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ON THE JJ-PART OF CHARACTER DEGREES 

OF SOLVABLE GROUPS 1 

by 
Udo Leisering 

1 Introduction 
The Fong-Swan Theorem shows a relation between irreducible Brauer characters and ordinary 
irreducible characters by the following: Let <p be an irreducible Brauer character of a p-solvable 
group G . There exists a p-rational irreducible character x of G, such that x = V 3(8 a Brauer 
character. Especially: Every condition on ordinary characters is valid for Brauer characters 
(in a p-solvable group). W e now ask for a kind of inversion of this relation and consider the 
character degrees. Let q be a prime, such that q2 f /3(1) for all /3 € IBrp(G). Do we get a 
bound n € JNy such that qn \ x ( l ) f°r all X € i r r (G)? In general this is impossible. 

2 Example 
Let T(8) be the group of all semilinear maps on GF(S). It is easy to prove that the set of 
degrees of all irreducible Brauer charcters in characteristic 7 is cd7(T(S)) : = { 1 , 7 } . The set of 
ordinary character degrees is cd(T(8)) : = { 1 , 7 , 3 } . We put 

Hn:= r ( 8 ) x . . , . . . x r ( 8 ) . 

Clearly: 3 \ /3(1) for all ß € IBr7(Hn), but there exists a x € Irr(Hn), such that x ( l ) = 3n. 

(There exists many other examples for primes p ^ 7 too.) 

For the prime p it is possible to show the following: 

3 Theorem 

Let G be solvable with Op{G) = E and p2 \ ß(l) for all ß € IBrp(G). It follows: 

a) G has elementary abelian Sylow-p-subgroups. 

b) P2 t X ( l ) for all x € Irr(G). 

Before we start to prove this theorem, we need some short lemma: 

1This is a small part of a Dissertation at Mainz. 
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4 Lemma 
Let N < G, V an irreducible i^JV-modul and K a field. Further let T := TG(V) be the 
inertiagroup of V and W an irreducible AT-modul , such that WN = e V with e G IN. Then 
WG is an irreducible i fG-modul and 

| G : T 0 ( V ) | - d i m V | d i m W 

Proof: Manz[4]; Lemma 1 . 

5 Lemma 

Let N be an abelian normal subgroup of G, such that (\G/CG(N)\, \N\) = 1 and G/CQ(N) is 
abelian. 

a) G/CG(N) has a regular orbit on N9 Irr(N) and IBrP(N) if p f |AT|. 

b ) There exists a x € Jrr(<7) resp. /? G IBrP(G) if p f |N| such that 

Sy/,(G/*i). X ( l ) resp. | G / C c ( i V ) | | 0(1) . 

Proof: 

a) Isaacs[3], 13.24 yields that Irr(N) and N are isomorphic as permutation modules. Then 

the result follows by Passman[5],lemma 2.2 . 

b) This follows by a) and Lemma 4. 

6 Proof of theorem 3 
We denote by F(G) the Fitting subgroup of G and define Fj/F^x := F{G/Fj.1), (F0 := E). 

a) Let G be a minimal counterexample to statement a). 

(i) $ ( G ) = E, where $ ( G ) is the Frattini subgroup of G : 
Proof: Clear, since p + \Fi\ and F(G/$(G)) = F^G). 

( i i J p l l f i / f k K b u t ^ t l f t / ^ i l : 
Proof: Assume that p f |F2/Fi|, hence Op{GjF\) = 22. Since G is a minimal coun

terexample, G/Fi has elementary abelian Sylow-p-subgroups and out of p \ \F\\ it 

follows, that G has elementary abelian Sylow-p-subgroups too; a contradiction. The

refore p | |F2/Fi|. 

Let Po/Fi G Sylp(F2/Fi) and A < G, such that A/Fi is a maximal abelian normal 

subgroup of P0/Fu esp. A < < G. Hence p2 f a ( l ) for all a € IBrp(A) (Clifford 

theory). Since we have CA(FI) = Lemma 5 yields an a € IBrp(A), such that 

|A/JFi| = a ( l ) . Hence \A/FX\ | p and therefore A = P0-

(iii) Conclusion: Let P0 < G be as defined in (ii). Lemma 5a) yields a A0 G IBrp(Fi), such 
that 

TQ(XO)C\P0 = F1. 

In particular p | | G : TG(AO ) | . But by Lemma 4 we now have, that p2 f | G : TG(AO)| 

since p2 f £ (1 ) for all /3 G IBrp(G). Hence 

Pb(Ao)|, = 
1 

P 
mkl 
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Now let P1/F1 G Sylp{TG(X0)/Fi). Obviously 

Po/Ft H x Pi/Ft = E 

and because of the order of TG(XO) we get 

Sy/,(G/*i). S y / , ( G / * i ) . 

We claim, that Pi/Ft is elementary abelian: 

Since Po/i^i = Op(G/Ft) it is obviously, that Op(G/P0) = £ . Furthermore <2 is a mi
nimal counterexample and therefore G/PQ has elementary abelian Sylow-p-subgroups. 
Hence Pi/Ft = {PIPO)/PQ is elementary abelian. 

Step (ii) yields |Po/-ft| = P and therefore Pi/Ft is operating trivial on PQ/F\. SO 
(PQPI)/FI is elementary abelian and for any P £ Sylp(G) we have: 

P = P/ (P n Fi) St (PFx)IFi et (P0P1)/F1 is elementary abelian. 

b) Assume p2 | x ( l ) for a x € Jrr(G). Let D be the defect group of the block of x- Then 

it follows by a) that D is elementary abelian. If the p-part of the order of G is |6r|p = pa 

and \D\ = pd, Brauer's Theorem about the height of characters yields, that pC0-**) | x ( l ) 

and p0"^1 \ x ( l ) (Fong[2];Thm.3C). Since we have the assumption p2 | x ( l ) it follows, 

that a - d > 2. Let now /3 € IBrp(G) belong to the same block as x- Then pa~d | ^ ( 1 ) 

(Feit[l];IV,4.5) and therefore p2 | / ? ( ! ) ; a contradiction. 

7 Remark 
Tsushima proved in [6]; Theorem 5 the following: 

If G is solvable and p2 { x ( l ) for all x € Irr(G), then G/Op(G) has elementary abelian Sylow-
p-subgroups. 
With the theorem of Fong-Swan (Feit[l];X,2.1) this is a corollary of theorem 1. (Or use the 
proof of theorem 1 directly). 
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