
lim (X'1/X0) =0 et lim (£) = £.(0) ,
F(c*)P F(‘E*)p 1 1
on a do
lim (f/a, X)) =1 ,
F(q:*)p d0
d'ou Vi(f) = d0 . On remarque que si f et g sont deux séries convergentes

non nulles, on a
ve(f.g) = vF(f) + vF(g)
et si f+g #0
VE(£+g) 2 min_ (v (£),v,())
=F

et
VF(f+g) = minéF{VF(f)’ VF(g)} si VF(g) # VF(g)

Enfin, pour tout e , e€R} , et tout d et d' ,d=(d1,...,dp) ,
d'=(df,..00dp) deN , d'enN’ d<. d' , si 1'on désigne par Wgi_g..

la partie de (C*)P définie par
_ P .
wd'-d;e = {(21"'~yzp)€(m DR

on a Wd'—d;s:EF(dZ*)p . En effet, comme
'
un, od'xd -0,
@)P

il existe A , A€eF , tel que pour tout (21""’Zp) eAn (€9)P on ait

p d!-d.
m ]zi| T lee , d'oi AN (QZ*)chd,_d,€ . On en déduit que la famille
i=1 ;

War_g;laen’ ,aren’, d< . d', ceR*

F
est un systéme de générateurs d'un filtre meins fin que F(C*)p et il est facile
de voir que si 1'on désigne par F' 1le filtre sur P engendré par ce systéme
de générateurs, alors ce filtre F' vérifie les mémes conditions que F ; pour
toute série convergente f , f£#0 , on a vF,(f) = VF(f) et la relation

d'ordre < n'est autre que

< <
F F
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Pour démontrer 1'existence des filtres F sur CP possédant les propriétés
requises ci-dessus, on procéde en sens inverse comme on 1'a exposé au §2 de 1'in-
troduction générale et comme on le détaille dans ce chapitre.

Le chapitre I est consacré a 1'étude des relations d'ordre sur NP , compati-
bles avec sa structure de monoide, et des filtres sur (]R:)p qu'on y associe.
Au §1 on rappelle quelques résultats élémentaires sur les relations d'ordre sur
N . Au§2 on rappelle quelques propriétés élémentaires des relations d'ordre
sur un espace vectoriel sur un corps ordonné, compatibles avec sa structure d'es-
pace vectoriel. Ces deux paragraphes ne sont inclus dans ce travail que par souci
d'étre complet. Au §3 on donne une classification compléte des relations d'ordre
total sur N (resp. RP) , compatibles avec sa structure de monoide (resp.
d'espace vectoriel), en introduisant la notion de drapeau orienté. Aux §4 et §5 on étudie,
de facon détaillée, le filtre sur (]RI)p associé a une telle relation d'ordre,
notion qui devrait, a mon avis, occuper une place centrale dans toute introduc-
tion a 1'étude locale des fonctions analytiques de plusieurs variables. Les
résultats de ce paragraphe, €lémentaires mais trés techniques sont constamment

utilisés a partir du §4 du chapitre III. Jusqu'au §3 du chapitre III inclus, seuls
les résultats du §1 sont nécessaires.

§1.- Relations d'ordre sur NP

(1.0) Dans ce paragraphe on se fixe une fois pour toute un entier p , p€N

On rappelle qu'on dit qu'une relation d'ordre ga sur NP st compatible avec
sa structure de monoide si pour tout d , d' et d" , de W , d' e N’ , d'e ) N ,
da' 5, d" implique d'+d 5y d"+d , et une telle relation d'ordre est dite ré-
guliére si en plus chacune des conditions d'+d £y d'"+d ou nd' £, nd" (ou

n€ N*) implique que d'<y d" . Une relation d'ordre total sur NP compatible
avec sa structure de monoide est réguliére. La relation d'ordre produit < sur o
est compatible avec sa structure de monoide et réguliére, et une relation d'ordre
£y sur NP compatible avec sa structure de monoide est moins fine que < si et

seulement si pour tout d , d€ N ,ona O d

<
=0

PROPOSITION 1.1.- So.it A une partie de NP . L'ensemble d'éléments minimaux
de A pour < est gind.

Démonstration . Considérons Z[X] = ZZ[)(1 ,...,Xp] 1'anneau des polyndmes a p
indéterminées a coefficients dans Z et I 1'idéal de Z[X] engendré par la
famille (Xd)dEA . L'anneau Z[X] étant noethérien, il existe une famille finie
(P-)1

P, =
1 g

isr d'éléments de Z[X] qui engendrent I . Pour tout i , 1gisr ,
a; Xd , ol aidEZ , et A; est une partie finie de A+ N (car

Aid

m ™M IA
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T
PiEI) . Soit A'= U by - Ona A'en+N . pour tout d , den , 11 existe

i=1 T
Q1,...,Qr€Z[X] tels que Xd= ~Z1Qi Pi donc dea'+ N . oOn en déduit que

i=

Ach' + NP , donc A'+ N=a+N . Or, les ¢léments minimaux dc A sont les mé-
mes que ceux de A + NP , C'est-a-dire, ceux de A'+ NP qui sont les mémes que
ceux de A' . L'ensemble A' étant fini on en déduit la proposition.

PROPOSITION 1.2.- Soient A une partie non vide de N’ et d un éément de » .
1L existe un éLément minimal d' de A powr < tel que d'<d

Démonstration . L'ensemble {d" €N : d'<d} étant fini la proposition est évi-

dente.

(1.3) Pour toute partie A de NP , on notera M(A) 1'ensemble des éléments mini-
maux de A pour < . L'ensemble M(A) est fini et tout élément de A est minoré
par un élément de M(A) (Prop. 1.1 et Prop. 1.2 ). En particulier, si A # @
alors M(A) #9 et si A+NcA (ou ce qui est équivalent A+ NP =) , ona
A= U @+NP)=M(a) + NP
deM(8)

COROLLAIRE 1.4.- Sodent S, une netation d'ondre sun NP , moins fine que < ,

et A une partie de N . L'ensemble des éléments minimaux Ma(A) de A pour
Sy, ot §ini et pourn tout élément d de A, 4L existe d', d' EMa(A) , tel que

Démonstration . I1 est clair que Ma(A) <M(p) , donc Ma(A) est un ensemble fini.
Soit deA et démontrons qu'il existe d' , d'€ Ma(A) , tel que d'gud . Soit
A' = {d"ea : d”ga d} .

L'ensemble M(A') est fini et non vide (1.3). Il existe donc un élément minimal

d' de M(A') pour S Ona d' §ad . Démontrons que d' eMa(A) . En effet,

soit d"eA , tel que 4" gad' . Alors d"gad , donc d"eA'. On en déduit

qu'il existe d'"'eM(A') , tel que d"'<d" (Prop. 1.2). On a alors d'"'¢ d" ,
o

donc 4"’ éad' , d'ou d'"'=d' (d' étant un élément minimal de M(A) pour £.).

On en déduit que d'"=d' , ce qui prouve que d' EMa(A) .

COROLLAIRE 1.5.- Soit < une relation d'ondre total swe N moins fine que .
Alons < = est une nefation de bon ondre.

Démonstration . Le corollaire 1.4 implique que toute partie non vide de W
posséde un élément minimal pour S qui est un minimum puisque < est une
o

relation d'ordre total.
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N . . . D .
COROLLAIRE 1.0.- Sodt 5 - wie relation d'ondre total sur N, compatible avee
sa stwcture de menodde. Les proprddtds sudlvantes sont Cquivalentes :
1) Sq st medns gfine que = ;

A

11) 5y est wie relation de bon ordre ;

iii) N possede un plus petit éLément pour s ;

a
iv) 0 est Le plus petit ¢Lément de N pour éa .

Démonstration . L'implication (i) = (ii) résulte du corollaire 1.5, 1'implication
(ii1) = (iii) est évidente et 1'implication (iv) = (i) résulte du fait que §a

est une relation d'ordre compatible avec la structure de monoide de N . 11 reste
a démontrer que (iii) = (iv) . Soit w 1le plus petit élément de N pour ga

On a alors w £y 0 , donc wrws w (compatibilité de £, avec la structure
de monoide de NP) , d'oll. w+w=w , donc w=0 , ce qui démontre le corollaire.

§2.- Relations d'ordre sur un espace vectoriel

(2.0) Soient (K,gK) un corps (commutatif) totalement ordonné (on dira simplement
corps ordonné) et E un K-espace vectoriel, mmi d'une relation d'ordre ST
On dit que la relation d'ordre sp est compatible avec la structure d'espace
vectoriel de E sur le corps ordonné K (ou plus simplement compatible avec sa
structure d'espace vectoriel) si la relation g satisfait aux deux conditions
suivantes :

a) pour tout x, x'etx" , x€E ,x"€E, x"€E , x' <, x" implique

E
X' +X gEx”+x 5
b) pour tout x' et x" , x'€E, x"€E et tout p , peK si p>K0 et

x' gE x'"" alors px' gE ox'" .

Si 1l'on pose K ={p€K : p zKO} et E ={xeE:x 2g 0} , on a alors
i) E,+ECE,,

ii) K,E,<E,

iii) E n(-E)) = {0} ,

et X sy équivaut & y-x€E_ , la relation < étant une relation d'ordre

E
total si et seulement si on a en plus

iv) E+U(-E+) =E .

Réciproquement, si une partie E+ de E satisfait aux conditions (i), (ii) et (iii),
la relation définie par

xéEy@y-x€E+ , pour x€E , ye€eE

est une relation d'ordre sur E , compatible avec sa structure d'espace vectoriel,
et E ={X€E:x zEO} .
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On définit ainsi une bijection entre 1'ensemble des parties de E satisfaisant
aux conditions (i), (ii) et (iii) et 1'ensemble des relations d'ordre sur E ,
compatibles avec sa structure d'espace vectoriel, les relations d'ordre total
correspondant aux parties de E qui satisfont en plus & la condition (iv).

PROPOSITION 2.1.- Soit S, Une nekation d'ondne sur NP, compatible avec sa

stwetune de monoide et négulierne (cf.(1.0)). IL existe une relation d'ondre SQ’ o
sun Qp compatible avec sa stwuctwie d'espace vectorniel sur Le corps ordonné Q
et une seule, indwisant <, sur N , et La relation gQ o est une nelation

d'ondne total si et seulement 84 <, L'est. ’
Démonstration . Démontrons d'abord 1'unicité. Soient q' et q" deux €léments
de Qp . I1 existe n , neN* , tel que nq' ezZP et nq"eZp ,et d ,
de NP , tel que nq' +de N et nq'"'+de N . osi §Q o
d'ordre sur Qp compatible avec sa structure d'espace Ve’ctoriel, induisant ga

est une relation

sur NP ,ona q's o q" si et seulement si nq'+d ga nq" +d , ce qui prouve
’
1'unicité. Pour démontrer 1'existence on définit la relation gQ o dans Qp

par
Q' éQ 0‘q")<‘=> (ane N* 3de N : nq' +de NP , nq"+de N et nq' +d§anq"+d)

pour q' EQp , q”er et on vérifie que éQ o est une relation d'ordre sur Qp
>

compatible avec sa structure d'espace vectoriel, induisant éa sur NP , et que

cet ordre est total si et seulement si 5 1'est.

(2.2) Soient K un corps ordonné, E un K-espace vectoriel et A une partie
de E telle que A+AcA , KAcA et An(-A) = {0}

LEME 2.2.1.- S{ X est un élément de E n'appartenant pas a -A et 84 £'on pose
Al = A+K+x ,ona AcA' , A'+A'cA', K+A'cA et A'n(-A') = {0}
Démonstration . Il est clair que AcA' , A'+AcA' et KA'cA' . Démontrons
que A'n(-A') = {0} . Soit y , yeA'n(-A') . Il existe a et a' appartenant
a K, et tett' appartenant 8 A tels que y=t+ax et y=-(t"+a'x) . On
adonc t+t'+(a+a')x =0 .Si a+a' #0 , on en déduit que x¢€ (-A) , ce qui
est contraire a 1'hypotheése. On a donc a=-a' et, conme a et a' appartiennent

a K, ,ona a=a'=0 . On en déduit que t=-t' et, comne An (-A) ={0} ,

que t=t'=0, d'ou y=0 , ce qui prouve le lemme.

LEMWE 2.2.2.- 1£ existe une partie B de E contenant A et telle que
B+BcB , KBcB , Bn(-B) ={0} et BU(-B) = E

Démonstration . Soit A 1'ensemble des parties A' de E telles que AcA' ,
A'+A'cA' , KA'cA' et A'n(-A') = {0} , ordonné par inclusion. L'ensemble
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A cst non vide, car A€A , et si A' est une partie totalement ordonnée de

A , A" posséde un majorant dans A . En effet, si 1'on pose A'"= U A' |

Ate A’
on vérifie aussit6t que A" €A . On en déduit que A posseéde au moins un élément

maximal B (lemme de Zorn). Démontrons que BU (-B) = E . En effet, supposons
que BU(-B) #E et soit x , X€E et x¢BU(-B) . Si 1'on pose B'=B+Kx ,
ona B'€A (lemme 2.2.1) et B ? B' , ce qui est absurde et prouve que
BU(-B) =E , ce qui démontre le lemme.

LEMME 2.2.3.- Soit E {'ensemble des parties B de E telles que AcB
B+B<B , KB<B , BN(-B) = {0} et BU(-B) =E .Ona

A= N B
BEE

Démonstration . I est clair que A= N B . Soit x€ U B et supposons que
BEE BEE
xfA .Ona -xf(-A) et si l'onpose x'=-x et A' =A+K x' , il résulte

des lemmes (2.2.1) et (2.2.2) qu'il existe une partie B' de E telle que
A'<B' , B'+B'<B' , KB'<B' , B'N(-B') = {0} et B'U(-B') =E
Alors on a -x€B' et B'€E , donc x€B' , d'ou x=0 , ce qui est contraire

a 1'hypothese x¢ A et démontre le lemme.

PROPOSITION 2.3.- Soient K un coaps ordonné, E un K-espace vectorniel et <
une nelation d'ondre sun E  compatible avec sa stwcture d'espace vectoriel.
Alons :

i) AR existe une nelation d'ondre total =<' g 4wt E compatible avec sa sthuc-
ture d'espace vectorniel et moins fine que S

ii) pour tout x' et x", x'€E, Xx"€E, ona Xx' §Ex" 54 et seulement s4
pour toute relation d'ordre total §I’5 sun E  compatible avec sa sthucture

d'espace vectorniel et moins fine que §E ona Xx' gl'i x"

E

Démonstration . C'est une conséquence immédiate des lemmes (2.2.2) et (2.2.3).
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§3.- Drapeaux orientés

Dans ce paragraphe, on introduit la notion de drapeau orienté d'un IR-espace
vectoriel de dimension finie, et on démontre qu'il y a une bijection entre 1'ensem-
ble des drapeaux orientés d'un tel espace et 1'ensemble des relations d'ordre
total sur cet espace, compatibles avec sa structure d'espace vectoriel sur le corps
ordonné R . D'autre part, on démontre que toute relation d'ordre sur NP s
compatible avec sa structure de monoide et réguliére se prolonge en une relation
d'ordre sur RP , compatible avec sa structure d'espace vectoriel, ce prolonge-
ment n'étant pas unique en général, méme si on se limite au cas des relations
d'ordre total. Dans ce dernier cas, on obtient une classification compléte de ces

relations d'ordre.

(3.1) Soit E un R-espace vectoriel de dimension finie. On appelle drapeau
orienté de E 1la donnée :

i) d'une suite croissante de sous-espaces vectoriels de E ,
E,cEje ... cEp , telle que Ej| ={o} , Ep =E et telle que pour tout i ,
1<i<p , Ei—1 soit un hyperplan de E;

ii) pour tout i1 , 1s<is<p , d'une orientation de Ei/Ei—1 (qui est une
droite).

Pour tout i , 1<is<p , on notera E; 1'image réciproque par la surjection
canonique de E; sur Ei/Ei—1 de la demi-droite fermée positive pour 1'orienta-
tion donnée. On remarque que la donnée de 1l'orientation de la droite Ei/Ei-1
équivaut a la donnée de E; , qui est 1'un des deux demi-espaces fermés de Ei ,

définis par 1'hyperplan Ei—l ou encore a la donnée d'un élément de no(Ei-Ei_1).

(3.2) Etanit donné un drapeau orienté o de E

a EOCE.IC ...cEp ,

on pose

D = u (Ef-E, .)UE
o 1sisp i i-1 o}

et on définit une relation 5 dans E par
< -
X5, ye>y XEDOL

On vérifie facilement qu'on a :
i) D +D <D

a o o
ii) R, D <D ;
PR + u a
%11) DarW(-Da) {0} ;
iv) DOLU(-DOL) E
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On a donc

PROPOSITION 3.2.1.- Sodent E un R-espace vectoriel de dimension finie et o
un drapeau onienté de E . Alons 5y est une relation d'ondne total sun E
compatible avec sa strwucture d'espace vectoniel sur Le conps ordonné R .

(3.3) Soient a1"“’°‘p p formes R-linéaires sur E formant une base du dual du

R-espace vectoriel E . Posons E;j= n Ker(a;) , pour O<i<p .Ona
i<j<p

E0={O},Ep=E et pour tout i , 1<i<p , E est un hyperplan de E;

D'autre part, pour tout i , 1<is<p , uilEi le;t une forme R-linéaire
de E; dont le noyau est E;_; . Elle définit donc un isomorphisme de E./E; 4
sur R et en particulier une orientation de E;/E;_; - On associe ainsi 2 une
base du dual de E un drapeau orienté de E et il est clair que tout drapeau
orienté de E peut étre obtenu ainsi. D'autre part, on vérifie facilement que si

0L1' ,+..50" sont p formes R-linéaires sur E , elles forment une base du dual
de E et déterminent le méme drapeau orienté de E , si et seulement si pour
tout 1 , 1<i<p , il existe une famille (bij)1<j<p d'éléments de R telle

que pour tout j , 1<£j<i bij=0 , bii>0 , et ai: O

b..
i=1 1) )
Enfin, si 1'on désigne par o le drapeau orienté de E associé a a1,...,ap

-

on a

X < Yepx=y)ou [31, T<isp: [(o;(x) <a;(y)) et (vi', i<i'sp: a;.(x) =a3.(y))]]
pour X€E et ye€E

(3.3.1) Soient L' un sous-R-espace vectoriel de E et a1,...,ap une base du
dual E* de E . On dit que la base oy ,...,ozp de E* est adaptée au sous-espace
E' , s'il existe une partie I de [1,p], telle que pour tout i , i€l , oy

appartienne 2 1'orthogonal E'* de E' dans E* et (ai) soit une base de

i€l
ie[1,p]-T est une base du dual E'* de E'
b

qui détermine un drapcau orienté o' de E' tel que la relation d'ordre ga, sur

E'L . On remarque qu'alors (aiIE')

L' soit induite par la rclation d'ordre §0L sur E , o o désigne le drapeau

oricnté de E déterminé par la base a1,...,ap de E*

PROPOSITION 3.3.2.- Sodent i un R-espace vectorniel de dimension gfinie, E' un
sous- R -espace vectoriel de I et o un dupeau ornlenté de E . Alons AL existe
une base Upyeees de LI* déterminant Le drnapeau onlenté o et adaptée au

P
sous-espace i’
Iiémonstration. Soicnt cx;,...,cxr') unc basc de L* déterminant le drapeau o ,
. . 4
n 1la dimension de L™ | O<n<p , et I'={i, l<is<p:al€E } . Alors

card(1')“n ct si card(I') =n , la basc ui,...,ar') de [L[* est adaptée au
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sous-espace E' . Supposons que card(I') <n . Alors le systéme (ailE‘)ieH pl-1'

r'est pas libre et il existe i, , i ell,p] - I' , tel que (O‘ilE')

ielig,p -1"
soit un systéme libre et tel qu'il existe une famille (bi)ie]i pI-T' d'éléments
0)

de R , telle que

af |E'= I b. (a!|E")

%o i€l ,pl-1t * 1t

o

On pose

al =a! - z b.o'

) 1o ie]io,p]-I' 1 ’

pour tout i , 1<isp , i#ij , af=o et I"={i,1§i§p:u'i'eE'-L}
Alors u'1',... ,o!' est une base de E* qui détermine le méme drapeau orienté o de
E (3.3) et I"=1"y {io} , donc card(I") = card(I) + 1 ce qui démontre de

proche en proche la proposition.
(3.4) Soient o un drapeau orienté de E ,

a EOCE1 c ...cEp .

et u un automorphisme du R-espace vectoriel E . Si pour tout i , Osisp ,
on pose Ei=u(Ei) , ona Es = {0} , EI'):E , pour tout i , 1<igp ,

1
i
1 1
EJ/Ei
On définit ainsi un drapeau orienté o' de E

est un hyperplan de Ei , et u induit un isomorphisme de Ei/Ei-1 sur
qui définit une orientation de E;/Ei , , déduite de celle de E,/E; ;.

1

o' ECV)CE% c ...CE}; ,

noté u(o) , et alors on a u(Da) = Du(a) et

X s Y& u(x)ﬁu(a)u(y) , pour x€E et ye€eE

Si v est un autre automorphisme de E , on a v(u(a)) = (vou)(a) . Le groupe

linéaire GL(E) opére ainsi a gauche sur 1l'ensemble des drapeaux orientés de E ,

et il résulte de (3.3) qu'il opere transitivement.

)

(3.5) Soit A= (a: une matrice inversible a coefficients dans R.

ij
Chaque ligne (aij)

1<igp,1<j<p

1sjsp de la matrice A définit une forme linéaire a; sur

R’ , les formes linéaires o ,...,ap forment une base du dual de RP qui
détermine un drapeau orienté de RP , et tout drapeau orienté de RP peut étre

.. . ' e (al . ' N ..
obtenu ainsi. Si A (alJ 1sisp,1sj<p est une matrice a coefficients dans R ,

A' est inversible et détermine le méme drapeau orienté, si et seulement si, il
existe une matrice triangulaire supérieure B a coefficients dans R et dont
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les coefficients de la diagonale principale sont strictement positifs, telle que
A'=BA . Si 1'on désigne par o 1le drapeau orienté de RP  associé ainsi a la
matrice A , on dit que la matrice A est une matrice de définition de la
relation d'ordre g, Sur R ou que A définit la relation d'ordre 5, eton
a:

p p
< = i,1<isp : z <
X ay«::v(x y) ou [3i,1<isp [(J 131] xJ 32131) yJ)

et (vi',iki'sp : I a.

p p
X. = %
j=1 i'5% j=1

aivj YJ)]] ,

pour x=(x1,...,xp) , y=(y1,...,yp) , xeRP , y€]Rp . Si p' est un entier,
O<p'<p , on dit que la matrice A est adaptée au sous-espace vectoriel

]Rp' = ]Rp'x {0} de RP , si les formes linéaires Opseess , définies par les
lignes de la matrice A , forment une base du dual de RP adaptée au sous-espace
]Rp' , c'est-a-dire, s'il existe une partie I de [1,p] telle que card(I) = p-p'
et telle que pour tout i et j , i€l , 1<j<p' , on ait aij =0 , et

alors la matrice A'=(a..) est inversible et définit la relation

ij7i€[1,pl-1,1<jp!
]
d'ordre sur RP induite par §a

PROPOSITION 3.5.1.- Soit o un drapeau onienté de RP tel que La nefation d'on-
dre s 804t moins §ine que La nelation d'ondre prodwit < sun RP . Alons
AL existe une matrice de définition de La relation d'orndre 2y a coefficients
dans R,

Démonstration. Soient €qsen- ,ep la base canonique de RP et
A= (a ) une matrice de définition de la relation d'ordre §a . Pour
ép ,ona e.>0, donc e. A 0 , ce qui implique qu'il existe

i. , 1si.Sp , tel que ai.j>0 et tel que pour tout i , ij<igp , on

ait a.J. =0 . En particulier, pour tout j , 1<jsp ,ona a j 20 . Posons

io=inf{i,1§i§pzvj, 1£j<p, 345 20} .0Ona 1§iogp et si io=1 , la matrice

A est a coefficients dans R,_ . Supposons donc que io>1 et soit

J={j,15jsp : a; _q j<O} . Pour tout j , jeJ ,ona ij zio et il existe
o ’

b. ,bjE]R: , tel que a. .+b.a. >0 . Pour tout j , 1<j<p , on pose

j 1g-1, 7 3T

a! = a. .+ I b.,a. .
1 '113 10"1 5] J reJ J le
et pour tout i , 1<is<p , 1%10- , ai'j = aij . Alors pour tout j ,
. . . AP .
1£j<p , aio_1 i 20 , la matrice A'=(a ij)1§i§p,1§j§p est une matrice de

définition de la relation d'ordre ga (3.5) et si 1'on pose
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ic’)=inf{i,1§i§p : vy, 15j%p, ai. 20} , ona i(;<i0 , ce qui démontre de pro-

che en proche la proposition.

Remarque 3.5.2. Inversement, il est clair que la relation d'ordre sur RP

définie par une matrice inversible a2 p 1lignes et p colonnes a coefficients
dans R, est moins fine que la relation d'ordre produit < sur g

Exemple 3.5.3. La matrice unité & p lignes et p colonnes définit une relation
d'ordre total sur RP | compatible avec sa structure d'espace vectoriel et moins
fine que la relation d'ordre produit £ sur RP , appelée relation d'ordre
antilexicographique sur RP et notée SR Pour tout xety , Xx= (x1,... ,xp)
y=(y1,...,yp) , X E]Rp , Y €RP , on a
X 5 ye (x=y) ou [3i,1<isgp : [(xi<yi) et (vi',i<i'sp: X5 =yi,)]]

La relation d'ordre antilexicographique = n'est autre que la relation d'ordre

Sex o ol e* désigne le drapeau orienté de RP  déterminé par la base duale
e;,... ,e¥ de la base canonique €15+45€ de RP .si E désigne un R-espace
vectoriel de dimension p, 0y ,...,ap une base du dual de E et o le drapeau
orienté de E déterminé par cette base, pour tout xety , x€E , yeE , on
a

XSy (a1(x),-.-,ap(X)) S (oc1(y),...,cxp(y))

Pour toute matrice inversible A= (aij) , a coefficients dans R ,

1€isp,1<jsp
si ga désigne la relation d'ordre sur RP  définie par cette matrice, pour
tout xety |, x€RP ,)'E]Rp , ona

xéayan éLAy

(3.6) Soient K un sous-corps de R qu'on considérera ordonné par la relation
d'ordre induite par celle de R , K, = {p€K :p 20} , F un K-espace vec-
toriel de dimension finie, qu'on identifiera a son image dans E=F @K R
par 1l'injection canonique, et D wune partie de F telle que

i) D+DcD ;

ii) K,DeD ;
iii) D n(-D) = {0};
iv) DuU(-D) = F

On attire 1'attention du lecteur sur le fait que dans la suite le signe "-"
sera utilisé dans deux sens différents, méme éventuellement a 1'intérieur d'une

méme formule, a savoir si A et B sont deux parties de F (ou de E)

-B = {b€F : -beB} (sens vectoriel)
et
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A-B={a€A : a¢B} (sens ensembliste).

Le lecteur rétablira facilement la signification de chaque occurence de '"-"
(formellement le signe '-'" aura la premiére signification s'il est en début de
formule, ou s'il est immédiatement précédé par un signe relationnel ou par 1'ou-
verture d'une parenthése, la deuxiéme signification dans les autres cas).

LEMME 3.6.1.- S& F#{0} et s{ D désigne £'adhérence de D dans E (pour sa
topologdie naturelle d'espace vectorniel de dimension finie sur R ), alors

Dn (-D) est un hypenplan de E , et D est £'un des deux demi-espaces fermés
de E définis pan cet hyperplan.

Démonstration. La condition (i) implique que D+DcD et la condition (ii)

que ]R+ﬁ cD (car K, est dense dans ]R+) . On en déduit que si 1'on pose
E'=Dn (-D) , alors E' est un sous-R-espace vectoriel de E . D'autre part,
comme -D=(-D) , la condition (iv) implique que DU (-D) = E (car F est dense
dans E). Démontrons que D-E'#@ . Soit e1,...,ep une base de F sur K . La
condition (iv) implique que pour tout i , 1<i<p , ona eiED ou —eiE D .
On peut donc supposer (quitte a remplacer certains vecteurs de la base par leur
oppos€) que pout tout i , 1<i<p , ona eiED . Soit

V=IR:e1+...+]R*e

+Pp
L'ensemble V est un ouvert non vide de E , contenu dans D . Démontrons que
p
Vn(-D) = @ . En effet, si xeVN(-D) , alors x= % Pi® > ol
i=1

(p1,...,pp) € (]R::)p , et coome x€F , ona (p1,...,pp)€ K , donc

(p1,...,pp) € (K+)p , d'oi x€D et 1a_c0ndition (iii) implique que §=0 , Ce
qui est absurde. On en déduit que Vn (-D) = @ et par conséquent VeD-E' ,

ce qui démontre que D-E'# @ . De méme, (-D)-E'# @ (car (-D)-E'=-(D-E")).
En conclusion, D-E' et (-D)-E' sont deux fermés non vides disjoints de
E-E' dont la réunion est E-E' . On en déduit que E-E' n'est pas connexe

ce qui prouve que E' est un hyperplande E , et que D est 1'un des deux
demi-espaces fermés de E définis par cet hyperplan.

LEMME 3.6.2.- I existe un drapeau onienté o de E 1tel que D=FnDa

Démonstration. On raisonne par récurrence sur la dimension de F . Si F={0} ,
le lemme est évident. Supposons donc que dimK(F) =p , p21 , et que le lemme
soit établi pour tout p' , O0<p'<p . Comme dimK(F) 21 , Dn(-D) est un
hyperplan de E (3.6.1). Si 1'on pose F'=Fn[Dn(-D)] , F' est un sous-K-
espace vectoriel de F de dimension strictement inférieure a p (pas nécessaire-
ment un hyperplan, car en général Dn (-D) n'est pas rationnel sur K ) . Si
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l'on pose D'=F'nD , on voit facilement que D' vérifie les conditions (i),
(ii), (iii), (iv) en tant que partie de F' . L'hypothése de récurrence implique
donc 1'existence d'un drapeau orienté o' de E'=F' @K R,

o' :EocE1c...cEp, =E'
tel que D'=F' nDa' . En identifiant E' 2 son image par 1'injection canonique
dans E ,ona E'cDn(-D) (car E' est le sous-R-espace vectoriel de E
engendré par F'=FnDn (-D)) . Il existe donc une suite croissante de sous-R-

espaces vectoriels de Dn (-D) contenant E'

Ep,+1c... c Ep—1
telle que Ep-1 =Dn(-D) et telle que pour tout i , p'+1<isp-1 , E; 4
soit un hyperplan de Ei . On pose Ep =E . On définit ainsi un drapeau orienté
o de E

o EoCEiC"'CEp'CEp'+1C”'CEp_1C Ep ,

1'orientation de Ei/Ei-1 étant la méme que pour le drapeau orienté a' pour
1<i<p' , arbitraire pour p'+1<is<p-1 , et celle qui correspond a E'=D
pour i=p (cf.(3.6.1)et (3.1)). Démontrons que D=FnDa . En effet, on a

FnD =Fn[ u (Ei-E,_,JUE] =
o 1gigp i Ti-1 o]

= (FnD_,) U[EN U (Ei-E,_)DIUIFN(E -E )]
o' p'+1sisp-1 i Ti-1 p p-1

Or, comme Da,cE' et FNnE'=F' , ona
FnDa,=F’nDa,=D'=F'nD=Dn[ﬁn(-ﬁ)] = DnEp_1
D'autre part, pour tout i , p'<isp-1 ,ona E'cEic'ﬁn(-ﬁ) , €t comme
FNE'=F'=Fn[Dn(-D)] , on a FNE; =F' . On en déduit que pour tout i ,
p'+1gisp-1 , Fn(E;-Ei_1) = @ . Enfin, la condition (iv) implique que

Fn(E;_Ep_p = [Du(-D)In[D- Dn(-D))] =D n(E-E__,) ,

-1
ce qui démontre le lemme.
LEMME 3.6.3.- Sodlent a et o' deux drapeaux ornientés de E ,

o EOCE1C...CEp ,

o' :EécEic...cEI') ,

= +=“'+ = '
tels que FnD =FnD , . Alors ona Ep Ep et Ep_1 Ep-1
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Démonstration. Comme E. (resp. EI'>+) est 1'un des deux demi-espaces fermés
1 (resp. EI'D"1) (c£.(3.1)), il suffit de
démontrer que EI:=EI'>+ . L'égalité FnDa = FnDa' implique que

+ _ - + _n . +
Fn(Ep Ep_1) Fn(EI'J Ep—1) . Or, F étant dense dans E , Ep

de E définis par 1'hyperplan Ep_

- Ep—1 étant

un ouvert de E et EI')+ un fermé, on en déduit que

+ — +
E - E F E' -E' E'
p " Bpq=Fn (B -Ey ) <Ep

d'olt E; CEI"+ . De méme on a EI')+<:E; , ce qui démontre le lemme.

LEMME 3.6.4.- Soit o ,
a EOCE1C...CEP

un drapeau onienté de E , nationnel sun K (c'est-a-dire tel que pour tout
i, 1gigp-1 , E; 404t un sous- R-espace vectorniel de E engendré pan
des éféments de F ) . Alons poun tout drapeau orienté o' de E
] . ] 1 ]
o .EocE1c...cEp ,
L'égakite FnDa, = F,nD(x Amplique que Le drapeau ornlenté o' n'est autrhe que
a

Démonstration. On raisonne par récurrence sur la dimension p de F . L'égalité
- - . ) + _omt .
Fn Da' FnDa implique que Ep—1 Ep_1 et que Ep Ep (3.6.3), ce qui
prouve que l'orientation de Ep/Ep-1 est la méme que celle de EI')/EI')_1
(c£.(3.1)). Or, le drapeau o étant rationnel sur K , si 1'on pose F'=Fn Ep_1
et E'=F' @K R , F' est un hyperplan de F et en identifiant E' 2a son
image par 1'injection canonique dans E , on a E' =Ep—1 . Soit 0y (resp. ai)

le drapeau orienté de E'

0y :EOCE_IC...CEP_1
(resp. oq ZE&CE%C...CEI')_1) ,

les orientations étant les mémes que pour o (resp. a'). Le drapeau a; estun
drapeau rationnel sur K , 1'égalité Fn Doc' = FnDa implique que

F! nDa' = F' nDa et 1'hypothese de récurrence que oc1' =a; d'ot o' =0 ,
1

1
ce qui prouve le lemme.

LEMME 3.6.5.- S¢ K=R (ce qui implique en particulier que F=E ) , Ll existe
un drapeau onienté o de E et un seul tel que D=D/

Démonstration. C'est une conséquence directe des lemmes 3.6.2 et 3.6.4 appliqués
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a K=R

Remarque 3.6.6.- Si K#R , le drapeau orienté o de E tel que D= FnD
n'est pas nécessairement unique. Par exemple si K=Q , F= Qp et

D= {(ay>-- 59 Ye@ : z a;q; 20} ,
ol (a1,...,a ) est un systéme de p nombres réels linéairement indépendants

sur Q , on voit facilement que 1'ensemble D vérifie les conditions (i), (ii),

(iii) et (iv). Alors pour tout drapeau orienté
o EOCE1C...CEP
de RP tel que
p p
= {(Xq,...,x )ER" : ¥ a.x. =0}

E
p-1 1 ) joq 11
et tel que l'orientation de Ep/Ep_] soit celle qui correspond a
p
o P .
Ep—{(x1,...,xp)€]R : 151 ;X3 20}

ona D=FnD
o

PROPOSITION 3.7.- Soit E un R-espace vectorniel de dimension finie. L'application
qui assocle a un drapeau orndenté o de E La nelation S, ¥t une bijection de
L'ensemble des drapeaux onientés de E sun £'ensemble des relations d'ordre total

sun B compatibles avec sa sthwctune d'espace vectorniel sur Le conps ordonné R.

Démonstration. La proposition résulte de la proposition 3.2.1 et du lemme 3.6.5.

partie convexe de E telle que O¢A . Alorns L existe un duapeau orlenté o de
E el que ACDa

Démonstration. La partie A étant convexe, pour tout P et Py 5 Pq E]R+ ,
P, € ]R+ » On a

piA+pAcip +p))A

et coome O¢A , on en déduit que si 0 +pZ;éO , p1An (—pZA) =@ (car si
p1An (-pzA) #0 ,ona OEp]A + pzAc (p1 +pz)A , d'ol Py +p2=0) . Sil'on
pose
B= U pA ,
p€]R+
on a donc B+BcB , RBcB et Bn(-B) = {0} . On en déduit qu'il existe
une partie D de E telle que BeD , D+DeD , RDeD , Dn{-D) = {0}

37



G. MALTSINIOTIS

et D+(-D) = E (2.2.2). Il existe donc un drapeau orienté o de E tel que
D=Da (3.6.5), et on a ACBCDa , ce qui démontre la proposition.

COROLLAIRE 3.8.1.- En gardant Les notations de La proposition 3.8, il existe p
formes R-Lindaires Opsenes sun E , telles que pour tout x , x€A, L'en-
semble {i, 1sisp: ai(x) # 0} 404t non vide, et s4 L'on pose

i =sup{i, 1sigp : 0;(x) #0} ,

on alt
oy x)>0
X
Démonstration. Le corollaire est une conséquence directe de la proposition 3.8 et
de 3.3.

COROLLAIRE 3.8.2.- En gandant Les notations de La proposition 3.8, 54 A est
ouvent dans E , AL existe une forme R-Linéaire o sur E , telle que pour
tout x , X€EA , on ait

a(x) >0

Démonstration. Si Oigseee st D désignent p formes R-linéaires sur E vérifiant
les conditions du corollaire 3.8.1, pour tout x , X€A , on a ap(x) 20
L'ensemble A étant ouvert, (A) est un ouvert de R contenu dans R, ,
donc O¢ocp(A) ce qui démontre le corollaire.

Remarque 3.8.3.- Le corollaire 3.8.2 est un cas particulier du théoreme de
Hahn-Banach. On peut donc considérer la proposition 3.8 (ou le corollaire 3.8.1)
comme une forme plus précise du théoréme de Hahn-Banach en dimension finie.

PROPOSITION 3.9.- Soit F un Q-espace vectoriel de dimension ginie. Toute rnelation
d'ondre total sur F , compatible avec sa stwcture d'espace vectorniel sun Le
conps ondonné Q , se profonge en une relation d'ondre total sur E=F QQIR ,
compatible avec sa strwcture d'espace vectoriel surn Le corps ordonné R, F
etant Lidentifié a son image pan L'injection canonique dans E

Démonstration. La proposition résulte du lemme 3.6.2 et de la proposition 3.2.1.

Remarque 3.9.1.- Conformément a la remarque 3.6.6, ce prolongement n'est pas
nécessairement unique ; a moins qu'il n'existe un drapeau orienté o de E ,
rationnel sur Q , tel que 1'ensemble des éléments de F supérieurs ou égaux

a zéro pour la relation d'ordre donnée, soit égal a FnDa (on dit alors que cette
relation d'ordre est rationnelle), dans quel cas, conformément au lemme 3.6.4,

ce prolongement est unique.

38



RELATIONS D'ORDRE ET FILTRES ASSOCIES

COROLLAIRE 3.9.2.- Soit F un Q-espace vectoriel de dimension finie. Toute rnela-
Zion d'ondne sun F , compatible avec sa stwcture d'espace vectoriel sur £e conpb
ondonné Q , se profonge en une refation d'orndre sur E=F @Q]R , compatible
avec sa structwre d'espace vectorniel sun Le conps ondonné R, F étant identi-
§4¢ a son image pan R'injection canonique dans E

Démonstration. Soient Sp une telle relation d'ordre sur F et (;B)BEB
1'ensemble des relations d'ordre total sur E , compatibles avec la structure
d'espace vectoriel de E sur le corps ordonné R , et induisant une relation
moins fine que sgpsur F . On définit une relation g dans E par

X g ye> (VB,B€B : x Sgy) , pour x€E , y€E

11 résulte de (2.3,i) et de (3.9) que l'ensemble B est non vide, et par suite
que <p est une relation d'ordre sur E compatible avec sa structure d'espace
vectoriel sur R , et de (2.3,ii) et de (3.9) que g induit Sp sur F ,

ce qui démontre le corollaire.

COROLLAIRE 3.9.3.- Toute xefation d'ondre swr NP , compatible avec sa sthucture
de monoide et négulitne (cf.(1.0)), se prolonge en une nelation d'ondre sun RP
compatible avec sa sthructure d'espace vectoriel surn Le coaps ordonné R .

Démonstration. Le corollaire résulte de la proposition 2.1 et du corollaire 3.9.2.

Exemple 3.9.4.- La relation d'ordre produit < sur NP , qui est une relation
d'ordre compatible avec sa structure de monoide et réguliére, se prolonge sur

RP par la relation d'ordre produit < sur RP , et il est facile de vérifier
que, dans ce cas, ce prolongement est le seul prolongement en une relation d'ordre
sur RP , compatible avec sa structure d'espace vectoriel sur le corps ordonné
R. En plus si <' est une relation d'ordre sur NP , compatible avec sa struc-
ture de monoide, réguliere et moins fine que < , toute relation d'ordre sur

R? , compatible avec sa structure d'espace vectoriel sur le corps ordonné R ,
qui prolonge <' est moins fine que la relation d'ordre produit < sur RP

En effet, une relation d'ordre ' sur RP , compatible avec sa structure d'espace
vectoriel sur le corps ordonné R , est moins fine que la relation <

si et seulement si, pour tout i , 1<isp , e; 2" 0, ol €1s--+5€

désigne la base canonique de RP , et comne pour tout i , 1<isp , e; € N
cette condition ne dépend que de la restriction de <" sur NP

PROPOSITION 3.10.- Toute nelation d'ondrne total sun N’ compatible avec sa
strctune de monoide est induite parn une nelation d'ordre ga sun RP , oL o
désigne un drapeau ornienté de RP
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Démonstration. La proposition résulte des propositions 2.1, 3.9 et 3.7.

Remarque 3.10.1.- Inversement il est clair que pour tout drapeau orienté o de
RP , la relation d'ordre éa sur RP induit une relation d'ordre total sur
N , compatible avec sa structure de monoide.

Définition 3.11.- Soit ga une nelation d'ondre total sun NP compatible avec
sa structure de monolde. On dit qu'une matrice A , A=(a; )1<1<p 1<jsp a
coefficients dans R , est une matrice de déginition de La ne@uuon d'ondre <
st NP , ou que £a matriice A définit La rnelation d'ondre ga sun NP ,
84 La matnice A est inversible et s4 pour tout d et d' , d=(d1,...,dp) ,
d' = (dj,..00d0) deNW ,d'eN ,ona

p p
d < des(d=d') ou [3i, 1€igp : [( Z a; d <Z a..d!) et
o 11377
= 7 =1
(vi',i<i" I); d g dbi1l .
',i1'sp ¢ cyads =
1 1Y j:1a1JJ j=]aIJJ

Si p' est un entier, O<p'<p , on dit que la matrice A est adaptée au
sous-monoide W = vax {0} de NP , s'il existe une partie I de [1,p] telle
que card(I) = p-p' et telle que pour tout ietj , i€l , 1<js<p' , on
ait aij = 0 . On dit que la relation d'ordre total £, sur W est rationnelle,

si % posséde une matrice de définition a coefficients dans Q

PROPOSITION 3.12.-

i) Toute refation d'ondre total sur NP , compatible avec sa strwcture de
monoide, posséde une matrice de définition.

ii) Toute netation d'ondre total swe NP | compatible avec sa stwcture de
monoide et moins fine que La nefation d'ondre produit < sur N, posside
une matrice de définition a coefficients dans R,

iii) Soit p' un entien, O<p's<p . Toute nelation d'ordre total sur NP
compatible avec sa stwcture de monoide, possede une matrice de définition adapiée
au sous-monoide ]Np' de NP

iv) Toute retation d'ondne total sur NP compatible avec sa structure de
monoide et rationnelle, posséde un prolongement unique en une refation d'ordre
total sur RP , compatible avec sa structure d'espace vectorniel sur Le conps
ondonné R
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Démonstration. La partie (i) de la proposition résulte de 3.10 et 3.5, la partie
(ii) de 3.10, 3.9.4 et 3.5.1, la partie (iii) de 3.10, 3.3.2 et 3.5, et la partie
(iv) de 2.1, 3.9 et 3.9.1.

Exemple 3.12.1.- On appelle relation d'ordre antilexicographique sur N et
on désigne par éL la relation définie par

d éL d'e(d=d") ou [3i, 1<isp : [(di<di)et(vi',i<i'§p:di,= d:!l,)]] ,

pour d= (d1,...,dp) , d'= (di,...,d}')) , dE€ NP , d'€ N . La relation sL
est une relation d'ordre total sur N° compatible avec sa structure de monoide,
moins fine que la relation d'ordre produit £ sur NP et rationnelle. La matrice
unité a p lignes et p colonnes en est une matrice de définition, et la relation
d'ordre antilexicographique sur RP (3.5.3) en est le seul prolongement en une

relation d'ordre total sur ]RP , compatible avec sa structure d'espace vectoriel.
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§4.- Filtre associ€é a un drapeau orienté

Dans ce paragraphe, on associe a tout drapeau orienté de RP  (ou ce qui re-
vient au méme, a toute relation d'ordre total sur RP , compatible avec sa struc-
ture d'espace vectoriel) un filtre sur (]R::)p , et on décrit explicitement une
base de ce filtre. Au §5, on associe 2 toute relation d'ordre total sur N° ,
compatible avec sa structure de monoide, un filtre sur (]Rj:)p . Plus précisément,
pour tout x , x € RP s x=(x1,...,xp) , €t pour tout ¢ |, e€R} , on
désigne par Vx;r—: la partie de (]R::)p définie par

X:

V.. =1 )e (R)P nood }
X;e = p]"“’pp € + . 1]:1 Di €5 .

Si 1'on désigne par e o 1'application
R
e : RP R*)P
P —> (RY)
définie par

a a
1 P P
e a,,...,a)= (e ,...,e , pour (a,,...,a )€R ,
CH BEN e P) , pour (a )

on remarque que e p est bijective et que
R

-1

e]Rp (Vx;e) - Wx;Loge ’
ol pour tout ¢ , c€R , wx'c désigne la partie de RP  définie par

P
z a;x; < c}

= D .
W c {(a1,...,ap)€]R : 2

X

Pour toute partie A de RP  dont 1'enveloppe convexe ne contient pas O , il
résulte du théoréme de Hahn-Banach que la famille

(wx;c)XEA,cdR

est un systeme de générateurs d'un filtre sur RP . La famille

(VX‘,E)XEA,EEIR:

est donc un systéme de générateurs d'un filtre sur (]Rj_)p .81 < p désigne
R
une relation d'ordre sur RP compatible avec sa structure d'espace vectoriel,

1'ensemble des éléments x de RP tels que x> p0 étant convexe, on en
R
déduit que la famille

(Vx;e)x> O0,e €R*
RP *
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est un systéme de générateurs d'un filtre sur (]R:)p . Ce paragraphe est con-
sacré a 1'étude de ces filtres dont le rble dans ce travail a €té longuement
développé dans 1'introduction générale. En remarquant que (]R:)p s'identifie
canoniquement au groupe des caractéres réels sur RrP , on associe plus générale-
ment a toute partie A d'un R-espace vectoriel de dimension finie E , dont
1'enveloppe convexe ne contient pas O, (de méme qu'a toute relation d'ordre sur
E, compatible avec sa structure d'espace vectoriel) un filtre sur le groupe des
caractéres réels de E , ce qui permet d'obtenir une définition plus intrinséque
de ces filtres.

(4.1) Soit E un R-espace vectoriel de dimension finie. On rappelle qu'un ca-
ractére réel sur E (on dira plus simplement caractére sur E) est une applica-
tion continue

telle que
i) pour tout xety , x€E , yeE ,

n

x&x+y) = x(x).x(y)

ii) x #0
On remarque que si x désigne un caractére sur E , pour tout x , x€E , on
a

KX = x(x/2+x/2) = (xx/2))%

donc x(x)20 , et x(x) #0 , car s'il existait Xy s XOEE , tel que

x(xo) =0 , on aurait pour tout x X€E ,
x() = x(xy + (x=-x) = x(x).xx-x) =0

Un caractére sur E est donc un homomorphisme continu du groupe additif de E
dans le groupe multiplicatif Ry , et 1'ensemble des caractéres sur E forme

un groupe multiplicatif, noté g - Si o désigne une forme linéaire sur E ,
a€E* , et si 1'on pose
x(x) = ea(x) , pour X€E ,

¥ est un caracteére sur E , et réciproquement si yx désigne un caractére sur
E , x€E ,et si 1'on pose

a(x) = Log(x(x)) , pour x€E ,

o est un homomorphisme continu du groupe additif de E dans le groupe additif
de R , donc une forme R-linéaire sur E . On établit ainsi un isomorphisme

< F* =
eE.E——ﬁ_E
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du groupe additif de E* sur le groupe multiplicatif , qu'on munit de la

%
topologie qui rend eg un homéomorphisme.
Si F désigne un R-espace vectoriel de dimension finie et u:E—> F une
application R-linéaire , pour tout caractére x sur F on désigne par xY
le caractére sur E défini par
u
X =x°u
et on désigne par T, 1'homomorphisme de groupes

r :E, —>

u’~F ~E
défini par
r () = our €=
u'X X > D XeZg o
et on a
t
E o u
(ce qui implique en particulier que r, est continu), et

T oe.=e
u®°F

T = id_

E “E
Si G désigne un R-espace vectoriel de dimension finie et v :F—>G une

id

application R-linéaire, on a

T =T °T
Vol u v

et pour tout caractere yx sur G , on a

X(Vou) - (Xv)u

En particulier, si E=F=G et si u désigne un automorphisme du R-espace

vectoriel E , L est un automorphisme du groupe EE et

r_g= (ru)_1

I1 résulte aussi que si 1l'application R-lin€aire u:E—F est injective

(resp. surjective), 1l'application r_ :Z. —> E. est surjective (resp. injec-
P PP n E J P

F
tive).

(4.2) Soient E un R-espace vectoriel de dimension finie, x un élément de

E , et € un élément de R} (resp. c un élément de R) . On désigne par
Vx;z-: (resp. wx;c) 1'ouvert de Eg (resp. E*) défini par
Vx;€ = {X€5E=X(X) < €}
(resp. wx;c = {a€E* : a(x) <c)
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Alors on a :

(4.2.1) e; Vi) = Ysloge
et

(4.2.2) egMy. ) = Vy.ec >

2
et pour tout x,etx,, x;€E , x,€E , tout p, et p, , (p],p2)€(]R+) - {0},

tout € ete2 s e1€]R: , eze]R: et tout <4 etc2 , c1€]R, czelR ,

on a
(4.2.3) W .. NW, ..cW .
X13C1 0 T X95C) PR tRXPC1tR 0
et
(4.2.4) P1 P2

v s v
X13€q " xp3e, T R0 5Eq €y

Soit A une partie de E . On rappelle que 1l'enveloppe convexe de A est
1'intersection de toutes les parties convexes de E contenant A , et c'est la
plus petite partie convexe de E contenant A . L'enveloppe convexe de A est
formé de 1'ensemble des €léments x de E tels qu'il existe une famille finie

(xi) d'éléments de A et une famille (pi)1§i§n d'éléments de R, telles

1<isn

que pgt...tp, = 1 et

X =pXg Hentp X,

PROPOSITION 4.3.- Soient E un R-espace vectoniel de dimension finie et A une
partie de E . Lles conditions sulvantes sont équivalentes

i) £'enveloppe convexe de A ne contient pas O ;

ii) AL existe un drnapeau onienté o de E tel que AcD - {0} ;

iii) La famitle (vx;i:)XF_A,eE]R: est un systéme de générateurs d'un §iltre
sun EE 5
. . R P , .
iv) La famitle (Wx;c)xeA,celR est un systeme de générateurns d'un filtre sur
E* .

Démonstration. Pour tout drapeau orienté o de E , D, - {0} étant convexe,

1'équivalence de (i) et (ii) résulte de la proposition (3.8). L'application
. B* =
eg ! E¥* — E
étant bijective, 1'équivalence de (iii) et (iv) résulte de (4.2.1). Démontrons

que (iv) implique (i). Supposons que O appartienne a 1'enveloppe convexe de A .

Alors il existe une famile finie (xi) d'éléments de A et une famille

1isn
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1816 = =
(pi)1§i§n d'éléments de R, telles que Pyte-etp =1 et PXq+eeetp X = 0
On en déduit que pour tout ¢ , ceR ,
WX1 ic n... ﬂWxn;CcWo;c

(4.2.3), et comme pour tout ¢ , ceR , c<0 ,ona w0'c =@ , ceci est
’

en contradiction avec la condition (iv). Réciproquement, démontrons que (i)

implique (iv). I1 suffit de démontrer que si (xi) est une famille finie

d'éléments de A et (ci)

1<isn n
une famille d'éléments de R , n WX . #0.

i=1 7i’vi
Soit B= {x1 . ..,xn} , et soit B' 1'enveloppe convexe de B . La condition

1<isn

(i) implique que O¢B' , et comme 1l'ensemble B est fini, B' est un fermé
de E . Il existe donc un ouvert convexe U de E tel que B'cU et O4U
(si

|.]| désigne une norme quelconque sur E et d(.,.) la distance déduite
de cette norme, B' étant fermé dans E , d(0,B') >0 et alors on peut prendre
U={x€E : d(x,B')<b} , ou b=d(0,B')) . Il existe une forme linéaire a sur
E telle que pour tout x , xeU , a(x)>0 (3.8.2), et en particulier, si

pour tout i , 1<is<n , on pose ai=a(xi) , ona a.l>0 . Posons

a= inf a; et c= suplc;| .Ona a>0 ,etsil'onpose a'=- ((c/a)+Da
1<isn 1gisn
on vérifie aussitdt que a'€ n Wx .. »Ce qui démontre la proposition.
i=1 "ivvi

COROLLAIRE 4.3.1.- Soient E un R-espace vectoriel de dimension finie et Sp

une relation d'ondre sun E , compatible avec sa structure d'espace vectorniel.

, R o , ,
Alons La famille (Vx;e)x>E0 ,e€R* est un systeme de génératewrs d'un §iltrne sur

°E
Démonstration. Si 1'on désigne par A 1la partie de E définie par
A={x€E : x>EO} ,

on vérifie facilement que A est convexe et le corollaire résulte aussitét de la
proposition 4.3.

DEFINITION 4.4.- Soit E un R-espace vectorniel de dimension finie. Pour toute
partie A de E dont £'enveloppe convexe ne contient pas O , on désigne par Fa

(resp. GA) Le iltre sun g (resp. E*) engendré par La famille (Vx;e)x(-:A,ee]Rj:

(resp. (wx;c)x€A,c€]R)) . On dit qu'un §iltre F sun g (resp. un §itrne G sur

E*) est un §itre de Hahn-Banach, 4'iL existe une partie A de E dont £'enveloppe
convexe ne contient pas O , et telle que F = FA (resp. G = GA) . Pour toute

nelation d'ondre Spodun E , compatible avec sa structure d'espace vectoriel,
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(resp. GE*—{O})

on désigne par F_ (resp. G, ) Le filtre de Hahn-Banach FE 10}
g g -
oi E'={x€E :x 2; 0}, eton dit que F_ (resp. G, ) est Le filtre de
“E “E
Hahn-Banach swr Ep  (resp. E*) défind par La nelation d'ondre Sp . Pour tout

drnapeau onienté o de E , on désdigne par Fa (resp. Gu) Le filtne Fia
(resp.Géa ) , et on dit que F, (resp. G)) est Le §iltre de Hahn-Banach
dur Ep (resp. E¥) défini parn Le drapeau ornienté o

Remarque 4.4.1. En gardant les notations de la définition, il résulte de (4.2.2)
que FA est 1'image du filtre GA par la bijection eg - Si A' désigne une
partie de E dont 1'enveloppe convexe ne contient pas O et si AcA' , le

filtre FA'
§]'3 désigne une relation d'ordre sur E , compatible avec sa structure d'espace

vectoriel et moins fine que la relation S le filtre F_, (resp. G_) est
“E “E

(resp. GA,) est plus fin que FA (resp. GA) . En particulier si

plus fin que F_ (resp. G_)
“E

PROPOSITION 4.5.- Sodient E un R-espace vectoriel de dimension finie et A une
partie de E dont £'enveloppe convexe ne contlent pas O . Alorns L existe une
nelation d'ondne unique suwr E , compatible avec sa structure d'espace vectorniel,
telle que FA 504t Le filktrhe de Hahn-Banach sur g dégini par cette relation
d'ondre (ou ce qui est équivalent, GA 504t e §iltne de Hahn-Banach surn  E*
dégini par cette relation d'ordne), et a4 L'on désigne par Sh cette nelation
d'ondne, pour tout x , x€E , Les conditions suivantes sont équivalentes :

i) x>AO ;

ii) x€ U U .

nEN* (py ... ,p JECR )" -0} (Prfre-+op) 5

iii) pour tout drapeau ornlenté o de E tel que AcDa , ona xEDa— {0} ;

iv) pour tout € ,eE]R: , ona vx;E:EFA 4

v) pouwrt tout ¢ ,ceR , ona Wx;CEGA ;

. . . . .
vi) x#0 , et 4L existe € , e€R} , tel que Vx,gEFA ;

vii) x#0 , et AL existe ¢ , c€ER , tel que We. €6y
Démonstration. L'équivalence de (iv) et (v) ainsi que celle de (vi) et (vii)
résulte de (4.2.1) et (4.1), la condition (ii) implique la condition (v) (4.2.3)
et la condition (v) implique la condition (vii) (car WX,O#QJ implique x#0) .

Soit B = U

U n (p1A+"'+pnA) .Ona AcB , B+BcB,
ne N* (p1,...,pn)€(]R+) -{0}
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RiB<B et 1'enveloppe convexe de A ne contenant pas O , O ¢B et Bn(-B)=0.
11 existe donc une relation d'ordre < A Sur E , compatible avec sa structure
d'espace vectoriel, telle que pour tout x , X€E ,

(4.5.1) x>A0<=>x€B s

et il résulte de (2.3) et (3.7) que si D désigne 1'ensemble des drapeaux orientés

a de E tels que BCDa (ou ce qui est équivalent tels que AcDa) , ona

B= 0.20 Da_ {0} , ce qui démontre 1'équivalence des conditions (ii) et (iii).
Démontrons que la condition (vii) implique la condition (iii). Soit donc Xy >

xer , xo;éO , tel qu'il existe Co > COE]R , tel que WXO;COEGA et

supposons qu'il existe un drapeau orienté o de E , a€D , tel que X, ;!DOL

Alors X, €D - {0} , et si 1'on pose A, =AU{-xo} »ona AcD -{0} , ce

qui implique que la famille (Wx est un systéme de générateurs

;c)x(—”_A1 ,CER
d'un filtre GA sur E* (4.3), plus fin que GA (4.4.1) et en particulier,
1
comme WX ‘e EGA , que pour tout ¢ , c€R , Wx i nW_X i #@ , d'od
0’ o o’ o (o)

WO_C +c #9 (4.2.3), ce qui est impossible pour cs-c, - Ceci démontre 1'équi-
’
o

valence des conditions (ii), (iii), (iv), (v), (vi) et (vii) et (4.5.1) implique
donc que G, = GA

A
I1 reste a démontrer que si <A est une relation d'ordre sur E , compatible
avec sa structure d'espace vectoriel, telle que G_, = GA , gj'\ n'est autre que
“A

gp - Soit A' = {x€E : x>1'\0} . Alors A' est une partie convexe de E ,

O¢A' et A' = U U n
ne€N* (py,...,p )E(R)" - {0}

donc 1'équivalence des conditions (ii) et (v) a la partie A' de E , on déduit

(p1A'+...+pnA’) . En appliquant

que pour tout x , Xx€E ,ona x€A' , siet seulement si, pour tout c ,
ceR , wx;CEGA' , et comme GA' = GA , cela équivaut a x€B , d'ou A'=B,
ce qui démontre la proposition.

COROLLAIRE 4.5.2.- L'application qui assocdie & une nelation d'ondre sur E
compatible avec sa structure d'espace vectorniel, Le §iltre de Hahn-Banach sun Eg
(resp. E*) , défini par cette nelation d'ondre, est un Lsomorphisme d'ensembles
ondonnés, de R'ensemble des nelations d'ondre sur E , compatibles avec sa struc-
ture d'espace vectorniel, orndonné par La relation " plus fine que", sur L'ensemble
des §iltnes de Hahn-Banach sun Eg (resp. E*) , ondonné par La nelation " moins §in
que", Les éléments maximaux de cet ensemblfe étant en bifection avec Les nelations
d'ondre total sur E , compatibles avec sa structure d'espace vectoriel.
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Démonstration. Le corollaire est une conséquence directe de 4.5, de 4.4.1 et
de 2.3.

(4.6) Soient E et E' deux R-espaces vectoriels de dimension finie et u:E—E'
une application R-linéaire . Pour tout point x , x€E , et tout ¢ , € €R}
(resp. tout ¢ , c€R) ona

_1 .
Vuese = Tu Gy
t -1
=u (W . ))

(resp. wu(x) i Xic

On en déduit que si A (resp. A') est une partie de E (resp. E') dont 1l'en-
veloppe convexe ne contient pas O et si u(A)cA' , alors 1'image du filtre
FA'
(resp. GA) , ou ce qui est équivalent, 1'image réciproque du filtre Fa

(resp. GA,) par 1, (resp.tu) engendre un filtre plus fin que Fa

(resp. GA) par T, (resp.tu) engendre un filtre moins fin que Far (resp. GA,)
En particulier, si E'=E et si u est un automorphisme de E , pour tout
drapeau orienté o de E 1le filtre Fu(a) (resp. Gu(a)) est 1'image réciproque
du filtre Fa (resp. Ga) par la bijection T, (resp. tw (3.4).

LEMME 4.6.1.- Sodient E un R-espace vectoriel de cdimension finie, H un hyper-
ptan de E , A une partie de E , B 4L'enveloppe convexe de A et

A' ={x€H:3x1,x2EA , 391,p2€]R+: 61 +p2=1 et x=p,x, +p2Xz}

Alons BNH est L'enveloppe convexe de A'

Démonstration. Soit B' 1'enveloppe convexe de A' . Ona A'<BNH , et comme
BnH est convexe, on en déduit que B'<BNH . Pour démontrer que BNHcB' |,

il suffit de démontrer que pour tout n , neN* , si (xi) est une famil-

<ig
le d'éléments de A et (pi)1§i§n une famille d'éléments de 1]=!!}+=n telle que
Pyte-tpy = 1 , si 1'on pose X=pXq*teeatp X, 1'hypothése x€H implique

que X€B' (4.2). On raisonne par récurrence sur n . Si n=1 ou n=2 ,
1'assertion est évidente, car alors x€A' par définition de A' . Supposons donc
que n>2 et que l'assertion soit établie pour n-1 , et démontrons la pour

n . S'il existe i , 1<isn , tel que pi=0 , 1'hypotheése de récurrence
implique que x€B' . On peut donc supposer que pour tout i , 1gisgn , pi>0.
Soit o une forme R-linéaire sur E telle que Ker(a) = H . L'hypothése

n
x€H implique que I p; alx;) =0 . Sipour tout i , 1sgisn , alx;) =0,
i=1

pour tout i , 1<£is<n , xiEH donc xiCA' et X€B' . Supposons donc qu'il
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n
existe i , 15i <n , tel que o(x. ) #0 . Alors 1'égalité I p.a(x.)=0
o (o} i joq 1 i
implique qu'il existe jo . 1§j0§n , tel que ot(xj ) #0 et tel que
o
a(xj ) ait un signe opposé a celui de (:t(xi ) (car pour tout i , 1£isn ,

o o

p;>0) , ce qui implique que si 1'on pose r; = ot(x:i )/[a(xj ) -alx; )] et
) ) ) o
r. = -oalx; )/[O.(Xj ) -alx; )] ,ona r; >0 , 1. >0 et r;+r. =1

J0 (0] (0] (o} 0o JO 10 (o]

Soit y=T; X5 +T. X, .0Ona o(y) =0 ,donc y€H , d'ou y€A' .
o o Jo Jo
D'autre part, soit s=inf{p.1 /ri , pj /rj } et supposons par exemple que
o o o o

s=0; /ri . Alors si 1'on pose t=rj (pj /rj =Py /ri ) ona tz20 ,
o "o o “o0o ‘o o o

s+t+ r pi=1 et x=sy+txj + D Py Xy
1€[1,n]—{10,;|0} o 1€[1,n]—{10,30}

Enfin, comme pour tout i , 1£isn , pi>0 et n>2 ,ona 1-s>0 et
si 1'on pose

y' = [t/(1-s)Ix. + b [pi/(1—s)]xi ,
o i€l1,n]-{i_,j }
ona y'€H (car y'=(x-sy)/(1-s)) et 1l'hypothése de récurrence implique
que y'€B' (car t/(1-s) + z pi/(1-s) =1) , et comme
i€l1,nl-{i_,j }

x=sy + (1-s)y' , on en déduit que x€B',ce qui démontre le lemme.

LEMME 4.6.2.- Soient E un R-espace vectorniel de dimension finie, E' un
sous- R-espace vectoriel, o' une forme R-Lindaire sur E', A une partie
finie de E dont £'enveloppe convexe ne rencontre pas E' , et c un éLément de
R . Alons Al existe une forme R-Linéaire o sur E qui prolonge o' et

z € N W
elle que o o e
Démonstration. Soit 0, un prolongement quelconque de a' en une forme

R-linéaire sur E . On pose a=sup ao(x) . Soient E"=E/E' , m : E—E"
XEA
la surjection canonique et B= m(A) . Alors B est une partie finie de E" dont

1'enveloppe convexe ne contient pas O . Il existe donc une forme R-linéaire

B sur E" telle que B€ N
Y€EB
ona o|E'=a' ,etpour tout x , x€A , o) =oto(x) + B(r(x)) <c ,

Wy;c_é1 (4.3). On pose a = + B om . Alors

ce qui démontre le lemme.
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PROPOSITION 4.6.3.- Soient E un R-espace vectoriel de dimension finie, E' un
sous- R-espace vectorniel de E , A une partie de E dont £'enveloppe convexe
B ne contient pas O et B'=BNnE' . Alons B' est une partie convexe de E!
ne contenant pas 0 et Le §iltre de Hahn-Banach Fgr (resp. Gp,) sun B,
(resp. E'*) est L'image du §iltre de Hahn-Banach FA (resp. GA) par La surjec-
ion T, (resp. tW) , ot u désigne L'injection canonique u:E'— E

(cf. 4.1).

Démonstration. En raisonnant par récurrence sur la codimension de E' dans E ,
on peut supposer que E' est un hyperplan de E . D'autre part, 1'image du
filtre Gy par la surjection tu est un filtre plus fin que Gy (4.5 et 4.6).
11 suffit donc de démontrer que si (xi) est une famille finie d'éléments
de A et (Ci)1<i§n une famille d'éléments de R , il existe une famille finie
' 818m ' i 1 1816
(yj)1§j§,m d'éléments de B' et une famille (cj 15jsm d elemlflelnts de R telles
que pour toute forme R-linéaire a' sur E' telle que a' €N Wy ot o il
i=1 755

n
existe une forme R-linéaire o sur E telle que a€ n W)c e et al|E' =a'
i=1 “i’7i

1<isn

Soient AO = {x1 A ,xn} , B0 1'enveloppe convexe de A0 ,

Ac') = {x€E': 3i1,i2, 1 §i1 <n, 1 éiz <n, 301,p2€]R+ 01+ 0, =1 et x=p1xi1 +pzxiz} .
B' 1'enveloppe convexe de A' et c= inf c. . Alorsona B'=B nE'

o o l<ign o o

(4.6.1), 1'ensemble A& est fini et A(')cB' . Soit o' une forme R-linéaire

sur E' telle que a'€ n Wy_C . Nous allons démontrer qu'il existe une forme
1 bl
yeA,
n
R-linéaire o sur E telle que a€ n W .. et a|E' = a' . On distingue
i=1 7i’7i
deux cas :
ler cas : A(') =@ . Alors B(;=¢ , donc Bon '=@ , et il résulte du lemme
4.6.2 qu'il existe une forme R-linéaire o sur E qui prolonge a' telle que
n n
o €N W . , ce qui implique que o€ n W_ .
i=1 *1¢ i=1 X%

2éme cas : Ac'> # @ . On peut alors qupposer que o'#0 (car si o'=0 , comme

Aé#(b , a'€ n W implique que c20 , et on peut prendre o =0 ) . Soit
yeay Vb

] 1 - = - = -
donc e, » € €E , tel que a(eo)—c - On pose A, =-e +A, , B eo+Bo,

Ai =—eo+A(‘> et Bi =-eO+B(') . Alors B1 (resp. Bi) est 1'enveloppe convexe
de A1 (resp. Ai) , B1'=B1nE' et pour tout y |, y€A1' , a'ly) <0 , ce qui
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implique que pour tout y , yeBi , 0'(y) <O . Soit H'=Ker(a') . On a donc

Bi nH' =@ , d'ou B1 NH' =@ (car H'cE' et B1 nEg' = Bi) . On en déduit
1'existence d'une forme R-linéaire g sur E telle que Q|H' = O et telle que
BEXQA wx;O (4.6.2), ce qui implique que pour tout x |, xeB1 , B(x)<O.

Si 1'0111 pose H=Ker(B) on a donc H'<cHNE' , et comme A(') #0 , il existe y ,
YEE' , tel que a'(y) <O et B(y) <O . On en déduit que les hyperplans H et

E' de E sont distincts, que 1'hyperplan HNE' de E' (noyau de g|E') n'est
autre que H' (noyau de a'), et que le demi-espace ouvert de E' o o' est
strictement négative est le méme que celui ol B|E' est strictement négative.

Soit e, , e €H , e ¢ E' .Ona E=E' @ Re, . Soit 7 :E—>E' la

projection parallelement a ]Re1 . On pose a =a'om . Pour tout x , xeA1 ,
B(r(x)) = (x) <0 , donc a'(w(x))<0 , d'ou a(x) <0 . On en déduit que pour
tout i , 1<ign , oL(—e0 +xi) <0 (car €, +xi€'A1) , d'ol a(xi) <cscy ,

ce qui démontre la proposition.

COROLLAIRE 4.6.4.- Soient E un R-espace vectorniel de dimension finie, Sp une
nefation d'ondre sur E , compatiblLe avec sa strwucture d'espace vectorniel, E'

un sous- R-espace vectoniel de E et Spr La nelation d'ondre sun E' , dinduite
par spo. Alons Le §iltre de Hahn-Banach Fg , (resp. G§E') sur Eg

(resp. E*) est L'image du §iLtre de Hahn-Banach FéE (resp. G§E) par La swijec-

tion r,, (resp. W , o u désigne £'injection canonique u:E' —> E
Démonstration. Le corollaire résulte directement de la proposition 4.6.3.

(4.7). Soit p un entier, pe€ N . Pour tout p |, p=(p.|,...,pp) , pE(]R:)p ,
si 1'on désigne par Xo 1l'application

x. : P—R
p +
définie par
P X P
xp(x) =i]=11 p; » pour x=(x1,...,xp) , XeR" ,

Xo est un caractére sur RP , et si 1'on désigne par gp 1'application

. p =
E;p . (]R:) —> “]Rp ’
définie par
Ep(p) =X, » pour pE(]R_’;)p s
gp est un isomorphisme du groupe multiplicatif produit (]R’+‘)p sur le groupe
g b Pour toute forme R-linéaire o sur RP , Si a1,...,ap désignent ses
R
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coordonnées dans la base duale de la base canonique de R° , Ona

a
(a) F,p(e ,...,e ),

et en particuher, &p est un homéomorphisme.

Soient q un entier, q€N , A= (a )1<1<q 15jsp une matrice a coefficients

dans R et p = (p1,...,pq) , p€(]R:)q . Si 1'on désigne par pA 1'élément

o' = (pf,---spp) de (RDP , défini par

a
P s, pour 15jsp ,

on a
u
Xp =Xac
p
o u désigne 1l'application R-linéaire, u: R — R4 , définie par la matri-
ce A , et si l'on désigne par A 1'application

. q Y
ry: (RO — ®OP
définie par
= A 4
rA(p) =p , pour pE€ (IR+) ,

on a
gporA=ruo gq

On identifiera désormais & p E} (]RI)p , moyennant 1'isomorphisme F’p
R

et le dual de RP (considéré comme 1'espace vectoriel des matrices colonnes a

p lignes) a RP  (considéré comme 1'espace vectoriel des matrices lignes a

p colonnes). Modulo ces identifications, on a donc pour tout x , Xx= (x1 yeee ,xp),

x € RP , et tout e , e€R} , (resp. tout c, c€R)

Xi
Py <€}

1

jee

- =P
vx;e = {(p1,...,pp) E(]R+)

=

1

(resp. W

p P
X;C={(a1,...,ap)E]R DX aixi<c}),

i=1

et pour toute partie B de RP  dont 1'enveloppe convexe ne contient pas O,

toute relation d'ordre < sur RP compatible avec sa structure d'espace
R
vectoriel et tout drapeau orienté o de RP » Fpo» F ® et Fa
(resp. G, B? G, D et Ga ) sont des filtres sur (]Ri)p (resp. RP)
*R
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Exemple 4.7.1.- Le filtre de Hahn-Banach F_ sur (R’;)p , défini par la rela-
tion d'ordre produit £ sur R° , est la trace sur (]Rj)p du filtre des

voisinages de O dans RP

PROPOSITION 4.8.- Soient p un entier, p €N , o un dwpeau orienté de RP
et A une matrnice inversible définissant La nelation d'ondre ga (cf. 3.5).
Alons ke giltre de Hahn-Banach F  (resp. G) 4ur (ROP (resp. RP)  est
L' image du §itre de Hahn-Banach FgL (resp. Gc ) , défini par La nelation
d'ondre antilexicographique S RrP (cf.L3.5.3),pa/z La bijection Ta
(resp. par £'automorphisme de RP  défini pan fa matrice TA ).

Démonstration. Si e* désigne le drapeau orienté de RP  déterminé par la base
duale de la base canonique de RP , la relation d'ordre antilexicographique
gL n'est autre que la relation d'ordre ée* (3.5.3) et e*=u(a), ou u désigne

1'automorphisme de RP  défini par la matrice inversible A , et la proposition
résulte de 4.6.

(4.9).- Soient p un entier, p€N . Pour tout § |, c‘iE]R+ , et tout ¢ ,
* P

e€R} , (resp. tout ¢ , c€R) on désigne par Ep;cS;e (resp. Cp;G;c) la

partie de (]R:)p (resp. Rp) définie par

8 S
= {(01,---,pp)€(1Rj)p D PP<Es Py <Py <Py

E
p;S;e P 'p

= D .
(resp. Cp;(s;C = {(a1,...,ap)€]R :ag<c, a2<6a1,...,ap<6ap_1}

Alors on a
-1

(4.9.1) ° 0 i85 = Cpsosloge
et
(4.8.2) °pp (pioic? = Fpjssec

LEMME 4.9.3.- Sodent (8;)i¢;¢ wne famille finie d'éféments de R, et
(e:i)1 dizm Wre famille d'éLéments de R, (resp.(ci) une famille d'éLéments
de R . S{ 2'on pose

1€ism

§ = sup{61,...,6m}
et
€ = inf{s1,...,em,1}
(resp. ¢ = inf{c1,...,cm,0})
on a
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.8 C E .o .
Disie il ity
(resp. C.....c N C..o ..)
P p;6;c 1<ism Pyﬁi,ci

Démonstration. Le lemme découle d'une vérification directe.

LEMME 4.9.4.- Soient X un élément de RP , x=(x,e000X) , tel que x>0
(cf. 3.5.3) et € un élément de R} ([resp. c un élément de R ). On pose

i

o sup{i:1<isp, xi;éo} ,

I = {i:1§i<io , xi<0} ,
§ = sup(|x;|/x; ) + 1
ier 1T
(1a borne supérieure ci-dessus étant, par convention nulle si I=0), et
1/x4
e' = inf{e 0,1}

(resp.c' = inf {c/xi ,0b .
o]

Alons on a

Ep;é;e‘cvx;e

(resp.C

psssct M)

C

Démonstration. I1 résulte de (4.9.2) et (4.2.2) qu'il suffit de démontrer que

Cp;é;c":wx

;C
Soit donc a , a=(a1,...,ap) ,aecp;é;c, .0na
'
a;<c ,a2<6a1,...,ap<6ap_1 ,

ce qui implique que pour tout i , 1<isp , a; <c'61"1 (et en particulier
i'-i

[
que ai<0) et que pour tout i et i', 1gsici'sp , aj, gaiél . D'autre

part, 1'hypothése x>L0 implique que X5 >0 . On a donc

o
: 5 1]
Y a. x. = L a.Xx.g<a. Xx. - I a.|x.| g

T T T e e N S

io-i

sa; x; - (3 /s ;] =

o "o i€l "o

a; Xy (1-6

1
(0]

i
To8T|x|/x; ) s
o "o i€l 11
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-i .
sa; x; (1-6 °66-1 £ 69 s
o "o i€l
_io 10—1 i
<ay xi(1-6 (-1 z &) =
o o i=1
-i in-1
=a, x; (1-6 °-188° -1/(6-1) =
(o] (o]

-(i -
=a; X 3 (o 1)<c'xi <c .
o "o o)

On en déduit que aGWx,C , ce qui démontre le lemme.

LEME 4.9.3.- La famclle (B 5, JseR , ceRr (TP (Gyigic)ser, ,cem) 4% une
base de f§iltre sun (]R:)p (resp. RP) qui engendre Le §iltre de Hahn-Banach
FSL (resp. G¢ ) , dégini par La nelation d'ordre antilexicographique ST

B L

R .

3 ion. Il ré .9. i
Démonstration. Il résulte du lemme 4.9.3 que la famille (Ep;5;€)6€R+, e€R*

(resp. (Cp . )

sic est une base de filtre sur (]R:)p (resp. ]Rp) , et

s€R_,ceR’
du lemme 3.9.4 que le filtre engendré par cette base est plus fin que le filtre
F. (resp. G, ) . Pour démontrer le lemme, il suffit donc de démontrer que pour
33 <

tout § , SeR, , et tout ¢ , ceR . Pour tout i ,

> Cp;é;ceegL
1<i<p , on pose xi=(xi1""’xip) , xi(-:]Rp , ou pour tout i et j ,
1<i<p , 1£jsp ,

X.. =1, pour i=j

X:. ==-6 ,pour i=j+1

et

X33 =0, pour ifj et i#j+1
et on pose c,=C et ci=O , pour 2£isp . Alors pour tout i , 1<isgp,
Xi>LO , cielR et C = n W , ce qui démontre le lemme.

Pi8iC  qgigp XioCi

PROPOSITION 4.10.- Sodient p un entier, peN , o un drapeau orienté de RrP

et A une matrice inversible définissant La rnelation d'ondre <y (cf. 3.5).

Alors ta famitle (r,E_ . )) (resp. (*ACC est

p;83e” "6€ER, ,e€RY p;a;c))6€]R+,ce R’
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une base de filtre sun (]R:)p (resp. ) qudi engendre Le fiLtre de
Hahn-Banach Fa (resp. Ga)

Démonstration. La proposition est une conséquence directe de la proposition 4.8
et du lemme 4.9.5.

Le lemme suivant précise la proposition 4.10.

LEMME 4.10.1.- Soient p un entienr, peEN , o un drapeau orientl de RP ,

A = (aij)1gigp,1gj§p une matrice dinvernsible a coefficients dans R , définissant

La nelation d'ondre ga (cf. 3.5), (xk) une famille finie d'éféments de

1<ksn
P - . P

R" X = (xk1""’xkp) et (ek)1§k§n (TQSP'(Ck)1§k§n) une fgamille d'éLéments
de RY (resp. R) . On suppose que pour tout k , 1<k<n , X% 0 , et
pour tout k , 1sksn , on pose yk=(yk1""’ykp) , ol pour tout i ,

jgo]

1€isp , Y = 351 355 Xy O =20,

ik =sup{i:1<ic<p, Yii # 0}
Ik ={i: 1§i<ik , yki<0}

§ = sup sup (lyki[/ykik) + 1

1<ksn ieIk
(La borne supérieure sup &tant par convention nulle 4 Ik=(2)) , et
1€Ik
1/y,: 1y, s

€ = inf{z:1 111,...,911 Mn 1y
(resp.c = 1nf{c1/y1i1 yeoo ,cn/ynin,O}) .
Alons on a

r,(E....)e n V_ .

ATPiSE" T iken Mi3Ek

t
(resp. A(C....)c n W_ .
P3¢ T igken Kk

Démonstration. Comme x >a0 équivaut a y, > 0 (3.5.3), il résulte des lemmes
4.9.3 et 4.9.4 que

E....c n V.
PiSie qken YOk

(resp. C_....c n W ..
p;6;c 1<ks<n yk’ck
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On a donc
-1
n r, (V )
P8 g AT MO
(resp. C .5:c © n 1:A 1(W ))
P3%:C q<ksn X%k

(4.6), ce qui démontre le lemme car A étant inversible Ty (resp. tA) est
bijective (4.1).

LEMME 4.11.- Sodent p un entiern, pEN , o un drapeau ornienté de RP  tet que
La nelation d'ordre S, 404t moins fine que La nekation d'ondre produit S sur
RP , A= (aij)1§i§p,1§j§p une matrice Linversible a coefficients dans R dégi-
nissant La nelation d'ondre éa et R un nombre néel, O<Rs1 . Pourn tout j
1£jsp , on pose

i.= i:12ig .. #0}

i sup{i isp, alj# }

Ij={1:1§1<1j » 3;:<0}

J
§= sup sup (|a..|/a. ;) +1
1sjsp i€l 1)
(La borne supérieure  sup éEtfant pan convention nulle A4 Ij =0 , et
i€l.
J
a= inf aj; 5 -
15jsp 157

Alorns on a

TpEp;5;R1/2) SUPpse R ) ERDP: V), 1558p , 05 <R

Démonstration. Si e1,...,ep désigne la base canonique de RP , pour tout j ,
1<jsp ,ona ej>O , donc ej>a0 , et comme

loyseenrp) € (RDP 2 vj, 1555p ;<RI = N V. .
le lemme résulte aussitdt du lemme 4.10.1.

Remarque 4.11.1.- En gardant les notations du lemme 4.11, il résulte de 4.4.1 et
4.7.1 que le filtre de Hahn-Banach Fa est plus fin que la trace sur (]R:)p

du filtre desvoisinages de O dans R’ | et le lemme ci-dessus précise ce
résultat. D'autre part, on remarque que si la matrice A est a coefficients dans
R, (cf. 3.5.1) alors & =1
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§5.~ Filtre associ€é a une relation d'ordre sur N

Dans ce paragraphe, on étudie un cas particulier de filtres de Hahn-Banach,
ceux définis par une relation d'ordre sur N , compatible avec sa structure de

monoide.

LEMME 5.1.1.- Sodient p un entdien, pe N , <' une relation d'orndre sun N,
compatible avec sa structure de monoide, et A La partie de RP déginie par

A={xeRP: xd, d' eN, d<'d" et x=d'-d}
Alons O n'appartient pas a L£'enveloppe convexe de A
Démonstration. Soient <" la relation dans NP définie par
d's" d" eamelN*, 3deN , nd' +d<'nd"+d
et A' 1la partie de RP  définie par
A' = {xeRP-{0} : 3d, d'e NP, d<"d" et x = d'-d}
La relation <" est une relation d'ordre sur N’ compatible avec sa structure
de monoide, réguliéere, moins fine que <' , et en particulier, on a
AcA' .
En vertu de (3.9.3), il existe une relation d'ordre <'"' sur RP , compatible
avec sa structure d'espace vectoriel sur le corps ordonné R et prolongeant
<" . Si 1l'on désigne par A" la partie de RP  définie par
A" = xeRP :0<"x} ,
on a
A'cA"
et comne A'" est convexe, on en déduit que O n'appartient pas a 1'enveloppe

convexe de A .

PROPOSITION 5.1.2.- Sodent p un entiern, pe N, et <' une nefation d'ordre sur
N, compatible avec sa stwcture de monoide. Alons La famifle

(Var-g;edacrar, eers
(resp. (W31 _g;dd<rdr ,ceR’

est un systeme de générateuns d'un §iltrne de Hahn-Banach sur (]R’;)p
(resp. sur RP) .

Démonstration. La proposition résulte de 5.1.1 et de 4.3 (cf. (4.4)).
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/
DEFINITION 5.1.3.- Soient p un entier, p €N , et <' une relation d'ondre
sun NP compatible avec sa sthucture de monoide. On désigne pan FZ,

(resp. GZ. ) Le §iLtre de Hahn-Banach FA (resp. GA) , ol A désigne ka partie
de RP déginie pan

A={xeRP: 3d, d'eNP, d<'d' ot x =d'-d}

(cf. 5.1.1, 5.1.2 et 4.4), et on dit que F, (vesp. G2,) est Le filtre de
Hahn-Banach defini par ka nefation d'ondre <' sun NP

Exemple 5.1.4.- Le filtre de Hahn-Banach FZ défini par la relation d'ordre
produit £ sur N n'est autre que la trace sur (]R::)p du filtre des voisina-
ges de O dans RP . si <' désigne une relation d'ordre sur N , compatible
avec sa structure de monoide et moins fine que < , alors le filtre de
Hahn-Banach F:, défini par <' est plus fin que la trace sur (]Q:)p du filtre
des voisinages—de 0 dans RP (4.4.1).

Remarque 5.1.5. Soient <' une relation d'ordre sur NP , compatible avec sa
structure de monoide et <" une relation d'ordre sur RP , compatible avec sa
structure d'espace vectoriel sur le corps ordonné R . Si la relation d'ordre
induite sur N par <" est moins fine que la relation <' , alors le filtre de
Hahn-Banach F,,, (resp. G,) défini par <" est plus fin que le filtre de
Hahn-Banach Fé, (resp. GC:’,) défini par <' (4.4.1). En général, méme si la

relation d'ordre <' est induite par la relation <" , le filtre F_,

In

(resp. G..) est strictement plus fin que le filtre Fg, (resp. G(:,) (voir
remarque 5.2.2 ci-dessous). Néanmoins,on a la proposition suivante :

PROPOSITION 5.2.1.- Sodent p un entier, peN , et <' une relation d'orndre
Aun Np , compatible avec sa strwctwre de monoide. 1L exdiste une nelation d'ordre
unique <" sun R, compatible avec sa structure d'espace vectoriel surn Le
conps ondonné R , telle que F o = FS, (ou ce qui est équivalent, telle que
G = GS, ). En plus, on a Les ph;puézt& sulvantes :

i)  La rnelation d'orndre <" Aindult une nelation d'orndre moins gine que <!
sun NP

ii) 44 La nelation d'ondre <'  est néguliene (cf. (1.0)) , akorns La
nekation d'ondre <" indwit Ra rekation <' sun NP ;

iii) 44 La nelation <' est une relation d'ondre fotal, rationnelle
(cf. (3.11)), alons La relation <" est une relation d'ondrne total, qui n'est au-
tre que L'unique profongement de <' en une nefation d'ondre total sun RP
compatible avec sa structure d'espace vectoriel sur Le corps ordonné R

(cf.(3.12), (ii)).
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Démonstration. Soit A 1la partie de RP  définie par

A={xeRP:3d,d" eN, d<'d' et x =d'-d}

En vertu du lemme 5.1.1, O n'appartient pas a 1'enveloppe convexe de A
L'existence et 1'unicité de <" résulte alors de la proposition 4.5, appliquée
a A (cf. 5.1.3). Posons

A' = (o, A+...tp A)

neN* (p1,...l,Jpn)e1R’3-{0}
On a AcA' , et 1'assertion (i) résulte de 1'équivalence des conditions (i) et
(ii) de la proposition 4.5. Si 1'on suppose que la relation d'ordre <' est

réguliére, en vertu de (3.9.3), il existe une relation d'ordre <'' sur RP ,
compatible avec sa structure d'espace vectoriel sur le corps ordonné R , in-
duisant <' sur N’ . Si 1'on désigne par A" 1la partie de RP  définie par

A" = {xeRP : x>0} ,

on a donc A'cA" . Soient d et d4d' , de NP , d’ e NP , tels que d<'"d' .
L'équivalence des conditions (i) et (ii) de la proposition 4.5 implique que
d'-deA' , d'ou d'-deA" , autrement dit d<''d', et comme la relation
d'ordre <' est induite par <'"' sur NP , on en déduit que d<'d' , ce qui
démontre 1'assertion (ii). Pour démontrer 1'assertion (iii), on remarque que

si <' est une relation d'ordre total, pour tout drapeau orienté a de RP

la relation d'ordre éa (cf. (3.2) et (3.2.1)) induit s' sur N si et seule-
ment si ACDa - {0} . On en déduit que si en plus la relation d'ordre total

<' est rationnelle, il existe un drapeau orienté % de RP et un seul tel que
AcDao - {0} ((3.12), (iv) et (3.7)), et alors §ao est 1'unique prolongement

de <!

d'espace vectoriel sur le corps ordonné R . L'équivalence des conditions (i) et

en une relation d'ordre total sur RP , compatible avec sa structure

(iii) de la proposition 4.5 implique que la relation d'ordre <'" n'est autre que

§a , ce qui démontre la proposition.
()

Remarque 5.2.2.- L'assertion (iii) de la proposition 5.2.1 posséde une réciproque :
pourvu que la relation <' soit une relation d'ordre réguliére, si la relation
<" est une relation d'ordre total, alors <' est une relation d'ordre total,
rationnelle. En effet, en vertu de 1'assertion (ii) de la proposition 5.2.1, la
relation <' est alors induite par <" , et en particulier, elle est une rela-
tion d'ordre total. I1 suffit donc de démontrer que si <' désigne une relation
d'ordre total sur NP , compatible avec sa structure de monoide, qui n'est pas
rationnelle, et <" une relation d'ordre total sur RP , compatible avec sa
structure d'espace vectoriel sur le corps ordonné R , induisant <' sur NP s
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(o] . P .
alors F o # Fy (ouce qui est équivalent G o # sz) . Pour démontrer cette

= - En vertu de la proposition 3.7,

assertion, supposons que 1l'on ait Fenr <t

il existe un drapeau orienté

. = - rP
o : {0} = EOCE1C...CEp_1 cEp R

de RP tel que <" soit la relation d'ordre sa . Alors il existe io s

1< '10<p , tel que le sous-espace vectoriel Eio de RP ne soit pas rationnel

(on vérifie facilement que sinon <' serait rationnelle).

Soit F 1'adhérence de E; N Qp dans E; . L'ensemble F est un sous-R-espace
o 0

vectoriel de E; distinct de Ei . On en déduit que 1'ensemble
o 0
I={i:1<5ici_ , E

4.1 NE = E, NF}

est non vide. On pose i] = max(I) . Soit

[ = v = RP
a' : {0} -Ec')cEic...cE}’)_]cEp R

le drapeau orienté de RrP , tel que

i) pour tout i , O<gi<p , El = E,

ii) pour tout i , Osisp , i#i,,El" =E ;
siayert o gt vt P . _ +
ul)Ei1 Ei1 (13i1 {(x€RP: eri1}).

On vérifie facilement que la relation d'ordre < , sur RP  induit s<' sur W

Soit x un €élément de EI tel que x¢Ei 1 +Ona O0<"x (cf.3.2) et
1

5 o . - o N .
1'hypothése Fg,, = ng implique que Vx;1€ Fg' (cf. (4.4), d'ou Vx;1 EFia,
(cf. 5.1.5). D'autre part, on a -x EEi+ et -x ﬁlEi 1 »ce qui implique que

1 1

O<a,—x (cf. 3.2), d'ol V_X;1 € F§ '(cf. 4.4), et come F_ est un filtre,

=1

. o o
on en déduit que

Vx;1 nv—)(;1 €F

Or, on a

V.

x;1 nV—)(;1CVO;1 =9

(4.2.4), ce qui est absurde.

COROLLAIRE 5.2.3.- Soient <' une relation d'ondre totak sun NP | compatible
avec sa sthructurne de monoide et nationnelle, et A une matrice inversible a
coefficients dans R définissant cette relation (cf. 3.11) . Alons La famille
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(r (E R )) *
Ap;6;e)seR L eeR?
t
(resp. ( A(cp;<5;c))<S€]R+ ,CG]R)
est une base du filtre FZ, (resp. GZ,)

Démonstration. Soit <" 1la relation d'ordre total sur RP compatible avec sa
structure d'espace vectoriel sur le corps ordonmé R , définie par la matrice A
(c£. 3.5). La relation s" induit la relation d'ordre <' sur N’ et 1'asser-

tion (iii) de la proposition 5.2.1 implique que Fz, = F., (ou ce qui est équiva-
lent que GZ, = G.,) . Le corollaire résulte alors de la proposition 4.10.

Exemple 5.2.4.- Si <' est la relation d'ordre antilexicographique g sur N s
alors la famille

(E .s..)
P;8se (SE]R+ ,eE]R:

(resp. (Cp;d;c)GE]R+ ,CER )
est une base du filtre Fg (resp. Gg ) (cf. 3.12.1).
"L "L
Remarque 5.2.5.- Si 1'on ne suppose pas que la relation d'ordre total =<' soit

rationnelle, le corollaire 5.2.3 est faux. En effet, il résulte de 4.10,
5.1.5 et 5.2.2 que si <£' n'est pas rationnelle, la famille

(rA(Ep;é;ﬁ))5€R+ ,eE]RI

t
(resp. ( A(Cp;é;e))dﬂR+ ,CER )

est une base d'un filtre de Hahn-Banach sur (]R’;)p (resp. sur RP) strictement

plus fin que F‘j, (resp. sz)

COROLLAIRE 5.2.6.- Soient p un entier, peEN , <' une relation d'ordre sur
NP , compatible avec sa sthructure de monolde et néguliere, <'n £L'unique rela-
tion d'ondre sun Qp , compatible avec sa sthructure d'espace vectoriel sur Le
conps ondonné Q , induisant < sun NP (cf. (2.1)) et

A'={xe : O<'Qp x}

Alorns O n'apparniient pas a 2'enveloppe convexe de A' et on a

o}
ng = FA'
(resp. GZ, = GA' ) .
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1'unique relation d'ordre sur RP , compatible avec sa

Démonstration. Soit §]'Rp

structure d'espace vectoriel sur le corps ordooné R , telle que
Fo, = F
<t 1
< s'pP

(cf. 5.2.1) . En vertu de 5.2.1, (ii), <' étant réguliere, la relation d'ordre

él'Rp induit <' sur NP , ce qui implique que §]'Rp induit S‘;)p sur Qp .
Alors si 1'on pose

A={xeRP:3d, deN’, d<'d et x=d'-d}
et

A'={xeRP: 0<' px}
R

on a
AcA'cA”

ce qui démontre le corollaire (cf.(4.4), (4.4.1) et (5.1.3)).

PROPOSITION 5.3.- Sodient p et p' des entiers, Osp'sp , <' une relation
d'ondre sun NP , compatible avec sa structure de monolde et négulierne, <"
Lo nelation d'ondre induite par < sun N (identifié & NP x {0}) . ALors
Le §iltrne de Hahn-Banach FZ., (resp. Gz,, ) sun (]R:)p' (resp. sur ]Rp' )
est £'image du fittre de Hahn-Banach Fg,_ (resp. GO, ) par fa premitre profec-
on T (]R:)p-—-» (IR:)p' (resp. T RP —s ]Rp‘i .

Démonstration. En raisonnant par récurrence on peut supposer que p'=p-1 . Soit
§¢'2p (resp. <", ) 1l'unique relation d'ordre sur Qp (resp. sur Qp') compati-
ble avec sa structure d'espace vectoriel et induisant <' (resp. <" ) sur NP
(resp. sur Np' ) (cf. (2.1)). Alors la relation d'ordre <' induit <",

' .
sur Qp et si 1'on pose

A={xe@P:0<"_ x}

e

et
p' "
A' ={x€Q :O<Qp,x}
on a
' '
A'=Q® nA=RP nA
et
Fgl = FA s F;)n = FAv

(5.2.6). Soit B (resp. B' ) 1'enveloppe convexe de A (resp. A' ). On a
1
B'cBn RP
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et

(o] (o]
F§V=FB ) F§n=FB|

(4.5). En vertu de (4.6.1), si 1'on pose
!
A= xeRP : Elx] X, €A, 30150 E]R+ Pt =1let x= pXyt pzxz}
1
alors BNRP est 1'enveloppe convexe de A" . Démontrons que A'"c<B' . En effet

|l
soit x un point de R tel qu'il existe X5 Xy 5 X4 €A, X, €A , et P1202

p1 E]R+ N

0 €R, , tels que

Prrep=1 et X=p; X;+0) X,
On peut supposer que Xy #x et que py >0 (car sinon Xx= x2€ ]Rp n A=A").
Soit D 1la droite deflnle par les pomts Xy et x, . Comme Xy € Qp et Xx,€ Qp ,
la droite D est rationnelle. Si Dc]Rp , alors Xy EA! et X, €A’ d ou
x€B' . Si D¢Rp , alors x est 1l'intersection de la droite rationnelle D

1

avec 1'hyperplan rationnel R’ de RP , donc xEQp . On en déduit que M €qQ
et szQ . Or, Xy €A et x2€A implique que

o< Xy et O0<'

Q® @2

d'ou

0<(’2pp1 x; et qu'zppzxz s

donc

0<q’2px ,

c'est-a-dire x€A , d'ou x€A' et a fortiori x€B' . On en déduit que
B'=BnRP et la proposition résulte de (4.6.3).

Remarque 5.3.1.- En suivant de prés la démonstration de la proposition 4.6.3, on
remarquera qu'en fait on a un résultat un peu plus précis : pour toute famille

finie d'éléments de B , il existe une famille finie (xl,)1< '

(resp. (c. )1

i) 1<igm
d'éléments de B' telle que pour toute famille (ei) 1<i

'Q'%A

ism
d'éléments de ]R: (resp. de R) si 1l'on pose

€

inf .
1sism *

(resp. c¢ = inf c. ),

1<ism
on a
v, cr( N V., . )
1si'sm' Xir'€ 1<ism *i°%)
(resp. n W, .cn(Cn W ..) )
1€i'sm’ xi,,c 1£ism Xj¢
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CHAPITRE II

VARIATION DES EXPOSANTS PRIVILEGIES

Dans ce chapitre, on définit la notion des exposants privilégiés minimaux d'un
idéal cohérent, en un point, et on étudie leur variation en fonction de ce point,
comme on 1'a exposé aux paragraphes 4 et 5 de 1'introduction générale. Dans le
§1, on introduit la notion d'exposant privilégié et on en donne quelques proprié-
tés élémentaires. Dans le §2, on définit un foncteur qui permet une étude plus
fine de cette notion. Ce foncteur joue ici un r6le analogue au gradué associ€ des
parties principales. Plus précisément, soit U un ouvert de ¢® . On définit un
bifoncteur covariant P de la catégorie des OU-modules cohérents dans celle des
OU[T1 yees ,Tp]—modules gradués par N , a composantes homogénes cohérentes, et
des morphismes de degré zéro. Si M et N désignent deux OU-modules cohérents,
on a donc

d
Psh = g TGN

ol P(1 est un OU-module cohérent, et si u:M'—M et v :N'— N désignent

M;N
deux morphismes de OU—modules cohérents, on a
d
P..= O P
WYV gepp WY ’
ol
d . d d
Pusv P = P
est un morphisme de OU—modules. En plus, le foncteur P posseéde les propriétés
suivantes :
i) si u:M' — M et v:N'—>= N désignent des épimorphismes de
OU-modules cohérents, alors Pu;v : PM';N’ — PM;N est un épimorphisme ;

ii) si M et N désignent des OU-modules cohérents et X un sous-espace
analytique fermé de U tel que M soit porté par X (cf. chapitre 0), alors

pour tout d , de W , le OU-module cohérent P est porté par X , et

M;N
PM' N peut donc &tre considéré comme un OX[T1 ,...,Tp]-module gradu€ ;

iii) P = 0,[T,,...,T
En particulier, il résulte de (i) et (iii) que si X et Y désignent deux

sous-espaces analytiques fermés de U , PO .o, estun quotient de
XUy

OU[T1""’Tp] ; 11 est donc muni d'une structure de OU-algébre graduée de type
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fini a composantes homogénes cohérentes. On en déduit que PO .. est une
XY

OX-algébre graduée de présentation finie ([ 351, chapitre I, Proposition 1.4), et
il résulte de (ii) que Po .0. beut étre considérée comme une Ox—algébre graduée
XY

de présentation finie. Si en plus X est réduit, il existe un fermé analytique
S de X d'intérieur vide (dans X) tel que pour tout x , X€X-S , PO .0
XY

soit Ox-plat en x ([35], chapitre I, théoreme 8.1.3). D'autre part, on démontre
que si J désigne un idéal cohérent de 0O, , Y 1le sous-espace analytique fermé
de U défini par J , x un point de U et {x} le sous-espace analytique

réduit de U dont le support est formé par le seul point x , alors PO .0
xPrY
qui est donc une 0 {x}-alg‘ebre graduée, c'est-a-dire une C-algebre graduée, est

b

isomorphe 2 C[T]/((Td)dEM ) ,ou T= (T],...,Tp) désigne p indéterminées et
X

Mx 1'ensemble fini d'exposants privilégiés minimaux de J en x . Enfin, on
démontre (et c'est de loin le résultat le plus difficile) que si x€X-S ,

alors la O{X}-algébre graduée PO .0 est isomorphe a PO ;0 @0 O{X} .
&Py XY U

Au §3, en combinant ces résultats, on en déduit que 1l'ensemble M L est constant
quand le point x varie dans X-S , et cela permet la construction d'une strati-
fication C-analytique de U telle que 1l'ensemble des exposants privilégiés mini-
maux Mx de Jen x soit constant sur chaque strate.
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§1.- Exposants privilégiés d'un idéal

(1.0) Dans ce paragraphe, on se fixe une fois pour toutes un entier p , pe€N ,
et une relation d'ordre total Sy Sur N, compatible avec sa structure de
monoide et moins fine que la relation d'ordre produit < sur N .on rappelle
qu'une telle relation d'ordre est une relation de bon ordre (I, 1.5).

DEFINITION 1.1.- Sodent x un point de € et £ une fonction définie au voi-
sinage de x et analytique au voisinage de x , ou un germe de fonction analy-
tique au voisinage de x (par exemple f€T(U,0 p) , ou U est un ouvert de

C

c? contenant x ,ou f€B(K) , ou K est un polycylindre compact de P

tel que xek ,ou feo D ) . On désigne par Ex(f) (ou plus simplement par
c*,x

E(f) quand aucune confusion n'en résulte) fLa partie de N définie par

al4l¢

BX(I

(ou X= (X1,...,Xp) désigne les coordonnées sur @) . L'ensembte Ex(f) est

non vide, 84 et seulement 54, Le germe de £ en x est non nul et dans ce cas

on désigne par Va'x(f) (ou plus simplement va(f), ou méme Vv(f), quand aucune

confusion n'en résulte) et on appelle exposant priviligi¢ de f en x , rela-

tivement & La netation d'ondre <, £'¢kément de N dégini par

E (£) = {de NP (x) # 0}

va;x(f) = mina(Ex(f))
Si g vérifie les mémes hypothéses que f on a :

(1.1.1) E(f.g) <E(f) + E(g) ,

(1.1.2) E(f+g)<E(f)UVE(g) ,

(1.1.3) v(f.g) = v(E) + v(g)

et si le germe de f+g en x est non nul ,

(1.1.4) v(f+g) 2, mina{v(f),v(g)}
et

(1.1.5) v(f+g) = mina{v(f), v(g)}, si v(f) # v(g)

DEFINITION 1.2.- Soient D une partic de N , U unowernt de € , J un
Ldéal cohénent de OU , X un point de U et K un polycylindre compact de P
Zel que x€K et KeU . On appelle ensemble des D-exposants privilégiés pour

Sy X de J (resp. ensemble des D-exposants privilégiés pour <y sur K en

x de J) et on note Pa;D;J;x (resp. Pa;D;J;K;x) La parntie de NP définie par
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Popygx = WEN1SEE€] ££0, B(Dep et v . (0 =d)

(resp. P = {deNp: afeJK : £40, Ex(f) cpet v . _(f) =4d} )(]).

a;D; ;K x SIS

Si p=1N , on notera Pa'J'x (resp. P ) {L'ensemblfe P
9y ’

a; NPy J;x
(resp. P .ap 1. ) et on dira simplement exposant privildgié pour NP -exposant
(¢} ’J,K,X

a; J;K5x

prlvilEgLe. Engdin, on note M ) L'ensemble fini

a;D; J5x (resp. Ma;D;J;K;X
) eox L

a;D;J;K;x)) d'éléments minimaux de Pa;D;J;X

) pour fa nekation d'ondre produit < sun NP (cf. 1,1.3 )

M( ) (resp. M(P

Pas0; 35x
(resp. Pa;U;J;K;x
et on appellera Les éléments de cet ensemble Les D-exposants privilegiés minimaux.

Si =N , on notera Ma X (resp. M ) £'ensemble M

.7 a; NP7 5x
(resp. Ma']\lp 'J'K'x) et on dina simplement exposant privilégié minimal pour

a; J3Kx

NP —exposant privilégié minimal.

Remarque 1.3.- En gardant les notations de la définition 1.2, on a
PG;D;J;K;XCPG;D;J;XCD

et si K' désigne un polycylindre compact de @ tel que x€K' et K'cK , on

a

Pa;D;J;K;xCPa;D;J;K' 3X

Si D' désigne une partie de N telle que D D' , ona

Pas0;73x<Fas0575x 0 Poso; 35K5x S P30 5 75K5x
et en particulier,
Pus0;73xFas 5x % Fos0;753x < Pa; 75K5x

Si J' désigne un idéal cohérent de OU tel que JcJ' ,ona

Pa;v;J;xCPa;D;J' ;X et Pm;D;J;K;xC Pa;D;J' ;Kx

Enfin, il résulte de (I,1.3) que

+ NP et + NP

Pou;D;J;xCMa;D;J;x Pa;D;J;K;XCMa;D;J;K;x

et sil'ona D+ N cD , J étant un idéal, on vérifie immédiatement que

+]\Ip et P + NP

POt;D;J;X = Ma;D;J;x w0 T3Kox = Ma0;75K;x

(1) Pour la définition de JK se reporter au chapitre O.
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et en particulier, on a

+ NP

P =M

P
a; J;x 0L;J;X+N et Pa

3 Kx = Ma;J;K;x
PROPOSITION 1.4.- Sodent D une partie de N , U un owert de € , J un
Adéal cohénent de 0y et x un point de U . S'iL existe une famille

d'éléments de T(U,J) telle que powr tout i , 1<i<m , Le genme

171<ig
de fi en X 504t non nut et Ex(fi)cv et telle que
Ma;D;J;xC{d1 oo ,dm} ,
o pour tout i , 1<ism , di = va'x(fi) , alons pourn tout polycylindre com-

pact K de CP tef que KcU et x€K ona :
D Myo;1kx = Myoyax
ii) sienptus [0+ CONNN ]+ DD, alons P j = Pooop

Démonstration . On a P (1.3). Or, 1'hypothése que pour tout

- - a;D;J;I_(;xC_Pa;D;J;x
i, 1<€ism , Ex(fi)cv implique que {d1""’dm}cpoz;0;_];l(;x , et 1'hypo-

. On en déduit que

thése Mcx;D;J;x c {d1 yeos ,dm} que Ma;D;J;xCPa;D;J;K;x

_ . gz . . . .
Ma;D; T;K;x Ma; 0;7:x ce qui démontre 1'assertion (i). Supposons maintenant
qu'en plus [(D + (-D)) an] + DcD , et soit d , dEPa'D'J‘x . Alors il

existe d' , d'eM C{d1""’dm} ,

;D3 75X 30575x
il existe i , 1gism , tel que di=d' et si 1'on pose d" =d-d' =d—di .

\AJ
ona d'e(D+(-D)) nN . Soit g 1la fonction définie par g(x') = fi(x')(x’-x)d ,

1 —_ " _ - "
pour x'eU . Alors ger(u,J), va;x(g) = di+d =d et Ex(g) = Ex(fi) +d",

tel que d's<d , et comme Ma

et come ona E (f)cD , d"€@+C-0)nN et [@+CD)nN ] +0cD

on en déduit que Ex(g) cD , d'oh de Pon , ce qui démontre la proposi-

HZHVH $3 9
tion.
COROLLAIRE 1.5.- Soient D une partie de N , U un ouwvert de € , J un
Ldéat cohérent de 0y et x un point de U . Alons AL existe un ouvert U' de
€® contenu dans U et contenant x tek que pour tout polycylindre compact K
de CP tek que KcU' et xek on ait :

D Musikox = M s 7

ii) 46 [0+ OINN ]+ DD, aons Ppoig =P o0

Démonstration. L'ensemble M étant fini, il existe un ouvert U' de c?

a;D;7;x
contenu dans U et contenant x et une famille f1 yoos ,fm d'éléments de
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r@u',J) telle que pour tout i , 1<ism , Ex(fi)CD et telle que pour tout

d , dEMa;D;J;x , 11 existe 1 , 1<i<m , tel que le germe de fi en X

soit non nul et Voc'x(fi) =d , et alors le corollaire résulte de la proposition
)

1.4.
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§2.- Le foncteur Pa

(2.0) Dans ce paragraphe, on se fixe une fois pour toutes un entier p , pe€EN,
et une relation d'ordre total éa sur N , compatible avec sa structure de
monoide, moins fine que la relation d'ordre produit < sur NP . La relation
S, est donc une relation de bon ordre (I,1.5). On rappelle que si d est un
élément de N , on désigne par s (d) (ou plus simplement par s(d) quand au-
cune confusion n'en résulte) le successeur de d pour la relation de bon ordre

<

o
s,(d) = min {d'€ N d¢ d'}

et alors si d' est un élément de N° ,ona
s(d+d") gad+s(d') .

On se fixe aussi un ouvert U de €P , on considére l'ouvert UxU de P x P ,
on désigne par Py (resp. pz) la premiére (resp. deuxieéme) projection

Py :UxU — U (resp. P, :UxU—>U) et par (Xi,...,X}’), X'1' ,...,Xb') les
coordomnées sur € x€P . Si d est un élément de N , on désigne par Jg
(ou plus simplement par Jd quand aucune confusion n'en résulte) 1'idéal cohérent
de OUxU engendré par la famille ((X"- X")d')d'gad

(ot (X'-X")d’ = (Xi-X'{)dL.. (X{)-Xi)’)dp ,si d'= (di,...,dl’))) . On remarque

que :
i) J° = OUxU (car la relation d'ordre ga est moins fine que < ) ;
ii) pour tout d et d' |, de P , d'enP si d é(x d' , ona Jd'ch H
1
iii) pour tout d et d' , deN ,d'eN ona gd gd' o gded! (car

la relation d'ordre Sa est compatible avec la structure de monoide sur M) .

Enfin, si M et N désignent deux OU—modules cohérents, on désigne par
MR N 1le 0, ,~module cohérent p*(M) ® PAE(N) ,etsi u:M'—>M et
UxU 1 OUxU 2

v :N'— N désignent deux morphismes de OU-modules cohérents, on désigne par
uR v le morphisme de OUXU-modules cohérents pa‘ () © pE(v) . On définit ainsi
un bifoncteur covariant de la catégorie des OU—modules dans celle des

0. .~modules, exact a droite et commutant aux sommes directes.

UxU
(2.1). Soit d un élément de NP . Comme Js(d)ch , On a une surjection
canonique
. s(d) d
My OUxU/J e OUxU/J
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Soient M et N deux OU-modules cohérents. On déduit par tensorisation une
surjection

. . s(d)
ng 8 id gt Q@ e, omEn — onU/Jd QOUXU(MEN)

UxU

On désigne par Pd, N (ou plus simplement par P?A'N quand aucune confusion n'en

asM
résulte) le OU—module défini par

Pg;M;N = Py, (Ker(ny 8 idy ) .

Soient u:M'— M et v:N'—> N deux morphismes de OU—modules cohérents. Si
1'on considére le diagramme commutatif

. s(d)
0 —> Ker(ny @ idy, ) — O/ @OUXU(M'EN') — onU/JG1 QOUXU(M'&N') — 0

ldo Js @ Q (umv) id . Jd Q (Urv)

UXU/ UUXU/

s(d) d
)———)()UXU/J 80 MRN) —0 /J 8

UxU UxU

00— Ker(nd Q id (MBN) —— O

MRN 0,

UxU
dont les lignes sont exactes, on déduit que le morphisme id() s( d)Q (ugv)
/J
Uxu

induit un morphisme
€ * Ker(nd Q idM'IZN') — Ker(nd Q idMBN)

On désigne par Pg'u'v (ou plus simplement par PS,V quand aucune confusion n'en
’ ’ ’

résulte) le morphisme de OU—modules

d opd d
ausv C FosMUNt T Pashn

PP d _
défini par Pa;u;v = p1*(wd)
Si u':M'—> M' et v' : N'—> N' sont deux morphismes de OU—modules cohé-
rents, on vérifie immédiatement que

d 4 pd
Puu';w' - Pu;v Pu';v'

On a ainsi défini un bifoncteur covariant de la catégorie de OU-modules cohérents
dans celle de OU—modules. Enfin, il est aisé de vérifier que si M, M' , N et
N' désignent d&sOU—modules cohérents, on a

A _d o.d
Puomrsn = Puisn® P s

et
d 4.4
Puskan' ™ Pin® Pusne
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(2.2) Soient 6 :U—>UxU 1'immersion diagonale et I 1'idéal cohérent de

OUXU qui la définit. L'idéal I est engendré par la famille X3 —X'.l')1 <isp et
ona I =Js(°) . Si d désigne un élément de N et M et N deux
OU—modules cohérents, le OUXU—module cohérent Ker(mw d 4] ldM& N) est porté par la

diagonale (cf. Chapitre O). En effet, considérons la suite exacte
d,s(d __ s(d _"d
0— 345D — g @ s gt —s0 .

On en déduit par tensorisation une suite exacte

a5 WDs  wrN) — 0

m.8id
a Bidymy dg
/55 @Dg  umny L —_MRN , g (MRN) —> O ,
UxU OUXU Uxu OUXU

OUXU
d'ol une surjection.

) —0

d,.s(d) .
(2.2.1) J/J @OUXU(MWN) —>Ker(‘nd ® ldMEIN

Pour démontrer que Ker(w d 3] idMEN) est porté par la diagonale, il suffit de le

s(d) 8 (MXN) , ou encore pour Jd/Js(d)
OUXU
s o, - 5@ ds gD (g 0,

démontrer pour Jd/J ; i1 suffit donc

de démontrer que IJd cJ
I1 en résulte immédiatement les conséquences suivantes :

D Pﬂ;N
T ' P d ST
ii) pour tout ouvert U' de C© contenu dans U on a PM]U';N|U' PM;N|U 5

est un OU—module cohérent ;

iii) si u:M'—M et v:N'—> N sont deux morphismes surjectifs de

0

U—modules cohérents, le morphisme P‘d‘l‘V est surjectif ;

iv) supp(Pﬁ_N) < supp (M) nsupp(N) ;

v) si Y et Z sont deux sous-espaces analytiques fermés de U et si
M et N sont portés par Y et Z respectivement, alors Pﬁ_ Ny est porté par le
sous-espace analytique intersection YNZ
vi) si x est un point de U on a
d . . X
(PM;N)X = Ker(nd Q 1dp’1*(M) Q ldpE(N))(x,x) ;
B .
vii) PM;N =M QOUN 5

R . . s od
viii) PM; N est canoniquement isomorphe a PN;M

(2.3) Soient M et N deux OU-modules cohérents. On désigne par Pa'M' N (ou
plus simplement par PM'N quand aucune confusion n'en résulte) le OU—I;\oc’lule gra-
dué (par NP)

_ d
Pa;M;N B dng Pa;M;N
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Si u:M— M et v: N'—> N sont deux morphismes de OU—modules cohérents,

on désigne par Pa'u‘v (ou plus simplement par Pu:v quand aucune confusion
t et ] bl

n'en résulte) le morphisme de OU-modules gradués défini par

Pa;u;v = deeNp wuv ?
et les propriétés fonctoriels de F’i impliquent les mémes propriétés fonctoriels
pour P

(2.4) Etudions maintenant de plus prés le cas ou M = N = OU . Dans ce cas, on a

d)

Py .o = 0_p 955D
O e M

Soient d et d' deux éléments d¢ N’ et W un ouvert de UxU . On remarque

que :

i) si f€I‘(W,Jd) et gﬁr(W,Jd') ,ona fgerw,J
d.d' .d+d' 2.0)) ;

car JJ <J
i) si £er,0® ) et geraw,s8) , ona fgermw,s
gS@gd' _ysdd' _s(dd') ; oy

d+d')

s(d+d'") ) (car

iii) si ferwn,dh et germ,s59") ona fgermw,s5dd)
On en déduit une application OU-bilinéaire

(Jd/Js(d)) N (Jd'/Js(d')) —_ Jd+d'/Js(d+d')

qui définit une structure de OU-algébre graduée sur PO .0
MU

PROPOSITION 2.4.1.- La 0j-akgebxe gradude (pan W ) est canoniquement

P, .
OU’OU
isomonphe a La OU-a,Cgéb)Le gradude (par NP) 0y [T] des polynomes a p 4indéten-
minées (o T= (T1 oo ,Tp) désigne p 4indéterminées)
Démonstration. Pour tout d , de€ NP , on définit un morphisme de OU—modules
d

OU—> p1*(J )
en associant a un élément f de F(W,OU), ou W désigne un ouvert de c® conte-
nudans U , 1'élément g de T'(WxU , Jd), défini par

" " d

(2.4.1.1) g(xi yoos ’XI'J’X‘1" cee ,xp) = f(xi yeee ,xI’)) (x'-x")
pour Xx's= (xi yoee ’XI'>) EW et x" = (x'1',. . ,x;) €U . En composant ce morphisme
avec le morphisme canonique

p1*(Jd) — p1*(Jd/Js(d)) ,

on en déduit un morphisme de OU—modules
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En identifiant 0.9 3 0, et 0 [Tl a o _0 14 , on déduit un morphisme
U U denP U
de OU—modules

g O [T] — Py, . , V=8
u 03 %y denP

et on vérifie facilement qu'il s'agit d'un morphisme de OU—algébres graduées.

Pour démontrer que ¥ est un isomorphisme, il suffit de démontrer que pour tout

g o

d , denP , wd est un isomorphisme de OU-modules, c'est-a-dire que pour tout
x , x€eU ,

s(d)

. d
wd t 0 - J(x,x)/J(x,x)

,X U,x

est bijectif. Pour démontrer cela, on définit une application OU x—linéaire
’

d — 0

(x,x) U,x

en associant a tout élément g de F(WXW,Jd) , ou W est un ouvert de P

J

contenu dans U et contenant x , 1’é1éTeTt f de F(W,OU) défini par
d
9

' - (- !d“ _g 1 [] ' 1
(2.4.1.2) f(x],...,xﬁ) = (-1 I - (X1,...,xp,x1,...,xp) ,
pour (xi,...,xﬁ)éiw , on vérifie que 1'image d'un élément de J?idi) par cette
’
application est nulle, d'ol une application OU x—linéaire
. g4 s(d) ;

lpd,x ' J(x,x)/J(x,x) OU,X ’
et alors on constate facilement que

Ya,x° ¥q,x =i g s@ ©t Vix° VYax =iy

J /J U,x
(x,x)"7(x,x)

ce qui démontre la proposition.

(2.4.2) Soient M et N deux OU-modules cohérents. I1 est facile de vérifier que
P,., est muni d'une structure de P, ., -module gradué, ce qui fait de P un
M;N OU,OU

bifoncteur de la catégorie des OU—modules cohérents dans celle des
OU[T1,...,TP]-modu1es gradués par N et des morphismes de degré zéro.

(2.4.3) Soient Y et Z deux sous-espaces analytiques fermés de U . Alors
Po. .o est une algebre graduée quotient de OU[T1,...,T ] (2.2,iii), donc une
Yz p

d

OU—algébre graduée de type fini, et comme pour tout d , dE€ N Po..o. est

Y’"Z
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un OU-module cohérent (2.2,i), PO .o, ©st une OU-algébre graduée de présentation
Y’VZ

finie ([ 351 , chapitre I, proposition 1.4). Si X désigne un sous-espace analy-
tique fermé de U tel que pour tout d , del , PdOYO soit porté par X
*YZ

POY; 07

Ox—algébre graduée de présentation finie (une présentation finie de la OU-algébre

(par exemple X=YnNZ=Y U Z (cf. (2.2,v))), on en déduit que est une

graduée POY, 0 induit par tensorisation une présentation finie de la
e/

Oy-algebre graduée POY; OZ)

LEME 2.5.- Sodent d un é2ément de NP , J un idéal cohénent de OU , X un
point de U et {x} ZLe sous-espace analytique néduit de U dont Le suppornt est
gormé parn Le seul point x . Alons :
D dim (P ) st
() O{X},OU/J X

ii) din ((P) Py = 0, 84 ot seuboment si,d P

{x};OU/ »J3X
1
Démonstration. Si pour tout d' , 4' e NP , on désigne par MCl 1'idéal de
. d" N _ L.
OU;x engendré par ((X-x) )d" zad‘ ,ou X= ()(1 yeas ,Xp) désigne les
coordonnées de CP , 11 est facile de vérifier que (Pg

{X};OU/J)x
s(d) + Jx . L'assertion (i) résulte du fait qu'il existe une surjection

est isomorphe

a Mg

canonique
MA@ g ps@ g

et que d]'.m(E(Md/Ms (d)) = 1 . Pour démontrer 1'assertion (ii) on remarque que
dimq:(Md+Jx/MS(d) + Jx) = 0 équivaut a (X-x)deMS(d) +J s c'est-a-dire a

l'existence d'un f | feJX tel que f- (X-x)deMS(d) , et il est facile de
voir que cela équivaut a de Pa'J'x
PROPOSITION 2.5.1.- Sodent J un idéal cohérent de OU , X un point de U et
{x} Le sous-espace analytique néduit de U dont Le support est fonmé par Le seul

point x . Alons La C-algébre graduée (par Ny (p ). est canondiquement

O1x}330p/7°x

isomonphe & La C-algebre gradude (par M) CTI/((Md) 4 ), ok
a;J;x

T= (T1 yooe ,Tp) désigne p Andéterminies.

Démonstration. C'est une conséquence immédiate du lemme 2.5, de la proposition
2.4.1, et de (2.2,iii).
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LEWE 2.6.- Soit d un &ément de N - {0} tek que pour tout d' , d'enN’
d#s(d') . Alorns AL existe une gamille (dk)keN d'éléments de NP telle que

i) pour tout k , k€N ’dk<ad;

ii) pour tout k , keEN ,

d
J kCJd+Ik ,

o 1 désigne L'idéak cohénent de OUXU engendré par fa famille (X:-XU) s 9

Démonstration. Pour tout k , k€N , on pose
B ={d' e : d'<, d et [d'] <k}

L'ensemble Ek est fini et si k est différent de O , Ek est non vide. On
pose d]; = maxa(Ek) , pour k#0 , et d& =0 . Si 1'on pose dk=sa(d];) , pour
keN , ona dk §ad , et comme pour tout d' , d'e NP , d#sa(d') , ona
dk<ad . En plus, pour tout d' , d' €N , tel que d §ad' ona d' §!Ek,
d'ou d = d' ou |d'| 2k . On en déduit que ey 4k , ce qui démontre le

lemme.

LEMME 2.6.1.- Sodient A un anneau Local noetherien, J un {déal de A contenu
dans son idéal maximal, M et N deux A-modules de type fini, M' un sous-module
de M et (Mi)iEI une famille de sous-modules de M Zelle que pour tout i ,
i€l , M'cM; et telle que pour tout k , k€N , {f existe i, i€l ,

tel que M cIK MaM' . S powr tout i , i€l Tor?(M/Mi,N) =0 , alons

Tor‘I‘(M/M' N) =0

Démonstration. Soit

O——»N]—U+L—>N—>o

une suite exacte, ot L est un A-module libre de type fini. Alors N, estun

A-module de type fini et pour tout A-module Q on a

Tor’{(Q,N) = Ker (id, 8u)

11 s'agit donc de démontrer que idM M ® u est injective. Soit donc
X EKer(ldM/M, ® u)

Pour tout k , k€N , il existe i , i€1I , tel que M'cMiCJkM+M' .
Soient p :M/M' —> M/Mi , q :M/Mi —> M/JkM+M' et r:MM' —*M/JkM+M' les
surjections canoniques. On a r=qop . Considérons le diagramme commutatif :
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bt Qu
MM 8, N, s 7T MA@, L

P @idN1 P @idL
\ idM 8u

M/Mi @AN1 __Ml_, M/Mi QAL
q ®1dN1

M/ MM 8, N,

Alors (idM/M' @ u)(x) = 0 implique que (idM/M Qu)o (p@idN JxX) =0
i 1
Comme Toré\(M/Mi,N) =0, idM/Mi ® u est injective, donc (p ® idN1)(x) =0,
d'ou (r@idN Jx) =0 . Or,
1

M/TU M) @,N, = MM 8, A/FQ, N, = (M 8, N) /I g, N,
donc x€Jk(M/M' @AN1) , et cela pour tout k . Le module M/M' GJAN1 étant de
type fini, il est séparé pour la topologie J-adique, donc x=0 , ce qui démontre
le lemme.

(2.6.2) Soient d un élément de N° et M , M , N des OU—modules cohérents.
On a un morphisme canonique M’ —Pp, p’]‘ (M') et par tensorisation on en déduit
un morphisme

d ' d * 1

Pusn Bo M Phgn B Pr,PTMD
et comme

P?A;N = p1*(Ker(ﬂd Q ldMEIN)) ,

en composant avec le morphisme canonique
3 3 * ]
p1*(Ker(11d 9 1dMN)) QOU p]*p%‘(M') _>p1*[Ker(nd 9] ldMIZIN) QOUXU 2 1,

on en déduit un morphisme

d .
(2.6.2.1) PM;N QOU M' ﬁph[Ker(nd Q ldME N) QOUxU p?(M’)]
D'autre part, si 1'on considére la suite exacte
. s(d) d
0—->Ker(ﬂd [ 1de N) ——»0UXU/J @OU (MEN) _’OUxU/J 90 (MRN) —O0 ,
xU UxU
on en déduit par tensorisation une suite exacte
. (@ d@ ]
Ker (m,8id )8 p¥(M")— 0 VARG (M8, MR N)— 0,y ../ M8, M RN)-O0 ,
dTMRN OU U 1 UxU OUXU OU UxU OUxU OU
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d'oll un morphisme

- wron .
Ker(nd & 1dMlZlAP QOUXUp1(M ) — Ker(nd Q id ),

(Mo, MWIRN
%y
d'ol un morphisme
. d
p1*[l(er('nd Q ldMIZN) QOUXU p’{(M')] —_ PMQO M N
U

et en composant avec le morphisme (2.6.2.1), on en déduit un morphisme de

OU-modules
d d

d
. Al \J
O sn Pun Co M T Fue, M N
U 0y

et un morphisme de OU-modules gradués, de degré zéro,

. 1
Qs * P oM T Figg ik

ou o = @ (pd
My M' 5N denP M;M'5N

THEOREME 2.6.3.- Sodient M ,M',N des Opmodubes cohénents. Abons

8, M — P

VAT R TV ey M5 et surjectif ;

i) Le moaphisme

ii) 84 x est un podint de U Zel qu'il existe un sous-espace analytique
germé Y de U Ztel que :

a) Xe€EY ;

b) M et M' sodent porntés par Y ;

0
Y,x =0 -
) Tor »"((Py. o> M) =0 3
alons L'application
©pursnx T Pusn Sy Mx T (PM@()UM';N)X
est bifective.

Démonstration. Soit x un point de U et posons T = MRN , T =T(x x) et pour
_d d_.d _d >
tout d , de N , Td =JT et T = T(x,x) = J(x,x)T . Alors pour tout d ,

de W , le OUXU-module OUxU/Jd (] T est isomorphe a T/Td et en considérant

OUXU

la suite exacte
s(d) s(d) d

(2.6.3.1) 00— Td/T — T/T —T/T — 0 ,

on déduit que

. _d, s
Ker(ﬂd %] 1dMRIN) =T/T

d _ d,rs(d) . . .
et que (PM'N)X =T /T (2.2,vi). En tensorisant la suite exacte (2.6.3.1)
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par p?(M') , on en déduit une suite exacte

@.6.3.2 191" pram — 15De)  praey >1/r%,  prae — o
UxU U xU UxU

et comme pour tout d , denNP s T/Td 80 p;‘(M') est isomorphe 2
UxU

UXU/J @0 ((M GOUM')IZI N) , on en déduit une surjection

Td/TS(d)® p¥(M') —Ker(m, 8 id ' )
Oy ! 47 g OmN

d'ol une surjection

M'——>(

d
(Pi;\x @ 0y, O W x

(2.2,vi) qui n'est autre que (q’M'M"N)x , d'olt 1'assertion (i). Pour démontrer
I bl
1'assertion (ii), supposons qu'il existe un sous-espace analytique fermé Y de U
i s _ .
vérifiant les conditions (a), (b) et (c), et posons A_OYxU,(x,x) , A _OY,x

et M' =M)'( . Comme 1'hypothése (b) implique que les 0, ,,-modules cohérents T

UxU

et p’{(M') sont portés par YxU , on en déduit que la suite exacte (2.6.3.2)

n'est autre que

(2.6.3.3) W) prany —mr e, pran — /1%, i —o,
YxU YxU YxU

d'olu une suite exacte

),—™0 ,

Torﬁ‘(T/T A8y M) —> (P N)x 8, M —7-(?3@ x

0y

et cela pour tout d , de€ N . Pour démontrer donc 1'assertion (ii), i1 suffit

M' ;N

de démontrer que pour tout d , de NP , on a Tor‘?(T/Td, A QA,M') =0 .Or,
1'hypotheése (c) implique que pour tout d , deg ]NP , ona

1
Tor? (Td/TS(d) ,M') = 0, donc conme A est A'-plat,qu'on a

s(d)

(2.6.3.4) Tor‘;\(Td/T A8 M) =0 .

Démontrons par recurrence transfmie que cette hypotheése implique que pour tout
d , deNp,ona Tor(T/T A@ WM') =0 . Pour d=0 on a Td T , donc
1'assertion est évidente. Demontrons que si de N -{0} et si pour tout d' ,
e , d'<,d ona Tor1(T/T ,A@A,M') =0 , alors Tor1(T/T A QM) =
Nous allons distinguer deux cas :

i) il existe d' , d'e N’ , tel que d=s(d") .
Alors on a une suite exacte

0o— 114 — 1t — 1 —o
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d'oll une suite exacte
1
Torh1%' /19, a8, M) — Torfr/1d, Ae,, M) — Torfr/1? Al M)

1
Or, comme d=s(d') , on a' Tor‘;\(Td /Td,ASA,M') =0 (2.6.3.4), et comme
d' % d ,ona Tor?(T/Td ,A@A, M'") = 0 (hypotheése de récurrence), d'ol

Tor(r/19, Ay M) =0

ii) Pour tout d' , d'eN , d#s@d") .

Alors il existe une famille (dk)REN d'éléments de N’ , telle que pour tout

k_d, ;k

k , k€N’dk<ad et J cJ +I" , ob I désigne 1'idéal cohérent de

OUxU engendré par la famille (Xi -Xy)
k d

(x, x)T + T
est contenu dans 1'idéal maximal de A qui est un anneau local

1sigp (lemme 2.6), ce qui implique que

T "<l

Or, I(
X,X)
noetherién, T et A®,M' sont des A-modules de type fini, et comme pour tout
A d_ % Acp ndk
k , keN, dk<ad ,ona T <T et Tor1(T/T , A@A,M') = 0 (hypothese
de récurrence). On en déduit que Tor}]\(T/Td, A @A.M') =0 (lemme 2.6.1), ce qui

démontre le théoréme.
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§3.- Variation des exposants privilégiés d'un idéal

Dans ce paragraphe, on démontre que si éa désigne une relation d'ordre total
sur NP , compatible avec sa structure de monoide, moins fine que la relation
d'ordre produit < sur NP , U unouvert d¢ €° et J un idéal cohérent de

OU , alors il existe une stratification C-analytique (Xi) de U telle que pour

i€l
. . . . . Y
tout 1 , i€l , et tout xetx', x EXi , X'€ Xi , on ait Ma;J;x Ma;J;x'

(ou ce qui est équivalent Pa . On démontre aussi un résultat plus

=P
. 3 X o Jx")
précis (3.6) cité dans 1'introduction générale. On gardera les notations et con-

ventions du paragraphe précédent.

Notation (3.1). Soient J un idéal cohérent de OU et Y un fermé analytique de
U . On désigne par Sa'J'Y (ou plus simplement par SJ'Y quand aucune confusion
n'en résulte) la partie de Y définie par

Su; 73y = €Y ’(Pa;OY;oU/J)y
ol Y désigne aussi le sous-espace analytique fermé réduit de U dont le support
est Y

! -
n'est pas OY,y plat} ,

PROPOSITION 3.2.- Sodent J un Ldéal cohérent de Oy & Y un fermé analytique
de U . Alons SJ'Y est un fermé analytique de Y d'inténieun vide (dans Y ).
Démonstration. Si 1'on désigne aussi par Y 1le sous-espace analytique fermé réduit

d
de U dont le support est Y , pour tout d , den , POY;OU/J
est une OY-algébre graduée de présentation finie

est porté

par Y (2.2,v), donc POY;OU/J

(2.4.3), et la proposition résulte de [ 35 ] , chapitre I, théoreme 8.1.3.

PROPOSITION 3.3.- Sodent J un idéal cohénrent de Oy et Y un fermé analytique
iunéductible de U . Alons 54 x et x' sont deux points de Y-S

Pa;J;x - Pa;J;x'

7y M@

Démonstration. Si 1'on désigne aussi par Y le sous-espace analytique fermé réduit
de U dont le support est Y et si 1l'on désigne par {x} (resp.{x'}) 1le
sous-espace analytique réduit de U dont le support est formé par le seul point
x (resp. x') , on a pour tout d , de€ N ,

. d
)) = dimp((P )

. d

. 8, 0
v30y/T 0y O

(car est plat sur Y--SJ,Y qui est irréductible). Or, étant

P
Oy»0y/J

d

Py .
OY,OU/J
g 50,/3 € 0 )X
Y’YU U {x}

OY-plat en x (resp. x'), il résulte du théoréme 2.6.3 que (P
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. N d
(resp. (# . ®, 0, ,,).,) est isomorphe a (P, . )
Oysy/T "0y "Ix'Fx Oxp G/ Ix

(resp. (P?)

{x'};OU/J)X') , et comme depa;];x (resp. dEPa;J;x') équivaut a

di ((1’d ) ).) =0 (resp. dim (Pd . )., =0) (2.5), on en déduit que
:unc O{X}’OU/J X C O{X,},OU/J X

POL;J;X = Poz;J;)('
Définition 3.4.- Soit X un espace C-analytique. On dit qu'une gamille ()(i)ieI
de parnties de X est une strhatification C-analytique de X 54

i} pour tout i , i€l , X; est Le support d'un sous-espace C-analy-
tique Localement fermé, Lisse, iunéductible de X et Xi et Xi—)(i sont des
germés C-analytiques de X ;

i) powr tout i et j , i€l , jel , &l i#j , alons X;nX; =0
et X = v Xi 5

1€l

iii) La famille (Xi)iEI est une gamille Localement finie ;

iv) pour tout ietj , i€l , jel , a4 iinxj #0 , alons xjcii.
LEMME 3.4.1.- Sodient X un espace C-analytique de dimension p et powr tout
fermé analytique irwiéductible Y de X , SY un fermé analytique de Y d'intérnieun
vide (dans Y ) . Alons 4L existe une stratification C-analyiique (Xi)iel de

X Zzelle que pour tout i , i€l , Xicii—sx

i

Démonstration. On raisonne par récurrence sur p . Supposons le lemme établi pour
tout espace analytique X' de dimension strictement inférieure a p et démon-
trons-le pour X . Soient (Yi) la famille des composantes irréductibles de

X et

ieI!

S= Sing(Xred)

le lieu singulier de Xred . Pour tout i , i€I' , on pose

Xi =Yi - [SYiU (Yiﬂ S)]
Alors Xi =Y; et Yi -X; =Sy U(Y;nS) est un fermé analytique d'intérieur vide

de Yi . Posons 1

X'=X- U X, =(u S,)us

jerr ! b

iel" i

Comme la famille (Yi) i€l est localement finie, on en déduit que X' est un
fermé analytique de X , et si 1l'on désigne aussi par X' le sous-espace analy-

tique réduit de X dont le support est X' , que X' est un espace analytique
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de dimension strictement inférieure 2 p . Pour tout fermé analytique irréductible
Y de X' on pose

L 1 T . |-
I = (el' : Y& Y.} et Sy = SyuCu ‘(YnYi))
1€IY
Alors par hypothése de récurrence on déduit 1'existence d'une stratification
(Xi)iEI" -,
i, iel", Xic)(i—SX . Onpose I=I'UI" et alors pour tout i , iel ,
i

on a )(i cii— Sy . Démontrons que la famille (Xi)

Xi iel

X . La vérification des conditions (i), (ii) et (iii) de la définition 3.4 est

(o I" est un ensemble disjoint a I' ) de X' , telle que pour tout
est une stratification de

immédiate. I1 reste a démontrer que pour tout iet j , iel , jel , si
ii an #@ , alors Xj cfi . Supposons d'abord que je€I' . Alors si ielI" ,
ona X;cX' et X' an = @ , donc 1'hypothese finxj # @ est impossible ; si

i ' = - - s s
ielI' ,ona Xi_Yi s Xj—Yj [SYjU (anS)] et si 1i#j ’YianCS ,

donc X_i nXJ. # @ 1implique que i=j . Supposons maintenant que je€I'" . Alors
si i€I" , comme la famille (Xk)kel" est une stratification de X' , 1'hypo-

these Xinxj # @ implique que Xicxi ; si i€eI' ,ona —)fi =Y; etsi
o -— —_ 1 —_ ]
Xj ¢X, ,ona )(j ¢ X; , donc Xj nYicSXj , et comme chXj - Syj , on a

Xj ni—i =@ , ce qui démontre le lemme.

THROREME 3.5.- Soient p un entier, peN , éoz une relation d'ondrne total
sun NP , compatible avec sa stmucture de monoide, moins fine que La nelation
d'ondre produit < sun N , U unowert de € , X un sous-espace analyti-
que fermé de U et J un Ldéal cohérent de 0y - Alons AL existe une strhatlfd-
cation C-analytique (Xi)i€I de X ftelfe que pour tout i , i€l , et tout

] 1 ; -
x et x ,X€Xi , X EXi , on alt Pa;J;x—Poc;J;x’ .

Démonstration. Le théoréme est une conséquence directe de 3.2, 3.3 et 3.4.1.

Remarque 3.5.1. Le théoréme 3.5 est surtout intéressant appliqué a X=U et on
rappelle que la condition Pa est équivalente a la condition

MOL;J;X = Ma,];x' (1.3).

s3x = Poy7xe

PROPOSITION 3.6.- Sodient m un entier, me N , f1,...,fm des éféments de
F(U,OU) , J R'idéak cohérent de 0y engendré pan f1,...,fm , Y un fermé
analytique {uéductible de U , U' un ouvert de Stein connexe de P , helati-
vement compact dans un ouvert de Stein U" contenu dans U , tel que YnU'#0@ .
Alons 4L existe un entien r , TEN , une famille (dj)1§j§r d'éléments deux
a deux distincts de NP , une gamille (Fij)i€I,1§j§r , d'éléments de

rW'xu', O, ),o0 I est un ensemble §ini non vide, et une famille
UxU

86



VARIATION DES EXPOSANTS PRIVILEGIES

1506 .
(Bijk)i€I,1§j§r,1gk§m d'éléments de T(U' xU',OUxU) tels que :

i) pour tout x , xeY-SJ,Y ona M = {d d} ;

a3 Jyx 127" r
ii) pour tout iet j , i€l , 1sjsr , et fout x' , x'eU' , 8L
L'on désigne par Fle. L'élément de F(U',OU) dégini par

1" p— ] 7" .
ﬁxe) —Fﬁ(x X" , pour xX"€U' , ona WxxJFUX')'a j
iii) pour tout ietj , i€l , 1sjsr , tout x' , x'€YnU' et tout

x'" , x"eU' ,ona

Flj (x!' ,X")

Z
k=1

iv) &4 pour tout i, i€l , on pose |d|

Si = {x'"€eU" : 3j ?——l(x ,X') =

et U} =U'-S;, alors (Y-S )nU'c y Ul
1 1 1611

B k(X',X") f ™ ;

Démonstration. I1 résulte de la proposition 3.3 que si x et x' sont deux points

de Y--SJ y »ona P aJix - Pa 7ix! . On en déduit 1'existence d'une famille
finie (d. )1<J<r d’ elements deux a deux distincts de N° | telle que pour tout
X , xeY SLY , %ﬁkx: M1v.”dﬁ

On désignera aussi par Y le sous-espace analytique fermé, réduit de U dont
le support est Y et on désignera par J' 1'idéal cohérent de OU qui définit
Y dans U , par Z 1le sous-espace analytique fermé de U défini par 1'idéal

cohérent J de 0Oy , par J" 1'idéal cohérent de Oy qui définit YxZ
dans UxU et par u (resp. v) 1la surjection canonique u :0U~——+ OY

(resp. V':OU — OZ) . On en déduit une surjection

P. P — P (2.2.,ii1)

u;v OU,OU OY,OZ
et on pose JY;Z = Ker(Pu;v) . Alors JY,Z est un idéal homogeéne de POU’OU

N d .
J = 0 Jd , ol Jd, <Py .,) , de type fini (cf. (2.4.3)), et on a une
Y,Z deNP Y,Z Y;Z OU’OU
suite exacte
(3.6.1) 0—J,.,— P, ., — P, . ,—0
Y;Z OU’OU OY’OZ

Pour tout d , d en’ , on en déduit une suite exacte

d d
(3.6.2) o— B —  — o
Y,z 7 Foy.0, 030,

qui n'est autre que la suite exacte
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s(d) ny" — p.l*(Jd/JS(d)) — p1*(Jd+J"/\J5(d) +JY — 0 s

d
0—p,,(J nJ"/J
ce qui est facile a vérifier. On a donc
(3.6.3) Jg.z - p1*(Jd.an/Js(d)

Comme U' est un ouvert de Stein relativement compact dans 1'ouvert de Stein

nJm

U" qui est contenu dans U , il existe une famille finie d'éléments

(85) 14
de Tr(U",J') qui engendre J' au-dessus de U' . Pour tout j , 1gjss

’

on désigne par g:'j 1'élément de T(U"xU, OUxU) défini par gJ!(x',x") = gj(x') ,
pour (x',x") eU"xU , et pour tout k , 1<ksm , on désigne par f1'< 1'élé-
ment de T(UxU, OUXU) défini par flé(x',x") = fk(x") , pour (x',x")e UxU ,

et alors 1'idéal J" est engendré par gi,...,gé , f"""fr;n au-dessus de

P

%y

d'éléments homogénes de I‘(U',JY,Z) qui
3

U'xU . De méme, comme JY,Z est un idéal homogéne de type fini de
il existe une famille finie (.gi)]Sisn
engendre JY;Z comme idéal de 7P 00y au-dessus de U' . On peut supposer que
pour tout i , 1<ign , &5 #0 , et alors il existe un élément §; etun
seul de N tel que EiGF(U"Ji%Z) . Or,

5 8 s@.))
rU',Jy.,) = T xU, J =~ nJ"/J T'nrm (3.6.3) et
8 s 85 s(éi)
rU'=xu,J tnyvg nJ" =r'xu',J tnJ/J nJ" (car
5. s(8.) 8. s(s;)
J Y et 3t +J" étant portés par la diagonale de UxU (2.2) ,
85 s(§;)
Jtnag 0
existe un €élément F! de T(U'xU', J 1nJ") dont 1'image dans
(81)

nJ" 1'est aussi), et comne U'x U' est un ouvert de Stein, il

S s
rU'xu',J *niv/Jg
Fi étant en particulier un élément de T(U'xU',J") , J" étant engendré par

nJjm est Ei . D'autre part, pour tout i , 1gign,

gi,...,g;, f%,...,f};1 au-dessus de U'x U' et U'xU' étant un ouvert de Stein,

il existe des €éléments q! "ais’ Bi1""’6:im de Tr(U'x U‘,onU) tels que

i1’
m

|} 1 1 .

itk Bk ko

on a donc pour tout x', x'€Yynuy', et tout x" , x"e€U' ,

m
(3.6.4) Fi(x',x") = ki1 Bik(x‘,x")fk(x")

D'autre part, si pour tout i , 15isn, et tout x' , x'€U' , on désigne
par Fix' 1'é1ément de F(U',OU) défini par Fix,(x") = Fi(x',x") , pour x"eU',

S
Fi étant en particulier un élément de T(U'x U',J h , on a
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)z 6

|
(3.6.5) Va;x'(Fix' 0 8

Soit maintenant x' un point de U . Si 1l'on désigne par {x'} 1le sous-espace
analytique réduit dont le support est formé par le seul point x' , on obtient
par tensorisation de la suite exacte (3.6.1) une suite exacte

Y’'Z U
Or, il résulte de la proposition 2.4.1 que (POU;OU 80U0{X,})x, s'identifie a

UY,ZQOU O{X'})X' - (POU’OU@OUO{X'} )xr - (Po ) 80 O{X'})X' —0.

tIJ[T1 yooos ’Tp] , ou C[TP""Tp] désigne 1'anneau des polyndmes a p indétermi-
nées T1,...,T a coefficients dans € . Si x'e€U' , comme 1'idéal gradué
J,., de P est engendré par E1reesby au-dessus de U' , et comme pour

sn , g; est 1'image de Fi' , on déduit que 1'image de

0
U

's cpr s sas
(POU;OU @0 x'Pxt S identifie a 1'idéal de

[6i]..,
[T T dré S SRR £. (2.4.1.2)). Si 1
(Tyseees p] engendré par (—;’—;@—(x XDT ) gian (cf. (2.4.1.2)). Si en plus

x'eY-S§

7Y il résulte du théoréme 2.6.3 que (POY;OZ @OUO{X'})X' est canonique-

. R C s e s 95
ment isomorphe a (Po{x'};oz)x, qui s'identifie a (E[T1,...,Tp]/(('l )1§j§r)
(proposition 2.5.1). On en déduit que 1'idéal de C[T1,...,Tp] engendré par
par (T 3)1 <jsr est le méme que 1'idéal engendré par

aIGi,F! .
(——5——(x",x")T 1)1<.< , ce qui implique que pour tout j , 1<j<r , il
axm L =1=n
8.
ol
existe i , 1<i<n , tel que §. =d. et ———g_—l(x',x') # 0 (ce qui implique
o axm1
en particulier que {d1,...,dr}c{<s1,...,6n})
Pour tout j , 1<js<r , on pose Ij = {i:1gizsn, 51 = dj} , I=I1><...xIr

et on désigne par tj la j-ieéme projection tj I — Ij . Alors I estun
ensemble fini non vide, et si 1'on pose pour tout i , i€l , et tout j ,

1<jsr , F et pour tout k , 1<sksm , Bijk=6'é.(i),k , on

ij ~ 0
constate immédiatement que 3.6.5 implique 1l'assertion (ii) et (3.6.4) 1l'assertion
(iii). Enfin, comme pour tout x' , x'E€ (Y_SJ;Y) nu' ,ettout j , 1<jsr,
83z
. . . o ) Fij .
il existe 1j , 1§1j§n , tel que Gi. = dj et —T(x',x') #0 , sil'on
J axll lj
pose 1i= (11""’ir) ,ona i€I et x' EUi , ce qui démontre 1'assertion (iv).
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COROLLAIRE 3.7.- Sodent J un Aidéak cohérent de 0 , X un point de U et
K un polycylindre compact de €P° tel que x€X e,t KcU . Alors on a

et P

a;J;K;x a ot;J;x o3 J;Kx a;J;x

Démonstration. I1 existe des ouverts de Stein connexes U', U'" et U'"' de P
tels que

KeU'<U"<cU"" U

et tels que U' (resp. U") soit relativement compact dans U" (resp. U") . A-
lors il existe un entier m , m€N , et une famille (£ )1<k< d'éléments de
rqu",0,) qui engendre 1'idéal J au-dessus de U'" . En appliquant la proposition
3.6 au fermé analytique irréductible Y de U" réduit au seul point x , on dé-
duit 1'existence d'un entier r , r€ N , d'une famille (dj)1§j§r d'éléments
deux 2 deux distincts de NP , d'une famille (F )1€I J1sjsr d'éléments de
rw'xy', U U) ou I estun ensemble fini non v1de et d'une famille
(8510 €T, 15j<r, 1<ksm
(1), (11), (iii) et (iv) de la proposition 3.6. Or, comme dans ce cas on a

d'éléments de T (U'xU', UXU) vérifiant les conditions

SJ;Y = ¢ , la condition (i) implique que M Jx - {d1,...,dr} . D'autre part,
si pour tout i , i€I , et tout j , 1<J <r , on désigne par gij

1'élément de I‘(U',OU) défini par gij ) = Fij (x,y) , pour y€U' , la condi-
tion (iii) implique que gij €r(U',J) et les conditions (ii) et (iv) qu'il existe

i €I , tel que pour tout j , 1<jsr, v (g ;) =d. . Onen déduit
03Xl g j

1.4).

i, »

=P

=M a;J;x

que M s T3x

et que P

a;J;K;x a;J;K;x

Exemples (3.8). Soient .71 1'idéal cohérent de OC3 engendré par

XZ-7 et XP-2X+Y+1 ,

Jz celui engendré par

Xz+ylz+23-2

T G RGNS G L L N T

et

oi X, Y, Z désignent les coordonnées de (E3 , et posons J = J] . J2 . Le
sous-espace analytique fermé de C3 défini par J1 est une courbe réduite, réu-
nion de la droite L paralléle a 1l'axe des Z et passant par le point

A=(1,0,0) ,
et de la parabole P du plan des X et Y définie par
P=1{(a,b,c) €€ : a’-2a+b+1=0, c=0}

90



Le support du sous-espace défini par J2 est la sphére unité S de C3

S=1{(a,b,0)€C :

VARIATION DES EXPOSANTS PRIVILEGIES

2

2

a“+b " +c

2.9y,

ce sous-espace étant réduit en dehors du cercle

s;={(a,b,0)e €’ : al+bl=1, c=0}

On désigne par S2 le cercle

Sz={(aJ%c)€¢3: b2+c2=1 , a=0}

b

lieu des points de la sphére S ol le plan tangent est paralléle a 1l'axe des X

L'intersection des cercles S1 et S2 est formée des deux points
B=(0,1,0)
la droite L est tangente d la sphére S au point A et on a

SnP=SnP

D = (e,g,0),

Enfin, on suppose que =y

1

= {A,C,D,E}

E = (€,e,0)

et C=(0,-1,0) ,

b

et e=3/2+1i7/2

désigne la relation d'ordre antilexicographique

N3 (cf.(1,3.12.1). Alors on peut vérifier que :

I) Si 1'on pose

X, = €C-(Lup) ,
X, = L- 1A, X
X3 = {A} ,

la famille (Xi)QsiSS

=P - {A},

aux propriétés du théoréme 3.5 pour 1'idéal J1 et on a :

xEXO »

1
2

Moc;J1 x = {(0,0,00} ,

Ma;J1;x = {(1,0,0), (0,1,0)} , x€X
Ma;J1;x = {(1,0,0), (0,0,1)} , x€X
Ma;11;x = {(2,0,0), (1,0,1), (0,1,1)}

II) Si 1'on pose

n

I

-5,

S - (5,US,) ,
S, - {B,C} , X
{B} , X5 = {C} ,

S1 - {B,C} ,
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alors la famille ()(i)oSiss est une stratification C-analytique de 033 satisfai-

sant aux propriétés du
Moc;J 23X

Ma;Jz;x

=

ot;]z;x

Moc;JZ;x

=

O(.;JZ;X

III) Si 1'on pose

théoréme 3.5 pour 1'idéal JZ et on a :

{(0,0,00} , x€X  ,

{(1,0,00} , ><€X1 ,

{(2,0,0)} , X€X, ,

1(2,0,0,(1,0,0} , xeX; ,

{(4,0,0),(2,0,1)} , xe )(4UX5

X, = ¢ - (suLup) ,

X, =S - (5,US,) ,

X, =S, - {B,C} , X =5, -{ABCDE ,

X, =L-{A} , X =P-{ACDE ,

Xg = AL, X, =B} , Xg={C} , Xg=1{D} , X, ={E},

alors la famille (Xi)osigo est une stratification C-analytique de E3 satis-

faisant aux propriétés
Ma 35X

Mo:.;J;x

Ma;J;x

Ma;J;x

Mcx;J;x

Moc;J;x

MOL;J;X
Ma;J;x
Moc;J;x

Moc;J;x

du théoréme 3.5 pour 1'idéal J = J1-J2 et ona :
= {(0,0,0)} , «xE€ XO s

= {(1,0,00} , xex, ,

= ((2,0,0) , xe€X, ,

= {(2,0,00,(0,0,} , x€X; ,

= {(1,0,0),(0,1,00)} , x€)(4 s

= {(1,0,0),(0,0,1)} , xe€X; ,

= {(4’0’0)’(3’0’1)’(1’1,1)’(Z’O’Z)} ’ X€x6 ’

{(4,0,0,(2,0,0} , x€Xx, ,

{(5,0,0,(3,0,1,(2,1,1),(2,0,2)} , x€Xg ,

= 1(3,0,0),(2,0,10,(1,1,1,),(1,0,2)) , xEXUX;g
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CHAPITRE III

THEOREME DE DIVISION NUMERIQUE UNIFORME PAR UN IDEAL

Dans ce chapitre, on généralise et on précise le théoréme classique de division
par un idéal. Si p et m désignent des entiers, p€N , me€N , et éa une
relation d'ordre total sur N compatible avec sa structure de monoide et moins
fine que la relation d'ordre produit < sur N (ce qui implique que la rela-
tion éa est une rela‘ﬁgm de bon ordre (I,1.5)), ce théoréme classique peut

s'énoncer comme suit

THEOREME. - Soit (f;), une famille de sénies convergentes non nulles

<ism

d
f.= T _ a.,X £. €C{X,,..., X} ,
1 4enNP id O | {1 p}
et posons
—mi wNP . :
di-mna{dEJN .aid;éO} , 1gism ,
Ai=di+Np- U .+NP) , 1sism ,
1<j<1
et

A =N- U @ +N)
° 1sisp *

Alons pour toute sénie convergente g , geC{X1,. ..,Xp} , AL existe une famille
unique de séries convergentes (gi)osism

g = b Xd g. €C{X X
i dé}ﬁ) id ’ i { 1200 p} ’
telle que

i)  pour tout i , 1<ism , et tout d , deEN , tel que d+d; £ 4,
oan a

bjg=0

ii) pour tout d , deNP , tel que d s, ona

(1) Dans la littérature, on établit en général ce théoréme pour des relations de
bon ordre éa particulieres.
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bod=0 ;

m
iii) g= 1 f.g.+g
jo1 171 %0

En utilisant les notations introduites au chapitre II, (1.1), ce théorgme peut
s'énoncer de fagon équivalente :

THEOREME. - Soient U un ouwvert de €° , x un point de U , ) 1<i5m
famille d'éléments de F(U,Ocp) telle que pour tout i , 1<is<m , Qe geme

fix de fi en x 504t non nul et posons

.=V . <£ig
1 OL;X(fl) » 1sism,

Ai=di+Np- U'(dj+]Np) , 1<ism

b,=N- U (4 +N)

15isp
Alons pouwr tout germe de fonetion analytique g en X 4L existe une famille uni-
que (gi)OSigm de genmes de gonctions analytiques en x telle que

i) pour tout i , 1<igm ,

Ex(gl) C'di "Ai 5

ii) E(g)eby s

m
D) g= I £y 85 g
Pour démontrer ce théoréme, on procéde en général comme suit. On démontre d'abord
qu'il existe un systeme fondamental de voisinages de x dans U formé de poly-
disques fermés K de centre x tels que pour tout g , g€B(K) , il existe

une famille unique (gi) d'éléments de B(K) satisfaisant aux conditions

<1<
(1), (ii) et (iii) et onOZézglut par passage a la limite inductive. Dans ce chapi-
tre, on s'intéresse, conformément a 1'esprit général de ce travail (développé en
détail a 1'introduction générale), a cette version du théoréme de division
"au-dessus d'un polydisque' (ou plus généralement '‘au-dessus d'un polycylindre

compact'').

Plus précisément, on dira qu'un polydisque fermé K de centre x contenu dans
U (ou plus généralement un polycylindre compact pointé en x , autrement dit
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un couple formé d'un polycylindre compact K et d'un point x appartenant a
1'intérieur de K ) satisfait au théoréme de division par f==(f1,...,fm) , si
pour tout g, g€B(K) , il existe une famille unique (gi)0<iSm d'éléments de
B(K) , satisfaisant aux conditions (i), (ii) et (iii) ci-dessus. On désignera alors
par o (resp. par r ) l'application
o : B(K) — B(KO™
(resp. 1 : B(K) — B(K) )

définie par

o(g) (g1,...,gm)

8 ) -

(resp. r(g)

On démontre facilement que les applications o et r sont des applications
C-linéaires continues. On s'intéressera plus particulieérement aux questions

suivantes :

i) Expliciter des conditions suffisantes sur le polyrayon d'un polydisque
fermé de centre x pour que ce polydisque satisfasse au théoréme de division par
f

ii) Etudier la variation de ces conditions en fonction du point x .

iii) Trouver une majoration explicite de la norme de ¢ et de r en fonction

du polyrayon.

iv) Etudier la variation de cette majoration en fonction du point x

Le théoreme de division est complété par la proposition suivante :

PROPOSITION.- Si Le polydisque germé K de centre x  satisfait au théoneme de
division pan £, Les conditions sudlvantes sont Equivalentes :

i) Mq;];x<:{va;x(f1)""’Va;x(fm)} ,
ot J désigne R'idéak cohérent de OU engendné pan f1""’fm (voir ch.II,1.2);

ii) © est une scissdion de B(K;f) (autrnement dit B(K;f) o B(K;f) = B(K;f) ).

Cette proposition est le lien entre le théoréme de division et 1'axe principal de
ce travail développé dans 1'introduction générale.

Au §1, on étudie les propriétés algébriques des scissions, utiles dans la
suite. Au §2, on introduit les notions qui permettent de s'affranchir du cadre
des polydisques. La notion de polyrayon se scinde en deux, le polyrayon interne
p' d'un polycylindre compact K pointé en x étant le polyrayon du plus grand
polydisque de centre x contenu dans K et le polyrayon externe p' étant celui
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du plus petit polydisque fermé de centre x contenant K . On introduit également
les opérateurs élémentaires de B(K) utiles par la suite. On démontre que si x
est un point de ® etsi pour tout i, 1<ism , fi est un mondme

X-x) i , alors tout polycylindre compact pointé en x satisfait au théoréme de
division par f . Au §3, on définit un opérateur Vg B(X) — B(X) dont
1'inversibilité équivaut a la condition "K satisfait au théoréme de division par
f " . On se place dans un cadre un peu plus général qui englobe des théoremes de
division "homogeéne' et qui nous permettra au chapitre IV de ramener le cas d'un
sous-module a celui d'un idéal. Au §4, on étudie 1'inversibilité de Vet

On démontre qu'il existe une partie V de (R:)p appartenant au filtre Fga
(cf.1,5.1.3) telle que pour tout polydisque fermé de centre x et de polyrayon
appartenant a V , vf;K soit inversible, ce qui implique que K satisfait au
théoréme de division par f (la condition pour un polycylindre compact pointé
étant plus compliquée). Au §5, on expose quelques applications et on retrouve le
théoréme de division classique. On explicite également une majoration de la norme
de 0 etde r . Au §6, on €tudie la variation de 1'ensemble V ainsi que celle
des majorations des normes de ¢ et de r , en fonction du point x . Enfin,

au §7, en combinant les résultats du §6 et du chapitre II, on démontre le théoréme
principal de ce travail (énoncé dans 1'introduction générale), dans le cas parti-

culier ou n=1 .
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§1.- Scissions

Dans la suite de ce travail on utilisera constamment la notion de ''scission'
d'un morphisme d'espaces de Banach. C'est un cas particulier de la notion de
"'scission' d'un morphisme dans une catégorie quelconque. Dans ce paragraphe, on
étudiera quelques propriétés purement algébriques des ''scissions' dans la catégorie

desA-modules, ot A est un anneau commutatif.

DEFINITION 1.1.- Sodient M et M' deux objets d'une catégorie et u:M—M un
morphisme de souwrce M et de but M . On appelle scission (resp. rétraction,
resp. section) du morphisme u , un morphisme o :M—M , de source M et de
but M' , tel que uoccou =u (resp. cou = idM. y UoQ = idM) . On dit que La
scission o du morphisme u est nomwmale, s4 u  est une scissdion du morphisme

o , c'est-a-dine 84 gouog =g . On appelle noumalisé d'une scission o du
morphisme u Le morphisme o ouoo

(1.1.1) I1 est clair qu'une rétraction ou une section d'un morphisme est une scis-
sion normale de ce morphisme, que le normalisé d'une scission d'un morphisme est
une scission normale de ce morphisme, et qu'une scission d'un morphisme est normale,

si et seulement si, elle est égale a son normalisé.

(1.2) Soient A un anneau commutatif, M et M' deux A-modules, u:M'—> M un

morphisme de A-modules et o : M——>M' une scission de u dans la catégorie des
A-modules (on dira A-scission ou scission A-linéaire). Alors ocou et ueoo sont
des projecteurs de M' et M respectivement et on a donc les décompositions en som-

me directe.

M' = Mi (] Mé
(1.2.1) M{ = Ker(u) = Ker(oou) = Im(idM, - oou)
Mé = Im(o ou) = Ker(idM, - gou)
M= M] (<] M2
(1.2.2) M1 = Im(u) = Im(uoo) = l(er(idM - Uoo0)
M2 = Ker(uoo) = Im(idM - Uo0)
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Si en plus ¢ est une scission normale de u , on a

(1.2.3) M; = Im(g) et M, = Ker (o)

PROPOSITION 1.3.- Soient A un anneau commutatif, M et M' deux A-modules,
u:M —M et o : M— M des applications A-Linéaires. Alons Les conditions
sudvantes sont équivalentes :

i) o est une A-scissdion de u ;

i) Im@) nIm(idy - ueo) = {0} ;

iii) Ker(u) + Ker(idw, - gou) =M

Démonstration. Si ¢ est une A-scission de u on a (ii) et (iii) (1.2.2) et
(1.2.1). D'autre part, les égalités ucgu-u =ueo (o‘u-idw) = (uo-idM) ou
montrent immédiatement que (ii) ou (iii) implique (i).

PROPOSITION 1.4.- Sodient A un anneau commutatif, M et M' deux A-modules,
, S :M —M , A :M—> M des applications A-Linéaires,
v=u+d§ et v = idM+6)\ .
a) Ona :
i) v(Ker(idM, -Au)) + Ker(A) €Im(v) ev(Im(A)) + Im(idM—u)J ;

u:M"— M

ii) 84 £'application v est infective, pour tout g , GEM , i existe
au plus un coupfe (go,g1) , gOEKer()\) > 81 €Ker(idM, -xu) tel que
g=vigd+g,

iii) &4 pour tout g , gEM , L existe au plus un couple (g,,8)
goelm(idM-uA) » 8 € Im(}) , tel que g=v(g1) 8 L'application v est
injective.

b) SL L'application u est un A-scission de A on a :

i) L'application v est surfective, 84 et sewlement 84, pour tout g ,
gEM , AL exdiste un couple (go,g1) , gOEIm(idM-uA) , g1€Im(>\) , Zel que
g=vigy + g, ;

ii) £'application v est injective, s4 et sewlement 44, pour tout g ,
gEM , AL existe au plus un couple (g,,8{) , 8, € Im(id, -ud) , g  €Im(D) ,
tek que g=v(g1) * 8

c) Supposons que L'application v s0it inversible et posons o = !
Alons on a :
1) id-vo = (d-u)vT et v = idg-00
ii) Im(o) = Im(}A) et Im(id,‘\‘l-vo) = Im(idM-u)\) 5

iii) v est une A-scissdion de o , AL et seulement AL , u  esl une
A-scission de A
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iv) 44 u  est une A-scissdion de A, pour fout élément g de M a4
(g,-81) désigne £'unique couple tel que g, €Im(idy-ud) , g, €Im(D) et
g=vigy) + g, (cf. a ®)), on a
o(g) =g et (idy-vo) (@) =g, ;

V) 0 est une A-scission de v o, s4 et seulement a4,
Im(v) N Im(idy - ud) = {0} ;

vi) 44 u  est une A-scdissdion de A, alors o est une A-scissdon de
v , 44 et seulement 54, Im(v) = v(Im(Q)) ;

vii) 44 A est une A-scissdion de u , alors o est une A-scission de
v, 54 et seulement 84, S(Ker(u)) cv(Im(u)) .

Démonstration. Démontrons (a). Si gEV(Ker(idM, -Au)) + Ker(A) , il existe un
couple (go,g1) s gOEKer()\) , g1EKer(idM, -u) , tel que g=v(g1) * 8 o
et si 1'on pose g' =u(g1) +g, »ona

v(g') =ulgy) + g, + 6>\(U(g1) + g,)=

= ulgy) + g - 6(idy, - ) (gy) + 6(gy) + SAlgy) =vigd+g, =g,
donc g€ Im(v), ce qui prouve que

v(Ker(idM, -Au)) + Ker(2) cIm(v)
Si g Im(v) , il existe g' , g'eM , tel que g=v(g') , c'est-a-dire que
g=g'+8r(g') , ou encore g=v(r(g"')) + (idM-uA)(g') , donc

gev(Im(A)) + Im(idM-UX) s

ce qui démontre 1'assertion (i). Pour démontrer 1'assertion (ii), il suffit de
démontrer que si 1l'application v est injective et si goeKer()\) .

g4 €Ker(idM, -Au) et v(g1) +g0=0 , alors g =0 et g1 =0 . En effet, on
remarque que comme g, eKer(idM, -lu) , ona

Au(gy) =gy
et comme gOEKer(A) et v(gT) *g, = 0O ,ona
Av(g1) = A(v(g1) + go) =0 ;
on a donc

0]

v(s(gy)) = 6(g1) + 6)\V(g1) - 6>\u(g])
et 1l'application v étant injective on en déduit que G(g]) =0, d'ou
v(g]) = u(g1) , ce qui implique que )\v(g1) = Au(g1) , et comme )\v(g1) =0 et
)\u(g1) =g, , il en résulte que g =0, d'ol 8, =0 . Pour démontrer 1'as-
sertion (iii), soit g un élément de M et supposons que v(g) =0 . Alors on a
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g+Sx(g) =0 , d'ou v(r(g)) +(idM-u>\) (g =0 . Or, si 1'on pose

g = (idM—u)\) (g) et g = A(g) ,ona gOeIm(idM-u)\) > 81 Im()) et

V(g1) +g, = 0 . L'hypothése implique donc que g =0 et g4 =0 , c'est-a-dire
que g-ur(g) =0 et A(g) =0 , d'ou g=0.

Pour démontrer (b) on remarque que u étant une A-scission de A on a
Ker(A) = Im(idM-u)\) et Ker(idM, -au) = Im(A) (1.2). L'assertion (i) résulte
donc de 1l'assertion (i) de (a), et 1'assertion (ii) des assertions (ii) et (iii)
de (a).

I1 reste a démontrer (c). Pour démontrer 1'assertion (i), on remarque que
idy - vo = idy - @rAGidy + 607! = (14, + 63 - W)V (idy + o0 " = Gdy-wv
et que

vils (idy - wov  ruw T = idy - vo +uo = idy - 60
L'assertion (ii) résulte de la définition de o et de (i). Pour démontrer 1'asser-
tion (iii), on remarque que Vv est une A-scission de ¢ , si et seulement si,
Ker(o) + Kel'(idM-VO) =M (1.3). Or, comme

Gdy-uwv™

cela équivaut a Ker A+ Ker(idM-uA) =M , condition vérifiée, si et seulement si,

]

o= et idy; - vo

u est une A-scission de ) (1.3). Pour démontrer l'assertion (iv) soit g un
€élément de M et posons

gy =o(@ et g = (idy-vo)(g)
Alors on a g=v(g1) *8y et il résulte de 1l'assertion (ii) que goelm(idM-uA)
et g, € Im(}) , ce qui, en vertu de (b), prouve 1l'assertion (iv). L'assertion (v)
résulte de la proposition (1.3) et de 1l'assertion (ii). Si u est une A-scission
de A , il résulte de 1'assertion (iv) que (idy -vo) (v(Im(n))) = {0} , et si
Im(v) = v(Im(})) , on en déduit que o est une A-scission de v . Réciproquement,
si o est une A-scissionde v , ona Im(v) = Im(vo) = v(Im(c)) (1.2.2), et en
vertu de 1l'assertion (ii), on en déduit que Im(v) = v(Im(})) , ce qui démont;e
1'assertion (vi). Démontrons 1'assertion (vii). En vertu de 1‘assertion (i), on a

V-Vov = (idM—vo)v = (idM-u)\)\)-1v
On en déduit que o est une A-scission de v , si et seulement si ,

-1 s

v (u+6)(M')c]\er(1dM—u)\) ,
ou encore

1.4.1) +s) M) ev(Im(u))

(1.2.2). D'autre part, comme d'aprés (1.2.1), on a M'=Ker(u) & Im(au) , (1.4.1)

équivaut a
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(u+8) (Ker (u)) =v(Im(u))
(1.4.2) N
(+8) (Im(Au)) =v(Im(u))

qui a son tour équivaut a

8 (Ker (u)) =v(Im(u))
et
(1.4.3) +S)uM') cvum")) .
Mais comme

(u+6)Au = ulu + SAu = (idM+6)\)u =V ,
1'inclusion (1.4.3) est toujours vraie, ce qui démontre la proposition.

COROLLAIRE 1.5.- En gandant Les notations de La proposition 1.4 , 84 A est une
A-scission nonmale de u , 54 v est inversible et 54 L'on pose © = R
Les conditions sulvantes sont équivalentes :

i) 0 est une A-scission nonmale de u  ;

ii) o est une A-scission de u ;

iii) Im(v) nIm(idM-u)\) = {0}

iv) pour tout g , g€Im(v) , 84 (g o,g1) désigne L'unique couple tel
que g € Im(idy-u) , g €Im(A) et g=v(g1)+g0 (cf. proposition (1.4),()],
ona g, = 0

v) pour tout g , g€Im(v) , AL existe g > g1€Im(A) , tel que
g=v(gy

vi) §(Ker(u)=v(Im@)) .
Démonstration. Comme A est une A-scission normale de u , il résulte de (1.4),
(c), (iii), que Vv est une A-scission de o , ce qui prouve 1l'équivalence des
conditions (i) et (ii). L'équivalence des conditions (ii), (iii), (v) et (vi)
résulte de (1.4), (c), (v), (vi) et(vii). L'équivalence des conditions (iv) et
(v) est une conséquence directe de (1.4) (b).

LEMME 1.6.- Soient A un anneau commutatif, M, M' , M" des A-modufes,
' M —M , UM —M , A':M— M , A"': M—= M des applications
A-Linéaines, u:M M —s M L'application A-Linéaire déginie par
ux',x" =u'x")+u"x" , powr x'eM' , x"eM' ,
et o : M— M 6 M L'application définie par
o= (A",\" o (idy-u'r")

Alons on a :
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a) 84 A' et X' sont des A-scissions de u' et u' respectivement, Les
propriétés sulvantes sont équivalentes :

i) u'A' et u"A" commutent sun £'image de u"
(@'A'u"A" = u"A" u'A') ou'" = 0)
ii) o est une A-scissdion de u ;
b) 44 u' et u" sont des A-scissions de A' et A" nespectivement, Les
propriétes sulvantes sont équivalentes :

i) u'A' et u"\' commutent modulo Le noyau de '
()\v ° (u')\'u")\" - um" U')\') = 0) ;

ii) u est une A-scission de o
iii) couotT =T , 00 T :MOM-— M @M' désigne L'application
A-Linaine définie par
T=X 0 (Ao (idM -u'A"))

Démonstration. Démontrons(a). On suppose donc que u'A'u' =u' et u"A"u" =u"

et soit (x',x") eM' ® M' . Alors ona uocu(x',x") =ug@'(x") +u"x") =

=u(A'u'(x") + A'u"xX™) , NMu'(x') + ANutx") - Au'Atu'(x') - Au'atu"(x™M) =

=u(A'u'(x") + Au"&x") , ANu"E™) - Autatu"x™M) =

=u'A'u'(x") +u'Au"x') o+ u"ANu" X)) - u"A"utAtut(x'") =

=u'(x") +u"x") +u'Atu"x'") - u"MNu'A'u"(x") . On en déduit que ¢ est une

A-scission de u , si et seulement si, u'A'u" - u'"A"u'A'u" =0 . Or,

u'Atu' - u"AuWu" = @'A'u"A" - u"Au'A') ou", ce qui démontre 1l'assertion (a).
Démontrons(b). On suppose donc que A'u'A' = A' et A"u"A" = A" . Soient

i: M—MOM , i :M— MOM, i,

définies par i(x) = (x,x), i1(x) = (x,0) , iz(x) = (0,x) , pour xeM . Alors

:M — M® M les applications A-liné€aires

ona Teili=0 |, '[oi.l = (x',0) , roiz = (O,)\”o(idM -u'Ar')) , la condition
(1i) équivaut a
CoUoTol =Tol

et la condition (iii) équivaut a

OoLlo‘l_'o:i_1 =’['Oi1 et OOUOToiz =Toiz

Or, on a
OoUoToi.l =gu'r’ = (A'u'A', Au'at - Nu'aAtu'a') = (3',0) = Toil

On déduit que la condition (iii) équivaut a
OouO'[oiZ = Toiz

et comme 1i-= i1 + iz , 11 en est de méme pour la condition (ii).
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D'autre part,
gouoetoi, =gu"A"(idy-u"r") =
=()\'U"A”(idM - U'A'), A"(idM _u'>\l) u”x"(idwl - u')\') -
=(A'U"A" - A'U"AHU'X., A"U"A” - A"Ll”x”l.l')\' l_ )\"IJ'A’U"K" + A"U'A' ull)\llulxl) =
=(>\l(ul)\lull)\" - u”)\"ll')\'), }\H(idM - ul)\l) - }\"U'A'(u')\'u”)\” - u”)\” ulxl)) ,
donc go uot oi2 =To i2 équivaut a A'(u'A'u"A" - u'"A"u'r') =0 , ce qui

démontre 1'assertion (b).

PROPOSITION 1.7.- En garndant fes notations du Lemme 1.6, 54 L' et X" sont des
A-scissions nonmales de u' et u" respectivement et s{ u'rx' et u'"\"' commutent
entre eux, alorns :

i) o est une A-scission noamale de u

ii) Im(o) = Im(A') @ x“(Im(idM -u'A'))

iii) Im(idM-u 00) = Im(idy-u'r") nlm(idM—u")\") .

Démonstration. L'assertion (i) résulte immédiatement du lemme 1.6. En gardant les
notations de la démonstration de ce kmme, 1'égalité o = 101 implique que
Im(o) «Im(t) et 1'égalité ocouot =1 (1.6, b, 1i1) implique que

Im(t) eIm(o) , donc Im(o) = Im(t) = Im(A') @ Im(A" o (idM -u'A")) =

= Im(A') @ A"(Im(idM - u'A')) , ce qui démontre 1'assertion (ii). Pour démontrer
1l'assertion (iii) on remarque que Im(idM - ug) = Ker(o) (1.2.3) et que

Ker(c) = Ker(A")NnKer(A" o (idM -u'A")) = Ker(A') nKer()'") =

= Im(idM -u'A")n Im(idM -u"A'") (1.2.3).

COROLLAIRE 1.8.- Sodent A un anneau commutatif, M un A-modufe, r un entlexr,
reN* , (Mi)1<i<r une famille de A-modules, pour tout i , 1gisr
uy Mi —> M une application A-Linéaine, At M— Mi une A-scission nowmale

de u. , q.

r
i i =Y 0 et u: @ Mi — M R'application A-Linéaire définie par

i=1
r
u(x1,...,x) = 3

T .

T
. ui(xi) , pour (x1,...,xr) eii)] M. On suppose que powr tout

1

ietj , 1gisr , 1<jsr , q; °q;

J=qjoqi et pour tout i , 1<isr,

on pose
i-1

i Xiojg](ldM‘ C[J)

Q
n

Soit o : M— r

[N

My L'application A-Lindaire définie par o = (01,...,0 )
i=1
ALons
1) o est une A-scissdon nonmale de u
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T
ii) Im(c) = @ Ai( n Im(idM -q.)) ;
i=1 tgjd J

IA

iii) Im(idy - uoo) = n
1sis

Im(idy - qi) .
T

Démonstration. On remarque d'abord qu'on a 1'identité suivante dans Z[X;,...,X ] :

n n i-1
(1.8.1) T(-X)=1- 32 X, T (1-X.)
i=1 t i=1 1 =1 J

On la démontre par récurrence sur n . Pour n=0,1 elle est évidente. Supposons-

la établie pour n-1 et démontrons-la pour n . En effet,
n n-1 n-1
m@a-X.)=In00-X.)-X 10(1-X.) ,
i=1 R L m = J

donc par hypothése de récurrence

n n-1 i-1 n-1 n i-1

T@a-X)=1-2 X. T (-X)-X T M-XI=1-ZX. T (1-X.)

i=t ! i=t ‘=1 ) My Y it yar )
Démontrons maintenant le corollaire. On raisonne par récurrence sur r . Pour

r=1 1le corollaire est évident (pour r=2 c'est la proposition (1.7)). Suppo-

sons-le donc établi pour r-1 et démontrons-le pour r . Soient
M' = r(; M; u' :M'—> M 1'application A-linéaire définie par

i=1 o
u'(x1,...,xr_1) = 151 ui(xi) , pour (X1""’Xr-1) eEM' , o' = (01,...,0
Par hypothése de récurrence o' est une A-scission normale de u' |,
Im(o') = Igl )\i(1§?<i Im(idM —qj)) et Im(idM -u'c") = 1§12r-1 Im(idM —qi)

Démontrons d'abord que o = (o', >‘r o (idy -u'c')) . Pour cela il suffit de dé-
montrer que o = Aro (idM -u'c') . En effet,
i-1

r-1 ) i-1 i-1
uioi) = )\r ° (1c|M - i£1qi JI=I1 (1dM - qj)) =

s1 ety = o (id -
)\ro(ldM u'c') )‘r (1dM 151

r-1
= Ao I (id; - q.) =0
rein U

(car les q; commutant entre eux, on peut appliquer 1'identité (1.8.1)) .D'autre

r-1 i-1
part, comme u'c' = '21 qio.n1(idM_qj) et q, commutent (car les a; commutent
i= j=

entre eux), on déduit de la proposition 1.7 que o est une A-scission normale de

u , que
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T
In(o) = Im(c") @ A_(Im(id,-u'c')) = & A ( n (In(id,-q.))
r(mtdy i=1 tigj< Mo

et que
Im(idM—uo) = Im(idM-u'o') nIm(idM—ur Ar) = N Im(idM—qi) s
1<igr

ce qui démontre le corollaire.

PROPOSITION 1.9.- Soient A un anneau commutatif, M, M' , M'" des A-modules,
u':M' —M ,u": M —M ,Vv:M — M N :M— M' &t ' :M— M
des applications A-Linéaires telles que u'=u"ov et A'=vol' . Alons on a

a) 84 A" est une A-scissdion de u" , A' est une A-scission de u';

b) 44 A' est une A-scissdon de u' et 54 Im@u'") cIm(u') alors
A" est une A-scissdion de u'';
c) 44 u' est une A-scission de ', u" est une A-scissdion de X'

d) 44 u" est une A-scissdion de N et s4 Ker(\'")cKer(A') alors
u' est une A-scissdion de A' .

Démonstration. Comme u'=u'v et A'=vA' , on a , d'une part,
u'A' =u'val =u"A" ,

et d'autre part,
Im@)<eIm@)

et
Ker(A') <Ker(\') .

Or,en vertu de la proposition 1.3, pour que A' (resp. A') soit une A-scission

de u' (resp. u" ) , il faut et il suffit que
Im(u')N Im(idy -u'A') = {0}
(resp. Im(u") NIm(idy-u"") =(0} ),

ce qui démontre les assertions (a) et (b). De méme, en vertu de la proposition 1.3,
pour que u' (resp. u'" ) soit une A-scission de A' (resp. A" ), il faut et il
suffit que

Ker(\') + Ker(idM-u')\') M
(resp. Ker(A'") + Ker(idM-u"A") =M ),

ce qui démontre les assertions (c) et (d) .
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§2.- Opérateurs élémentaires

(2.0) Soit p un entier, p€eN. On rappelle (chapitre 0) qu'on appelle polycylin-
dre compact de ® une partie ](=K1x...><l(p de P , ou pour tout i ,

1<i<p , I(i est un compact convexe d'intérieur non vide de € et qu'on désigne
par B(K) 1'algebre de Banach normée des fonctions continues sur K et analyti-
ques sur K , la norme de cette algebre étant définie par

l£llg = sup [£x)| , pour feB(K) .
xeK
Alors B(K) est 1'adhérence de 1'image de T(K, 0 ) dans 1'algebre de Banach
C(K) des fonctions continues sur K
Soient p' et p'" des entlve'rs, p'eN , p"eN , et K'etK' des polycylin-

]
dres compacts de ® et P respectivement. Alors K' xK" est un polycylindre
' "
compact de " etona

(2.0.1) B(K' xK") = B(K") ée B(K"™)
(L 7 1, §5,n°1, proposition 2, p.40).

(On rappelle que si E et F désignent deux espaces de Banach normés, on définit

une norme |[.[[_  sur E 8 F par
||tHE = sup |(€8n) ()| , pour teE QcF ,
*,HEBF*

ol BE* (resp. B .) désigne la boule unité de 1'espace de Banach normé E*
(resp. F*) dual topologlque de E (resp. F), et on note E 8 F 1le complété de
E 8(3 F pour cette norme. Si u:E'— E et Vv:F'—> F de51gnent deux morphis-

mes d'espaces de Banach normés, 1'application

. ' ]
u®v:E @(I:F —rE@G:F

une application C-linéaire continue

se prolonge d'une facon univoque a
u@sv . E! ®€ F'—)E@eF ,

on a

(2.0.2) vl = flull -lvll

et on définit ainsi un bifoncteur de la catégorie des espaces de Banach normés dans
elle-méme (cf.[13 ] 1.3, p.12-15)).

Enfin, on rappelle que si x= (x1 yeeso ,xp)' est un point de e et
p = (p1,...,pp) un €lément de (]R:)P , on appelle polydisque fermé de centre x

et de polyrayon p , et on désigne par D(x;p) , la partie de P définie par

D(x;p) = {(y1,...,yp)€dzp vi, 1sisp, |y;x;lsp5)
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et il est clair que D(x;p) est un polycylindre compact de [

(2.1) Soient p un entier, p€eN , K=K1><. ..pr un polycylindre compact de
@ et x-= (x1,...,x ) un point de ? tel que xek .on désigne par p'(K;x)
(resp. o"(K;x)) (ou plus simplement p' (resp. p') quand aucune confusion n'en
résulte) 1'élément (p{ X;x),... ,pIS(K;x)) (resp. (é'{(K;x) R (pi)'(K;x))) de
(R)P  défini par
o!(K;x) = d(x.,9K.) = inf |x.-z| , pour 1s5isp
i i | i
2€9K.
i
(resp. pV(K;x) = sup |x.-z| , pour 1<isgp) ,
i i
ZEBKi
ou pour tout i , 1<is<p , 8](i désigne le bord de I(i . Pour tout i ,

1<i<p , ona
pj (K5x) s pY(Ksx)
et p'(K;x) = p"(K;x) , si et seulement si, K est un polydisque fermé de centre
x et de polyrayon p = o' (K;x) = p"(K;x)
On désigne par e(X;x) (ou plus simplement par e quand aucune confusion n'en

résulte), et on appelle excentricité du polycylindre K par rapport a x , le

nombre réel

e(K;x) = sup (py(Ksx)/p}(K;x))
1<igp

et on a
e(K;x)21

et e(K;x) =1, si et seulement si, K est un polydisque fermé de centre x

(2.2) Soient K une partie compacte convexe d'intérieur non vide de € et x
un point de C tel que Xx€K . On désigne par Hi.x 1'application
Hg.x ¢ BK) —> B(K)
définie par
(uK.x(f))(Z) = (z-x)f(z) , pour feB(K) et zeK
(mltiplication par z-x dans B(K)) . Il est clair que Hg.y ©st une application
C-linéaire continue et que
(2.2.1) llug.llg = " (K0)
Soit f une fonction, fe€B(K) . On considére la fonction g:K-{x} — C
£(2)-£00)

définie par g(z) = =

, pour z€K-{x} . Comme la limite de g quand

z tend vers x existe (car x étant a 1'intérieur de K , f est analytique
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en ce point et cette limite est égale a f '(x)) , g se prolonge 2 une fonction

cont1m1e sur K qui est analythue sur K (elle 1'est par définition sur
b

K -{x} donc aussi sur K car elle est continue) qu'on désigne par TK;x (€3]
et qui est donc un élément de B(X) . On vérifie immédiatement que

Tox B(K) — B(X)

est une application C-linéaire continue, que

(2.2.2) <2/p"(K;x)

([N
(principe du maximum), et que

(2.2.3) TK;X °u](;x = ldB(K)

Enfin, on désigne par o 1'application

K;x
oy B(K) — C
définie par
OLK.X(f) = f(x) , pour feBK .

Alors .. ©st une application C-linéaire continue
%;x ’
>

2.2.4) ol =1
et
(2.2.5) aK;x°“K;x =0

(2.3) Soient p un entier, peN , K= K1x Kp un polycylindre compact de
® et x-(x1, . ,x) un point de ® tel que xeK . Pour tout i , 1<igp,

on désigne par ul K;x

quand aucune confusion n'en résulte) 1'application C-linéaire continue

(resp. 1,K;x) (ou plus simplement par My (resp. ri)

“i;K;x : B(X) — B(K)

(resp. T. : B(K) — B(K))

1;K;x
définie par
e, = ddy . (0 ...8 id M ...8 id
i;K;x B(K|)"e € B(Ki_1) €K, x4 6l B(K1+1) € € B(Kp)

(resp. T B(K ) e -8 1dB(Ki_1)®eTK-;x-® 1d

id ),
B(Kp)
et il résulte de (2.0.2), (2.2.1) et (2.2.2) que

(2.3.1) llusllg = oy (K;x)

et
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(2.3.2) Iie; 1 2703 (K3x0)

D'autre part, on vérifie immédiatement que pour tout iet j , 1<igp ,

1<j<p ona

(2.3.3) uiuj= “j Ui et Ti'[j= Tj Ti

et si i#j , ona
(2.3.4) LliTj='l.’lei ,

et il résulte de (2.2.3) que pour tout i , 1<i<p ,ona

(2.3.5) T My s id’B(K)

(Les égalités (2.3.3), (2.3.4) et (2.3.5) montrent que la donnée de

et (Ti) définit ce qu'on appelle une structure d'algebre de

1<igp
fermions sur B(K)) .

Enfin, on désigne par o (ou plus simplement par o quand aucune confusion

K;x
n'en résulte) 1l'application C-linéaire continue

Ox.x B(K) — C

définie par

Ox T O‘1(1;x1 O -8 OLKp,xp
(a(f) = £f(xX) , pour fe€B(K)) , et il résulte de (2.0.2) et (2.2.4) que

(2.3.6) llodly =1
et de (2.2.5) que pour tout i , 1<i<p , ona
(2.3.7) oMy = 0

(2.4) Soit d-= (d1,...,dp) , de N . Comme les w; (resp. les 1;) commutent
entre eux (2.3.3), 1'application C-linéaire continue composée

d.
d a _ P i
Myox B(K) — B(K) , Mg.x = iI=I1 HiKsx
( d . B(K B(K d _ % )
Tesp. Ty.. ) — B(K) , Tgox = i]=T1 TiiKx

(qu'on notera plus simplement ud (resp. rd) quand aucune confusion n'en résulte)
est bien définie. I1 résulte de (2.3.1) et (2.3.2) qu'on a

(2.4.1) Hud|IK§O”d(K;x)
et
(2.4.2) Ih’dHKé 2|d|/p'd(l<;x) s
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.4 b d; d P d; p

ou p"(G= T ooy TUGX) o CK= Ty T(Kx) et [d] = 34
i=1 i=1 i=1

(cf. chapitre 0), et de (2.3.4) et (2.3.5) qu'on a

(2.4.3) doud -

1dB(K) .

D'autre part, on désigne par 9. K:x (ou plus simplement par q 4 quand aucune
3y

confusion n'en résulte) 1'application C-linéaire continue

9. gox B(K) — B(X)
Ny
définie par
-4 ..d
qcl;K;x - uK;x Tk;x
11 résulte de (2.4.1) et (2.4.2) qu'on a

d]_ld]

d| ,d d
(2.4.4) ||qd|lK§2| IO' Kx)/p" (K;x) €2 ‘e’ (K;x)»
et en particulier si K est un polydisque fermé de centre x , on a

(2.4.5) llaglls2/4l .

Soit d'=(d',...,d}')) , d'eN .o0na

1 1 1
(2.4.6) udud - d' d - ud+d
et

A 1 1
(2.4.7) Td‘[d = Td Td = Td+d .

D'autre part, démontrons qu'on a

(2.4.8) 449g: = 9993 = qsup{d,d'} s
la borne supérieure étant pour la relation d'ordre produit < sur N (cf.
chapitre 0). En effet, on a

d d d d_ d! d' d! d!
_.dddrd _ "1 p_1 p, 1 p_1 p
qdqdv—UTU T —U1 ---Up T -..Tp U1 ...Up T ...Tp

I1 résulte donc de (2.3.3) et (2.3.4) que
d1d d; di d dpd‘ d'
agdgqr = Hy Ty My Ty e Pr Pu Pr P
I1 suffit donc de démontrer que pour tout i , 1<is<p ,ona

di di di di ) sup{di,di} SuP{di’di}
Ul Ti Ul Ti = Ul Ti

Pour cela, supposcns par exemple que di gdi . Alors on a
di di di di di di di d{-di di di di—di di di di
HiTiMg Ty T H T M My B U SR S s |

i i

(2.3.5), ce qu'il fallait démontrer. Enfin, on démontre d'une facon analogue qu'on
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a

(2.4.9)

Tdud' =Td-inf{d,d'}ud'-inf{d,d‘} = ud'-inf{d,d'}Td-inf{d,d’}

On désigne par 0. K:x (ou plus simplement par oy quand aucune confusion
iy

n'en résulte) 1'application C-linéaire continue
%4 K;x : BK) — C
définie par
%4;K;x T %Kgx ° TKgx
11 résulte de (2.3.6) et (2.4.2) qu'on a

(2.4.10) ||ocd||K§2|d|/D'd(K;x)

de (2.4.7) qu'on a

dl
(2.4.11) Oth = ad"‘d' )
de (2.4.9) et (2.3.7) qu'on a
1 1
" Og-qr S1 d'sd
(2.4.12) agh” =
0 sinon s

de (2.4.11) et (2.4.12) qu'on a

o4 si d'=sd
(2.4.13) Oy Qqy = ’
d "d! 0 sinon
et de (2.4.13) qu'on a
0 si d'sd
(2.4.14) o, 0 (id - Qqq,) =
d B(K) d 04 sinon

(2.5) Si K' est un polycylindre compact de c® contenu dans K et si

f est un

élément de B(K) , alors f|K' est un élément de B(K') . On désigne par

rK';K 1'application

Tyr g ° B(K) — B(K")

K',
définie par

rK',K(f) = f|K' , pour feB(K) ,

et on vérifie immédiatement que re g estun morphisme de C-algébres de Banach,
’

que

(2.5.1)

<1,

el
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et que si K" est un polycylindre compact de ¢® contenu dans X' ,ona
Tom prolyy v = Loy . On en déduit que si 1'on considére un systéme fondamental
K'",K K',K K'",K

de voisinages de x , (K. )1EI , formé par des polycylindres compacts, on a
un systéme inductif

(B(XK.)). ., (r ) )

1”7 1€l Ki’Kj KicKJ.
de C-algébres, et on vérifie que
OCp,x = }_1_m) B(Ki)

On désignera par r 1'application canonique

K,x

: B(K)— 0 ,
Cp,x

qul n'est autre que l'application qui associe a une fonction f de B(XK) son

by
K,x

germe en X
D'autre part, on vérifie Jmmedlatement que si K' est un polycylindre compact
de P contenu dans K et tel que XEK' ,ona

a _d
(2.5.2) rK',K UK;X = uK';X rK',K ’
d _ d

(2.5.3) KK TKsx T K Gx KLk
(2.5.4) Tk, d;K5x T 9a;Kk;x TR,k
(2.5.5) %3;K;x ~ %d;K';x "KLK OC
On pose

d_ i d

Ux = —)uK,X 1)

d_ . d

Tx = 21 TK;X ’

qd;x = lin qd;K;x ’

%q;x T E"»“d K x

(les limites inductives étant prises sur un systéme fondamental de voisinages de
x formé par des polycylindres de ® , ces limites étant indépendantes du choix

d'un tel systéme). Si 1'on identifie 0 a 1l'anneau des séries convergentes
C,x
c{x} = (L‘{X1,...,Xp} en associant a un ger’me de fonction analytique f en x sa
1 oldle

série de Taylor F= I p ar ——T (x) X en x , ou inversement a une série
deN

112



DIVISION NUMERIQUE UNIFORME

convergente F= I a dXd le germe de fonction analytique f en x définie au

deN a 4
voisinage de x par f(y) = ZNP ad(y—x) , on vérifie facilement que Hy
de '
est la multiplication par Xd et si F= L _a ,Xd est une série convergente, on
arenp 4
a
(2.5.6) W =z oag, x3axdE
aren’
2.5.7) O ad,xd"d ,
X drd
(2.5.8) ® = z a,x
e qd;x - d'gd adl b
et ' [
d
_ 1 9 f
(2.5.9) ad;X(F) = ad =gr -‘——d"—(x) s

ou f est le germe de fonction analytique au voisinage de x associé a F

(2.6) Soient K un polycylindre compact de @ , X un point de & tel que
X€EK et A wne partie de NP qu'on considérera, le cas échéant, plongé dans
ZP . On désigne par B (K) (ou plus simplement par B (X) , quand aucune con-
fusion n'en résulte) la partle de B(K) définie par

B, (K)= n_ Ker(a,....)={feB(X) : vd,deNP-a 'f’ldlf(")=o}
A3 X deNP-A d;K;x 4 ’ 3

Comme pour tout d , de NP , O-.,.. €st une application C-linéaire continue,
po d;K;x PP

BA_X(K) est un sous-espace vectoriel fermé de B(K) , donc en particulier, un
s

espace de Banach. On a

(2.6.1) Byp (K) = B(K)
et
(2.6.2) By(K) = {0}

(principe du prolongement analytique). Si A' désigne une partie de N , ona

(2.6.3) Xy = B, (X) nBA,(K) ’

Banar
(2.6.4) B, (K) +B,,(K) =B, 1 (K
et
(2.6.5) B, (K).B, (K} =B, 01 (K

En particulier, si A'cA , ona

(2.6.6) BA,(K)CBA(K)

113



G. MALTSINIOTIS

et si A+ Nca » By (K) est un idéal fermé de 1'algebre de Banach B(K) . Si
K' désigne un polycyllndre compact de ® tel que K'cK et xeK' , €n vertu
de (2.5.5), on a

(2.6.7) rK,’K(BA;x(K))cBA;X(K')

D'autre part, il résulte de (2.4.11), (2.4.12), (2.4.13) et (2.4.14) que si
d désigne un élément de NP , on a

(2.6.8) ud (B, (10) By, ()

(2.6.9) 4B, (0 B _gupyne ©

(2.6.10) 0g (B0 =By 4y O

(2.6.11) (idp ) = ag) (By () =By (qb_ (g4nPy) &

et il résulte de (2.4.13), (2.4.14) et du principe du prolongement analytique que

(2.6.12) q.|B XK) =1

dl d+]\1p d+INP (10
et
(2.6.13)

G300 "9 o gy © 7 e gy ®
On déduit de (2.6.12) et (2.6.9) que

B,y (0 = ag(By,, () = e, (0) end®, )
donc
(2.6.14) ule,(0) = B, 0
de (2.4.3), (2.6.8) et (2.6.6) que

Beamyn® © = B g0 0w 10) <@,
donc
(2.6.15) 4@, 00) = B_gupyn O
de (2.6.12) et (2.6.6) que

Ban(aenPy (O = g By g ) (K =g (B, (K))
donc

(2.6.16) qd(BA(K)) = BAﬂ(d+Np) X
et de (2.6.13) et (2.6.6) que

BAn(NP_ (d+]Np)) (X) = (1dB(K) - qd) (BAn(Np _(d+Np)) X)) c (ldB(K) - qd) (BA(K))
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donc

(2.6.17) (idg gy = ag) (By (D) = By qP _(q,nP)) (B
En particulier, on a

(2.6.18) m?) - Im(qg) = By, pp (K

et

(2.6.19) Im(idp gy = ag) = Bpp _qaip) &

et alors il résulte de (2.4.3) et (1.2) que

(2.6.20) Ker (%) = Ker(qq) = Bpp _ (g P) x

et que

(2.6.21) Ker (idp ) - ay) = By, pp (K)

D'autre part, il résulte de (2.6.14), (2.6.15), (2.6.16), (2.6.17) et (2.6.3) que,

d d
3] (B(-d+A)an (X)) = BA(K) NnIm(u™) ’

d
B (genyu (P - @)y ®) = B,

4By (P~ (a+nPy) (KD = B, (K) 0 Im(qy)
et

(idB(K) - qy) (B(Au(dq\'p)) X)) = B,(K)Nn Im(idB(K) -qg)
et de (2.6.20), (2.6.21) et (2.6.6) que

d
Ker (T <BrgemyuP - @+ )W >

Ker(qd) CBAu(Np ~(@+¥)) (X)
et

Ker (idB(K) - qd) CBAU (d+]Np) (X)
On en déduit que

(2.6.22) wh e, w0 - B_gamyn® © >

(2.6.23) D7 B K = By @y
(2.6.24) ag' (B, = Bru(P - (d +1Py)

et

(2.6.25)  (idygyy - a9 (B,(KD) = By g by ()
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PROPOSITION 2.6.26.- Soient p' et p'" deux entiens, p'€eN , p'eN , &
Y " ]
wie partie de N x W, K (resp. K") un pofycylindre compact de CP
" [}
(resp. ) et x' un point de K' . S&

(P x N =81 + ({0} x W) c (W'« W) -4,

alons pour tout x'1' et x'z' ,

"I') (le K") = B

X" 6 ]’%H x'l E ]0(”
1 » X5 , ona

) (K'x X'

BA;(X',X A; (x',x)

Démonstration. Par symétrie il suffit de démontrer 1'inclusion
wy KEXKD <By e x
iy (K XKD et @ d") e (W'« W) -p

BA;(X' X ll) (K XK")

Soient donc fEBA;(x
il s'agit de démontrer que
pldlelaly .
xR0
Soit g: K'—> ¢ 1a fonction définie par
REURELP

g()(") = ____J___Hn__ (x! ,X") pour x"eK" .
X'

Alors g est une fonction analytique, et comme

[P N -a1r {opx W) c(W'x W) -2,
pour tout d , deNp" , On a

oldly

axlid

1l
d"T ' ,X")

xy) =
1 ax ' ax"

La fonction g est donc identiquement nulle (principe du prolongement analytique).
On en déduit que

Jldrf+la
'TT (x',xy) = gxy) =0 ,
ax'l
ce qui démontre la proposition.
COROLLAIRE 2.6.27.- Soit A une partie de NP tefle que (NP -p) + NP NP - p .
Alons pour tout point x' de K ona

x

BA;x'(K) = Byix
Démonstration. Le corollaire est un cas particulier de la proposition 2.6.26, pour

pl=0 et p"=p
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Remarque 2.6.28.- L'hypothese (Np-A) +N NP - p implique que

N-a= U @+N) , ol M désigne 1'ensemble (fini) d'éléments minimaux de
deM

NP -a pour la relation d'ordre produit < sur N (I, 1.3). On en déduit que

A=N- (u(d+M)) et conformément 2 la démonstration de la proposition
deM

2.6.26,0n a

= {f . d aldlf -0

B,0O = (£€B00 : W, den, St - 0)

(2.7) Soient p et m des entiers, peN , meN , d=(d,...,d) ,

de (NY" , d, e, 1gigp , a=(a;,...,3) , a€@)™ , K un poly-
cylindre compact de ® et x un point de P tel que x¢ K .on désigne par
ua;d;K;x (resp. Ta;d;K;x) (ou plus simplement par ua;d (resp. Ta;d) , quand

aucune confusion n'en résulte) 1'application C-linéaire continue

. m
Hyigiksx © BOOT —> B

(resp. T : B(K) —> B(K)™

a;d;K;x

définie par

m d.
Hasdsie @roe o) = 2 @ity (eg) , pour (gy,-- gy €BO"
I b b i= 3 .
d. i-1
- T = - 1 3 -
(resp. Ta;d;K;x ~ (Ta;d;](;x;i)1§igm » o4 Ta;d;K;x;i—ai TK'XOj];[1(1dB(K) qdj;l(;)g)’
et il résulte de 2.4.1 que
m di di
(2.7.1) [u,. < 2 ]ag|p" “sm sup (Jas|e" )
I a’d“]( 1=_|| 1] lsism l 1|
et de 2.4.2 et 2.4.4 que
|d1|+...+|di|+i-1 d1+...+di di
(2.7.2) l1a,a;1llks2 (e"/0") (/]agle" 7 <
[dy]+..o+|ds | +i-T  |d,[+...+]d. ]| d.
<2 | 1 e Yasjagler
et
[d .. +]d |+m-1 d,+...+d d.
1 m " 1 m "
(2.7.3) Ia;allx =2 (e"/e") sup(1/]a; 0" )5
- 1gism

2|d1|+...+|dm|+m-1 |d1|+...+|dm|
e

d.
sup(1/a;le" )
1<igm

(o p"/p' = (p'1'/pi ,...,oi)'/pIS)) . En particulier, si K est un polydisque fermé
de centre x et de polyrayon p , on a
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|d1|+...+ldi|+i—1 d;
(2.7.4) nra;d;ianz (1/lajle )
et

|d, [+...+]d | +m-1 d.
1 . sup (1/a;]p )

(2.7.5) Ife .aqll 52
a;d" kK 1sism

D'autre part, comme

m i-1
id “U_ ., T.., = id - I q, o II (id -q,) ,
BUO ~Ma3d Tazd T M0 T 7 Y4, ° 0 B0 T
il résulte de (2.4.4) que
[d,|+...+]d_|+m=-1 |d,|+...+|d ]|
(2.7.6) “idB(K)-ua'd Ty.gll xs1+m2 ! n e ! n

et si K est un polydisque de centre x , on a

) |d1|+...+|dm|+m-1
(2.7.7) Hld'B(K)-ua;d Ta;dHK§1+m2

Enfin,il résulte de 2.5.2, 2.5.3 et 2.5.4 que si K' désigne un polycylindre
compact de @ tel que K'cK et x €K' , ona

m
(2.7.8) rK',K ua;d;K;x = ua;d;l(';x o (@ l”K',K)
et
(2.7.9) @ r

K, K ° Tasd;Kox Tajd;K';x "KLK 0
On remarquera que si pour tout i , 1<i<m , on pose
I; = supp(dy) = {jell,p] : dij #0} ,

ou d. =(d;;,...,d;: ) , et I= U I. et sil'on désigne par m la projection
i i1 ip 1<ism *
o
me Cp-—>GJI , alors pour tout point x' , x'€K , tel que w(x') =n(x) ona

(2.7.10) et

ua;d;I(;x' = ua;d;](;x Ta;d;K;x' = Ta;d;K;x

Pour tout i , 1£is<m , on désigne par Ai(d) la partie de N définie par

i-1
(2.7.11) b = (& + W) - (U (d;+NP))
=1 )
et on pose
m m
(2.7.12) B = W= U A @ =W- u @ +N)

i=1 i=1

PROPOSITION 2.7.13.- L'application Ta.q A% une scisslon nommakle, C-Linéaine
continue de Mg etona:
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. m
i) Im(Ta;d) = ln B

Xy ;
s )

d;+a; (d
ii) Im(ldB(K) “Hasd Ta;d) = BAo(d) (€9]

Démonstration. On remarque que pour tout i , 1gisgm , a?Tdi est une ré-

traction de aiudi (2.4.3) (et en particulier, une scission normale) et que

d. -1 dj
(aiu Ho (ai1r 1y = . - Or, comme les ay commutent entre eux (2.4.8), on
i i

peut appliquer le corollaire 1.8. On en déduit que L est une scission normale

de Ha.q et que :

=]

) Im(ry,g) = 1 14 n InCidy ) ~d ) 3

i=1 1<j<i

1<

et alors les assertions (i) et (ii) de la proposition résultent de 2.6.19, 2.6.3,
et 2.6.15.
m m
Remarque 2.7.14. Comme A (d) = W - y (&;+N) ,ona M- @ = yd;+N),
i=1 i=1
ce qui implique que (NP —Ao(d)) + NP WP - Ao(d) . On en déduit que pour tout

x' , x'eK ,ona

Bag@sxt 80 = By aysx

(2.6.27). De méme, pour tout i , 1<i<m,
D i-1
—di+Ai(d) = N - (jg1

1

- P P
(di+dj+N )nN)

et on a donc

D i
Wy ey @) =

- P P
(di+dj+N )nN

1
d'ot
(W -(=d; + 4(@)] + WM -(-d; +4;@)

ce qui implique que pour tout x' , x' EI% , ona

B-di+Ai(d) ;x! Ky = B-di+Ai(d) ;X(K)

(2.6.27).0n en déduit que 1'image de 1'application ¢ , ainsi que celle

a;d;K;x"'
de 1'application idB(K) - Had:K:x' Ta:d:K:x' P€ dépend pas du point x' de K

(2.7.13).
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(2.8) En gardant les notations de 2.7, soit D= (1)1, -»0,,0') , ol pour tout
i, 1gigm , DCNP et D'cnNP , tel que pour tout i , 1gigm , on
ait

(2.8.1) D' na;(d) cdi+DicD'

I1 résulte de 1'inclusion di+DiCD' et de (2.6.14) et (2.6.4) que

My, .qC. ]'I1 DI(K))CBD.(K) s
et de 1'inclusion 7' na;(d) cd- +D; et de (2.6.17) et (2.6.15) que
m*
(B, K)c 1 B X)
a;d=p i=1 D3

On désigne par “D;a;d;K;x (resp. TD;a;d;K;x) (ou plus simplement par uD;a;d

(resp. Tp.a- cl) , quand aucune confusion n'en résulte) 1'application C-linéaire
’ ’

continue

m

uD;a;d;K;x : I_I BD.;X(K) - BD';X(K)
i=1 "1 n

(K)——> I B, (K))

i=1 1

(resp. TD;a;d;K;x :

induite par ua;d;](;x (resp. Ta;d;K;x) .

PROPOSITION 2.8.2.- L'application

continue de UD' .d et ona :
m

DIy 0= 1 Baaipqay @ ®

est une scission normale, C-Lindaine

Tpsajd

11) Im(ldBD' (K) - uD;a;dTD,a,d) = Bv' ﬂAo(d) (K) .

Démonstration. Le fait que Tt est une scission normale de ¥p.a-d résulte
- ) 3

D;ad
aussitdt de la proposition 2.7.13. On a donc
m(tp s = Kerld 5 ) = Tpjazd Hpja;d) ~
1<ism i

= Ker(id

m m
pu,.dn I By (KN =Im(r_.)n 1 Bp (K) =
B(K) o o P fasd 03

m ~ Ta;d "a; im0

m m m
=1 B (K)n T By (KN = T By o ®  ((1.2) , 2.7.13)
i=1 93 (@ i=1 Ui q=1 P3NCdir 4 (@)

et (2.6.3)). Or, il résulte de 2.8.1 que D; N (-d; +4,(d) = - d; +(@'n 8;) ,
ce qui démontre 1'assertion (i). De méme, on a
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Im(idBD,(K) - ”D;a;d TD;a;d) = Ker(TD;a;d) = Ker(Ta;d) nBD, (K) =
= ICidp gy ~Hg;q Tazq) NBpr (0 = By (q) 0 NBp () =By gy () (1-2 5 2.7-13

et 2.6.3), ce qui démontre la preposition.

Remarque 2.8.2.1. Si x' désigne un point de K différent de x , on n'a pas

en général

,(K) =B x)

B . .
D'nAO(d) ;X D'nAo(d) 3X
ni

Bog i+ 0 (@) 3x ® = Bagvornn; (@) ox &

et 1'image de 1'application Tp-a:d:K:x' ainsi que celle de
’ ) b )

1dBD,(K) T Mpiasd;Ksx' TDia;diK;x! n'est pas indépendante du point x' de K . En

revanche, comme en vertu de 2.8.1 -d.1 + (D'npi(d)) = D;n (—di+A-1(d)), il en est
ainsi sipourtout i ,1sism , (NP -D)+NcNP-D; et (NP-D")+ NPc NP -
((2.6.27), (2.7.14) et (2.6.3)). Plus généralement, soient p' et p'" deux entiers,
p'€N, p"e€N , tels que p' +Dp":p , K' (resp. K') un polycylindre compact de (L‘p'

(resp. c®) , x'un point de K' et supposons que pour tout i , 1sism ,

[P x W= 0,1+ (03 x W)W x W) -,
et
[N < W) -]+ (10} x MW ) (W x M) - !

o o
Alors pour tout x'1' et x‘z' , x'1'E K", x'2'€ K" , en vertu de 2.8.1, 2.6.26,
2.7.14 et 2.6.3, on a

w (K" x K™ = B y (K" X K")
1) 2)

Bae@mna, (@); ' x -d;+(D'0b, ()3 (X" ,x

et

(K'xK'") = (K' x K')

BD'nAO @; (X)) BD'nAO @); (x',x5)

et il résulte de 2.8.2 que

=Imt

Im 5a;d;K x K (x! X7) D;a3d;K'xK"; (x',x3)

et

Im(ldBD,(K'XK”) °“D;a;d;K'><K";(x',x’1') TD;a;d;K'XK";(X',XH') =

- Im(ldBv.(K'xK") -uD;a;d;K'xK";(x',x'Z') TD;a;d;K'XK";(x',x'Z'))
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Corollaire 2.8.3.- On a

Im(UD;a;d) = 'n(NP A (d))(K) =B U (d.+D. )(K) .
1sism 1 %

Démonstration. On a
Im(u,,_ . ,) =B (K)+...+B (K) =B X)
D;a;d d1+D d D 1<g_m(di+vi)
(2.6.14 et 2.6.4) . Soit f€B (d . )(K) . Si 1'on pose
1<1_m
g= (idBD.(K) ~Hp.aid TD;a;d) (f) , onadonc g€B (d.+D‘)(K) , et il résul-
15ism 1

te de la proposition 2.8.2 que g€Bpin ) (K) , donc
o}

gEB (2.6.3), et en vertu de 2.7.12, on a

s @n( u @ +0,)®
1£ism

g€B¢(K) ,d'ol g=0 (2.6.2). On en déduit que f=uD;a;d Tv;a;d(f) , Ce qui

prouve que Im(uD'a'd) = (d . )(K) . Or, il résulte de 2.8.1 et 2.7.12 que

1<1_m

U (d;+Dy) =D'n (WP - A,(d)) , ce qui démontre le corollaire.
1€ism

Remarque 2.8.4. Soient 1)1,...,1) des parties de NP . pour qu'il existe une par-

m
tie D' de N satisfaisant a la condition 2.8.1, il faut et il suffit que pour

tout ietj , 1£i<jsm , on ait

(2.8.5) (dj+17j)nAi(d)cd.1+Di

En effet, s'il existe une partie D' de N satisfaisant a la condition 2.8.1,
pour tout j , 1<jsm ,ona d,+D.cD' etpour tout i , 1<ism ,ona
D' nAi(d) cdi +Di , d'olu (dj +Dj) nAi(d) cdi +Di . Réciproquement, si pour tout
ietj , 12i<jsm ,ona (dj+vj)nAi(d)Cdi+Di et si 1'on pose

D'= U (d.+Dj) ,pour tout i , 1<i<m ona di+DicD' et

1<jsm
D'NA; @ = [0 U @+ 00) U (0D UC U (@ Inld;+ W)-( U (d+W)] e
15j<1 J i<jsm 1€j<1 J
c di+vi

Sipour tout i , 1<£ism , Di= NP , 11 est clair que la famille

(0;)1<jqn Satisfait a la condition 2.8.5 et si D' est une partie de N conte-

nant ] (di+ ), par exemple D'= N , p' satisfait 2 la condition
1<ism
2.8.1. La proposition 2.7.13 est ainsi un cas particulier de la proposition 2.8.2.
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COROLLAIRE 2.8.6.- Soéent D,,...,0, des parties de NP tefles que pour tout

ietj , 1£i<jsm , on ait

(dj +Dj) nAi(d) cdi +Di

AMons on a :

m
D) (T By () =B NGOl

1

m m
11) (Ta;d ua;d)(~¥ BD(K)) g BD n( d +A (d))(K)
i=1 i i=1
Démonstration. Il existe une partie D' de N  satisfaisant 2 la condition
2.8.1 (cf. 2.8.4). Posons D = (D1,...,Dm,v') . Alors on a

m
Ha;a( (L By () = Imlup.p.) =B (g, 4p)®

"~
1 1<igm

IA

(2.8.3) et

m
(Ta;d Ua;d) (121 BDI(K)) = Im(TD;a,d Uv;a;d) = Im(TD;a;d) =

m
=1 Bdorn @) ®

(2.8.2 et 1.2). Or, il résulte de 2.8.1 que —di + (0" nap () = Din(-di+Ai(d)) s
ce qui démontre le corollaire.

Remarque 2.8.7.- Soit D' une partie de NP . I1 existe une famille
(D;)¢jn de parties de N satisfaisant a la condition 2.8.1. En effet, il
suffit de poser pour tout i , l1sism , D, =(-d; +D") 0 W

COROLLAIRE 2.8.8.- Soit D' une pantie de N° . Alors on a :

1 Ta;d(BD'(K)) H B d +(D' na; (d))(K) ’
1i) (idB(K) 'ua.d Ta.d) (B |(K)) = BD'nA (d) (X) )
’ ’ o
iii) .4t . ) (B, (K)) = B, oD _ K ;
a;d "a;d D'n(N Ao(d))
. . -1
iv) (id “u .y T.g) By, (K)) = By, aP_ ®
B(X) "a;d a;d D D'U(N Ao(d))
-1 _
v) (“a;d Ta;d) (BD'(K)) - BD'UA (d) (K)

Démonstration. I1 existe une famille (D; ) 1<icm de parties de W  satisfaisant
a la condition 2.8.1 (cf. 2.8.7). Posons ( m,v ) . Alors on a
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Ta;d(BD' (K)) = Im(TD;a;d) et (1dB(K) - Ua;d Ta;d) (BD' (K)) =

=Im(1dBv,(K)"uD;a;d TD;a;d) , et les assertions (i) et (ii) résultent de la pro-
position 2.8.2. De méme, on a (“a;d Ta;d)(Bv,(K)) = Im(uv;a;d TD;a;d) =Im(uv;a;d)
(2.8.2 et 1.2), et 1'assertion (iii) résulte du corollaire 2.8.3. D'autre part,
il résulte de 1'assertion (ii) que

Gy () ~Haza Tazd Borua® -n () ®) =Bpron @ ®
= Bpr (K NBy (qy®) = By (K nImCidy ) ~u1g 4 Ta;0)
et de 2.7.13, de (1.2) et de 1'assertion (iii) que
Ker(idB(K)"“a'd Tasd) = IMly.q 759 = BNP - (d)(K) ’
’ b b b 0
donc Ker(id

B ~Mazd Ta;d < Bpru (WP - () ®
(2.6.6), ce qui démontre 1'assertion (iv). De méme, il résulte de 1'assertion

(i) aue Giy;q Ty ) By (@) ) =By - () © = Bpr K0 NBpp _y @) O =
= BD,(K)I1Im(ua;d Ta;d) et de 2.7.13 et de (1.2) que
Ker(ua,d Ta_d) = Im(idB(K)--ua,d Ta'd) = BA (d)(K) , donc

b i ’ 9 o

Ker(ua_d Ta_d)c:B "6A (d)(K) (2.6.6), ce qui démontre 1'assertion (V).
’ ’ (o)

COROLLAIRE 2.8.9.- Sodent D,,...,D

n des parties de N . Alons on a

-1 b
gy (1 By KD =By ayur v ((a;+ 0 na,@n®
1= 1 1<igm

Démonstration. On a

Ta;a B (@ul v (cdjenpdna, an KV “ B_a,+lla, @y _u (d;+0)na anna(a)] ©=

1Sism ism

Il/\

m m m

m
= II B (K) = 1 B Xn H B K= 1 B, (K)nIm(t,.;)
s Dln(—di + Al(d)) i=1 1 d +A (d) i=1 Dl a’d

(2.8.8, 2.6.3 et 2.7.13) et

Ker(tg;a) = IMGdp () ~Hasa Ta;0 =By @ M =By @ur v (@, +0) 0 @y ®
1<ism

(2.7.13, 1.2 et 2.6.6), ce qui démontre le corollaire.
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Remarque 2.8.10.- Si la famille (D;), ;.. satisfait a la condition 2.8.5, on

vérifie facilement que

A@UIL U ((d.+0.)nA. @)1 =AU U (d +D.)) ,
@V L U (@ +D)N0@)] = 8@ UC U (@& +D)

et on a donc

-1 m

T,.4(T By (K)) =B ® .
H R D. A (@U( U (d;+D.

CHE o (D) (1§i§m( 5 *¥0;))
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§3.- Théoréme de division conditionnel

(3.0) Dans ce paragraphe, on se fixe une fois pour toutes deux entiers petm |,
pEN , m€N , wn élément d=(d;,...,d) de (NY™ | un élément

a= (a1,...,am) (e , un ouvert U de @ , un point x de U , un poly-
cylindre compact K de ¢® contenu dans U et tel que xek , une famille

f= (f1""’fm) d'éléments de T (U, %P) et on désigne par J 1'idéal cohérent

de OU engendré par f]""’fm

B(K;f) 1'application C-linéaire continue

. On rappelle (chapitre O) qu'on désigne par

B(K;f) : BA™ — B(K)
définie par
m
BUGE) (g8 = I (£]K)g; , pour (g)»--+»8) €BEO™
1=

et par JK 1'image de T (K,J) ® B(K) dans B(K) , qui n'est autre que

F(K,OU)
1'image de 1'application B(K;f) . Enfin, on remarque que

m
(3.0.1) IBGGE [l s 2 Il sm sup [I£;]l,
i=1 1€ism

et si K' désigne un polycylindre compact de ¢® contenu dans K et tel que

o
x €K', on vérifie aisément que

(3.0.2) ¢ °BUGE) = BK';6) o (B

T, K',K
Enfin, on rappelle (2.7.14) que le sous-espace Bp (d)~x'(K)
[e] ’

(resp. B—di+Ai(d);x'(K) , pour 1<is<m) de B(K) ne dépend pas du point

x' de K . On le désignera simplement par BA (d)(K) (resp. B-d.+A.(d)(K))
o 1 1

(3.1) On désigne par v 1'application C-linéaire continue

f;a;d;K;x

VEia;d;Kx - B(K) — B(K)

définie par

+ (B(K;£) -p Yot

vf;a;d;K;x - ldB(K) a;d;K;x a;d;K;x

Si K' désigne un polycylindre compact de ¢? contenu dans K et tel que
X € ﬁ' , en vertu de (2.7.8), (2.7.9)et (3.0.2), on a

(3.1.1) rK',K vf;a;d;K;x - vf;a;d;K’;x rK',I(
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PROPOSITION 3.1.2.- Les conditions sudivantes sont équivalentes :

1) Veadixx est inversible (en tant que morphisme d'espaces de Banach)

ii) VEia:d;K;x est bifective.
iii) pour tout g , g€B(K), 4L existe une famille unique (8;)nci<n
d'éféments de B(K) ztelle que pour fout i , 1<is<m giEB-d.+A.(d)(K) ,
1 1

8, €By (@ et

Ao(d m
g= 1 gi(fi]K) *g,
i=1
Démonstration. L'équivalence des conditions (i) et (ii) résulte du théoréme de
Banach et 1'équivalence des conditions (ii) et (iii) des propositions 2.7.13
et (1.4), (b).

PROPOSITION 3.1.3.- S4 £'on suppose que Ve...q.p., @8t inversdible et 54 L'on pose

_ -1
Of:a;d;K;x - ta3d;K;x ° Vfia;d;Kix 2

on a :

=]

i) Im(oc.,.q.1.) = I B_ X
f;a;d;K;x i=1 di+Ai(d)
ii) Im(idB(K) - B(;) °°f;a;d;K;x) = BAO(d) X
iii) pour tout g , ge€BXK) , 84 (gi)0<i5m désigne L'unique famille
' 3 - . = _.
d'éléments de B(K) te,&rﬁe que pourn tout i , 1gism , gieB-di+Ai(d)(K) s

8, € BAO(d) (K) et g= .

by gi(fi|l()+g0 (cf. 3.1.2), on a
=1

Of;a;d;l(;x(g) = (8y5---8y)

et
(idp gy ~BUGE) 00, q.5.,) (@) = 85
iv) B(K;f) est une scission de Of;a;d;K;x H
v)  Les conditions sulvantes sont équivalentes :
a) Gf;a;d;K;x est une scission (C-Lindaine continue, nonmale) de
B(K;£) ;
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b) Im(B(K;f))r)BAo(d)(K) ={0} ;

c) pour tout g , gely AL existe une famille (gi) d'éléments

1£ism
de 11131(10 telle que pour tout i , 1<ism , giEB-di+Ai(d)(K) et
g=i§1 g; (£1K)

d) pour tout g |, g€J 54 (gi)0,<=i§m désigne L'unique famille
Vaps . -
d'éeéments de B(K) t]i,ue que pour tout i , 1<ism |, gieB—di+Ai(d)(K) ,
gEBA(‘)(d)(K) et g=i§1 g;(£;1K) +g, (cf. 3.1.2), on a g,=0

Démonstration. Les assertions (i) et (ii) résultent de (2.7.13) et (1.4), (c),
(1i1), 1'assertion (iii) de (2.7.13) et (1.4),(c), (iv), 1'assertion (iv) de
(2.7.13) et (1.4), (c), (iii) et 1l'assertion (v) de (2.7.13), de (1.5) et du fait
e JK==1m(B(K;f))

Exemple 3.1.4. En gardant les hypothéses et les notations de la proposition 3.1.3,
s1 m=1 , comme B_d A (d)(K) = B(K) , il résulte de (3.1.3), (i) que

171
Of;a;d;K;x est surjective et de 3.1.3, (iv) que Of;a;d;K;x o B(K;f) = 1dB(K) s

c'est-a-dire que o est une rétraction de B(K;f). En particulier,

f;a;d;K;x
Of;a;d;K;x est une scission normale de B(K;f) et on a
Im(B(K;£)) nBAO(d) (X) = {0}

(3.1.3, (v)).

COROLLAIRE 3.1.5.- S{ £'on suppose que Ve.ad:K:x est {nvernsible, alons pourn tout
o b ’ ’ b . .

a' , a'e (@)™ et tout x' , x'ek , est inversible et 44

L'on pose

Vf;a';d;l(;x'
o =1 v-1
fia';d;K;x' T atd;Kpx!' ° Vfja';diKpx'
5 ; 1 ; 1
Of;a';d;K;x' ne dépend ni de a' ni de x' .

Démonstration. Comme v est inversible, il résulte de la proposition

f;a;d;K;x
3.1.2 que pour tout g , g€B(K) , il existe une famille unique (gi)ogigm
d'éléments de B(K) te#lle que pour tout i , 1<£ism , giEB-di+Ai(d) x ,
g€ BAo(d) (K) et g= 1£1gi(filK) * 8y - Par une nouvelle application de la pro-
position 3.1.2, en vertu de 3.7.14, on en déduit que pour tout a' , a'é€ )™ s
et tout x' , x' ex , vf;a';d;K;x' est inversible. D'autre part, il résulte
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de 3.1.3, (iii) que
Of;a';d;K;x'(g) - (g1,...,gm) - Of;a;d;K;x(g) ’
ce qui démontre le corollaire.

(<]
(3.1.6) S'il existe a' , a' €(C*)m , et x' , x'eK , tels que

Ve. o 1.1.v..1 SOit inversible (dans quel cas, en vertu de 3.1.5, pour tout a'"
f;a';d;K;x

m o . . P
a"e(C*)” , et tout x" , x"e€K , vf;a”;d;K;x” est inversible), on désigne
par oc.g. 1'application C-linéaire continue

m

définie par
_ -1
9¢;d;k T Ta';d;K;x! o\’f;a';d;l(;x'
(qui,en vertu de 3.1.5, est indépendante de a' et x' ).

Remarque 3.1.7.- Supposons m22 et soit i, , 1<ij<m . §'il existe j, ,

1§j0<io , tel que dj §di , et si 1'on pose
o o
d'=(d;,...,d; 4, di i,0..5d ),
1 ’ 1, 1 10+1 m
il résulte de 2.7.11 et 2.7.12 que

b = 8,@D) , O0si<i
bo@=9,

Ai(d) =4 @an , io<igm

-1

Si en plus, on pose

a':z(a1,...,ai 10 3 +1,...,am)
() o
et
| -
f'= (f1""’fi -1 fi +1,...,fm) ,
o o
on a
vf';a';d';K;x = vf;a;d;K;x
En effet,

+ (B(K;f) - ua‘d'K'x) oTa.d.K-x =

VEsasd;Ksx T 9B
m
+ .Z (B(K;fi) -

. i
1dB(l() i1 aiuK;x) °Ta;d;K;x;i
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i-1

o (id
j=1

(2.7). Or, il est clair que pour tout i , 1<i <i0 ,

ol -1

- i -
Ta;d;K;x;i =3y TK;x B(K) qdj;K;x)

Ta;d;K;x;i = Ta';d';K;x;i
D'autre part, il résulte de 2.6.17 que
in-1
Im( T (id =43 .x.,J)) =B (X
j=1 - BIO - dyKx M- U .+
1sj<iy )

)

et en vertu de 2.6.20, on a

d.
i
Ker(t,.9 = Ker( ,..) =B X)
K;x qdi ;Kox NP- . +DP)
o] 10
Comme 1'hypotheése implique que
i-1

o
d. +Ncd. + NNc v d.+N)
1o Jo j=1 J
d'olu
M- U (@.+N) Np-(di +NP)
1sj<iy o

on en déduit que

Ta;d;](;x;i0 =0
et que pour tout i , io<i§m ,
T = a-1 rdi n (id -q ) =1
cdeKexe3d 2 . ° X - Tedt eKeoyed— )
a;d;K;x;i i K;x 15j<i-1 B(K) dj,K,x a';d';K;x;i-1

J#,
ce qui démontre que
vf';a';d';K;x B vf;a;d;K;x
En particulier, v, ._,.q:.p.. €st inversible, si et seulement si, il en est de
f';a';d";K;x
de méme pour V., _.i... , et sous cette hypothése, il résulte de ce qui précede
f;a;d;K;x
que si 1'on pose
Of;d;K = (0.],...,Om) >

on a

g. =0 Oproarey = (Oq500450: _1, O yeees0)
i, > Yf';d';K 1 ’ i 1° 1O+1 m
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et

idB(K) - BK;f") o Ofr.qrik T idB(K) -B(K;£f) °0f gk

Dans la plupart des questions, on peut donc supposer, sans perte de généralité,

que pour tout ietj , 1<j<ism, ona djgdi

(3.2) Pour tout i , 1<is<m , on désigne par E;. (f) (ou plus simplement
par Ei(f) , quand aucune confusion n'en résulte) 1a partie de N définie par

oldle,
Bj () = E(f) = {de? . —aax—(x) # 0}

(cf. II,1.1).
Soit D=(D1,...,Dm,D') , ol pour tout i , 1<ism , Dich et
LS\ , tel que pour tout 1 , 1<ism , on ait
Di + Ei;x(f)cl)' .
Alors on a

B(;f) ( n By (K))cB (K)
i=1 1

(2.6.5 et 2.6.4) et on désigne par B (K f) (ou plus simplement par B X;8),

quand aucune confusion n'en résulte) l'appllcatlon C-linéaire continue

m
BD;X(K;f) I BD- ;x(K) — B (X)

1.
i=1 i Dhix
induite par B(K;f). Si en plus pour tout i , 1<i<m,ona

D'na@ed; +0; D",
on a

Vesasd;K;x Bpryx K <Bye (K0

(2.8), et on désigne alors par VD' £ 1'application C-linéaire continue

;a;d;Ksx
YD;fra;d;K;x BD';X(K) - BD';X(K)

induite par Ve.a.gok:x ¢ Dans la suite du n°3.2, on supposera que D satisfait
thadt ) ’x
aux conditions précédentes.

PROPOSITION 3.2.1.- Les propnidtés swivantes sont équivalentes :

i) Vs £3a;d;K;x est invensible (en tant que morphisme d'espaces de Banach);
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ii) VD:£;a5d;K;x est bijfective ;
iii) pourn tout g , g eBD. ;X(K), AL existe une famille unique (gi)0§i;m

d'ééments de B(K) +telle que powr fout i , 1<ism , 8; EB-di+(D'ﬂAi(d));x(K)’
8 €Bpnp (a);x® et
0 ’

g= gi(filK) * 8

1

MR

1

Démonstration. La proposition résulte du théoréme de Banach et des propositions
2.8.2 et 1.4,(b).

est inversdible et 54 L'on

- ( '
PROPOSITION 3.2.2.- L £'on suppose que vy p.o 4o
pose
) -1
70;£5a;0;K5x T TDsasdsKsx © VDs5a3d5K5x
on a :

m
1) Im(C’D;f;a;d;K;x) - 151 B-di+(D'nAi(d));x(K) ;

1) Im(idBD,,X(K) -BD;X(K;f) °Ov;f;a;d;K;x) - B1)'nA0(d) ;x(K) ;

iii) pourn tout g , gEBD'-x(K) , A4 (gi)OSiSm désigne L'unique famille

d'éléments de B(K) zelle que pour tout i , 1<ism | gieB-di+(D'nAi(d));xﬂO’

m
gOEBD’ﬂAO(d);X(K) et g:i)i] gi(fill() *+8 (cf. 3.2.1), on a

D;€50;d;k;x (&) = (Boee ey

(idBD.,x(K) - BD;X(K;f) °OD;f;a;d;K;x) 8 =g, 5
iv) BD;X(](;f) est une scission de OD;f;a;d;K;x 5

v) Les conditions sulvantes sont équivalentes :

a) OD;f;a;d;K;x est une scission (C-Linéaine continue, noamale) de

Bv;x(K;f) ;
b) Im(BD;X(K;f))nBD.nAO(d) ;X(K) = {0} ;
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c) pour tout g , ge€ Im(BD;x(K;f)) , AL existe une gamille (gi)1si§m

d'éléments de B(K) telle que pour fout i , 1<ism , gieB—di+(D'ﬂAi(d));x(K)

m
et g= I gi(filK) ;
i=1

d) pour tout g , gEIm(BD_x(K;f)) , 84 (gi)osigm désigne L'unique
gamille d'éléments de B(K) +telle que pouwr fout i , 1<ism ,
m
8 €8 g oma; @)™ 0 B Poma @@ ot &= ke (E[0 g
(cf. 3.2.1), ona g =0

Exemple 3.2.3. En gardant les hypothéses et les notations de la proposition 3.2.Z,
si m=1 , comme en vertu de 2.8.1, on a

-d, + (D'ﬂA1 (@) = 91 n (-d1 +4 (@) = D1 ,
il résulte de 3.2.2 (i), que 9p. £ra:d:K:x est surjective et de 3.2.2,(iv) que
°BD;x(K;f) = idy )

D, ;X
“,
En particulier, 9. £a;d;K;x est une scission normale de Bv;x(K;f) et on a

0D;f;a;d;K;x

(3.2.2, (v

COROLLAIRE 3.2.4.- S{ £'on suppose que V. £ra:d:Kix est inversible, alorns pour
tout a' , a'€ (C*)m > Vp.fiat:d:Kex est invernsible et s4 L'on pose

~ -1

CJ$D;f;a';d;K;x = Tpsar;d;K;x CVpifiat;d;Kix 2

5 d at

9. £1a";d;K;x ne dépend de a

Démonstration. La démonstration est analogue a celle du corollaire 3.1.5 par

une double application de 3.2.1 et 3.2.2, (iii).

v . ' ' (] . . .
(3.2.5) S'il existe a' , a'€(C*)" , tel que Vpi£;at;d;K;x soit inversible

”n " m
(dans quel cas, en vertu de 3.2.4, pour tout a" , a"€(C*) |, \)D;f;a";d;](;x
est inversible), on désigne par Op. £:d:K:x 1'application C-linéaire continue
s aMadvy
m
°D;f;d;Kx BU';X(K) - ir=[1BDi;x(K)

définie par
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- oyt
GD;f;d;K;x = Tpjat;d;Ksx © Vp;fiat;d;Ksx
(qui en vertu de 3.2.4, est indépendante de a' ).

o

LEMME 3.2.6.- Pour tout point x' , x' €K , Les conditions suivantes sont
equivalentes :
i) pour tout i , 1<ism |, Di+Ei;x'(f) cD'

m
1i) B(K;f)( I BD 'X'(K)) CBDI 'X'(K) .
i=1 033 ;

Démonstration. Il suffit de démontrer que la condition (ii) implique la condition
(i) (3.2). Or, 1'inclusion

m
B(K;f) (I By ..+(K)) =By, 4 (K)
i=1 03X phix

implique en particulier que pour tout i , 1<ism , et tout d , devi ,
si 1'on désigne par g 1la fonction g:K—> C définie par

gly) = (y-X')d , pour yekK ,
on a fig €BD' ;x'(K) (car g€BDi;x(K)) , €t comme Ex,(fig) = d+Ei;x.(f) , on
en déduit que d+Ei_x,(f) <D' , ce qui démontre le lemme.

PROPOSITION 3.2.7.- Sodient p' et p"' des entiens, p' e N , p"e N , tels que
]
p=p'+p" , T P premiére projection, et supposons que pouwr tout

i, 1g£ism ,

(P'x W) - D)+ ([0} x W) c(W'x N - 0,
et
(NP x N)HY-D') +({0}xN ) c (N x N ) -

Alons pour tout point x'de K tel que 7(x') =7(X) ona :

i)  powr tout i , 1<£ism ,
D.1+Ei;x,(f)cv’ 3
ii) BD;X,(K;f) = BD X(K;f) ;

’

iii) a4 "D;f;a;d;K;x est invernsible, iR en est de méme pour VD fia;d;K;x!

et on a

Ops£;d;Kxt - %p;f;d;K;x
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Démonstration. Il résulte de 2.6.26 que pour tout i , 1<ism ,

By . . (K) =B, (K
Di ;X! Di 3X
et

Bvl ;X' xX) = va ;X(K)
On en déduit que

m
B(K;f)(n B, . I)CB [ ’
=1 DpXT DX
ce qui démontre 1'assertion (i), 1l'assertion (ii) en découle aussitdt, et 1l'asser-
tion (iii) en résulte par une double application de 3.2.1 et 3.2.2,(iii).

Remarque 3.2.8.- Supposons m22 et soit i0 , 1<iogm . S'il existe jo ,

Tsj,<iy , tel que djogdio , et si 1'on pose
L - 1 1 -
d —(d1,...,dm_1) = (d1"“’di -1 di +1,...,dm)
o ()
et
D= (91,-,-,Um_1,v') = (01,---,Dio_1’ Dio+1,"°’ m,D') ’
il résulte de 3.1.7 que pour tout i , 1<ism-1 ,
0'n4; @A) <d! +D; D'
Si en plus, on pose
L -
a's= (z=l1,...,ai0_1 ,aio+1,...,am)
et
£r=(0f.-8 15 495 ,f£)
il est clair que pour tout i , 1gism-1 , ona
D; +E; ()0,
et on démontre comme dans 3.1.7, que
Vﬁ;f';a';d';K;x = Vpifiad;Kx
et que si VD fia;d;K;x est inversible et si 1'on pose
oD £3d;K;x (0500050
on a
9 =0 OGierankgx T Opee i o100 paeesOy)
0 o) o
et
id - B3 ;£') 0035 =i - ; °
* BD';x(K) Bv;x(](’f ) °D;£13d"5K;x 1dBD,;X(K) BD;x(K’f) °0;£5d;K5x
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Remarque 3.2.9.- L'hypothése que les fonctions f1 ,...,fm sont définies et analy-
tiques sur un ouvert de ¢® contenant 1le polydylindre K n'est pas indispensable
pour les résultats des n°% (3.1) et (3.2). Il suffit de disposer simplement que
pour tout i1 , 1<igm , fieB(K) , définir 1'application B(K;f) par

E]

B(K;f)(g1,...,gm) = g; fi , pour (g1,...,gm)€B(K)m ,

n o™
_

i
et poser Jp = Im(B(X;£))

(3.3) Dans la suite de ce paragraphe, on se fixe une fois pour toutes une relation
d'ordre total ga sur N , compatible avec sa structure de monoide et moins

fine que la relation d'ordre produit < sur NP . Pour toute fonction analytique
g sur U on désigne par g le germe de g au point x

LEMME 3.3.1.- Soit D = (01,...,Dm, ') ,oapour tout i , 1£ism ,
vich et D'cN | tel que pour tout i , 1<ism , on ait
A
Di+Ei;x(f)CD ,
et considérons Les assertions sulvantes : (cf. 1I,1.1 et II, 1.2) :

i) MG.;D';J;K;XC{d‘]""’dm} 5

i1) Pa;D';J;K;xf]AO(d) =0

iii) Im(BD;x(K;f)) nB,, x) =9

nAO(d) 31X
Alons on a

a) (1) =(>{i1) = (i) ;
b) &4 {d1""’dm}cpa;v';J;K;x
c) 44 L'on suppose que

, alons (1) = (ii) ;

o) powr tout i, 1sism , D'nA(ded;+D;eD"
B) pour tout i, 1<ism , fi,X#O et Vu;x(fi) =di ;

Y) V0s£a5d;K;x est dnvensible ;

8) Im(BD;x(K;f)) = Jgn BD';X(K) H
alors (ii) e (iii).
Démonstration. Pour démontrer (a), on remarque que Mot;D' S 73K;x {d1 oo ,dm}

implique que Pa;D';J;K;x c1sgsm(di+]N ) (1,1.2), et comme
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Ao(d) =N -y (di+Np) , on en déduit que (i) implique (ii). Démontrons que

1gigm

(ii) implique (iii). Soit g€ Im(BD,X(K;f))nBD (X) et supposons que

'na, (d) ;x
g#0 . Alors on a Va;x(g)EAo(d) , €t comme geIm(BD;X(K;f)) ,ona geJK

et g€B ';x(K) , donc Ex(g)cp', d'olu Va;x(g)epa;v';J;K;x . On en déduit

que P _,._...nA (@) #@ , ce qui prouve (a). Pour démontrer (b), il suffit
a,D ,J,K,X o
de démontrer que si {d1"“’dm}cpa;1)';_];l(;x , alors (ii) implique (i). Soit

. Alors de€P et (ii) implique que d€ U (di+]Np) ,

deM e T
HARNH $94 1<igm

a;0'373Kx
donc il existe i , 1gigm , tel que digd , et comme diepa;v';J;K;x , on

a di =d , ce qui prouve (b). Il reste a démontrer que sous les hypotheses de (c)

on a (iii) = (ii). Supposons que Pa nAo(d) #@ . Alors il existe g ,

;0" 75K5x

geJy » BEB ) , g#0 , tel que va;x(g)EAo(d) . Or, en vertu de

D'iX
1'hypothese (§), g€ Im(BD,X(K;f)) , et en vertu des hypothéses (o) et (y),

b
1'assertion (iii) entraine 1'existence d'une famille (gi) d'éléments de

1<ism
B(K) telle que pour tout i , 1gicgm , gi€B—di+(v'nAi(d));x(K) et

m
g= 1 gi(filK) (3.2.2), (v). D'autre part, en vertu de 1'hypotheése (R) et de
i=1

(I1, 1.1.3), pour tout i , T1gism , Va;x(gi(filK))ED' nAi(d) , et commne la

famille (Ai(d))1<i<m est formée de parties deux a deux disjointesde NP , pour
tout ietj , lgism , 1gjsm , i#j ,ona Va;x(gi(filK)) ;Eva;x(gj(fjl K),

d'ou va,x(g) = min Va'x(gi(filK)) (I1, 1.1.5). On en déduit qu'il existe i |,
’ 1sism ’

1<igm , tel que va;x(g) €D’ nAi(d) , ce qui est absurde, car Vo.;x(g) EAO(d)

et Ai(d) nAo(d) =@

Remarque 3.3.2. L'hypothese {d1""’dm}cpa'v"J'K'x de 3.3.1, (b) est en par-

ticulier vérifiée si pour tout i , 1<ism , f. #0 ,v  _(f.) =d. et
i,x a3x i i
E; .(B)cp' . D'autre part, comme 1'inclusion
’

D';x(K)
est toujours vérifiée, 1'hypothese (8) de (3.3.1), (c) signifie que pour tout

d'éléments de B(K)

In(B),. (K;£)) <3y NB

g g€BD';x(K) , S'il existe une famille (gi)1§i§m

telle que

m
g= 51 g (£ K ,
i=1 1 1I
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alors il existe une famille (gi) d'éléments de B(K) telle que pour tout

1<ism
i, 1gisgm , giEBD.'x(K) et
1’

m
g= I gif|K
i=1 * 1

On peut démontrer que cela est vrai sous des hypothéses assez générales sur D et
J , par exemple si D satisfait aux hypothéses de 7.1.0 et JK est engendré
comme idéal de B(K) par JKnBD'-x(K) . (Voir aussi 3.3.5).

PROPOSITION 3.3.3.- S& pouwr tout i , 1sism , £ 40 et v, (f) =d; ,

et 54 Veaid:Kix est invernsible, Les conditions Au,i\:antu sont Equivalentes :
b b b ’

i) Of.d:K est une scissdon de B(K;f)

EDI VRS C AR
1ii) MOL;J;X c {d1 yeoo ,dm} 5
iv) Pu;J;K;ano(d) =0 ;
V) Pa;J;x na,(d) =@

résulte de 3.3.1 et 3.3.2 appliqués a D1 =... =Dm=D' =N . D'autre part,
1'équivalence de (ii) et (iii) et de (iv) et (v) résulte de (II, 3.7).

PROPOSITION 3.3.4.- Soient D= (D;,...,0,,0") , od pour tout i , 1sism ,

0N’ et D'cN et J' un idéal cohérent de 0y tek que J<I' . On
suppose que :
a) pour tout i , 1<gism ,
D'nAi(d) cdi+DicD' H
b) pour fout i , 1sism ,
Di+Ei;x(f)cD' ;
c) \)D;f;a;d;l(;x est inversible ;
4 Pa;D';J';K;xﬂAo(d) =0
Alons

138



DIVISION NUMERIQUE UNIFORME

i) OD;f'd'K;x est une scission de B (K f)

ii) J nB (K) = Im(B (K;f)) .

Démonstration. L'inclusion J<J' implique que

Pa;D';J;K;xCPa;D';J';K;x
(I1,1.3), et en vertu de 1'hypothése (d), on a

Pa;D' 3 K n Ao(d) =

On en déduit que OD S F:d;K;x est une scission de B (K £) ((3.3.1),(a) et
(3.2.2),(v)). D'autre part, 1'inclusion J<J' 1mp11que que

(3.3.4.1) Im(B (K f))CJ ﬂB (K) cJ nB (K)

Dl
Pour démontrer 1l'assertion (ii), il suffit donc de vérifier que
Jx 0By, (mcmm LKE)

Soit g , gGJKnB,_ (K) , et posons
;X

h=g- BD;X(K;f) ° OD;f;d;K;x(g)

En vertu de 3.3.4.1, on a h€]l'(nBD"x(K) , et si h#0 , on en déduit que

Va;x(h) €P et comme

a; D' I Kx

mdg 0 "B 58 e 950,160 = Borna @™

((3.2.2), (ii)), on a Va'x(h) €A0(d) , Ce qui est contraire a 1'hypothese (d).

On a donc h=0, d'ou g€ Im(BD_x(K;f)) , ce qui démontre la proposition .
’

Remarque 3.3.5. On peut remplacer 1'hypothése (d) de la proposition 3.3.4 par
1'hypotheése plus forte

c{d ,d }

Moc;D';J';K;x 127" " m

D'autre part, en appliquant la proposition 3.3.4 a2 J'=J , on en déduit que si

vD'f'a'd'K'x est inversible et si ﬂAO(d) =@ ona

Poc;D;J;K;x

In(By,  (K;£)) = I N By, . (K)

(voir remarque 3.3.2).
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COROLLAIRE 3.3.6.- En gardant fLes notations et Les hypothéses de La proposition
3.3.4, 0ona

et M

= =M
Pa;D';J' JKGx pOL;D';J;K;X I0L;I7' 375 Kx IOL;D',J;K;X

JNBy, () = JynB,, (K,

ce qui démontre le corollaire.

COROLLAIRE 3.3.7.- En gardant Les notations de La proposition 3.3.4 , 54 L'on
suppose en plus que JI’( est engendrné comme Ldéal de B(K) pan J]'(nB x ,
on a J]'(=JK

D';x

est engendré par J]'(n B (K) , le corollaire résulte de 3.3.4, (ii).

D';x

COROLLAIRE 3.3.8.- Soit J' un Adéal cohénent de 0y Zel que J<J' . On suppose
que :

a) \)f;a;d;K;x est inversible ;

b) Pa;J’;K;ano(d) =0

Alons
i) Of;d;l( est une scission de B(K;f)
ii) J]’( = Jx

étre remplacée par la condition équivalente

pa;J';ano(d) =0,

ou par 1'une des hypotheses plus fortes (et équivalentes entre elles)

Ma;J' ;l\’;xC {d1 e ’dm}

ou

Ma;J, ;Xc {d1 yeos ,dm}
Bien entendu, si 1'on suppose en plus que pour tout i , 1gism , fi x #0
E

et VOL‘X(fi) = di , ces quatre conditions sont équivalentes (3.3.3 et 3.3.6).
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§4. Inversibilité de vf;a;d;K;x

Dans la plupart des propositions du paragraphe précédent on suppose que
”vf;a;d;K;x " est inversible (inversibilité qui équivaut a la possibilité de
"diviser" par f (cf.(3.1.2))). I1 est donc primordial d'étudier des conditions
suffisantes pour qu'il en soit ainsi. Dans ce paragraphe, on étudie de telles con-
ditions suffisantes pour des polycylindres '"petits'. Vu 1'importance capitale de
cette question, on la développera trés en détail et on exposera trois versions
différentes des résultats obtenus. La premiere (prop. 4.3.1) énonce les conditions
suffisantes les plus faibles qu'on puisse obtenir par nos méthodes. La deuxieme
(prop. 4.4.3) met en évidence la variation ''continue' de ces conditions en fonction
du point x , et la troisiéme (prop. 4.4.5) nous fournit explicitement des poly-
cylindres compacts K pour lesquels ces conditions sont vérifiées. Les résultats
de ce paragraphe étant trés techniques, on intercalera quelques commentaires
informels pour en faciliter, si possible, la lecture. Dans les paragraphes suivants,
on en exposera une formulation plus agréable (mais aussi moins précise) en termes
de filtres. Néanmoins, les énoncés techniques de ce paragraphe sont incontourna-

bles pour la démonstration de certains de nos résultats.

(4.1) Soient p un entier, peN , s, e relation d'ordre total sur N
et d un élément de N’ . On désigne par Sa(d) la partie de N définie par

= 1 - 'p. 1
Sa(d)—{d €N :d<yd'} ,
par ra'd le nombre d'éléments de 1'ensemble fini M(Sa(d)) (cf. (1,1.3))

T = Card(M(Sa(d)))

a;d

et pour tout i , 1sicg T,.q » par %1-i(d) 1'élément de N’ défini par
b ’

récurrence sur i par

Sa;1(d)

mina(M(Sa(d)))

et

s . (d) mina(M(Sa(d))-{sa;1(d),---,sa;i_1(d)})

o3l
de bon ordre (I,1.5), on a sa.](d) = Sa(d) , ol Sa(d) désigne le successeur

de d pour Sy (chapitre 0), et

Si en plus £ est moins fine que < , ce qui implique que éa est une relation

= P
4.1.1) %ﬁd)—1§ér'dﬁaﬂﬁ® +N°)
Qs
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(1,1.3).

Exemple 4.1.2. Si ga est la relation d'ordre antilexicographique g, sur NP
(cf. I1,3.12.1), on vérifie facilement que pour d |, denP , d= (d1,...,dp) ,

ona r  .=p etpour tout i , 1sisp ,
a;d

Sa;i(d) = (611"”’61 ),

p
ol
0 , pour 1£j<i
Gi,j = dj+1 , pour j=1
dj ,pour i<jsp .

(4.2) Dans la suite de ce paragraphe, on se fixe une fois pour toutes un entier
P > PEN , et une relation d'ordre total S, Sur N , compatible avec sa
structure de monoide et moins fine que la relation d'ordre produit < sur NP
On rappelle (chapitre O) qu'on désigne par d(.,.) la distance sur c? définie
par la norme sup :

d(x,y) = ~y.| , pour x-= cex JeP et y=(y,,...,y.) €CP.
x,y) étilgp]xl yll pour x=(xq, xp) et y=(y, yp)

Si x est un point de ® et A une partie de cP , On pose
d(x,A) = inf (d(x,y)) .
y€A
Si B est une partie de P , On pose
d(A,B) = inf (d(x,B)) = inf (d(x,y)) .
X€EA x€A,yeB
On a d(A,B) = d(A,B) , et si A est compact on a d(A,B) =0 , si et seulement
si AnB#¢
Si A désigne une partie de ® et L une partie compacte de A , on désigne
par  ||.|[; 1la semi-norme sur 1'algébre C(A) des fonctions continues sur A
a valeur dans € , définie par

liEll, = sup |£0y)] , pour feC(A)
yeL

qui est une norme, si et seulement si , A=L . Bien entendu, si L est un poly-
cylindre compact de cP , et feB(K) , on retrouve la norme définie dans le
chapitre O .

LEMME 4.2.1.- Solent K un polycylindre compact de ® , x un point de K et
f un élément de BK) , £#0 . On pose d=va,x(f) s T=T g, powr tout i,

1Sist , 85 =5 (@, 6= (8,050

i ol
T=(1,...,1) , T € €T . Aors on a :

r) et fi LS ;G;K;x;i(f) » 0t
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i) pour tout y , yexK ,
d| T S.
1 3, f d i
fiy) =3 X yx)" + I £.(N-x) ;
dtd i1 1 ’
ii) pour tout i , 1sisr

[8|+...+]8, |+i-1 [8 40 ]3|
lEllgs2 i e(Ksx) | i

S.
A" K [ £ll -

Démonstration. L'assertion (ii) résulte de (2.7.2). Pour démontrer 1'assertion (i),

considérons 1'élément g de B(K) défini par

|d|
o df(x)(y-x)d , pour yeKk
aX

gly) = %1
On remarque que
8€Bia) ;x M By (5 ®)

et

=B (X)

f-geB
NP -4, (8)5x

5,(@;3x ™
(4.1.1) , et comme

Ker(TlI;(S;K;x) - BAO(S) )
et

Ker (id (X)

B~ MI8Kx TL6,Kx) BNp_A (6):x
0 ’
((1.2), (2.7.13) et (2.8.3)) , ona

U™ Hpeskx T8k (8 20

d'ol
(idB(K) - UTI;G;K;X’ TI[;cS;K;x)(f) =8 >
ce qui démontre le lemme.

PROPOSITION 4.2.2.- Soient U un ouvert de CP , L une partie compacte de U,
RO = d(L,cP-u) (RO>O , car L est compact) , R un nombre néef, RE€]O,11 ,
tel que R<R0 , L' fa partie de P déginie par

L' = {yecP : d(y,L) <R}

(L' est une parntie compacte de P etona Lclc:'cL'cU) et £ un élément de
rw,0 p) . Powr tout x , xe€l , tel que fX # 0 et tout polycylindre compact
K do (@ tel que xeK et tel que powr tout i , Tsisp , pl(Kx)sR

(ce qui Amplique que KcL') , 44 £'on pose
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M= sup lGi' s
1<isr

et 84 R'on désigne pan g L'éLément de r(U,ocp) dégini par

la]
g(y) =%, -a—a—f—(x)(y-x)d , pour yeU ,
) ¢
on a
[ 8. .48 [+r-1 S
I-gly s @ TR 1 i
1:

Démonstration. Soit D 1le polydisque fermé de centre x et de polyrayon
(R,R,...,R) . Alors on a

KeDel' ,

et si 1'on applique le lemme 4.2.1 & la restriction de f a D , on en déduit

qu'il existe une famille (fi) d'éléments de B(I) telle que :

1sisr

i) pour tout y , yeD ,

T S
0 - g0 = I HO b
1=

ii) pour tout i , 1gisgr ,

[+.. 48, |+i-1 Gil

|61 i
ar gl

FAEE:

Comme KeDcL' , on en déduit que

T §. T [
I£-g Il = _Z] €51l o" HKx) 5 _21 1£;1lp o T s
1= i=

T |8, ]+ .+]6, | +1-1 |6 S,
<z 2 R |l o T s
i=1
|51|+...+|5r|+r-1 M. T i
s (2 ”f”Lv /R 121 P X;x) ,

ce qui démontre la proposition.
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(4.3) Soient m un entier, m>0 , et d = (d1""’dm) , di = (di1”"’dip) ,
1<ism , un élément de (NP)™ . On désigne par |d| 1'entier défini par

m m P
la] = 151 ld;1 = iE j§1 dij ,
et si 1'on pose
rl=roc,di , Igism
613=sa;j(d1) , lsism , 1sgjsr, ,
et
6i= (611,...,611,.) , lgism ,

i
on désignera par M(d) (resp. N(d)) 1l'entier défini par

M(d) = sup sup |6

Tsism 1sgjsry ijl

su S.|+r.-1)+ d +m
1Sils)m(l 1I i ) m
(resp. N(d) = 2777 .z ri)
i=1
Si < est la relation d'ordre antilexicographique s, sur N , on vérifie
facilement en vertu de 4.1.2 , que
M(d) = sup |di| + 1
1<ism

et P
sup ( 2 jdij) +2p-1+|d]| +m
N(d) = 21§1§m j=1 .pm

PROPOSITION 4.3.1.- Soient U un ouvert de @ , L  une partie compacte de
u , RO = d(L,Cp_U) , R un nombre néel , Re]10,1] , tel que R<Ro , L
La partie de €P déginie par

L' = {yec : d(y,L) <R} ,

m un entier, m>0 , et d = (d;,...,d ) un &ément de (NPY" . On pose

10"

r. =71 <1<
i a;di , 1€i<m ,

Gij = sa

’

j(di) , 1gism Tgjsry;

Poun tout éfément £ = (f,...,£) de (r(U,0 p))“‘ , tout point x de L et
C

tout polycylindre compact K de P tets que
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i) powrtout i ,1sism , £; A0 et v (£)=4d; ;
i) x €k , et pour tout i , 1gisp , pJ(Kx) SR ;

44 £'on pose

d.
a, = g7 alllfl(X) 1<ism, et a-=
1_di! 4 ’ , a—(a1,...,am)
aX
alons Les inégalités
]d1|+...+[di|

8. d.
(4.3.1.1) e(;x) " P70 L s @D @ [l ey |

Ampliquent que :
a) IBE) - by g0 ° Taug.oxll K $1/2

est inversible et H\)_1 Il <,

b) ve..g.x.
f32;d;Kx f;a;d;K;x K

Démonstration . Remarquons d'abord que comme B(K) est un espace de Banach, 1'as-
sertion (b) résulte de 1'assertion (a). Or, si pour tout i , 1gigm , on

désigne par g; 1'élément de TI'(U,0 p) défini par
C

d.
g; () = a,(y-x) 1, pour yeU |,

m
lIBCK; £)- ua;d;K;x) ° Tat;d;l(;x“]( s iE1 ”fi—gi”]\’ “Ta;d;K;x;i“K
D'autre part, il résulte de la proposition 4.2.2, que pour tout i , Tgisgm ,
on a

S, .
n 1) (K,X)

’

|<S-1|+---+|c3- | r.-1 M(d T
lI£;-8;llx = 2 ! Tt £l /R ) j§1 P

et comme

|d1|+...+|dii+i-1 |d1|+"'+|dil d;

(2.7.2) , on en déduit que

IBK;£) _ua;d;K;x) °Ta;d;K;x”K £

m m i [dy|+...+]d; |
S/@rr) sz N 1€l /R Da e !
i= i=1 j=1

Gi' di
p" G o TKsx)
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et les inégalités 4.3.1.1. impliquent que

I BE&; £) —”a;d;K;x) ° Ta;d;K;x”K 17z,

ce qui démontre la proposition.
COROLLAIRE 4.3.2.- En gandant Les notations de La proposition 4.3.1, 504%

D= (0,...,0,0'), o pour tout i, 1sism , 0, <N et NP, tel que
pour tout i , 1<ism , on ait

D' na(d) ed; +D; 7
Si en plus des conditions (i) et (ii) de La proposition 4.3.1 , on a

iii) pourn tout i , 1€is<m , Di+Ei;x(f) c?'

alons Les inégakités (4.3.1.1) impliquent que VD £aa:d:K: est inversible
_1 < 2 3 9a’ ) ,X
et ”VD',f;a;d;K;x”K =

Démonstration. On a
Up;£5a3d;K5x" 18, (10t Bopx (5B Mpsa5d50) © Tpsa3a3K5x

et (BD;X(K;f) - uv;a;d;K;x) ° TD;a;d;K;x est la restriction de

(BK;f) _ua;d;K;x) ° Ta.d;K;x a BD';X(K) , qui est stable par cet opérateur (3.2).
Les inégalités (4.3.1.1) impliquent donc que

l (BD;x K;f) - “D;a;d;K;x) ° T1);al;d;l(;x” K s1/2

(4.3), et comme BD' _X(K) est un espace de Banach (2.6), on en déduit le corollai-

re.

Remarque 4.3.3.- La proposition 4.3.1 ainsi que son corollaire 4.3.2 seraient vides
de sens, si la conjonction des inégalités (4.3.1.1) était impossible. En fait,
pour tout élément f de (I'(U,0 p))m et tout point x de L , satisfaisant a la

C

condition (i) de la proposition 4.3.1, il existe un systéme fondamental de voisi-
nages de x formé de polycylindres compacts de (P satisfaisant 3 la condition
(ii) de la proposition 4.3.1 ainsi qu'aux inégalités (4.3.1.1). En effet, soit

C un nombre réel, C>1 . On peut d'abord se limiter aux polycylindres compacts K
tels que x€K et e(K;x) <C . Cet ensemble forme un systéme fondamental de
voisinages de x , car il contient tous les polydisques fermés de centre X

(2.1). Ensuite, on remarque que si pour tout i , 1<i<m , on pose

|d [ +.0 o4l |

M(d
L= /@y N £l 0118y

la condition (i) de la proposition 4.3.1 implique que ei>0 , et alors les iné-
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galités (4.3.1.1) sont impliquées par la condition

(4.3.3.1) o"(X;x) e n n Ve .
Isism 1sjgr; 8357di5eg

(pour les polycylindres tels que e(K;x) < C ) (cf. 1,4.7).
Or, comme pour tout iet j , 1<ism , 1<j sr; ,ona di ix 6ij , et
comme la relation d'ordre s, st compatible avec la structure de monoide de N

et moins fine que la relation d'ordre produit < , il résulte de (I,5.1.2)
et (I,5.1.4 ) que pour tout nombre réel R' , R'>0 , ona

Cn n v NN, 0™ e (RDP s vi | 1gisp, o <inf{R ,R}}# @
1<izm 1 J S .—di,ei \01 pp + p pl 0 }} s

<r. i
sty i

IA

ce qui démontre 1'existence d'un systéme fondamental de voisinages de x formé de
polycylindres compacts de ¢? satisfaisant & la condition (ii) de 1la proposition
4.3.1 ainsi qu'aux inégalités (4.3.1.1).

En particulier, on en déduit, en appliquant la proposition 4.3.1 & un compact L
réduit a un seul point x , que pour tout point x de U et tout élément f de
(F(U,Ocp))m satisfaisant a la condition (i) de la proposition 4.3.1, il existe un

systeéme fondamental de voisinages de x formé de polycylindres compacts K de

P S o1
C , contenus dans U , tels que vf;a;d;K;x (ou vD;f;a;d;K;x , 51 1'on se
place sous les hypothéses du corollaire 4.3.2) soit inversible.

(4.4). La proposition 4.3.1 fournit des conditions suffisantes pour 1'inversibilité
de v, _.q.v. , uniformes sur un compact contenu dans U . On désire obtenir
f;a;d;K;x

des conditions uniformes sur 1'ouvert U . Pour cela, on énoncera une variante
de cette proposition, en remplacant certaines des constantes, intervenant dans les
conditions, par des fonctions continues sur U , selon un procédé bien classique.
En vue des applications, il faudra expliciter ces fonctions, de méme que dans la
proposition 4.3.1, on a explicité les constantes, au lieu de se borner a affirmer
leur existence. On est ainsi amené a introduire les définitions et notations
suivantes.
(4.4.1). Soit U un ouvert de €° . On désigne par Ry la fonction
. *

RU U— R}
définie par

Ry(x) = inf{d(x,CP-U)/2,1}

(Ssi u=cP , la fonction RU est constante, égale a 1). La fonction RU est une
fonction c¢ontinue. Pour tout x , x€U , si D désigne le polydisque fermé de
centre x et de polyrayon (RU(x),...,RU(x))E CR:)p ,ona DcU . Si U' dé-
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signe un ouvert de c® contenu dans U , pour tout x , x€U' ,ona

(4.4.1.1) Rp () SRyGa

Si p' et p" désignent deux entiers, p'e N , p" €N , tels que p'+p" =p ,

et U' et U" des ouverts de Cp' et Cp" respectivement, et si U = U'x U"
alors pour tout x' et x" ,x'eU , x"€U"' ,ona

(4.4.1.2) RU(X',X") = inf{RU.(x'), RU"(X")} 5

si en plus U" = ® ona ‘

(4.4.1.3) RU(x',x") = RU,(X')

(4-4.2) Soient U un ouvert de P , m un entier, meN , et f un élément de

caun™ , ou C(U) désigne 1'algebre des fonctions continues sur U a valeurs
dans € . On désigne par Af la fonction

Ap U — R:

f
définie par

A(x) = sup{Ilflh) ,1} , pour x€U ,

X

ou DX désigne le polydisque fermé de centre x et de polyrayon
(RU(x),...,R x)) € (Rj)p . La fonction Af est continue. (Cela résulte de la con-
tinuité des fonctions Ry et f , et du fait qu'une fonction continue sur un
compact y est uniformément continue). Si U' désigne un ouvert de cP contenu

dans U pour tout x , x€U' ,ona

(4.4.2.1) AfIU.(x) £ A (0

(L'opérateur qui associe a f , Af n'est pas local, c'est-a-dire qu'on n'a pas
en général AfIU' = Af[U').

Si g désigne un élément de can™ , on a

(4.4.2.2) A éAf + 0

f+g g >
et si a désigne un élément de € , on a
(4.4.2.3) Mg ssup{|al,1}.A¢

Si m' et m" désignent deux entiers, m'€ N , m"e€N , tels que m'+m" =m ,
1 "

et f' et f' des éléments de (C(UN™ et (cWN™ respectivement, tels que

f=(£',f") , alors on a

(4.4.2.4) Af = sup{Af,,Af"}

Si h désigne un élément de C(U) , on a
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(4.4.2.5) AhféAh -Af .

PROPOSITION 4.4.3.- Soient U un ouvert de €° , m un entien, m>0 , et
d = (dy,---,d ) un Eeément de (NPY™ | 0n pose

r. =T 1<ism
oz;d. 2 ’

et

[ec)
1

"sa;j(di) , 1sism , Tsjswy

Pour tout éLément f = (f15ee00f) de (F(U’Ocp))m , tout point x de U et tout

polycylindre compact K de CP tels que
i) powr tout i , 1<ism , fi,x#O et Vu;x(fi)=di 5

ii) xel% , et powr tout i , 1<igp , p'i'(](;x) éRU(X) (ce qui 4mplique,
en particulien, que KcU (cf. 4.4.1)); 44 L'on pose

alons Les Ainégalités

. [d1|+...+|di| ..6ij . ..di .
e(K;x) o K;x) /p" “(K;x) <
(4.4.3.1) 1sism , 1sjsry
1(d) 1 o il
<@ 00/ (@) 100D T F(X)

Ampliquent que :
a) [{(B(K;f) _”a;d;K;x) ° Ta;d;K;x”K§ /2

. R -1
b) VEiaidiKsx est inversdible et ||v £a;d;K;x HK <2

Démonstration. La proposition 4.4.3 résulte aussitdt de la proposition 4.3.1 appli-

quée a L = {x} et R= RU(X) , en tenant compte de 4.4.1 et 4.4.2.

COROLLAIRE 4.4.4.- En gandant fLes notations de La proposition 4.4.3, s0it
D= (D,-.,0,,0") , o0& pour tout i , 1sism , D;c N ot D'eNP ) tek
que pour tout i , 1<ism , on ait
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Vn%m%ﬂi+%cﬂ
Si en plus des conditions (i) et (ii) de fLa proposition 4.4.3 , on a

iii) pour tout i , 1<ism , Di + Ei‘x(f)CD' 3 alons Les Ainégalités
1

(4.4.3.1) émpliquent que vy oo q . €8¢ invensible et v s £sasd;k:x Ik S 2
Remarque 4.4.5.- En raisonnant comme dans la remarque 4.3.3, on constate que pour
tout élément £ de (F(U,Ocp))m et tout point x de U , satisfaisant a la con-
dition (i) de la proposition 4.4.3, il existe un systéme fondamental de voisinages
de x formé de polycylindres compacts de P satisfaisant a la condition (ii)

de la proposition 4.4.3 ainsi qu'aux inégalités (4.4.3.1). Le point crucial de la
proposition 4.4.3 est que les seconds membres des inégalités figurant dans la
condition (ii) sont des fonctions continues, a valeurs strictement positives, et
que ceux des inégalités (4.4.3.1) sont le produit d'une fonction continue sur U ,

a valeurs strictement positives, Rx(d)/ouufmf , par la valeur absolue d'une

fonction analytique sur U, T4 i , ne s'annulant qu'a des points de U
X

ne satisfaisant pas a la condition (i).

(4.5) Pourvu que la condition (i) de la proposition 4.4.3 soit satisfaite, la con-
jonction des inégalités figurant dans la condition (ii) et des inégalités

(4.4.3.1) est impliquée par une condition de la forme
e(K;x) <C et p"(K;x)ev ,

o C est un nombre réel arbitraire tel que 1 < C et V une partie de (R:)p
appartenant au filtre de Hahn-Banach Fg sur (R:)p défini par la relation
d'ordre §a sur NP (cf. (I,5.1.3)

C v==(n n v ednC n Vo, )
1sis gjsr; ST sisp R
(cf. (1,4.7)) , ol
d; |
d.] +...+|d;] Bl 1f.
M(d ld, 1
L= &P UN@ 2000 7 |t
1 3X 1

et (e1,...,ep) désigne la base canonique de ]ﬂ)) . Cette formulation, tout en

nous assurant que l'ensemble V est non vide, ne nous permet pas d'exhiber un

élément p'" de (R{)p appartenant @ V . En revanche, si A désigne une matri-

ce inversible a p 1lignes et p colonnes a coefficients dans R définissant

la relation d'ordre ga sur NP (cf. (1,3.11) et (I1,3.12)) , et ga, la rela-

tion d'ordre sur RP définie par cette matrice (cf.(I,3.5)) (qui induit Sy ST
) » le filtre de Hahn-Banach F_  sur (R:)p défini par cette relation

=g
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d'ordre (cf.(I1,4.3.1) et (I,4.4)) est plus fin que le filtre Fg (I,5.1.5) et

la famille o

(rp (€. 5. )

p;8;e S€R,, eeRy
en est une base (I,4.10); les lemmes (I,4.10.1) et (I,4.11) permettent de déterminer

explicitement § et ¢ , <S€]R+ s ee]R: , tels que

TWEpis;d <V s

et comme 1'ouvert
- . rm*\P . § §
Byase = Hlopae-eomp) €ROIT: oy <e s gy <ppseresp, <ppg)

de (]R:)p est défini de facon simple, on obtient une paramétrisation particuliére-
ment pertinente d'un ouvert non vide de (]R:)p (1'ensemble rA(Ep'(S'e) est un

b b
ouvert, car r, estun homéomorphisme) contenu dans V . Bien entendu, 1'ensemble

r,(E_... ) n'appartient pas en général au filtre Fo (cf. I, 5.1.5), mais
A p;dse 0

cela importe peu. En vue des applications, il faudra entiérement expliciter ce
procédé, et on est ainsi amené a introduire les définitions et notations suivantes.
Dans ce qui suit, on aura a considérer a plusieurs reprises des bornes supérieures
de familles de nombres réels positifs ou nuls, indexées par des ensembles finis.
Par convention, si 1'ensemble d'indices est vide, la borne supérieure sera égale
a zéro.
(4.5.1) Soient A = (akll)1§k§p,1§9,§p une matrice inversible a coefficients dans
R définissant la relation d'ordre éa (cf. (I,3.11) et (I,3.12)) et m un
entier, m>0 . On définit deux fonctions

®%Asm )" — R
et

Y - (NPHYM « (JR;)"‘ x R* — R*

comme suit. Pour tout & , 1£%s<p , on pose

kg = sup{k:1<ksp , Ay #0} ,

I£={k:1§k<kz ,ak2<o },

b e g e )
et

-

On remarque que comme la relation d'ordre <, est moins fine que la relation
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d'ordre produit < sur NP , pour tout & , 1<2<p ,ona ay J&>O , ce
qui implique que bz1 et n>0

D'autre part, soit d , d€@)" , d=(dy,...,d) , d; €N

di = (di1""’dip) . Pour tout i , 1<ism , on pose

T. =T
1 s
et pour tout j , 15j = S
‘Sij = sa;j(di) s (6131, "Sijp) >
.= k :1<sks 5 d 0
klj-sup{ :1<sksp , 22 akg( )# }
I'. = {k : 1<k ! : d 0
i = e sk <k, RE 3855y ~ dj) < O3
et
'.(d : d

On remarque que comme pour tout i et j , 1<ism , 1<j STy d. < §..
1 : PR
on a nij (d) >0 . Les fonctions q’A;m et WA;m sont définies par

(@) =sup{ sup sup  sup ( Z Iak (855474 )I/n’ (d) + 1, b}
Tsism Isjsr; keIl g=1 J
et
1/n!.(d)
n(dse,R) = inf { inf inf e, s R”n}
1<igm 1§j§ri

pour €= (51,...,em)€(]R:)m et R€]R:

On remarque que
(4.5.1.1) @A;m(d) 21
D'autre part, comme pour tout iet j , 1gism , 15j sryo, ”ij(d) >0 et

n>0 , la fonction LPA-m est croissante en R et € et si Rsg1
3
(resp. R<1) ou s'il existe i , 1<is<m tel que ei§1 (resp. ei<1) on a

(4.5.1.2) NICIEROEY
(resp Yo (d e,R) <1).
Si pour tout i , 1§1§m , €:<1 , et si 1'on pose

n!(d = inf n!. (@
! 1sjsr; M

on a
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(4.5.1.3) Yp n(seR) = inf( ing e /M@ Ry

1<igm
Remarque 4.5.2.- Ce qu'il faut surtout retenir de la définition de la fonction
‘PA m c'est qu'il existe un nombre réel n , n >0 , et pour tout d ,

dE(]Np) ,et tout i , 1<i<m , un entier ri,ri>0 , et pour tout j ,
b

1<j sry , un nombre réel nij >0 , tels que pour tout ¢ , g¢ (]R:)m
€ = (ggy+++5g,) et tout R , ReRY , on ait

(4.5.2.1) @eR) = inf{ inf  inf ¢ /Ny, RV
1sism 1gjsr;

En plus, pour tout d , de (]Np)m ,ettout i , 1<gism , il existe un nom-
bre réel ni s ni>0 , tel que pour tout ¢ |, e&(]R:)m , €= (31,...,gm)

tel que pour tout i , 1<ism , .§1 , et pour tout R , ReR} , on ait
V/n] i 1/
(4.5.2.2) n(@e,R) = inf{ inf e, , R'/Ny -
1<igm

On remarquera que n dépend uniquement de la matrice A , T3 uniquement de d
(et de la relation d'ordre é ) tandis que n ou ”i dépend aussi bien de

ij
A que de d (mais bien entendu nide € nide R ).

Remarque 4.5.3.- Si la matrice A est a coefficients dans R, (cf. (1,3.12),
(ii)),ona b =1 , d'ou
p

(4.5.3.1) ®,. (d) = sup sup sup (I |a (6 -d.)|/nisd) + 1,

Asm lsism 1gjsry kelj; 4=l k2 T
pour d € (N)O™ .
Si éa est la relation d'ordre antilexicographique s, sur MW et A 1la
matrice unité I (cf. (I,3.12.1)) , on vérifie facilement, en vertu de 4.1.2, que
pour tout d , de (N)™ | ona

(4.5.3.2) ¢, (d) = sup sup d.. + 1
Lim lsism 1gj<p M

et

(4.5.3.3) \l’I;m(d,g,R) = inf{ inf e, , R} ,

1<igm

pour e= (81,...,5m)€(]R:)m et ReR*

LEMME 4.5.4.- Sodent A une matrice Ainvesrsible a coefficients dans R définis-
sant La nebation d'ondre s, d = (dy,...,d ) un élément de (NH™ R
un nombre néel, O<Rs1 , et ¢ = (51,...,em) un élément de (]R::)rn . SiL'on
pose
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et

€ = ‘l’A;m(d,e,R) ,

alons pour tout éfément p , p = (p1,...,pp) , de (]R:‘Jp La condition
(4.5.4.1) per,(E_ .. )

S H S
Amplique que

i) pouwr tout 1, 1<isp , p.<R

ii) pour tout iet j , 1sism , 1<jsr (c'est-a-dine

8;. d
o 1J/p 1< ei)

Démonstration. Comme R<1 , en vertu de (I.4.9.3), la condition (4.5.4.1) impli-
que (i) (I,4.11) et (ii) (I,4.10.1).

PROPOSITION 4.5.5.- Sodent A une matrice Linversible a coeffdcients dans R
déginissant La relation d'ordre éoc , U un ouvert de cP , M un entier , m>0 ,
et d = (dy,...,d) un élément de (NP)™ . Poun tout élement £ = (fy,...,£) de
(r(uomp))“‘ , tout point x de U tek que pour tout i , Tsism , £  #0

et Va;x(fi) = di , tout polycylindre compact K de P ter que X ek et tout nom-
bre néet C , 1sC , 84 L'on pose

d.
1 al llf.
al =aj-_—d- (X) ’ 1§1<m ’
" oax i
a-= (al,. ,am) s
M(d) |d]|+...+|d]

e, = Ry P/ PN@ AgTJay] , Tsism

e(x) = (81(X),---,€m(x)) s

60 = q)A;m(d) ’

e, (x) = lPA;m(d,s(x),RU(X)) ,

et 84 L'on suppose que
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(4.5.5.1) e(K;x) sC et D"(K3x)€rA(Ep;6o;£O(X)) ;
akons on a
i) KeU ;

ii) || BE;H) - ”a;d;K;x) ora;d;K;ang 172

est inversible et H\).1

i) v f;a;d;K;x”K 2

f;a;d;K;x

Démonstration. Comme RU(X) £1 (4.4.1), la proposition résulte de 4.4.3 et 4.5.4.

COROLLAIRE 4.5.6.- En gardant Les notations de La proposition 4.4.5, s0it
D =0y, D 0", 0l poun tout i, 1sism , DN et D'eN , tet
que powr tout i , 1£ism, on ait

A ﬂAi(d)cdi + DicD'
S{ en plus des hypotheses de La proposition 4.5.5, pour tout i , 1sism
on a

Di * Ei;x(f)cv'
alons La condition (4.5.5.1) implique que K<U , que VD.fa:d-Kex est Anven-

s4ible et ”\)D;f;a;d;](;xnl( <2

Remarque 4.5.7.- Si §u est la relation d'ordre antilexicographique s, sur
| 3 , en vertu de 4.5.3, la condition (4.5.5.1) peut s'énoncer plus simplement

§ §
. " . " . " o . ”" . " O e
(4.5.7.1) e(K;x) sC , py(K;x) <e (x) , py(K;x) <pf (K,x),.--,pp(K,X) <pp_1(l\,X) s
ol
§ = sup sup d.. + 1
1gigm 1<j<p M
et

eo(x) = inf::iérji_m ei(x), RU(X)}

Si en plus on se limite aux polydisques fermés de centre x et de polyrayon
p = (01,--~,Op) » PE (]R:)p , cette condition devient tout simplement
8 §

(4.5.7.2) P < e (X 5 py < 910,...,pp < ppc_’1
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§5.- Théoreéme de division numérique en un point

Dans ce paragraphe, on pourrait énoncer tous les résultats du §3, ou figure
1'hypothése " Vf;a;d;K;x inversible'" (resp. " VD;f;a;d;K;x inversible'), en rem-
plagant cette hypothése par les conditions des propositions (4.3.1), (4.4.3) ou
(4.5.5) (resp. des corollaires (4.3.2), (4.4.4) ou (4.5.6)). Cela serait fastidieux
et inutile. En revanche, on traduira ces conditions en termes de filtres, ce qui
permettra d'énoncer les résultats les plus importants sous une forme moins techni-
que. En particulier, on déduira, des résultats des paragraphes précédents, les théo-
rémes classiques de division par une famille de fonctions analytiques ou par un
idéal, sous une forme néanmoins plus précise, la forme 'numérique'. Ces théorémes
sont des cas particuliers des théorémes "uniformes'" qu'on démontrera auxparagraphes
suivants.Mais comme ces derniers dépendent des résultats difficiles du Chapitre II,
il est intéressant de montrer comment les théorémes ''ponctuels' découlent directe-
ment des résultats du Chapitre III et de ceux, élémentaires, du §1 du Chapitre II.

Enfin, on donnera quelques applications.
(5.1) Soit p un entier, p € N . On désigne par kP 1'ensemble des polycylin-
dres compacts de P et par KP la partie de kP x cP définie par

K= {K,x) ekPxP:xek},

ensemble des polycylindres compacts pointés, c'est-a-dire des couples d'un poly-
al

t
cylindre compact K et d'un point x appartenant intérieur de K . Pour tout

point x, X € cP , On pose
R-kekP : xek,

1'ensemble KE s'identifiant a la fibre de la deuxiéme projection
K2 — P

au-dessus du point x . Plus généralement, pour toute partie A de cP , on dési-

gne par KX 1'image réciproque de A par cette deuxiéme projection
KK = {(K,x) € K? : X €A},

et on dit que KR est 1'ensemble des polycylindres compacts pointés par un point
de A, ou plus simplement, pointés dans A
Au paragraphe 2, on a défini deux applications

no. kP )P
p'" 1 KL —> (R))

et
e : K? — [1,+0o[

(2.1).0n désigne par B“ 1'application
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o KB [1, 4l x (RYP
définie par

3" (K;x) = (e(K;x) , p"(K;x)) , pour (K,x) € KP .
Pour tout point x , X € P , on désigne par E; (resp. p; , resp. ex) la res-
triction de 1'application B" (resp. p" , resp. e ) A Kg . L'application B;
(et a fortioni p; et e, ) est surjective. (Si x = (x1,...,x ) est un point de
€®, C un élément de [1,+=[ et p = (0y5+++,p,) un Elément de (RP | si
pour tout i, 1<ic<p, Ki désigne la partie compacte de € dont le bord
aKi est une ellipse de € (identifié a BRZ ) de centre Xj s de demi-grand-axe
H et de demi-petit-axe pi/C et si 1'on pose K = K1 X s.. X Kp , alors K est
un polycylindre compact de €P dont 1'intérieur contient x et tel que
¥E:x) = €0 )P
L'image réciproque de {1} x (m:)p par 1'application B; est 1'ensemble des poly-
disques fermés de centre x , et la restriction de p; a cet ensemble est bijec-
tive (c'est l'application qui associe & un polydisque fermé de centre x son poly-
rayon) .

(5.1.1) Soient p un entier, p €N, et x un point de c® . si F désigne un
filtre sur [1,+o[x (R:)p , 1l'application B; étant surjective, 82_1(F) est une
base de filtre sur Kg . De méme, si F' (resp. F'" ) désigne un filtre sur
[1,+[ (resp. (R¥)P), e;1(F') (resp. o;_1(F") ) est une base de filtre sur
kP . En plus, la famille
(e V) 0 0 My g

est aussi une base de filtre sur KE , autrement dit, si 1'on désigne par F%
(resp. F; ) le filtre sur Kg engendré par la base de filtre e;1(F') (resp.
p";1(F”) ) , alors 1l'ensemble {F; , F;} admet une borne supérieure dans 1'ensem-
ble de tous les filtres sur KE , pour la relation d'ordre "moins fin que'. En ef-
fet1 si 1'on désigne par Fx le filtre sur Kg engendré par la base de filtre
.

BUTU(FT x P (od F' x F' désigne le filtre sur [14wlx (R))P , produit des

filtres F' et F" ), alors FX est la borne supérieure de {F% , F;} .
(5.1.2) On appelle filtre d'excentricité sur KE le filtre engendré par 1'image
réciproque par ey du filtre sur [1,+<[ formé des voisinages de 1 dans
[1,+[ . La famille

(n

L'excentricité du compact Kj , selon la définition (2.1), est égale 3 C ,
tandis que l'excentricité de l'ellipse JKj , selon la théorie des coniques,

est égale 3 V1-1/CZ . La fonction Cl— /1-1/CZ &tant croissante (pour

C 21 ), notre terminologie se trouve néanmoins justifiée .
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(K e Kb @ e(®sx) < et oo [
en est une base. On dira qu'une propriété d'un polycylindre compact est satisfaite
pour tout polycylindre compact suffisamment centré en x , si 1'ensemble des poly-
cylindres compacts, dont 1'intérieur contient x , satisfaisant & cette propriété
appartient au filtre d'excentricité sur Kg .

(5.1.3) On dit qu'un filtre H sur Kg est un filtre d'effilements, s'il est en-
gendré par 1'image réciproque par p; d'un filtre de Hahn-Banach F sur (R;)p
(c4. (1,4.4) et (1,4.7)). Si A désigne une partie de RP  dont 1'enveloppe conve-
xe ne contient pas 0 et si F = FA (c4. (1,4.4)), on dira que H est le filtre
d'effilements sur KP défini par A . La famille

=1

Px (1§ri]§n vai ; €i))n€]\l, (31,...,an)€An, (€15 eere JE(RS

en est alors une base. On s'intéresse plus spécialement d deux cas particuliers.

)1'1

Le premier est le cas ou

A={aeR :3d,d" eNP,d<"d" et a=4d'-d},

~

ol <' désigne une relation d'ordre sur N, compatible avec sa structure de mo-
noide, autrement dit le cas ou F = Fg, (cg4. (I,5.1.1) et (I,5.1.3)). On dira
alors que H est le filtre d'effileménts sur KE défini par la relation d'ordre
<t sur NP .

Le deuxiéme cas est le cas ol
A={a€eRP:a>"o0},

ol <" désigne une relation d'ordre sur RP , compatible avec sa structure d'espa-
ce vectoriel, autrement dit, le cas o0 F = F, (cf. (I,4.4)). On dira alors que
H est le filtre d'effilements sur KE défini par la relation d'ordre <" sur

RP . Si la relation <" est une relation d'ordre total et si B en est une ma-
trice de définition (c4. (I,3.5)), la famille

(p; 1(rB(Ep;6;e)))REKg ,EER:
est une base du filtre d'effilementssur KE défini par cette relation d'ordre
(cg. (1,4.10)). Si <" induit <' sur NP , alors le filtre d'effilements sur KE
défini par <" est plus fin que celui défini par <' (c4. (I,5.1.5)).

On dira qu'une propriété d'un polycylindre compact est satisfaite pour tout po-
lycylindre compact suffisamment effilé pour A (resp. pour <' , resp. pour s'" )
en Xx , si 1'ensemble des polycylindres compacts, dont 1'intérieur contient x ,
satisfaisant a cette propriété, appartient au filtre d'effilements défini par A
(resp. <' , resp. <) sur KE . De méme, on dira qu'une telle propriété est sa-
tisfaite pour tout polycylindre suffisamment centré et effilé pour A (resp. <',
resp. <" ) en x , si l'ensemble des polycylindres compacts, dont 1'intérieur
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contient x , satisfaisant 3 cette propriété, appartient au filtre sur KE , borne
supérieure du filtre d'excentricité et du filtre d'effilements défini par A (resp.
', resp. ') (cg. (5.1.1)). Si 1'on désigne par V 1'ensemble de ces polycylin-
dres, cette condition équivaut 3 1'existence d'un ensemble V' appartenant au fil-
tre d'excentricité et d'un ensemble V" appartenant au filtre d'effilements défini
par A , tels que

vinv'cecVv.,

(5.1.4) On remarque que si V' désigne un ensemble de polycylindres compacts appar-
tenant au filtre d'excentricité sur KE , alors V' contient 1'ensemble des poly-
disques fermés de centre x . Autrement dit, la trace du filtre d'excentricité sur
1'ensemble des polydisques fermés de centre x est le filtre dont le seul élément
est 1'ensemble de tous les polydisques fermés de centre x .

Si H désigne un filtre d'effilements sur KE , engendré par 1'image réciproque
par p; d'un filtre de Hahn-Banach F sur (R:)p , la trace de H sur 1'ensemble
des polydisques fermés de centre x est un filtre, qui n'est autre que 1'image ré-
ciproque de F par la bijection définie par la restriction de p§ sur cet ensem-
ble (5.1). En gardant les notations de (5.1.3), on dira qu'une propriété d'un poly-
disque fermé est satisfaite pour tout polydisque fermé, de centre x , suffisamment
effilé pour A (resp. pour < , resp. pour <" ), si 1l'ensemble des polydisques
fermés de centre x , satisfaisant a cette propriété, appartient a la trace du fil-
tre d'effilements défini par A (resp. par <' , resp. par <£'' ) sur l'ensemble
des polydisques fermés de centre x . Si 1'on désigne par V 1'ensemble des élé-
ments p de CF:)p tels que le polydisque fermé de centre x et de polyrayon p
satisfasse a3 cette propriété, cette condition équivaut a V € Fa (resp. V€ Fz, ,
resp. V€ F_, ).

I1 résulte de ce qui précéde que si une propriété d'un polycylindre compact est
satisfaite pour tout polycylindre compact suffisamment centré en x , alors cette
propriété est satisfaite pour tout polydisque fermé de centre x . De méme, si une
telle propriété est satisfaite pour tout polycylindre compact suffisamment centré
et effilé pour A (resp. pour <£' , resp. pour <" ) en x , alors cette propriété
est satisfaite pour tout polydisque fermé, de centre x , suffisamment effilé pour
A (resp. pour <£' , resp. pour <£'').

(5.1.5) Soient <£' une relation d'ordre total sur Dﬁ), compatible avec sa stru-
ture de monoide, et A une matrice de définition de <' (c4. (I,3.11)). Si 1'on
suppose que <' est ratiomnelle (c4. (I1,3.11)), alors la famille

-1
(% OalBp;55e) ) seR, cer?

est une base du filtre d'effilements sur Kg défini par cette relation d'ordre

160



DIVISION NUMERIQUE UNIFORME

(I,5.2.3). (Si <' n'est pas rationnelle, cette famille est une base d'un filtre
d'effilements sur Kg strictement plus fin que le filtre d'effilements défini par
cette relation d'ordre (c4. (I,5.2.5)).) En particulier, si <£' est la relation
d'ordre antilexicographique s sur NP (c§. (1,3.12.1)), dire qu'une propriété
d'un polycylindre compact est satisfaite pour tout polycylindre compact suffisam-
ment effilé pour éL en X , équivaut a affirmer 1l'existence de ¢ , € € ]R: ,
et § , S§€R, , tels que tout polycylindre compact K vérifiant

x€K et pi(Kx) <€, py(Kx) < pa's(K;x),...,pg(K;x) < p;f1(1<;x)

~

satisfasse 3 cette propriété.

(5.2) Les propositions suivantes, qui sont des reformulations de résultats déja dé-

montrés, servent a illustrer le langage introduit ci-dessus.

PROPOSITION 5.2.1.- Sodient p wn entier , p€N , < (resp. =" ) une relation
d'ondne sun NP (resp. R’ ) , compatible avec sa structure de monoide (resp. d'es-
pace vectorniel) ot moins fine que La refation d'orndre produit < sun NP (resp.
sun BP ), x un point de €@ et € = (51,...,ep) un éLément de (]R_‘:)p . Alons
pour tout polycylindre compact de P, suffisamment effile pour <' (resp. pouwr

M) en x , ona

p'i'(l(;x) < e, 1€sisp .
Démonstration. La proposition résulte de (I1,5.1.4), (1,4.4.1) et (1,4.7.1).

COROLLAIRE 5.2.1.1.- Sodient p un entier, p € N, =<' (resp. <" ) une nelation
d'ondne sun NP (resp. RP ) , compatible avec sa structure de monoide (resp.
d'espace vectorniel) et moins fine que La relation d'ordre produit < sun N
(resp. sur RP ) , U wn ouwent de C€P et x un point de U . Alons tout poly-
cylindre compact de e, suffisamment egfile pour <'  (resp. peur <) en x ,

est contenu dans U

Démonstration. Si 1'on pose R = d(x , c? -U) , en remarquant que pour tout poly-
o

cylindre compact K de cP , tel que x € K , les conditions
pY(K;x) <R , 1sisp

impliquent que K = U , le corollaire résulte de la proposition (5.2.1) appliquée
a e= (R, Rye..,R) .

Remarque 5.2.1.2. Le corollaire (5.2.1.1) signifie que 1'ensemble des polycylindres
compacts de P , telsque KcU et xE€ I% , appartient au filtre d'effilements
sur KE défini par la relation d'ordre <' sur NP (resp. <" sur RP ). En
particulier, sous les hypothéses du corollaire (5.2.1.1), si une propriété d'un
polycylindre compact est satisfaite pour tout polycylindre compact suffisamment
centré et effilé pour <' (resp. <" ) en x , alors 1l'ensemble des polycylindres
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o
compacts K de c? , tels que x € K , satisfaisant a cette propriété forme un
systéme fondamental de voisinages de x .

PROPOSITION 5.2.2.- Soient p un entier, p€ N , s, une nelation d'ondre total
sun NP , compatible avec sa structure de monoide et moins fine que La relation

d'ordre produit < sun NP | U un ouvent de CP , X un pointde U , m un
entier, m€ N , et f= (f,...,f) un clément de (T(U , ocp))’“ tel que pour
tout i , 1<ism , £

i,x #0 . S{2'on pose

di=va;x(fi) , 1Sism ,

d=(dg,eend)

a-= (a1,...,a) s

akons pourn tout polycylindrne compact K de cP sufgisamment centhe et effile
pour £ en X ona
a
i) KcU
-1
vf;a;d;K;x f;a;d;K;x”K $2.

Démonstration. La proposition (5.2.2) est simplement une forme moins précise de la

ii) est invensible et ||v

proposition (4.4.3).

(5.3) Les deux propositions suivantes sont des versions '"numériques' des théorémes
classiques de division au-dessus d'un compact, dans un cadre 1légérement plus géné-
ral.

PROPOSITION 5.3.1.- Soient p un entier, p€ N, s, une relation d'ondre total
sut NP | compatible avec sa stnucture de monoide et moins fine que La relation
d'ondre produit < sun NP ,» U un ouvert de e, x un point de U , m un
entien, m>0 , et f = (f1""’fm) un élément de (T(U, Ocp))m tel que pour
tout 1 , 1<€ism , fi’X#O . On pose

di=Va;x(fi) , 1£is<m ,

et

d= (d1,...,dm)
Atons 4L existe des constantes A et B , AER] , BER] , telles que pour
tout polycylindre compact K de P Suffisamment centr? et effilé pour < Q@ o
X , onalt :

i) KcU

>
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ii) pour tout g , g€BX) , 4L existe une famille unique (gi)Osigm
d'étéments de B(K) tefle que pour fout i , 1<ism , g€ B_di+Ai(d)(K) ,

8,€ B, (g et

A (d
° m
g= I g(E[K) +g

i=1
iii) a4 L'on désdigne par Of;d;K (resp. pan rf;d;K) L'application

A m
Gf;d;K : B(K) —B(K)

(resp. Tk B(K) — B(K) )
déginie par
Of;d;K(g) = (gyr---»8y)
(resp. Tp.4.4(8) =g, )

ol pour tout g , g€BX) , (gj)Ogign désigne L'unique famille d'éléments de

B(X) telle que pour towt i , 1<ism , giEB-di+Ai(d)(K) > 8o€ BAo(d)(K)

et
m
g = 121 gi(fiIK) 8
(cf. a (i1)) ,on a
a) Of. 4K est une application C-Lindaire continue et

dO
log, gkl s Ao Ksx)

o dj = sup d; (La borne supériewre &tant rnelative a fLa nelation d'ondre pro-
1<ism

duit < sun NP ) ;

b) r est une application C-Lindaire continue et

f;d;K
”rf;d;K”K§ B3

c) L'application o
et seulement 54

£.d:x @At une scission (noamale) de B(K;f) 44

Ma;J;xC

ok J désigne L'idéal cohérent de % engendné par f1,...,f

{d1""’dm} s

m

iv) s4 J' désigne un idéal cohérent de OU tel que pourn tout i
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1€ism , fie rw,i) , La condition
Moc;J';xc{dP"”dm}
implique que I = m@BE; )"

Démonstration. Soit C un nombre réel, 1<C , et posons

Id. |

a =._1_ gl*fl_ (X) ‘|<i<m

i di! di > == ’
X

a=(ag,..-a) ,

A = 2ldlm ld] sup (1/]a;|)

1€ism
et
B = 2(1+m 2/dl* ™1 cldl,

En vertu de (5.1.2), (5.2.1) et (5.2.2), pour tout polycylindre compact K de

¢? suffisamment centré et effilé pour éa en x ona :
a) KeU
B) pour tout i , 1<isp , p'i'(K;x) <1
v) e(K;x) < C

8) VEiasdiKix St inversible ;

-1
e) “\)f;a;d;K;x”K s2

Alors 1l'assertion (i) résulte de (a) et 1'assertion (ii) de (y) et de (3.1.2).
Pour démontrer 1'assertion (iii), on remarque qu'en vertu de (3.1.3),(iii) et de
(1.4), (¢, (i), on a

g =T o \)-1

£;4K 0 aidiKox T e gk

et
- (3 -1
Ted;K ~ (ldB(K) T Hajd;Kx Ta;d;K;x) ° Via3d;K;x
L'assertion (a) résulte donc de (B) , (Y), (¢) et de (2.7.3), 1'assertion (b) de

(1) Pour la définition Jll( se reporter au chapitre O.
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(v) , (e) et de (2.7.6) et 1'assertion (c) de (8) et de (3.3.3). L'assertion
(iv) résulte de (8) et de (3.3.8) (cf. (3.3.9)) .

Remarque 5.3.1.1.- En gardant les notations de la proposition 5.3.1, on peut vé-

rifier facilement que 1'assertion (ii) implique que

a) B(K;f) est une scission de Of;d;K ;

m
b) Im(o., 4.,) = T B_ KX
£k T L Pedin @

propriétés qui résultent aussi de la proposition 3.1.3.

Remarque 5.3.1.2.- Dans la démonstration de la proposition 5.3.1, on utilise, a

travers la proposition 3.3.3 et la remarque 3.3.9, le corollaire (II,3.7) qui
affirme que

Ma;J;K;x = Ma;J;x
et qu'on a déduit des résultats difficiles du chapitre II. En fait, d'une part,
ce corollaire peut &tre démontré directement, et d'autre part, les affirmations
de la proposition 5.3.1 concernant des polycylindres compacts suffisamment

"petits'', on peut utiliser a la place le corollaire (II,1.5) qui est élémentaire.

PROPOSITION 5.3.2.- Sodient p un entier, peN , éa une relation d'orndre sur
N | compatible avee sa stwetwre de monoide et moins fine que £a relation
d'ondre produit < sun NP, U un ouwvert de C€° , I un idéak cohérent de

OU et x un point de U . On pose (cf. (II,1.2))
= NP -
A =N pa;J;x
et
d =

SUP(Ma;J;x)

(£a borne supérieune étant relative a fa relation d'ondre prodwit s sun NP ).
Alons AL existe des constantes A et B , AE.R: , BeIR: , telles que pour tout
polycylindre compact K de €P suffisamment centré et effiké pour SR
on ait :

i) KeU ;

.. _ . ()

ii) BX) = BA(K) ® I

(1) Pour la définition de JK se reporter au chapitre O.
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iii) 84 £'on désigne pan . (resp. rJ) Le projecteurn de B(K)

J
Tyt B(K) — B(K)

(resp. L B(X) — B(K))
surn JK (resp. sun BA(K)) parallelement a BA(K) (resp. a JK) (cf. a(ii)) ,on a

a) m, est une application C-Linéaire continue et

J
l|d
sl s AP0
b) ry est une application C-Linéaire continue et

eIl B

Démonstration. Soit m le nombre d'éléments de 1'ensemble fini Ma; T5x
(cf. I11,1.2). I1 existe un ouvert U' de €© , U'cU , tel que x€U' , et un
élément £ = (f;,...,f) de r(', %ﬂm tel que pour tout i , lgism ,

fiEF(U',J), fi,x # 0 et tel que si 1'on pose di = Vu;x(fi) on ait

Ma;_];x = {d1,...,dm}
Soit U" un ouvert de € relativement compact dans U' et tel que xeU" . On
pose

Ao =m sup su |fi(x)|

1€ism  xeU"

En vertu de la proposition 5.3.1 appliquée a l'ouvert U" (et cf. 5.3.1.1) , il
existe des constantes A1 et B , A1 € ]R: » BERY , telles que pour tout
polycylindre compact K de €P suffisamment centré et effilé pour £, en X

on ait
a) KeU"
B) 1l existe des applications C-linéaires continues
. m
Gf;d;]( : B(K) — B(K)
rf;d;l( : B(K) — B(K)
telles que

By) BUGE) cog gk * Teyasx = gy
82) Of.4:K est une scission normale de B(K;f) ;

Bs) I"‘(rf;d;K) = BA(K) ;
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nd .
64) IIUf;d;K”K s A1 o' (K;x)

Bs) Ilre;q;xllx=B s
Y MBED) = J

(La condition (B) résume les assertions (ii) et (iii) de la proposition 5.3.1
(cf. 5.3.1.1) et la condition (y) résulte de 1'assertion (iv) de la proposition
(5.3.1), appliquée a 1'idéal cohérent J de OU).L'assertion (1) résulte de la
condition (a) . Les conditions (81) et (32) impliquent que

BO =(In(rg, 4. )) © (IM(B(K;£)))

(1.2), ce qui en vertu de (83) et de (y) démontre 1'assertion (ii). Alors 1'appli-
cation B(K;f) OOf;d;K (resp. rf;d;K) n'est autre que le projecteur Ty

(resp. rJ) (cf.1.2) et si 1'on pose A = A0A1 , 1l'assertion (iii), (a) résulte
des conditions (a) et (84) et 1'assertion (ii), (b) de (65)

Remarque 5.3.3.- En vertu de 5.2.1.2, les propositions 5.3.1 et 5.3.2 nous per-
mettent de démontrer, par passage a la limite inductive, les théorémes de
division dans 1'anneau des germes de fonctions analytiques au voisinage d'un

point de cP , autrement dit 1'anneau des séries convergentes.

(5.4) La proposition suivante est une généralisation d'un résultat bien connu

(corollaire 5.4.3).

PROPOSITION 5.4.1.- Sodent p un entier, peN , < une relation d'ordre total
sun NP compatible avec sa struwctwie de monolde gt moins gine que La nelation
d'ondre produdit < sun N o, D une partie de P , U un ouvert de cP

X un point de U , J un {déal cohérent de OU et f = (fT""’fm) une
famille finie d'éléments de T(U,J) zelle que pour tout i , 1<ism , Le
gerune de fi en x 4504t non nul. On pose

d = (d1,...,dm) ,
et on suppose que
a) pour tout i , 1<ism ,
-d; + @8 () + By (DD

b) La {4ibre JX de £'idéal J en x est engendrée, comme Lidéal de

0 , par 2'ensemble JD"x dégini pan

U,x
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JD"X = {g€JX H Ex(g) <D'}

>

c) Ma

cfd .y}

;D' T5x
Alons R'4Adéal J est engendné par La famille (£;)1jqn @ vodsinage du point
X

Démonstration. Soit J' 1'idéal cohérent de 0y engendré par la famille
Eigign - Ona
(5.4.1.1) J'<J

I1 suffit de démontrer qu'au voisinage de x ona J' = J . On remarque d'abord

que 1'hypothése (c) implique que P nAo(d) #0 (II,1.2 et I,1.2).0nen

a;D';J5x
déduit que pour tout polycylindre compact K , Kc<U , tel que x ek , on a
(5.4.1.2) Pq;D';J;K;ano(d) =0

(cf. II,1.3). D'autre part, il résulte de 1'hypothése (b) qu'il existe un ouvert

U' de cP , U'cU , tel que x€U' , et une famille finie (gj)1§j§n d'éléments

de TI(',J) telle que pour tout j , 1<jsn , Ex(gj) <D' et qui engendre
1'idéal J au-dessus de U' . On en déduit que pour tout polycylindre compact
K , KcU' , tel que xeK ona :

(5.4.1.3) JK est engendré par JKnBD';x(K)

(comme idéal de B(K)) (cf. chapitre 0). Posons

D; = -d; + (D'nAi(d)) , 1sism

Pour tout i , 1<ism , ona
(5.4.1.4) D' nAi(d)cdi + vicv' ,
et il résulte de 1'hypothése (a) que

(5.4.1.5) U-l +Ei;x(f)cD'

Enfin, si 1'on pose
D= (01;"‘sm,0') ’
141

ai=__cI_L_9 f x) , 1sism ,
X

et

a-= (a1,...,am) ,
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il existe un polycylindre compact K , KcU' , tel que x €K et tel que 1'on
ait :

(5.4.1.6) est inversible

vD;f;a;d;K;x
((4.4.4) et (4.4.5)). Alors, en vertu de la proposition 3.3.4 et son corollaire

3.3.7, les conditions (5.4.1.1) a (5.4.1.6) impliquent que Jk =J - On en dé-
duit que si 1l'on pose g = (g1,...,gn) ,ona Im(B(K;f)) = Im(B(K;g))

(chapitre 0), ce qui implique que J'|§ N J[ﬁ et démontre la proposition.

Remarque 5.4.2.- Dans la proposition 5.4.1, on peut remplacer, sans perte de
généralité, 1'hypotheése (c) par la condition

c") M = {d ..,dm}

[VEARNEPS 1°°

Comme M D' (cf. (I1,1.3)), la condition (c') implique que pour tout 1 ,

@;0'37;x
1<igsm , diev' , d'ol 0€—di + (p'nAi(d)) (car diEAi(d)) , et 1'hypothe -
se (a) implique que Ei_x(f)c:p’ . On peut alors remplacer 1'hypothése (a) par
les deux conditions
(@ Ei;x(f)cD'
et
@) (@ + 00N ] +p'ep'
(dont la conjonction est, bien entendu, plus forte que 1'hypotheése (a)). On a
déja rencontré la condition (a') dans (II,1.4) et (II,1.5). Cette condition
qui parait compliquée de prime abord est en fait assez naturelle (comme on le
verra dans le chapitre IV ). Une partie D' de NP satisfaisant a cette condition

est un "bon candidat'" pour définir une notion de fonction analytique '"homogéne',

du moins pour les questions relatives aux théorémes de division.

COROLLAIRE 5.4.3.- Soient p un entier, pe N , ga une nelation d'ordne total
s NP, compatible avec sa strwucture de monolde et moins fine que La relation
d'ondne produit < sun NP, U un ouvert de ® , x unpoint de U ,

J un idéal cohérent de Oy et (f.)1 i une famille finie d'éLéments de
r,J) zelle que pour tout i , 1<ism , fLe germe de fi en X 404t non
nul. On pose

dj = v, (£) , Tsisnm

Alons A4 NIG.J.XC {d1,...,dm} , L'idéal J est engendré par La famille

i)1<ism AU vodsdnage du point x
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Démonstration. Le corollaire 5.4.3 est un cas particulier de la proposition 5.4.1

appliquée a D' = N

Commentaires sur le §5. Le but de ce paragraphe était de formuler, en termes de

filtres, des conditions suffisantes pour qu'un polycylindre compact satisfasse
"au théoréme de division" (on devrait plutdt dire 'pour qu'on puisse diviser au-
dessus de ce polycylindre'). Afin d'obtenir des énoncés simples, on n'a pas
cherché a rendre ces conditions minimales (et de loin). Cependant, il y a un point
qui mérite d'étre signalé. Dans les propositions 5.2.2, 5.3.1 et 5.3.2, on affirme
que ''pour tout polycylindre compact X de cP , suffisamment centré et effilé
pour éa en Xx " certaines propri€tés sont satisfaites (''inversibilité de

"

vf'a'd'K'x ou "théoréme de division par une famille finie de fonctions analy-
b ) ’ b

tiques' ou ''théoréme de division par un idéal cohérent'). Conformément a 5.1.2

et 5.1.3, cette condition signifie qu'il existe C , Ce€]l,+=[et V , VE:FS
“o.
tels que pour tout polycylindre compact K de cP , tel que

xEﬁ , e(K;x) <C et p"K;x)eEV
ces propriétés soient satisfaites. En réalité, la forme des inégalités (4.4.3.1)
de la proposition 4.4.3 nous permet d'affirmer, en raisonnant exactement comme
dans les démonstrations des propositions 5.1.2 et 5.1.3, que pour tout C ,
Cell,+»[, il existe V , V(EFga , (dépendant de C ) tel que pour tout
polycylindre compact K de cP , tel que

o
x€K , e(K;x) <C et p"(K;x)eV ,

ces propriétés soient satisfaites. Néanmoins, on a préféré énoncer les ''théorémes
ponctuels' dans la version la plus faible, d'une part, pour sa simplicité, et
d'autre part, parce qu'elle suffit largement pour les applications les plus cou-
rantes, oll 1'on s'intéresse le plus souvent aux polydisques, dans quel cas les
deux versions se confondent. Sans se limiter strictement aux polydisques, on
affirme que pour tout polycylindre compact "suffisamment proche' d'un polydisque
les mémes '‘conditions d'effilement' suffisent. En revanche, dans les paragraphes
suivants, ol 1'on énoncera les théoreémes 'uniformes', on ne fera pas cette simpli-

fication.
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§6.- Théoréeme de division numérique uniforme

Dans ce paragraphe, on commence & exposer les théorémes uniformes. Pour cela,
on introduit d'abord une version uniforme des filtres d'effilements, et puis on
démontre les résultats ne dépendant que de la partie élémentaire du chapitre II,
en réservant les théorémes les plus profonds pour le paragraphe suivant. A partir
de ce paragraphe on utilise constamment la notion de fonction modérée (ayant une
croissance polynomiale) le long d'un fermé analytique. Le lecteur non familier avec

cette notion devra se reporter a 1'appendice I, qui est bien entendu indépendant du
reste de ce travail.

(6.1) Pour introduire une version uniforme des filtres d'effilements, on part de
la remarque triviale suivante. Soient E et Y deux ensembles non vides, F un
filtre sur E et A un ensemble d'applications de Y dans F (une application

appartenant 2 A associe a chaque élément de Y une partie de E appartenant
au filtre F ). Alors si pour tout F , F€A , on pose

VF ={(x,y) €EExY : x€F(y)} ,
la famille de parties de ExY

VR)pea

est un systéme de générateurs d'un filtre sur ExY , filtre qu'on désignera par
F A Y . Pour tout y , ye€Y , si 1l'on désigne par iy 1'injection canonique
i : E— ExY
y
définie par
iy(x) = (x,y) , pour x€E ,
alors F A Y induit par iy un filtre sur E , qui est moins fin que le filtre
F . Si la famille
(FOpeq

est un systéme de générateurs du filtre F , alors 1;1(F A Y) n'est autre que

F

(6.1.1) Soient X un espace C-analytique(1), Z un fermé analytique d'intérieur

vide de X , Y 1l'ouvert dense de X défini par Y = X-Z , Cm 1'ensemble
des fonctions continues ¢ ,

@ :Y— ]{:

(1) Tous les espaces analytiques considérés sont supposés séparés et dénombrables

a 1'infini.
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tels que 1/¢ soit modérée le long de Z et p un entier, p€N . Pour toute
partie A de RP dont 1'enveloppe convexe ne contient pas O , on désigne par
AA 1'ensemble des applications F de Y dans le filtre de Hahn-Banach FA

(cf. I,4.4) telles qu'il existe a , a€A ,et ¢ , (pECm , tels que pour
tout y , yeY , on ait

FO) = Vasom

(cf. (1,4.2), (1,4.7)). Conformément a 6.1, 1'ensemble AA Jdéfinit un filtre

FAXAAY sur (]R:)pXY et si pour tout a , a€A , et touty , wECm ,

on désigne par Va'w la partie de (]Rfr )Pxy définie par

Voo = LM ERDP xy = pe

a; Va;tp(y)} ’

alors la famille

(Va ;q)) a€A,pe Cm

en est un systéme de générateurs.

LEME 6.1.2.- Sodent A et A' deux parties de R dont £'enveloppe convexe hes-

peetif ne contient pas O et telles que FA =Fp - Alors on a
Fo X, Y =F,, % Y
A Ay A" TAp

Démonstration. Si 1'on pose
B=u U (r1A+...+rnA)

neN* (ry,...,r JE(R )" -{0}
et

B' = u V)

n' (ry A" +...+ rr'l,A') ,
n'eN* (r1',...,rr'l.)€(]R+) -{0}

1

il résulte de 1'hypothese Fp = FA’ et de la proposition (I,4.5) que B = B' et
que FA =Fg - Par symétrie, il suffit donc de démontrer que

F

x Y=F
AAA

x Y
B Ap
Comme AcB , ona AAcAB , ce qui implique que le filtre FB A Y est plus
B
fin que le filtre FA *A Y . Il reste a démontrer que pour tout b , beB ,
A
L ‘s .
et tout ¢ , @€ Cm , ona Vb;q)E FA XAAY . Or, beB implique qu'il existe

n , ne N* | (r],...,rn)e(]R::)n et (:;11,...,an)eAn tels que
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b = ria gttt Al

Si pour tout i , 1<i<n , on pose
_ l/nry
‘Di =9 ’
la fonction @; est continue, 1 /q;i est modérée le long de Z (App.1,1.2.2,(vii))
et il résulte de (I1,4.2.4) que

n Vv_ . ch,
1sisn 3001 B3¢

b

ce qui démontre le lemme.

DEFINITION 6.1.3.- Soient X un espace C-analytique, Z un fermé analytique d'in-
térnieun vide de X , Y L'ouvert de X dégind par Y = X-Z , p un entien,
peN , et F un {iLtre de Hahn-Banach sur (]R:)p . On désigne parn F(Y/Z) Le
gittre sun  (RYP xY tel que pour toute partie A de RP , dont £'enveloppe con-
vexe ne contient pas O et telle que F = FA , on adit

F(Y/Z) = FxF Y

A

(cf. 6.1.2).
Remarque 6.1.4.- Si F' désigne un filtre de Hahn-Banach sur (IR:)p , plus fin
que F , alors F'(Y/Z) est plus fin que F(Y/Z) . (Cela résulte de la proposi-
tion (I,4.5)). Si x désigne un point de Y et si 1'on identifie (]R:)px {x}
a (]RI)p , le filtre F(Y/Z) induit F sur (]Rj;)p . (Conformément a (6.1)
cela est une conséquence du fait que les fonctions constantes sont modérées) .
(6.1.5). En gardant les notations de (6.1.1), pour tout & , §e€R_ , et tout
P . * p PP
®, el , on désigne par Ep;ﬁ;cp la partie de (]R+) xY définie par
- «\P .

Ep;(‘i;w {(p,y) € (]R+) xY : p€Ep;cS;(p(y)}

(cf.(1,4.9)).

PROPOSITION 6.1.6.- Soient <" une nelation d'ondre total sun TP compatible
avec sa sthwuctune d'espace veciorndiel (sun R ), A une matrnice inversible a
coefficients dans R définissant La nelation d'ordre <" (cf. (I,3.5)) et

F Le filtre de Hahn Banach sur (]R:)p dégini parn cette nelation d'onrdre

(cf. (1,4.4) . Alons La famille

(rpxddy) (Bysi0))ser, 0EC,

est une base du §iltne F(Y/Z) sur (]R:)p x Y
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Démonstration. Démontrons d'abord que pour tout & , § €R, , et tout ¢ ,

cpECm , ona

(ry xidy) (Ep;s;qQ € F(Y/2)

Pour tout ietj , 1<i<p , 1<j<p , on pose

bij=1 , pour i=7j |,
b.lj = -8 , pour 1 = j+1 |
bij=0 ,pour i #j et 1# j+1 |,
bi = (bil""’bip) ,
_ -1
ai—Abi.

On a bi >LO , ou gL désigne 1'ordre antilexicographique sur RP (cf. (1,3.5.3),

d'ou ai>"0 (cf. (1,3.5.3)). Pour tout i , 1<isp , on désigne par ®; la
fonction

0 : Y— ]R:
définie par

&Di=tp ,POUTi=1,

(pi=1 , pour 1 # 1

On a (piecm et pour tout y , yeY |,
g = n V.
Ep,cs,gp(y) 1§1§p bi»&Dl()’) ’

d'ol

rA(EP;S;cp(Y)) B Vai;wi(}’)

n
12isp
((I,4.6), (1,4.7) et (1,4.1)), ce qui implique que

(rAx idY) (E ) = I'11 \%

P3O0 qgigp 33704
et démontre que

(rp > 3dy) (€, 5. ) € F(Y/2)

I1 reste a démontrer que pour toute famille finie (ak)1<k<r1 d'éléments de RP

tels que ay >'"0 et toute famille (‘Dk) d'éléments de Cn il existe § ,

1<ksn
cSE]R+ , et o, wecm , tels que

(ryxidy) € e
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Pour tout k , 1<ks<n , soit bk 1'élément bk = (bk1""’bkp) de RP ds-

fini par
bk=Aa.k
On pose
ik=sup{i:1§i§p ,bki#O} , 1sksn
Ik={i:1§i<ik,bki<0} , 1<k<n ,
et

§ = sup sup (|b,.|/by; ) +1
Isksn i€l ki kdy

Comme a, >'0,ona b, > O (cf. (I,3.5.3)), d'ou b, . > O et en particulier
k k'L k1k
§20
Si pour tout y , ye€Y , on pose
1/b111 Ubnin
o(y) = infleo; ) ..o00, O 7, 1}

la fonction
. *
@ Y— ]R+
est donc une fonction continue telle que 1/¢ soit modérée le long de Z

(App.T,1.2.2,(vii),1.3.3) et il résulte de (1,4.10.1) que pour tout y , yeY ,

on a

(E ) n Vv_ .
TA Y p;8300y) T isksn  Ao@ )

d'ou
(ryxid)(E ... )= N .
e R 1sksn 2%k
ce qui démontre la proposition.

Remarque 6.1.7.- Soient <' wune relation d'ordre total sur | compatible avec
sa structure de monoide, A une matrice de définition de <' (cf. (I,3.11)), et

F 1le filtre de Hahn-Banach FZ, défini par cette relation d'ordre

(cf. (I,5.1.3)). Alors il résul':e de la proposition 6.1.6 (cf. (I,3.5)) que la

famille
((TA X ldY) (Ep,d ;(p))6€]R+ ,(OECm

est une base d'un filtre sur (]R:)p xY , plus fin que F(Y/Z) (cf. (I,5.1.5) et
(6.1.4)), qui lui est égal si et seulement si la relation d'ordre <' est
rationnelle (cf. (I,3.11), (I1,5.2.1), (I,5.2.2) et (6.1.4)). En particulier, si

175



G. MALTSINIOTIS

<' désigne 1'ordre antilexicographique g, sur N (cf. (1,3.12.1)), 1a
famille

(E )

D; 8;0° SER, ,0EC,

est une base du filtre F(Y/Z)

(6.2). Soient p un entier, p €N , et A une partie non vide de c® .on rap-
pelle (cf. 5.1) que KR désigne 1'ensemble des polycylindres compacts pointés
par un point de A , autrement dit 1'ensemble des couples (K,x) formés d'un
polycylindre K de Cp et d'un point x appartenant a 1'intérieur de K ,

tel que x€ A . L'application qui associe & tout polydisque fermé de centre ap-
partenant a A 1le couple formé de ce polydisque et de son centre, identifie
1'ensemble de ces polydisques a une partie de KK . De méme, pour tout point x ,
x €A, 1'application qui associe a tout polycylindre compact K de aP , tel que

X€ K , le couple (K,x) , identifie Kg a une partie de KR (cf. 5.1).
On désigne par px 1'application
. P p
oy kKR — (R2)PxA
définie par
OK(K;X) = (p"(K;x),x), pour (K,x)EﬁKK .

L'application Py est surjective et induit une bijection de 1'ensemble des poly-
disques fermés de centre appartenant a A sur 1'ensemble (R:)p><A (c'est la
bijection qui associe a un polydisque fermé le couple formé de son polyrayon et
de son centre). En particulier, si F désigne un filtre sur (R:)p xA , alors
DX_1(F) est une base de filtre sur Kg
(6.2.1). Soient p un entier, peN , X un sous-espace analytique localement
fermé de P , 2 un fermé analytique de X d'intérieur vide (dans X ) et Y
1'ouvert dense de X défini par Y = X-Z . On dit qu'un filtre H sur K$
est un filtre d'effilements modérés le long de Z , s'il existe un filtre de
Hahn-Banach F sur (Ri)p tel que H soit engendré par la base de filtre
p¥_1(F(Y/Z)) sur Kg (cf. 6.1.3 et 6.2). Si A désigne une partie de RP  dont
1'enveloppe convexe ne contient pas O et si F = Fa (cf. (1,4.4)), on dira que
H est le filtre d'effilements modérés le long de Z sur K$ , défini par A
La famille

-1

Gy ' n V. ) n n
Y Migign 20y MEN, (@seeap)E AT, (0,0 €C)

en est alors une base (cf. 6.1.1). On s'intéresse plus spécialement a deux cas
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particuliers.

Le premier est celui ol
A=f{aeRP: 3d, d'eN, d<'d" et a=d'-d} |,

ou <' désigne une relation d'ordre sur N , compatible avec sa structure de
monoide, autrement dit le cas ot F = FZ, (cf. (I,5.1.1) et (I,5.1.3)). On dira
alors que H est le filtre d'effilements modérés le long de Z sur K$ , défini

par la relation d'ordre <' sur NP
Le deuxieme cas est celui ou
A={aeR’: a>"0} ,

ou <" désigne une relation d'ordre sur RP compatible avec sa structure d'es-
o (cf. (I,4.4)). On dira alors que
H est le filtre d'effilements modérés le 1ong=de Z sur Kg , défini par cette
relation d'ordre. Si <" induit <' sur NP , alors le filtre d'effilements

pace vectoriel, autrement dit le cas ob F = F

modérés le long de Z sur Kg défini par <" est plus fin que celui défini
par <' (cf. (I,5.1.5) et (6.1.4)).

On dira qu'une propriété d'un polycylindre compact pointé est satisfaite pour tout
polycylindre compact pointé dans Y , suffisamment effilé pour A (resp. pour
<', resp. pour <" ), modérément le long de Z , si 1'ensemble des polycylindres
compacts pointés appartenant a kP, satisfaisant a cette propriété, appartient

Y
au filtre d'effilements modérés le long de Z , défini par A (resp. par <' ,
P
Ky
(6.2.2). Si <" désigne une relation d'ordre total sur RP compatible avec

resp. par <" ) , sur

sa structure d'espace vectoriel et A une matrice de définition de <"
(cf. (I,3.5)), une propriété d'un polycylindre compact pointé est satisfaite pour
tout polycylindre compact pointé dans Y , suffisamment effilé pour <" , modéré-
ment le long de Z , si et seulement si il existe un nombre réel § , defR+ s
et une fonction continue ¢ ,

v :Y— R} ,
telle que la fonction 1/¢ soit modérée le long de Z , tels que pour tout point

o
y , YEY , et tout polycylindre compact K , tel que yeK et
" .

p (K,y)ErA(Ep;é;w(y)) ,

le polycylindre pointé (K,y) satisfasse a cette propriété (6.1.6).

(6.2.3). Si <' désigne une relation d'ordre total sur NP , compatible avec sa
structure de monoide et A une matrice de définition de <' (cf. (1,3.11)), pour
qu'une propriété d'un polycylindre compact pointé soit satisfaite pour tout
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polycylindre compact pointé dans Y , suffisamment effilé pour <' , modérément

le long de Z,il faut qu'il existe un nombre réel § , § eR, , et une fonction
continue ¢ ,

@ Y— R} ,

telle que 1/¢ soit une fonction modérée le long de Z , tels que pour tout point
Yy ,yeY , et tout polycylindre K , tel que yel% et

0" K;y) ErA(Ep;G;w(y)) ,

le polycylindre pointé (K,y) satisfasse a cette propriété (6.1.7); ces conditions
étant équivalentes si et seulement si la relation d'ordre total <' est rationnelle
(cf. (I,3.11) et (6.1.7)). En particulier, si <' est la relation d'ordre anti-
lexicographique g, sur N (cf. (1,3.12.1)), une propriété d'un polycylindre
compact pointé est satisfaite pour tout polycylindre compact pointé dans Y ,

suffisamment effilé pour , modérément le long de Z , si et seulement si il

<
“L
existe un nombre réel ¢§ , 6€IR+ , et une fonction continue ¢ ,

@ : Y-——aﬁR: ,

telle que 1/¢p soit une fonction modérée le long de Z , tels que pour tout point
Yy ,YyeY , et tout polycylindre compact K , tel que yeﬁ et

”6

P sY) <oly), p3(K5y) <7 (K5y),. ..o (K3y) <p"‘S CH

le polycylindre pointé (K,y) satisfasse a cette propriété.

(6.2.4). Si H d951gne un filtre d'effilements modérés le long de Z sur Kp s
engendré par p (F(Y/Z)) , ou F désigne un filtre de Hahn-Banach sur

CR:)p , la trace de H sur 1l'ensemble des polydisques fermés de centre appar-
tenant a3 Y est un filtre, qui n'est autre que 1'image réciproque du filtre
F(Y/Z) par la bijection définie par la restriction de py sur cet ensemble

(cf. (6.2)). En gardant les notations de 6.2.1, on dira qu'une propriété d'un
polydisque fermé est satisfaite pour tout polydisque fermé de centre appartenant a
Y , suffisamment effilé pour A (resp. pour <' , resp. pour <'" ) , modérément
le long de Z , si 1'ensemble des polydisques fermés de centre appartenant a Y ,
satisfaisant a cette propriété, appartient a la trace du filtre d'effilements mo-
dérés le long de Z sur Kg , défini par A (resp. par <' , resp. par <" )
sur 1'ensemble des polydisques fermés de centre appartenant a Y . Si 1l'on dési-
gne par V 1'ensemble des éléments (p,y) de (Ri)p xY tels que le polydisque
fermé de centre y et de polyrayon p satisfasse a cette propriété, cette con-
dition équivaut a V€ FA(Y/Z) (resp. a Ve F:,(Y/Z) , TeSp. a Vng,.(Y/Z)) .

178



DIVISION NUMERIQUE UNIFORME

(6.2.5). Si #H désigne un filtre d'effilements modérés le long de Z sur K$ ,
pour tout point y , y€Y , la trace du filtre H sur KE (cf. 6.2) est un
filtre d'effilements sur KP (cf.(6.1.4) et (5.1.3)). Plus i)re’cisément, en gar-
dant les notations de (6.2.1), si H désigne le filtre d'effilements modérés le
long de Z sur Kg , défini par A (resp. par <' , resp. par <'), la trace
du filtre H sur KE n'est autre que le filtre d'effilements sur KE , défini
par A (resp. par <' , resp. par <£')

(6.3). Par abus de langage, on dira qu'une propriété d'un polycylindre compact est
satisfaite par un polycylindre compact pointé (K,x) , si K satisfait a cette
propriété.

PROPOSITION 6.3.1.- Sodent p un entienr, p€N , <' (resp. ') une relation
d'ondre sun NP (resp. RP ) , compatible avec sa structure de monoide

(resp. d'espace vectoniel) et moins fine que La nelation d'ondre prodult < sur
NP (resp. sur RP ) , U unouvert de €€ , X un sous-espace analytique
fermé de U , Z un feumé analytique de X d'inténieun vide (dans X ) et Y
L'ouvert dense de X défini pan Y = X-Z . Alons tout polycylindre compact de
cP pointé dans Y , suffisamment ef§iLé poun <' (resp. pour <'"), modérnément
Le Long de 7 , est contenu dans U

Démonstration. Soit ¢' 1la fonction
. *

¢ X— R}
définie par

@'(x) = inf {d(x,@p-U), 1} , pour x€X .
La fonction ¢' (ainsi que la fonction 1/¢') est une fonction continue sur X
On en déduit que si 1'on désigne par ¢ la restrictionde ¢' a Y , ¢ est
une fonction continue et 1/¢ une fonction modérée le long de Z (App. I,
1.2.1 ). Soit e1,...,ep la base canonique de RP . Pour tout i , 1sisp ,

ona e; >'0 (resp. e; >'"0 ). Alors pour tout point y de Y et tout polycylindre
compact K de P tel que yEI% la condition

"K;y)e n Vo,
ey 1sisp €300

implique que K<U , ce qui démontre la proposition.
Remarque 6.3.2.- Plus généralement, si (wi)1<i<p désigne une famille de fonctions
continues
. *
®; Y— R}
telle que pour tout i , 1<i<p , la fonction V‘”i soit modérée le long de
Z (condition qui est, en particulier, vérifiée si @, est la restriction d'une
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fonction continue de X dans RY) , pour tout polycylindre compact de &
pointé dans Y , (K,y) , suffisamment effilé pour <' (resp. <" ), modéré-

ment le long de Z , on a

p;(K;y) < cpi(y) ,pour 1<igp et yeY
En effet, en gardant les notations de la démonstration de la proposition 6.3.1,
cette condition est équivalente a la condition

o'K;y)e n Vo,

(6.4). Le lemme suivant résume 1'essentiel des résultats démontrés jusqu'ici, dans
le chapitre III, et constitue la forme la plus précise du théoréme de division
numérique uniforme par une famille finie de fonctions analytiques. On utilise la
plupart des notations introduites dans ce travail et plus spécialement celles
introduites au §1 du chapitre II et aux §2 et §4 du chapitre III. Le théoréme qui

le suit en est une forme moins précise mais plus ''lisible'.

LEMME 6.4.1.- Sodient p un entier, p €N , éa une nefation d'ondre sun NP ,
compatible avec sa stwcture de monolde et moins fine que La relation d'ondre
produit < sun N, m unentier, meN , d = (dg,...,d ) un Clément de
(NH™ | p-= (0y,--+50,,0') , ok powr fout i , lsism , vicwp et
DN | U unowertde €€ , X un sous-espace analytique fermé de U , Z
un gerumé analytique de X d'intérnieurn vide (dans X ) , Y L'ouvert dense de X
defini par Y = X-Z et £ = (£,...,£) un clement de (r(U,op))"‘ . On suppose
que ¢
i) pouwr tout i , 1<ism
D' ﬂD.l(d)cdi + DiCD' H
i1) pouwr tout 1 , 1<ism , et tout y , ye€Y ,
Di + Ei;y(f)cv ;

iii) pour tout i , 1sism , et tout y , ye€Y , Le geume fiy de
f. en y est non nul et

i
Vot;y(fi) - di
On pose
ri=ra;d- , 1sism
i
et
le = sa;J(dl) , Isism 1SJsri
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Alors pour tout point y de Y et tout polycylindre compact K de ®  tet que
y 13 , Les conditions

a) pyKsy) sy , Tsisp ;7

d

5. . .
b) esy) [ ay) /e Ty <

1<ism , 1sjsr
431,
s @Dy @ ) 77 — o
1 1

Ampliquent que

i) pour fout g , g EBD, 'y(K) , AL existe une famille unique

(gi)0§i§m d'éléments de B(K) zelle que pour fout i , 1<ism ,

g; €B x) , goeB (K) et

D;n (-di+Ai @)y D'nAo(d) %

=]

g = g; 1K + g5

o™

i=1

ii) &4 L'on désigne par Ops£;d;K; (resp. par Toi;d;K;y ) £'applica-

y
ion
5 m
Di3diksy © Ppryy® T L By y (O
(resp. rD;f;d;K;y : BD';y(K) — BD‘;y(K) )
définie par

OD;f;d;K;y(g) - (g1 2o ’gm)

(resp. rD;f;d;K;y(g) =g )

ol pour tout g , gGBD,_y(K) , (gi)

de B(K) <telle que pour tout i , 1<ism

O<is<m désigne L'unique famille d'élLéments

b

m
g = 151 g; (£;1K) + g/

(cf.a (1)) ,oma:

(1) On rappelle que cette condition implique que KcU (cf. (4.4.1).

181



G. MALTSINIOTIS

a) Gv;f;d;K;y est une application C-Linéaine continue et

d; | d
d|+m d| RSP o
o eaell =2l eyl g fay Lo e Ty,
I D,f,d,K,ylk y 1§12m 1 axdi Youlk y

o d = sup d. (La borne supérieure étant nelative & La relation d'ondre pro-
1<ism

duit < sur NP);

b) rD;f;d;K;y est une application C-Linéaire continue et

o, £5a; Ky I s 2C0+m 2141mT iy 191

m
) Imlop. £.a;x;y) = 151 BDin(-di+Ai(d);y(K) ’

d) Im(r = Ker (o X)

D;£3d;K;y” 0if;d;Ky) T BD'nAO(d);y

e) Bv;y(K;f) est une scission de OD;f;d;K;y H

£) OD;f;d;K;y est une scdssion de Bv;y(K;f) , A4 et seulement A4

Ker(rv;f;d;K;y) = Im(BD;y(K;f)) 3

g) 44 L'on désigne par J L'didéal cohérent de 0y engendné pan

et 4L

f
m

10

Myiprs 7iksy © Wpoeeodpd

alons OD;f;d;K;y est une scdssdion de BD;y(K;f) 3 needproquement AL OD;f;d;K;y

est une sciasion de BD' (K;£) et 54 £'on suppose que

Im(BD;y(K;f)) = JKf1BD,;y(K) ,
alons
My pr 3oy © [ eendy)

iii) a4 J' désdgne un Lidéal cohérent de 0y *el que pour Zout i, lgigm,
fiE r,s') , La condition
Ma;D';J';K;y‘:{d1””’dm}
Amplique que

Jgn BD' ;y(K) = Im(Bv;y(K;f))
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Démonstration. Pour tout i , 1<i<p , et tout y , yeY , on pose

14, |
1 5
30 =gT—a
1 5X 1
et

aly) =@;(),... ,ap(}')) .

En vertu de 4.4.4, pour tout polycylindre compact K de P , tel que y€K , satis-
faisant aux conditions (a) et (b), VD;f;a;(y);d;K;y est inversible et on a

-1
(6.4.1.1) ”\)D;f;a(y);d;K;y”K £2

D'autre part, 1'hypothése (i) implique que pour tout i , 1<i<p , ona

(6.4.1.2) Din (—di + Ai(d)) = -di + (D' nAi(d)) .

Alors 1'assertion (i) résulte de la proposition 3.2.1. Pour démontrer 1'assertion

(ii), on remarque qu'en vertu de 3.2.2, (iii), et de (1.4),(c), (i), on a

) -1
064Ky T T05ay)3dsKsy ° VDsf3a(y);dsKsy
et

= (i _ -1
03 £5d3K;y (ldBD..y(K) Y038 (v)3d5Ksy D800 3d5Ksy ) © VD Eraty)sdiKsy

Comme la condition (a) implique que pour tout i , 1<isp,

p'i'(K;y) <1
(cf. 4.4.1), 1'assertion (a) résulte de (2.7.3) et de (6.4.1.1). L'assertion (b)
résulte de (2.7.6) et de (6.4.1.1), 1'assertion (c) de 3.2.2, (i) et de
(6.4.1.2), 1'assertion (e) de 3.2.2, (iv) et 1'assertion (d) de 3.2.2, (ii), de

(1.2) et de 1'assertion (e). D'autre part, en vertu de la définition de

o fdK;y 0 M @

Ker(rD;f;d;K;y) c Im(BD;y(K;f))
et 1l'assertion (f) résulte de 1'équivalence des conditions (a) et (d) de 3.2.2,(v).

L'assertion (g) découle de 3.3.1 et de 1'équivalence des conditions (a) et (b) de
3.2.2, (v). Enfin,1'assertion (iii) résulte de 3.3.1 et de 3.3.4.

4
THEOREME 6.4.2.- Soient p un entier, pe N, s une nelation d'ondne total sun N,

compatible avec sa structure de monoide et moins fine que La relation d'ordre pro-
duit s s N, m ounentier, meN , d = (dg,...,d) un clément de (NPT,
U un ouvert de € , X un sous-espace analytique fermé de U , Z un femé
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analytique de X d'intérniewr vide (dans X ) , Y R'ouvert dense de X défini
par Y =X-Z, £= (f,...,£) un clément de (r(U,op))"‘ et @ une fonction
continue ¢

@:Y —[1,+o [

modénée Le Long de Z . On suppose que pour tout i , 1<ism , et tout vy
yeY , Le geme f de fi en y est non nul et que

’
i,y
Va;y(fi) = di
Alons L existe des gonctions continues
2 :Y—>Ri > Uyt Y———)]R:
modénées Le Long de Z Zelles que pour tout polycylindre compact de P pointe

dans Y , (K,y) , suffisamment effiLé pour S modénément Le Long de Z
La condition

e(K;y) < o(y)
Amplique que :
i) KcU
ii) pour tout g , ge€B(K) , AL existe une gamille unique (gi)

d'éféments de B(K) zelle que pour tout i , 15ism
gOEBA (d)(K) et
o

0<ism
s giEB-dimi(d)(K) s

E]

g:

n o™

g (£, + g,

i=1

iii) 44 L'on désigne par 9f.4.K (resp. Te.4.K ) L'application

. m
og.q;x ¢ B —> BK)

(resp. Tk C B(K) — B(K) )
déginie par
Of;d;K(g) = (g,---58)
(resp. rf;d;K(g) =g, ) s

o poun tout g , geBK) , (gi)oSisp désigne L'unique famille d'éléments de

B(K) tefle que pour tout i , 1sisp , g;€B 4, A.(d)(K) , goEBA (d)(K)
1 1 (o]

et

(4=}
1l
M=

5 (55190 + 5,

i=1
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(cf. a (ii)), on a :
a) Of. 4K est une application C-Linéaire continue et
dO
”Uf;d;K“K§ly1(Y)/0" Ky) ,

(La borne supérieure étant nelative a La relation d'ordre pro-

o d_ = sup d.
° 1gism ?t
duit s sun NP ) ;
b) Te.q.x @8t une application C-Linéaire continue et

”rf;d;K“ K §¢2(y) 5

m
¢) Im(og, 5.0 = T B_ X
£4K 7 1 P-die @

4 Im(rf;d;l() = Ker(Of;d;l() = BAo(d) K5

e) B(K;f) est une scission de Of;d;K 5

f) 84 L'on désdigne pan J L'idéal cohérent de OU engendné pan

f ,fm , Les conditions sudvantes sont équivalentes :

TEE
o) Ma;];yC{d1""’dm} ;
B) Ker(rf;d;K) =Jg
Y) Op.q;x @t une scissdon de B(K;f)

iv) 44 J' désigne un 4idéak cohérent de 0O tel que pour tout i , 1<ism,
fiEF(U,J') , La condition

Ma;J‘ ;yc{d1 yooe ,dm}
Amplique que

Jg = Im(B(K;£)) -

Démonstration. Soit ¥y (resp. (pz) la fonction

¥y :Y—> R*

+
(resp. ¥, : Y—> R} )

+

définie par
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d; |
o 1f.
¥y ) = 2]d|+m wldl(y) sup (d.!/ Tl(y)
1<igm| 1 sx 1

|d| +m-1 (Dldl(}’)) )

(resp. wz(y) 2(1+m 2

pour yeY . Les fonctions ¥y et ¥, sont continues, modérées le long de Z
(App.I1,1.2.1,1.3.3 et 1.3.2 ). Pour tout i , 1gism , soit @ la fonction

@ ¢ Y—> ]R:

définie par
il
0,0 = RV ) v@nty o ongy [T
i U £ di' oxX
pour y€Y . La fonction @; est continue et 1 /(pi est modérée le long de Z
(App.I, 1.2.1et1.3.2 ). Alors si 1'on pose

i ad. 1<ism ,
;d.

on a 5ij >a di et on en déduit que pour tout polycylindre compact de P centré

dans Y , (K,y) , suffisamment effilé pour ;a , modérément le long de Z ,

on a

a) pour tout i , 1<isp , p'i'(K;y) <RU(y) H

b) pour tout ietj , 1sism , 1<jsr.

i b

5. .-d.
" M TKy) <o)

(cf. 6.3.2 et (6.2.1)). La condition (a) implique que Kc<U (4.4.1), d'ou 1'as-

sertion (i). Si 1'on suppose en plus que
e(Ky) soly) ,

les conditions ci-dessus impliquent les conditions (a) et (b) du lemme 6.4.1. En

appliquant ce lemme a
Di=Np , 1sisp , et D' = NP ,

on en déduit aussitdt les assertions (ii) et (iii), (a), (b), (c), (d), (e) du
théoréme. Pour démontrer 1'assertion (iii), (f), on remarque que

Yy T Mgy
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(I1,3.7) et que

JK = Im(B(X;£))
(chapitre 0). L'assertion (iii), (f) résulte alors des assertions (ii), (f) et
(i1), (g) du lemme 6.4.1. De méme, 1l'assertion (iv) résulte de 1l'assertion (iii)

du lemme en remarquant que

Musatiksy T Massy
(11,3.7), ce qui démontre le théoréme.
Remarque 6.4.3.- Dans les applications, la fonction ¢ sera, le plus souvent,
supposée constante et il découle de la démonstration qu'on pourra alors choisir la

fonction y, constante également (mais non pas la fonction w1) . En appliquant
le théoréme 2 ¢ =1 , on obtient un cas particulier important concernant les

polydisques :
PROPOSITION 6.4.4.- En gardant Les notations et Les hypothéses du théonéme 6.4.2,
AL existe une fonction continue

Yy Y— R}
modénée Le Long de 7 et une constante by s Uy€ R} , telles que pour tout
polydisque germé K de centre y appartenant a Y , suffisamment effilé pour
S modénément Le Long de Z , Les conditions (i), (ii), (iii) et (iv) du

théoneme 6.4.2 sodlent satisfaites.

Remarque 6.4.5.- En utilisant la proposition 4.5.5 ainsi que les fonctions intro-
duites dans 4.5.1, on peut donner une forme '‘paramétrique' explicite a la condi-
tion "'suffisamment effilé pour éa , modérément le long de Y '" du théoreéme 6.4.2.
Plus précisément, si A désigne une matrice de définition de la relation d'ordre
éa sur NP (cf. (I,3.11)) et si 1'on pose

8 (d)

o~ <I>A;m
et pour tout y , yeY ,
|d,

a .
e, = RV /a@ne oy 75| 2|, 1sism
1

ely) = (51(y),---,€m(y))
et
e =¥y (e Ry

alors on peut remplacer cette condition par la condition (plus forte)
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p"(K;y) €T (E .« . )
A p,GO,eo(y)
On remarquera que la fonction
€ ° Y— Ri
est continue et que 1/e, est modérée le longde Z (App.I,1.2.2,(vii), 1.2.1,1.3.3,1.3.2)
(ce qui est conforme a 6.2.3). En particulier, si éa n'est autre que la relation

d'ordre antilexicographique <, et A la matrice unité (cf. (I,3.12.1)), on

L
obtient 1'énoncé suivant.
PROPOSITION 6.4.6.- En gardant Les notations et Les hypotheses du théoneme 6.4.2,

84 £ est La nelation d'ondre antilexicoghraphique S sun N, i pourn tout

i, 1€ism ,

di = (ypsee00dyy

L[}
~
[=9

et 84 L'on pose

§
o

sup sup d.. + 1 ,
1ism 1gj<p M

alons AL existe des fonctions continues
wo : Y—)R: , \p1 Y — ]Rj: , wz : Y—>Ri
modénées Le Long de Z , tefles que pour tout point y de Y et tout polycylindre
compact K de P , tel que y€]% , Les conditions
e(K;y) <o(y)
1160

§
PYEsY) < TGO, 0305y) < oy UGy),eee,08(Ksy) < o S(K3Y)

impliquent Les assertions (i), (ii), (1ii) et (iv) du théonéme 6.4.2.

Démonstration. En vertu de la remarque 6.4.5, la proposition résulte de 4.5.3.

188



DIVISION NUMERIQUE UNIFORME

§7. Théoreme de privilege numérique uniforme pour un idéal

Dans ce paragraphe, on démontre le théoréme de 'privileége numérique uniforme',
dans le cas particulier d'un morphisme f de @;-modules cohérents de la forme

f: OTJ — 0y >
le cas général d'un morphisme
fo—
étant démontré au chapitre suivant. On démontre aussi une version uniforme de la

proposition 5.3.2, qu'on pourrait appeler théoréme de division numérique uniforme
par un idéal.

(7.1.0). Dans ce numéro, on se fixe un entier p , p€ N , une relation d'ordre
total < = sur N , compatible avec sa structure de monoide, moins fine que la

relation d'ordre produit < sur NP , et une partie D' de N telle que

(7.1.0.1) [0+ (-0") nN°] +D' D"

(voir remarque (5.4.2)). On désigne par DO la partie de N définie par
D, =@ + (-0 NN

et pour tout entier m , m€ N , on pose
"= @;,...,0.,0") ,

ou pour tout i, 1<ism , D;=0, -0Ona

(7.1.0.2) DO+D'cD' ’

(7.1.0.3) DO+ DOCDO

et si d= (dl""’dm) désigne un élément de (Np)m tel que pour tout 1i ,

1<ism , diED' , alors

(7.1.0.4) D'ﬂ[\i(d)cdiﬂ)ocv' s

c'est-a-dire que ?" et d satisfont a la condition 2.8.1.
Si U désigne un ouvert de ® , K un polycylindre compact de ¢? contenu
o

dans U , x un point de U appartenant a K et f=(f1,...,fm) un élément

de I‘(U,O‘Bp)m tel que pour tout i , 1<ism |, Ex(fi)CD' , alors 1'application
B(K;f) induit une application

B_ (KGf) : B, (K" — B

Dm'x Do;x D' ;x(K)

(cf.(3.2)).

(7.1.1). Soient U un ouvert de P , X un sous-espace analytique fermé de U ,
Z un fermé analytique de X d'intérieur vide (dans X) et Y 1'ouvert dense
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de X défini par Y=X-Z .

DéFINITION 7.1.1.1.- Sodent m un entien, me€N , et f=(f1,...,fm) un éLé-
ment de T(U, Ocp)m . On dit qu'un ouvert U' de €P contenu dans U est distin-
gué pour (éa; D' XZ2,f) , 5'4L exdste des constantes G , H , Ge]RI , HERY
une gonction continue

@© :YNU' — ]Rfr
modénée Le Long de ZNU' , un entien v , T€N , une famille (dj)1<j<r
d'étements de NP et des familles

(h..)

(&) 1<j<r,yevnu" jiy) 1<j<r, 1<ism,yeynu’

d'éléments de F(U',Oq:p) telles que

a) pour tout y , yeYnuU' ,
My 7sy = Wpeendid
o J désigne L'idéal cohérent de 0y engendrnd par f1,...,fm H
b) pour tout y , yeYnU' , et tout j , 1<j<r
m

g..= 2 h.. f.
jy 4o diy i
c) powr tout y , yeYNU' , et tout i et j , 1<ism , 1<jsr
E (g.)<D' et E (h,.)cD ;
y&jy) < yPiiy) <o
d) pour fout y , yeynu' , tout x , xeU' , et tout ietj,
l<ism , 1s<jsr ,
1. (x)| £G et |h.. <H
Iz,Jy( )| | le(x)l
e) pour tout y , yeYNnU' , et tout j , 1<jsr ,
1d4]
J g-
v . =d. et 1 —_—
asy 85y =9 / C o)
oX

WA

o(y)

Sé D' =N, on dira plus simplement que U' est distingué pour ga;X;Z;f) .

DEFINITION 7.1.1.2.- Soit J un idéal cohérent de 0y - On dit qu'un ouvent U'
de € contenu dans U est distingué poun §a;D’;X;Z;J) , A'4L existe un
entien m , MEN , et un Element f=(f,...,£) de r(u',%p)“‘ teks que

a) La famille f1,...,fm engendre £'idéal J au-dessus de U' ;

b) £'ouvert U' est distingué pour éa;D';XﬂU';ZﬂU';f) .
S{ D'=1P , on diwa plus simplement que U'  est distingué pour (54;X;237)
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Remarque 7.1.1.3.- En gardant les notations de la définition (7.1.1.1)

(resp. de la définition (7.1.1.2)), si U" désigne un ouvert de ¢® contenu dans
U' et si U' est distingué pour (ga;D';X;Z;f) (resp. pour (éa;D';X;Z;J)) ,
alors il en est de méme pour U" . D'autre part, on remarque que si U'nY=¢ ,
alors U' est distingué pour (ga;v';X;Z;f) (resp. U' est distingué pour
éa;D';X;Z;J) si et seulement si il existe une famille finie d'éléments de
r@U',0 ,) qui engendre J au-dessus de U' ). En particulier, pour tout point x
de U tel que x¢X il existe un voisinage ouvert de x contenu dans U ,
distingué pour (éa;D’;X;Z;f) (resp. pour éa;D';X;Z;J)) .

Remarque 7.1.1.4.- En gardant les notations de la définition (7.1.1.1) soit y un

point de Y . S'il existe un ouvert U' de ® contenu dans U , distingué pour
(éa;D’;X;Z;f) , tel que y€U' , alors en vertu de (7.1.0.2) les conditions (b)
et (c) de la définition (7.1.1.1)impliquent que pour tout i , 1<i<m , on a

Ey(fi) <D

LEMME 7.1.2.- Soient U un owvert de € , X un sous-espace analytique fermé de
U , Z un ferumé analytique de X , d'inténdieur vide (dans X ) , Y R'ouvert
dense de X défini pan Y=X-2Z , m un entier, me€N ’f=(fv'“’ﬂg un
étement de T(U,p )" , J L'idéak cohérent de Oy engendrd pan f£,....£
r un entier, reN , et d=:(d1,...,dr) un élément de (NHT . on Auppose
que :

i) pour tout y , yeY {d ,d }

R Ma;D';J;y'= 100004 5
ii) U est distingue pour (<30';3X5256)
On pose

d = sup d.
1gjsr

(£a bonne supérieune étant nefative a fLa nefation d'ondre produit s sur N ),

l<sisr ,

(cf. (4.1)). Alons 4L existe une fonction continue
R:X— 10,1
et des fonctions continues
(D:Y—>]R: ,q;:Y-—»]R: y Y — R},

modénées Le Long de 7 , telles que pour
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tout point y de Y et tout polycylindre compact K de @ ter que yeK , Les
conditions
a) p'l.'(l(;y) SR(y) , 1<isp ;
oy 1] 0813 .y di : :
b) e(K;y) " 'p (Ksy)/p" “(K;y) s1/@ly) , 1<isr , 1gjsr
Ampliquent que :
1) KcU
ii) Im(B m (K;£)) = JK nB
Dy
ii1) il existe une scission C-linéaire continue normale oy de B m (X;£)
Y

(1)
D';y(K) ;

. . m
oy * BD' ;y(I\) — (BDO;}'(K))
telle que

d
logll s v ety 4oy 5

. P ,
et 54 L'on désigne pan T 1iKs y (resp. par TD';J;K;y) Le progfecteun de
BD';y(K)

(K) — B (X)

3Ky ¢ oy D3y

(resp. r K) — BD' ;y(K) )

'Ky Ppryy
swe T NBy ;y(K) (resp. sur BD'nAO(d) ;Y(K)) parallelement Bv'nAO(d) ;y(K)
(resp. 2a JKnBD';y(K) ) ,ona

a) m est une application C-Lindaire continue et

[ARSH $3'%

d
1. eyl S 000 etsn 14 oay)

b) o . 73K;y est une application C-Linaire continue et

[|r $2(0+r 2ldlsr-1 e(K;y)‘dl)

D';J;K;y”K

Démonstration. Les hypothéses (i) et (ii) impliquent qu'il existe des constantes
G,H, GE]R: » HER} , une fonction continue

<D1 Y — ]R:‘L

modérée le long de Z et des familles

(1) voir (7.1.0) et remarque (7.1.1.4); pour la définition de JK se reporter au
chapitre O.
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(gj}’)1§j§1‘,)’€Y et (hjly)1<3<r 1<ism,y€eY

d'éléments de F(U’()@P) , telles que

o) pour tout y , yeY , et tout j , 1sjsr ,
m

.= % h.. f.;
By~ ;o Tiy'd

B) pour tout y , ye€eY ,ettoutietj , 1<ism , 1<£jsr

E (g. )< et E (h..)cD

Y o3y y ity o
vy) pour tout y , ye€Y , tout x , x€U , et tout ietj, 1<ism,
1<jsr,
lgjy(x)lg G et lhjiy(x)|§H
§) pour tout y , ye€Y ,ettout j , 1<jsr ,
ldl
Vaiy ) =d; et 1/ ———31 ¥)|s 0,0
axJ
On pose

G' = sup{rG,1}
et on désigne par R 1la fonction
R:X — ]0,1[

restriction de la fonction Rj;a X (cf. (4.4.1)) etpar o , y et yY' les
fonctions

@:Y — R} , p:Y— R} , y':Y—> R}

définies par
o = sup (&,1) N@ G'o,/ RDY@
1<jsr
(cf. (4.3)),
_ |d]+r
y=1.H 2 sup (d; 1o,
1j<r
et

|d]+r

Y'=1 G 2 sup (dl')cp

1sjsr
On remarque que la fonction R est continue (cf. (4.4.1)) et que les fonctions ¢
Yy et Yy' sont continues, modérées le long de Z (App.I, 1.2.1 et 1.3.2).

Soient y wun point de Y et K un polycylindre compact de ® tel que yE]% ,
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satisfaisant aux conditions (a) et (b). L'assertion (i) résulte de la condition
(a) et de (4.4.1). Considérons 1'é€lément gy —(g1 5o ..,g ) de T(U, Cbp) . La
condition (B) implique que 1'application B(K; gy) 1ndu1t une application

B (K gy) : B (K)) —_— BD"Y(K)

(cf. (7.1.0)). La condition (y) implique que

||B(K;gy) lxsrG,
et a fortiori que

(7.1.2.1) IIB LS gy)ll

,

On appliquera le lemme 6.4.1 a ' et . En effet, les hypothéses (i), (ii)
et (iii) du lemme 6.4.1 sont satisfaites, en vertu de (7.1.0.4), de (7.1.0.2) et
des conditions (B) et (§) ci-dessus. En plus, les conditions (a) et (b) du lemme
6.4.1 sont impliquées par les conditions (a) et (b) du présent lemme, en vertu des
définitions de R et de ¢ et des conditions (y) et (8) , en remarquant que la
condition (y) implique que Agy(y) <G' (cf. (4.4.2)).

Alors il résulte du lemme 6.4.1 qu'il existe des applications C-linéaires conti-
nues
o : By, (K — B, . (KN et r
D'5g,3d5K3y Py Po3Y D¥3g,3d5K5y
telles que

By, ()= By, (K)

a') r =i -B (K;g)o o
Dr;gy;d;K;y dBD';y(K) oy 5 Vg, 345Ky

Idl

8" llo I pldf+r sup |d. |/ ﬁJl(y)

D ;gy;d;K;y K sjsr

A

. e(K;y)ldl/p”do(K;y) ;

[d] +r -1 e(K;y)IdI) A

A

¥ lr I s 201 +r2

D ;gy;d;K;y

§") Im(r r ) X) ;
38,,34;5K; ;8,3d;5K;

D 8y y D g y
e')o est une scission normale de B r (K;gy) H

Dr;gy;d;K;y o'y
z") JKnB ' (K) = Im(B (K gy))

Ker(O' r ) = BD'ﬂAo(d) 5y
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En effet, les conditions (a'), (B'), (y') et (§8') sont des conséquences immédiates
des assertions (i) et (ii), (a), (b) et (d) du lemme 6.4.1. D'autre part, on
remarque que si 1'on désigne par J' 1'idéal cohérent de OU engendré par

81 ""’gry , la condition (a) implique que

y
AN

d'ol

(7.1.2.2) P&;D';J';K;y‘zpa;ﬂ’;J;K;y

(cf. (1II,1.3)), et la condition (§) implique que

(7.1.2.3) {d ,...,dr}czPa

1 0157y
Or, en vertu de (II,1.4), les conditions (a) et (S8) et 1'hypotheése (i) impliquent

que

(7.1.2.4) = {d,eeerd)

Y036y T Moy
Alors il résulte de (7.1.2.2), (7.1.2.3) et (7.1.2.4) que

Ma;D';J';K;y = {d1,...,dr}
La condition (e') résulte donc des assertions (ii), (g) et (ii), (e) du lemme

6.4.1, et en vertu de (7.1.2.4), la condition (g¢') résulte de 1'assertion (iii) du

méme lemme.

On pose
Tor.7.xy = B p (Kig)) eo
VRIEY gty 5 Dr;gy;d;K;y
et
T 1. . . =T .
P diksy D%5g, 345Ky
Alors, en vertu de (1.2), les conditions (a'), (§'), (g') et (z') impliquent que
BD';y(K) = (JKrwB ,;y(K)) €] BD'nAo(d);y(K)

et que "D';J;K;y (resp. rD';J;K;y ) est le projecteur de BD';y(K) sur
(X)

JK{]BD';y(K) (resp. sur BD (K) ) parallelement a

1 . B 1 .
nAo(d),y D nAo(d),y

(resp. a JK nB ;y(K) ). L'assertion (iv), (a) résulte de (B'), de (§) et de

D'
(7.1.2.1) et 1'assertion (iv), (b) de (y'), ce qui démontre 1l'assertion (iv).
Considérons maintenant le morphisme de OU-modules

L AT m
hy .OU —_— OU

défini par la matrice transposée de la matrice
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(h;. )

jiy’1gjsr,1sism

I1 résulte de (B) et de (7.1.0.3) que 1l'application B(K;hy) induit une applica-

tion C-linéaire continue

K; : r m
BDo;y( ,hy) (BDO;}'(K)) — (BDO;Y(K))

En vertu de (y), on a

l|IBX;h )]l < rH
YK

et a fortiori

[}
)-‘
jant

(7.1.2.5) “BDO;)’(K;h)’)”K £

et en vertu de (o), on a
B(K;g ) =B(K;f) oB(K;h.) ,
(gy)()(y)
d'ol

(7.1.2.6) B . (g )=B_~ (KE)eBy _(Kh) .
sy 5 7y RN

En particulier, on a

Im(B (K;g.)) <Im(B X;£)) ,
sy & ™y
et comme

K:
Im(Bﬂn;y( ,f)) CJKnB ';Y(K) ’

la condition (z') implique que

1.2, ;6)) = ;g )) = J
(7.1.2.7) Im(BDm;y(K,f)) Im(BDr;y(K,gy)) KleD,;y(K) s

ce qui prouve 1l'assertion (ii). Enfin, si 1'on pose

o, =B (K;h)oo

KT 18, 5d3K3y
en vertu de (7.1.2.6) et (7.1.2.7), il résulte de la proposition 1.9 que og est
une scission C-linéaire continue, normale de B (K;£) , et en vertu de (7.1.2.5),
de (B') et de (8) , on a 24

1], o
llogllg s v ey 7o Pay)
ce qui démontre le lemme.

PROPOSITION 7.1.3.- Soient U un ouwvert de € , X un sous-espace analytique

fermé de U , Z un ferumé analytique de X , d'intérniewn vide (dans X ) Y
L'ouvert dense de X défini par Y=X-Z , m un entier, meN , f=(f1,...,fm)
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un éLément de T(U,0 p)m , J R'idéal cohérent de Oy engendné par f1’“”fm’

r un entien, TEN , et d=(d1,...,dr) un éfLément de (Np)r . On suppose que :
i) pour tout y , yEY , Ma;D';J;y = {d1,...,dr} R

ii) 48 existe un recouvnement de U foumé d'ouverts de ® contenus dans
U , distingués pour (§a;v';X;Z;f) .

On pose

Ty _rot;di ’

(cf. (4.1)). Akons, LL existe une fonction continue
R:X — 10,1[

et des fonctions continues
©:Y— R} et v Y— R}

modéndes Le Long de 7 , telles que pour tout point y de Y et tout polycylin-
dre compact K de C° tef que yeK , Les conditions

a) o/(K;y) s R(y) , 1<i<p ;

Id|

S d.
b) e(K;y) o M (Ky) /0t TKsy) s 1/0y) , 1sisr, 1<jsr.

Ampliquent que
i) KcU;
ii) Im B X;£) =J,nB (X) (1
m. b = K D’ ;y & b
Dy
iii) 42 exdste une scissdion C-Lindaire continue normale de B n (K; 1)

(o}
X ™y

m
&) — (B, ;y(K))

ok :BD';Y A

telle que
ja] o
logllx s v e®sy) /0" “(Ksy)
ol do = sup d. [(£a borne supérieure étant nefative a La relation d'ordre produit
1<jsr
s s W) .

Démonstration. Soit (Uk)kEI un recouvrement de U formé d'ouverts de €° con-

tenus dans U , distingués pour (ga;D';X;Z;f) . En vertu de (7.1.1.3), U étant

paracompact, on peut supposer que le recouvrement (Uk)k€I est localement fini.

(1) voir (7.1.0) et remarque (7.1.1.4); pour la définition de JK se reporter au
chapitre O.
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I1 résulte du lemme 7.1.2 que pour tout k , k€I , il existe une fonction conti-
nue

Rk:)(r'lUk — 10,1[

et des fonctions continues
‘Dk:YnUk — ]R: et q;k :YnUk —_ ]Ri
modérées le long de ZNUg telles que pour tout point y de YnUk et tout poly-
o

cylindre compact K de €P tel que y€K , les conditions

a ) pfKy) <R (y) , 1sisp

. Idl ndij ndi 3 3
b ) e(Xy) ' lp Ky)/p" *(Ksy) 1/ (y) , Tsisr , 1<jsr.
k Pk i
impliquent que :

ik) KeU

ii

k 5
Im(B X;£)) = JKnB
14
iiik) il existe une scission C-linéaire continue normale o de
B (K;£)  telle que
4

k) D ;y(K) ;

d
llogllg < ¥ O ey 14 /gm 0 kzy)

Or, U étant paracompact, il existe un recouvrement ouvert (Vk)keI de U tel que

pour tout k , k€I , VkCUk . Alors il existe une fonction continue

R:X—> 10,1[
et des fonctions continues
@ :Y— R} et y:Y— R}
telles que pour tout k , k€I , et tout y , yEYnd
R(y) ng(y) s

mk(y) <o(y)
et

lPk(y) <y(y)
(App.I, 1.3.4, 1.3.6). Soient y un point de Y et K un polycylindre compact de
& tel que y€ K , satisfaisant aux conditions (a) et (b). Il existe k , keI ,
tel que yEVk . On en déduit que yEYr\Uk et que y et K satisfont aux
conditions (ak) et (bk) . L'assertion (i) résulte alors de (ik) , 1l'assertion (ii)

de (iik) et 1'assertion (iii) de (iiik) , ce qui démontre la proposition.

PROPOSITION 7.1.4.- Soient U un ouvert de €P , X un sous-espace analytique
gfermé de U , Z un fermé analytique de X , d'intérnieurn vide (dans X ), Y
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L'ouvert dense de X défini par Y=X-Z , J un 4déal cohérent de 0Oy ,
T un entiern, T €EN, et d=(d1,...,dr) un éLément de (NOYT . on suppose que :
i) powr tout y , y€yY, Ma;D';J;y = {d1"°"dr} ;
ii) 42 exdiste un necouvrement de U fornmé d'ouverts de c® contenus dans U ,
distingués pour (Sq; D';X5Z30).
On pose

r. =T T<isr
i a;di’ =T="0

§.. =s _.(d

i %j ) 1gisr , 1<jsr

i
(cf. (4.1)). Alons AL existe une fonction continue

R:X— 10,11
et des fonetions continues

®:Y— R et w:Y—»]R:
modénées Le Long de Z , telles que pour tout point y de Y et tout polycylindre
compact K de P ter que 'y Elz , Les conditions

a) p'i'(K;)’)éR()’) , 1gisp;

by etksy) 14 T sy /o iy < 1/0ty) L Tsisr ) 1] stss
Ampliquent que :
i) KeU ;
oM

ii) BD,;y(K) = (JKﬂBD,;y(K)) ) BD’nAO(d);y
et 44 L'on désigne pan T (resp. par r

(x)

) Le projecteur de

033Ky 3Ky

BD';V
"ot 3ky © By @ T Bpryy MO
(resp. rD';J;K;y : BD',)’(K) - BDI’Y(K) )

sun JKnBD';y(K) (resp. sur BD'nAO(d);y(K)) parallelement & BD'ﬂAO(d);}’(K)
(resp. 2 JKﬂBD';y(K)) , ona

a) o 75Ky est une application C-Lindaire continue et

d
g1, 3y llx £ 900 et ¥lrpmoasy)

(1) Pour la définition de J¢ se reporter au chapitre O.
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oi d = sup d. (La borne supérieure étant nefative a La relation d'ondre pro-
15jsr

duit < sur NP)
b) rD"J-K'y est une application C-Linéaire continue et

“rv,; J;K;y“K <2(1+r2 |d]+r-1 e(](;y)ldl) .

Démonstration. En vertu de 1'hypothése (ii), de la remarque (7.1.1.3) et de la
paracompacité de U , il existe un recouvrement localement fini (Uk)kEI de U
formé d'ouverts de @ contenus dans U , distingués pour (éa;D';X;Z;J). Alors
pour tout k , k€I , il existe un entier meos mkE.N , et un élément

fk = (f HE ) de F(Uk,(ip)mk tel que :

k‘l"‘ ’ank

a) la famille fk1""

b) 1'ouvert Uk est distingué pour (éa;D';XnUk;ZnUk;fk) .

En appliquant le lemme 7.1.2 (assertions (i) et (iv)) a chacun des ouverts Uk

,fkmk engendre 1'idéal J au-dessus de Uk H

pour fk , on termine la démonstration en raisonnant comme dans la démonstration

de la proposition 7.1.3.

Remarque 7.1.5.- Dans les énoncés des propositions 7.1.3 et 7.1.4 on peut rempla-
cer les conditions (a) et (b) par des conditions "‘paramétriques' en utilisant

la proposition 4.5.5 ainsi que les fonctions introduites dans 4.5.1. De méme, on

peut les traduire dans le langage des effilements, comme dans le théorépe 6.4.2.

Remarque 7.1.6.- En gardant les notations du lemme 7.1.2, ainsi que celles de sa

démonstration, on remarque que comme la scission o est définie par

o =By ., (Ksh)oo s
LR A 0%5g, 345Ky

en vertu de (7.1.2.6), on a

B (K;f) o0, = B (K;g ) oo = Moy, 7.x¢.
0y K0y Y g dikey 0T
De méme, on a
ld -B (K;f)OO = Tay. 1.1,
BD’;y Dm;y K D';7;K5y
On en déduit que les projecteurs
B (K;£) o0, et id - B K;f) o o
’ K ’ K
oy : Bpriy® oy

de BD"y(K) sont indépendants de f (pourvu que f1""’fm engendre 1'idéal

J) , que
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(7-1.6.1) Ker(OK) = Im(rD| ;J;K;}’) = BD'ﬂAO(d) ;y(K)

(cf. (1.2)) et que

(7.1.6.2) lidg - B 056 ooyl € 200422141 e ldly
D'y Y

(7.2) Dans la suite, on étudiera le cas particulier ou 7' = N , dans quel cas

on a également Do = NP,

LEME 7.2.1.- Sodent U un ouvert de €P , X un sous-espace analytique ferumé
fuéductible de U , Z  un feumé analytique de X distinet de X , U' un
ouvert de CP retativement compact dans U , m un entien, f-= (f1 ,...,fm) un
éément de (r(u,ocp))m et J R'idéak cohtrent de 0 engendré par fa famille
f1,...,fm . On suppose que :

1) S, ;xS2 (ef.(I1,5.1);
ii) 40 existe deux ouvents de Stein comnexes U" et U de CP contenus
dans U tels que U' s0it nelativement compact dans U'" et U" relativement

compact dans UM

Alons R'ouvernt U' est distingué pour (ga;X;Z;f) .

Démonstration. En vertu de (7.1.1.3), on peut supposer que U'NX#@ . Alors il
résulte de (II,3.6) qu'il existe un entier r , r€ N , une famille (dj)1<j<r
d'éléments deux 2 deux distincts de NP , en ensemble fini non vide I et des fa-
milles

(F et

kiK€l 1sjsr (Byjilkel,1sjsr, 1sism

d'éléments de T(U"xU" , OUxU ) telles que :

o) pour tout y , YEX'Sa;J;X , ona

Myogay = [poeeeadyd s

B) pour tout ket j , k€I , 1<jsr , et tout x' , x'€U" , si 1'on
désigne par ijx' 1'é1lément de F(U",OU) défini par

ijx,(x") = ij x',x") , pour x"eU" ,

on a

Va;x'(ijX') ga dJ ;

y) pour tout ket j, keI, Igjsr , tout x' , x'€XnU" , et tout
x'", x"e€U" , ona
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m
Fig (x'x = 151 By (XM £ M 5

§) si pour tout k , k€I , on pose

141
0 Fk.
S = {x'eu" :335,1sjsr , _d_l (x',x') = 0}
ax" J

(la dérivation étant relative au deuxiéme paquet de variables) et U =u -Sk ,

alors
(X_sa;J;x) nU"ckgI Ui
(ou, ce qui est équivalent, (kgl Sk)n XCSa;J;XnU" ).
On pose
G = ilel[]:) 121.113 sup  sup Iij (x',x"M |
gjsr x'eU' x"eU
et
H=sup sup sup sup sup |Bkji(x’,x")[

k€I 1sjsr 1gism x'eU' x"eU'

(les bornes supérieures étant finies, car U' est relativement compact dans U") ,
et pour tout k , k€I , on désigne par @ la fonction

@ ¢ Ui(' —_— ]R’;
définie par
o
9 Fk.
tok(x) = sup 1/ —d—l(x,x) » pour xe€Uy
axJ

La fonction @y est continue, modérée le long de Sk (App. I, 1.2.1, 1.3.3). On
en déduit qu'il existe une fonction continue

o' v Ui('—-»]RI

kel
modérée le long de n Sk telle que pour tout x , X€ U Ui(‘ il existe k_ ,
kel keI X
kxel , tel que xEUi(' et
P
(7.2.1.1) @ X)se'(x)
X

(App.I, 1.6.1). En vertu de 1'hypothése (i) et de la condition (§), on a
Xn(n S ))cinu"
kel K ’
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et si 1'on désigne par Y 1'ouvert dense de X défini par Y=X-Z , la restric-
tion
" YnU" — R}

de ¢ a YNU" est une fonction continue, modérée le long de Z NU" (App.I,
1.2.2, (iii) et (iv)). On désigne par ¢ la restriction

¢ :YNU' — ]R:
de ¢' a YnNnU' . la fonction ¢ est continue, modérée le long de Z NU' (App.I

1.2.2,(ii)). Pour tout i et j, 1<ism, 1gjsr , et tout point y de YNU' on
pose

g, = F . |U" et h. =g .. [U
Jy kny jiy Blg,le

ol Fkyjy (resp. Bkyjiy ) désigne 1'é1ément de F(U"’OU) défini par

F jy(X) = Fk J.(y,x) , pour x€U" ,
5 y
(resp. o (x) = By ..(y,x) , pour x€U" ).
Bkley le
On . €T 0 t h.. €r(',0
3 By €TW.0p) et hyyy €X(U7,00p)

Démontrons que 1l'ouvert U' satisfait aux conditions (a), (b), (c), (d) et (e) de
la définition (7.1.1.1). La condition (a) résulte de 1'hypotheése (i) et de la con-
dition (a) ci-dessus, la condition (b) résulte de la condition (y), la condition
(c) se réduit a néant car D' = DO = NP et la condition (d) est évidente. Pour
démontrer la condition (e), on remarque d'abord que pour tout j , 1sj<r , et
tout y , yeYnU' , ona

45

] g
(7.2.1.2) — - -
x J d

|d: |
3 JF .

k,J
Y (y,y)
X" ]

D'autre part, la condition (B) implique que Vv ,  (g. )2 dj , et comme yEUi(' ,

oy CJy a y
en vertu de (7.2.1.2), on a Va;y(gjy) = dj . Enfin, 1'inégalité
4]
) g.
1/ —aZ M| 0®
ax J

résulte de (7.2.1.1) et (7.2.1.2), ce qui prouve que U' est distingué pour
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(éa;X;Z;f) et démontre le lemme.

LEMME 7.2.2.- En gardant Les notations du Lemme 7.2.1, ainsi que L£'hypothese (i)
84 K désigne un polycylindre compact de C€° contenu dans U , alons AL existe
un ouvert de CP , contenu dans U , contenant K , distingué pour (§a;X;Z;f).

Démonstration. I1 existe des polycylindres compacts K' , K" , K" de ? tels
que

KCI%' CK' CIO("CK"CIO('" CKIHC U
Alors si 1l'on pose
o o L]
U’ =K' , Ull=K” et UIH =Kl" ,

les ouverts U' , U" , U satisfont a la condition (ii) du lemme 7.2.1, ce qui
implique que U' est distingué pour (gu;X;Z;f) .

LEWE 7.2.3.- Soient U un ouvert de CP , X un sous-espace analytique fermé
iundductible de U , Z un fermé analytique de X distinet de X , K un
polycylindre compact de c® contenu dans U et J un idéal cohérent de OU
tel que

Sot;];XC Z
Alons il existe un ouvert de CP contenu dans U , contenant X distingué pour
(X:239) .
Démonstration. Soit K' un polycylindre compact de & tel que
o
KecK'ceK'cU .
I1 existe un entier m , m€N , et un €lément £=(f,,...,f ) de (F(K' 0 )) tel

que 1'idéal J soit engendré par f . ’fm au-dessus de K' . Alors il resulte
de 7.2.2 qu 11 ex1ste un ouvert de Cp contenu dans K', contenant K , distingué
pour (ga,XnK' ZnK ;£) , ce qui démontre le lemme (cf. (7.1.1.2)).

(7.3). Soient U un ouvert de P , X un sous-espace analytique fermé irréducti-

ble de U et J un idéal cohérent de OU . En vertu de (II,3.3), 1l'ensemble

Pa' Ty des exposants privilégiés pour éa de J eny ne dépend pas du point

y , pour yEX_Sa-J'X . On désignera cet ensemble par P 037X . De méme,
’ ’ gen

si 1'on désigne par MoL-J'X 1'ensemble (fini) des €éléments minimaux de

Pa' 7:X pour la relation d'ordre produit < sur NP , pour tout point vy ,
b ’ gen
yeEX- Sa;J;X ,
a 3Ty - Mon;J;X

gen
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(cf. (11,1.2)), et on a

Pooyx =M.y +N
a’J’Xgen a’J’Xgen
(cf. (1I1,1.3)). L'ensemble Sa-J-x étant un fermé analytique de X , d'intérieur
. i 1
vide dans X (II,3.2), Pa; J;Xgen (resp. Ma; J;Xgen) est 1'ensemble des exposants

privilégiés (resp. des exposants privilégiés minimaux) de J en un point "'général
de X .

m@@m7JJnsumtpetmdueM&u,ggawadﬂ@n&m&ewmlwﬂ
| compatible avec sa structure de monoide, moins fine que La relation d'onrdre
produit £ sur NP , U un ouvert de P , X un sous-espace analytique fermé
fvéductible de U , Z  un fermé analytique de X distinet de X , Y L'ou-
vert dense de X déginé par  Y=X-1, f=(fy,...,f) un dment de r(u,ocp)’“
et J R'idéal cohérent de OU engendné par f1,...,fm . On suppose que

Sa; J;XCZ
Alons pour toute fonction continue

@Y= [1,+=]
modénée Le Long de Z , AL existe des fonctions continues

w]:Y—>]RI wZ:Y—r]R:,
modénées Le Long de I , telles que pour tout polycylindre compact de CP pointé
dans Y , (K,y) , suffisamment effilé pour S modénément Le Long de Z ,
satisfaisant a La condition

e(K;y) soly)
on ait:
i) Ke<uU ;
ii) 4L exdiste une scission C-Linéaire continue, normale ox de B(X;f)

: B(K) — BE)™

oy *
telle que :
a) Ker(oy) = BA xy ,
o
~ - NP_ .
ol AO N Pa;J;X H

gen
d
b) HO](”K s “}1 ) /p" O(K§Y) »

oa dj = sup(Ma (La borne supérnieurne étant relative a La nelation d'onrdre

373 Xgen)
produit < sun NP)
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c) “idB(K) - B(K;E) o op [y <9, ()

Démonstration. L'hypothéese S <Z implique qu'il existe un recouvrement de U

as J;X
formé d'ouverts de €P contem’ls’dans U , distingués pour gu;X;Z;f) (7.2.2).

Soient
r=cardM . .. )
o;J ’Xgen

et d= (dl" .. ’dr) un €lément de (I\Ip)r tel que

Moo = {d;,...,d_} .
[$ 3 J,xgen 1 T

Pour tout point y , y€Y ,

d d }

Ma;J;y B R A

(car Sa' ;XCZ) (cf.(7.3)) et on a

3
d = sup d. et A = A (d)
1§j2r ° 0
(cf.(7.3) et (2.7.12)). On pose
T.=T

i ;d.
osd;

, 1sisr ,

dij=sa;j(di) , 1sisr , 1<j<sr

(cf. (4.1)). En vertu de (7.1.3), (7.1.6.1) et (7.1.6.2) (appliqués 2 D'=N°) ,

il existe une fonction continue
R:X— 10,1[
et des fonctions continues
@' Y—> R} et UM :Y—>]R: ,

modérées le long de Z , telles que pour tout point y de Y et tout polycylindre
o
compact K de & tel que y€K les conditions

a) py(Ky) <R(y) , 1<isp ;
lal 81579 .
b) ey on N Ty s 1kt () , TsisT, TsisT
impliquent que
i) KcU ;

ii) il existe une scission C-linéaire continue, normale oy de B(K;f) telle
que

a) Ker(OK) = BA (d)(K) 5
(0]

laf %
v (y) e(K;y)! /" T (Ky)

N

b) flogl
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+T -1

c) |[id B(K;£) ooy [l =201 +r2ldl e(K;y)ldl) .

B(K) ~
On pose
[d]

| -
lal -1 ll

o=l Y =Ye et ¥y =2(+r2 ¢

Les fonctions
e":Y— R} ,(p1:Y—-> R} et wZ:Y—> RY
sont continues, modérées le long de Z (App. I, 1.3.2). Or, pour tout polycylindre

compact de (g pointé dans Y , (K,y) , suffisamment effilé modérément le long de
Z les conditions (a) et (b')

®") p"aij-di(K;y)évw" ,1<isr, 1<jsr
sont satisfaites (cf. (6.3.2) et (6.2.1)). En remarquant que si en plus on a
e(K;y) so(y) ,
la condition (b') implique la condition (b), on en déduit le théoreme.
Remarque 7.3.2.- En vertu de (1.2), il résulte de (7.3.1), (ii) que
B(K) = J @ BAO(K)(‘)

et que 1l'application
B(K; ) o0y * B(X) — B(K)
(resp. idB(K) - B(K;f) 00y ! B(K) — B(K) )

est le projecteur de B(K) sur JK (resp. sur B, (K) ) , parallélement a B, (X)

(resp. a JK ) . ° °

En particulier, ces projecteurs ne dépendent que de 1'idéal J , et non pas du

£

systéme de générateurs f m

100
L'ensemble Sa;J;X étant un fermé analytique d'intérieur vide de X (II,3.2),
on peut appliquer le théoréme a Z:=Sa;J;X
Dans la plupart des applications, la fonction ¢ est suppos€e constante, et il
découle de la démonstration du théoréme 7.3.1 qu'on peut alors choisir la fonction
wz constante également. En appliquant le théoréme 2 ¢ =1 , on obtient un cas par-

ticulier important concernant les polydisques :

PROPOSITION 7.3.3.- En gardant Les notations et Les hypothéses du théoreme 7.3.1
AL existe une fonction continue

¢1 Y — BR:

(1) Pour la définition de JK se reporter au chapitre O
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modénée Le fLong de Z et une constante ¥, , Y, €R} , telles que pour tout
polydisque fermé K de centre y appartenant a Y , suffisamment ef§4Lé pour
ga , modénément Le fLong de Z , Les conditions (i) et (ii) du théonéme 7.3.1
sodent satisfaites.

COROLLAIRE 7.3.4.- En gardant Les notations et Les hypothises du théonéme 7.3.1 ,
84 A désigne une matrnice inversible a coefficients dans R , déginissant La
nelation d'ondre s, dw N |, alons pour toute fonction continue

@ : Y — [1 ’+oo[
modénée Le Long de Z 4L existe des fonctions continues
lp:Y—-»]R:,u;]:Y—»]R:e/th:Y——élRi

modénées Le Long de 7 et une constante 8o » 85 € R} , telles que pourn tout
point y de Y et tout polycylindre compact K de CP et que y€K [Les
conditions

a) e(K;y) co(y)
Anpliquent Les assentions (i) et (ii) du théoreme 7.3.1.

Démonstration. Le corollaire est une conséquence directe du théoréeme 7.3.1
(cf.(6.2.3)).

Remarque 7.3.5.- Si au lieu d'obtenir (7.3.4) comme corollaire du théoréme (7.3.1),
on le démontre directement & partir de la proposition (7.1.3), en raisonnant comme
dans la démonstration du théoréme (7.3.1) et en utilisant la proposition (4.5.5),

on obtient une formule explicite pour la constante S 0 a savoir

§ =9, (d)

[¢] Asr
(cf. (4.5.1)), ou

T = card(Ma; J;Xgen )

et d-= (d1,...,dr) désigne un élément de (]\IPJr tel que

MO‘;Jixgen = {dy,...5d)

En particulier, si ga n'est autre que la relation d'ordre antilexicographique
<, sur N et A 1la matrice unité (cf. (I.3.12.1)), en se limitant aux polydis-
ques, on obtient 1'énoncé suivant.

PROPOSITION 7.3.6.- En gardant Les notations et Les hypotheses du théorneme 7.3.1
84 5, est La nelation d'ordre antilexicographique sun NP et 44 £'on pose

)

<
“L

do = SUP(MG;J;chn
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(La borne supériewre étant nelative & fa nekation d'ondre produit < swt NP
et

§. = sup (d..) +1

o 1si<p o1 ’

ou d_=(d ,...,dop) , alons AL existe des 4onctions continues

o ol
v Y— R} et ¥y :Y— R} ,
modénées Le Long de 7 , et une constante vy q)zele , telles que pour tout
point y de Y et tout polydisque feamé de centre y et de polyrayon
0= (p1,...,pp) , pE]RI , Les gondi,téayw s
o
(o]
Pq <1/y@y) , pz<p1 :"',pp < pp_-l
Ampliquent Les assentions (i) et (ii) du théornéme 7.3.1.
Démonstration. En vertu de (7.3.2), de (7.3.5) et de (4.5.3.2), la proposition est

un cas particulier du corollaire (7.3.4).

THEOREME 7.4.- Soient P un entlen, ga une nelation d'ondre total sun NP ,
compatible avec sa sthucture de monoide, moins fine que La relation d'ordre produit
< st N, U wowertde ¢ , X un sous-espace analytique fermé Luéduc-
tible de U , Z un fermé analytique de X , distinet de X , Y £L'ouvert
dense de X défini par Y=X-7 et J un Ldéal cohénrent de OU . On suppose que

Sa;J;XCZ .
Alors pour toute fonction continue
©:Y — [1,+0] ,
modénée Le Long de Z , AL existe des fonctions continues
q;1:Y———>]R: e,tq;z:Y—>]R:,
modénées Le Long de Z , telles que pour tout polycylindre compact de P pointé
dans Y , (K,y) , sufgisamment effilé pour S modénément Le Long de Z ,
satisfaisant & La condition
e(K;y) s o(y)
on ait :
i) KcU ;

i) BK) = J, @ B, @,
o

< _ p_ . ) P
od A =N -P , et 54 £'on désdigne par 1K (resp. par T3k ) Le

a;J;X

(1) Pour la définition de JK se reporter au chapitre O.
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profecteur de B(K)

T : B(K) — B(K)

J;K

(resp. : B(K) — B(K) )

rJ;K

Aun JK (resp. sur B, (K) ) paratlelement a BA (K) (resp. a JK ), ona
0 o

a) Ty.x est une application C-Linéaire continue et

d
7yl s 0 O/0" 0sy)

ol d0==sup(Ma_ ) (La borne supérieurne étant nelative a La nelation d'ordre

;T3 Xgen
produit s sur NP)

b) Ty est une application C-Linéaire continue et

Tyl s w00

Démonstration. La démonstration du théoréme (7.4) est rigoureusement analogue a celle
du théoréme (7.3.1) en utilisant le lemme (7.2.3) a la place du lemme (7.2.2) et
la proposition (7.1.4) a la place de la proposition (7.1.3).

Remarque 7.4.1.- L'ensemble Sa;J;X étant un fermé analytique d'intérieur vide de
X (II1,3.2), on peut appliquer le théoréme a = =Su;J;X
Dans la plupart des applications, la fonction ¢ est supposée constante, et

on peut alors choisir la fonction ¥, constante également (cf. (7.3.2)). En
appliquant le théoréme (7.4) 2 @=1 , on obtient un cas particulier concernant
les polydisques, analogue a la proposition (7.3.3).

De méme, en vertu de (6.2.3), on peut formuler une variante '‘paramétrique' de la
condition '"suffisamment effilé'" et obtenir un énoncé analogue au corollaire (7.3.4)
remarquer qu'en vertu de la proposition (4.5.5), on peut alors expliciter la
constante 60 (cf. (7.3.5)), et enfin donner une version simple dans le cas ol
éa est la relation d'ordre antilexicographique §, sur N3 (analogue a la
proposition (7.3.6)). On n'explicitera pas plus tous ces énoncés importants, que
le lecteur pourra reconstituer sans difficulté.

210


http://paralJle.Zejne.nt

CHAPITRE IV

THEOREME DE PRIVILEGE NUMERIQUE UNIFORME

Dans ce chapitre, on étend aux sous-modules les résultats du chapitre précédent
et on démontre le théoréme principal de ce travail (théoreéme 4.4.1 et ses corol-
laires). La philosophie générale de ce chapitre est qu'un module cohérent sur un
espace analytique peut toujours &tre considéré comme un idéal du faisceau structu-
ral d'un autre espace analytique. I1 y a des questions dont le contexte naturel
est celui des modules, les idéaux n'étant qu'un cas particulier. Ce n'est pas le
cas pour les théorémes de division dont le cadre approprié est celui des idéaux.
S'il y a des théoreémes de division pour les modules, c'est uniquement parce qu'un
module peut &tre considéré comme un idéal. C'est pour cette raison d'ailleurs que
les théorémes de division par un sous-module paraissent moins naturels que ceux
par un idéal. C'est également une des raisons qui m'a conduit a les démontrer
d'abord pour un idéal et a en déduire le cas général. En effet, une partie des
résultats aurait pu &tre établie directement pour les sous-modules. En revanche,
les résultats du chapitre II, essentiels pour les versions uniformes, ne peuvent
pas, a ma connaissance, &tre démontrés directement, la notion d'exposant privilé-

gié d'un sous-module étant trop artificielle.

La méthode la plus connue pour considérer un module comme un idéal est celle qui
découle du "principe d'idéalisation'' de Nagata, qui consiste a considérer un module
comme un idéal de carré nul. Cette méthode n'est point adaptée pour les questions
de division car cet idéal est un idéal du faisceau structural d'un espace qui n'est
pas réduit et qui est donc singulier (voir [44] , §1, pp.383-384).

C'est une autre construction qui sera utilisée. Soient X un espace analytique
et M un OX-module cohérent. On cherche a définir un espace analytique X' et
pour tout sous-OX—module cohérent M' de M un idéal cohérent J de OX' de sorte
que la donnée de 1'idéal J de OX' fournisse ''les mémes informations'' que la
donnée du sous-OX-module M' de M . L'espace X' sera l'espace défini par

X' = Specan(S(M)) ,

ot S(M) désigne 1'algeébre symétrique de M , et on associera a un sous—OX-module
M' de M 1'idéal J(M') de OX' , idéal de définition de 1'immersion fermée

Specan(S(M')) — X'

déduite de la surjection canonique
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M — M/

Si X est un ouvert Ude €€ et M un Oy-module libre OE , 1'espace analytique
X' s'identifie & 1'ouvert UxC' de €' et en appliquant le théoréme de divi-
sion a 1'idéal J(M') de OU><Cn , on en déduit un théoréeme de division pour le

n
sous-module M' de OU

Au §1, on expose un 'dictionnaire' traduisant les propriétés de 1'idéal J(M')
en des propriétés du sous-module M' . Aux §2 et §3, on établit le théoreéme de
division par un sous-module, et au §4, on démontre le théoréme de 'privilege numé-
rique uniforme', objet principal de ce travail.

§1. Opérateurs élémentaires et exposants privilégiés d'un sous-module

Dans ce paragraphe, on introduit les opérateurs qui permettent de ramener 1'étu-
de des théorémes de division par un sous-module cohérent a celle des théoremes
de division par un idéal, et on définit la notion d'exposant privilégié minimal
d'un sous-module, qui généralise les définitions du §1 du chapitre II concernant
un idéal.

(1.0). Dans ce paragraphe, on se fixe deux entiers p et n , peN , nelN* ,
une relation d'ordre total Sy Sur W compatible avec sa structure de
monoide et moins fine que la relation d'ordre produit < sur N | pour tout
i , 1<£isn , on désigne par e; 1'é1ément de NP  défini par

e; = (ei1”"’ei,p+n) ,
ol pour tout j , 1sjs<p+n ,

eij =0 , j#p+i,

€ pei T

et on pose
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e = (e1,...,en) ,

n

e€ (W™ . on désigne par D la partie de NP définie par

0, = P x {0}

et par D' celle définie par

D' = U (e.+D)
1€isn °

Alors pour tout 1 , 1<is<n ,ona

(1.0.1) D' nAi(e) =e; * DOCD'

Pour tout m , m€N , on pose

" = 0y50-50,,0")

ou pour tout i , 1<ism ,

Si m=n , on pose plus simplement
p=0"

et alors, en vertu de (1.0.1), D satisfait aux conditions 2.8.1 du chapitre III
pour d=e . Enfin, on désignera par X1 yeoe ,Xp les coordonnées de Cp et par

n
T1 yeoo ,Tn celles de C

(1.1.0) Soient K un polycylindre compact de ® et XK' un polycylindre compact
de € tel que O€ K’ . En vertu de (III,2.6.26), pour toute partie A de )
telle que
(1.1.0.1) 3", A'e Nt A=NPx AT

o
le sous-espace BA (x,0) (KxK') de B(KxK') est indépendant du point x de K .
On désignera alors ce sous-espace, plus simplement, par B (KxX') . On remarquera
que 1'ensemble des parties de NP satisfaisant a la condltlon (1.1.0.1) est
stable par addition, réunion, intersection et passage au complémentaire et que
D, et D' appartiennent a cet ensemble.

De méme, il résulte de (III,2.7.10) que 1'application C-linéaire continue

Ml e3KxK'; (x,0) © : B(KxK")" — B(KxK')

. n
(resp. - se;KxK' ; (x,0) - B(KxK') —— B(KxK') ),

ou M= (1,...,1) , T€(C*)N , est indépendante du point de x de K . On désignera
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donc, plus simplement, cette application par “H;e;KxK' (resp. TTI;e;KXK' ),

ou méme par ”11; e (resp. T1I;e ) , quand aucune confusion n'en résulte.

Dans la suite, on identifiera B(K) & son image dans B(KxK') par 1'isométrie
canonique (qui associe a une fonction £ , f€B(K) , la fonction f' ,

f' €B(KxK') , définie par f£'(x,x') = f(x) , pour (x,x') €KxK') , image qui
n'est autre que BDO(KXK') , On notera KK 1'inclusion

€ : B(K) — B(K xK")

K';K

et on désignera par 1'application C-linéaire continue

KK

s : B(KxK') — B(K)

K;K'
définie par
(nK;K.(g))(X) = gx,0) ,

pour g€B(KxK') et x€K . Alors on a

(1.1.0.2) =1,

llme; o ll g

(1.1.0.3) TTK;K, o eK';K = idB(K)

et €xr.k ° TK:K' est un projecteur dont 1'image est B(K) et le noyau

BNpm ) (KxK') . On pose

%Kt = EKrK © KK

et on a

(1.1.0.4) =1

18 g,k ke
En vertu de 1'identification ci-dessus, 1'application Hi.e (resp. T )
b ’

induit une application C-linéaire continue

: BK)" — B, (KxK'")

“D; T;e BD

(resp. TD; e : Bv,(Kx K') — BGO™ )
(cf. (III,2.8) et (1.0)). On remarquera que pour tout élément (f1 yeoe ,fn) de
BXK)" ona

n
(1.1.0.5) (Fpeeesf) = 3 £ T,

uD; T;e
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est un Asomonphisme d'espaces de
en est L'isomonphisme Lnverse.

PROPOSITION 1.1.1.- L'application Hp.1I:e

n 3 ’
Banach de B(K)" sun BD’ (KxK') et 0iTze
En plus, on a

n
a) “uvﬁ'e ]l KxK' © 21 pg(K';O) 5
s Wy i=

2i-1 i 1"
b Iy, qoerillgngr 827 &0 /0YKN0)

<207 e;0™ sup (1/pY(K';00)

A lit,. 1.
;w5 Mo 1<isn

Démonstration. L'injectivité de Hp. e résulte de (1.1.0.5) et la surjectivité
s ’
de (III,2.8.3). On en déduit que Hp. .o €St un isomorphisme d'espaces de
b b
Banach (théoréme de Banach). D'autre part, TD;T[;e est une scission de uD;I[;e
(111,2.8.2), ce qui implique (UD'TI'e étant bijective) que

Tp .. © My . =1d et g . Ty .. = 1 .
D;1T;e D;T;e B(K)n D;1;e D;T;e dBD,(KXK )

L'assertion (a) résulte de (1.1.0.5), 1l'assertion (b) de (III,2.7.2) et 1'asser-
tion (c) de (b).
Remarque 1.1.2.- Dans la suite, il aurait €té pratique de pouvoir identifier

n . . . L - )
B(K)" a BD,(KXK') par 1'isomorphisme uD;1I;e . Néanmoins, uD;H;e n'étant

pas une isométrie, cela entrainerait une ambiguité sur la norme.

(1.2). On désigne par XK K 1'application C-lin€aire continue
)

XK;K' : BKxK') — B(KxK")
définie par
n
XK;Ky = uﬂ;e o (@ eK;K') ° Tq.e

PROPOSITION 1.2.1.- L'application C-Linéaire continue XK. g1 At un projecteunr et
on a :

D g lege 5022 ew;o"

ii) Im(XK;K,)=BD,(K><K') ;

B ,
iii) Ker(XK;K') = B]Npm -D'(KXK )

Démonstration. On a
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n n n n
Xgske Xk T Hrge © @ e @ O o) @ Te © Hyppe o ) © O Mg e Tye -
Or,

n n
© M) ® Tre © Mrge °©@ k) T oy mge © Moy e T M

B(O™

(1.1.1), donc
XK;K' ° XK;KI = XK;K' s

ce qui démontre que Xg.xr ©st un projecteur. D'autre part, pour tout f ,
feB(KxK') , ona

n
) = z (o

Ok Trpe;n ) BTy

XK;K'
(1.1.0.5), d'ol

n
Zn-1

Ixg.xr ki S =z el e PIE3008 1 257 ek ;00"
b i= ’ b

((1.1.0.4) et (III1,2.7.2)), ce qui démontre 1'assertion (i). Pour démontrer

1'assertion (ii), on remarque que
n
Im(t,. ) = I B_ (KxK")
T;e i=1 ei+Ai(e)
(I11,2.7.13), et comme pour tout i , 1<is<n |,
Doc—ei + Ai(e)

(1.0.1), on a, en vertu de 1'identification de B(K) a BD
o

KxK")
B "cIm(ty.)

d'ol

n n
Im((@ eK;K') ° Tu,e) = B(K)

et 1'assertion (ii) résulte de (I1I,2.8.6). Enfin la bijectivité de Hp. e
(1.1.1) implique que uu‘e|B(K)n est injective. On en déduit que

1 n
(B (KxK")™)
Np+n-Do

(1.1.0) et 1'assertion (iii) résulte de (III,2.8.9) et (III,2.8.10).

n
Ker (o) = Tgpe | (Ker® o)) = Ty g
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COROLLAIRE 1.2.2.- On a

o B =0

0 KK

KiK' XK' T OXKGK?

Démonstration. Comme

Ker (6 ) =B (KxK') et Im(eK;K,) = BDO(KXK')

K;K' NP p
()
(cf. 1.1.0)), le corollaire résulte de la proposition 1.2.1 et des inclusions
1 P - P*n_ 1
D'eN DO et DOCN D

COROLLAIRE 1.2.3.- Soit x un point de K . S& pour tout d = (d1 ,dz) ,
de NP , d1 eN d, € N" | on désigne par & L' application C-Linéaire

d;x
continue
Gd;x :BK)— C
déginie par
aldlg
84,5 = —3—- x,0) , pour fEBKxK") ,
aX ot 2
on a
a) 44 deD' , 5d;x ° XK;K' = 6d;x 4
b) 84 €N, 5 o X1 = O

Démonstration. L'assertion (b) résulte de (1.2.1), (ii). Pour démontrer 1l'assertion

(a), on remarque que, XK;K' étant un projecteur, on a

(KxK")

Im(ldB(KxK.) - XK;K') = Ker(XK;KI) = BNp+n_‘D'

((1.2.1), (iii)), ce qui implique que si d€D' ,
Sa;x ° Gdp(gx k)™ Xg;xr) =0

COROLLAIRE 1.2.4.- Pour tout point x de K et tout é€ément h de B(KxK') zel
que h#0 ona:

i) 84 XK;K'(h) #0 , alons "a;(x,O)(h) <, Va;(x,O)(XK;K'(h)) H

ii) pour que V.

: (x,0) (h) €D' AL faut et L suffit que XK;K'(h) £0 et

VO.; (X,O) (h) = v(x; (X,O) (XK;K'(h)) .
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Démonstration. En vertu du corollaire 1.2.3, on a

E (0 O M) = By gy N 2"

et le corollaire 1.2.4 en découle directement (cf. (II,1.1)).

COROLLAIRE 1.2.5.- Sodent f et g deux éféments de B(EKxK') . Alons on a

XK;Kv(f'g) = GK;Kv(f) : XK;K'(g) + XK;K'(f) . SK;K'(g)

Démonstration. En vertu du corollaire 1.2.2, on a

-6

idp k) ~ Ok T Xk T Adperxkr) T Ok;kr) © (g ki)™ Xkkr) =

= (id'B(KXK') - XK;K') ° (idB(KxK') —eK;K')'
On en déduit que
6

(1.2.5.1) Im(id (KxK")

BOK') - XD

k= Xg.xr1)E B
K;K' 7KK NP
((1.2.1), (1.1.0) et (III,2.6.3)) . On pose
£ = £- 04 () = Xy g0 (D)
et
g' = g-OK’K.(g) = XK;K'(g) .

Alors on a

(1.2.5.2) £g = £rg+ (F-£'0g" + 0y 100 (D)0 10 (&) + X100 (B) Xy por (&) +
+ By (B) X0 @)+ Xgepr (B) By pr (@)

Or, il résulte de (1.2.5.1) et (II, 2.6.5) que

f'geB (XxK') , (f-f')g'€B (KxK")
(N -0 001)) + N (W™ -0 up")+ N

et de (1.10),(1.2.1) et (I1,2.6.5) que

B,k (D) GK;K,(g)EBDO+DO(KxK')
Xg; (B Xg: 0 (@) € By ypr (KT,
GK;K'(f) XK;Ky(g)€B00+D'(KX K') N

XK;K'(f) eK;K,(g)eBDo+D,(Kx K') s
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et comme
(NP (D uD") + NN _pr
p+n _
Do + DOCDOCN (/AN
D'+ D' NPT pr
et

Do +D'cD'
il résulte de la proposition 1.2.1 et de (1.2.5.2) que
XK.Kv(f’g) = GK'K'(f) XK'K'(g) + XK.KI(f) eK.K.(g) »

ce qui démontre le corollaire.

(1.3.1). Soient m un entier, m€N , U un ouvert de ® et £ :OI{;——» OE
un mo:phlsme de OU-modules, f= (fij)1§i§n,1gj§m , fij EI‘(U,OU) . On désigne
par f 1le morphisme de OUXCn-modules

m

f: OUan — OUx(En
défini par f = (F;,...,F) , odpour tout j , 1sjsm ,
n
Fj = 151 fij Ti

Soient K un polycylindre compact de e contenu dans U et K' un polycylindre
o
compact de e tel que O€K . Alors on a

(1.3.1.1) BKxK';) = uy se °(BEGH) 8, idg k1))

(cf. chapitre O et (III,2.0)). D'autre part, on remarque que pour tout j ,
o
1<jsm , et tout point x de K on a

Do + E (Fj)c (2N

(x,0)
1'application B(K XK';'f) induit donc une application C-linéaire continue
1 .N . m 1

BDm(KxK ;£) ¢ B(K)T — BD,(KxK)

(cf. (1.0), (1.1.0) et (I11,3.2)), et il résulte de (1.3.1.1) et de (1.1.1) qu'on
a

(1.3.1.2) B pk A ) = upi e © BUGE)
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et

(1.3.1.3) BUGE) = Tp oo BUm(KXK';f)

(c'est-a-dire que si 1'on identifiait B(K)™ a son image BD,(KX K') par
1'isomorphisme Hp.T.e OO aurait BDm(KX K';f) = B(K;f) (voir 1.1.2)).
De méme, pour tout j , 1<£jsm , et tout point x de K ona

(NP D) +E Ye NPT pr

x,0
On en déduit que si 1'on pose

N g o (WP Dyseens

ou pour tout j , 1<jsm , DJ. = Do , 1'application B(Kx K';%') induit une

NP o, N opy

application C-linéaire continue

-~ . m
BNpﬂl_ Dm(Kx K';£) : (BNpﬂl_ ) (KxK"))" —> B]\Ipm- " (KxK")
o
(cf. (II1,3.2)) et il résulte de (1.1.0) et de (1.2.1) que
1.3.1.4 B(KxK';f) = B_(KxK';) 6 B KxK';5) .
( ) ( ) Dm( ) Npm—Um( )

PROPOSITION 1.3.2.- Sodlent o : BD' KxK') —BEK"™  une application C-Linéaire
continue et o' : BK)" — BEO™ L'application définie par

SRR Hpi ;e
ALons

i) o' est une application C-Linéaire continue et

n
lo'llgs = oYX ;0 lo]| ;
K Kx

K'

ii) pour que o' s0it une scission de B(K;f) LE faut et AL suffit que
504t une scissdion de va(](x](’;'f) H

iii) pour que B(K;f) s04it une scissdion de o' AL faut et AL suffit que
B _(Kx K';f) 504L une scission de ©
"
Démonstration. L'assertion (i) résulte de (1.1.1), (a) et les assertions (ii) et
(iii) de (1.3.1.2) et de (1.1.1).

Remarque 1.3.3.- La proposition 1.3.2 permet de ramener la construction de scis-
sions (resp. de scissions normales) de B(K;f) au cas ol n=1 .

(1.3.4.). Soient U un ouvert de P , M un sous-OU-module cohérent de OE ,
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i Me— OE le morphisme d'inclusion, Q le conoyau de i et t : 0{} — 9
la surjection canonique, de telle sorte qu'on ait une suite exacte
0O— M i, aE LN Q— 0
On en déduit une surjection
S(t) : S — S
de 1'algebre symétrique de 08 sur celle de Q , d'ou une immersion fermée
Specan(S(Q)) <> Specan(S(d))) -
Or,
Specan(S(0f)) = UxC"
et si 1'on pose
Y = Specan(S(Q)) ,
Y s'identifie a un sous-espace analytique fermé de uxc® . On désigne par
J(M) 1'idéal de définition de Y dans UxC' . Si U' est un ouvert de U tel
qu'il existe un entier m , m€N , et un morphisme de OU,-modules
f: g > On.
tels que M|U' = Im(f) , alors on a
(1.3.4.1) JM| U x € = (D)
(1.4.1). Soient x un point de & et f-= (f1,...,fn) , ol pour tout i ,

1<ign , fi est une fonction définie au voisinage de x et analytique au

voisinage de x , ou un germe de fonction analytique au voisinage de x (par
exemple fE€ I‘(U,Oﬁ) , ou U est un ouvert de c? contenant x , ou feB(K)n s

ou K est un polycylindre compact de ® tel que X€l% , Ou f€0np )
C,x

On désigne par Ex(f) la partie de N géfinie par

E(f) = u (e, + (E (f.) x {O}))
X 1<jsn X ]
(cf. (II,1.1)), et si le germe de f en x est non nul, ce qui équivaut a

Ex(f) # @ , on pose

Vi () = min (B (£))

On a

(1.4.1.1) Ex(f)cD'
et

(1.4.1.2) VB €D
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On remarquera que si 1'on pose

n
F= 1 f.T.
j=1 J )
et si x' désigne le point de P géfini par x' = (x,0) , alors F est une
fonction (ou un germe de fonction) définie et analytique au voisinage de x' dans

P , et conformément a (II,1.1), on a

(1.4.1.3) E . (F) = E ()
et
(1.4.1.4) Vasx' B = v, (B

(1.4.2) Soient U un ouvert de ® , M un sous—OU-module cohérent ge OE .
X un point de U et K un polycylindre compact de ? tel que x€K et KcU.
On appelle ensemble des exposants privilégiés pour < en x de M dans 03
(resp. ensemble des exposants privilégiés pour g, Sur K en x de M dans 0{})

et on note Poc;M;X (resp. Pa;M;K;x ) la partie de NP définie par
L [deN™ : afeM, , £#0 et Vo () = d}
(resp. Py = WEN™ afem , £40 et vy (0 =d) V.
On note Moc;M;x (resp. Ma;M;K;x) 1'ensemble fini M(Poc;M;x) (resp. M(Pa;M;K;x))
des éléments minimaux de P (resp. P ) pour la relation d'ordre pro-

o oy M;x HH 65
duit < sur NP™et on appellera les €léments de cet ensemble les exposants
privilégiés minimaux.

En vertu de (1.4.1.2), on a

(1.4.2.1) P <

Pom;M;l(;xc a3M;x

(on verra plus loin qu'en fait P_. ) et comme M est un sous-module

n oy M;K;x = Pon;M;x
de OU ,

(1.4.2.2) Posttix = My:usx * o

on a

et

(1.4.2.3) +D

PoL;M;K;x B Ma;M;K;x o]

D'autre part, si M' désigne un sous-OU-module cohérent de OE tel que McM' ,

(1) Pour la définition de MK se reporter au chapitre O.
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on a

(1.4.2.4) P xS Pos i ix

et

(1.4.2.5) P e Kx P i Kix

Remarque 1.4.3.- Dans le cas ou n =1 (ce qui implique que M est un idéal co-
hérent J de OU ) , les définitions et notations de (1.4.1) et (1.4.2) ne coin-

cident avec celles de (II,1.1) et (II,1.2) que si 1'on identifie M ala partie
Mx {1} de N*

PROPOSITION 1.4.4.- Soient U un ouvert de CP , M un AouA-OU—moduﬂe cohérent
de OG , X un point de U , K un polycylindre compact de P ter que
KcU et x€K , et K' un polycylindre compact de " ter que OE€EK' . Alons

on a :

1) Pa;M;K;X = Pa;D’;J(M);KxK';(x,O) - Poc;J(M) ;KxK'; (x,0) no'

) Mywsksx = Musos 700 5506kt x,00 = Mag 700 3Kk (x,00 17

Démonstration. Il existe un ouvert U' contenu dans U contenant K , un entier

m , meN , et un morphisme de (,,;,-modules

f: OmU, — 0,
tel que
MU' = Im(E)
Alors, on a
Jmur xct = In(f) ,
MK = Im(B(K;£))
et
(JD)g = In(B(KxK';E))
(cf£.(1.3.4.1) et chapitre O). On en déduit que

= (deNP™: 3ge Im(B(K;£)), g#0 et V@ = d

Poc;M;K;X ;X

et
= P i s -
Pa30"5 3003 KxK' 5 (x,0) I E N REIMBUCKTS ) 0By, (KD, b0 et vy (1) =dl

(cf. (1.4.2), (I1,1.2) et (III,2.6)). Or il résulte de (1.3.1.4) que

223



G. MALTSINIOTIS

Im(B(Kx K";£)) =Im(BDm(K><Kv;f))@Im(BNpm_vm(Kx K';8)) ,

d'ol

Im(B(KXK';'E)) nBD,(KXK’) Im(va(Kx K';%’))

et en vertu de (1.3.1.2), on a

Im(BEKxK';£)) NBy, (KxK') = (Im(B(K;£))) .

uD;]I ;e
D'autre part, 1'application Hp.q .e ©St bijective (1.1.1), et pour tout g ,
gEB(K)n , g#0 ,ona

Va;x(g) - Vo¢;(x,0) (UD;H ;e(g))

((1.1.0.5) et (1.4.1.4)). On en déduit que

POL;M;K;X - pa;D' 3 J (M) ;KxK'; (x,0)

et il s'ensuit que

MOL;M;K;X - Moc;D' ; J(M) ;K=K ; (x,0)

Démontrons que

- 1
Pa;D' s J(M) ;KxK'; (x,0) Pa;J(M) ;KXK' (x,0) no
L'inclusion

Pa;D' 3 J(M) ;KxK'; (x,0) CPo,;J(M) ;KXK' 5 (x,0) no'

est évidente (cf. (II,1.3)). Réciproquement, soit d , d

1
o € Po; 700 5Kk (x,0) P
Alors il existe h , heIm(B(KxK';f)), h#0 , tel que

Va; (x,00 ™ = d
On pose
h' = 0 () -
En vertu de (1.2.1)et de (1.3.1.4), on a

h' €By, (KxK') et h' € In(B(KxK'; D)) ,

et il résulte de 1.2.4 que

h' #0 et v )(h')=d.

o;(x,0

On en déduit que dE€ Pu;D‘ ST (M) KxK" ; (x,0)

I1 reste a démontrer que

My 300 KK (x,00 ~ Moo ke (x,00 M0
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L'égalité

P TOM) KK 5 (x,0) ~ Fos JOM) ;KxK 5 (x, 00" 0"
implique que

np'cM

My 700 35K (x,0) 3D IO 5KxK 5 (x,0)

Réciproquement, soit d , dEMa;D';J(M);KXK’;(x,O) . Alors de€D' et
dEPd;J(M);KXK';(X,O) . Soit d' , d'EPa;J(M);KxK';(x,O)
d'<d . Les conditions d€D' et d'<d impliquent que d'EDO ou d'e€P' et
il existe h , heIm(B(KxK';E)) , h#0 , tel

, €t supposons que

comme  d* € Py 70 ;6K ; (x,0)
que Va;(x,O)(h) =d4' .Or,

Im(B(Kx K' ;'E)) c Im(u1I 'e)

(1.3.1.1) et
Im(ug. ) =B (K xK')
;e N _p
o
(111,2.8.3). On en déduit que d' ¢Do ,donc d'eD' ,

d'ou d'eP , C'est-a-dire d'e€P , Ce

03 T ;KK 5 (x,0) 1P ;D" 300 ;KK ; (x,0)
qui est absurde. On en déduit que d€Ma;J(M);KXK';(X,O) , Ce qui démontre la
proposition.

COROLLAIRE 1.4.5.- En gardant Les notations de £a proposition 1.4.4, on a

D Powiisx = PosMsx = Pastan; x,00 N0 3

=M

ii) M(! G;M;X = Ma;J(M);(X,O) no'

MK x
Démonstration. En vertu de (I1,3.7), on a

Pas T ; x,00 = PasT(M) ;KxK" 5 (x,0)

et
My 10m; x,00 = Mo 300 53¢k 5 (x,0)
On en déduit que

- 1
Pasmsksx = Pasg0n;x,00 1P
et

- 1
Ma;M;K;x N Ma;J(M) ; (x,0) no
(1.4.4). D'autre part, 1l'ensemble Ma'M'x étant fini, il existe un ouvert U' de
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e tel que x€U' et U'cU et une famille finie (fi) d'éléments de

rw',M telle que pour tout d , d€M0‘;M;x

que f. #0 et v  _(f.) =d . Alors, si K, désigne un polycylindre compact
i,x o;x 1 1

15ism
, il existe i , 1<£ism , tel

de P tel que )(Elz1 et K1CU' , On a

Ma;M;xCPa;M;K1;x

et comme

Pa;M;K1;xCPa;M;x

(1.4.2.1), on en déduit que

Ma;M;x - Mot;M;K

X b

13

d'ou

Pcx.;M;x = POL;M;K.I;X

((1.4.2.2) et (1.4.2.3)). Or, il résulte de la premitre partie de la démonstration
que

pcx;M;I(1 ix = Py I 5 (x,0) no'
et
MOL;M;K1;X =My x,00 00"
ce qui démontre le corollaire.
Remarque 1.4.6.- Le corollaire 1.4.5 permet de ramener 1'étude des exposants

privilégiés d'un sous-module de OE a celle des exposants privilégiés d'un idéal.
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§2. Division par un sous-module en un point

En utilisant les résultats du paragraphe précédent, qui permettent de ramener
1'étude d'un sous-module a celle d'un idéal, on démontre dans ce paragraphe des
énoncés concernant un sous-module, analogues aux principaux résultats des paragra-
phes 3, 4 et 5 du chapitre III, relatifs a un idéal.

(2.0) Dans ce paragraphe, on garde les notations du paragraphe précédent et en
particulier celles du n°(1.0). On rappelle que D' désigne la partie de N
définie par

= u Nx {e} ,

1sj<n J

ou IPRRRRLN désigne la 'base' canonique de N , et Do celle définie par

D, = Nx {0}
(qu'on identifiera parfois a N). on remarque que la partie D' de N sa-

tisfait a la condition (III,7.1.0.1)
[0+ E0NANTT s 0D,
et on vérifie facilement que
D, = (@' +(-D")) n N
En particulier, pour tout élément d= (d1,...,dm) de (NP'HT , tel que pour tout
i, 1gism , diED' , ona
A ﬂAi(d)Cdi+ DOCD'
(cf. (III, 7.1.0.4)). Si d désigne un tel élément de (NP™™ | pour tout i ,
1£ism, il existe un élément di de N et un entier j.1 , 1 éjién , (uniques)
tels que
di = (di,eji)
On désigne par 14,(d) 1la partie de N’ définie par
B(@ =d+N- y (@+N)
1si'<i
ji'=Ji
et pour tout j , 1sj<n , par Zoj (d) celle définie par

N = NP - P
Aoj (d) =N L1J (di+N )

<m

1
ji=J

IA

On remarque que pour tout j , 1<js<n , (resp. pour tout i , 1£ism), on a
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P_ = P P_ 7
(N Aoj @)+Nc N Aoj (d)

(resp. [N (-d!+2,(@)] + W cN- (-d}+3, @) ),

ce qui implique que pour tout polycylindre compact K de ® 1e sous-espace
B-A-oj %) ;x(K) (resp. B'd:!f'zi(d) ;x(K) ) de B(K) ne dépend pas du point x de

K (I11,2.6.27). On le désignera simplement par BZ @ (K) (resp. par
0j
B = x ).

(2.1) Soient U un ouvert de cP ,

f: Ol"} — 0{;

un morphisme de ¢,-modules, x un point de U , K un polycylindre compact de
U o p mp

€® contenu dans U tel que x€K , K' un polycylindre compact de " tel que
0ek', d= (d1"”’dm) un élément de (Np+n)m tel que pour tout i, 1<ism,
di €ED' et a= (a1,...,am) un élément de (€*)™ , et considérons 1'application
C-linéaire continue

P a3d; ke 3 (xp0) | Bpr KK By (K K"

définie, conformément a (III,3.1) et (III,3.2), par

B _(KxK' ;'E) -y

Vo =id -( )T
Dm;f;a;d;KxK';(x,o) BD'(KXK') Dm ?™a;d;KxK'; (x,0) Dm;a;d;KxK';(x,o)'

On en déduit une application C-linéaire continue

: B — BOM

Toeffee °V o ~ olo. 1.
0;Lse Dm;f;a;d;](xl(';(x,o) 0;Wse

(cf. (1.1.0)). On remarquera que cette application est indépendante du choix du
polycylindre K' de " (tel que O E]%’). En effet, il suffit de le vérifier pour
un polycylindre compact K'' tel que K'cK" (car étant donné deux polycylindres
compacts, leur intersection est aussi un polycylindre compact) et cela résulte
de (I1I,3.1.1), (III,2.7.8) et (I11,2.7.9) et du fait que 1l'application de

restriction
erK',KxK" : B(KxK'") — B(KxK")

respecte 1'identification de B(K) a BD (KxK') ou a BD (KxX'") . On pose
o o

PEadikix T DiTe TV mr gy (00 | DT

et on vérifie aisément que si n=1 , on retrouve la définition de (3.1) (en iden-
tifiant Mx {1} a W ).
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PROPOSITION 2.1.1.- Les conditions sulvantes sont équivalentes :

i) Veia:d;K;x est invernsdible ;
ii) vf;a;d;K;x est bifective ;
iii) pour tout g , geB(K)n , AL existe un couple unique (go,g1) Zel que

n
g, €I

m
B~ (K) , g, €T B 4.5 99K
j=1 Aoj(d) 1540 T-di+A @

g=BK;£) (g)) +g,
(o d! désigne £'image de d; par La premidre projection N N

Démonstration. L'équivalence des conditions (i) et (ii) résulte du théoréme de
Banach. D'autre part, en vertu de (1.1.1), pour que v.._...... Soit inversible
f;a;d;K;x

il faut et il suffit que v _— le soit, ou K' désigne un poly-
D f;a;d;KxK'; (x,0)

cylindre compact de " tel que O €X' . L'équivalence des conditions (i) et (iii)
résulte alors de (III,3.2.1), (1.3.1.1) et (1.1.1) en remarquant que

(2.1.1.1) -d; + (' 04 (@) =D n (-d; +4;(d)) =-d} +4;(d) , Tsism,
et que
(2.1.1.2) Don(-ej+AO(d)) = Zoj(d) , 1€jsn ,

ce qui en vertu de (III,2.8.8), implique que

I
(2.1.1.3) )(KxK')) = I By (d)(K)

Ty. 7.0 By
D;T;e DnAo(d j=1 Aoj

Remarque 2.1.2.- Si (f1,...,fm) désigne un élément de I‘(U,Og)m et

o — &
le morphisme de OU-modules défini par cet élément, la condition (iii) signifie que
pour tout €lément g=(gq,...,8,) de B(K)" il existe un élément unique
h=(hy,...,h) de BIO™ et un élément unique g'=(g],...,g}) de BXK" tels
que :

a) pour tout i, 1<ism,

h.€B ., + xy

i di+Ai(d)
b) pour tout j , 1<jsn,

gl € B- x)
J Aoj (d)
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m
Q) g=1 hi(£[0 +g ;
i=1
c'est-a-dire que la condition (iii) est une condition de ''division'.

COROLLAIRE 2.1.3.- S{ £'on suppose que VE.a.diKex est inversible, alors poun tout
a' , a' € @™ , et tout x', x'€K , VE.at:d:Kex' est également invernsible.

Démonstration. En effet, la condition (iii) de la proposition (2.1.1) est indépen-
dante de a et de x (cf.(2.0)).

PROPOSITION 2.1.4.- Si £'on suppose que Veadikex A% inversible et s4 £'on
désigne par 9f.4.K (resp. Te. 4.k ) L'application

og.q,x * BEOT — BT

. n n
(resp. rf;d;K : B(K) — B(K) )
déginie par
Of;d;K(g) =g
(resp. rf;d;K(g) =g, ),
oa (g,»gy) désigne L'unique couple tek que

n m

g € T B. (K) , 8., € I B_., «+ (X)

g = B(KG£)(g)) + g
(cf. (2.1.1)), alors on a :

1)  L'application Of.4:K (resp. Te.g.K ) est une application C-Linéaire
continue ;

ii) id = B(K;f) ooc.q.¢ * Teg.x
B(K)" f;d;K f;d;K

m
I B_o,.x X ;
=1 9y (d)

iii) Im(gf;d;K) =
n

iv) Ker(of;d;K) = Im(rf;d;K) = 'g Bx .(d)(K) ;
j=1 "oj

v) B(K;f) est une scission de Gf;d;K ;

vi) ZLes conditions suivantes sont équivalentes :

a) Op.g.x @4t une scission (noamale) de B(K;f) ;

n
b) Im(B(K;f)) njg1 BZoj(d)(K) = {0}
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¢) Im(B(K;£)) = In(B(K;£) o op.4.4) 5

d) Im(B(X;f))< Ker(rf;d;K)

Démonstration. Soit K' wun polycylindre compact de " tel que O €K' . Alors

Vo~ est inversible (1.1.1), et en vertu de (1.1.1), (1.3.1.1),
D75 f5a5d;KxK" 5 (x,0)

(2.1.1.1) et (2.1.1.3) la proposition (2.1.4) résulte de la proposition (III,3.2.2)
en remarquant que

(2.1.4.1) Of.q:k = O ~ ° Hps1;
f,d’K Dm;f;a;d;KXK';(X,O) D;lse
et que
(2.1.4.2) Tedk T TpiTe o(1dBD'(K)-BDm(K;f) °0 o~ ) o Mo me

D ;f;a;d;KxK'; (x,0)

(2.2) En gardant les notations de (2.1), soient ga une relation d'ordre total sur
N

produit £ sur NP , (f

compatible avec sa structure de monoide, moins fine que la relation d'ordre
++»f,) un Elément de  ("(U,00p))"

b
1°°
oM __, o0
f 10y 0y
le morphisme de OU-modules défini par cet élément et M le sous—OU-module

cohérent de 03 engendré par f1""’fm M = Im(£)) .

PROPOSITION 2.2.1.- S4 pour fout i , 1<ism , Le geunme de fi en x est non

nul et Va'x(fi) = di , et A4 v est Anvernsible, Les conditions sulvantes
b

sont Equivalentes :

f;a;d;K;x

i) Of;d;K est une scission de B(K;f) ;
ii) Moz;M;xc {d1 seeesdp}
Démonstration. Soit K' wun polycylindre compact de " tel que O€K' . I1 résul-

te de (1.1.1) que v m
D ;fa;d;KxK'; (x,0)

est inversible et en vertu de (2.1.4.1),

on a

Op 1.0 =0 R
£;d;K Dm;f;a;d;KXK';(x,o) uD;1I;e

On en déduit que Of.d:K est une scission de B(K;f) si et seulement si
o . est une scission de B (KxK';?ﬁ (1.3.2). Or, si
Dm;f;a;d;KXK’;(x,o)

f=(¥v'“’ﬁﬁ , pour tout i, 1€is<m, ona

v
o;(x,0 03X 1

(cf. (1.4.1.4) et (1.3.1)). D'autre part, si 1'on désigne par J 1'idéal cohérent
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~

de OUan engendré par E},...,fm ,ona J=JM (1.3.4.1), et il résulte de
(1.3.1.4) que

Tk "By (KxK') = Im(Bdn(KxK';?))
(car  Jy =Im(B(KxK';£)) ) . On en déduit que o est une

o™ Fa;d;K<K" ; (x,0)

scission de B m(K><K';f5 si et seulement si
D

Mu;D';J(M);KXK';(x,o)(:{d1""’dm}

((I11,3.3.1) et (1II,3.2.2),(v)). Or,

Mas0'5 700 3Kk 3 (00 = Mosuix
((1.4.4) et (1.4.5)), ce qui démontre la proposition.

PROPOSITION 2.2.2.- En gardant Les notations et Les hypotheses de La propesition
(2.2.1), 84 M' désigne un sous-module cohérent de OE tel que McM' , La
condition

Amplique que
v oy (D
MK-—MK
Démonstration. En gardant les notations de la démonstration de la proposition

2.2.1, si 1'on désigne par J' 1'idéal cohérent J(M') de OUxmn (cf. (1.3.4)),
ona JcJ' et en vertude (1.4.4) et (1.4.5) ,

M =M s
a3 M';x 0;D';TJ(M") ;KxK'; (x,0)
d'ou

c{d1,...,d }

Ma;D';J(M');KXK';(x,o) m

On en déduit que

J1'(XK'n
((I11,3.3.4) et (I1I,3.3.5)). Or, il existe un ouvert U' de ¢® contenu dans U
contenant K et un morphisme de OU,-modules

By (KxK") = Im(BUm(Kx X';E)

m' n
g: 0y — OU'
tel que M'|U'=Im(g) , et il résulte de (1.3.4.1) et de (1.3.1.4) que

Jl

fxgr M Bpr (KxK') = Im(BDm(KxK';g)J .

On en déduit que

(1) Pour la définition de MK se reporter au chapitre O.
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Im(B__(KxK';8) = Im(B__(KxK';£)) ,
Dm Dm
d'ol
Im(B(K;g)) = Im(B(K;f))
(1.3.1.3), ce qui démontre la proposition (cf. chapitre 0).

PROPOSITION 2.3.- Soient p, m, n des entiens, pe€N , m€N , ne€N , 5, une
nelation d'ondne totak sun N , comptatible avec sa sthructure de monoide et
moins gine que La relation d'orndre produit < sur N » S La nelation
d'ondre total induite par s, Aw N , U w owert de € , x un point de

U, (f,--,f) un ckément de (r(U,0" ™,
m Cp

f :OE — Or[}
Le morphisme de Oj-modubes défini par cet &ément et a un éfément de (€*)"
On suppose que powr tout i , 1sism , Le geume de fi en x est non nul et
on pose

va;x(fi) =d = (di,eji) , 1gism,

oa di e et €. est Le ji—éme élément de La "base" canonique de N
i

(cf. (1.4.1) et (2.0)), et

d=(d1,...,dm)
Alons pour tout polycylindre compact K de cP , duffisamment centné et effilé pourn
<, (cf. (II1,5.1.3)) on a
o

i) KcU ;

ii) "f;a;d;l(;x est Anversible.

Démonstration. En vertu de (1.1.1), pour tout polycylindre K de P tel que
- ]
Xx€K et KcU et tout polycylindre compact K' de " tel que Oek' ,

est inversible si et seulement si v 1'est. Or, si

- ~ D™ E;a;d;KK" 5 (x,0)
f=(f;,...,f) , pour tout i , T<ism , ona

Va;(X,O) (fi) - Va;x(fi) =di

(cf.(1.4.1.4) et (1.3.1)). Alors il résulte de (III,4.4.4) et de (III,3.2.4) qu'il

existe une constante C , C€]1,+#~[, et une partie V de (R}) pn , appartenant

au filtre de Hahn-Banach FS (cf.(1,5.1.3)), telles que pour tout polycylindre
=a

o
compact K' de (R , tel que (x,0) €K'" , satisfaisant a

e(K"; (x,0)) <C

233



G. MALTSINIOTIS

et
p"(K'"; (x,0)) €V
on ait
i) KeUxc" ;

ii) v 0~ est inversible.
D7 ;f5a;d;K"; (x,0)

Or, si 1'on désigne par r la premiére projection
r: (ROPT — (R9P

’

il existe une partie V' de (]R::)p appartenant au filtre de Hahn-Banach FS
=1
telle que

V'cr(V)
(I,5.3). Alors pour tout polycylindre compact K de P , tel que xe]% , satisfai-
sant a

e(K;x) < C
et

p'"(K;x) eV

il existe p , pE(R:)n , tel que
(p"(K;x),p) EV

et si 1'on désigne par K' 1le polydisque fermé de €™ de centre O et de polyrayon
p,ona

e(KxK'; (x,0)) = e(K;x)
et
p"(KxK'; (x,0)) = (p"(K;x),p) ,
ce qui implique que
i) KxK'eUxc";

ii) v m o~ est inversible;
D ;f;a;d;KxK'; (x,0)
d'ol

i) KcU ;
ii) Vf;a;d;K;x est inversible;

ce qui démontre la proposition.
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COROLLAIRE 2.3.1.- Sodent p et n des entiers, pEN , neN, éa une nelation
d'ondne totak sun NPT, compatible avec sa strwucture de monolde et moins fdine
que La nelation d'ondre produit s suwr NPT, U un owvent de € , x un

point de U , M un sous-O-module cohérent de Oﬂ et (fi)1§i§m une famille
ginie d'éLéments de T(U,M) telle que pour tout i , 1sism , Le geune de

fi en X 404t non nul. On pose

di = Va;x(fi) , 1gism

Aons 84
1,...,dm} ,

Le sous-module M est engendné par La gamille (fi)ISiﬁn au voisinage du point

M

ot;M;xC{d

X

Démonstration. En gardant les notations de la proposition 2.3, il résulte de cette
o
dernieére qu'il existe un polycylindre compact K de ® tel que x€K , KecU , et

tel que Vv soit inversible. Alors si 1'on désigne par M' le sous—OU-

f;a;d;K;x

module de 0{} engendré par la famille (fi)1 au-dessus de U , on a

<ism
MY e M ,
et en vertu de (2.2.2), on en déduit que
- 1
MK = MK ,
ce qui démontre le corollaire.

Remarque 2.3.2.- En combinant les propositions 2.3 et 2.1.4, on obtient aussitdt
un théoréme de division par un sous-module. Dans le paragraphe suivant on en dé-
montrera une version 'mumérique uniforme''qui nécessite quelques développements
supplémentaires.
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§3. Théoréme de division numérique uniforme par un sous-module.

Dans ce paragraphe, on €tend aux sous-modules les résultats établis au paragra-
phe 6 du chapitre III.

(3.0) Soient p et n des entiers, pe€N , n€N* , et une relation d'ordre

<
=0
total sur N , compatible avec sa structure de monoide et moins fine que la
relation d'ordre produit < sur NP 1a relation d'ordre o induit une
relation d'ordre Sa (resp. < ) sur N (identifié a P x {0} )

2
(resp. sur N'  (identifié 2 {0} xN" )) . On remarquera que les relations d'or-

dre ga et ga ne déterminent pas, en général, la relation d'ordre ga
1 2

La notion fondamentale (introduite dans (1.4.1)) est celle de 1l'exposant privi-
1égié pour ga en X d'un élément f = (f1”"’fn) de (T'(U,0 p))n ,ou U
C
désigne un ouvert de ® et x un point de U , exposant noté va_x(f) et qui
b
satisfait, comme il est facile de vérifier, a 1'identité

va;x(f) = minu (Va ;x(fi)’ei) =
1<isn '
. 5ld Ifi
=min, {deN"": 3d'eNP, 31, 1<isn: d=(d',e;) et ——=(x) £0} ,
1

BXd
ol €1see5€p désigne la 'base' canonique de N .

On remarquera que Vorx(f) ne dépend que de la restriction de la relation §a a
’
D' = NP x {e1 yoee ,en} . Cette restriction n'est pas non plus déterminée, en géné-

ral, par les relations < et < . Néanmoins, si 1'on veut 'privilégier les
0.1 Otz

exposants par rapport aux indices' il est naturel de supposer que si d1 et di

désignent deux €léments de N tels que d1 <0‘1 di , alors pour tout d2 et dJ,

dZEI\ln , déENn , on ait

(d1,d2) <q (d7,d3)
Sous cette hypotheése, pour tout d1 et di s d1 €N , di e’ , et tout d2 et dJ,
dZE]Nn , déENn , ona

(d1 ,d2)§0‘(d',dé)m(d1 <oc1 d') ou [(d1 =di) et (d2 éazdé)] s

et alors la relation d'ordre Sy (et en particulier sa restriction a D' ) est

déterminée par les relations d'ordre <, et <y . On ne fera pas cette hypo-
1 2
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these en général car les théoremes 'uniformes' ne la nécessitent pas. En revanche,
cette hypothése sera utile dans la partie "numérique' de ces théorémes car elle
permet d'obtenir des majorations plus simples et canoniques. On est ainsi conduit
a formuler la définition suivante :

DEFINITION 3.0.1.- Sodient p et n des entiers, pEN , n€N, et goc une rela-
tion d'ondne total sun NP compatible avec sa structure de monoide. On dira
que fLa relation d'ordre N privilégie Le sous-monoide MW=1 x{0} de

N 44 poun tout dy, di, d, et dj , d eEN dj eEN dZENn , déENn ,

on a

2

(d;50) <, (41,00 =(d;,d,) <, (d],d3)

PROPOSITION 3.0.2.- En gardant Les notations de La définition 3.0.1 , s4i La rela-
ton d'orndre s privilégie Le sous-monoide N de N ot 5i £'on désdigne

pan s, (resp. par S ) La nestriction de s @ N (identific @ WNPx {0})
1

(resp. 3 N (identific a {0} x N")), pour tout dy, di, d,, 4, d1€Np s
djeN, d,eN , dbeN' ona

(d1,d2)§ot(d',dé)=>(d1 <0L1 d1') ou [(d1 =di) et (d, gaz )l .

Démonstration. Si d1 <a di , Ona (d1 ,0) <4 (d1,0) et éu privilégiant le
1

sous-monoide NP de NP , on en déduit que (d1,d2) < (d',dé) . Si d1 =di

et d dé , On a (O,dz) §cx (O,dé) et ga étant compatible avec la structure

<
2 )
de monoide de N , on ne déduit que (d1 ,dz) éoc (di ,dé) . Réciproquement, si

(d1,d2) <y (di ,dé) , On en peut avoir di <Ot1 d1 car, en vertu de ce qui précede,

on aurait (d',dé) <oc (d1,d2) . La relation étant une relation d'ordre total,

<
on en déduit que d1 < d! ou d,=d} .Si d,=d! , la relation d'ordre <
0y 1 1 1 1 1 o
étant réguliére (cf. (I,1.0)) on en déduit que (O,dz) éa (O,dé) , d'ou d2 < dé,

o
ce qui démontre la proposition. 2

Remarque 3.0.3.- En gardant les notations de la proposition 3.0.2, si la relation
d'ordre <, privilégie le sous-monoide N de N , la restriction de 2, a
D' = NP x {e1,...,en} , ou €1seees€) désigne la 'base' canonique de N , est

déterminée par la relation d'ordre Se. €t la restriction de la relation d'ordre
1
éaz a 1'ensemble {e1,...,en} . Quitte a changer, le cas échéant, 1'ordre des

indices, on peut supposer que

. < €

e, < e,< ..
1a22a2 a, N
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<

et alors la restriction de a {e1 ,...,en} n'est autre que la restriction

2

de 1'ordre antilexicographique g, sur N (cf. (I,3.12.1)). La notion
d'"exposant privilégié' ne dépendant que de la restriction de s a D' , on peut
alors supposer, sans perte de généralité que < n'est autre que ST I1 sera

donc utile d'introduire la notation suivante.

<

une relation d'ordre
la

(3.0.4) Soient p et n des entiers, p€EN neEN , et

total sur N° | compatible avec sa structure de monoide. On désigne par <
|

3 H

a
relation dans définie par
(4, »d,) 5 (d’,dé)%(d1 <o dp) ou [(d4 =d{) et (d,s;d))],
' n n
, djeN , dyeN , €N s

antilexicographique sur N (c£(I,3.12.1)). La relation

ou désigne la relation d'ordre

b

pour d1 e NP

<

est une relation

+: . - e e e s
d'ordre total sur N°™" , compatible avec sa structure de monoide, privilégiant

le sous-monoide NP de NP , induisant gu sur N et si < est moins fine
que la relation d'ordre produit < sur NP — est moins fine que la relation
d'ordre produit < sur N

LEMME 3.1.- Sodient X un espace C-analytique, Z un fermé analytique d'inténieurn
vide de X , Y R'ouvert dense de X défini par Y=X-2 , n un entier, neN,
une nekation d'ondre totak sur N° , compatible avec sa sthucture de monoide
et F Le {iltrne de Hahn-Banach F;a Aun (]Rj:)n définl pan cette nelation d'on-
dre (cf. (1,5.1.3)). Alons pour tout ensemble V appartenant au §itre F(Y/Z)
swn (RD™ Y (cf. (II1,6.1.3)) 4l existe une famille (o) de fonctions
continues

<

1<jsn

°j
telle que pour tout j ,
Z , et telle que pour tout

(p1(y),...

Démonstration. En vertu de
<

ce de définition de

continue ¢
QY —

telle que

(ryxidy)

:Y——--»]R:

’

1£jsn P et 1/pj sodent modénées Le Long de
point y de Y on ait

’

o), Y) €V
(I11,6.1.7), si A= (aij)1<1gn,1§j§n désigne une matri-
(cf.(1,3.11)), il existe & , S§€ R, , et une fonction

*
RY

1/¢ soit modérée le long de Z , et telle que

(E eV

n;8 ;¢

On peut supposer que la fonction ¢ soit €galement modérée le long de Z en la

remplacant par la fonction

@' définie par
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@' (y) = inf{g(y),1} , pour y€Y

(car alors Eh;é;w":en;6;w ). Pour tout i, 1<is<n , on désigne par pi la

fonction
r . —_— *
pl 1 Y — R*

définie par
i-1 i-1
pi - wd /21+6+...+6 .

La fonction pi est continue, modérée le long de Z , 1/pi est également modérée
le long de Z (App.I, 1.2.2,(vii)) et on vérifie facilement que pour tout y ,
YEY , ona

(CHOFPES »op (V) €E

b

n;8;0(y)
autrement dit

(P15 espp DY) €8s

Si pour tout j , 1<js<n , on désigne par pj la fonction

%5

Y — ]R:

définie par

la fonction p. est continue, modérée le long de Z , 1/p. est €galement modérée
le long de Z (App.I, 1.2.2,(vii) et (1.3.2)) et pour tout y , YyEY , on a

rA(pi(y),...,pﬁ(y)) = (01(Y);'--,Dn(y))
(cf. (I, 4.7)), d'ou

O S O L.

autrement dit

(01(Y)’---’pn(y)’y)€ (rAx idY)(En'ﬁ'@) ’

ce qui démontre le lemme.
Remarque 3.1.1.- En gardant les notations du lemme 3.1, il en résulte immédiatement
que si X est un sous-espace analytique localement fermé de c" et si une pro-

priété d'un polycylindre compact pointé est satisfaite pour tout polycylindre com-
pact de " pointé dans Y , suffisamment effilé pour Sy 2 modérément le long de
Z (cf. (111,6.2.1)), alors il existe une famille

nues

(pj)1§j§n de fonctions conti-

05

Y — R},
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telle que pour tout j , 1<j<n , p. et 1/pj soient modérées le long de Z et
telle que pour tout point y de Y le polycylindre compact pointé (K(y),y) , ou
K(y) désigne le polydisque fermé de " de centre y et de polyrayon

(p1 ),... ,pn(y)) , satisfasse a la propriété.

(3.2) Soient p et n des entiers, p€N , n€N , éa une relation d'ordre total
sur NPT
induite par ga sur NP , X un sous-espace analytique localement fermé de
q:p
dense de X défini par Y=X-Z , X' 1le sous-espace analytique localement fermé
de ¢P*™ défini par

, compatible avec sa structure de monoide, Sa' la relation d'ordre

, Z un fermé analytique de X d'intérieur vide (dans X ), Y 1l'ouvert

X'=Xx {0} ,
Z' 1le fermé analytique d'intérieur vide de X' défini par

Z'=Zx {0}
et Y' 1'ouvert dense de X' défini par

=Yx {0} =X'-2"

LEMME 3.2.1.- S{ une propriété d'un polycylindre compact pointé est satisgaite pour
tout polycylindre compact de (hai pointé dans Y' , sugffilsamment efgile pour
ga , modénément Le Long de Z' (cf. (I11,6.2.1)), alorns pour tout polycylindre
compact de CP pointe dans Y , (K,y) , suffisamment ef§iké pour Syr » modé-
nément Le fkong de Z , AL existe p , p€ (]R:)n , tel que Le polycylindre com-
pact pointé (KxK';(y,0)) , o K' désigne Le polydisque fermé de " de centre
0 et de polyrayon o , satisfasse a cette propriéte.

Démonstration. Soit éa Q (resp. < ) 1'unique prolongement de ga (resp.

a';Q

22 +n .
de ga, ) en une relation d'ordre total sur Qp (resp. sur Qp ) , compatible
avec sa structure d'espace vectoriel (cf. (I,2.1)) et posons

- +n .
= {.stEQp ta >a;Q 0
et
B' = {a'€QP: a' >a'5Q 0}

11 existe un entier m , m€ N , une famille (a, )1< <m d'éléments de B et une
famille ((Di)lgigm de fonctions continues

wi:Y——z»]R*

modérées le long de Z , telles que pour tout point y de Y et tout polycylindre
compact K (resp. K' ) de P (resp. de ) , tel que Y€ K (resp. tel que
o€ K' ) , la condition
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p"(KxK';(y,00) € n Va,
T<ism “1°

implique que le polycylindre compact pointé (KxK',(y,0)) satisfait a la proprié-
té (cf. (II1,6.2.1) et (I1,5.2.6)). En vertu de (I,5.3.1), il existe une famille

finie (ai,)1§i,§m, d'éléments de B' telle que si 1l'on désigne par ¢ la

fonction
Qo:Y — ]R:
définie par
©(y) = sup o (y) , pour yeY,

1<ism
on ait

Va'

117000 <TG D Vas/0,007

n
1<i'sm! ism

ou r désigne la premiére projection
. p+n P

r: (ROPT — ()
La fonction ¢ est une fonction continue, modérée le long de Z (App. I, 1.3.3)
et pour tout point y de Y et tout polycylindre compact K de ? , tel que
yEI% , la condition

1" K; € n \'

Py 1sitemt i 1/00)
yn

implique qu'il existe p , p€ (R} , tel que

(e"y),0)€ 0V, .
U  qgign 23Ve 007
ce qui implique que si 1'on désigne par K' 1le polydisque fermé de " de centre
O et de polyrayon p on a
p"(KxK';(y,0)) e n
1£ism

et démontre le lemme (cf. (III1,6.2.1) et (I,5.2.6)).

\Y s
a;; 1/cpi (y)

LEMME 3.2.2.- S{ £'on suppose que La nelation d'orndre ga priviliegie Le
sous-monoZde NP de NP | alons 84 une propriéte d'un polycylindre compact
pointé est satisfaite pour tout polycylindre compact de (s pointé dans Y',
suffisamment effilé pour S modénément Le Long de 7' , il existe une famille

(pj)1§j§n de fonctions continues

pj Y — R,
telle que poun tout j , 1sjsn , p. et 1/pj s0dent modénées Le Long de I
et telle que pour tout polycylindre compact de (ng pointe dans Y , (K,y) ,
suffisamment effLé pour ga, , modénément Le Long de Z , Le polycylindre

compact pointé (KxK'(y),(y,0)) , oi K'(y) désigne Le poLydisque fermé de c"
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de centre O et de polyrayon (p] o),.. .,pn(y)) , datisfasse a cette propriété.

Démonstration. I1 existe un entier m , m€N , des familles (di)1<igm et
a2 +n . . =
(Gi)1gi§m d'éléments de NP telles que pour tout i , 1gism , di <a S
et une famille (q::i)1 <ign de fonctions continues
0 : Y — R}

modérées le long de Z , telles que pour tout point de Y et tout polycylindre
compact K (resp. K' ) de P (resp. de ") tel que y€l% (resp. tel que
0€K' ) , la condition

o (KxK'5(y,00) € 1
1

v
1sisn 817943 1/0; )

implique que le polycylindre compact pointé (KxK',(y,0)) satisfait a la proprié-
té (cf. (II1I,6.2.1)). Posons

d.=(d!,d") , d'enN |, dvenN' , 1gizm ,
i il i i
et
§;=(688,80) , sJEN , svEN" | 1gizm
La relation d'ordre ga privilégiant le sous-monoide N de NP , Si1 1'on

désigne par éa" la relation d'ordre sur N’ induite par ga , pour tout i ,
1€ism ,ona

(di <! éi ) ou [(d:!l = éi) et (d'.l' <@ G'i')]

Quitte a changer, le cas échéant, 1'ordre des indices, on peut donc supposer qu'il
existe m' , 1<m'<m tel que

(3.2.2.1) di<a, 6; , lsism',

et

(3.2.2.2) di=di et d; <a..6'i' , m'<ism .

En vertu du lemme 3.1, il existe une famille (pj)1§j§n de fonctions continues
pj Y — ]R: ,

telle que pour tout j , 1£j<n , p. et 1/pj soient modérées le long de Z ,
et telle que pour tout point y de Y on ait
(3.2.2.3) (o1 (W) seeesp (Y E N Vi g,
1 ’ ’n m'<igm 61 d1’1/(01(y)
Pour tout i , 1<is<m' , on désigne par q)i la fonction
npi Y — R}

définie par
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6"'—(1"'
' = (. 11
© =0 p

ou p désigne la fonction

p: Y —> (]R::)n
définie par

p = (p‘]"",pn)
La fonction cpi est continue, modérée le long de Z (App. I,1.3.2) , etopour
tout point y de Y et tout polycylindre compact K de cP , tel que yeK , 1la
condition

"(K;y)e n Vv .

° 1signt 8i4i31/0i ()
implique que si 1l'on désigne par K'(y) 1le polydisque fermé de €" de centre O
et de polyrayon p(y) , on a

p"KxK'(y);(y,00)e n Vo .,

1<igm' % 4,31/, ()

Or, en vertu de (3.2.2.2) et de (3.2.2.3), on a

o"KxK'(y);(y,0)e n V¢ o, s

ce qui démontre le lemme (cf. (III,6.2.1)).

THEOREME 3.3.- Soient p, m, n des entiens, peN , me N , ne N* , s, une reta-
tion d'ondne totak sun NP , compatible avec sa structure de monoide et moins
g4ine que La nefation d'ordre produit < sun N » Sy La nelation d'ondre
induite par s sur N, d-= (dg,--5d ) un etément de (N ter que
A4 €1seesp désigne La "base" canonique de N, pour tout i , 1<isgm,
on alt

di=(di,ej') R

1

ol die Moot 1§ji§n , U un ouvert de cP , X un sous-espace analytique
germé de U , Z un ferumé analytique de X d'inténieur vide (dans X ), Y
L'ouvert dense de X défind pan Y=X-2 ,

@ Y— [1,+]
une fonction continue, modénée Le Long de Z (f1,...,fm) un €Lément de

n |\m

(F(U,Ocp)) et

£:00 — O°

U U
Le monphisme défini par cet éfément. On suppose que powr tout i , 1<ism , et

tout y , yeEY , Le geume fiy de fi en y est non nul et que
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va;y(fi) = di

I) Pouwr tout polycylLindre compact de € pointé dans Y , (K;y) , suffisam-
ment effile pour S modénément Le Long de Z , fa condition

e(K;y) 20(y)
Amplique que
i) KeU ;
ii) powr tout ékément g de B(K)™ ik existe un couple unique (go,gI) el
que

n m
g € I B: X) , g€ I B_., .+ (K)
0 j=1 Aoj(d) 1 Q=1 di+Ai(d)

(cf. (2.0)) et
g =B(K;f) (g1) + go
et 84 L'on désigne par Of.d;K (resp. par rf;d;K ) 2'application

Op.q.x ¢ BIOT — BEO"
(resp. Tedok BIO" — B(O" )
déginie par
Of;d;K(g) =8

(resp. rf;d;K(g) =g ),

on a
a) Of.d;K et TediK sont des applications C-Linéainres continues ;
m
b) Im(og, 5.0 = T B_., = X)
BGKT g ;@

n
c) Ker(of;d;K) =Im(rf;d;K) = jE] Bzoj(d)(K) ;

d) B(K;f) est une scission de Of;d;K H

e) 44 L'on désigne par M Le sous-0y-module cohérent de OE engendré par
f15.--5f, Les conditions suivantes sont Equivalentes

a) Moc;M;yc {d1 seee ,dm} H

B) Of.d;K est une scission de B(K;f) ;

iii) 44 M' désigne un AouA-OU—module cohénent de 03 tel que pour tout i,
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1<ism, fi ETWU,M) , La condition
Ma;M,;yc{dP...,dm}
implique que
# = ;)"
II) S& L'on suppose en plus que La refation d'ondre < =~ privilégie Le sous-mo-
noide NP de NP il existe des fonctions continues
Y 1Y — R* et y,:Y— R} ,
modénées Le Long de Z , telles que pour tout polycylindre compact de P podinte

dans Y , (Kjy) , suffisamment effifé pour <., , modénément Le Long de 7 ,
La condition

e(K;y) so(y)

implique Les assertions (i), (ii) et (iii) de fLa partie (I) du théonéme, oa £'on
rnemplace L'assention (ii), (a) par L'asserntion plus précise
et r

a') sont des applications C-Linéaires continues et on

0f;d;K f;d;K

||0f;d;K“K§‘P1 (y)/p"do (K;y) ,

o d_= sup d! (£a borne supérieure étant nelative a La relation d'ondre produit
1€ism

S sun ]Np) , et

”rf;d;K”Ké ‘1’2()’)
Démonstration. Soient U' 1'ouvert de €P'™ défini par U'=Ux i , X' le
sous-espace analytique fermé de U' défini par X'=Xx{0} , Z' le fermé analy-

tique d'intérieur vide de X' défini par Z'=Zx{0} , Y' 1'ouvert dense de
X' défini par Y'=X'-Z'=Yx{0} et ¢' 1la fonction

Q' Y — [1, +=[
définie par
@'(y,0) =®(y) , pour y€Y .

La fonction ' est continue, modérée le long de Z' (car ¢ 1'est) . Considé-
rons 1'élément f=(f,,...,5) de (T(',0 )" défini dans (1.3.1). On remar-
m P

que que pour tout i , 1<ism , et pour tout y , yeY , on a

(1) Pour la définition de Mé se reporter au chapitre O.
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Vot;(y,O) (fi) = Vu;y(fi) =di
(cf. (1.4.1.4) et (1.3.1)). En appliquant le lemme (III, 6.4.1) a f et en raison-
nant comme dans la démonstration du théoréme (III, 6.4.2), on en déduit 1'existence
de fonctions continues

b Y — Ry et y53:Y'— R} ,
modérées le long de Z' , telles que pour tout polycylindre compact de e
pointé dans Y' , (K",y') , suffisamment effilé pour éa , modérément le long

de Z' , la propriété (P) ci-dessous soit satisfaite :
(P) La condition
A eXy) o' (y")
Amplique que :
B1) K'eu'
BZ) pour tout g' , g’ €BD,(K") , AL existe un couple unique
(g5,87) ek que

E]

g' €B (K" , gle I B _ (XM
0 D'nAo(d) 1 i=1 von( di+Ai @)
et
g' =BT (g +g)
et 84 £'on désigne ~ . par ~ L' application
L L"on désigne par ODm;f;d;K";y' (resp. p rDm;f;d;K";y' ) pp.
m
o : By, K'") — I (K'")
Dm;?;d;K";y' o i=1 Do
(resp. r _ : B,,(K'") — B, (X)) )
Mgk v
déginie par
o - (gv) = gv
D5 d;Ky! °
(resp. T _ ., (g") =g )
DKy ° ,
alons o _ ., (resp.T q ~ ) est une application C-Linéai-
e d; Ky P Dm;f;d;l(";y'
e continue

’

(1) Pour la définition de D,, D' et D" se reporter a (1.0).

0’
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60
< w‘i(),')/pn (K”;y') s

Il

o . I
D E5dsK Ty K
o & = sup d. (la borne supérieure étant relative a la relation
1<ism
d'ordre produit < sur N , et
T~ I < P50y
oM Edsky K
En vertu de (III,3.2.1), la condition (Bz) de la propriété (P) implique en particu-

lier que pour tout a , a ec)™ , est inversible.

Vo~
7" fsa;d;K Yy
Pour démontrer la partie (I) du théoréme, on remarque qu'en vertu du lemme
3.2.1, pour tout polycylindre compact de ? pointé dans Y , (K,y) , suffi-
samment effilé pour ga, , modérément le long de Z , il existe p , pE€ (R:)n,
tel que le polycylindre compact pointé (KxK';(y,0)) , ou K' désigne le poly-
disque fermé de €" de centre O et de polyrayon p , satisfasse a la propriété

(P). Comme
e(KxK';(y,0)) = e(K;y) ,

si e(K;y) co(y) , alors (KxK';(y,0) satisfait a la condition (A) de la proprié-
té (P) , donc également aux conditions (Bl) et (Bz) , et en particulier

Voo~ est inversible (pour tout a , a€ (@*)m ) , ce qui implique
D7 f5a;d;KxK" 5 (y,0)
que VEiaid;Kgy est inversible et la partie (I) du théoreéme résulte de (2.1.4),

(2.1.4.1), (2.1.4.2), (2.2.1) et (2.2.2).

Pour démontrer la partie (II) du théoreéme, on remarque d'abord que si 1'on
suppose que la relation d'ordre su privilégie le sous-monoide N de N ,

en vertu du lemme 3.2.2, il existe une famille (pj)1<jsn de fonctions continues

pj Y —— Ri

telle que pour tout j , 1<jsn , p. et 1/pj soient modérées le long de Z

et telle que pour tout polycylindre compact de €P pointé dans Y , (K,y) ,
suffisamment effilé pour S modérément le long de Z , le polycylindre compact

pointé (KxK'(y),(y,0)) , ou K'(y) désigne le polydisque fermé de " de centre
O et de polyrayon (p1(y),...,pn(y)) , satisfasse a la propriété (P). Comme

e(KxK'(y);(y,0)) = e(K;y) ,

si e(K;y) <o(y) , alors (KxK'(y),(y,0)) satisfait a la condition (A) de la
propriété (P), donc également aux conditions (B1) et (BZ) . Ensuite, on remarque
qu'en vertu des définitions de dO et §, , ona
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60 =(do’66)

et

J={j:1<jsn : 31, 1gism, j=j;} .
Soit Uy (resp. ¥, ) la fonction

(p1:Y—-—) R}  (resp. Yy 1Y —> Ry )
définie par

n
Vi) =91 (r,0(z ps(y))/ T p;(y) , pour y€y,
j=1 ) jer )

n
(2 0;00) swp (1/p;) , pour yeY, ).

(resp. wz(y) =¢é(y,0) 22n-
j=1 1<jsn

Les fonctions ¥, et y, sont continues, modérées le long de Z (App.I,(1.3.2)
et (1.3.3) ). Enfin, il résulte de (2.1.4.1) et de (1.1.1) que

llog.q.xllg s llog ~ l Iy, - el
f;d;K"K Dm;f;d;KXK'(y);()’,O) KXK'()') D; ;e KXK'()’)

IA

S n
S [9](y,0)/p" °(KxK' (¥);(y,0))] I K000
J:

De méme, il résulte de (2.1.4.2) et de (1.1.1) que

Ire.q.xllx S lltp. .o ll llr .~ I Iy .ol
£3d;KTK D3T3 TR () p M B 45 kxK T (1) 5 (y,0) KxK? (y) D3 L3 KK ()

n
$ 221 sup (1/p(K' (1)500) w3(7,0) I pl(K! (1);0)
1sjsn ] j=1 J
En observant que
8 d
o KXK' ()3 (y,0) = 0" C5y) T (y)
jeJ

et que
Py (K" (y);0) = p5(¥)
on en déduit 1'assertion (a'), ce qui démontre le théoréme.

Remarque 3.3.1.- Dans la plupart des applications, la fonction ¢ est supposée
constante. En appliquant le théoréme a ¢ = 1 , on obtient un cas particulier con-
cernant les polydisques. De méme, en vertu de (III, 6.2.3), on peut formuler une
version '"paramétrique' de la condition "suffisamment effilé' et obtenir un énoncé
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plus explicite. En particulier, si éa' n'est autre que la relation d'ordre anti-
lexicographique sur NP , on obtient un énoncé analogue a la proposition (III,
6.4.6).

249



G. MALTSINIOTIS

§4.- Théoréme de privilége numérique uniforme (cas général).

Dans ce paragraphe, on démontre le théoréme de "privilege numérique uniforme',
résultat principal de ce travail. On en expose plusieurs variantes, et on énonce
explicitement les cas particuliers les plus importants, la version la plus générale
étant le théoréme 4.4.1, et la plus concréte le corollaire 4.4.7. Par ailleurs,
on démontre un théoréme de '"division numérique uniforme' par un sous-module
(théoreme 4.3.2).

(4.1). Soient p et n deux entiers, pe€N , ne N* , Sa une relation d'ordre

total sur N , compatible avec sa structure de monoide et moins fine que la
relation d'ordre produit < sur ) , U un ouvert de P , M un
sous-OU-module cohérent de OE , X un fermé analytique irréductible de U et
X' 1le fermé analytique de UxC" défini par

X' =Xx {0}

On désigne par So,'M'X la partie de X définie par
Sasiix = "oy 00 ;%0

(cf. (IL,3.1) et (1.3.4)), ou 7 désigne la premiére projection
T UxC — U .

Remarque 4.1.1.- On démontre que dans le cas ou n=1 (donc ot M est un idéal
cohérent de OU ) la définition ci-dessus coincide avec celle de (II,3.1).

PROPOSITION 4.1.2.- En gardant Les notations de (4.1), £'ensemble Sa'M'X est un
ferumé analytique d'inténieur vide de X et s4 y et y' désignent deux points
de X-S

on a
oM X ?

M

sty = Moyt ¢

Pusiy = Fasisy!

Démonstration. La proposition est une conséquence directe de (II,3.2), (II,3.3) et
(1.4.5).

(4.1.3) En gardant les notations de (4.1), on désigne par Ma'M'X (resp. par
b b gen

P ) la partie de N géfinie par

a;M;Xgen

ou;M;)(gen b MOL;M;}’

(resp. P )

" =P .
OL’M)Xgen O‘aM;y
ol y désigne un point quelconque de Y_Sa'M'X (cf. (4.1.2)).
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THEORRME 4.1.4.- Soient p etn des entiens, peEN , neN* , g une rela-
tion d'ondre total sun N compatible avec sa structure de monox.de et moins
§4ine que La nelation d'ondre produit < sun N U un ouvent de €P et
M un OU-modw@e cohénent. Alons i existe une stratification C-analytique
(Y);er de U tekle que pour tout i i€l , et touwt yety',yey;,
y'€ Yi , on ait

Mty ~ Mumyt & Famsy = Posusy

Démonstration. Le théoréme est une conséquence directe de (I1,3.4.1) et de (4.1.2).

(4.2) Soient p , n des entiers, peN , neN* , éa une relation d'ordre total
sur NPT , compatible avec sa structure de monoide, moins fine que la relation
d'ordre produit < sur ) N , U un ouvert de cP , X un sous-espace ana-
lytique fermé irréductible de U , Z un fermé analytique de X distinct de X ,
U' 1'ouwvert de P défini par U’ =Uxc" , X' le sous-espace fermé de U'

défini par X'=Xx {0} et Z' le fermé analytique de X' défini par Z'=Zx {0}.
LEMME 4.2.1.- Sodient m un entier, me€N ,
. pm n
f: OU —_— OU
un monphisme de OU-modwCeA et M Ze AouA—OU-module cohénent de OE , Amage de
f . S{ L'on suppose que

Soz;M;XCZ

alons AL existe un recouvrement de U' foaumé parn des ouverts de P contenus
dans U' distingués pour ga;D' ;X';Z';'f) M .

Démonstration. En vertu de (III,7.1.1.3), il suffit de démontrer que pour tout
point x de U il existe un voisinage ouvert de (x,0) dans U' distingué pour
(s HAED QA f) . Soient K un polycylindre compact de ¢® contenu dans U tel

que x€K et K' un polycylindre de " tel que O€ K' . Nous allons démontrer
que 1'ouvert V' de U' défini par

est un ouvert distingué pour éa;D';X';Z';'f) . En vertu de (4.1), 1'hypothese

Sosi;x 2

implique que
cZ

’

Sa; 700 ;X!

(1) Pour la définition de D' se reporter a (1.0), pour celle de T o2 (1.3.1)

et pour celle des ouverts distingués a (III,7.1.1.1).
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et come J(K) est 1'idéal de Q; n engendré par ?1""’?m (ou f=(F. ,...,'fn))

(cf. (1.3.4.1)), il résulte de (7.2.2) qu'il existe un ouvert V de o , conte-
nu dans U' , contenant KxK' et distingué pour 50‘; ]Np+n; X';Z';?) , autrement
dit il existe des constantes G , H , G E]R: » HERY , une fonction continue

w:Y'nV—>]R:

(ot Y'=X'-Z') , modérée le long de Z'nV , un entier r , r€ N , une famille
(d.) . d'éléments de NP et des familles

et (h.

@5y 15j5r,yerrnv jiy)1sjsr, 1sigm,yey v

d'éléments de F(V’onm) , telles que :

o) pour tout y , yeY'nv ,

My 0msy = Wpoendpd
B) pour tout y , yeY'NnV , et tout j , 1sjsr ,
m ~
g..= L h.. f.

Y = WY1
Y) pour tout y , yeEY'NV , tout x' , x'€V , et tout iet j ,
1<i<m , 1<jsr ,

. (x")|£G et |h.,. (x")|sH ;

gy hy5, &N

§) pour tout y , yeY'nV , et tout j , 1<jsr,
d

- JX_
Voy &5y) = d; et 1/ W] soy) ,

ou X= (X1,...,X , X ) désigne les coordonnées de ¢

yeeo X

p’ “pt+l p+n
Soit

r' =Card({d1,...,dr} no')
Ona r'sr , et quitte a changer 1'ordre des indices, on peut supposer, en vertu
de (a) , que pour tout y , yeY'nV , ona

MQ;J(M)’ynD = {d1"°"drv} ’
et alors il résulte de (1.4.4), (1.4.5) et (II1,3.7) que

4.2.1.1) = {d1’°"’dr'}

Ma;D’ ;JM) 5y
On pose
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6" =n 22" Texr;0)% 6
et
@ =Y nV'
La fonction ¢' est continue, modérée le long de Z'NnV' (App.I,1.2.2,(ii)). Pour

tout y , y€Y'NV' et tout ietj , 1<ism , 1<j<r' , on pose

. = . K K'
iy XK;K'(gJyI <K'
(cf. (1.2)),

My = Ok iy [KXKD

(cf. (1.1.0)),

to= oy |V
gy = Yyl
et
h!. =n.. [V'.
Jiy = iyl
On a gJ!y€I‘(V', %:pm) , h:'iiyeF(V’, ?Epm) et il résulte de (B) et de (1.2.5) que

XK K,(g | KxK")= Z [6 K,(hJ1y|KxK')XK;K,(fi|K><K') +XK;K' lelK K')GK K,(f | KxK")l,

Or, ;ﬂKXK'€BDJKXKU (cf. (1.3.1)), ce qui implique que

n

(£, [KxK") = F, [KxK'

XK;K'
(1.2.1), et que
0

n

. K,(f [KxK")

(cf. (1.1.0)) (car D'<N™- D) . On en déduit que

m
= 5 on - & KxK
Yiy = Z Mgy - GalExED

ce qui implique que
m
! I h!l. S
&y = ;I My - BV

(4.2.1.2)

D'autre part, il résulte de (1.2. 1) et de (y) que
17 5y llgger = 2171 e (k130 HgJylleK, SG'
De méme, il résulte de (1.1.0.4) et de (y) que

”njiy“KXK' s thiy “KX](' sH
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On en déduit que pour tout y , ye€Y'nV' , tout x' , x'€V' , et tout i et
j,1sism, 1sjsr'

.2.1.3 ' x| 6 ox")| s
(4.2.1.3) ngy(x )| £G' et |thy(x )| sH

Par ailleurs, en vertu de (1.2.1) et de (1.1.0),

1
ij€BD,(KXK) et r]J.i),EBD0

(KxK")

On en déduit que

4.2.1.4 E (g! D' et E_(h!. D

( ) y(&jy) <Pt et Bylhjy )b,

Enfin il résulte de (1.2.4) et de (8) que pour tout y , yeY'nV' , et tout j ,
1sjsr',

(v: ) =v (g.)=dj

Vasy Yy’ T Vasy 8y

(car djED’) , d'ol

4.2.1.5 'y =d. ,
( ) Yoy 8jy) = 9
et en vertu de (1.2.3), on a
Idjl Idjl Idjl
9 g! 9 Y 9 g.
— s —Ty-—3m
X J X J ax J
(car d.€D') , d'ol
) ld. |
9 Jg!
(4.2.1.6) 1// — - | se' )
ax J

(par (68)) . Les conditions (4.2.1.1), (4.2.1.2), (4.2.1.3), (4.2.1.4), (4.2.1.5)

et (4.2.1.6) impliquent que V' est distingué pour éa;D';X';Z'ﬁ) , ce qui

démontre le lemme.

LEMME 4.2.2.- Soit M un AouA-OU—modu/Ze cohérent de 03 . S& £'on suppose que
S()L;M;XCZ

alons AL existe un recouviement de U' fermé parn des ouverts de P contenus

dans U' distingués pour ga;D’;X';Z';J(M))(”

(1) Pour la définition de D' se reporter a (1.0), pour celle de J(M) a (1.3.4)
et pour celle des ouverts distingués a (III,7.1.1.2).
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Démonstration. En vertu de (III,7.1.1.3), il suffit de démontrer que pour tout
point x de U il existe un voisinage ouvert de (x,0) dans U' distingué pour
(ga;v';x';z' ;J(M)) . Soit V un voisinage ouvert de x dans U tel qu'il cxiste
un entier m , m€ N , et un morphisme de Ov—modules

(o — o
tel que Im(f) = M|V . En vertu de (4.2.1), il existe un voisinage ouvert de

(x,0) dans vxC® distingué pour §a; D';x'n(ch“) ;2N (Vx Cn) ), ce qui

démontre le lemme, en remarquant que Im('f) = J(M)IVXCn (1.3.4.1).
THEOREME 4.3.1.- Soéent p, m, n des entiens, peN , meN, ne N+, s, une
netation d'ondne totak sun NPT , compatible avec sa structure de monoide, moins
fine que La nelation d'orndre produilt < sur NP or privilégiant Le sous-mo-
noide N de W'D <y L& netation d'ondre induite par s sw N, U
un ouvert de CP , X un sous-espace analytique fermé {Luvéductible de U , Z
un fermé analytique de X , distinet de X , Y £L'ouvert dense de X dégind
par  Y=X-2 ,
A n

f: OU — OU
un morphisme de OU—modu,?,ws et M Ze AouA-OU-moduZe cohénent de OE , Amage de
f . On suppose que

S(!;M;XCZ
Alons pourn toute fonction continue

@ :Y— [l,+[ ,
modénde Le Long de 7 , L existe des fonctions continues

11)1 Y — ]R: et wZ:Y——> ]R: ,
modénées Le Long de Z , telles que pour tout polycylindre compact de P pointe
dans Y , (K,y) , suffisamment ef§ilé pour éa' , modénément Le Long de Z ,
satisgaisant a La condition

e(Ksy) 20(y)
on ait

i) KecU ;
ii) <L exdiste une scission C-Lindaire continue, normale ok de B(K;f)

o : B — BO™

telle que :

dO
a) ”OK”K s ‘P] ) /e" (Ky)
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d =sup(m(M__ . ))
o) a’M’Xgen ?
m  désdignant La premithe projection
m: NPT NP
(a borne supérieune Etant nelative a fa nelation d'ondre produwit < sun NP ;

b) ||id - B(K;£) ooyl S v, (y)
B(K)n K IK 2

n

c) Ker{o,) = 1
K . .
=1 4

® ,

o pour tout j , 1<j<n

s

A.={deNP:(d,e.) gP . }
] 3 e X e

et ST PRRRPLA désigne La "base" canonique de N

Démonstration. Soient U' 1'ouvert de C€°'" défini par U' =Uxc" , X' le
sous-espace analytique fermé de U' défini par X'=Xx{0} , Z' le fermé analy-
tique de X' défini par Z'=Zx{0} , Y' 1l'ouvert dense de X' défini par

Y'=X'-2"=Y x {0} et ¢' 1la fonction

O Y — [1, +f
définie par

¢'(y,0) = @(y) , pour yeyY

La fonction ¢' est continue, modérée le long de Z' (car ¢ 1'est). Considérons
1'élément F=(%,,...,f) défini dans (1.3.1). La famille ¥,,...,¥ engendre
1'idéal cohérent J(M) de OU' (1.3.4.1) et pour tout y' , y'€Y' , ona

et Moy = Muusx

P .. oyt =P
a; D' I(M) y! asM;X gen

gen
((1.4.4), (1.4.5), (II,3.7) et (4.1.3)). Soient

r =Card(M_.,,. )
O"M’Xgen

et d= (d1""’dr) un élément de (Np+n)r tel que

M. ={d,,...,d_ } .
a’M’Xgen 1 T

Alors pour tout y' , y'eY' ,ona

M =
]oz;v' ;T 5y

256



PRIVILEGE NUMERIQUE UNIFORME

et on vérifie facilement que

(4.3.1.1) p'nAa (d) =D'-P_ . .
(o) a’M’Xgen

On pose

§ = sup d. = sup(hk;M )

°  qsigr ;Xgen

(la borne supérieure étant relative a la relation d'ordre produit < sur DP+n).
En vertu de (4.2.1), il existe un recouvrement de U' par des ouverts de "
contenus dans U' , distingués pour §a;0’;X’;Z';f) . En appliquant la proposi-
tion (III,7.1.3) a T , en tenant compte de la remarque (III,7.1.6) et en raison-
nant comme dans la démonstration du théoréme (III,7.3.1), on en déduit 1'existence
de fonctions continues
wi: Y'— R} et wZ:Y'——9 Ry ,
modérées le long de Z' , telles que pour tout polycylindre compact de e

pointé dans Y' , (K",y'), suffisamment effilé pour , modérément le long de

<
(07
Z' > la propriété (p) Ci—aprés SOit Satisfaite .

(P) La condition

A) e(Ky")se'(y")
implique que

B1) K'cy' ;

Bz) AL existe une scission C-Linéairne continue normale ok" de BDm(K”;g)

N " 1y
Gk" : BD’(K ) BD (K"
o

telle que

A\l A\l 1 H6 "
a) llogllgns w101/ oY)
b) HldBDI (K”) - BDm(K”:f) 00]'(||”Ku§ ‘Pé()") 5
¢) Ker(og,) = By (K1),
o

ol AO =p'-P (cf. (4.3.1.1) et (III,7.1.6)).

a;M;Xgen

En vertu du lemme 3.2.2, il existe une famille (pj)1<an de fonctions continues
% (Y —> R:

telle pour tout j , 1<js<n , p. et 1/p. soient modérées le long de Z et
telle que pour tout polycylindre compact de ~CP pointé dans Y , (K,y) , suf-
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fisamment effilé pour Syt modérément le long de Z , le polycylindre compact

pointé (KxK'(y),(y,0)) , o K'(y) désigne le polydisque fermé de " de centre

0 et de polyrayon (p1(y),...,pn(y)) satisfasse a la propriété (P). Comme
e(KxK'(y);(y,0)) = e(K;y) ,

si e(K;y) so(y) , alors (KxK'(y),(y,0)) satisfait a la condition (A) de la
propriété (P), donc également aux conditions (B1) et (Bz). Or, en vertu des défi-
nitions de dO et (50 , On a

8= (dgs83) >

§'= 3 e.

° jey I 7
S ERRERLN désigne la 'base' canonique de N' et J une partie de [1,n] . Soit
(p1 (resp. wz ) la fonction

b :Y— R} (resp. wZ:Y—> RY )
définie par
n
P =9, C 2 p(¥))/ M pi(y) , pour yey ,

n
(resp. 11)2(y)=wé(y,0)22n_1 (z pj(y)) sup (1/pj(y)) , pour yeyY).

j=1 1<j<n

Les fonctions by et ¥, sont continues, modérées le long de Z (App. I, (1.3.2)
et (1.3.3) ). En vertu de la proposition (1.3.2), il résulte de la condition
B2 (en tenant compte de 1'identification de BD (KxK'(y)) a B(K) (cf. 1.1.0))

que si 1l'on pose °

% = 01'(><K' ) ° uI);1I;e

alors % est une scission €-linéaire continue, normale de B(K;f) et

n
lloglh = 2 o5& 0300 Hloger (yy lhockr ¢yy

j=1
n 60 d0
< _21 D'j'(K'()’);O) w;(y,O)/o” (KXK'(Y),(V,O))§w1(y)/p" (X,y)
J=
60 dO
(car p"(K'(y);0) = p.(y) et p" "(KxK'(y),(y,00) =p" "(K;y) T p:(y)) .
j j jes J

D'autre part, il résulte de (1.1.1) et de (1.3.1.3) que

idB(K)n- B(K;f)cK= TD;.[[;e o[idBD' (K<K' (y)) BDm(K xK' (y) ;) cka, (y)] o “D;H;e
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ce qui implique en vertu de (1.1.1) que
n
<2l sup (1/p% (K" (7); 0003 (y,0) 2 D'J.'(K’(Y);O) £y, ()

id - B(K; o ||
! B KK IESES j=1

(car DH‘(K’(}') ;0) = P o) .

Enfin on a

_1 [ - ] = <
Ker(oK) =Hp. ;e (Ker(onK,(y))) =Tpimse (Ker(OKxK,(y))) _TD;H;e(BAO(KXI\ )

(1.1.1) et en vertu de (I1I,2.8.8), (i), on en déduit que
n
Ker(gy) = H BA.(K) s
=1 7
ce qui démontre le théoréme.

THEOREME 4.3.2.- Soient p etn des entiens, p €N , neN* , s, une nelation
d'ondne total sun NPT , compatible avec sa structuwre de monoide, moins fine que
La nelation d'ondre produit s sur NP ot privikégiant Le sous-monoide NP de
N <, ta netation d'ondre induite par s, swr NP, U un ouvert de
® , X un sous-espace analytique fermé innéductible de U , Z un fermé ana-
Lytique de X , distinet de X , Y <L'ouvert dense de X défind par Y=X-12

et M un so0us-0y-moduke cohénent de 03 . On suppose que

S Z

OL;M;XC
Alons pour toute gonction continue

(o H Y _— [1 ,+°°[ E]
modénée Le Long de Z , AL existe des fonctions continues

w1 Y— R} et wz Y— R} ,
modénées Le Long de Z , tefles que pour tout polycylindre compact de cP pointé
dans Y , (K,y) , suffisamment effilé pour <., , moderément Le Long de Z
satisfaisant a La condition

e(X;y) co(y)

on alt :
i) KeU ;
n n (1)
i1) B" = M @ T B, (K) ,
=t

(1) Pour la définition de MK se reporter au chapitre O.
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o pour tout j , 1£jsn ,

A, = {deNP: (d,e.) £P .,.v }
j J 0"M’Xgen

et eq,.--5e) désigne La "base" canonique de N' , et si L'on désigne par T-K
(resp. par 1y . ) Le projectewr de B(K)"
. n n
U B(K)" — B(K)

. el n
(resp. Tk - B(K)" — BX) )

=]

n

=]

By (K) ) paratlelement a

surn My (resp. sur
=1 ] j

: BAj(K) (resp. a My ),

oan a

a) m est une application C-Linéaire continue et

M;K
“nM;K”K s ("1 /p" O(K;)’) s

ol do:=suP(“(Ma‘u-X )) , m désignant La premiére projection

gen
m: N NP

(£a borne supérieune étant nelative a fa nefation d'ondre produit < sun NP )

b) r est une application C-Linéaire continue et

M;K
”rM;K“K s ‘Pz()’)

Démonstration. La démonstration du théoréme (4.3.2) est tout a fait analogue a
celle du théoréme (4.3.1), en utilisant le lemme (4.2.2) a la place du lemme
(4.2.1) et la proposition (III,7.1.4) a la place de la proposition (III,7.1.3).

Remarque 4.3.3.- Si 1'on ne suppose plus que la relation d'ordre ga privilégie
le sous-monoide N’ de W' , on peut obtenir des versions plus faibles des
théorémes (4.3.1) et (4.3.2) en utilisant le lemme (3.2.1) a la place du lemme
(3.2.2) et en raisonnant comme dans la démonstration de la partie (I) du théoréme
(3.3). Dans le théoréme (4.3.1) on aboutit a 1l'existence de la scission €-linéaire
continue normale, o de B(K;f) satisfaisant a 1l'assertion (ii), (c) mais pas
aux majorations (ii), (a) et (ii),(b). De méme, dans 1'assertion (ii) du théoreme
(4.3.2), on obtient la décomposition en somme directe de B(K)n , ainsi que la
continuité des projecteurs, mais non pas les majorations (ii), (a) et (ii),(b).

COROLLAIRE 4.3.4.- En ganrdant Les notations du théoreme (4.3.1), sodent éB une
nekation d'ondre totak swe NP compatible avec sa stwcture de monoide,
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moins gine que La refation d'ondre produit < sun NPT, g La nelation
d'ondre induite par g surn N, M ge AOM-OU-mOduZe cohérent de 0’3 ,

noyau du monphisme £ , et
@ Y— [1,+=]
une fonction continue, modénée Le Long de Z . On suppose que

Sg3mr;x =2
Alons pourn tout polycylindre compact de C€P pointé dans Y , (K,y) , suffisam-

ment ef§4LE pour §B' , modénément Le Long de 7 , satisfaisant a La condition

e(XK;y) < o(y)
on a :
i) K<U ;

ii) My = Ker (B(K; £))

Démonstration. En vertu de la définition de MI'( , 1'inclusion
M]‘(CKer(B(K;f))

est vraie pour tout polycylindre compact de ¢® contenu dans U . D'autre part,
il résulte du théoreme (4.3.2) appliqué a M' (et en tenant compte de la remar-
que (4.3.3)) que pour tout polycylindre compact de P pointé dans Y , K,y) ,
suffisamment effilé pour gs, , modérément le long de Z , satisfaisant a la
condition

e(K;y) so(y)
on a:
i) KcU

® -,

K A.

m
i) BBOO™ =M@ 1 B
i=1 1

ol pour tout i , 1€ism ,

}

A, ={de NP : (d,e;) £ P
. gen

B;M' ;X

et eq,...,e désigne la 'base' canonique de N" . En particulier, 1l'ensemble
des polycylindres compact K' de ® tels que y€K' , K'cK et tels que

(1) Pour la définition de Ml'( se reporter au chapitre O.
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m
BK)™ = My, & T B, (X)
L TAL
i=1 "i
forme un systéme fondamental de voisinages de y (cf. (III,6.2.5) et
(I11,5.2.1.2)). Cette décomposition en somme directe commutant avec les morphismes

de restriction, on en déduit, par passage & la limite inductive, une décomposition
en somme directe

m
4.3.4.1 = (Lim My i !
( ) Oy,y = (Limig,) @ (lin 121 BAi(K M.
Or,
(4.3.4.2) lim Mg, = M)', = Ker(fy) s

ol fy désigne le germe du morphisme f en y . Soit g un élément de
Ker (B(K;f)). Alors il existe g et g, tels que
m

B, (K)

g=81+8) » 8 €M et gzeil:T1 .

Si 1'on désigne par gy , gw et gZy les germes en y de g , g et g, respecti-
vement, 1'hypotheése ge€Ker(B(K;f)) implique que gyEKer(fy) , 1'hypothese

g1 EMI'( implique, en vertu de (4.3.4.2), que g1y€Ker(fy) et comme gy=g1y+g2y

on en déduit que g2y€Ker(fy) . Or, 1'hypothese g€ Iﬁl BA (K) implique que
i=1 i

m
g2y€ lim _121 BAi(K') et il résulte de (4.3.4.1) que g2y=0 , d'oli g2=0 (prin-

cipe du prolongement analytique). On en déduit que gEMI'( , ce qui démontre le

corollaire.

THEOREME 4.3.5.- Soient p, m, n  des entiens, peN , meN* , nelN* ,

éa' (resp. §cx" ) une relation d'orndre total surn N (resp. sun ]Np+m),
compatible avec sa sthucture de monoide, moins fine que La relation d'ordre pro-
duit < sun NPT (resp. £ sun Ny et privilégiant Le sous-monolde NP
de NPT (resp. de N , U un ouvert de &, X un sous-espace analyti-
que fenmé unéductible de U , Z un gfeumé analytique de X , distinet de X ,

Y L'ouvert dense de X défini par Y=X-1
. n

£:0p — 0]
un morphisme de OU-modu,({e,s, M R'image de £ et M' son noyau. On suppose que
Les nelations d'orndre ga, et ga.. Anduisent La méme relation d'orndre ga Aun
N et que
oa';M;XUSoz";ivi';XcZ
Alons pour toute fonction continue

S
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©: Y — [1,+[ |
modénde Le Long de Z , i existe des fonctions continues

\p1 Y —> R: et wz Y — ]R: ,
modénées Le Long de 7 , telles que pour tout polycylindre compact de ? podnte
dans Y , (K,y) , suffisamment efgiLe pour S, modénément Le Long de Z ,
satisfaisant a

e(K;y) <o(y)

on ait :
i) KeU
ii) 42 existe une scission C-Linéaire continue, normale, unique GK de
B(K;f)
oK:B(K)" — BO™
telle que
n m
Ker(oK) =1 BA.(K) et Im(oK) = 1_1 BA,(K) ’
j=1 j i=1 1
ot pour tout j , 15jsn ,
A.={deN: (d,e.) ¢P ,. v )}
J J s M Xgen
pour tout i , 1<ism ,
A = {deN: (d,e!) EP .y
i i o ,M,Xgen

€1seer€) (resp. ei ""’61;1) désignant La "base" canonique de N (resp. de

Nm),e,tona:

d
a) ”01(”]( SR (y)/o" O(K;y) ,

0= sup(n(f»la, X ))
b 3 gen

T désignant La premiihe projection
m: N — NP
(a borne supérnieune étant nelative & fa nefation d'ondre produit < sun N )

b) ||id - B(K;f) o0 <y, (y)
I B(K)n K“K 2
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Démonstration. En vertu du théoreme (4.3.1), du théorgme (4.3.2) et du corollaire
(4.3.4) , i1 existe des fonctions continues

IIJ{ Y — ]R: , wZ:Y—> ]R: et lpé:Y—» ]RI
modérées le long de Z , telles que pour tout polycylindre compact de P pointé

dans Y , (K,y) , suffisamment effilé pour éa , modérément le long de Z ,
satisfaisant a la condition

e(X;y) c0(y)

on ait :
i) KeU ;

ii) il existe une scission C-linéaire continue, normale o]'( de B(K;f) telle

que
d
a) logll < vj(/0" OKsy)
b) |lid - BIK;E) ool |l S0, () 5
BO™ KV'K = %2
n
c) Ker(op) = Rl B, (K ;
=1 7
n m
iii) B(K)" = My @ 1T BA,(K)
i=1 “i
n m
et si 1'on désigne par 1 le projecteur de B(K)™ sur T BA,(K) parallélement
i=1 %4

a Mg , T est une application C-linéaire continue et
||rK||K§1Pé(}’) H
iv) Ml'( = Ker(B(K;f)) .

Comme Im(B(K;f)) = MK (cf. chapitre 0), il résulte de (III,1.2) et de la condi-
tion (ii) ci-dessus que

n
(4.3.5.1) B(K)" = Im(B(K;£)) ® I B, (K)
=t 7
et
(4.3.5.2) B(K)" = Ker(B(K;£)) @ Im(op) -
De méme, il résulte des conditions (iii) et (iv) ci-dessus que
m
(4.3.5.3) B(K)™ = Ker(B(K;f)) ® I B, (K)
i=1 8
et que
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(4.3.5.4) B(K; ) °ry = B(K;1)

On déduit de (4.3.5.1) et (4.3.5.3) qu'il existe au plus une scission satisfai-

sant aux conditions du théoréme et si 1'on pose

en vertu de (4.3.5.4) on a

B(K;£) o B(K;f) = B(K;f) ok B(K;f) = B(X;£)
et

Ok B(K;f) og = Tg ok B(K;f) ok =Ty ok = oy

L'application oy est donc une scission C-linéaire continue, normale, de B(X;f)
et comme en vertu de (4.3.5.2) et (4.3.5.3), Ty induit une bijection de 1'image

m
de ok sur BA!(K) , ona
i=1 i
m n
e = 1) =
Im(oK) = I BA!(K) et Kor(oK) Ker(oK) _g BA_(K) .
i=1 i j=1 J

Enfin, on a

id - BK;£) o0y, = |lid - BK;£) o0}l S, (y)
| 80" KK B O™ Kllk=¥2

et si 1'on désigne par ¢1 la fonction
by 2 Y— R}
définie par
¢1 = ‘p‘i ll)é )
la fonction b, est continue, modérée le long de Z (App.I,1.3.1), etona
d
lloglh = lrglh llo gl s v, 0070 % Ksy)
ce qui démontre le théoreme.

Remarque 4.3.6.- De méme que pour les théorémes (4.3.1) et (4.3.2), si 1'on ne
suppose plus que les relations éa, et ga” privilégient le sous-monoide NP s
on obtient une version plus faible du théoréme (4.3.5). On aboutit aux mémes affir-
mations, sans toutefois les majorations (ii), (a) et (ii), (b).

Remarque 4.3.7.- Dans la plupart des applications des théorémes (4.3.1), (4.3.2)
et (4.3.5), la fonction ¢ est supposée constante. J'ignore si 1'on peut alors
choisir la fonction ¥, constante (comme c'est le cas pour un idéal). En appli-
quant ces théorémes 8 @ = 1 , on obtient des cas particuliers concernant les
polydisques.
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D'autre part, en vertu de (III,6.2.3), on peut en formuler des variantes
""paramétriques'’.

Remarque 4.3.8.- On peut trouver étrange le rble joué par le point y qui "pointe"
le polycylindre compact K dans les théoremes (4.3.1), (4.3.2) et (4.3.5), et
encore plus dans le corollaire (4.3.4) (ou les versions faibles des théoremes
précités) oi y ne figure pas du tout dans la conclusion. Ce rdle est purement
auxilliaire. Néanmoins, il permet de simplifier les énoncés, qui restent ainsi pro-
ches du cas particulier ou K est un polydisque fermé de centre y . Ce qu'il
faut retenir est que la décomposition en somme directe définie dans le théoreme
(4.3.2), ainsi que la scission dans le théoreme (4.3.5) sont indépendantes du
point vy

THEOREME 4.4.1.- Soient p, m, n des entiers, peEN ,meN ,neN , éa une
nefation d'ondne sun NP, compatible avec sa structure de monoide et moins fine
que La nekation d'ondne prodwit < sur N, U un ouvent de € et

LA n
f .OU — OU
un morphisme de OU-modw@e/s. Alons AL existe une stratigication C-analytique

(Y;)jer de U et pour tout i , i€I , un &lément d; de N, tels que
pour toute fonction continue

Qpl . Yl —_— [1,+oo[

modénde Le Long de Y, -Yi(”, ik existe deux fometions continues
byt Y, — RY et y,:Y, — R

modénées Le Long de Y_i-Yi , telles que pour tout polycylindre compact de P
pointé dans Y; K,y) , sufpisamment effle pour ga , modénément Le Long
de Yi —Yi , datispaisant a La condition
e(K;y) s o; (y)
on ait :
i) KcU ;
i1) 48 existe une scissdion C-Linéairne continue, nowmale ok de B(K;f)
o+ B — BOO™
telle que 4.
a) |logll € w070 2K5y) 5

b) ||id - BXK;6) ooyl € ¥ ()
B(OM K"K i2
(1) Y; désignera toujours l'adhérence de Y; dans U (et non pas dans cP).
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Démonstration. Si n=0 le théoréme est trivial. On peut donc supposer que n € IN*.
Soient M 1le sous-Oy-module cohérent de 03 , image de £ , et ga la relation
d'ordre total sur N | définie dans (3.0.4). En vertu de (4.1.2) et de
(11,3.4.1), il existe une stratification C-analytique (Yi)
tout i, i€l

i€l telle que pour

SE; ;i ch - Yi

Comme la relation d'ordre <_ privilégie le sous-monoide N de NP et induit
S, Sur N (cf. (3.0.4)), si 1'on pose

Ql

(4.4.1.1) d. =sup(mQ .. ) ,
i &3 (7)) o

ou m désigne la premiére projection

m: N WP
(la borne supérieure étant relative a la relation d'ordre produit < sur ) ,
le théoréme (4.4.1) résulte du théoréme (4.3.1).

COROLLAIRE 4.4.2.- En gardant Les notations du théoneme (4.4.1) , 4L existe une
stratification C-analytique (Yi)i€I de U, et pour tout i , 1€l , un éLe-
ment di de NP ot des fonctions continues

bip Yy > Rp et oy Yy — RY O,

modénées Le Long de Y, -Y; , tels que pour tout polydisque fermé K de ®  de

centre y appartenant a Y , suffisamment effiLé pour ga , modénément Le Long
de YI-—Yi (cf. (III, 6.2.4)), on ait :
i) Ke<U ;
i1) AL existe une scission C-Lindairne continue, nomnmale o de B(K;f)
og ¢ BAO" — BO™
Zelle que
d.
a) “0](“]( s UJH(Y)/Q 1 >
ok p désigne Le polyrayon de K ;

b) ||id - B(K;f) o oy |l < v. .
Il BO™ S v00

Démonstration. C'est un cas particulier du théoréme (4.4.1) appliqué a 9; = 1,
compte tenu du fait que pour tout polydisque fermé K de €? de centre y et de
polyrayon p on a

p"(Ksy) = p
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COROLLAIRE 4.4.3.- Soient p, m, n des entiers, pEN , m€N , neN , A une
matrnice, a p Lignes et p cofonnes, {nvernsible, a coefficients dans R, , U
un ouvert de €° et

. n
f.O'lrJl—» OU

un morphisme de OU-modu,CeA. Alons AL existe une stratification C-analytique
(Y.l)i€I de U , et powr fout i , 1€l , un éLément di de NP ot un nombre
néel Gi , <Si€ ]R+ , tels que pour toute fonction continue

@, Yi — [1,+]

modénée Le Long de ﬁ-‘{i , AL existe des gonctions continues

Y-

1:Yi——>]R:,q;i1:Yi—>]R:e,twiZ:Yi—-—»]Ri,
modénées Le Long de Y_i'Yi , telles que pour tout point y de Yi et tout polycy-
Lindre compact X de CP tel que y€K ALes conditions

a) e(K;y) éwi(y) H

b) o"(Ksy) €y (B )

$8551/0; ()
Ampliquent Les assentions (i) et (ii) du théoreme (4.4.1).

Démonstration. Si 1'on désigne par S la relation d'ordre total sur N’ définie
par la matrice A (cf.(I,3.11)), cette relation est compatible avec la structure
de monoide de NP , et moins fine que la relation d'ordre produit £ sur NP

(car les coefficients de la matrice A sont positifs ou nuls). En vertu de
(I11,6.2.3), le corollaire résulte donc du théoreme (4.4.1).

COROLLAIRE 4.4.4.- En gardant Les notations du corollaire (4.4.3) , AL existe une
sthatification C-analytique (Yi)i€I de U et pour tout 1 , i€l , un éLément

di de NP , un éfément 65 de R, et des fonctions continues

Y.

l:Yi—> RY ,11)i1:Yi——+]Rj‘r ,wiZ:YiﬁlR: ,

modénées Le Long de ﬁ-Yi , telles que pour tout point y de Y; et fout poly-
disque K de e® de centre y et de polyrayon p , pE€E (]Rj:)p , La condition
e rA(Ep;(Si;1/UJi(}’))
dnplique Les asserntions (i) et (ii) du corollaire (4.4.2).
Démonstration. C'est un cas particulier du corollaire (4.4.3) appliqué a 0, = 1.

Remarque 4.4.5.- Dans les corollaires (4.4.3) et (4.4.4), on peut remplacer
1'hypothése que les coefficients de A sont positifs ou nuls, par 1'hypothése plus
faible que la relation d'ordre total sur N définie par la matrice A est moins
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fine que la relation d'ordre produit sur )

COROLLAIRE 4.4.6.- Soient p, m, n des entiers, peN , meN ,neN , U un
cuvert de € et

£:05 — 0f
un morphisme de 0 -modules. Alons AL existe une strnatification C-analytique

(Y. )1€I u , Q/tpCLUL tout i , 1€1 , un élément d; de NP et un nombre
neel 85 » <SiE]R+ , tels que pour toute fonction continue

@, Yi — [1,4+[ ,
modénée Le Long de ﬁ-Yi , AL existe des fonctions continues

bt Y3 Ry, 9540 Yy — Ry et gy Y, — Ry,

modénées Le Long de ﬁ-Yi , telles que pour tout point vy de Yi et tout poly-

cylindre compact K de @  zer que 'y EI% Les conditions

a) e(Gy) s () s, N

bY ey UGY) <1/9; () 05Ky < gf F(GY),ee e, (K3Y) < g2y (5D
impliquent Les assertions (i) et (ii) du théoreme (4.4.1).
Démonstration. C'est un cas particulier du corollaire (4.4.3) appliqué a la matrice
unité.
COROLLAIRE 4.4.7.- En gardant fLes notations du corollairne (4.4.6) , i existe une

strnatification (Y. )l€I de U , et pour tout i , 1€l , un éfément di de
N , un nombre néel <S > 85 €ER, , et des fonctions continues

lpl Y _’R s q}i1 . Yl_’ ]R* et 1’112 H Y' —'—*]R*

modénées Le Long de Y -Y; , tels que pour tout point y de Y; et Zout polydisque
femé K de CP de centre y e/t de pokyrayon o= (pq,- cesPp) 5 DE (R%)P

Les conditions

b

>

84 84
p1<1/¢i(}’) ’ pz<p] PR :pp<pp‘|

Ampliquent Les asserntions (i) et (ii) du corollaire (4.4.2).
Démonstration. C'est un cas particulier du corollaire (4.4.6) appliqué a @ =1 .

Remarque 4.4.8.- En relisant attentivement les démonstrations des théorémes et
propositions conduisant aux corollaires (4.4.3) et (4.4.4), on peut obtenir des
formules explicites pour di et cSi en fonction de la matrice A et de 1'ensem-

ble M_ M (F.) , ou ga désigne la relation d'ordre total sur N défini

i“gen

par la matrice Aet M 1le sous-OU-module cohérent de OE , image du morphisme f
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(ce qui implique en particulier que di et &, ne dépendent pas du morphisme f
lui-méme mais uniquement de son image). L'élément di de W est défini par

(4.4.1.1). La formule pour éi est plus complexe. On utilise pour cela les fonc-
tions introcduites dans (III,4.5.1). On remarque d'abord que si A::(aij)1§i§p,1§jgp

et si 1'on désigne par A la matrice & p+n lignes et p+n colonnes définie

par
A= (aij)1§i§p+n,1§j§p+n ’
ol
Eij=0 > 1€isn ] J#p"'l ’
Eij=1 , Tsisn , j=p+i ,
._ij=;,1i_n’j , <i<ptn , 1<j<p ,
aij =0 » A<isptn , p<jspwm ,
alors A est une matrice de définition de la relation d'ordre total é& sur

W (cf. (3.0.4) et (I,3.11)). Si 1'on pose

ry=cardMg 7y )

i“gen
. . 1z +n, T
et si d!=(d!,;,...,d! ) désigne un €élément de (BP ) 1 tel que
1 11 Iy
Mo, o ={ar,,...,d" },
ot,M,(Yi)gen i1 iry
alors

(cf.(III,4.5.1)). Dans le cas particulier des corollaires (4.4.6) et (4.4.7) , ol
A est la matrice unité on obtient une formule remarquablement plus simple. En
effet on vérifie facilement dans ce cas que

§. = sup d..+1

1<j<p

ol d;=(djy,.-e,d; ) désigne 1'élément de N défini par (4.4.1.1) (la relation
s, €tant la relation d'ordre antilexicographique).
Remarque 4.4.9.- Si n=1 1la fonction wiz peut &tre chosie constante dans les

corollaires (4.4.2), (4.4.4) et (4.4.7) (cf. (4.3.3)). J'ignore si cela est vrai
pour n quelconque.

Remarque 4.4.10.- On peut énoncer une version ''stratifiée" du théoreme (4.3.2),
comme on 1l'a fait pour le théoréme (4.3.1). De méme, on peut formuler une variante
plus précise du théoréme (4.4.1) en utilisant le théoréme (4.3.5) a la place du
théoréme (4.3.1). On laissera le soin au lecteur d'expliciter ces énoncés.
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APPENDICE I

FONCTIONS MODEREES

Dans cet appendice on définit la notion de fonction modérée et on démontre les
propriétés utilisées dans ce travail. Intuitivement une fonction modérée est une
fonction qui croit comme un polyndme quand on ''s'approche' d'un sous-espace analy-
tique, vu comme étant a 1'infini. Par exemple, une fonction définie sur un espace
affine est modérée le long de ''1'hyperplan a 1'infini'" si et seulement si sa va-
leur absolue est majorée par la valeur absolue d'une fonction polynomiale. Au §1,
on démontre les propriétés élémentaires et au §2, celles qui découlent des inéga-
lités de tojasiewicz.
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§1.- Propriétés élémentaires de fonctions modérées

(1.0) Tous les espaces analytiques considérés sont des C-espaces analytiques sépa-
rés, dénombrables & 1'infini, et en particulier, paracompacts. Dans la suite, on
utilisera fréquemment les propriétés topologiques suivantes :

i)  pour tout recouvrement ouvert localement fini (Ui) d'un espace

analytique, il existe un recouvrement ouvert (U!l).1€I tel qu;€11)our tout 1, i€I,
UiCUi H

ii) si U et U' désignent des ouverts d'un espace analytique X , tels que
U'cU , il existe un ouvert Wde X tel que U'cW et WcU ;

iii) si FO et F1 désignent des fermés d'un espace analytique X , tels que
FO nF1 =@ , il existe une fonction continue

x : X — [0,11]
telle que
X|F0=O et X|F1=1

Enfin, on rappelle que si (Zi) désigne une famille de fermés analytiques d'un

i€l
espace analytique X , l'ensemble

Z=nN Zi

i€l

est un fermé analytique de X et pour tout point x de X 1l existe un voisinage
ouvert U de x et une partie finie IX de I tels que

ZnU =(nN Zi) nu

1€1X

(1.1) Dans ce paragraphe, on se fixe un espace analytique X , un fermé analytique
Z de X et on désigne par Y 1l'ouvert X-Z de X . Si U désigne un ouvert

de X on appellera fonction C-analytique sur U un €lément de 1"(U,0X )
red

Les notions que nous définirons ne dépendent que de la structure réduite sous-
jacente a X . Néanmoins, on ne supposera pas que X soit réduit car ces notions
peuvent &tre utiles méme si OX posséde des éléments nilpotents.

DEFINITION 1.2.- Soient
¢ : Y— R

une gonction continue et z un point de Z . On dit que @ est modénée Le Long
de Z en z , 4'4L existe un voisinage ouvert U de z dans X et une famille
finie (g')1§j§n , neN , de fonctions C-analytiques sur U , n'ayant pas de
zéno commun dans YNU , satisfaisant a La condition
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M pour tout compact K de U AL existe
des constantes AetN , Ae€R , NeR

Zelles que

+

n 2N
weYnK : (¢ lgj(y)l Yely)|s A
j=1
On dit que fLa fonction ¢ est modénée Le Long de Z , a4 efle L'est en tout
point de Z . S{ E désigne une partie de R et

Y : Y —E
une fonction continue, on dit que 1 est modérnée Le Long de 7 , s4 fa gonction

¢© obtenue en composant 1 avec L'infection canonique de E dans R est
modénée Le Long de Z

Exemples 1.2.1.- Une fonction continue
¢ : Y— R

localement bornée sur X (et en particulier, la restriction d'une fonction
continue sur X ) est modérée le long de Z . Si g est une fonction C-analyti-
que sur X ne s'annulant pas dans Y , la fonction ¢ , définie par

oly) = 1/|gy)| , pour y€eY ,

est modérée le long de Z . Si (gj) désigne une famille finie de fonctions

1<jsn
C-analytiques sur X , n'ayant pas de zéro commn dans Y , la fonction ¢ ,

définie par
n 2
o(y) = 1/(.Z1|gj(y)| ) , pour yeY,
J=
est modérée le long de Z . Si Z=@ toute fonction continue sur Y est modérée
le long de Z

Remarque 1.2.2.- Pour des raisons techniques on ne supposera pas que Z soit

d'intérieur vide dans X . Néanmoins, si z est un point de Z tel que z€Y ,

toute fonction continue
9 : Y —R

est modérée le long de Z en z . (Il existe un voisinage ouvert U de z dans X
tel que YNU =@ , ce qui implique que la fonction identiquement nulle sur U
n'a pas de zéro dans YNU ). La notion de fonction modérée n'est donc intéressante
que si Y est dense dans X . Les propriétés suivanges découlent aussitdt de la
définition.

i) Une fonction continue

@ : Y —R
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est modérée le long de Z si et seulement si il existe un recouvrement ouvert
localement fini (Ui) i€l de X tel que pour tout i , i€l , il existe une famil-

le finie (gij) de fonctions C-analytiques sur Ui n'ayant pas de zéro

1<jsn.
i
commun dans Yr'lUi et satisfaisant a la condition (M) de la définition (1.2).

ii) Si pour tout ouvert U de X on désigne par Cm'X'Z(U) 1'ensemble des

fonctions continues
® : YNU —R

modérées le long de ZNU , pour tout ouvert U' de X contenu dans U et tout
élément ¢ de Cm;X;Z(U) on a

©lYnu'e Cm;x;z(U')

et Cm-X-Z est un faisceau sur X , sous-faisceau de i*(CY) , ou CY désigne le
b b
faisceau des fonctions continues sur Y et i 1'injection canonique i:Y «—X .

iii) Si Z' désigne un fermé analytique de X tel que Z<Z' , Y' 1'ou-
vert de X défini par Y'=X-2' et

¢ : Y —R

une fonction continue, modérée le long de Z , alors la fonction
olY': Y' — R

est continue, modérée le long de Z' .

iv) Si X' désigne un sous-espace analytique fermé de X , Z' 1le fermé
analytique de X' défini par Z'=X'NZ , Y' 1l'ouvert de X' défini par

Y'=X'nY = X' -2'
et
®:Y—R
une fonction continue, modérée le long de Z , alors la fonction
O[Y' 1 Y' — R
est continue, modérée le long de Z' .
v) Une fonction continue
¢:Y —R
est modérée le long de Z si et seulement si il en est de méme pour |o|
vi) Soient

<p1:Y—>]R et cpZ:Y—>]R
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deux fonctions continues telles que

VEY : o, | s o]

Alors si ¢, est modérée le long de Z il en est de méme pour o
1 8 2

vii) Soient
oY ——»]R+

une fonction continue et a un nombre réel, az0 . Si ¢ est modérée le long
de Z , il en est de méme pour o?

PROPOSITION 1.3.- Sodent
9, Y — R et (pZ:Y——»]R

deux fonctions continues. SL @ et ®, sont modénées Le Long de Z , AL en est
de méme pour ®; 0,

Démonstration. Pour tout point z de Z il existe un voisinage ouvert U de z dans
X et une famille finie (gi)1§i§m (resp. (hj)1§j§n ) de fonctions C-analytiques
sur U , n'ayant pas de zéro commun dans YNU , tels que pour tout compact K
de U il existe des constantes A et M (resp. BetN) , A€R_, MER_,

(resp. BER,_, N€ ]R ) telles que

ZM

yEYNK : (Z lg; 17 o, ()] <A

2\N
(resp. Wy€YnK : (Z ]hj(y)l) lo, ()| <B )
j=1
Pour tout iet j, 1€ism, 1<jsn, on pose
fij=gihj .
La famille (fi.)

j~12ism,1<jsn
n'ayant pas de zéro commun dans YNU , et si 1'on pose

est une famille de fonctions (C-analytiques sur U ,

L =sup{ M,N }

et

m m

C=supl(Z lg (x)]ZLM(ZIh (x)l )L A+( T |gg ()] 2) (Z|hL)|2LN )
x€K 1i=1 j=1 i=1 j=1

pour tout point y de YNK on a
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2
C 2 lE0190 oy o) +o,0] =

1€ism
1sj<n
s gDt s th(y)I) oy [+, 001 <
1<ism 15jsn
sCx gD s mo At A lg, 1D & ;D Nesc,
1€ism 1<jsn J <isn 15jsn J

ce qui démontre la proposition.

COROLLAIRE 1.3.1.- Sodent

(p1:Y——»]R et ng:Y—->R
deux fonctions continues. SL A et @, sont modénées Le Long de Z , AL en est
de mé&me pour 0@,
Démonstration. On a

2 2

loy @y sy + @,
et en vertu de (1.2.2), (vii) et (vi), le corollaire (1.3.1) résulte de la propo-
sition (1.3).

COROLLAIRE 1.3.2.- Soient n un entier, n€N , P un polyndme & n indétermi-
nées a coefpicients dans R et (mi)1<i<n une famille de fonctions continues

®; * Y — R
S4 pour tout i, 1<isn , fLa fonction 9; est modénée Le Long de 7 , iL en
est de méme pour P(m1,...,¢n)
Démonstration. En raisonnant par récurrence, le corollaire (1.3.2) résulte de la

proposition (1.3) et du corollaire (1.3.1).

COROLLAIRE 1.3.3.- Soit (q)i)ieI une gamille de fonctions continues

(pi:Y—->]R

tocakement dinie sun X V. Si pour towt i , i€l , La fonction o, ost

modénée Le Long de Z 4L en est de méme powr sup @. et I .
iel 't ier *

Démonstration. En vertu de (1.2.2), (ii), on peut supposer que la famille (q;)i)iEI

est finie. Alors il résulte du corollaire (1.3.2) que I @, est modérée le
i€l

(1) Cela signifie que pour tout point x de X il existe un voisinage ouvert U de
x dans X tel que l'ensemble des indices i , 1€I , tels que la fonction ®;
ne soit pas identiquement nulle sur YNU , soit fini.
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long de Z . D'autre part, en vertu de (1.2.2), (v), pour tout i , i €I , la fonc-
tion |@;| est modérée le long de Z et il en est donc de méme pour _ZI [ @]

1€
Or,

Isup o;< = o]

iel b qer t
On en déduit que sup @, est modérée le long de Z ((1.2.2),(vi)) .

i€l
COROLLAIRE 1.3.4.- Sodent (Ui)iel un recouvrement ouvernt Localement find de X
et poun tout i , 1€I , une fonction continue

®; YﬁUi — R ,

modénde Le Long de ZNU; . Alors pour Zout recouvrement (Vi)
pour tout i, 1i€1 ,

iel de X el que
Vi<l

L existe une fonction continue
o :Y—R,

modénée Le Long de Z , telle que powr fout i , i€l , et tout y , yeYav, ,
on ait

0, ) Soy)
Démonstration. Pour tout i , i€I , il existe un ouvert Wi de X tel que
V. cW.cW. cU.
i i~
et une fonction continue
Xi : X — [0,1]
telle que
xjIVi =1 et xIX-Ww; =0
(cf.(1.0)). Soit wi la fonction
wi :Y —R
définie par
] = .
@ﬂYﬂUi—(xﬂYnU) ®;
et
! - =
@i]Yf1(X Ui) 0

La fonction @ est continue, modérée le long de Z . En effet, wi[Yn U, est
modérée le long de ZﬂUi ((1.2.1) et (1.3.1)), (pUYn (X-Wi) =0 est modérée
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le long de 2Z ﬂ(X-ﬂ) , et comme X est la réunion des ouverts Ui et )(-W_i s
il résulte de (1.2.2), (ii) que (p_i est modérée le long de Z . La famille

(‘DJ!.)iEI étant localement finie sur X , la fonction ¢ définie par ¢ = sup @]
i€l

est continue, modérée le long de Z (1.3.3), et pour tout i , i€l , et tout y ,

yEYnVi , on a

o) 2o () = x; ) @; () =0 (),
ce qui démontre le corollaire.

Remarque 1.3.5.- En gardant les notations de la démonstratign du corollaire (1.3.4),
si pour tout y , ye€Y , on désigne par Iy la partie de I définie par

Iy={1€I : yEUi} ,
1'ensemble Iy est fini et on a

o(y) < sup npi(y)
1€1

En particulier, s'il existe une constante A , A€ R , telle que pour tout i ,
1€l , et tout vy , yEU.1 ,

o;(Y) <A,
alors pour tout y , yeY , on a
oly) <A
COROLLAIRE 1.3.6.- En gandant Les notations du cornollaine (1.3.4) , s4 pour tout

i, 1€l ,

¥y 1U; — 10,110

désigne une fonction continue, (L existe des fonctions continues
P s X — 10,10 et y'":X— 10,11

Zelles que pouwr tout i, i€l , et tout x , xEVi , on ait

V') sy; () sy ()

Démonstration. En vertu de (1.3.5), 1l'existence de " résulte de (1.3.4) appliqué

a Y=0 et l'existence de y' en découle, en remarquant que pour tout i , 1i€I,
la fonction 1/11;i est une fonction continue de Ui dans 10,11

(1.4) Soient U un ouvert de X et (h ), une famille finie de fonctions
C-analytiques sur U . On dit que la famille (hk)1<ksxn est une famille d'équa-
tions C-analytiques de Z dans U si B

ZnU= {x€X:vk, 1<ksm, hk(x)=0}
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Pour tout point x de X il existe un voisinage ouvert U de x dans X et une

famille finie d'équations C-analytiques de Z dans U

LEMME 1.4.1.- Sodent U un ouvert de X , (gj)1§j§n une gamille gindie de
gonctions C-analytiques surn U n'ayant pas de zérno commun dans Y NU et
(hk)1§k§m une famille 4inle d'équations C-analytiques de Z dans U . Alors

pour tout compact K de U , 4L existe des constantes CetM , CERY , MER],

telles que n 2 M n )
vxeK : (I [h 6)])7sC 1 [gi(x)|
k=1 =1 J

J:
Démonstration. Si 1'on désigne par Z' 1le fermé analytique de U défini par
Z'={x€U : ¥j , 1<jsn, gj&) = 0}

ona Z'<ZNU et en particulier pour tout k , 1<ksm , la fonction h  s'an-
nule sur Z' . En vertu du Mullstellensatz C-analytique, pour tout point x de U
il existe un voisinage ouvert UX de x dans U , un entier NX , Nx€ N* , et une

famille de fonctions C-analytiques sur UX , telle que pour

(%kj) 1<kem, 15§50

tout k , 1<ksm , on ait

NX n
by [Uy = RS * (g]Up
L'ensemble K étant compact, il existe une famille finie (xi)1<i<r de points de
U telle que
Ke U U
1sisr M
Posons
N= sup N
1<isr 71

et pour tout i, j, k, 1<isr , 1£jsn , 1<ksm ,

La fonction Bikj est une fonction C-analytique sur UX et pour tout 1iet k ,

1<isr , 1¢k<m, on a 1

N
thUx. =
i

nmo~Mm3s
—_

Bips *(gsilU )
j ikj it

I1 existe un recouvrement ouvert (Vi) de K tel que pour tout 1 ,

1<isr
1<isr , Vi < UXi , et si 1'on pose Ki =KﬂVi , 1l'ensemble Ki est compact
et on a
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1isr
Soit S wun entier, SE€N , tel que
2Sz2n+1
et posons
R=NS et M=m(R-1)+1

On remarque que si X1 yeoe ,Xm (resp. Y1 seee ,Yn ) désignent des indéterminées,
il existe une famille de polyndmes (PkFX1’°‘° ’Xm))1§k§m
(resp. (Qj (Y1 . "’Yn))1§j < ) a coefficients dans N telle que

M M R
cz xoM= o PLX,,...,X)- X
R " Xk
( (2 Y = Qe Y
resp. (2 Y = B Q0 Yy )

Posons

2 2
C,=sup sup P, (|h,(x)]|%,...,[h X|7) ,
Viskem xek KT m

m
2
C,=sup sup sup I Q:(|B.r (x)g,(x)|,een,|Biy (XDg (x)])|B:p:(x)]
? ysisr 1sjsn xeK; k=1 0 KT ikn ™ En 1kj
et

c=C,-C

1 72

Alors pour tout x , x€K , il existe i , 1<is<r , tel que )(E](i et on a

m m
S RENCIR A X LRI IO

IA

1 1

m m
¢, © Im|®=c, 1 |mw|® -
1 1

n
(@]
M3

[T el =]

25
.(x)gj(x)l) =

28 mon
Yy . . < .
| g8 WITs ¢ T I8y

n
(@]
™

n 2

k=1 j= 1kj

, 00171 1g 00| <

ikj
j J

it
(@)
s

m
[]\21 Qj(IBim(X)g](X)I seees By g, I8
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C

™3
—-

2 2
Czlgj(x)l =C E Igj(x)' »

1 j=1

j
ce qui démontre le lemme.

PROPOSITION 1.4.2.- Soient o¢: Y— R une gonction continue, modérée Le Long de

Z , U unouvernt de X et (hk)1 <ksn W1e famille ginle d'équations C-analytiques
de Y dans U . Pour tout compact K de U AL existe des constantes A et N
AeR_, NeR_ telles que

. m 2\N
Yy €Y NK : (kz1 I )7 Je(y) | <A

Démonstration. En vertu de (1.2.2), (i), il existe un recouvrement ouvert fini
(Ui)1§i§r de K tel que pour tout i , 1<i<sr , il existeune famille finie (gij)1§j§ni
telle que pour tout compact K' de Ui il existe des constantes Met B, MER_ ,
Be ]R+ , telles que

de fonctions C-analytiques sur Ui n'ayant pas de zéro commn dans YﬂUi

. i 2\M <
VEYNK' @ (I |gij(y)|) lo(y)| B
j=1
Soit (Vi)1§i§r un recouvrement ouvert de K tel que pour tout i, 1€isr ,
V_iCUi et posons l(i =V_inK . La partie Ki de Ui étant compacte il existe des
constantes N. et A. , N.€R , A.€R telles que
i i i+ i T+
n. N.
WEYNK: ¢ 5 |g .0 T o) | sA
y i0 kI oy | sA;
D'autre part, il résulte de (1.4.1) que pour tout i , 1€isr , il existe des
constantes Mi et Ci s Mi€]R+ . Ci€ ]R+ , telles que

m 2 Mi ni 2
vxeK, : (2 [h I[7) "=C z |gij(x)|
k=1 41
On pose
N= sup M. Ni
1gisr
et
N. m
A= sup [A C' sup (2 |hk(x)|2)N’MiNi]
x€K. k=1

1<igr

Alors pour tout point y de YNK il existe i, 1gisr , tel que yel(i et

on a
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m
. DY o] =

N-MiN i

IA

m 2 Mi Ni m 2
((kz1 [ I D T ey - (kz1 Ih (]9

N: D4 2 N.
Cil(JE] |23 M o)

IA

2 ) N-M iN

I

i

m
. (z |h ()
1<=1| k)

m
diacz noH MNica
A k

IA

ce qui démontre la proposition.

PROPOSITION 1.5.- Sodent Z, et ZZ deux femés analytiques de X tels que

1
Z=Z1ﬂZz et

o : Y— R
une fonction continue. SL Les restrictions cp](X-Z1) et cp[(X-Zz) sont des
fonctions modénées Le Long de Z, et Z, nespectivement, alorns La fonction @ est
modénée Le Long de Z .

1

Démonstration. Pour tout point z , z€Z , il existe un voisinage ouvert U de z

1sism ¢ Bjliga
ques de Zy et Z, respectivement dans U . En vertu de la proposition (1.4.2),

dans X et des familles finies (gi) d'équations C-analyti-

pour tout compact K de U il existe des constantes M, A, N, B, M€]R+ , A€ ]R+ ,

NeR, , BER, , telles que
m

Y EG-Z) AK (1 1g;0) M o) | <A
1:
et

VyE(X-Zz) nk : (.

-
n~ s

2N
1|hj(y)|) |e(y)| <B ,

et comme pour tout i, 1gism , (resp. pour tout j , 1<jsn ) la fonction
g; (resp. hj ) s'annule sur Z1 NU (resp. sur Z2 nNU) ,ona

m 2.M
VY EYnK : (1 |g;( [T [e(n]sA
i=1
et

. n 2.N
Vy EYNK : ( % lhj(y)| )| e(y)|=B
j=1

Soit (fk)1§k§m+n la famille définie par

fk=gk , 1sk<sm ,

£

k=N

kem » M<ksm+n
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La famille (fk)1§k§m €St une famille finie de fonctions (-analytiques sur U

n'ayant pas de zéro commun dans YNU . Soient M' et N' des entiers, M'€E€N* ,
N' € N* , tels que M'2M et N'z2N . Si X1 » X, désignent des indéterminés et
si 1'on pose

L=M'+N'-1

il existe des polyndmes P()(1 ,XZ) et Q(X1 ,XZ) a coefficients dans N tels que

1 1
0y + X = P0G, X)X -+Q(x1,x2)x§

Posons
n
C, =sup [P( z g0 1%, 1 lh.(x)[z)-( 3 PRSI
x€K  i=1 j=1 J
n
C=swp QCE g 0012, 2 b0 [D)-CE nyGo V')
x€K 1=1 j=1 j=1
et
C=C1A+ CZB

Alors pour tout y , y€EYNK , on a

(z 15,0148 o] =
m n [
= P2 g%, 2 |ho0lh0 T 12,001 oty | +
i=1 j=1 i=1
m 2 n
+QCI g 017, I h ] )¢ T I; @5 Jow]s
i=1 j=1 j=1

SCA+C,B =C ,

ce qui démontre la proposition.

une famille de fermés analytiques de X telle

COROLLAIRE 1.5.1.- Sodent (Zi)

i€l
que
Z=N Zi
i€l
et
o : Y—R

une gonction continue tefle que pour tout i , i€l , fa restrniction ©|X- Zy
404t une fonction modénée Le Long de Zi . Alons La fonction ¢ est modénée Le
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Long de 2

Démonstration. Pour tout point x de X il existe un voisinage ouvert U de x et
une partie finie I' de I tels que
ZnU=(n z;)nU
i€l
(c£.(1.0)). En vertu de (1.2.2), (ii), le corollaire résulte alors de la proposi-
tion (1.5), en raisonnant par récurrence.

LEMME 1.6.- I£ existe une fonction continue
@:Y—R ,

modénée Le Long de Z , telle que pour tout z , z€L , et toute constante A
A€R] , 4L existe un voisinage ouvert U de z dans X Zel que pour tout vy ,
yeEYnU , on ait

o(y) 2A

Démonstration. Soit (Ui) un recouvrement ouvert localement fini de X tel que

i€l
pour tout i , i€I , il existe une famille finie (gij) d'équations
C-analytiques de Y dans Ui , et soit

. — R*
®; YﬂUi ]R+

la fonction définie par
n, )
o; () =1/C2 Igi.(y)| ) , pour yeYNnU.
= '
La fonction @, est continue, modérée le long de ZnUi (1.2.1). Soit (Vi)iEI
un recouvrement ouvert de X tel que pour tout i , i€I , WCUi (cf.(1.0),(1)).
En vertu de (1.3.4), il existe une fonction continue

@:Y—R |,
modérée le long de Z , telle que pour tout i , i€I , et tout y , yGVi , On
ait

0; (y) < oly)

Soit z wun point de Z . Il existe i , i€I , tel que zEVi . Si 1'on désigne
par y, la fonction

"bi :Vi—- ]R+

définie par

=}

i 2
wi(x) = j£1 ]gij(x)| , pour Xx€V.
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la fonction b; est continue et wi(z) =0 . On en déduit que pour toute constante
A, AERY , il existe un voisinage ouvert U de z dans X contenu dans Vi

tel que pour tout x , xeU ,
ngi(x) <1/A,
ce qui implique que pour tout y , y€YNU |,

w,(y) zA

oly) zA
ce qui démontre le lemme.

PROPOSITION 1.6.1.- Sodent (Z,)
X tels que

jep wne famille finie de fermés analytiques de

Z= N Z.
ier *t

et poun tout i , 1€l , une fonction continue

¢; 1 X-2, — R,
modénée Le Long de Z; - Mo & existe une fonction continue

©:Y—R,
modénée Le Long de Z , telle que pour tout y , y€Y , AL existe i , 1€l ,
tel que yEX—Zi et

0, (y) so(y)

Démonstration. En vertu du lemme (1.6), pour tout i , i€I , il existe une fonc-

tion continue

Y.

1:X-Zi—]R ,

modérée le long de Zi , telle que pour tout z , z€ Zi , et toute constante A,
AERY , il existe un voisinage ouvert U de z dans X tel que pour tout y ,
y€ (X-—Zi) nu , on ait
>

b () zA

Posons
-

£21 Sup{(Di,wi,O}
La fonction

@' X- Zi —+ R

est continue, modérée le long de Zi (1.3.3). Pour tout y , y€Y , on pose
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I={i€l :ygz;)

et
©(y) = inf o}(y)
i€l
y
Démontrons que la fonction
®:Y—R

est continue. En effet, soit y un point de Y
Alors y€X- u Z. . Soit
i€l
y
Y X- U Zi — R
i€l
y
la fonction définie par
p(y') = inf @i(y') , pour y'e€X- u Zi
i€l i€l
y
La fonction ¢ est continue. 11 suffit donc de démontrer que ¢ et iy coincident
au voisinage de y . Soit A, A€ R} , tel que Y(y) <A . La fonction y étant
continue il existe un voisinage ouvert U de y dans X-_ U Zi tel que pour tout

i€l
y' , y'€u, Y

V(y') <A
D'autre part, comme y€ InI Zi , 11 existe un voisinage ouvert U' de y dans
1€l-1Iy
Y
X tel que pour tout 1 , i€I—Iy , et tout y' , y'e (X—Z.l) nu'
">
vy zA
et a fortiori
>
@; (y') A

Alors il découle aussitdt des définitions de ¢ et y que
olUNU' =ylUNU" ,
ce qui démontre la continuité de ¢ . Enfin, pour tout i, i€I , et tout y ,
yeX- Zi , ON a
o) 20 (y) ,
et comne (y) 20 , il résulte de (1.2.2), (vi) que gplX-Zi est modérée le long

de Zi . On en déduit que ¢ est modérée le long de Z (1.5.1), ce qui démontre

la proposition.
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Remarque 1.6.2.- La proposition (1.6.1) demeure vraie, méme si 1'on ne suppose pas
que la famille (Zi)i€I soit finie. En effet, il existe alors un recouvrement
ouvert localement fini (Uj)jeJ de X tel que pour tout j , je€J , il existe
une partie finie Ij de I telle que
ZnuU.=(n Z.,)NnU.
J ( 1) J

i€l.
J

(c£.(1.0)). En vertu de la proposition (1.6.1), il existe donc une fonction conti-

nue
. :YNnU., — R
lPJ j s
modérée le long de Znt , telle que pour tout vy , yEYnt , il existe 1i ,

iEIj , tel que yE)(—Zi et
wi(y)éwj(y)

Soit (V.).€J un recouvrement ouvert de X tel que pour tout j , j€J , V‘jCUj
(cf.(1.0),(i)). En vertu du corollaire (1.3.4), il existe une fonction continue
¢:Y—R ,
modérée le long de Z , telle que pour tout j , j€J , et tout vy , yEVj ,
ll)j (y) sely)

Alors pour tout point y de Y il existe j , j€J , tel que yEVJ. et 1, iEIj,
tel que yE)(—Zi et

ce qui implique que
©; () s0ly)

PROPOSITION 1.7.1.- Solent X' un sous-espace analytique fermé de X , Y'= YnX',
Z'= ZNnX' et

o' Y —R
une gonction continue, modénée Le Long de Z' . Alons AL existe une fonction con-
tinue

¢ :Y—R ,
modénée Le Long de 7 , telle que

olY'= o' .

Démonstration. Soient (Ui)iEI un recouvrement localement fini de X formé par
des ouverts relativement compacts dans X tels que pour tout i , i€I , il
existe une famille finie d'équations C-analytiques de Z dans Ui , et (Ui)iEI
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un recouvrement ouvert de X tel que pour tout i , i€I | ﬁ:!LCUi . Démon-
trons que pour tout i , i€l , il existe une fonction continue
. ]
®; : Yr'lUi — R
modérée le long de Z nUi , telle que

' [P VA ] ]
LDiIY nui =o Y nu}

En effet, soit (hk)1§k§m une famille d'équations C-analytiques de Z dans Ui .

La famille (hkix'nui)mksm est une famille d'équations C-analytiques de Z'
dans X' ﬁUi , et comme X' n'@ est une partie compacte de X' ﬂUi , 11 existe
des constantes AetM , A€ R, , MER,_ , telles que

Caur - (% 2M)
wey nul s (I |h I e ;)] sA
k=1

(1.4.2), ce qui implique que la fonction
P! : X'nU! — R
i i
définie par

Vo m 2. M+1
WO = I IO *

@'(y) , pour ye€y'nu: ,
et
q;i'(y) =0 , pour yEZ'nUi s

est continue. On en déduit qu'il existe une fonction continue

Y.

:U! —R
i i

telle que ¢i|X' nU: =y: et alors la fonction
. |
9, YnUi — R
définie par

2)M+1

m
©; () = wi(y)/(kz1 [hy )] , pour yeynu' ,

est une fonction continue, modérée le long de ZNnU' ((1.2.1) et (1.3.1)), telle

que

1.7.1.1) (pilY'nUi =£p'[Y'nUi

Soit (U'i')iEI un recouvrement ouvert de X tel que pour tout i , i€I ,

U'.l'cUi' . En vertu de (1.3.4) et (1.3.5), il existe une fonction continue
o :Y—R |,

modérée le long de Z , telle que pour tout point y de Y les deux propriétés
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suivantes soient satisfaites :
a) pour tout i , i€l , tel que y€U; , On a
o; N s0ely)
b) il existe i' , i'el , tel que )relg} , et tel que
ey 20, () -
La famille (U;)i€I étant un recouvrement de Y' plus fin que le recouvrement

'
U jer
pour tout point y de Y' on a

, 11 résulte de (1.7.1.1) que les conditions (a) et (b) impliquent que

©'(y) =oy) ,
ce qui démontre la proposition .

Remarque 1.7.2.- Si la fonction ¢' est positive, on peut supposer qu'il en est
de méme pour ¢ . (I1 suffit de prendre sa valeur absolue). De méme, si la
fonction ¢' est strictement positive, on peut supposer que ¢ 1'est également.
En effet, on peut d'abord supposer que ¢ est positive, et il suffit de lui ajou-
ter la restriction sur Y d'une fonction continue sur X s'annulant exactement
sur le fermé X' de X (1'espace X étant métrisable on peut par exemple lui
ajouter la fonction x +—— d(x,X') , ou d désigne une distance sur X |,
compatible avec sa topologie).
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§2.- Fonctions modérées sur un ouvert de CP .

(2.0) Dans ce paragraphe, on étudie les fonctions modérées sur un ouvert de P
On utilise un théoréme de kojasiewicz [38] qui permet de majorer localement les
fonctions modérées par une puissance de la distance 2 1'"infini". On se fixe un
ouvert U de CP , un fermé analytique Z d'intérieur vide de U et 1'on pose
Y=U-Z . L'ensemble Y est un ouvert de €P dense dans U . On désigne par
d(.,.) 1la distance sur CP déduite de la norme sup. On rappelle (cf. (III,4.4.1))

que pour tout ouvert U' de ® on désigne par RU' la fonction

Ry' + U'— R}

U

définie par
Ryr () = inf{d(x,eP-U")/2,1}

On remarque aussitdt que pour tout y , YEY ,

(2.0.1) R () = infRy (), d(y,2)/2)

Pour que certains énoncés demeurent vrais méme si Z=( , on aimerait que d(x,9)
ait une valeur finie. On peut choisir n'importe quelle constante strictement

positive. Par convention, on posera
dx,9) =2

(C'est 1a plus petite valeur pour laquelle la formule (2.0.1) reste vraie si
Z=0).

PROPOSITION 2.1.- La fonction

oY -—+<Rj
définie par

oly) = 1/d(y,2) , pour YEY
est une fonction continue, modénée Le Long de 7 .

Démonstration. La continuité de ¢ est évidente. Soit z, un point de Z et U'
un voisinage ouvert de Zy dans U tel qu'il existe une famille finie d'équations

C-analytiques (hi) de Z dans U' . Il existe € , €€R} , tel que

18ism
) . 1
D(Zo,8§) <U

(ot £ = (€,...,€) € (R:)p) et tel que pour tout i , 1£ism , si 1'on désigne

par hi la fonction C-analytique
Ei : D(z,;3€) X D(0;58) —> €

définie par
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hl(x,t) = hl(x+t) -hl(X) ’
il existe des fonctions C-analytiques

hij :D(zo;Sg)XD(O,Sg) —>C, 1<j<p ,

telles que pour tout x , x€D(zo;3g) , et tout t , t=(t1,...,tp) , t €D(0;5¢g)

on ait
— p n
h; (1) = jz1 t5 hyj x,t) .
On pose
F= sup sup [h; &) |
1<ism x€D(zo;2§)
H= sup sup sup sup |hi.(x,t)|
1sism 1sj3p xeD(z ;2e) teD(z 4e)
et

A = FHmp

Alors pour tout x , x=(x1,...,xp) s xeﬁ(zo;zg, et tout z , z=(z1,...

zef)(zo;2§) nZ,ona

m 2 m m
o hy&["sF T [hy&)| =F |h; ) -h; (2) |
1 i=1 i=1

I

P
z .~z.| |h..(z,x-
i [xJ Jl |13(zxz)]

m _—
F I |h;(z,x-2)|<F
; i
1 i

X
i= =1

p
FH = % ]xj—zjl <A d(x,2)

i=1 j=1

On en déduit que pour tout x , xE—D(zo;Zg;) ,
m 2 _

I |h.(x)|" <A dx,D(z_,2e) NZ)
i=t * °

et il en découle que pour tout x , xeﬁ(zo;g)
n 2
:ohye|TsAdKx,Z)
i=1
ce qui démontre la proposition ((1.2.1) et (1.2.2), (ii),(vi)) .

COROLLAIRE 2.1.1.- Lla fonction

@:Y —>]R:
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définie par
oly) = /Ry () ={sup 2/d(y,C-Y),1}
(cf. (III,4.4.1)) est continue, modénée Le Long de Z
Démonstration. En effet, pour tout y , y€Y ,
oly) = sup{z/d(y,2) , 1/Ry(y)}
(2.0.1) et le corollaire résulte de (III,4.4.1), (2.1), (1.2.1) et (1.3.3).

THEOREME 2.2.- (tojasiewicz). Sodent n un entien, V un ouvert de R" , K
un compact de V., f£:V—> R une fonction R-analytique, et E Le fermé de
V dégini par

E={x€eV : £f(x) = 0}
Alons AL existe des constantes A et M , AeRY , MeRY , Ztelles que pour tout
x , x€K,

M
[£Ex) | 2A d (x,B)"

ol de(.,-) désigne fa distance euclidienne surn R® m .

Démonstration. [38] , théoreme 2, p. 85.
COROLLAIRE 2.2.1.- Soit U' un ouvernt de U tel qu'il existe une famille finie
d'équations C-analytiques (hj)1 <jsn de Z dans U' . Alons pour toute partie

compacte K de U' 4L existe des constantes A et M, A€ R , Mg R} , telles
que

.o 2 M
V€K : % |hj(x)| 2 A d(x,2)
j=1

Démonstration. Si ZNU'=@ il suffit de poser M=1 et

n
A=inf [ |he0|/dx,2)]
x€K j=1

Supposons donc que ZNU'#® . En remarquant que la fonction
f:U'—R
définie par

n

f(x) = _Z1|hj(x)|2 , pour x€U' ,
J:

est une fonction R-analytique (en identifiant P a Rlp) et que

InU'={x€U' : f(x) =0} ,

(1) Le théoréme est vrai méme si E=@ , en convenant que de(x,¢) est une
constante strictement positive quelconque, par exemple de(x,¢)=2 (cf.(2.0)).
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il résulte du théoréme (2.2) qu'il existe des constantes Aet M , A€R} , MER],

telles que
Vx€EK : ™
J

b

[ =]

2
: Ihj(x)l 2Ad (x,ZnU

ou de(.,.) désigne la distance hermitienne sur @ . Or, pour tout x , x€U' ,
on a

d(x,Z) sdx,znU") éde(x,Z nu") ,
ce qui démontre le corollaire.

PROPOSITION 2.2.2.- Soit

®: Y —R

une fonction continue, modénée Le Long de Z . Alons pour tout compact K de U
AL existe des constantes A et M, A€ R, , MER_, telles que

vyEYNK : |o(y)| éA/d(y,Z)M

Démonstration. I1 existe un recouvrement ouvert fini (Ui) de K tel que

12ism
pour tout i, 1<is<m , il existe une famille finie d'équations C-analytiques

(hij) de Z dans Ui . Soit (Vi) un recouvrement ouvert de K tel

1§j§ni 1<ism
que pour tout i , 1<ism , VicUi et posons K; =VinK . La partie K; de

Ui étant compacte il existe des constantes Ai et Mi , AiER+ , MiE ]R+

telles que

n, 2 Mi
(2.2.2.1) vernKi HE ) lhi.(y)] ) |q)(y)i§Ai

=t Y
(1.4.2), et des constantes Bi et Ni , BiERi , NiEJR: , telles que

ny 2 Ny
(2.2.2.2) vx€K. : I~ |h..(x)|" 2B, d(x,2)
i j=1 ij i

(2.2.1). On pose
M= sup M. N.
1<ism 1
et
M-M.N.
i

M.
A= sup [(Ai/Bil) sup d(x,Z) ]

1<ism xEKi
Alors pour tout point y de YNK il existe i, 1gism , tel que yEKi et

il résulte de (2.2.2.1) et (2.2.2.2) que

! 2. M M M;N;
lo) [ sA/C s hy ;01D s /by, T
VR B
- /Y a0 Ny, oM s aae, oM
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ce qui démontre la proposition.

PROPOSITION 2.2.3.- Sodent

QY — R:
une gfonction continue, modénée Le Long de Z , et (Ei)iel une famille de parnties
de Y telle que pour tout i , i€I , et tout y , yEEi , on ait

E; <Dy; o))

p(y) = (p(¥),e..,0())

o(y) =Ry(y) = inf{d(y, - Y)/2,1}

(cf.(I11,4.4.1)). Alons AL existe une fonction continue
@'Y — ]R: ,

modénée Le Long de 7 , telle que pour tout i , i€1 ,
sup ©(y) £inf o' (y)
yEEi yEEi

Démonstration. Soit (Uj)jEJ un recouvrement localement fini de U‘" par des

ouverts relativement compacts dans U et posons

= P . req] 1 1
KJ.—{xEtE s ax €UJ. d(x,x)gRU(x )}

En vertu de (II1,4.4.1), K.cU , et comme U. est compact et la fonction RU
continue (III,4.4.1), 1'ensemble Kj est un compact de U . On en déduit qu'il
existe des constantes A. et M. , A.€R* , M.€R telles que
J J J + J +
vy EYNK;

(2.2.2). Soit wj la fonction

.:YNU. — R*
j j +

M.
o(y) AJ. /d(y,Z) ]

définie par

M. M.
toj(y) =2 Aj/d(y,Z) ), pour ernt

(1) Le recouvrement (Uj)jEJ est localement fini sur U et non pas dans cP
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La fonction ¢. est continue, modérée le long de ZnUJ. ((2.1) et (1.2.2),(vii)).
Soit (U;})j ¢j un recouvrement ouvert de U tel que pour tout j , j€J ,
UJ! ch . En vertu de (1.3.4), il existe une fonction continue

@'Y — ]Rj‘r s
modérée le long de Z , telle que pour tout j , j€EJ , et tout y , yEYnUJ! ,
® () 20'(y)

Soient i , i€I , et y et y' deux points de Ei . I1 existe j , je€J , tel que
y' €UJ! , ce qui implique que
(2.2.3.1) wj(y')éco'(y’)
Or, 1'hypothése
E;=Dly';0(")
implique que
(2.2.3.2) dly,y") SR (y") = inf{R;(y") ,d(y",2)/2}
(cf.(2.0.1)) et en particulier yEKj . On en déduit que
(2.2.3.3) o(y) éAj/d(y,Z)Mj
D'autre part, on a
d(y',z) =d(y,y") +d(y,2)
et 1'inégalité (2.2.3.2) implique que
d(y,2) z2d(y',2)/2
(inégalité vraie méme si Z=¢ (cf.2.0)), d'ou
(2.2.3.4) Aj/d(y,Z)Mj gzMj AJ./d(y',Z)Mj = 050"
Alors il résulte de (2.2.3.1), (2.2.3.3) et (2.2.3.4) que
ey) so'(y") ,

ce qui démontre la proposition.
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APPENDICE II

THEOREME DE PRIVILEGE NUMERIQUE
UNIFORME POUR UN MORPHISME
DE MODULES COHERENTS

Dans cet appendice, on généralise le résultat principal de ce travail aux mor-
phismes de modules cohérents. Au §1, on expose quelques compléments sur les pro-
priétés algébriques des scissions. Au §2, on définit les notions nécessaires a la
généralisation du théoréme principal. En particulier, on définit la notion de
polycylindre privilégié. Notre définition n'est pas la méme que celle de Douady,
qui a introduit cette notion dans [ 7], mais elle est équivalente (voir [48]).
Dans le §3, on démontre le théoréme de privilege numérique uniforme pour un mor-
phisme de modules cohérents. On remarquera que le théoréme d'existence de polycy-
lindres privilégiés de Douady en résulte. On obtient ainsi une autre démonstration
de ce théoreéme en utilisant des théorémes de division au lieu d'utiliser le
théoréme de platitude et privilége. Au §4, on démontre une variante du théoréme

principal, variante qui ne fait pas intervenir de stratifications.
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§1.- Compléments sur les scissions.

PROPOSITION 1.1- Sodlent A un anneau commutatif, M, M' et M'" des A-modules,
v:M'—M , u:M—M' et o':M— M' des applications A-Linéaires. On
suppose que La suite

M -5 oM M — 0

est une suite exacte et que o' est une scissdion de v . Alons AL existe une

A-scission unique O de u M telle que

gou = idM-VQO'
Démonstration. L'application u étant surjective l'unicité de o est évidente.
Pour démontrer 1'existence on remarque qu'en vertu de (III,1.2) ,

Ker(idM-vo’) = Im(v) ,
et comme

Im(v) = Ker(u) ,

1'application idM—vo' se ''factorise a travers u ' , autrement dit il existe

une application A-linéaire o telle que
Gou = idM-vo‘
ce qui implique que
UoCou =u-uoVog' =u
et démontrer la proposition.

LEMME 1.2.- Soient A un anneau commutatif, M, M', N et N' des A-modules,
u:M'—M, v:NN=—> N, W:N—>M, w :NN=— M , A :M—> N et

H:N—> N' des applications A-Lin€airnes. On suppose que Le diagramme

N'—-——V—>N

b

u

M' — M

est commutatif et £'on pose
o = W'ux
Alons on a :

i) 84 X et u sont des A-scissdions de w et v respectivement et 44

(1) qui en est une section puisque u est surjective.
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a) Im(u) cIm(w)
b) In(v) = w ' (Im(w)) ,
L'application o est une A-scission de u et
(idy-uo) ow = wo (idy-vu)
ii) 84 w et v sont des A-scissions de A et p  nrespectivement et s4
c) Ker(wWeIm(n) ,
L'application u est une A-scission de o

Démonstration. Démontrons 1'assertion (i). L'application A étant une A-scission
de w , 1'hypothése (a) implique que

(1.2.1) wWAU = U .
En particulier,
() e (Im(u))
et en vertu de 1'hypothese (b),
Im(u) <Im(v) .
L'application up étant une A-scission de v on en déduit que
(1.2.2) VHAU = Au
Alors il résulte de (1.2.1) et (1.2.2) que
uou = uw'pdu = WVpAU = wAu = u
ce qui démontre que o est une A-scission de u . D'autre part, on a

(idM-uc)w = w—uw'u)\w=w)\w-wvu)\w=w(idN - VU)AW

Or, 1'hypothese (b) implique que

Ker(w) < Im(v)
et en vertu de (III,1.2) on a

Im(idN - AW) ':Ker(idN -vu) o,
d'ol

(idN-vu)(idN- w) =0,
autrement dit

(1d.N - VUAW = 1dN - vy

On en déduit que
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(idM -uo)w =w(idN -vy) |,

ce qui démontre 1'assertion (i). Pour démontrer 1'assertion (ii), on remarque que
si wet v sont des A-scissions de A et p respectivement, 1'hypothese (c)
implique, en vertu de (III,1.2), que

Im(idN -vu)c Ker(idN - W) .
On en déduit que
(idN- W) (idN-vu) =0,
d'ol
AWV = AW+Vh - idN
On a donc
oug = W'HAUW'UA = W'WVHA = W'HOw v - id)) =
= WUWA+W'UVUA =W'uA =wW'UA = 0 ,
ce qui démontre le lemme.

PROPOSITION 1.3.- Soient A un anneau commutatif, M, M', N, N' et N" des
A-modules, u:M'—> M, v':N'—> N, V":N'— N, w:N— M et
w' :N' — M' des applications A-Linéaires, p':N'@N' —N' La premiere phro-
fection, p" :N'@N'"'—> N La deuxieme projection, v :N'@N'—> N L'application
définie par

Vv =lel +V"p"
T une A-scissdion de Vv'' et u une A-scissdion de v . On suppose que Le diagham-
me

0 0

est un diaghamme commutatif dont Les colonnes sont des suites exactes. Si L'on
désigne par X L'unique A-scission de w Ztelle que

Aw = idN -v't

300



PRIVILEGE NUMERIQUE UNIFORME POUR UN MORPHISME

(cf. proposition (1.1)) et 44 £'on pose
o =wp'ux ,
ona :
i)  R'application o est une A-scissdion de u ;
ii) (idM-uo) oW=Wo (idN-vu) ;

iil) 84 Les scdissdions T et p de V' et v respectivement sont noumales et
A4
Ker y cKert ,

alorns o est une A-scission noumale de u
Démonstration. On a

wv=wv'p' +wv''p" =wv'p' =uw'p'
autrement dit, le diagramme

N'eN' —Y N

e -

M —Y M

est commutatif. D'autre part,
Ker(w) = Im(v'") < Im(v)

et comme 1'application w'p' est surjective on en déduit que
Im(v) = w ' (Im(u)) .

De méme, 1l'application w étant surjective on a
Im(u) € Im(w) .

Les assertions (i) et (ii) résultent donc du lemme (1.2), (i). Sous les hypotheses

de 1'assertion (iii), on a

Ker(t) = Im(idN-v"T)
(II1,1.2) et comme

idN-V"T =W,
on a

Ker(t) = Im(A)

(car w est surjective). On en déduit que
Ker(u) < Im(A)

et 1'assertion (iii) résulte du lemme (1.2), (ii).
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§2.- Polycylindres privilégiés

(2.1). Soient p un entier, p€N , U un ouvert de P , K un polycylindre
compact de ¢? contenu dans U et

f:M — M

un morphisme de OU-modules cohérents. On désigne par B(K;f) 1'application

C-linéaire T(K,f) ® idB(K)

B(K;£f) : TK,M') ® B(K) — TX,M @ B(K)

L(K,0) T(K,0)

1
(On remarque que s'il existe des entiers m et m' tels que M = OE et M' = OE s

. JP N m - IS
alors T(K,M) @T(K,OU)B(K) s'identifie a B(K) , T(K,M") @F(K,OU)B(R) a

B(K)m', et dans ce cas la définition ci-dessus coincide avec celle du chapitre 0).
Si M' désigne un OU-module cohérent et

f' @M —M
un morphisme de (j-modules, on a
B(K;f o £') = B(K;f) o B(K;£f')

Le compact K étant un compact de Stein, si f est un épimorphisme, T (K;f)

1'est également, donc B(K;f) aussi (exactitude a droite du produit tensoriel).

En particulier, pour tout épimorphisme
m
on en déduit un épimorphisme

B(K;n) : BO™ — T(K,M) © B(K)

r(K,0y)

On désigne par Bn(K;M) le C-espace vectoriel T(K,M) ® X,0 )B(K) , muni de la
U

semi-norme ||'“n'K définie par
sll,.x = inf _[lt]|
mK o tepgo™ K

B(K;n) (t)=s
la norme ||.||} sur B(K)™ étant celle définie au chapitre O. (On remarque que
si M= 03 et n=1id, , alors B. (K;Om) n'est autre que B(K)m muni de

OU id m U
0

U
la norme [[.HK ). La topologie définie par la semi-norme ll'“n'K sur Bn(K;M)
est la topologie quotient définie par 1'épimorphisme B(K;n)
Si
m'
n'roy — M — 0
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désigne un autre épimorphisme et L(Bn,(K;M'); Bn(K;M)) 1'espace vectoriel des
applications €-linéaires continues de Bn,(K;M') dans B_(K;M) , on note

lll... 1., la semi-norme sur L(B_,(K;M'); B (K;M)) déduite des semi-normes
n;n';K n n

ll'“n;K et |I'”n';K sur Bn(K;M) et Bn,(K;M') respectivement .(Si M = d} et
n=4id  (resp. si M' = Og' et n' =id ,) la semi-norme 1l'“n;n';K est no-
tée plug simplement ll'“n’;K (resp. ll'”:;K))° Pour toute application C-linéaire
continue

A B (KGMD) — B (K M)
on a
(2.1.1) ||AHn;n,;K:||AoB(K;n')Hn;K

(C'est un résultat général sur les semi-normes quotient, facile a vérifier).
En particulier, on a

. = 1 <
(2.1.2) I{B(K,n)Hn;K HldBn(K;M)”n;n;K <1
(En fait, llldBn(K;M) sk =
ment nulle dans quel cas llldBr§K;M)l|n;n;K =0).

1 , sauf si la semi-norme Il‘”n'K est identique-
b

(2.2) Soient p un entier, p€N , U un ouvert de ® et K un polycylindre
compact de ¢? contenu dans U .

LEMME 2.2.1.- Sodient m et m' des entiers, meN , m'eN ,
f:M —M
un morphisme de OU-moduleA cohérents et

n: 03 — M— 0

|.m' L
n' : OU — M 0
des Epimonphismes. Alors L'application
B(K;f) : B ,(K;M') — B_(K;
(K1) n'( M) n( M)
est une application C-Linéaire continue.

Démonstration. Soit U' un ouvert de Stein contenu dans U et contenant K
Alors il existe un morphisme de OU,-modules

[
g:OS, I OI[Ile

tel que le diagramme
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o —E

ln'lU' Jn]U’
wju —E e

soit commutatif. On en déduit que le diagramme
B — B B(O™
B(K;n") B(K;n)

B (ko) 2HSE 5
est €galement commutatif. Or, 1'application B(K;g) est continue (cf. chapitre O)
et la topologie définie sur Bn,(K;M’) (resp. sur Bn(K;M) ) par la semi-norme
ll'“n';K (resp. Il'“n;K ) est la topologie quotient définie par la surjection
B(K;n') (resp. B(K;n) ) (cf. (2.1)). On en déduit que 1l'application B(K;f)
est continue.

PROPOSITION 2.2.2.- Soit M un Ou—moduze cohénent. 1L existe une topolLogie unique
T sur T(K,M) © B(K) telle que pour tout ouvert U' de CP contenu dans

T (K,0,,)
U
U et contenant K , +tout entier m , me€N , et tout épimorphisme de
Oy-modules

gy —— My — o0 ,
T 504t La topologie définie par La semi-norme ||'”n'K . En plus, T mund
’

T'(K,M) @r(K 0 )B(K) d'une structure d'espace vectorniel topologique, dont Le sépanré
U
associé est un espace de Banach.

Démonstration. L'existence de T résulte du lemme (2.2.1) appliqué a M' = M et
f==idM . L'unicité est évidente. La topologie T étant définie par une semi-nor-
me, elle est compatible avec la structure de C-espace vectoriel, et 1'espace sépa-
Té associé étant muni de la topologie quotient, par transitivité des topologies
quotient et conformément a (2.1), il est un quotient séparé d'un espace de Banach,
donc lui-méme un espace de Banach.

DEFINITION 2.2.3.- Soit M un Oy-modube cohérent. On désigne par B(K;M) £'espace
vectoriel topologique dont L'espace vectoriel sous-jacent est T (K,M) QF(K 0 )B(K)
b
U

et dont La topologie est R'unique topologie T satisfaisant aux conditions de
La proposition (2.2.2).
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Remarque 2.2.4.- Soient Met M' des OU-modules cohérents et f:M' —M un
morphisme de OU-modules. 11 résulte aussit6t du lemme (2.2.1) que 1'application

B(K;f) : B(K;M') —> B(K;M)
est une application C-linéaire continue. Si M'" désigne un OU-module cohérent
et g:M —> M' un morphisme de OU-modules tel que la suite
w5 u =L — 0
soit une suite exacte, le compact K étant un compact de Stein, on en déduit
une suite exacte

reg,m) LEE), pogyy KB, pix ey — 0,

d'olli une suite exacte
By 28 E) gy BEGB), gy — o

(exactitude a droite du produit tensoriel). Si U' désigne un ouvert de ® tel
que KcU'cU et

n:a

Ul
un épimorphisme, le morphisme (g|U') on est également un épimorphisme et B(K;M)

— MU' — O

(resp. B(K;M'") ) est 1'espace vectoriel topologique sous-jacent a 1'espace

semi-normé Bn(K;M) (resp. %: (K;M" ).

gl U) on
En vertu de la transitivité des topologies quotients et de (2.1), on en déduit que
la topologie de B(K;M'") est la topologie quotient définie par la surjection
B(K;g) . En revanche, la topologie sur Im(B(K;f)) induite par celle de B(K;M)
n'est pas en général la topologie quotient définie par la surjection

B(K;f) : B(K;M') — Im(B(K;f)) .

DEFINITION 2.2.5.- Soit M un Oy-module cohérent. On dit que K est privilégie
pour M 84 R'espace vectoriel topologique B(K;M) est sépane.

REMARQUE 2.2.6.- Un quotient séparé d'un espace de Banach étant un espace de
Banach, pour que K soit privilégié pour M , il faut et il suffit que B(K;M)
soit un espace de Banach. Si

n :o’{} — M

désigne un épimorphisme de OU-modules et si N désigne le noyau de n alors K

(1)

est privilégié pour M si et seulement si NK est un sous-espace fermé de

B(K) . En effet, il existe un ouvert U' de U , contenant K , et un épimorphisme

(1) Pour la définition de NK se reporter au chapitre O.
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Og, — N|U'

On en déduit une suite exacte

Ogv £ 03' nju, Mgt —o0 ,

ou Im(f) = N|U' , d'ol une suite exacte

B(X;£f)

B —=Lat) g™

BEN), gy — 0

(cf. (2.2.4)). On a donc
Ker(B(K;n)) = Im(B(K;£)) = N

(cf. chapitre 0). La topologie sur B(K;M) étant la topologie quotient définie
par la surjection B(K;n) (cf. (2.1)), on en déduit que B(K;M) est séparé si
et seulement si NK est fermé dans B(K)m .
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§3.- Théoréme de privilége numérique uniforme pour un morphisme.

LEMME 3.1.- Soient p et n des entiens, S, Une nefation d'ondre total sur
N compatible avec sa structure de monolde, moins fine que La nelation d'oxr-
dre produdlt < sur N privilégiant Le sous-monolde N de N sa,
La nelation d'ondre induite par S, Aw N |, U wiowertde € , X un
sous-espace analytique fermé ivnéductible de U , 2 un gerumé analytique de X
distinet de X , Y L'ouvert dense de X défind par Y=X-Z , (U;e;
necouvnement de U fonmé par des ouverts de CP contenus dans U , M un
AouA-OU-moduke cohérent de OE , (mi)iEI une famifle d'entiens , meN,

(fi) une famille de morphismes de OU.-modulu
1

un

i€l
My
£ 10y, —
i i
On suppose que pour tout i , i€l ,
Im(fi) = M|Ui
et que
SOL;M;XCZ
Alons pour toute fonction continue
oY — [1;+°°[ s
modénée Le Long de Z , AL existe des fonctions continues
¥y : Y — R} , q;Z:Y—>]R:

modénées Le Long de Z , telles que pourn tout polycylindre compact de cP pointé
dans Y , (K,y) , suffisamment ef§ilé pour éa' , modénément Le Long de Z ,
satisgaisant a La condition

e(X;y) so(y)
AL existe 1 , 1€l , tek que :
i) KCUi 5
ii) 42 exdiste une scission C-Lindairne continue normale o de B(K;fi)
m,
o : BIK)" — BK) 1
telle que :
do
a) ||o||K < w1(y)/p" Ky ,

do = sup(n(rvla;M;x ))

gen
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T désignant La premiére projection
e N NP
(a borne supériewne étant nelative & fa relation d'ordre produit < swr NP)
b) ||id - BUGE) oolh sy, () ;
B(K)n i l]( 2

c) Ker(o) =
J

Lt:l:’

B, (X¥) ,
8

oa pour tout j , 1£jsn ,

A= {deNP: (d,e.) £P . }
j Jj OL,M,Xgen

et IPRREPLN désigne La "base" canonique de )

Démonstration. L'espace U étant paracompact, on peut supposer, quitte a remplacer

le recouvrement (Ui)ieI par un recouvrement plus fin, que la famille (Ui) iel
est localement finie (dans U ). Posons

I'={i€l : Uinx # @}
et

A={a€RP: 3d, d'eNP, d<u'd' et a=d'-d}
En remarquant que pour tout i , i€I' ,

P . . =P ...
oz,MlUi,(XﬂUi)gen on,M,Xgen ’

M =M
a3 M| UG5 (XN, o ™ MM X

et
Sa;M|U, XU, = Sasx Vi o
i i
il résulte du théoreéme (IV,4.3.1) (cf.(II1,6.2.1)) que pour tout i , i€I' , il

existe un ensemble fini Ji , une famille (aij)jEJ d'éléments de A , une
i

famille ("pij)jEJ. de fonctions continues
i

“’ij : YnUi — R} ,
modérées le long de ZnU.1 , et des fonctions continues
. * . —_—
biq t YnUi — R} , bip ¢ YnU.1 Ry,
modérées le long de ZﬁUi tels que pour tout point y de YI’\Ui et tout poly-
cylindre compact K de ® , tel que yE€ K , les conditions
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e(K;y) <o(y)
et

o"Ky)e n V.

impliquent que
i) I(cUi 5
ii) il existe une scission C-linéaire continue normale ¢ de B(K;fi) telle

que : d
a) |lolly < w3, 0/0" Py

b) ||id - B(K;f.) o0 <y, y)
| B(K)n i ”K l"12

By
J

L=}

c) Ker(o) =
J

Le point crucial pour la suite est de remarquer, en suivant la démonstration du
théoreme (IV,4.3.1), ainsi que celles des énoncés qui y conduisent, que la famille
(a..).

ij J€Ji

d'ordre < . L'ensemble M . .
o a; M|Ui H (XﬂUi) gen

on peut donc supposer qu'il existe un ensemble fini J et une famille (aj)

ne dépend que de 1'ensemble Ma et de la relation

MU (XU o

étant indépendant de i , 1i€I' ,

j€J
d'éléments de A tels que pour tout i , i€lI' , Ji=J et pour tout j ,

jedJ aij =a. . Or, U étant paracompact, il existe un recouvrement ouvert
(Ui)iEI de U tel que pour tout i, 1€I , qcUi . En remarquant que
(Uinx)iel' et (UinX) i€l sont des recouvrements ouverts localement finis de

X et que pour tout i, 1i€I' , UianUinX , 11 résulte de (App. I, 1.3.4)
qu'il existe une famille (‘pj)jeJ de fonctions continues

; Y — R},
modérées le long de Z , et des fonctions continues

wl:Y—>]R: et q;z:Y—»R: ,
modérées le long de Z , telles que pour tout i , i€I' , tout j , jEJ , et
tout point y de Yn Ui , on ait

035 05 ()

wi1(y) SY, )
et

lpiz()’) s ‘PZ(Y)
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Alors pour tout point y de Y et tout polycylindre compact K de c® , tel que
yeK , satisfaisant a

e(X;y) sp(y)

et

7"
p"Ky)e n V|
jEJ 3’1/@:]()')

il existe i, 1€I' , tel que yEYnUi , ce qui implique que

" .
j€7 aJ.,T/(pij(y)
On en déduit que le polycylindre compact pointé (K,y) satisfait aux conditions
(i) et (ii), (a), (b), (c) du lemme, ce qui démontre le lemme (cf. (I11,6.2.1)).

PROPOSITION 3.2.- Sodient p, n, n' des entiens, peEN, neN , n'e€N , <,
(resp. < . ) une relation d'ordre total sun N (resp. sun Np+n' ) ’oa
compa,u'btg avec sa stwcture de monolde, moins fine que La relation d'ondre pro-
duit < sun NPT (resp. sur TAuh ), privitégiant Le sous-monoide NP
de NPT (resp. de Np+n' ) , U un ouvert de P , X un sous-espace ana-
Lytique fermeé, <uéductible de U , Z un fermé analytique de X distinet de
X, Y L'ouvert dense de X dégini par Y=X-1

f:N' —™ N
un morphisme de OU—moduﬂeA cohénrents,

n': OE'—> N'
et
Nty N
des épimonphismes de Oy-modules. On suppose que Les rnelations d'ordre Sy et

éa" Anduisent La méme nelation d'ondre gu sun NP et que

S .. us z ,

o sX Vs Y Sar xS
M' = Ker(n') , M=Ker(n) et M'= n'1(1m(f))
Alons pour toute fonction continue
@©:Y — [1,+o] ,

modénée Le Long de 7 , AL existe des fonctions continues
Yp Y — RY g, Y — RE

modénées Le Long de Z , telles que pour tout polycylindre compact de P pointe

dans Y , (K;y) , Auffisamment ef§4iLé pour S modénément Le Long de Z
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satispaisant a
e(K;y) s oly)
on alt :
1) KcU ;
ii) K est privilégié pour N et N' ;
iii) 4L existe une scission C-Linéairne continue nowmale o de B(K;f)
o : B(K;N) — B(K;N")

telle que :
d

a) |loll S v,/ Csy)

n';n;K

=sup(mM , . . ))
o) a',M',Xgen

T désdignant La premitre projfection

m: NPT NP

(La borne supérnieune étant rnelative a La refation d'ordre produit < sun M)

b) ”idB(K;N)_ B(K;f) o0 Hn;n;Ké wz(y)

Démonstration. I1 existe un recouvrement ouvert (Ui)ieI de U formé par des
ouverts de Stein de U , une famille (mi)ieI d'entiers, lniEIN , et une famille

(ni)iEI d'épimorphismes de 0}y -modules

1
m.

N0

i Ui MIUi

En composant n; avec 1'injection canonique

n
MU — 0y »

i

on en déduit un morphisme de OU.—modules
My 1n
8 0y, — Oy,
i i

D'autre part,1'ouvert Ui étant de Stein et n|Ui un épimorphisme, il existe un
morphisme
n' n
£f.:00 — 0
i U.
Ui i
tel que

(TI|U1) °fi = (f[Ul) ° (n'lul)
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On en déduit un diagramme commutatif

3
Oy.
1
&
v f.
1
%. 9.
1 1
|
n'|u; nIUi
£lu;
Nt lu, —L—

dont les colonnes sont exactes. Soient

i U.

| mi 1
:OE @OU _—
i i i

' m. m.
) i i
(resp. pj : OE 90y — Oy, )
i i i
la premieére (resp. la deuxiéme ) projection et

. m
hy : 0 @0y

— 0,
1 1

i

i

le morphisme de OU_—modules défini par
i

hy=£;p] + 8P
On remarque que pour tout i , i€l , on a

Im(gi) = M[Ui et Im(hi) = M"IUi

En vertu de (3.1) et de (IV,4.3.2),il existe des fonctions continues
wi Y — ]R: s q)Z:Y——-» ]R: , lPéiY"" ]Ri ,

modérées le long de Z , telles que pour tout polycylindre compact de P pointé
dans Y , (K,y) , suffisamment effilé pour éa , modérément le long de Z ,
satisfaisant a

e(X;y) co(y)
il existe i , 1€1 , tel que
i) KCUi;
ii) il existe une scission C-linéaire continue, normale u de B(K;hj) telle
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que a) Ilully s vj/emGy)

v, o)

IA

b) ||id - B(K;h.) op ”
B(K)n i K

n
c) Ker(w) = T BA x ,
=1 %

ou pour tout j , 1sjsn,

A, = {deNP: (d,e.) € P, . }
] J U.',M ’Xgen

et eq,.-., désigne la 'base'' canonique de N
1ii) il existe une scission (C-linéaire continue, normale Tt de B(K;gi)
telle que
a) ||id - B(K;g.) ol SUA(Y)
B(K)n i K 2
n
b) Ker(t) = 1T BA!(K) s
=1 7
ol pour tout j , 1£jsn ,

Al = {deNP: (d,e.) P ,.yv }
j j a',M,Xgen

1
iv) Mk est un facteur direct (topologique) de B(K)"

On remarque que Mk étanf un facteur direct de B(K)n' , Mk est un sous-espa-
ce vectoriel fermé de B(K)™ , donc K est privilégié pour N' (cf. (2.2.6)).
De méme, il résulte de (iii) que Im(B(K;gi)) est un facteur direct (topologique)
de B , et comme

Im(B(K;g;)) = MK

(cf. chapitre 0), on en déduit que K est privilégié pour N , ce qui démontre

1'assertion (ii) de la proposition.

D'autre part, en vertu de (2.2.4), le diagramme
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B(K)™i

B(K;gi)
, B(K;£.)
B! — L, "

B(X;n") B(K;n)

BNy —2KE) L g

est un diagramme commutatif dont les colonnes sont exactes. En plus, B(K;pi )

(resp. B(K;p’.l') ) n'est autre que la premitre (resp. deuxieéme) projection

BO™ @ BK) i —— BOM

n' m. m.
(resp. B(K)" @ B(K) T — BK) 1 )
et
B(K;hi) = B(K;f.l) oB(K;pi) +B(K;gi) oB(K;pg)
D'autre part, comme
Mc M s
on a

P iy <P .
o ,M,Xgen o';M ’Xgen ’

ce qui implique que pour tout j , 1<jsn

b

A.cA!
J )

et en vertu des conditions (ii), (c) et (iii), (b) ci-dessus, on a
Ker (u) =Ker(t)

Alors il résulte de la proposition (1.3) que si 1l'on désigne par A 1'unique
C-scission de B(K;n) telle que

(3.2.1) X oB(K;n) = id n-B(K;gi) o T
B(X)

(cf. (1.1)) et si 1'on pose

0 = B(K;n") o B(K;pi) omx
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o est une scission C-linéaire normale de B(K;f) et

(3.2.2)

(idB(K;N) - B(K;£)o) o B(K;n) = B(Ksn) o (idB(K)n-B(K;hi)u)

L'application id n-—B(K;gi)r étant continue et la topologie de B(K;N)
B(K)
étant la topologie quotient définie par la surjection B(K;n) (cf.(2.1)), 1'ap-

plication ) est continue et en vertu de (3.2.1), de (2.1.1) et de la condition
(iii), (a) ci-dessus, on a

(3.2.3) Xl = (lid - Bt g s w500 .
H,K B(K)n 1 K 2
On en déduit que l'application ¢ est continue et comme
||B(K;n')“n-;K§1
(cf.(2.1.2) et
1Bl = 1,
on a
loll s Ml 1AM
et il résulte de (3.2.3) et de la condition (ii), (a) ci-dessus que
Hdo
“O“ﬂ';Y‘I;K \()1'(}’) Wé()’)/p X;y)

Si 1'on pose 1 =1pi ‘Pé , la fonction

7Y

Yy Y — RY
est continue, modérée le long de Z (App. I, 1.3.1) et
< Hdo
ol sk S Y1070 "5y,
ce qui démontre 1'assertion (iii), (a) de la proposition.

De méme, il résulte de (3.2.2), (2.1.1), (2.1.2) et de la condition (ii), (b)
ci-dessus que

lidg .y = BEDON = 1] Gy ey = B Do) @ BAG| =
= ”B(K;n)O(idB(Kfl-B(K;hi)u””;KgnidB(K)n- B(K;shdul[ s v, (),

ce qui démontre la proposition.

THEOREME 3.3.- Soient p, n, n' des entiens, peN , neN , n'€N, s, une
nekation d'ondre totak sun N | compatible avec sa strueture de monolde, moins

fine que La relation d'orndre produit < sun N, U unouent de €P ,

315



G. MALTSINIOTIS

f:N' —N

un morphisme de Oy-modules cohérents,

n':Oﬁ'—W'
et
n:O{lj-—> N

des epimonphismes de O-modules. Alons iL existe une stratification C-analytique
(Y;)jep de U et poun tout i, i€I, un &ément d, de NP, tels que
pourn toute fonction continue

(Di: Yl_) [1’+°°[ s
modénée Le Long de Y_i-Yi , AL existe des fonctions continues

big PYy T R et gy Yy — RY
modénées Le Long de ﬁ—Yi , telles que powr tout polycyLindre compact de CP
pointé dans Y, (X,y) , suffisamment effilé pour Sy » modénément Le Long de

ﬁ-Yi , satisfaisant a@ La condition
e(K;y) so; (y)
on ait :
i) K<U

ii) K est privilégié pour N et N' ;
iii) 4L existe une scissdion C-Linéaire continue, normale o de B(K;f)
o : B(K;N) — B(K;N")
telle que :

d.
a) “0“”';”;1( S ¢11 (y)/p” l(K;y) ;
b) ||idB(K;N) - B(K;f) oo”n;n;](g Vi,

Démonstration. Soit <y, (resp. <a" ) la relation d'ordre total ga sur
1
N (resp. sur NP ) définie dans (I1v,3.0.4) et posons
P

M = Ker(n) , M'=Ker(n') et M"=n_1(Im(f)) .

En vertu de (IV,4.1.2) et de (1I,3.4.1), il existe une stratification C-analytique
(Yi)i€I telle que pour tout i , i€1 ,

Suwoap.v— US y .5 US . mv©C Y. -Y.
o ,M',Yi a',M,Yi o';M ’Yi i i

et le théoréme résulte aussitdt de la proposition 3.2.
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Remarque 3.3.1.- On peut énoncer des corollaires de ce théoréme, analogues aux
corollaires du théoréme (IV,4.4.1). On laissera le soin au lecteur de le faire et
on se bornera d'énoncer le cas particulier ol la relation d'ordre §a est la rela-

tion d'ordre antilexicographique et oli on se limite aux polydisques :

COROLLAIRE 3.3.2.- Soient p, n, n' des entiens, p€EN , neN , n'€N , U
un ouvernt de €P ,

f:N' — N

un morphisme de O-modufes cohérents,

1
nl:O{l] —3 N!'
et
n:O{IJ—-—)N

des Epimonphismes de Oy-modufes. Alons LL existe une stratification C-analytique
(Yi)iEI de U et pour tout i, 1€I1 , un ¢Lément di de NP , un nombre réel
Gi s GiE R, , et des fonctions continues

b iY, =R, g Y, —RE et g, Y, — R

i1
modénées Le Long de Yi —Yi , tels que pour tout point y de Yi et tout polydisque
gemé K de @° de centre y et de polyrayon p = (p1,...,pp) , pE€ (]RI)p R

Les conditions
S S

01 <1/, (), 0y < 911,- 0Py < ppf1
impliquent que
i) K<U ;
ii) K est privilégié pour N et N'
iii) £ existe une scission C-Linaine continue, normale o de B(K;f) ztelle
que

a) lloll v,y S vy 076% 5

b) [Hdy g,y = BEGE) o0l s ¥3, )
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§4.- Théoréme de privilége numérique uniforme le long d'un 'diviseur a 1'infini''.

Dans ce paragraphe, on démontre une conséquence du théoréme de privilége numé-
rique uniforme (3.3), utile & 1'étude de la variation de la norme des scissions
construites dans ce théoréme, quand 'on s'approche' d'un fermé analytique. Dans
1'appendice III, on esquissera comment on peut appliquer ce résultat pour établir

une théorie de cohomologie a croissance des modules cchérents.

(4.1) On rappelle que d(.,.) désigne la distance sur ¢P déduite de la norme
sup.

THEOREME 4.1.1.- Sodient p, m, m' des entiens, pe€N ,meN , m'eN , U

un ouvert de @ , 7 un gerumé analytique d'inténiewr vide de U , Y L'ouvert
dense de U défini pan Y=U-Z , (Mk)1§ksn une famille de OU—modu,Ce/s cohénents,
(fk.)1 k'sm e famille de monphismes de Oy-modules cohénents

£ :Nl'(, > N
et pour tout k', 1<k'sm' , LI nl'(, des entiens, nk,eN s n];,E]N s
et
n
RPN SN
nkv . OU Nkl
n]'(,
n]'(v : OU _,va('
des épimonphismes de OU-modM,us. Alors pour toute fonction continue

©: Y — R*¥

+ b
modénée Le Long de Z , AR existe des fonctions continues

© Y — R,y Y— RY ,§, : Y— R*,
modénées Le Long de Z , et une famille (Ki) de pokydisques §ermés de €°

contenus dans Y , Zels que :

i€l

i)  pour tout point y de Y on a :
a) powr tout i, i€l , tel que yeK,
Kicﬁ(y;(vm(y),...,1/w(y))) H
b) i existe i , i€l , tel que yeK, et
D(y; (1/0" (¥) ..+ ,1/0" (¥))) <K
(et en parnticuliern (ﬁi)iEI est un necouvhement de Y )
ii) pour tout i , i€l , ona :
a) pour tout k , 1sksm , K. est privilégié pour M,

1
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b) pour tout k' , 1<k'sm' , Ki est privilégié pour Nk' et

Ngr s
iii) pourn tout i , 1i€I , et tout k', 1sk'sm' , iL exdiste une
scission C-Lindaine continue, nowmale o de B(Ki;f )

g : B(KaNkv) ——'B(Ki;N'.)

i
telle que
a) llofl v . . S inf y, ()
n]'(l’nk’Ki yEKi 1
b) llidB(Ki;Nk') - B(Ki;fk,) oa

. .p Sinf y,(y)
Nys ,nani )’€Ki 2

Démonstration. La démonstration repose uniquement sur le corollaire (3.3.2) et sur
les résultats du §2 de 1l'appendice I, découlant de 1'inégalité de kojasiewicz.
Néanmoins, elle est longue et technique. On procédera par plusieurs réductions.

I) On peut supposer que m=m'=1. En effet, si 1'on pose

1

m m' m
M= &M , N= 9 N , '= 9 e,
k=1 K k=1 K el e
m' m'
n= ¢ n, € n'= I n',
k=1 K K=l K
et si 1'on considére les morphismes de OU—modules
f:N —N ,
n :03 — N
et
1
n' :0{} —— N
définis par
ml m| m'
f= '@_ fkv y N = '@= nk'et T]' = '®= ﬂ1'<. ’
k'=1 k'=1 k'=1

on remarque que n et n' sont des épimorphismes et il résulte du cas particu-
lier du théoréme (m=m'=1) qu'il existe des fonctions continues

O :Y— RY , $i:Y— RY , y:Y— R¥

modérées le long de Z , et une famille (Ki) de polydisques fermés de P ,

i€l
contenus dans Y satisfaisant a 1'assertion (i) du théoréme et tels que :
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ii') pour tout i , i€I , Ki est privilégié pour M , N et N' ;

iii') pour tout i , i€1I , il existe une scission C-linéaire continue,
normale
T . . YA
o} .B(Ki,N) ——»B(Ki,N)
de B(Ki;f) telle que
a') llo"ll y. .o S inf ¥I(y)
nmK; T e,
b') ||id - BEK.;£) oa'|| . .. < inf Y, ()
B(Ki,N) 1 n,n,Ki Y€K1 2
La condition (ii') implique aussit6t 1'assertion (ii) du théoréme, en remarquant
que B(Ki;M) (resp. B(Ki;N) , Tesp. B(Ki;N') ) est somme directe topologique
de la famille d'espaces vectoriels topologiques (B(Ki;Mk))1§kgm (resp.
(B(Ki;Nk'))1§k'§m' ,  Tesp. (B(Ki;Nﬂ'))1§k'§m' ) . D'autre part, la scission

¢' est définie par une matrice

(Olzlk'l)‘lékls—]n"‘lgkl'gn' )

0]'('](" : B(Kl;Nk") _’B(Kl;N]‘(y)

est une application C-linéaire continue. On vérifie aussitdt que

”Of('k"”nl'(';

< '
L

et que Oﬁ'k’ est une scission de B(Ki;fk,) (pas nécessairement normale).
Soit k' , 1s5k'sm' , et posons

0 = Oprr B Edopr -
En vertu de (III,1.1.1), o est une scission C-linéaire continue, normale de

B(Ki;fk,) et on a

llldB(Kl,Nk') - B(Ki;fk')()”nkl;nkv;l(i B

= ||id - B(K;E

1 <
BOK, 5N,,) K%kl iny sk

< [lidg e .y -BE 3o . . < inf 9, (y)
B(K; 5N i nins Ky yek; 2 ’
ce qui démontre 1'assertion (iii), (b) du théoréme. Enfin, si 1'on pose
¥y =9y (0+y,) , la fonction
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w1 Y — ]R:
cst continue, modérée le long de Z (App.I, 1.3.2), et on a

= ! .
oty s = Tokone BOSA ol i #

< 1 ' : _ .
B Ilok'k' ”nl'(v ;nk' ;Ki * ”Ok'k' Hnl'(r ;nkv;Ki“ldB(Ki;Nky) B(Ki’fk')cl'('k' an, ;nk. ;Ki .

< ' 3 - . t
<|lo ”n';n;Ki (“'IldB(Ki;N) B(K;£) o ||n;n;Kig

IA

inf yi(y) (1+inf y,(y)) < inf 4, ()
ek, yeK; yeK;

ce qui démontre 1'assertion (iii), (a) du théoreme.

Désormais on supposera donc que m=m'=1 et on omettra 1'indice 1 en posant

M = )‘«11 , f=f1 et ainsi de suite.

I1I) I1 suffit de démontrer le théoréme localement sur U . En effet, soit
(Uj)jG j un recouvrement localement fini (sur U ) de U , par des ouverts rela-
tivement compacts dans U , satisfaisant au théoreme. Soit

.t YNU, — R*
®5 j +
la fonction définie par

() = suple(y), 1/Ry (1} = suple(y),2/d(y,€%-U;),1}
J

(cf. (I11,4.4.1)). En vertu de (III,4.4.1) et (App.I, 1.2.1, 1.3.3), la fonction
@. est continue, modérée le long de Z nt . Alors par hypothe¢se, pour tout j ,

j€J , il existe des fonctions continues

ij!Ynt — R} , “’13’ :YﬂUj —R7 , ‘PZj :YI‘IUj —R] ,

)

modérées le long de ZﬂUj , et une famille (K de polydisques fermés de

i iEIj
? , contenus dans YﬂUJ. , tels que :
ij) pour tout point Yy de YnUJ. on a :

aj) pour tout 1 , iEIJ. , tel que yEKi
Ky c'ﬁ(y;(1/<pj(y),...,1/cpj(}'))) ;

o
bj) il existe i, i€ Ij , tel que Y€ Ki et
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D(>';(1/q>J!(y),...,1/«>J!(y)))c1<i ;

iij) pour tout i , i€ Ij s Ki est privilégié pour M, N et N'

iii,) pour tout i , i EIj , 11 existe une scission C-linéaire continue,
normale ¢ de B(K;f)

o : B(K;N) — B(K;N")
telle que

a) loll

< inf y,.@H)
n';n;K. 1j ’
1 y€Ki

b.) |]id - BXK.;E)o|| ... £ inf y,.(y)

Soit (U;’i)jET un recouvrement ouvert de U tel que pour tout j , j€J ,
UJ'. ch et posons

.= 4@, @ -u.
ey = 45, 5

On a ej €R} , car Uj étant relativement compact dans U, U! est compact.
On pose

V.={yed : diy,U!) < e./2}

J J J
L'ensemble V:i est une partie ouverte de Uj et on a UJ! CVJ. et Vj ch
Soit

I! = {i€l. :K.nU!

i { FRESLLH 0}

et démontrons que pour tout i , i€ Ij , KicVJ. .

(<}
En effet, U! étant ouvert il existe y tel que y€UJ! r]l(i , et en vertu de
(ij), (aj) , On a

chﬁ(y;(1/¢3()’)"°"1/(pJ(y))) ’
ce qui implique que pour tout y' , y'e€ Ki ,
d(y,y") §d(y,(Ep-Uj)/2 < e5/2

(car yEﬁJ!) . On en déduit que y'EVj , d'ol KicVJ. . En vertu de (App. I,
1.3.4), il existe des fonctions continues

O} :Y—let ,w1:Y—) ]R:,q;Z:Y——-ﬂR: ,

modérées le long de Z , telles que pour tout j , j€J , et tout y , yEYan,

on ait
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O£ Y, VD =Y ) et Yy () S, ()
Enfin,posons
- 1
' jes ']
(en supposant pour simplifier que la famille (IJ!) ey est formée d'ensembles deux
a deux disjoints) et considérons la famille de polydisques (I(i)iEI . Comme pour
tout j , jeJ , et tout y , ernt on a

(D(}’) s ‘-pj (Y) )

1'assertion (i), (a) du théoreme résulte aussit6ét des conditions (ij), (aj) . Pour
démontrer 1'assertion (i), (b), on remarque que pour tout point y de Y il
existe j , j€J ,otel que yeU:} , et en vertu de (ij), (bj) , 11 existe 1i ,
ielj , tel que yEI(i et

5()';(1/@3! ) ,---,T/wJ! ) <k;
Comme yEUJ’. , ona KiﬂUJ'.;é(Z) , donc i€IJ! ,d'ou i€I , et comme UJ!cVJ. ,

on a

coJ! M <e'y) ,

ce qui démontre 1'assertion (i), (b), du théoréme. L'assertion (ii) résulte aussi-
tot des conditions (ii.) . Enfin, pour démontrer 1'assertion (iii), on remarque
que pour tout i, i€I , il existe j , j€J , tel que iEIJ! , et que la
condition (iii.) entraine 1'existence d'une scission C-linéaire continue, normale
o de B(Ki;f) , satisfaisant aux inégalités (iiij), (aj) et (iiij), (bj). Or, on

a démontré que pour tout i , 1€ I:'.l , on a Kich , ce qui implique que

inf w1j(y)éy§f P () et inf Y23 (Y)éngf b0,

yeKy i ey i

et démontre 1'assertion (iii) du théoreme.

III) On peut supposer que m=0 et m'=1 (autrement dit on peut "oublier"
M ) . En effet, en vertu de la réduction (II), on peut supposer qu'il existe un
entier n'" et un épimorphisme de OU—modules

"
n" : OE — M
1 ' =n! =n" =N! = =n! =n'" =13

Si 1'on pose n,=n;=n" , N2 N2 M, n,=ny=n" et f2 1dM on remarque
qu'il suffit de démontrer le théoréme pour m=0 et m'=2 et en raisonnant com-
me dans ‘la réduction (I), on se rdméne au cas m=0 et m'=1

IV) Dans les inégalités (iii), (a), et (iii), (b) du théoréme, on peut remplacer
les bornes inférieures par des bornes supérieures. En effet, supposons qu'on ait
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démontré la forme la plus faible du théoréme (majorations par des bornes supé-
rieures), et considérons la fonction

@ Y — ]RI R
définie par
0 () = {sup o(y), 1/Ry(»)}

(cf.(II1,4.4.1)). La fonction @ est continue, modérée le long de Z (App. I,
2.1.1, 1.3.3), et par hypothese il existe des fonctions continues

@ Y — R, yl:Y — R, )Y —RY

modérées le long de Z , et une famille (Ki) de polydisques fermés de P ,

i€l
contenus dans Y , satisfaisant
a) a 1'assertion (i) du théoréme ol 1l'on a remplacé ¢ par ®
b) a 1'assertion (ii) du théoreéme;

c) a 1'assertion (iii) du théoréme ol 1'on a remplacé les bornes

inférieures par des bornes supérieures, ¥y par \p{ et y, par q;é

Comme P9, 1'assertion (i) du théoréme résulte de la condition (a). D'autre
part, comme ®§1/RY , la condition (a) implique que pour tout i , i€l , et
tout y , yEKi ,

Ky cD(y; (RY(y) yees ,RY()')))

et en vertu de (App.I, 2.2.3), il existe des fonctions continues
12 'Y — R}, b, Y — R},

modérées le long de Z , telle que pour tout i , i€I ,

sup wi(y)§ inf ¥ (y) et sup \pé(y)g inf q;z(y) ,
y€I(i yEKi y€Ki y(-:Ki

et alors 1'assertion (iii) du théoréme résulte de la condition (c) ci-dessus.

V) En vertu du corollaire (3.3.2), il existe une stratification C-analytique

(Y.).
j’jed
ment dj de NP et des fonctions continues

de U et pour tout j , j€J , un nombre réel 63- , §.€R, , un élé-

J +
(pJ.:Yj——»]R: , w1j:Yj_'>]RI s u’Zj:Yj — Ry ,

modérées le long de Zj , ol Zj =Xj —Yj et XJ. désigne 1'adhérence de Y. dans

U , tels que pour tout y , Y€ Yj ,ettout p , p = (p1,...,pp) , pE (]R:)p

tel que

¥ %
(A:") O1<1/(Dj(}’) ’ OZ<D1 "“’pp<pp-1 ’
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si 1'on pose K=D(y;p) , on ait :
i! KcU
J)
iig) K est privilégié pour Net N' ;
iiij) il existe une scission C-linéaire continue, normale o de B(K;f)

telle que :
d

' j .
aJ) Hollnl;n;]( ES ‘PU(Y)/O ’

B(K;£) o0 ||

bJ!) llidB(K;N) - n;n;K

s ij(Y)

En vertu de (App.I, 1.7.1 et 1.7.2), on peut supposer que les fonctions (pj , ‘”u ,

ij sont des restrictions de fonctions continues sur U- Zj , modérées le long

de Z. , a valeurs strictement positives. On désignera €galement ces prolongements
J

par

OB :U-Zj — R}, “”13' :U-Zj — R,

:U-Z2. — R*

’Jizj
VI) En vertu de la réduction (II), il suffit de démontrer le théoréme localement
sur U . En gardant les notations de (V), on peut donc supposer que :
o) J est fini ;
B) pour tout x et x' , x€U , x"€U , ona dx,x")<1;
yY) il existe des constantes positives C et L telles que
VYEY : oly) sC/d(y, 2t ;

§) pour tout j , j€J , il existe des constantes positives Aj , Mj’

BU , N1j , sz et NZj telles que
M.
a) WEU-Z, :9.(y) SA./d(y,2.) 7
3T j N
b) VyeU-Z. : <B,./d(y,z.) '
) vy § 0O =By/A02)

N,.
. 2j
c) VyeU-ZJ- Sy, éBZj/d(y,Zj) ;

(cf. (App.I1,2.2.2)).

On remarque que la condition (B) implique que pour tout point x de U et toute
partie Fde U, ona d(x,F)<1 (en convenant que d(x,@) =1 ) ) et en parti-
culier pour tout Met M' , MER , M'eR , MsM' implique que

(1) Cette convention est différente de celle de (App.I1,2.0). Néanmoins, la validité
des théoremes du §2 de 1'appendice I est indépendante de la valeur strictement
positive, arbitraire, constante attribuée & d(x,8) (cf. (App.I,2.0)).
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1
4.1.1.1) ae,mM sa,pM .
Alors il résulte de (V) qu'il existe des constantes § , A, M, B1, N1, BZ’ N2 ,
supérieures ou égales a 1, et un élément d de N tels que pour tout j , jE€J,

tout vy , yEYj , et tout p , p=(p1,...,pp) , pE(R:)p,tel que

" M 6 6
(AJ) Pq < d(}’,ZJ) /A, pz<p1 a'-°,pp<pp_1 >

si 1'on pose K=5(y;p) , les conditions (i!), (ii!) et (iii!) de (V) soient
satisfaites, en remplacant dans (iiij) les inégalités (aJ!) et (bj) par les
inégalités :

N1 4
" < .
aJ) ”O”n';n;K = B1/(d(}’,zj3 o)

N
. 2
A - 5 o < .
BY) llidg ey = BOGE) o [l .y S Bp/d(y,2))
En effet, il suffit de poser

§ = sup{sup §.,1} , A= sup{sup A.,1} , M=sup{sup M.,1} ,
jeJ J jeJ J jeJ

B. =sup{sup B..,1} N. =sup{sup N..,1} i=1,2
1 ijE 1J, ’ 1 pjeg 1J, b b

et
d=sup d. ,
jeJ
cette derniére borne supérieure étant relative a 1l'ordre produit < sur N .

(VII) En gardant les notations et les hypotheses de (V) et (VI), pour tout k ,

Os<ksp , on pose
J=1j€J : dim Yj =k}= {j€J :dim Xj=k}
et

F

K U u X.

Osk'sk jeJ,,

L'ensemble Fk est un fermé analytique de U et on a
F =U
p

Par convention, on pose
J_1=0 et F =90

On remarque que pour tout j , jEJk , On a

(4.1.1.2) LR

(Le fermé analytique Zj étant le bord d'une strate de dimension k , il est
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réunion de strates de dimension strictement inférieure a2 k )

Pour tout entier k , -1<k<p , on considére 1l'assertion suivante :

(Ak) 1L existe des constantes A]'( , M]'(, Bik , Nik , Bék , Nék , supérieures ou
égales a 1 , et une famille (Ki)iEI de polydisques fermés de P conte-
nus dans Y tels que : k

o

ik) ak) pour tout i , ieIk , et towt y , yeKi , ona
K; <D (10, ..o, 1/0G0))

bk) pour tout y |, y€Yan , AL existe 1, iEIk , tel que
veK. et
' My M
D(y;(d(y,2) /Al'(,---,d(y,Z) /Al'())cKi H

ii,) powr tout i, i€l , K, est privilégid pour N et N' ;

iiik)powL tout 1, 1€ Ik , AL existe une scission C-Lineairne continue,
normale o de B(Ki;f) Zelle que :
Nl
a) lloll g & sup Bl /d(y,2) ky
i yekK.

1
'

N
sup (Bék/d(y,Z) 21()
K.

b, ) ||id - BX.;f)oo|| ... <
k B(K;5N) i nsn;Ky ve

i
On remarque qu'en vertu de (App.I1,2.1) et des réductions (III) et (IV), 1'assertion
(A ) implique le théoréme, et que 1l'assertion (A_1) est évidente. I1 suffit donc

de démontrer :

(VIII) Pour tout k , O<k<sp , (Ak—1) = (Ak) . Soit k, Os<ksp , et sup-
posons qu'on ait démontré 1'assertion (Ak-1) . En gardant les notations de (V),
(VI) et (VII), considérons 1'ouvert Vk de Yan défini par
1 Al +‘I
k1,1

M
V= {yEYnE 1dy,YnE_,) <d(y,0) k-1

et posons

p =1, eyxJ : jedy eran et y¢ vk} ,

I, =1, ,UI' ,

k= TV Ik
A" =sup{A,2XC} et M'=sup{M,L}

Pour tout i, i=(y,j), iEIf( , on désigne par Py 1'élément de (]R: )p défini
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par
pi= (pip---,pip) s

ou pour tout r, 1s<r<p ,
r-1

-1 r-1
~ M's T

1+8+...48 A"S

et 1'on pose
K; =D0y,p;)

En vertu de (4.1.1.1), on remarque que 5 satisfait a la condition (AB’) de (VI),
et en particulier il résulte de la condition (iJ!) de (V) que

K.<U
i
De méme, comme A'21 , M'21 et §21 ona

(4.1.1.3) o) <...<pi1§d(y,2)/2 ,

ip <Pi,p-1
ce qui implique que
(4.1.1.4) D(y;pip . 1I)<:KiCD(y;pi1 .M
(ot T désigne 1'élément (1,...,1) de (]R:)p et que

K.<Y .

i
D'autre part, démontrons que pour tout j , jeJk , et tout y , yEYan , tel

1 \l +"
M1 /2Mk-1 A

que y’EVk , ona

(4.1.1.5) d()’,Zj uZ) z2d(y,2) 1
En effet, en vertu de (4.1.1.2), on a

UZ = (XNE_DUZ ,

Z,UZ<R

d'olu
d(y,Zj uz) gd(y,(Yan_1) uz) =
= inf{d(y,Yan_i) , dly,2)} ,
et comme y¢Vk , ona
M]'< Mf( +1
-1 -1
d(y,Yan_1) 2d(y,Z) /2 A1'<-1 ,
ce qui démontre (4.1.1.5) (conformément a (4.1.1.1), car M]‘(_1 21 et A]'(_1 21).

Enfin, posons
p-1

MM M

328



PRIVILEGE NUMERIQUE UNIFORME POUR UN MORPHISME

p-1 p-1
Mp_{+DM'S +T48+...48 MreP!

Al =2 A

p-1
5
-1 A

-1
=d, + (1 +8)dyte. . +(1+8+...46P7)d
o =dy+ (1+8)dyte..+(1+ ),
(o d=(d,...,d ) désigne 1'élément de NP défini dans VI),
1 P
B=dy+ ody+...+sP”! a
Nig =supiN] ppo M (Ng M),

arOf_ +D) (N +BI) N+gt g
By =supiB] 415 2 Moy ATBE

Noie = SuPtN) 1> Mg NpJ

et

M _ NN, N
_ NN, N
Bix = swiBi g 2 Aoy Byl

lzour démontrer la condition (ik), (ak) de 1'assertion (Ak), soient i€ Ik et
yEKi . Si iEIk_1 , la condition résulte de la condition (ik-1) ,(ak_1) de
1'assertion (Ak—1) . Supposons donc que i€11'< . Alors il existe j , j€J
et y', y’EYan s y'in , tels que i=(y',j) et Ki=D(y';pi) .11
s'agit de démontrer que pour tout point y'" de Ki on a

d(y,y"™ £ 1/0(y)

b

Or,

d(y,y'") sd(y',y) +d(y',y'") S2 sup p; =
1srsp

= 20, = d(y',zuzj)M'/A' <aiy', b2k
(cf. (4.1.1.3) et (4.1.1.1)). D'autre part,

d(y',2) sd(y,y') +d(y,Z) <

gpi1+d(}’,2) <d(y',2)/2 +d(y,2)

(cf. (4.1.1.3)), d'ou
d(y',2)/2<d(y,2)

et
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aiy',ntlc sag, s 1/0m)
(en vertu de la condition (y) de (VI)).

Démontrons la condition (ik), (bk). Pour cela, soit y un point de YNE .
On distingue deux cas :
ler cas : yEVk . Alors il existe un point y' de YﬂFk_1 tel que
\ \ +‘I
M1, 1

(4.1.1.6) d(y,y") <d(y,2) Ap_q2dly,2)/2

(conformément a la définition de Vk et a (4.1.1.1) car M' 1 21 et '_1 21).
En vertu de la condition (ik-1)’ (bk_1), il existe i , iEIk_1 , tel que

ﬁ(y';(d(y',Z)Mk"/Alzq). T)ek;

Or,
d(y,Z) £d(y,y") +d(y',2) £d(y,2)/2 +d(y',Z)
(cf.(4.1.1.6)), d'ou
d(y,2)/2<dy’',2) ,
ce qui implique que
D(y'; (y,2)

et en vertu de (4.1.1.6),

M1

IV'_1
R VI ER L VN

1 | +1
M1 /2M1<-1 "

D(y; d(y,2) P mek
d'ol
ﬁ(y;(d()’,Z)Mk/A',---,d(y,Z)Mk/Al'())CKi
Meoq*]
(conformément a (4.1.1.1), car My 2M _, et Ap22 Aq)

2éme cas : yin . On remarque qu'en vertu de (4.1.1.2), on a

(Yan)-(YnF Je U (YnYJ.) ,

k-1 jed,
et comme

YNF <V,

k-1 k 2

on en déduit qu'il existe j , jeJk , tel que yeYnNn Yj , Ce qui implique que
si 1'on pose i=(y,j) , ona iEIf( . Or, en vertu de (4.1.1.4) ,on a

5(y;pip - L)k, ,
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et comme

p-1 p-1 p-1
.p=d(y,ZUZj)M'6 AR ITRPRL SN )

P

il résulte de (4.1.1.5) que

Mg
03, 240,2) /AL,

1p
ce qui prouve que
= My M
D(y;(d(y,2) /Ai,---,d(y,Z) /Ai))C:Ki
Pour démontrer les conditions (iik) et (iiik) de 1'assertion (Ak) , soit 1,
i€l .Si i€I,_, , ces conditions résultent aussitot des conditions (ii; ;)
et (iiik_1) de 1'assertion (Ak-1) (conformément a2 (4.1.1.1), et en remarquant que
définition B!, 2B! , NIy 2N! B!, 2B} et N! 2N! .
par derinition - Bqy 25 w1 k=M1 ,k-1 » “2k=°2,k-1 2 Np 1)
Supposons donc que i.€1i . Alors il existe j , j€J, , et y, y'EY'ﬂYj s
yg¢Vv, , tel que i=(y,j) . Comme Py satisfait a la condition (AY) de (VI), la
condition (iik) résulte de (iij) de (V), et il résulte de (VI) qu'il existe
une scission €-linéaire continue, normale ¢ de B(Ki;f) telle que

Noa
ol ey, < Ba/d0aZ) 7 65

et
N

i 2
- £ o < .
HldB(Ki;N) B(Ki,f) Ollﬂ;ﬂ;Ki_ Bz/d(y,ZJ)

(inégalités (a") et (bg) de (VI)). Conformément a la définition de p; » @ et B,

on a donc

A

N
0B 1 BM!
llolln.;n;Ki 2%APB/d(y,2;) 1dy,2uZ) s

N, + B_M'
ZaA'BB1/d(y,ZUZj) ! ,

IA

ce qui implique (en vertu de (4.1.1.5) et (4.1.1.1), et conformément a la défini-
tion de Bik et Nik) que
1k Nk
< B! /d(y,Z < s B! /d(y',Z
ntsnsKs 1/a,2) y'lel%( WLICARY Ry

lloll

et démontre 1'inégalité (iiik), (ak). De méme, en vertu de (4.1.1.5) et (4.1.1.1),
et conformément a la définition de Bék et NéK , ona
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N
. 2
HldB(Ki;N) - B(K;;6) c>c1||n;mKi < Bz/d(y,ZUZj) <

N! N}
S By /A0 K s s (/a0 N
M

ce qui démontre 1'inégalité (iiik), (bk) et termine la démonstration du théoréme.
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APPENDICE III

COHOMOLOGIE MODEREE ET GAGA NON PROPRE

Dans cet appendice, on esquisse une application des résultats de 1'appendice
précédent, afin d'établir des théories cohomologiques des faisceaux analytiques
cohérents, avec conditions de croissance a '"'1'infini''. On définit en particulier
une cohomologie ''modérée' qui permet d'énoncer un GAGA non propre généralisant
[50] . On s'inspire de la notion de section modérée d'un faisceau localement libre,
définie dans [ 6 ], qu'on généralise pour les faisceaux cohérents. A la fin de
1'appendice on indique une approche possible pour 1'établissement des théories
cohomologiques pour des conditions de croissance plus générales. Les résultats sont
énoncés sans démonstration, sauf pour expliquer comment les résultats de ce travail
interviennent. Un exposé détaillé sera fait dans une publication ultérieure. Ici
on se limitera aux espaces analytiques réguliers. Le cas singulier n'est pas es-
sentiellement plus difficile mais les définitions sont plus techniques, nécessitant

des plongements locaux dans des réguliers.

(1.1.1) Tous les espaces analytiques considérés sont des espaces C-analytiques
séparés, dénombrables a 1'infini. Soit Y une variété analytique (espace analyti-
que régulier). On appelle compactification partielle de Y une immersion ouverte
i:Y —X
telle que X soit un espace analytique réduit et X-i(Y) un fermé analytique
d'intérieur vide de X . On identifiera Y a 1l'ouvert dense i(Y) de X et le
fermé analytique Z=X-Y de X sera vu comme étant a ''1'infini'". On dira qu'un
couple (Y,X) est une compactification partielle, si X est un espace analytique
réduit, Y un ouvert régulier de X , et 1l'immersion canonique i :Y<— X une
compactification partielle de Y . Un morphisme d'une compactification partielle
(Y',X') dans une compactification partielle (Y,X) est un morphisme d'espaces
analytiques

u:X' —X
tel que u(Y')<Y . On dira que le morphisme u est strict (ou qu'il conserve
1'infini), si 1'on a en plus

u(ZezZ ,
ou Z=X-Y et Z'=X'-Y' . On dira que le morphisme u est une immersion

ouverte de compactifications partielles, s'il existe une famille finie (ui)1<i<n
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de morphismes stricts de compactifications partielles

uy (VX)) — (Y 4.X )

telle que
i) (Yb,Xo) = (Y,X) et (Yn,Xn) = (Y',X") ;

ii) U=ugolyo...ou

iii) pour tout i , 1<isn , le morphisme d'espaces analytiques
uy :Xi-——*)(i_1 est ou bien une immersion ouverte, ou bien un morphisme propre, in-
duisant un isomorphisme de Y, sur Yi-1 .

On remarque que si u est une immersion ouverte de compactifications partielles,
alors Y' s'identifie a un ouvert de Y , et que le composé de deux immersions
ouvertes de compactifications partielles en est une également.

On démontre que si
u'  (Y',X") — (Y,X) et u": ("X — (Y,X)

désignent deux immersions ouvertes de compactifications partielles, il existe au

plus un morphisme de compactifications partielles
u: (Y',X") —(Y',X")

tel que
u"=u'eu ,

qui est alors une immersion ouverte. On dira, dans ce cas, que u'" se factorise
a travers u' . Plus généralement, il existe une immersion de compactifications

partielles unique (2 isomorphisme pres)

v :(Y1,X1) — (Y,X)

se factorisant a travers u' et u'" satisfaisant a la propriété que toute immer-
sion ouverte de compactifications partielles

v': (Y1,X1) — (Y,X) ,

se factorisant a travers u' et u" , se factorise a travers v (produit fibré
de (Y',X') et (Y'",X") au-dessus de (Y,X) dans la catégorie de compactifications
partielles).

On dit qu'une famille (ui)iel

. )
ug (VX)) — (4L,X)

de morphismes de compactifications partielles

est un recouvrement ouvert de (Y,X) si :

i) pour tout i , i€T1 , Uy est une immersion ouverte de compactifications
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partielles;

ii) pour tout compact K de X il existe une partie finie I' de I et pour
tout i , 1€I' , un compact Ki de Xi tels que
Ke U u. (K. .
i€l iy
Si (ui')fel' désigne un deuxiéme recouvrement ouvert de (Y,X) , on dit qu'il est
plus fin que le recouvrement ouvert (ui)ieI , i pour tout i ', i'€el , il
existe 1, i€l , tel que ui, se factorise a travers uy

La notion de recouvrement ouvert d'une compactification partielle définit une
topologie de Grothendieck qu'on appellera topologie de Grothendieck-Hironaka(1)
ou plus simplement topologie G.H. de cette compactification partielle. (Intui-
tivement cette topologie peut étre considérée comme intermédiaire entre celle de
Y et de X). La topologie G.H. a des propriétés tres proches de celles de la
topologie ordinaire. Par exemple, on a la propriété de paracompacité suivante :

pour tout recouvrement ouvert (ui) d'une compactification partielle (Y,X) ,

i€l

il existe un recouvrement ouvert (ui',)i de (Y,X) , plus fin que (ui)iEI s

'eI'
tel que pour tout compact K de X 1'ensemble
. 71
L U ' . 1
Iy {iter1 : ut, (K) # @}
soit fini.
(1.1.2) Soient Y une variété analytique et (Y,X) et (Y,X') deux compactifica-
tions partielles de Y . On dit que ces compactifications partielles sont équiva-
' .
lentes, s'il existe des recouvrements ouverts (ui)i€I et (ui).1€I R
uy :(Yi,Xi) — (¥,X) , u! :(Yi,Xi) — (Y,X")
de (Y,X) et (Y,X') respectivement et pour tout i , i €I , un isomorphisme de

compactifications partielles
. 1
Vi .(Yi,Xi) ———*(Yi,Xi) ,
tel que
= 1]y
u; ¥y = @il e v [Y;)

On appelle variété analytique avec infini une variété analytique Y munie d'une
classe d'équivalence de compactifications partielles. Si (Y,X) est une compac-
tification partielle appartenant a cette classe, on dira qu'elle définit sa struc-

(1) En effet, Hironaka introduit une notion analogue dans [27], ou il étudie la
"voilite étoilée".
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ture de variété analytique avec infini.

(1.1.3) Soit (Y,X) une compactification partielle. On désigne par M)dY‘X 1'en-
b
semble des fonctions continues

:Y—R ,

modérées le long de Z , ou Z=X-Y . Pour tout morphisme de compactifications
partielles

u: (Y',X') — (Y,X)
et tout ¢ , npeModY;X , on a
@o (ulY") EMOdY"X' .

On démontre que le foncteur qui associe a toute immersion ouverte de compactifi-

cations partielles
u: (Y',X")— (Y,X)

1'anneau MOdY"X’ est un faisceau pour la topologie G.H. sur (Y,X) . Autre-
b

ment dit, pour tout recouvrement ouvert (ui) de (Y, X0 ,

i€l
u o (Y,X) — (V%)
. . Sy s
et toute famille ((pi)iEI , ‘DiEMOin;Xi , telle que pour tout iet i' , i€l,
1'€I , et toute immersion ouverte de compactifications partielles

u: (Y',X") — (Y,X)

se factorisant a travers u; et Ui s si 1l'on désigne par v (resp. v' ) l'unique
morphisme de compactifications partielles tel que u =u; °v (resp. u =Ug, ov'),

on ait
q)i o (VIY') = (pi, o (V'IY') s
il existe une fonction unique ¢ , @€ MOdY'X , telle que pour tout i, 1€l ,
’
0, =00 (uyY,)

Enfin, si (Y,X') désigne une compactification partielle de Y équivalente a
(Y,X) , on a

MOdY;X' = MOdY;X ’

ce qui permet de définir une notion de fonction continue, modérée sur une variété
avec infini .

(1.1.4) Soient (Y,X) une compactification partielle et d1 et d2 deux distances
sur Y . On dit que d1 et d2 sont équivalentes, s'il existe un recouvrement
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ouvert (ui)iEI de (Y,X),

uj ot (Yi,Xi) — (¥,X) ,
et pour tout i , i€I , des fonctions continues
@. Y. xY. —R* et y.:Y.xY, — R¥ |
ittit i + ittiT i +

modérées le long de (Xi x Zi) u (Zi xXi) , ou Zi =Xi -Yi , telles que pour tout

yety' ,yeY; , y'e€Y, ,onait

et

d, (u; (y) »u; (7)) sy; (v,y')dy (ui O,u; () .

On démontre la proposition suivante :

PROPOSITION 1.1.5.- 12 existe une classe d'équivalence unique de distances sur Y
telle que pour toute distance d appartenant a cette classe et toute immersion
ouverte de compactifications partielles

u: (¥Y',X") — (¥,X)

telle que X' 404t un ouvert de @® |, ta distance induite par d sun Y' s04it
dquivalente & fa distance indwite sur Y' par La distance swr € déduite de £a
noxame Aup.

On dit qu'une distance sur Y est modérée le long de Z (ou Z=X-Y) , si elle
appartient a la classe d'équivalence définie dans la proposition ci-dessus. On

remarque qu'une telle distance est compatible avec la topologie de Y . Si
u: (Y',xm)y —(Y,X)
désigne une immersion ouverte de compactifications partielles et d une distance

sur Y , modérée le long de Z , alors la distance induite par d sur Y' est
modérée le long de Z' (ou Z'=X'-Y') .

(1.1.6) Soient Y une variété analytique, d une distance sur Y et (Y,X) et
(Y,X') deux compactifications partielles équivalentes de Y . Alors la distance
d est modérée le long de Z (ot Z=X-Y) si et seulement si elle est modérée
le long de Z' (ol Z'=X'-Y) . Cela permet de définir une notion de distance

modérée sur une variété avec infini.

(1.2.1) Soient (Y,X) wune compactification partielle, M un OY-module cohérent et
M1 et M2 deux OX-modules cohérents prolongeant M , autrement dit tels que
My [Y =M= M2|Y . Si 1'on désigne par i:Y<—X 1'injection canonique, on a
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donc des morphismes de Ox-modules

JpiMy — 1M et G, M, — 1,0 .
(On remarque que i,(M) n'est pas en général un Ox—module cohérent). On démontre
que les propri€tés suivantes sont équivalentes :

i) il existe un OX-module cohérent M' prolongeant M et des morphismes
de Ox-modules

uy :M1 — M, uzzM2 — M
induisant 1'identité au-dessus de Y .

ii) il existe un Ox-module cohérent M' prolongeant M et des morphismes
de Ox-modules

vy M ——-,M1 s vyl M"—-—-~M2
induisant 1'identité au-dessus de Y .
iii) le sous-OX—module Im(j]) +Im(j2) de i,(M) est un Ox-module cohérent.
On dit que les prolongements M1 et M2 sont équivalents, si les conditions

équivalentes ci-dessus sont satisfaites. On démontre que si (ui)i€I désigne un
recouvrement ouvert de (Y,X) ,

ui H (Yl’xi) _— (Y,X) )

pour que les prolongements M1 et MZ de M soient équivalents, il faut et il suf-
fit que pour tout i , i€l , les prolongements u;(M1) et u;(Mz) de
(uilYi)*(M) le soient.

On appelle prolongement local de M 1la donnée d'un recouvrement ouvert (ui)
de (Y,X) ,

i€l
ug s (%) — L0,

et pour tout i, i€l , d'un Ox -module cohérent Mi , prolongeant (ui|Yi)*(M),
i
tels que pour tout iet i' , i€I , i'€I , et toute immersion ouverte de compac-

tifications partielles
u: (Y',X") — (Y,X)

se factorisant a travers uy et Uy s si 1'on désigne par v (resp. v' ) 1l'unique
morphisme de compactifications partielles tel que u =u; °v (resp. u =u;, ov' ),
les prolongements V*(Mi) et V'*(Mi,) de (u|Y'")*(M) soient équivalents.

Si (ui')i’ﬂ' , (Mi')i'EI' désigne un autre prolongement local de M , on
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dira qu'il est équivalent au précédent si pour tout i , i€I , tout i' , i'€I' ,
et toute immersion ouverte de compactifications partielles

u: (Y',X") — ,X)

se factorisant a travers uy et u{, , Si 1'on désigne par v (resp. v' ) 1l'unique
morphisme de compactifications partielles tel que u =u, °v (resp. u =ui. ov' ),
les prolongements v*(Mi) et v'*(Mi,) de (u|Y'")*(M) sont équivalents.

On appelle OY-module cohérent méromorphe le long de Z (o Z=X-Y) un
OY—module cohérent muni d'une classe d'équivalence de prolongements locaux. On dit
qu'il est effectivement méromorphe s'il existe un Ox-module cohérent M' prolon-
geant M tel que (idX , M') appartient a cette classe (en considérent idX comme
un recouvrement ouvert de la compactification partielle (Y,X) formé de la seule
immersion ouverte idx ). On ignore si tout O,~module cohérent méromorphe le long
M si M=d) , o meN , le Oy-module
cohérent 0;2 prolonge OI\I(1 , et munit canoniquement 0‘; d'une structure de

de Z est effectivement méromorphe

OY—module effectivement méromorphe le long de Z . Sauf mention expresse du con-

traire, 01;1 sera toujours considéré comme muni de cette structure méromorphe.
(1.2.2) Soient (Y,X) une compactification partielle de Y , Z=X-Y , M et M’
deux OY-modules cohérents, méromorphes le long de Z , et f:M' — M un mor-
phisme de OY—modules. On dit que f est un morphisme de OY-modules méromorphes,
ou plus simplement un morphisme méromorphe, s'il existe un recouvrement ouvert

(ui) de la compactification partielle (Y,X) ,

i€l
u; ¢ (Yi’xi) — (Y,X)

et pour tout i , 1€I , des OX -modules cohérents Mi et Mi et un morphisme de
i

-] . ! .
OX'1 modules f. : Mi —»M.l tels que :

1) (yer (Mi)iEI) (resp. (u)er » (Mi)iEI ) est un prolongement local
de M (resp. de M' ) définissant sa structure méromorphe;

ii) pour tout i , i€l , fi|Yi=(ui|Yi)*(f)
On dit qu'une section s du OY-module méromorphe M , s€eTr(Y,M) , est méro-
morphe, si le morphisme
OY — M

défini par cette section est méromorphe. On vérifie facilement que le composé de

(1) Voir néanmoins, [51], théoréme 1, p.364 et [15], corollaires(VI.4), (VII.5) et
(VII.6), p.342.

339



G. MALTSINIOTIS

deux morphismes méromorphes est méromorphe.

(1.2.3) Soient (Y,X) une compactification partielle, M un OY-module cohérent,
méromorphe le long de Z , o Z=X-Y , et N un sous-OY—module cohérent. On dé-
montre que les conditions suivantes sont équivalentes.

i) Il existe une structure de OY—module méromorphe le long de Z sur N
telle que 1'injection canonique

Ne—M
soit un morphisme méromorphe.

ii) I1 existe une structure de OY—module méromorphe le long de Z sur M/N
telle que la surjection canonique

M— M/N
soit un morphisme méromorphe.

On dit que N est un sous-OY-module méromorphe de M , si les conditions équi-
valentes ci-dessus sont satisfaites, et alors la structure méromorphe sur N
(resp. sur M/N ) satisfaisant a la condition (i) (resp. a la condition (ii) )
est unique. On dira que cette structure est induite (resp. déduite ) de celle de
M.

Si f:M' — M désigne un morphisme de OY—modules cohérents méromorphes le
long de Z , alors Ker(f) (resp. Im(f) est un sous-OY-module méromorphe de M'
(resp. de M ). On en déduit que Ker(f) , Im(f) , Coker(f) et Coim(f) sont munis
naturellement d'une structure de OY—module méromorphe le long de Z et on démon-

tre que 1'isomorphisme canonique de OY—modules
Coim(f) — Im(£)

est un isomorphisme de OY-modules méromorphes le long de Z . On peut donc définir
une notion de suite exacte dans la catégorie de OY-modules cohérents, méromorphes
le long de Z , et une telle suite sera exacte si et seulement si la suite
sous-jacente de OY—modules cohérents est exacte.

(1.2.4) Soient (Y,X) une compactification partielle, Z=X-Y , M un OY-module
cohérent méromorphe le long de Z et u: (Y',X') —> (Y,X) une immersion ouverte
de compactifications partielles. Alors le OY‘-module cohérent (u|Y')*(M) est
muni naturellement d'une structure de OY,—module méromorphe le long de Z'
(o Z'=X'-Y') et si f:M' — M désigne un morphisme de OY-modules cohérents,
méromorphes le long de Z ,

@W[YD*(E) : @]YD)*M') — |Y")*M)
est un morphisme de 0,,,-modules méromorphes le long de Z' . En particulier, pour
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toute section s , sCTI(Y,M) , méromorphe le long de Z , la section
s'=s|Y'=(|Y")*(s) , s'e€r(Y',(u|Y")*(M)) est méromorphe le long de Z' , et
on démontre que le foncteur qui associe a 1'immersion ouverte

u: (Y',X") — (Y,X)

1'ensemble des sections méromorphes de (u|Y)*(M) 1le long de Z' est un faisceau
pour la topologie G.H. de la compactification partielle (Y,X).

(1.2.5) Soient Y une variété analytique, M un OY-module cohérent et (Y,X) et
(Y,X") deux compactifications partielles équivalentes de Y . Pour toute structure
de OY-module méromorphe le long de Z (o Z=X-Y) sur M , on peut définir
naturellement une structure de OY-module méromorphe le long de Z'

(ot Z'=X'-Y') , ce qui permet de définir une notion de OY—module cohérent méro-

morphe sur une variété avec infini, ainsi qu'une notion de morphisme méromorphe.

(1.3.1) Soient Y une variété analytique et K une partie de Y . On dit que

K est un compact polycylindrique, s'il existe un ouvert U de Y tel que K<U

et une carte w:U' — U (isomorphisme analytique), ou U' est un ouvert de

P , telle que w-1(K) soit un polycylindre compact de ® .Si K estun com-
pact polycylindrique de Y , on désigne par B(K) 1'algtbre de Banach des fonc-
tions continues sur K , analytiques sur ﬁ , munie de la norme sup. Si M dési-
gne un OY—module cohérent, on définit comme dans 1'appendice II, (2.2.3) 1'espace
vectoriel topologique B(K;M) dont 1'espace vectoriel sous-jacent est

T (K,M) ® B(K) et dont la topologie est définie par la semi-norme [|'”rrK , ol

F(K,OY)
n :OE — M|U

désigne un épimorphisme au voisinage de K et ll'”n'K est définie comme dans
1'appendice II, (2.1). On démontre que cette topologié est indépendante de 1'épi-
morphisme n (cf. App.II,2.2.2) et on dit que K est privilégié pour M , si
B(K;M) est séparé, dans quel cas B(K;M) est un espace de Banach (cf. App. II,
2.2.5, 2.2.6). Pour tout morphisme f :M' — M de OY-modules cohérents on
désigne par B(K;f) 1'application

B(K;£) : B(K;M') — B(K;M)
définie par

B(K;f) = I'(K,f) © ldB(K)
(cf. App.I1I,2.1), qui est une application €-linéaire continue (cf. App.II1,2.2.4).

On désigne par KP(Y) 1'ensemble des compacts polycylindriques de Y et on

appelle semi-norme sur M une famille (“'llK)KEKP(Y) , ol pour tout KX ,
KeKP(Y) , ||.||K désigne une semi-norme sur B(K;M) qui en définit la topologie.
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Afin de simplifier les notations, pour toute section s de M au-dessus de Y ,
s €T(Y,M) , on désignera par ”s[|K la semi-norme de 1'image de s dans B(K;M) .

(1.3.2) Soient (Y,X) une compactification partielle de Y , M un OY-module

.

cohérent et (I’”K)KEKP(Y) et (] ll'()!(EKP(Y) deux semi-normes sur M . On dit

qu'elles sont équivalentes, s'il existe un recouvrement ouvert (ui)i €l de (Y,X),
u; ¢ (Yi’xi) — (Y,X) ,
et pour tout i, 1€I , des fonctions continues
. * . *
@ .Yi — R et b3 ‘Yi — R}

modérées le long de Zi , ou Zi=)(i—Yi , telles que pour tout K , K€KP(Yi) ,

on ait
-1, < sup o () -]k
K y€eK 1 IK
et
g s sup v, () ]|
K yeK i I](

(en remarquant que comme Uy induit un isomorphisme analytique de Yi sur un

ouvert de Y , KP(Yi) s'identifie par
K !——*ui(K)

a un sous-ensemble de KP(Y)) . On démontre la proposition suivante :

PROPOSITION 1.3.3.- Soit M un OY-module cohénent, ménomorphe Le Long de Z
ot Z=X-Y . Alorns & existe une classe d'équivalence unique de semi-normes sur
M telle que pour toute semi-norme (||. ”K)KEKP(Y) appartenant d cette classe,
toute Ammersdion ouverte de compactifications partielles

u: Y',Xx") — (,X) ,

tout prolongement M' de M|Y'=(u|Y")*(M) sur X' définissant La structure méro-
morphe de M|Y' ZLe Long de Z' (oh Z'=X'-Y') déduite de celle de M et tout
epimonphisme de OX,—modwﬂu

n: oy

Xl

|

__;M'

et (-l

Les semi-nomumes  (
valentes .

swe M|Y' sodent dqui-

In;K)](EKP(Y') K)KEKP(Y‘)

On dit qu'une semi-norme sur M est modérée le long de Z , si elle appartient
a la classe d'équivalence définie dans la proposition ci-dessus. Si
u: (Y',X") — (Y,X)

désigne une immersion ouverte de compactifications partielles et (||. ”)KEKP(Y)
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une semi-norme sur M , modérée le long de Z , alors la semi-norme

(“'IIK)KeKP(Y') sur M|Y' est modérée le long de Z'

Enfin, on étend facilement la notion de semi-norme modérée aux modules cohérents,
méromorphes sur une variété avec infini, en remarquant que cette notion est indé-
pendante des compactifications partielles équivalentes choisies.

(1.4.1) Soient Y une variété analytique, K un compact polycylindrique de Y

et d une distance sur Y , compatible avec sa topologie. Pour tout point vy ,
(o]

y €K , on pose

pg(Ksy) =d(y,9K) = inf d(y,y') = inf d(y,y")
y'€sdkK y'¢K
et

pgKsy) = sup d(y,y") = sup dly,y")
y'€dK y'eK

On remarque que si Y est un ouvert de P , K un polycylindre compact et d

la distance déduite de la norme sup sur P , alors on a

pé(K;y) = inf pi(K;Y)

1<igp
et
pqKsy) = sup oY (Ksy)
1sigp
(cf.(I11,2.1)).

(1.4.2) Soient (Y,X) une compactification partielle et d wune distance sur Y ,
modérée le long de Z , ou Z=X-Y . On dit qu'un ensemble K de compacts polycy-
lyndriques, de Y est suffisant le long de Z , si les conditions suivantes

sont satisfaites :

i) pour tout K, K€K , et tout K' , K'€ KP(Y) tel que K'cK , ona
K'e€K ;
ii) il existe une fonction continue
@ Y — P: ,
modérée le long de Z , telle que pour tout y , ye€Y , il existe K , K€K tel
que
a) yek
B) 1/0(y) < 04 (K;y)

On démontre que cette notion est indépendante de la distance modérée d . En uti-
lisant les résultats du paragraphe 2 de 1'appendice I, on démontre que 1'ensemble
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KP(Y) est suffisant le long de Z et qu'une intersection finie d'ensembles suf-
fisants est un ensemble suffisant.En particulier, 1'ensemble des parties de KP(Y)
qui sont des ensembles suffisants le long de Z est une base de filtre sur KP(Y).
Pour tout ensemble K , Kc<KP(Y) , suffisant le long de Z , et toute immersion
ouverte de compactifications partielles

u: Y',X") — (¥,X)
1'ensemble K' de compacts polycylindriques K de Y' tels que u(K)€ K est un
ensemble suffisant le long de Z' , ou Z'=X'-Y' . Réciproquement, si (ui)i€I
désigne un recouvrement ouvert de (Y,X) ,

up (V%) — LX),

et pour tout i, i€l , Ki un ensemble de compacts polycylindriques de Yi ,
suffisant le long de Zi , ou Zi=Xi-Yi , alors 1l'ensemble

K={KekP(Y) : 3iel , u" (k) €k;}
est suffisant le long de Z .
Soit (Kj)j gy une famille de compacts polycylindriques de Y . On dit que

(KJ.) est un recouvrement de Y , suffisant le long de Z , si 1l'ensemble

jeJ
K={KeKP() : 3jeJ , KcKj}

est suffisant le long de Z . Pour cela, il faut et il suffit que 1'ensemble

K'={KeKP(Y) : 3j€J ,K=Kﬂ

satisfasse a la condition (ii) ci-dessus.

Enfin, en utilisant la proposition (2.2.3) de 1'appendice I, on démontre le

lemme suivant :

LEMME 1.4.3.- Sodent (Y,X) une compactification parntielle, K un ensemblfe de
compacts polycylindiiques de Y , suffdsant Le Long de Z , ot Z=X-Y , et

cp:Y—-]R:

une fonction continue, modérnée Le Long de Z . Alons AL existe un ensemble K' ,
K'eK , sugfisant Le Long de Z , et une fonction continue

@'Y — IR:
modénée Le Long de Z , telle que pour tout K , KEK' ,

sup ©(y) £ inf @' (y) .
y€K yeK

(1.4.4) Soient Y une variété analytique, K un ensemble de compacts polycylin-
driques de Y et (Y,X) et (Y,X') deux compactifications partielles équivalentes

344


http://moden.ee

COHOMOLOGIE MODEREE

de Y . On démontre que pour que K soit suffisant le long de Z , ou Z=X-Y ,
il faut et il suffit que K soit suffisant le long de Z' , ou Z'=X'-Y . Cela
permet de définir une notion d'ensemble de compacts polycylindriques, suffisant,

sur une variété avec infini.

(1.5.1) Soient (Y,X) une compactification partielle, M un OY-module cohérent
méromorphe le long de Z , ot Z=X-Y , (]| '”K)KEKP(Y) une semi-norme sur M ,
modérée le long de Z , et s une section de M au-dessus de Y , s€T(Y,M) .
On démontre que les conditions suivantes sont équivalentes :

i) il existe une fonction continue
®:Y—DR} ,
modérée le long de Z , et un ensemble K , Kc<KP(Y) , suffisant le long de Z ,
tels que pour tout K , KeK ,
Isll = sup o(y) ;
€K

y
ii) il existe une fonction continue

®:Y — R,
modérée le long de Z , et une famille (Kj)j €J de compacts polycylindriques de
Y , formant un recouvrement suffisant de Y 1le long de Z , telles que pour tout
i,ied,

Isllg = sup o) ;

j YeEK
et que ces conditions sont équivalentes aux conditions (i') et (ii') obtenues en
remplacant dans les inégalités des conditions (i) et (ii) les bornes supérieures
par des bornes inférieures. (Ces €équivalences résultent essentiellement du lemme
1.4.3 ). On dit qu'une section s de M au-dessus de Y , se€T(Y,M) , est mo-
dérée le long de Z , si elle satisfait aux conditions équivalentes ci-dessus, et
on démontre que cette notion est indépendante de la semi-norme modérée sur M
L'ensemble des sections modérées le long de Z forme un sous-groupe additif de
r'(Y,M) qu'on désigne par MOdY;X(M) . On vérifie facilement que MOdY;X(oY) (o1
OY est muni de sa structure méromorphe canonique (cf.(1.2.1))) est un sous-anneau
de T(Y,0 ) et que ModY X (M) est un sous ModY X(O )-module de T(Y,M) .
f:M —~M désigne un morphlsme de OY—modules coherents méromorphes le long de
Z , pour tout s , sEModY;X(M ) ,ona f(s)EModY;X(M) et 1'application

s — £(s)
définit un morphisme de ModY,X(OY)-modules, et ceci fonctoriellement.

Pour toute immersion ouverte de compactifications partielles
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u: (Y',X'") — (Y,X)

et toute section s de M modérée le long de Z , s €Nde;X(M) , la section
s'=s|Y'=|Y")*(s) , s'€T(Y',(ulY")*(M)) , est modérée le long de Z' , ol
Z'=X'-Y' , (la structure méromorphe sur (u|Y')*(M) étant déduite de celle de M
(cf. (1.2.4))). On démontre que le foncteur qui associe a 1'immersion ouverte de
compactifications partielles

u: (Y',X") — (Y,X)
le groupe ModY,.x,((u|Y)*(M)) est un faisceau de groupes pour la topologie G.H.
de (Y,X) , qu'on désigne par Mmod .

Pour tout OY-module cohérent M , méromorphe le long de Z , et tout m ,
m€N , on appelle m-iéme groupe de cohomologie modérée de M et on désigne par
Hﬁod((Y,X),M) le m-iéme groupe de cohomologie du faisceau Mmod pour la topologie
G.H. ,

H . ((Y,X),M)

m
mod HG.HF(Y’X)’Mmod) )

En particulier, on a donc

H2oq (V00,0 = Mody ()

(1.5.2) Soient Y wune variété analytique, (Y,X) et (Y,X') deux compactifications
partielles équivalentes de Y et M un OY—module cohérent, méromorphe le long de
Z , ou Z=X-Y . Conformément a (1.2.5), on en déduit une structure de OY—module
méromorphe le long de Z' (ou Z'=X'-Y) sur M , et on vérifie aussitdt que

Mody, x (W) = Mody (W) .

Plus généralement, on démontre (en utilisant la méthode de calcule de la cohomolo-

. v
gie par Cech) que pour tout m , m€N , on a

Hloa (X040 = HY L ((Y,X') M)

Cela permet de définir les groupes de cohomologie modérée d'un module cohérent M
méromorphe sur une variété analytique avec infini Y qu'on désignera par

H

Irlod(V,M) .

THEOREME 1.5.3.- Sodent (Y,X) une compactification partielle et Z=X-Y . Le
goncteun qui assocle a un OY—moduﬂe cohérent M , méromonphe Le Long de 7 ,
Le Nde;X(OY)-modute MOdY;X(M) est exact a gauche.

Ce théoréme est le résultat ''clef" de la théorie et se démontre en utilisant le
théoréme (4.1.1) de 1'appendice II. On en esquissera la démonstration pour indiquer
comment les résultats de ce travail s'appliquent & la théorie de la cohomologie
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modérée.

Apres plusieurs réductions faciles on est amené a démontrer le lemme suivant :
LEME 1.5.4.- Sodent p, m, m' des entiens, peN ,meN ,m'eN , U un ou-
vert de CP , L un ferumé analytique d'intérieur vide de U , Y=U-1 ,

£:M —M

un monphisme de Oy -modules cohénents tel que f|Y s0it injectif,

n: OmU — M
et
nuo‘{}'—»w

des Epimonphismes de OU-modw(’,u. Alons pour toute section s de M' , seT(Y,M") ,
telle qu'il existe un ensembfe K , KcKP(Y) , sugpisant Le Long de Z , et une
fonction continue

p Y —R},
modénée Le Long de Z , tels que pour tout K , KeK , on ait
[|£() || ., € inf y(y) ,
n:K yeK
il existe un ensemble K', K'<KP(Y) , suffisant Le Long de Z , et une fonc-
tlon continue
Y'Y — Ry,
modénée Le Long de Z , tels que pour tout XK', K'€K , on ail
Isll e gr & inf v' ()
Nk T ek
Démonstration. L'ensemble K étant suffisant, on vérifie facilement qu'il existe
une fonction continue
@Y —-]R: ,

modérée le long de Z , telle que pour tout K , KekP(Y) , et tout y , yeK ,
la condition

KeDly; (1/0(y) 5. .+, 1/0(y)))
implique que K€K (cf.(1.1.5), (1.4.1) et (1.4.2)). On pose
M'" = Coker (f)
En vertu du théoréme (4.1.1) de 1'appendice II, il existe des fonctions continues

¢ :Y—R; et y :Y —R: ,
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modérées le long de Z , et une famille (X.) de polydisques fermés de P

17i€l
contenus dans Y tels que :

i) pour tout point y deY on a :
o
a) pour tout i, i€I , tel que yEKi

Ky eD(y; (1/0(y) 5+ .+, 1/0(y))) ;

b) il existe i , i€I , tel que yEKi et
ﬁ(y;(1/o’(y),...,1/w'(y)))c:Ki H
ii) pour tout i , i€I , K, est privilégié pour M , M' et M' ;

iii) pour tout i , i€I , il existe une scission €-linéaire continue o5 de

B(Ki;f) telle que
llos S inf ()
YEKi

n'in;Ky

On remarque que la condition (i), (a) implique que pour tout i , i€I , Kie K
D'autre part, comme par hypothése f|Y est injectif, la suite

0 —smry Xy — wy — o

est exacte et la condition (ii) implique que B(Ki;f) est injectif ([ 71,§7, n°3,

)(1)

proposition 3, p.56 . On en déduit que la scission o5 de la condition (iii)

est une section de B(Ki;f) , autrement dit

idB(Ki;M') = cioB(Ki;f) ,
d'ol

lsllsx, % ozl 1E I s

€ inf y,(y) - inf Y(@y) s inf (Y, (NP .
Y€K, YeK; Y€K,

Posons

Y=gy
et

K* = {KEKP(Y) : 3i€l , KcKi}

La fonction

(1) La définition (2.2.5) de 1'appendice II est équivalente & la définition 1, §7,
n°1l, p.54 de [7] (cf.[48] , théoréme du §1, p.146).
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¥y — RY
est continue, modérée le long de Z (App.I,1.3.1), et la condition (i), (b) impli-
que que K' est un ensemble suffisant le long de Z . Enfin, pour tout K , Ke€K',
il existe i, i€1 , tel que Kc:Ki , d'ol
. , <
sl Hslln.;Ki < inf y'(y) sinfsy'(y) ,

y€Ki yeK

ce qui démontre le lemme.

THEOREME 1.5.5.- Soient (Y,X) une compactification parntielle, Z=X-Y , M un
OY-moduze cohénrent, ménomonphe Le Long de Z et s une section de M au-dessus
de Y , s€eT(Y,M) . Pour que La section s 404t modénée Le Long de Z , &
faut et AL suffit que s s0it méromonphe Le Long de L

Le plan de la démonstration de ce théoréme est le suivant. On le démontre d'a-
bord, dans le cas ou M = OTIY , T étant un sous-espace analytique fermé réduit
de X et la structure méromorphe de M étant celle définie par le prolongement
OT de OT|Y . Ensuite, on en déduit le cas général en considérant un ''dévissage"
local d'un prolongement local de M définissant sa structure méromorphe et en
utilisant le théoreme (1.5.3).

COROLLAIRE 1.5.6.- En gardant Les notations du théorneme (1.5.5) , Le faisceau

Mg Sur (Y,X) n'est autre que Le faisceau powr La topoLogie G.H de (Y,X)
formé des sections méromorphes de M Le Long de Z (cf. (1.2.4)).

(1.6.1) Soit Y un schéma algébrique lisse sur € . D'aprés Nagata [46] , Y
s'identifie a un ouvert de Zariski dense d'un schéma X propre sur € (qu'on peut
supposer réduit, et méme lisse par la théorie de désingularisation de Hironaka
[24]) .De plus, si X; et X, sont deux telles “'compactifications' de Y , il en
existe une troisieéme X , et des morphismes de C-schémas

u, : X—X, et u,:X —X

1 1
(forcément propres), tels que

2 2

-1 _ .
uy M=y, i=1,2

et induisant 1'identité sur Y . (On peut prendre X 1'adhérence schématique de
1'image diagonale de Y dans X, x X2 ). On en déduit que la variété C-analytique
Y™ associé est munie d'une structure de variété avec infini, qu'on désignera par
~an
Y

(Yan,X?n) et (Yan,Xﬁn) (on dira plus simpleme compactifications, puisque

. En effet, il résulte de ce qui précéde que les compactifications partielles

an

X1 et Xgn sont compacts) sont équivalentes.

(1.6.2) Soient Y un schéma algébrique lisse sur € , X un C-schéma algébrique
réduit contenant Y comme ouvert de Zariski dense et M un OY-module cohérent.
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Le OY-module M peut se prolonger en un OX-module cohérent M1 ([23]1, 6.9.8),
et on vérifie facilement que si 1'on considére la compactification partielle

(Yan Xan) , les prolongements M"m de M*™ ainsi obtenus sont tous équivalents.
On définit ainsi sur M™ une structure de 0 \an -module cohérent effectivement

méromorphe le long de Z =x3_yan |

(1.6.3) Soit Y un schéma algébrique lisse sur € . Conformément & (1.6.2), pour
tout OY—module cohérent M , MW" est muni d'une structure de OYan-module

cohérent effectivement méromorphe sur o On déduit de plus aussitdt de GAGA
[50] (et c£.[61 ) que :

PROPOSITION 1.6.4.- Le fonctewr M —s M¥™ indwit une équivalence de catégornie
entre La catégonie des 0y-m0du£e/5 cohérents et celle des 0 an-moduﬂu cohérents
effectivement méromorphes sur o

La proposition suivante généralise la proposition 2.24, p.71 de [6 ].
PROPOSITION 1.6.5.- Sodlent Y un schéma algébrique Lisse sur € et M un

OY-moduu cohérent. Une section s de M , sEF(Yan,Man) , est algébrique
54 et seulement s4i elle est modénée sun Yoo

Cette proposition résulte du théoréme (1.5.5) et de GAGA [50] et est un cas

particulier du théoréme suivant.

THEOREME 1.6.6.- Soient Y un schéma atgébrique Lisse sun € et M un 0y-modute
cohérent. Alors pour tout m, me€EN |, ona

Jan ,an
HY (Y, M) = H“mod(y"" MY

Le plan de la démonstration est le suivant. Il existe un schéma propre et lisse
X sur C tel que Y s'identifie a un ouvert de Zariski de X et Z=X-Y soit un
diviseur de X . Si 1'on désigne par 1:Y “—X 1l'injection canonique on démon-
tre que pour tout m , me N ,

HY,M) = H'X,i, (M) .

Or, il résulte de [23] (6.9.2) et (6.9.9) que i,(M) est limite inductive d'une
famille M, de Oy-modules cohérents tels que Mi{Y =M . Comme X est noetherien

on a

H'(X,1, () = Lim H'(XM,)
et il résulte de GAGA [50] que

Hm(X,Mi) = '

L'espace X" étant compact, on a
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Lim H'OET,EY = 1O, Lim 15T
On vérifie que lim M?n n'est autre que le faisceau sur X des sections méromor-
phes de " 1le long de 7% et on démontre que sa cohomologie pour la topologie
ordinaire de X est la méme que pour la topologie G.H. On termine la démonstra-

tion en utilisant le corollaire (1.5.6).

(1.7.1) On appelle condition de croissance a 1'infini la donnée pour toute compac-
tification partielle (Y,X) , d'un ensemble MY'X de fonctions continues de Y
b

dans R satisfaisant aux axiomes suivants :

i) MY‘X est un sous-anneau de 1'anneau CY des fonctions continues sur
b

Y a valeurs dans R

ii) MY-X contient 1'ensemble des fonctions continues sur Y a valeurs dans
)
R , modérées le long de Z , o Z=X-Y .
iii) Pour tout @ et g, , ¢ € CY ) EN&;X la condition
o] % o, |
implique que <p1€N&_X
iv) Pour tout morphisme de compactifications partielles
u: (Y',X") — (Y;X)
et tout ¢ , wEMTX , ona w°UEMW'W (fonctorialité).

v) Pour toute compactification partielle (Y,X) 1le foncteur qui associe a

une immersion ouverte de compactifications partielles
u: (Y',X") — (¥,X)
1'anneau MY';X' est un faisceau pour la topologie G.H. de (Y,X)
On dit qu'une fonction continue
¢ : Y —DR

est M-modérée le long de Z si q)EN&;X . En vertu des axiomes (iv) et (v) , si
(Y,X) et (Y,X') sont deux compactifications partielles équivalentes de Y , on

a MY;X = MY;X' , ce qui permet de définir une notion de fonction M-modérée sur
une variété analytique avec infini.

Exemples 1.7.2.- Si pour toute compactification partielle (Y,X) on pose
MY;X - MOdY;X

(cf. (1.1.3)), alors M est une condition de croissance a 1'infini (appelée
croissance polynomiale). I1 en est de méme si 1'on pose
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Myx =G -
C'est les deux cas extrémes. On peut donner d'autres exemples de croissance 2a
1'infini comme la croissance exponentielle :

My.x = (0€Cy : Log(1+ lo]) €Mody y}

(1.7.3) Soient (Y,X) une compactification partielle et M un OY-module cohérent
méromorphe le long de Z=X-Y . On définit la notion de section de M au-dessus
de Y , M-modérée le long de Z , exactement comme dans (1.5.1) en remplacant dans
la définition ''fonction modérée' par 'fonction M-modérée''. On désigne 1'ensemble
de ces sections par MY;X(M) . Le théoréme (1.5.3) reste vrai, autrement dit le

foncteur

M— MY;X(M)
est exact a gauche, et la démonstration en est rigoureusement identique. On définit
également le faisceau (pour la topologie G.H.) des sections M-modérées, MM_mod

et la cohomologie M-modérée par

o 0,00 = L (000 )
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lal , ar , % @emn) : o

S, (ga relation de bon ordre) : O

B(K) , II.HK : 0
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Mg > Jg ot 0

M(A) (AcNP) : I,1.3.

D , Sa ( o drapeau orienté) : I,3.2.

: 1,3.5.3, I,3.12.1.

L
EE > ©g (E R-espace vectoriel de dimension finie) : I,4.1.
T, (u application R-linéaire) : I,4.1.
Vx;e , WX;C (€€]R+ , CeR) :1,4.2.
Fo s FSE , F(x : 1,4.4.
Gy > GéE , Ga : I1,4.4.
x. (e (®R9PY : 1,4.7.
P + ’
¢ 1,4.7.
é:p
Ty (A matrice a coefficients dans R) : I,4.7.
Ep;é;e s Cp;é;c ( SeER,, e€Ry, ceR) : I,4.9.

Fo, , G2y :1,5.1.3.
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E(f) , E() (f fonction analytique) : II,1.1.
Voex ) v, () , v(E) (£ fonction analytique) : II,1.1.
Pustyx » Paspymkex @ Punx Py;7;k;x  (J 1déal cohérent) : II,1.2.

Ma;D;J;x , Moc;D;J;K;X , Ma;J;x s Ma;J;K;x ( J idéal cohérent) : II,1.2.

34 11,200
a
M=2 N , umv : II,2.0.
my II1,2.1.
d
#oic;M;N s Pu;u;v 11,2.1.

LY 11,2.6.2.

Sa;J;Y , SJ;Y ( J idéal cohérent) : II,3.1.

EOEF . III,2.0.

D(x;p) : III,2.0.

o' (Ksx) , p"(K;x) , e(X;x) : III,2.1.

uK;x > Tgx O x (K compact convexe de €) : III,2.2.
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POSTFACE

Aprés avoir terminé la rédaction de ce livre, j’ai appris que E. Bierstone
et P. D. Milman avaient obtenu [57], de fagon indépendante, des résultats de
semi-continuité du diagramme de Newton analogues a ceux du chapitre II de
ce livre. Leurs résultats sont & la fois beaucoup plus généraux et précis que
ceux du chapitre II, et insuffisants pour les applications en vue dans ce livre.

Ils se placent dans le cadre suivant. Ils considérent un morphisme d’espaces
analytiques ¢ : X — Y, M (resp. N) un Ox-module (resp. Oy-module)
cohérent et f : N' — ¢4(M) un morhisme de Oy-modules (on remarquera
que ¢4(M) n’est pas forcément un module cohérent). On en déduit, pour
tout a, a € X, une application Oy, gq)-linéaire f, : Nyq) — M,. Soient
s € N et X3 le produit fibré s-uple de X au dessus de Y’

X;={a=(a1,...,a,) € X* : p(a1) = ... = ¢(a;)}

S
Pour tout a = (a,...,as) € X3, on pose Ry = [ Ker(f,,;). Bierstone et
i=1
Milman étudient la variation de R, en fonction du point a de X3. Le cas qui
nous intéresse ici est celui ot Y est un ouvert U de C? et out N est égal & OF.

Si I’on désigne par < p la relation d’ordre sur NP*" définie par
d SLB d — (da |d|) SL (d,v |d,|) )

ol <[, désigne l'ordre antilexicographique sur NP**+1 on note R, I’ensemble
des exposants privilégiés du sous-module R, de OF; , relativement a la relation
d’ordre <y p, ou si a = (ay,...,a,), alors b = ¢(a;) = ... = ¢(a,). Sous ces
hypotheses, Bierstone et Milman démontrent que R, est semi-continu comme
fonction de a dans les cas suivants:

(a) Cas algébrique: ¢ est un morphisme d’espaces algébriques, M et N
sont algébriques cohérents, et f est algébrique.

365



G. MALTSINIOTIS

(b) Cas régulier: X est régulier, ¢ est régqulier et f est le morphisme
f: Oy — ¢.(Ox), déduit de ¢.

(c) Cas fini: X est de Cohen-Macauley et ¢ est localement fins.

(d) Cas cohérent: X =Y et ¢ =idx.

En plus, ils démontrent, dans ces cas, un théoréme analogue a la proposition
3.6 du chapitre II.

Le cas étudié au chapitre II de ce livre est le cas (d) ci-dessus. Ce cas
est trivial et classique pour la relation d’ordre < g utilisée par Bierstone et
Milman, qui ne le citent d’ailleurs que pour mémoire. En effet, I’argument de
platitude utilisé dans le chapitre II est alors immédiat, sans aucun passage a la
limite. Il en est de méme pour toute relation de bon ordre sur NP (compatible
avec sa structure de monoide et moins fine que le relation d’ordre produit <),
telle que NP muni de cette relation d’ordre soit isomorphe, en tant qu’ensemble
ordonné, & N muni de sa relation d’ordre naturel. Les difficultés commencent
quand il existe des suites strictement croissantes infinies mais bornées, comme
il en existe dans le cas de 'ordre antilexicographique pur <j. La raison pour
laquelle on s’intéresse particulierement a ce cas est que c’est le seul cas ot ’'on
obtient des majorations s’exprimant de fagon vraiement simple.

J’ignore si les méthodes de Bierstone et Milman peuvent s’adapter a ce cas.
A priori dans leurs article on utilise explicitement I’hypothese qu’il n’y a pas
de suite infinie strictement croissante et bornée. Néanmoins, en étudiant la
fagon dont le diagramme de Newton dépend de la relation d’ordre on pourrait,
peut étre, contourner cette difficulté.

[57] E. Bierstone, P. D. Milman, Relations among analytic functions I.
Ann. Inst. Fourier, 37, 1 (1987), 187-239.
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ABSTRACT

The object of this book is the study of the following problem. Consider a
domain U of C? and a linear system with coefficients in T'(U, OF), in other
words, a matrix (fij)i<i<n,1<j<m, Where fi; € T'(U, Og), or equivalently an
Oy-module morphism

fi0p -0

For every compact polycylinder K of CP contained in U, if we denote by
B(K) the normed Banach algebra of functions continuous on K and analytic
in the interior of K, the morphism f defines, by restriction of the f;; to K, a
B(K)-linear continuous map

B(K;f): B(K)™ — B(K)" |

which can be considered as a linear system of n equations in m unknowns,
with coefficients in B(K'). We want to define a C-linear continuous procedure
associating to every g € B(K)™ an element h € B(K)™, which is a solution of
the system if g € Im(B(K; f)), in other words, to define a C-linear continuous
map

o:B(K)" - B(K)™

such that
B(K;f)oooB(K; f) = B(K; f)

We then say that o is a scission of B(K; f). This is not always possible. If
we denote by Q the Opy-coherent module cokernel of the morphism f, the
existence of such a o is equivalent to the assertion that K is Q-privileged in
the sense of Douady. The aim of this book is to define C-linear, continuous
scissions o of B(K, f), in such a way that we can “control” the growth of
the norm of o, when K varies, at least for “sufficiently small” K. We obtain
the following theorem:

367



G. MALTSINIOTIS

Theorem.- Let U be a domain of C? and f : Off — O a morphism of Oy -
modules. There exist a C-analytic stratification (X;)jes of U and for every
J,» J € J, an element d; = (dj1,... ,dj,) of NP, a real number 6;, 6; € R},
and two continuous functions

p;j X; = Ry and Y;: X; = Ry ,

with polynomial growth along X; — X; (X, being the closure of X; in U),
such that for every point x of X; and every closed polydisk K of center z and
polyradius p = (p1,... ,pp), p € (RL)?, the inequalities

55 5;
(I) p1<1/<;9j(1'), P2<P1’,---,Pp</7p’_1
imply that K is contained tn U and that there exists a C-linear continuous
scission o of B(K; f) such that

lokllx < ¥j(z)/p%
P
(where p% = ] pi**).
=1

In fact, we prove a more precise and more general result. More precise,
because we give explicit formulas for d; and 6;, in terms of the minimal privi-
leged exponents of the sub-module Im(f) of Oy, and for ¢; and 1}, in terms
of the partial derivatives of the coeflicients of the matrix defining the mor-
phism f, the stratification (X;);ecs being canonically constructed, depending
only on the sub-module Im(f) of Oy. More general, because we replace the
inequalities (I) by more general conditions, depending on the choice of an
order on NP, and the polydisks by polycylinders.

The main two ingredients of the proof of this theorem are a precise numerical
and uniform version of Hironaka’s division theorem, proved in chapter III,
and the construction of a stratification such that the set of minimal privileged
exponents is constant on every stratum, in chapter II.

In appendix III, we sketch an application of our theorem to a generaliza-
tion of Serre’s “GAGA” theorem for non-proper C-algebraic schemes. We
define a notion of moderate section of a coherent sheaf, with respect to a
partial compactification, and hence a functor of “global moderate sections”.
We use the results of appendix II to prove that this functor is left exact.
We define a “moderate cohomology” corresponding to right derived functors,
which is technically defined by the use of some Grothendieck topology. This
cohomology is used to state a generalization of the GAGA theorem the proof
of which depends on the results of this book and a subtle version of Hironaka’s
theory of the “voiite étoilée”, to be published elsewhere.
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