REINHARD KNÖRR
 Wolfgang Willems
 The automorphism groups of generalized Reed-Muller codes

Astérisque, tome 181-182 (1990), p. 195-207
http://www.numdam.org/item?id=AST_1990__181-182_195_0

© Société mathématique de France, 1990, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

The Automorphism Groups of Generalized Reed-Muller Codes

Reinhard Knörr and Wolfgang Willems

1. Introduction

The generalized Reed-Muller Codes of length p^{m} over the prime field $\mathbb{F}_{\mathbf{p}}$ are the radical powers $J\left(\mathbb{F}_{\mathbf{p}} E\right)^{r}$ ($0 \leq r \leq m(p-1)$) of the group algebra $\mathbb{F}_{p} E$ of an elementary abelian p-group E of rank m. To be consistent with the notation in the literature we put

$$
\operatorname{GRM}(r, m)=J\left(\mathbb{F}_{p} E\right)^{m(p-1)-r} \quad(0 \leq r \leq m(p-1))
$$

Then GRM (r, m) is the r-th order generalized Reed-Muller Code of length p^{m} over F_{p}.

In an earlier paper [4] we characterized such codes as those linear codes of length p^{m} over F_{p} which contain the affine general linear group AGL(m,p) as a subgroup of their automorphism group.

In the binary case the automorphism group of a generalized Reed-Muller Code - which is the original Reed-Muller Code [6] - has been known for a long time ([5], Chap. 13, §9). Here we prove
S.M.F.

Astérisque 181-182 (1990)

Theorem. For any prime p we have

$$
\operatorname{Aut}(\operatorname{GRM}(r, m))=\left\{\begin{array}{l}
\text { The full monomial group if } r=m(p-1) \\
\mathbb{F}_{p}^{*} \times S_{p^{m}} \text { if } r=0, m(p-1)-1 \\
\mathbb{F}_{p}^{*} \times \operatorname{AGL}(m, p) \text { otherwise. }
\end{array}\right.
$$

Although the result does not depend on whether the prime p is odd or even, the proofs are rather different in the two cases. The difference lies in the fact that only in the binary case a nice geometrical interpretation of the code is available ([5] Chap. 13, §4), from which the crucial point
$\operatorname{Aut}(\operatorname{RM}(r, m)) \subseteq \operatorname{Aut}(R M(r+1, m))(0<r \leq m-1)$
in the proof ([5], Chap. 13, §9) follows. This fails in odd characteristic. The proof we present here heavily depends on the classification of doubly transitive groups.

2. Proof of the Theorem

Let V be a vector space over the field F with basis $\left\{v_{1}, \ldots, v_{n}\right\}$ and let C be a linear code in V. If $g \in$ Aut (C) then g defines a permutation $\pi=\pi_{g} \in S_{n}$ such that

$$
v_{i} g=f_{i} v_{i \pi} \quad\left(f_{i} \in F^{*}, \quad i=1, \ldots, n\right)
$$

Thus there is a homomorphism

$$
\alpha: A u t(C) \longrightarrow S_{n}
$$

$$
g \longrightarrow \pi_{g}
$$

and if P Aut (C) denotes the image of α we obtain an exact sequence

$$
\begin{equation*}
1 \rightarrow D(\text { Aut }(C)) \rightarrow \text { Aut }(C) \xrightarrow{\alpha} P \text { Aut }(C) \rightarrow 1 \tag{A}
\end{equation*}
$$

where the kernel $D(A u t(C))$ of α consists of the diagonal automorphisms of Aut(C) •

For the reader's convenience we restate the following well known result:

Lemma 1 [3]. If C is non-trivial (i.e. $0 \nsupseteq C \notin V$ and if P Aut (C) acts doubly transitively on the coordinate positions then $D(A u t(C))=F^{*}$.id.

Proof. Let $0 \neq c=a_{1} v_{1}+\ldots+a_{n} v_{n} \in C$ with $w(c)$ minimal where w denotes the weight functions on v and $a_{i} \in F$. Obviously $w(c) \geq 2$ as P Aut(C) acts transitively and C is nontrivial. Now suppose that $d \in D(A u t(C))$ with

$$
v_{i} d=f_{i} v_{i} \quad(i=1, \ldots, n)
$$

where $f_{i} \in F^{*}$ and $f_{n} \neq f_{i_{0}}$ for a suitable i_{0}. As the action of P Aut (C) even is doubly transitive we may assume that $a_{n} \neq 0 \neq a_{i_{0}}$. It follows

$$
c \ni f_{n} c-c d={ }_{i} \underline{\underline{\Sigma}}_{1}\left(f_{n}-f_{i}\right) a_{i} v_{i}
$$

with $\left(f_{n}-f_{i_{0}}\right) a_{i_{0}} \neq 0$ and $w\left(f_{n} c-c d\right)<w(c)$, a contradiction.

As already mentioned, $A G L(m, p)$ is contained in the automorphism group of $\operatorname{GRM}(r, m)$ for each r. If we write $A G L(m, p)=E \times G L(m, p)$ then E acts by right multiplication and $G L(m, p)$ by conjugation on $\mathbb{F}_{p} E$ and therefore on all the radical powers $J\left(\mathbb{F}_{p} E\right)^{r}$. This action is doubly transitive on the coordinate positions. Then

$$
\begin{equation*}
\mathrm{D}(\operatorname{GRM}(r, m))=\mathbb{F}_{\mathbf{p}}^{*} \tag{B}
\end{equation*}
$$

by Lemma 1 , provided $r<m(p-1)$.
Lemma 2. $\operatorname{Aut}(\operatorname{GRM}(r, m))=\mathbb{F}_{p}^{*} \times S_{p^{m}}$ for $r=0$ and $m(p-1)-1$.

Proof. Obviously, $S_{p m}$ is contained in the automorphism group of the socle of $\mathbb{F}_{\mathbf{p}} E$ and the radical $J\left(\mathbb{F}_{\mathbf{p}} E\right)$. The
assertion follows now immediately from (́) and (B).

Lemma 3. Aut $(\operatorname{GRM}(1, m))=\operatorname{Aut}\left(\operatorname{GRM}(m(p-1)-2, m)=\mathbb{F}_{p}^{*} \times \operatorname{AGL}(m, p)\right.$ for $m(p-1)-2 \geq 0$.

Proof. Since $\mathbb{F}_{\mathbf{p}}{ }^{E}$ is a uniserial ${ }^{F} \mathbf{p}^{A G L}(\mathrm{~m}, \mathrm{p})$-module (see [4]), GRM(1,m) is the orthogonal of GRM(m(p-1)-2,m). Thus, by duality, it is sufficient to prove the second equality. Let $J^{2}=J\left(\mathbb{F}_{p} E\right)^{2}=\operatorname{GRM}(m(p-1)-2, m)$ and let $g \in A u t\left(J^{2}\right)$. If $x=e_{e \in E} a_{e} e \in \mathbb{F}_{p} E$ then $x g=\Sigma a_{e} g(e)\left(e \pi_{g}\right)$ where $g(e) \in \mathbb{F}_{p}^{*}$ and π_{g} is a permutation of E. Via a transformation with a suitable element of $\mathbb{F}_{p}^{*} \times A G L(m, p)$ we may assume that $1 g=1$. Now let $x=(e-1)\left(e^{\prime}-1\right)=e e^{\prime}-e-e^{\prime}+1 \in J^{2}$ with e,e' ϵE. Thus $x g=g\left(e e^{\prime}\right)\left(e e^{\prime}\right) \pi_{g}-g(e)\left(e \pi_{g}\right)-g\left(e^{\prime}\right)\left(e^{\prime} \pi_{g}\right)+1 \in J^{2}$. As $x g \in J^{2}$, we have

$$
g\left(e e^{\prime}\right)-g(e)-g\left(e^{\prime}\right)+1=0 .
$$

In particular, for $e^{\prime}=e^{i}$, this yields

$$
g\left(e^{i+1}\right)=g(e)+g\left(e^{i}\right)-1
$$

Inductively, we obtain

$$
g\left(e^{i}\right)=1+i(g(e)-1)
$$

If $g(e) \neq 1$ then there exists an $i \in \mathbb{N}$ with $1 \leq i \leq p-1$ such that $i(g(e)-1)=-1$, hence $g\left(e^{i}\right)=0$, a contradiction. Thus $g(e)=1$ for all e $\in E$. It follows

$$
\left(e e^{\prime}\right) \pi_{g}-e \pi_{g}-e ' \pi_{g}+1 \epsilon J^{2}
$$

and obviously also

$$
\left(e \pi_{g}\right)\left(e ' \pi_{g}\right)-e \pi_{g}-e^{\prime} \pi_{g}+1 \in J^{2}
$$

Thus

$$
\left(e \pi_{g}\right)\left(e ' \pi_{g}\right)-\left(e e^{\prime}\right) \pi_{g} \in J^{2}
$$

With $a:=\left(e e^{\prime}\right) \pi_{g}$ and $b=\left(e \pi_{g}\right)\left(e^{\prime} \pi_{g}\right)$ we obtain $a^{-1}(b-a)=a^{-1} b-1 \in J^{2}$.

Suppose $e_{1}=a^{-1} b \neq 1$. Then choose e_{2}, \ldots, e_{m} such that $\mathrm{E}=\left\langle\mathrm{e}_{1}, \ldots, e_{\mathrm{m}}\right\rangle$. Now consider the two-dimensional $\mathbb{F}_{\mathrm{p}} \mathrm{E}-\mathrm{mo}$ dule $M=\mathbb{F}_{p_{1}} \mathfrak{m}_{1} \oplus \mathbb{F}_{\mathbf{p}_{2}}$ with the action

$$
\begin{gathered}
m_{1} e_{1}=m_{1}+m_{2}, \quad m_{2} e_{1}=m_{2} \\
m_{i} e_{j}=m_{i} \quad(i=1,2 ; \quad j=2, \ldots, m)
\end{gathered}
$$

It follows $M\left(e_{1}-1\right) \neq 0$ but $M J^{2}=0$ since $\operatorname{dim} M=2$. Therefore $a^{-1} b=1$, i.e.

$$
\left(e e^{\prime}\right) \pi_{g}=\left(e \pi_{g}\right)\left(e{ }^{\prime} \pi_{g}\right)
$$

and $\pi_{g} \in \operatorname{GL}(m, p)$.
This shows Aut $(\operatorname{GRM}(m(p-1)-2, m)) \leq \mathbb{F}_{p}^{*} \times \operatorname{AGL}(m, p)$ and equality holds by a previous remark.

Lemma 4. $\operatorname{Aut}(\operatorname{GRM}(r, 1))=\mathbb{F}_{p}^{*} \times \operatorname{AGL}(1, p)$ for $1 \leq r \leq p-3$. Proof. Put $E=\left\langle e>, \alpha_{i j}=\left(\frac{i}{j}\right) \in F_{p}\right.$ and $\beta_{i j}=(-1)^{i+j_{\alpha}}{ }_{i j}$ for $i, j=0,1, \ldots, p-1$. Let $g \in \operatorname{Aut}\left(J^{k}\right)$ with $J^{k}=J\left(\mathbb{F}_{p} E\right)^{k}$ and $2 \leq k \leq p-2$. Then

$$
e^{i_{g}}=f_{i} e^{i \pi} \quad(0 \leq i \leq p-1)
$$

where $f_{i} \in \mathbb{F}_{p}^{*}$ and π is a permutation of $\{0, \ldots, p-1\}$. Again, as $\mathbb{F}_{p}^{*} \times \operatorname{AGL}(1, p)$ is contained in the automorphism group of $\operatorname{GRM}(r, 1)$, we may assume that

$$
\begin{aligned}
& 1 g=1 \quad\left(i . e . f_{0}=1 \text { and } 0 \pi=0\right) \\
& \text { and } e g=f_{1} e \quad(i . e . \quad 1 \pi=1) .
\end{aligned}
$$

Now we have to show that $g=1$ or equivalently by (B)
$\pi=$ id . Note that $\left\{(e-1)^{s} \mid s \sum k\right\}$ is a basis for J^{k} and

$$
\begin{aligned}
& (e-1)^{S_{g}}=\underset{i}{\sum} \beta_{s i} e^{i} \boldsymbol{g}=\underset{i}{\sum} \beta_{s i} f_{i} e^{i \pi} \\
& ={ }_{i}{ }_{, j}{ }^{\beta}{ }_{s i}{ }^{f_{i}}{ }_{i \pi, j}(e-1)^{j} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\underset{i}{\sum} \beta_{s i} f_{i}^{\alpha}{ }_{i \pi, j}=0 \text { for all } s \geq k>j \tag{1}
\end{equation*}
$$

For an arbitrary t and $j<k$ we obtain

$$
\begin{aligned}
& f_{t} \alpha_{t \pi, j}=\sum_{i} \delta_{t i} f_{i} \alpha_{i \pi, j}={ }_{s, i}{ }_{i} \alpha_{t s}{ }^{\beta}{ }_{s i} f_{i} \alpha_{i \pi, j}
\end{aligned}
$$

We put
(2)

$$
\gamma_{t i}:=\sum_{s<k} \alpha_{t s^{\beta}} s_{i}
$$

Obviously

$$
\gamma_{t i}=0 \text { for } i \geq k
$$

since then $\beta_{s i}=0$ for all $s<k$.
Therefore

$$
\begin{equation*}
\underset{i<k}{\sum} \quad \gamma_{t i} f_{i} \alpha_{i \pi, j}=f_{t} \alpha_{t \pi, j} \tag{3}
\end{equation*}
$$

for all t and all $j<k$.
If $t<k$ then $\gamma_{t i}=\delta_{t i}$ and (3) says really nothing. Thus only the following equations are relevant.
(4) $\underset{i<k}{\sum_{i}}\left(f_{t}^{-1} \gamma_{t i} f_{i}\right) \alpha_{i \pi, j}=\alpha_{t \pi, j}$ for $j<k$ and $t \geq k$.

For t fixed, (4) is a system of k equations ($j=0, \ldots, k-1$) in the k variables $\left(f_{t}^{-1} \gamma_{t i} f_{i}\right)$ (i $=0, \ldots, k-1$) with coefficient matrix

$$
A:=\left(\alpha_{i \pi, j}\right)=\left[\begin{array}{cccc}
{\left[\begin{array}{c}
0 \pi \\
0
\end{array}\right]} & {\left[\begin{array}{c}
0 \pi \\
1
\end{array}\right]} & \cdots & {\left[\begin{array}{c}
0 \pi \\
k-1
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \pi \\
0
\end{array}\right]} & {\left[\begin{array}{c}
1 \pi \\
1
\end{array}\right]} & \cdots \cdots & {\left[\begin{array}{c}
1 \pi \\
k-1
\end{array}\right]} \\
\vdots & \vdots \\
{\left[\begin{array}{c}
(k-i) \pi \\
0
\end{array}\right]} & {\left[\begin{array}{c}
(k-1) \pi \\
1
\end{array}\right]} & \cdots & {\left[\begin{array}{c}
(k-1) \pi \\
k-1
\end{array}\right]}
\end{array}\right]
$$

Now det A can be transformed - delete denominators and add columns to later columns - to the Vandermonde determinant

$$
\operatorname{det}\left[\begin{array}{cccc}
1 & 0 \pi & (0 \pi)^{2} \cdots & (0 \pi)^{k-1} \\
1 & 1 \pi & (1 \pi)^{2} & (1 \pi)^{k-1} \\
\vdots & \vdots & \vdots & \\
1 & (k-1) \pi & \left((k-1)^{2} \pi\right)^{2} \cdots & ((k-1) \pi)^{k-1}
\end{array}\right] \neq 0
$$

Therefore, we can solve (4) by Cramers's rule, i.e.
(5)

$$
f_{t}^{-1} \gamma_{t i} f_{i}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A}
$$

where the matrix A_{i} is obtained from A if the i-th row is replaced by $\left(\alpha_{t \pi, 0}, \ldots, \alpha_{t \pi, k-1}\right)$.
Clearly
k-1

$$
=\underset{\substack{r<\prod_{\begin{subarray}{c}{ } }}^{r, s \neq i}}\end{subarray}}{ }(s \pi-r \pi)_{r} \prod_{i}(i \pi-r \pi)_{r} \prod_{i}(r \pi-i \pi)
$$

and
k-1
$j \overline{\underline{\Pi}}_{0}(j!) \operatorname{det} A_{i}=\underset{\substack{r<\prod_{s<k} \\ r, s \neq i}}{ }(s \pi-r \pi) \quad r \prod_{i}(t \pi-r \pi) \quad r P_{i}(r \pi-t \pi) \quad$.
Thus
(6)

$$
f_{t}^{-1} \gamma_{t i} f_{i}={\underset{r k k}{r \neq i}} \frac{(r \pi-t \pi)}{(r \pi-i \pi)}
$$

Since $\left[\begin{array}{l}t \\ s\end{array}\right]\left[\begin{array}{l}s \\ i\end{array}\right]=\left[\begin{array}{l}t \\ i\end{array}\right]\left[\begin{array}{l}t-i \\ s-i\end{array}\right] \begin{aligned} & r \neq i \\ & \text { for } t \geq s \geq i\end{aligned}$

$$
\begin{aligned}
\gamma_{t i} & ={ }_{s} \sum_{k} \alpha_{t s} \beta_{s i}=\sum_{s k k}\left[\begin{array}{l}
t \\
s
\end{array}\right]\left[\begin{array}{l}
s \\
i
\end{array}\right](-1)^{s+i} \\
& =\left[\begin{array}{l}
t \\
i
\end{array}\right]{ }_{s} \sum_{k}\left[\begin{array}{c}
t-i \\
s-i
\end{array}\right](-1)^{s-i} \\
& =\left[\begin{array}{l}
t \\
i
\end{array}\right] u \sum_{k-i-1}\left[\begin{array}{c}
t-i \\
u
\end{array}\right](-1)^{u} \\
& =\left[\begin{array}{l}
t \\
i
\end{array}\right](-1)^{k-i-1}\left[\begin{array}{c}
t-i-1 \\
k-i-1
\end{array}\right]
\end{aligned}
$$

(The last equality follows by a trivial induction.)

Insert the value for $\gamma_{t i}$ in (6) yields

$$
(-1)^{k-i-1}\left[\begin{array}{l}
t \\
i
\end{array}\right]\left[\begin{array}{l}
t-i-1 \\
k-i-1
\end{array}\right] f_{t}^{-1} f_{i}=\underset{r \neq i}{r \sum k} \frac{r \pi-t \pi}{r \pi-i \pi}
$$

for all $t \geq k$ and all $i<k$.

In particular for $i=0$ (note $k \geq 2$) and $t \geq k$

$$
(-1)^{k-1}\left[\begin{array}{l}
t-1 \\
k-1
\end{array}\right] f_{t}^{-1}=0 \prod_{r<k} \frac{r \pi-t \pi}{r \pi} \quad(\text { note } 0 \pi=0)
$$

Insert f_{t}^{-1} in ($\overline{1}$) yields

$$
\begin{aligned}
& \qquad \begin{array}{l}
(-1)^{k-i-1}\left[\begin{array}{l}
t \\
i
\end{array}\right]\left[\begin{array}{l}
t-i-1 \\
k-i-1
\end{array}\right](-1)^{k-1}\left[\begin{array}{c}
t-1 \\
k-1
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \geqslant r<k
\end{array} \frac{r \pi-t \pi}{r \pi}\right] f_{i} \\
=\underset{\substack{r \sum k \\
r \neq i}}{r \pi-i \pi} \frac{r \pi}{r \pi}-i \pi
\end{array} \\
& \text { By easy calculations it follows for } i \neq 0
\end{aligned}
$$

$(-1)^{i} \frac{t}{t-i}\left[\begin{array}{c}k-1 \\ i\end{array}\right] f_{i}=\underset{r \neq i}{r \sum_{k}} \frac{r \pi-t \pi}{r \pi}-i \pi \quad 0 \prod_{r<k} \frac{r \pi}{r \pi-t \pi}$

and therefore
(8)

$$
(-1)^{i}\left[\begin{array}{c}
k-1 \\
i
\end{array}\right]^{-1} f_{i}^{-1} \underset{\substack{r \sum k \\
r \neq 0, i}}{r \pi-i \pi}=\frac{r \pi}{t-i}\left[\frac{i \pi-t \pi}{t \pi}\right]
$$

for all $0<i<k$ and all $t \geqslant k$.
Since the left hand side of (8) does not depend on t we obtain

$$
\begin{equation*}
\frac{i \pi-t \pi}{i-t} \cdot \frac{t}{t \pi}=\frac{i \pi-k \pi}{i-k} \cdot \frac{k}{k \pi} \tag{9}
\end{equation*}
$$

for all $i<k$ and all $t \geq k$.

Hence

```
\(t \pi[i(i \pi) k-i(k \pi) k-t(i \pi) k+t i(k \pi)]=(i \pi) t(i-k) k \pi \neq 0\)
                                    for \(0<i<k\) and \(t \geq k\).
```

For $i=1$ (note $k \geq 2$) we get
(10)

$$
t \pi=\frac{t(1-k) k \pi}{k(1-k \pi)-t(k-k \pi)}
$$

for all $t \geq k$ (observe $1 \pi=1$). Insert in (9) and divide by $t(k \pi) \neq 0$ yields
(11) $(t-k) i \pi[k(1-k \pi)-i(k-k \pi)]=(t-k) i(k \pi)(1-k)$.

Since $k<p-1$ choose $t>k$ and divide (11) by $t-k$. $0 b-$ serve that the right hand side of (11) is different from 0 for $i \neq 0$. Thus

$$
\begin{equation*}
i \pi=\frac{i(1-k) k \pi}{k(1-k \pi)-i(k-k \pi)} \quad \text { for } \quad 1 \leq i<k \tag{12}
\end{equation*}
$$

This equation also holds for $i=0$ as $0 \pi=0$. Together with (10) it follows
(13) $\quad i \pi=\frac{i(1-k) k \pi}{k(1-k \pi)-i(k-k \pi)}$ for $i=0,1, \ldots, p-1$.

The denominator of (13) is different from zero for $0 \leq i \leq p-1$. Now if $k \neq k \pi$ then

$$
i=\frac{k(1-k \pi)}{k-k \pi}
$$

annihilates this denominator, a contradiction. Thus $k \pi=k$ and then, by (13), $i=i \pi$ for all i as asserted.

Proposition. Let G be a permutation group of degree p^{m} where p is an odd prime and $m \geq 2$. Suppose $p \neq 3$ if $m=2$. If $A G L(m, p) S G$ then G is isomorphic to one of the following groups:

$$
\operatorname{AGL}(m, p) \quad, \quad \mathbf{p}^{\mathrm{A}} \quad \text { or } \quad \mathrm{S}_{\mathrm{p}^{m}}
$$

Proof. First note that G is doubly transitive since the only faithful permutation representation of $A G L(m, p)$ of degree $\leq p^{m}$ is the natural one on the vector space $V(m, p)$

R. KNÖRR, W. WILLEMS

(see for instance 1.1 of [4]). Let N be a minimal normal subgroup of G. Then by Burnside ([2], Chap. XI, 7.12), N is regular or simple, primitive with $C_{G}(N)=1$.

First, suppose that N is regular, hence an elementary abelian p-group of rank m. Furthermore, $G=N \times G_{\alpha}$ where G_{α} denotes the stabilizer of a point. $G_{\alpha} \leq G L(m, p)$ and $A G L(m, p) \leq G \quad i m p l y \quad G=A G L(m, p) \quad$.

Thus we may assume that N is simple, primitive and $C_{G}(N)=1$. Write $A G L(m, p)=E \times G L(m, p)$ and note that $G \leq A u t(N)$. As $m \geq 2$ and $p \geq 5$ in case $m=2$, the affine special linear group $A S L(m, p)$ is perfect.

Thus $A S L(m, p) \subseteq N$, since $A u t(N) / N$ is solvable by Schreier's conjecture.

In particular, N is doubly transitive. Now we can use the list in [1] of simple doubly transitive permutation groups.

As m 22 , only the following possibilities may occur:

N		degree
A_{n}	$\left(\begin{array}{l}\text { n }\end{array}\right.$	n
PSL (d, q)	(d 22)	$\left(q^{d}-1\right) /(q-1)$
$\operatorname{PSU}\left(3, q^{2}\right)$		$q^{3}+1$
${ }^{2} \mathrm{~B}_{2}$ (q)		$q^{2}+1$
${ }^{2} G_{2}(q)$	$\left(q=3^{u}\right)$	$q^{3}+1$
PSp (2d, 2)	(${ }^{\text {d }}>2$)	$2^{2 d-1}+2^{d-1}$
PSp $(2 d, 2)$	(${ }^{\text {c }}$ > 2)	$2^{2 d-1}-2^{\text {d-1 }}$

${ }^{2} G_{2}(q)$ and $\operatorname{PSp}(2 d, 2)$ do not appear as their degrees are even.

For the Suzuki groups we have $\left.\right|^{2} B_{2}(q) \mid=\left(q^{2}+1\right) q^{2}(q-1)$ and $p^{m}=q^{2}+1$. Since $p \neq 2$, p does not divide (q-1). Comparing the p-parts of $\left.\right|^{2} B_{2}(q) \mid$ and $|A S L(m, p)|$, a contradiction follows. Suppose $N=\operatorname{PSU}\left(3, q^{2}\right)$. Then

$$
|N|=\left(q^{3}+1\right) q^{3}\left(q^{2}-1\right) /(3, q+1) \quad \text { and } \quad q^{3}+1=p^{m}
$$

Since $|A S L(m, p)|_{p}=p^{m+\left[\begin{array}{l}m \\ 2\end{array}\right]}$, this implies

$$
p^{\left[\begin{array}{c}
m \\
2
\end{array}\right]} \left\lvert\, \frac{q^{2}-1}{(3, q+1)}<q^{3}+1=p^{m}\right., \text { so } m=2
$$

Moreover, $p \mid q^{2}-1$ and $p \mid q^{3}+1$, hence
$p \mid\left(q^{3}+1\right)+\left(q^{2}-1\right)=q^{2}(q+1)$, so $p \mid q+1$, in particular $p-1 \leq q$. Hence $(p-1)^{3} \leq q^{3}=p^{2}-1=(p+1)(p-1)$, so
$p^{2}-2 p+1=(p-1)^{2} \leq p+1$ and $p(p-3) \leq 0$, i.e. $p \leq 3, a$ contradiction again.

Finally, we have to deal with $N=P S L(d, q)$ for $d \geq 2$ and $p^{m}=\frac{q^{d}-1}{q-1}$

If $q=2$ and $d=6$ then $\frac{q^{6}-1}{q-1}=63=3.21 \neq p^{m}$. If $d=2$ then $|\operatorname{PSL}(2, q)|=\frac{(q+1) q(q-1)}{(2, q-1)}$ and $q+1=p^{m}$. As $p \neq 2, p$ does not divide $q-1$. Then $p^{m}=|\operatorname{PSL}(2, q)|_{p}<|A S L(m, p)|_{p}$ yields a contradiction.

Now by a result of Zigmundy ([2], Chap. IX, 8.3)

$$
p \mid q^{d-1} \text {, but } p \nmid q^{i-1} \text { for } 0<i<d
$$

In particular

$$
\begin{aligned}
|\operatorname{PSL}(d, q)|_{p} & =\left|q^{\left[\begin{array}{l}
d \\
2
\end{array}\right]} \cdot \frac{q^{d}-1}{q-1} \cdot \frac{\left(q^{d-1}-1\right) \ldots \ldots(q-1)}{(d, q-1)}\right|_{p} \\
& =\frac{q^{d}-1}{q-1}=p^{m}<|\operatorname{ASL}(m, p)|_{p}
\end{aligned}
$$

R. KNÖRR, W. WILLEMS

and the proof is complete.

The case $r=(m-1)$ is trivial.

Proof of the Theorem. Lemma 2 states the assertion for $r=0$ and $r=m(p-1)-1$. Lemma 4 deals with the case $m=1$. By ([5], Chap. 13, §9), the Theorem holds if p is even. For $m=2$ and $p=3$ the result is contained in Lemma 3.

Thus we may assume that $0<r<m(p-1)-1$, that $m \geq 2$ and that p is odd (and $p \neq 3$ if $m=2$). Since $\operatorname{AGL}(m, p) \leq G=P \operatorname{Aut}(\operatorname{GRM}(r, m))$, the proposition implies that $G=A G L(m, p)$ or $A_{p} \leq G$. In the second case it follows from ([3], Theorem 4.4) that $\operatorname{GRM}(r, m)$ is isomorphic to the repetition code, its dual or the whole space (as $p^{m} \geq 7$), i.e. $r=0, m(p-1)-1$ or $m(p-1)$, a contradiction. Therefore, $G=A G L(m, p) ; b y(\underline{A})$ and (B) then

$$
\operatorname{Aut}(\operatorname{GRM}(r, m))=\mathbb{F}_{p}^{*} \times \operatorname{AGL}(m, p)
$$

as claimed.

References:

[1] P.J. Cameron, "Finite permutation groups and finite simple groups". Bull. London Math. Soc. 13 (1981), 1-22.
[2] B. Huppert, N. Blackburn, "Finite groups II, III". Springer, Berlin (1982).
[3] W. Knapp, P. Schmidt, "Codes with prescribed permutation group". J. Alg. 67 (1980), 415-435.
[4] R. Knörr, W. Willems, "A characterization of generalized Reed-Muller codes". Submitted J. Comb. Theory.
[5] F.J. MacWilliams, N.J.A. Sloane, "The theory of error correcting codes". North Holland, Amsterdam (1977).
[6] J.H. van Lint, "Coding theory". LNM 201, Springer, Berlin (1973).

```
                    Reinhard Knörr
Department of Mathematics
    University of Essen
            4300 Essen 1
            West Germany
            Wolfgang Willems
                Department of Mathematics
                        University of Mainz
                    6500 Mainz
                    West Germany
```

