Singular integrals and rectifiable sets in n . Au-delà des graphes lipschitziens
Astérisque, no. 193 (1991) , 147 p.
@book{AST_1991__193__1_0,
     author = {David, Guy and Semmes, Stephen},
     title = {Singular integrals and rectifiable sets in $\mathbb{R}^n$. {Au-del\`a} des graphes lipschitziens},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {193},
     year = {1991},
     zbl = {0743.49018},
     mrnumber = {1113517},
     language = {en},
     url = {http://www.numdam.org/item/AST_1991__193__1_0/}
}
TY  - BOOK
AU  - David, Guy
AU  - Semmes, Stephen
TI  - Singular integrals and rectifiable sets in $\mathbb{R}^n$. Au-delà des graphes lipschitziens
T3  - Astérisque
PY  - 1991
DA  - 1991///
IS  - 193
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1991__193__1_0/
UR  - https://zbmath.org/?q=an%3A0743.49018
UR  - https://www.ams.org/mathscinet-getitem?mr=1113517
LA  - en
ID  - AST_1991__193__1_0
ER  - 
%0 Book
%A David, Guy
%A Semmes, Stephen
%T Singular integrals and rectifiable sets in $\mathbb{R}^n$. Au-delà des graphes lipschitziens
%S Astérisque
%D 1991
%N 193
%I Société mathématique de France
%G en
%F AST_1991__193__1_0
David, Guy; Semmes, Stephen. Singular integrals and rectifiable sets in $\mathbb{R}^n$. Au-delà des graphes lipschitziens. Astérisque, no. 193 (1991), 147 p. http://numdam.org/item/AST_1991__193__1_0/

[B] C. J. Bishop, Harmonic measures supported on curves, Dissertation, Univ. of Chicago, 1987. | MR

[BCGJ] C. J. Bishop, L. Carleson, J. B. Garnett and P. W. Jones, Harmonic measures supported on curves, Pac. J. Math. 138 (1989), 233-236. | DOI | Zbl | MR

[C1] F. M. Christ, CBMS Lectures, 1989.

[C2] F. M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, to appear. | Zbl | MR

[CW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their uses in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | DOI | Zbl | MR

[CDM] R. R. Coifman, G. David and Y. Meyer, La solution des conjectures de Calderón, Adv. in Math. 48 (1983), 144-148. | DOI | Zbl | MR

[CMM] R. R. Coifman, A. Mcintosh and Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes, Ann. of Math. 116 (1982), 361-388. | DOI | Zbl | MR

[D1] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. Ec. Norm. Sup. 17 (1984), 157-189 | DOI | Numdam | EuDML | Zbl | MR

[D2] G. David, Une minoration de la norme de l'opérateur de Cauchy sur les graphes lipschitziennes, Trans. Amer. Math. Soc. 302 (1987), 741-750. | Zbl | MR

[D3] G. David, Opérateurs d'intégrale singulière sur les surfaces régulières, Ann. Sci. Ec. Norm. Sup. (4) 21 (1988), 225-258. | DOI | Numdam | EuDML | Zbl | MR

[D4] G. David, Morceaux de graphes lipschitziennes et intégrales singulières sur une surface, Rev. Mat. Iberoamericana 4 (1988), 73-114. | DOI | EuDML | Zbl | MR

[D5] G. David, Wavelets and Singular Integrals on Curves and Surfaces, to appear (Lecture Notes in Math, Springer-Verlag). | DOI | Zbl | MR

[DJ] G. David and D. Jerison, Lipschitz approximations to hypersurfaces, harmonic measure, and singular integrals, Indiana J. Math 39 (1990), 831-845. | DOI | Zbl | MR

[DS1] G. David and S. Semmes, Harmonic analysis and the geometry of subsets of 𝐑 n , to appear in the proceedings of the conference held in honor of J.L. Rubio de Francia (El Escorial, Spain, June, 1989). | Zbl | MR

[DS2] G. David and S. Semmes, Strong A -weights, Sobolev inequalities, and quasiconformal mappings, in Analysis and Partial Differential Equations, edited by C. Sadosky, Lecture Notes in Pure and Applied Math., vol 122, Marcel Dekker, 1990. | Zbl | MR

[DS3] G. David and S. Semmes, Quantitative rectifiability and Lipschitz mappings, preprint. | DOI | Zbl | MR

[Do] J. R. Dorronsoro, A characterization of potential spaces, Proc. Amer. Math. Soc. 95 (1985), 21-31. | DOI | Zbl | MR

[Fe] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. | Zbl | MR

[Fg] X. Fang, The Cauchy integral of Calderón and analytic capacity, Thesis, Yale, 1990. | MR

[Fl] K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1984. | Zbl | MR

[G1] J. Garnett, Positive length but zero analytic capacity, Proc. Amer. Math. Soc. 21 (1970), 696-699. | DOI | MR | Zbl

[G2] J. Garnett, Analytic Capacity and Measure, Lecture Notes in Math. 297, Springer-Verlag, 1972. | Zbl | MR

[G3] J. Garnett, Bounded Analytic Functions, Academic Press, 1981. | Zbl | MR

[GJ] J. Garnett and P. W. Jones, The corona theorem for Denjoy domains, Acta. Math. 155 (1985), 29-40. | DOI | Zbl | MR

[J1] P. W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, in Harmonic Analysis and Partial Differential Equations, edited by J. Garcia-Cuerva, Lecture Notes in Math. 1384, Springer-Verlag, 1989. | DOI | Zbl | MR

[J2] P. W. Jones, Lipschitz and bi-Lipschitz functions, Rev. Mat. Iberoamericana 4 (1988), 115-122. | DOI | EuDML | Zbl | MR

[J3] P. W. Jones, Rectifiable sets and the travelling salesman problem, Invent. Math. 102 (1990), 1-15. | DOI | EuDML | Zbl | MR

[JL] J. L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math. 994, Springer-Verlag, 1983 | Zbl | MR

[Ma] P. Mattila , Lecture Notes on Geometric Measure Theory, Departmento de Matemáticas, Universidad de Extremadura, 1986. | Zbl | MR

[Ma2] P. Mattila, Cauchy singular integrals and rectifiability of measures in the plane, preprint. | DOI | Zbl

[Ma3] P. Mattila, A class of sets with positive length and zero analytic capacity, Ann. Acad. Sci. Fenn. 10 (1985), 387-395. | Zbl | MR

[Mu] T. Murai, A Real-Variable Method for the Cauchy Transform, and Analytic Capacity, Lecture Notes in Math. 1307, Springer-Verlag, 1988. | Zbl | MR

[S1] S. Semmes, Chord-arc surfaces with small constant I, to appear in Adv. in Math. | Zbl | MR

[S2] S. Semmes, Chord-arc surfaces with small constant II: good parameterizations, ibid. | DOI | Zbl

[S3] S. Semmes, A criterion for the boundedness of singular integrals on hypersurfaces, Trans. Amer. Math. Soc. 311 (1989), 501-513. | DOI | Zbl | MR

[S4] S. Semmes, Analysis vs geometry on a class of rectifiable hypersurfaces in 𝐑 n , to appear, Indiana Math. Journal. | Zbl | MR