Astérisque

UDO LEISERING On the *p*-part of character degrees of solvable groups

Astérisque, tome 181-182 (1990), p. 217-220

<http://www.numdam.org/item?id=AST_1990__181-182__217_0>

© Société mathématique de France, 1990, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON THE *p*-part of character degrees OF SOLVABLE GROUPS ¹

by Udo Leisering

1 Introduction

The Fong-Swan Theorem shows a relation between irreducible Brauer characters and ordinary irreducible characters by the following: Let φ be an irreducible Brauer character of a *p*-solvable group *G*. There exists a *p*-rational irreducible character χ of *G*, such that $\chi = \varphi$ as a Brauer character. Especially: Every condition on ordinary characters is valid for Brauer characters (in a *p*-solvable group). We now ask for a kind of inversion of this relation and consider the character degrees. Let *q* be a prime, such that $q^2 \nmid \beta(1)$ for all $\beta \in IBr_p(G)$. Do we get a bound $n \in IN$, such that $q^n \nmid \chi(1)$ for all $\chi \in Irr(G)$? In general this is impossible.

2 Example

Let $\Gamma(8)$ be the group of all semilinear maps on GF(8). It is easy to prove that the set of degrees of all irreducible Brauer charcters in characteristic 7 is $cd_7(\Gamma(8)) := \{1,7\}$. The set of ordinary character degrees is $cd(\Gamma(8)) := \{1,7,3\}$. We put

$$H_n := \Gamma(8) \times \ldots_n \ldots \times \Gamma(8).$$

Clearly: $3 \nmid \beta(1)$ for all $\beta \in IBr_7(H_n)$, but there exists a $\chi \in Irr(H_n)$, such that $\chi(1) = 3^n$. (There exists many other examples for primes $p \neq 7$ too.)

For the prime p it is possible to show the following:

3 Theorem

Let G be solvable with $O_p(G) = E$ and $p^2 \nmid \beta(1)$ for all $\beta \in IBr_p(G)$. It follows:

- a) G has elementary abelian Sylow-p-subgroups.
- b) $p^2 \nmid \chi(1)$ for all $\chi \in Irr(G)$.

Before we start to prove this theorem, we need some short lemma:

¹This is a small part of a Dissertation at Mainz.

U. LEISERING

4 Lemma

Let $N \leq G$, V an irreducible KN-modul and K a field. Further let $T := T_G(V)$ be the inertiagroup of V and W an irreducible KT-modul, such that $W_N = eV$ with $e \in IN$. Then W^G is an irreducible KG-modul and

$$|G:T_G(V)| \cdot \dim V \mid \dim W.$$

Proof: Manz[4]; Lemma 1.

5 Lemma

Let N be an abelian normal subgroup of G, such that $(|G/C_G(N)|, |N|) = 1$ and $G/C_G(N)$ is abelian.

- a) $G/C_G(N)$ has a regular orbit on N, Irr(N) and $IBr_p(N)$ if $p \nmid |N|$.
- b) There exists a $\chi \in Irr(G)$ resp. $\beta \in IBr_p(G)$ if $p \nmid |N|$, such that

$$|G/C_G(N)| | \chi(1)$$
 resp. $|G/C_G(N)| | \beta(1)$.

Proof:

- a) Isaacs[3], 13.24 yields that Irr(N) and N are isomorphic as permutation modules. Then the result follows by Passman[5], lemma 2.2.
- b) This follows by a) and Lemma 4.

6 Proof of theorem 3

We denote by F(G) the Fitting subgroup of G and define $F_j/F_{j-1} := F(G/F_{j-1}), (F_0 := E)$.

- a) Let G be a minimal counterexample to statement a).
 - (i) Φ(G) = E, where Φ(G) is the Frattini subgroup of G : Proof: Clear, since p ∤ |F₁| and F(G/Φ(G)) = F₁/Φ(G).
 - (ii) $p \mid |F_2/F_1|$, but $p^2 \nmid |F_2/F_1|$:

Proof: Assume that $p \nmid |F_2/F_1|$, hence $O_p(G/F_1) = E$. Since G is a minimal counterexample, G/F_1 has elementary abelian Sylow-p-subgroups and out of $p \nmid |F_1|$ it follows, that G has elementary abelian Sylow-p-subgroups too; a contradiction. Therefore $p \mid |F_2/F_1|$.

Let $P_0/F_1 \in Syl_p(F_2/F_1)$ and $A \leq G$, such that A/F_1 is a maximal abelian normal subgroup of P_0/F_1 , esp. $A \leq \subseteq G$. Hence $p^2 \nmid \alpha(1)$ for all $\alpha \in IBr_p(A)$ (Clifford theory). Since we have $C_A(F_1) = F_1$, Lemma 5 yields an $\alpha \in IBr_p(A)$, such that $|A/F_1| = \alpha(1)$. Hence $|A/F_1| \mid p$ and therefore $A = P_0$.

(iii) Conclusion: Let $P_0 \leq G$ be as defined in (ii). Lemma 5a) yields a $\lambda_0 \in IBr_p(F_1)$, such that

$$T_G(\lambda_0) \cap P_0 = F_1.$$

In particular $p \mid |G: T_G(\lambda_0)|$. But by Lemma 4 we now have, that $p^2 \nmid |G: T_G(\lambda_0)|$ since $p^2 \nmid \beta(1)$ for all $\beta \in IBr_p(G)$. Hence

$$|T_G(\lambda_0)|_p = \frac{1}{p}|G|_p.$$

Now let $P_1/F_1 \in Syl_p(T_G(\lambda_0)/F_1)$. Obviously

$$P_0/F_1 \cap P_1/F_1 = E$$

and because of the order of $T_G(\lambda_0)$ we get

$$(P_0P_1)/F_1 \in Syl_p(G/F_1).$$

We claim, that P_1/F_1 is elementary abelian:

Since $P_0/F_1 = O_p(G/F_1)$ it is obviously, that $O_p(G/P_0) = E$. Furthermore G is a minimal counterexample and therefore G/P_0 has elementary abelian Sylow-p-subgroups. Hence $P_1/F_1 \cong (P_1P_0)/P_0$ is elementary abelian.

Step (ii) yields $|P_0/F_1| = p$ and therefore P_1/F_1 is operating trivial on P_0/F_1 . So $(P_0P_1)/F_1$ is elementary abelian and for any $P \in Syl_p(G)$ we have:

$$P = P/(P \cap F_1) \cong (PF_1)/F_1 \cong (P_0P_1)/F_1$$
 is elementary abelian.

b) <u>Assume</u> $p^2 \mid \chi(1)$ for a $\chi \in Irr(G)$. Let D be the defect group of the block of χ . Then it follows by a) that D is elementary abelian. If the *p*-part of the order of G is $|G|_p = p^a$ and $|D| = p^d$, Brauer's Theorem about the height of characters yields, that $p^{(a-d)} \mid \chi(1)$ and $p^{a-d+1} \nmid \chi(1)$ (Fong[2];Thm.3C). Since we have the assumption $p^2 \mid \chi(1)$ it follows, that $a - d \geq 2$. Let now $\beta \in IBr_p(G)$ belong to the same block as χ . Then $p^{a-d} \mid \beta(1)$ (Feit[1];IV,4.5) and therefore $p^2 \mid \beta(1)$; a contradiction.

7 Remark

Tsushima proved in [6]; Theorem 5 the following:

If G is solvable and $p^2 \nmid \chi(1)$ for all $\chi \in Irr(G)$, then $G/O_p(G)$ has elementary abelian Sylowp-subgroups.

With the theorem of Fong-Swan (Feit[1];X,2.1) this is a corollary of theorem 1. (Or use the proof of theorem 1 directly).

References

[1] W.Feit - "The Representation Theory of Finite Groups",

North-Holland, Amsterdam, 1982.

[2] P.Fong - On the Characters of p-solvable groups,

Trans. Amer. Math. Soc. 98 (1961), 263-284.

[3] I.M.Isaacs - "Character Theory of Finite Groups",

Academic Press, New York, San Francisco, London 1976.

[4] O.Manz - On the modular version of Ito's Theorem on character degrees for groups of odd order,

Nagoya Math. J. 105 (1987), 121-128.

U. LEISERING

[5] D.S.Passman - Groups with normal, solvable Hall p'-subgroups, Trans. Amer. Math. Soc. 123 (1966), 99-111.

[6] Y.Tsushima - On the weakly regular *p*-blocks with respect to $O_{p'}(G)$, Osaka J. Math. 14 (1977), 465-470.

Udo Leisering Fachbereich 17, Mathematik Johannes Gutenberg-Universität Saarstr.21 6500 Mainz