Astérisque

REINHARD KNÖRR WOLFGANG WILLEMS The automorphism groups of generalized Reed-Muller codes

Astérisque, tome 181-182 (1990), p. 195-207

<http://www.numdam.org/item?id=AST_1990__181-182__195_0>

© Société mathématique de France, 1990, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The Automorphism Groups of Generalized Reed-Muller Codes

Reinhard Knörr and Wolfgang Willems

1. Introduction

The generalized Reed-Muller Codes of length p^m over the prime field \mathbb{F}_p are the radical powers $J(\mathbb{F}_p E)^r$ ($0 \leq r \leq m(p-1)$) of the group algebra $\mathbb{F}_p E$ of an elementary abelian p-group E of rank m. To be consistent with the notation in the literature we put $GRM(r,m) = J(\mathbb{F}_p E)^{m(p-1)-r}$ ($0 \leq r \leq m(p-1)$).

Then GRM(r,m) is the r-th order generalized Reed-Muller Code of length p^{m} over \mathbf{F}_{p} .

In an earlier paper [4] we characterized such codes as those linear codes of length p^m over F_p which contain the affine general linear group AGL(m,p) as a subgroup of their automorphism group.

In the binary case the automorphism group of a generalized Reed-Muller Code - which is the original Reed-Muller Code [6] - has been known for a long time ([5], Chap. 13, §9). Here we prove

S.M.F. Astérisque 181-182 (1990) Theorem. For any prime p we have

 $Aut(GRM(r,m)) = \begin{cases} The full monomial group if r = m(p-1) \\ F_p^* \times S_m & \text{if } r = 0, m(p-1)-1 \\ p_m^* & F_p^* \times AGL(m,p) & \text{otherwise.} \end{cases}$

Although the result does not depend on whether the prime p is odd or even, the proofs are rather different in the two cases. The difference lies in the fact that only in the binary case a nice geometrical interpretation of the code is available ([5] Chap. 13, §4), from which the crucial point

Aut(RM(r,m)) \subseteq Aut(RM(r+1,m)) (0 < r \leq m-1) in the proof ([5], Chap. 13, §9) follows. This fails in odd characteristic. The proof we present here heavily depends on the classification of doubly transitive groups.

2. Proof of the Theorem

Let V be a vector space over the field F with basis $\{v_1, \ldots, v_n\}$ and let C be a linear code in V. If $g \in Aut(C)$ then g defines a permutation $\pi = \pi_g \in S_n$ such that

 $v_i g = f_i v_{i\pi}$ ($f_i \in F^*$, i = 1,...,n).

Thus there is a homomorphism

$$\begin{array}{rcl} \alpha & : & \operatorname{Aut}(C) & \longrightarrow & S_n \\ & & & & g & \longrightarrow & \pi_g \end{array}$$

and if P Aut(C) denotes the image of
$$\alpha$$
 we obtain an exact sequence

(A) $1 \rightarrow D(Aut(C)) \rightarrow Aut(C) \xrightarrow{\alpha} P Aut(C) \rightarrow 1$ where the kernel D(Aut(C)) of α consists of the diagonal automorphisms of Aut(C).

For the reader's convenience we restate the following well known result:

<u>Lemma 1</u> [3]. If C is non-trivial (i.e. $0 \leq C \leq V$) and if P Aut(C) acts doubly transitively on the coordinate positions then $D(Aut(C)) = F^* \cdot id$.

<u>Proof</u>. Let $0 \neq c = a_1 v_1 + \ldots + a_n v_n \in C$ with w(c) minimal where w denotes the weight functions on V and $a_i \in F$. Obviously $w(c) \geq 2$ as P Aut(C) acts transitively and C is nontrivial. Now suppose that $d \in D(Aut(C))$ with $v_i d = f_i v_i$ ($i = 1, \ldots, n$) where $f_i \in F^*$ and $f_n \neq f_i$ for a suitable i_0 . As the action of P Aut(C) even is doubly transitive we may assume

that $a_n \neq 0 \neq a_{i_n}$. It follows

 $C \ni f_n c - cd = \sum_{i=1}^n (f_n - f_i)a_i v_i$ with $(f_n - f_i)a_i \neq 0$ and $w(f_n c - cd) < w(c)$, a contradiction.

As already mentioned, AGL(m,p) is contained in the automorphism group of GRM(r,m) for each r. If we write $AGL(m,p) = E \rtimes GL(m,p)$ then E acts by right multiplication and GL(m,p) by conjugation on \mathbb{F}_pE and therefore on all the radical powers $J(\mathbb{F}_pE)^r$. This action is doubly transitive on the coordinate positions. Then

(<u>B</u>) $D(GRM(r,m)) = \mathbb{F}_p^*$ by Lemma 1, provided r < m(p-1).

<u>Lemma 2</u>. Aut(GRM(r,m)) = $\mathbb{F}_{p}^{*} \times S_{p}$ for r = 0 and m(p-1)-1.

<u>Proof</u>. Obviously, S is contained in the automorphism p^m group of the socle of \mathbb{F}_pE and the radical $J(\mathbb{F}_pE)$. The

R. KNÖRR, W. WILLEMS

assertion follows now immediately from (\underline{A}) and (\underline{B}) .

Lemma 3. Aut(GRM(1,m)) = Aut(GRM(m(p-1)-2,m) = $\mathbb{F}_p^* \times AGL(m,p)$ for m(p-1)-2 ≥ 0 .

<u>Proof</u>. Since $\mathbb{F}_{p}E$ is a uniserial $\mathbb{F}_{p}AGL(m,p)$ -module (see [4]), GRM(1,m) is the orthogonal of GRM(m(p-1)-2,m). Thus, by duality, it is sufficient to prove the second equality. Let $J^2 = J(F_pE)^2 = GRM(m(p-1)-2,m)$ and let $g \in Aut(J^2)$. If $x = \sum_{e \in F} a_e \in F_n E$ then $xg = \sum a_e g(e)(e\pi_g)$ where $g(e) \in \mathbb{F}_{p}^{*}$ and π_{q} is a permutation of E. Via a transformation with a suitable element of $\mathbb{F}_{p}^{*} \times AGL(m,p)$ we may assume that 1g = 1. Now let $x = (e-1)(e'-1) = ee'-e-e'+1 \in J^2$ with $e,e' \in E$. Thus $xg = g(ee')(ee')\pi_{a} - g(e)(e\pi_{a}) - g(e')(e'\pi_{a}) + 1 \in J^{2}$. As $xg \in J^2$, we have g(ee') - g(e) - g(e') + 1 = 0. In particular, for $e' = e^{i}$, this yields $q(e^{i+1}) = q(e) + q(e^{i}) - 1$. Inductively, we obtain $g(e^{i}) = 1 + i(g(e) - 1)$. If $g(e) \neq 1$ then there exists an $i \in \mathbb{N}$ with $1 \leq i \leq p-1$ such that i(g(e) -1) = -1, hence $g(e^{i}) = 0$, a contradiction. Thus g(e) = 1 for all $e \in E$. It follows $(ee')\pi_{\alpha} - e\pi_{\alpha} - e'\pi_{\alpha} + 1 \in J^2$ and obviously also $(e\pi_{\alpha})(e'\pi_{\alpha}) - e\pi_{\alpha} - e'\pi_{\alpha} + 1 \in J^{2}$. Thus $(e\pi_{a})(e'\pi_{a}) - (ee')\pi_{a} \in J^{2}$. With a:= $(ee')\pi_q$ and b = $(e\pi_q)(e'\pi_q)$ we obtain $a^{-1}(b-a) = a^{-1}b-1 \in J^2$.

198

Suppose $e_1 = a^{-1}b \neq 1$. Then choose e_2, \ldots, e_m such that $E = \langle e_1, \ldots, e_m \rangle$. Now consider the two-dimensional $\mathbb{F}_p E$ -module $M = \mathbb{F}_p m_1 \oplus \mathbb{F}_p m_2$ with the action

$$m_1e_1 = m_1+m_2$$
, $m_2e_1 = m_2$
 $m_ie_j = m_i$ (i = 1,2 ; j = 2,...,m).

It follows $M(e_1-1) \neq 0$ but $MJ^2 = 0$ since dim M = 2. Therefore $a^{-1}b = 1$, i.e.

$$ee')\pi_{g} = (e\pi_{g})(e'\pi_{g})$$

and $\pi_{cr} \in GL(m,p)$.

This shows $Aut(GRM(m(p-1)-2,m)) \leq \mathbb{F}_p^* \times AGL(m,p)$ and equality holds by a previous remark.

Lemma 4. Aut(GRM(r,1)) =
$$\mathbb{F}_p^* \times AGL(1,p)$$
 for $1 \le r \le p-3$.

<u>Proof</u>. Put $E = \langle e \rangle$, $\alpha_{ij} = {\binom{i}{j}} \in \mathbb{F}_p$ and $\beta_{ij} = (-1)^{i+j} \alpha_{ij}$ for $i, j = 0, 1, \dots, p-1$. Let $g \in \operatorname{Aut}(J^k)$ with $J^k = J(\mathbb{F}_p E)^k$ and $2 \leq k \leq p-2$. Then

$$e^{i}g = f_{i}e^{i\pi}$$
 (0 $\leq i \leq p-1$)

where $f_i \in \mathbb{F}_p^*$ and π is a permutation of $\{0, \ldots, p-1\}$. Again, as $\mathbb{F}_p^* \times AGL(1,p)$ is contained in the automorphism group of GRM(r,1), we may assume that

lg = 1 (i.e. $f_0 = 1$ and $0\pi = 0$)

and $eg = f_1 e$ (i.e. $1\pi = 1$).

Now we have to show that g = 1 or equivalently by (<u>B</u>) $\pi = id$. Note that $\{(e-1)^{S} \mid s \ge k\}$ is a basis for J^{k} and $(e-1)^{S}g = \sum_{i} \beta_{si}e^{ig} = \sum_{i} \beta_{si}f_{i}e^{i\pi}$ $= i\sum_{i} \beta_{si}f_{i}a_{i\pi,j}(e-1)^{j}$.

Thus

(1)
$$\sum_{i} \beta_{si} f_{i} \alpha_{i\pi,j} = 0 \text{ for all } s \ge k > j.$$

For an arbitrary t and j < k we obtain

 $f_{t} \alpha_{t\pi,j} = \sum_{i}^{\Sigma} \delta_{ti} f_{i} \alpha_{i\pi,j} = \sum_{i}^{\Sigma} \alpha_{ts} \beta_{si} f_{i} \alpha_{i\pi,j}$ $= \sum_{\substack{i,s \\ s < k}}^{\infty} \alpha_{ts}^{\beta} \operatorname{si}^{f} i^{\alpha} i_{\pi}, j$ $= \sum_{i} (\sum_{s < k} \alpha_{ts} \beta_{si}) f_{i} \alpha_{i\pi,j} .$ We put $\gamma_{ti} := \sum_{s \alpha_{ts}} \alpha_{ts} \beta_{si}$ (2) Obviously $\gamma_{ti} = 0$ for $i \ge k$, since then $\beta_{si} = 0$ for all s < k. Therefore $\sum_{i}^{\Sigma} \gamma_{ti} f_{i} \alpha_{i\pi,j} = f_{t} \alpha_{t\pi,j}$ (3) for all t and all j < k. If t < k then $\gamma_{ti} = \delta_{ti}$ and (3) says really nothing. Thus only the following equations are relevant. (4) $\sum_{\substack{i \\ i < k}} (f_t^{-1} \gamma_{ti} f_i) \alpha_{i\pi,j} = \alpha_{t\pi,j}$ for j < k and $t \ge k$. For t fixed, (4) is a system of k equations (j = 0, ..., k-1) in the k variables $(f_t^{-1}\gamma_{ti}f_i)$ (i = 0, ..., k-1) with coefficient matrix $\mathbf{A} := (\alpha_{\mathbf{i}\pi,\mathbf{j}}) = \begin{bmatrix} 0\pi \\ 0 \end{bmatrix} \begin{bmatrix} 0\pi \\ 1 \end{bmatrix} \cdots \begin{bmatrix} 0\pi \\ k-1 \end{bmatrix} \\ \begin{bmatrix} 1\pi \\ 0 \end{bmatrix} \begin{bmatrix} 1\pi \\ 1 \end{bmatrix} \cdots \begin{bmatrix} 1\pi \\ k-1 \end{bmatrix} \\ \vdots \\ \begin{bmatrix} (k-1)\pi \\ k-1 \end{bmatrix} \begin{bmatrix} (k-1)\pi \\ k-1 \end{bmatrix} \cdots \begin{bmatrix} (k-1)\pi \\ k-1 \end{bmatrix}$

Now det A can be transformed - delete denominators and add columns to later columns - to the Vandermonde determinant

$$\det \begin{bmatrix} 1 & 0\pi & (0\pi)^2 \cdots & (0\pi)^{k-1} \\ 1 & 1\pi & (1\pi)^2 & (1\pi)^{k-1} \\ \vdots & \vdots & \vdots \\ 1 & (k-1)\pi & ((k-1)\pi)^2 \cdots & ((k-1)\pi)^{k-1} \end{bmatrix} \neq 0 .$$

Therefore, we can solve $(\underline{4})$ by Cramers's rule, i.e.

(5)
$$f_t^{-1}\gamma_{ti}f_i = \frac{\det A_i}{\det A}$$

where the matrix
$$A_i$$
 is obtained from A if the i-th row is
replaced by $(\alpha_{t\pi,0}, \dots, \alpha_{t\pi,k-1})$.
Clearly
 $k-1$
 $j\stackrel{\Pi}{=}_0$ (j!)det A = $\underset{\substack{r\Pi,s\\r (s π -r π)
 $r
= $\underset{\substack{r< m < k < k}{r} < m - r\pi$) $\underset{\substack{r < m < k < k}{r} < m - m}$
and
 $k-1$
 $j\stackrel{\Pi}{=}_0$ (j!)det $A_i = \underset{\substack{r< m < m < k < k}{r} < m - m}$ $\underset{\substack{r < m < m < m < m < m}{r} < m < m}{r}$ (t π - r π) $\underset{\substack{r > i}{r} (r\pi - t\pi)$.$$

Thus

(6)
$$f_t^{-1}\gamma_{ti}f_i = \prod_{\substack{r \leq k}} \frac{(r\pi - t\pi)}{(r\pi - i\pi)}$$
.
Since $\begin{bmatrix} t \\ s \end{bmatrix} \begin{bmatrix} s \\ i \end{bmatrix} = \begin{bmatrix} t \\ i \end{bmatrix} \begin{bmatrix} t-i \\ s-i \end{bmatrix}$ for $t \geq s \geq i$ we obtain

$$\gamma_{ti} = \sum_{s \in k} \alpha_{ts} \beta_{si} = \sum_{s \in k} {t \choose s} {s \choose i} (-1)^{s+i}$$
$$= {t \choose i} \sum_{s \in k} {t-i \choose s-i} (-1)^{s-i}$$
$$= {t \choose i} \sum_{u \leq k-i-1} {t-i \choose u} (-1)^{u}$$
$$= {t \choose i} (-1)^{k-i-1} {t-i-1 \choose k-i-1}$$

(The last equality follows by a trivial induction.)

Insert the value for γ_{ti} in (6) yields

(7)
$$(-1)^{k-i-1} \begin{pmatrix} t \\ i \end{pmatrix} \begin{pmatrix} t-i-1 \\ k-i-1 \end{pmatrix} f_t^{-1} f_i = \prod_{\substack{r \leq k \\ r \neq i}} \frac{r\pi - t\pi}{r\pi - i\pi}$$

for all $t \ge k$ and all i < k.

In particular for i = 0 (note $k \ge 2$) and $t \ge k$

$$(-1)^{k-1} \begin{bmatrix} t-1 \\ k-1 \end{bmatrix} f_t^{-1} = \prod_{0 \le r \le k} \frac{r\pi - t\pi}{r\pi} \quad (\text{note } 0\pi = 0).$$

Insert f_t^{-1} in (7) yields

$$(-1)^{k-i-1} \begin{pmatrix} t \\ i \end{pmatrix} \begin{pmatrix} t-i-1 \\ k-i-1 \end{pmatrix} (-1)^{k-1} \begin{pmatrix} t-1 \\ k-1 \end{pmatrix}^{-1} \begin{pmatrix} \pi \\ 0 \leq r < k \end{pmatrix} \frac{r\pi - t\pi}{r\pi} \mathbf{f}_{i}$$
$$= \prod_{\substack{r \leq k \\ r \neq i}} \frac{r\pi - t\pi}{r\pi - i\pi} \cdot$$

By easy calculations it follows for $i \neq 0$

$$(-1)^{i} \frac{t}{t-i} {k-1 \choose i} f_{i} = \prod_{\substack{r \in k \\ r \neq i}} \frac{r\pi - t\pi}{r\pi - i\pi} \prod_{\substack{0 \leq r < k \\ r \neq i}} \frac{r\pi}{r\pi - t\pi}$$
$$= \left(\prod_{\substack{r \leq k \\ r \neq 0, i}} \frac{r\pi - t\pi}{r\pi - i\pi} \right) \left(\frac{-t\pi}{-i\pi} \right) \left(\prod_{\substack{r \leq k \\ r \neq 0, i}} \frac{r\pi}{r\pi - t\pi} \right) \left(\frac{i\pi}{i\pi - t\pi} \right) ,$$

and therefore

(8)
$$(-1)^{i} {\binom{k-1}{i}}^{-1} f_{i}^{-1} r_{k}^{\eta} \frac{r\pi}{r\pi - i\pi} = \frac{t}{t-i} \left(\frac{i\pi - t\pi}{t\pi} \right)$$

for all 0 < i < k and all $t \ge k$. Since the left hand side of (8) does not depend on t we obtain

(9)
$$\frac{i\pi - t\pi}{i - t} \cdot \frac{t}{t\pi} = \frac{i\pi - k\pi}{i - k} \cdot \frac{k}{k\pi}$$

for all i < k and all $t \ge k$.

Hence $t\pi[i(i\pi)k - i(k\pi)k - t(i\pi)k + ti(k\pi)] = (i\pi)t(i-k)k\pi \neq 0$ for 0 < i < k and $t \ge k$. For i = 1 (note $k \ge 2$) we get $t\pi = \frac{t(1-k)k\pi}{k(1-k\pi) - t(k-k\pi)}$ (10)for all $t \ge k$ (observe $1\pi = 1$). Insert in (9) and divide by $t(k\pi) \neq 0$ yields (11) $(t-k)i\pi[k(1-k\pi) - i(k-k\pi)] = (t-k)i(k\pi)(1-k)$. Since k < p-1 choose t > k and divide (11) by t-k. Observe that the right hand side of (11) is different from 0 for $i \neq 0$. Thus $i\pi = \frac{i(1-k)k\pi}{k(1-k\pi) - i(k-k\pi)} \quad \text{for} \quad 1 \leq i < k$ (12)This equation also holds for i = 0 as $0\pi = 0$. Together with (10) it follows $i\pi = \frac{i(1-k)k\pi}{k(1-k\pi) - i(k-k\pi)}$ for i = 0, 1, ..., p-1. (<u>13</u>) The denominator of $(\underline{*}, \underline{*}, \underline{*})$ $0 \leq i \leq p-1$. Now if $k \neq k\pi$ then $i = \frac{k(1-k\pi)}{k-k\pi}$ The denominator of (13) is different from zero for annihilates this denominator, a contradiction. Thus $k\pi = k$ and then, by $(\underline{13})$, $i = i\pi$ for all i as asserted. Proposition. Let G be a permutation group of degree p^m where p is an odd prime and m ≥ 2 . Suppose $p \neq 3$ if m = 2. If AGL(m,p) \leq G then G is isomorphic to one of the following groups: AGL(m,p), A or S . p^{m} p^{m} p^{m} Proof. First note that G is doubly transitive since the only faithful permutation representation of AGL(m,p) of de-

gree $\leq p^{m}$ is the natural one on the vector space V(m,p)

R. KNÖRR, W. WILLEMS

(see for instance 1.1 of [4]). Let N be a minimal normal subgroup of G. Then by Burnside ([2], Chap. XI, 7.12), N is regular or simple, primitive with $C_{c}(N) = 1$.

First, suppose that N is regular, hence an elementary abelian p-group of rank m. Furthermore, $G = N \rtimes G_{\alpha}$ where G_{α} denotes the stabilizer of a point. $G_{\alpha} \leq GL(m,p)$ and AGL(m,p) $\leq G$ imply G = AGL(m,p).

Thus we may assume that N is simple, primitive and $C_{G}(N) = 1$. Write $AGL(m,p) = E \times GL(m,p)$ and note that $G \leq Aut(N)$. As $m \geq 2$ and $p \geq 5$ in case m = 2, the affine special linear group ASL(m,p) is perfect.

Thus $ASL(m,p) \subseteq N$, since Aut(N)/N is solvable by Schreier's conjecture.

In particular, N is doubly transitive. Now we can use the list in [1] of simple doubly transitive permutation groups.

N		degree
^A n	(n ≥ 5)	n
PSL(d,q)	(d ≥ 2)	(q ^d -1)/(q-1)
$PSU(3,q^2)$		q ³ +1
² B ₂ (q)		q ² +1
² G ₂ (q)	$(q = 3^{u})$	q ³ +1
PSp(2d,2)	(d > 2)	$2^{2d-1} + 2^{d-1}$
PSp(2d,2)	(d > 2)	$2^{2d-1} - 2^{d-1}$

As $m \ge 2$, only the following possibilities may occur:

 ${}^{2}G_{2}^{}(q)$ and PSp(2d,2) do not appear as their degrees are even.

204

For the Suzuki groups we have $|{}^{2}B_{2}(q)| = (q^{2}+1)q^{2}(q-1)$ and $p^{m} = q^{2}+1$. Since $p \neq 2$, p does not divide (q-1). Comparing the p-parts of $|{}^{2}B_{2}(q)|$ and |ASL(m,p)|, a contradiction follows. Suppose N = PSU(3,q^{2}). Then

$$|N| = (q^{3}+1)q^{3}(q^{2}-1)/(3,q+1)$$
 and $q^{3}+1 = p^{m}$.

Since $|ASL(m,p)|_p = p^{m+\binom{m}{2}}$, this implies

$$p^{\binom{m}{2}} \left| \frac{q^2-1}{(3, q^{+1})} < q^3+1 = p^m , \text{ so } m = 2 \right|$$

Moreover, $p \mid q^2-1$ and $p \mid q^3+1$, hence $p \mid (q^3+1) + (q^2-1) = q^2(q+1)$, so $p \mid q+1$, in particular $p-1 \leq q$. Hence $(p-1)^3 \leq q^3 = p^2-1 = (p+1)(p-1)$, so $p^2-2p+1 = (p-1)^2 \leq p+1$ and $p(p-3) \leq 0$, i.e. $p \leq 3$, a contradiction again.

Finally, we have to deal with N = PSL(d,q) for d
$$\geq$$
 2 and $p^m = \frac{q^d-1}{q-1}$.

If q = 2 and d = 6 then $\frac{q^6-1}{q-1} = 63 = 3 \cdot 21 \neq p^m$. If d = 2 then $|PSL(2,q)| = \frac{(q+1)q(q-1)}{(2,q-1)}$ and $q+1 = p^m$. As $p \neq 2$, p does not divide q-1. Then $p^m = |PSL(2,q)|_p < |ASL(m,p)|_p$ yields a contradiction.

Now by a result of Zigmundy ([2], Chap. IX, 8.3)

$$p \mid q^{d}-1, \text{ but } p \nmid q^{i}-1 \text{ for } 0 < i < d.$$
In particular
$$|PSL(d,q)|_{p} = \left| q^{\binom{d}{2}} \cdot \frac{q^{d}-1}{q^{-1}} \cdot \frac{(q^{d-1}-1)\dots(q-1)}{(d, q^{-1})} \right|_{p}$$

$$= \frac{q^{d}-1}{q^{-1}} = p^{m} < |ASL(m,p)|_{p}$$

R. KNÖRR, W. WILLEMS

and the proof is complete. The case r = (m-1) is trivial. Proof of the Theorem. Lemma 2 states the assertion for r = 0and r = m(p-1)-1. Lemma 4 deals with the case m = 1. By ([5], Chap. 13, §9), the Theorem holds if p is even. For m = 2 and p = 3 the result is contained in Lemma 3. Thus we may assume that 0 < r < m(p-1)-1, that $m \ge 2$ and that p is odd (and $p \neq 3$ if m = 2). Since $AGL(m,p) \leq G = P Aut(GRM(r,m))$, the proposition implies that G = AGL(m,p) or $A \subseteq G$. In the second case it follows from ([3], Theorem 4.4) that GRM(r,m) is isomorphic to the repetition code, its dual or the whole space (as $p^m \ge 7$), i.e. r = 0, m(p-1)-1 or m(p-1), a contradiction. Therefore, G = AGL(m,p); by (A) and (B) then Aut(GRM(r,m)) = $\mathbb{F}_{p}^{*} \times AGL(m,p)$

as claimed.

GENERALIZED REED-MULLER CODES

References:

- [1] <u>P.J. Cameron</u>, "Finite permutation groups and finite simple groups". Bull. London Math. Soc. <u>13</u> (1981), 1 22.
- [2] <u>B. Huppert, N. Blackburn</u>, "Finite groups II, III". Springer, Berlin (1982).
- [3] <u>W. Knapp, P. Schmidt</u>, "Codes with prescribed permutation group". J. Alg. <u>67</u> (1980), 415 - 435.
- [4] <u>R. Knörr, W. Willems</u>, "A characterization of generalized Reed-Muller codes". Submitted J. Comb. Theory.
- [5] <u>F.J. MacWilliams, N.J.A. Sloane</u>, "The theory of error correcting codes". North Holland, Amsterdam (1977).
- [6] J.H. van Lint, "Coding theory". LNM 201, Springer, Berlin (1973).

Reinhard Knörr Department of Mathematics University of Essen 4300 Essen 1 West Germany

Wolfgang Willems Department of Mathematics University of Mainz 6500 Mainz West Germany