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SOME NEW BLOCK INVARIANTS 

COMING FROM COHOMOLOGY 

BY 

Christine B E S S E N R O D T 

1 In troduc t ion 

In the usual setup of the representation theory of finite groups we are given a finite group G 

and a ring A of coefficients, and we want to study the modules over the ring A = AG. Typical 

coefficient rings are the ring Z the p-adic numbers 2Zp, or fields. For many properties of these 

modules, we can 'forget' the group G and just need to know the algebra A. Now suppose that p 

is a prime dividing the order of G, and let A be a complete discrete valuation ring with residue 

field of characteristic p or a field of characteristic p. There are some very fruitful invariants in 

integral and modular representation theory which are defined with explicit reference to the given 

group G. The most prominent among these are the vertex of an indecomposable AG-module and 

the defect group of a p-block, or the kernels of modules and blocks. 

Now it is natural to ask: 

(1) What informations on G can we read off from A ? 

(2) What happens to the invariants mentioned above, if we choose another group basis in A, 

i.e. a subgroup H < U(A) such that A= AH and \H\ = |G| ? 

S.M.F. 
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C. BESSENRODT 

In particular, question (1) includes the classical isomorphism problem which was formulated by 

G. Higman in 1940 and later also posed by Brauer [7J: 

Does TLG ~ TLH imply G ~ H ? 

This problem has stimulated a lot of research, and the last few years have seen quite some 

progress, in particular in the work of Roggenkamp and Scott [22]. They have obtained positive 

answers for some classes of groups also to the much stronger Zassenhaus conjecture, which asks 

whether another (normalised) group basis for TLG must even be conjugate to G by a unit in QG. 

For more details and the history of the isomorphism problem the reader is referred to the articles 

by Roggenkamp and Scott, the books by Passman [20] and Sehgal [25], and the survey article by 

Sandling [23]. 

Roggenkamp and Scott have also dealt with other integral coefficient rings, such as the p-adic 

numbers TLP. For these, too, they could prove the Zassenhaus conjecture for nilpotent groups. 

For A = TLP and G a p-group, Weiss [26] succeeded in proving the strong theorem that any 

finite subgroup of V(TLPG), the augmentation 1 units in 2ZPG, is conjugate in V(TLPG) to a 

subgroup of G. For A = F a field of characteristic p, it is still an open question whether the 

group algebra of a p-group determines the group G. The earliest result to this question goes back 

to Deskins [13], who proved that an abelian p-group is determined by its modular group algebra. 

It is also known that the answer is positive for small p-groups and for various special classes of 

p-groups. The proofs are usually rather computational, and it seems hard to transfer them from 

the case of p-groups to general groups. 

So for these coefficient rings there are rather few results to question (1) for general finite 

groups. On the other hand, by using the classification of the finite simple groups, Kimmerle-

Lyons-Sandling [17] showed that TIG determines the composition factors of G. They also proved 

that TLG determines whether the Sylow subgroups of G are abelian, hamiltonian or of certain 

other types, and in these cases they can obtain the structure of these groups [16]. 

For a coefficient ring like TLP or a field of characteristic p, there is at least some hope that 

the group ring AG determines the structure of a Sylow p-subgroup. Motivated by the recent 

successes, Scott asked the following more general question, which is of type (2) (see [24]): 

Given a p-block B of TLPG, are its defect groups determined up to conjugation and 'suitable' 

normalisation, independently of the group G ? 
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NEW BLOCK INVARIANTS 

Also, Alperin pointed out that it is even open whether the isomorphism type of the defect 

groups is determined by B. 

In our investigation we will focus mainly on the modular group algebra FG\ of course, this 

also implies results for the integral situation. 

In the following sections we present a contribution to the question posed by Scott and Alperin. 

Our leading idea will be that the problem of determining the isomorphism type of a defect group 

of a block falls into two parts: first one would like to obtain the defect group algebra from the 

block algebra, and then one needs a positive answer to the isomorphism problem for p-groups (as 

mentioned above, this is true for 2ZP, but open for fields of characteristic p). In fact, we will be 

more modest, and we will just try to compute certain new invariants of the defect group algebra 

from the block algebra. It turns out that for many types of p-groups these invariants are the 

same for the defect group algebra and the block algebra, and in the abelian case they even suffice 

to determine the isomorphism type of the defect group. 

Here are a few more details on the course of our investigations. As computations inside the 

group algebra can usually not easily be translated to the block situation, we introduce a new 

tool coming from cohomology theory in the second section. For this, we use the complexity 

of a module, which is a measure for the growth of the dimensions of the projective modules 

in a minimal projective resolution for the module. This invariant was introduced by Alperin 

in 1977, and it has attracted much attention since Alperin and Evens [1] have proved their 

celebrated theorem that the complexity of a module can be determined on the elementary abelian 

p-subgroups. If A = F is an algebraically closed field, it can also be described as the dimension 

of a certain variety associated with the module, which was defined by Carlson [11], who also 

proved many important properties of this variety. 

For our purposes, we define a sequence of invariants for a p-block B (or more generally for a 

union of p-blocks) by looking at the dimensions of modules with a certain complexity belonging 

to the block B. A few properties of the defect group can easily be read off this sequence, like its 

order and its rank. The invariants for the whole group algebra are the same as those for the group 

algebra over a Sylow p-subgroup. We then show that for a defect group for which the invariants 

already come from trivial source modules, the invariants of the block are the same as those of 

the defect group algebra. Based on some results of Carlson, one can prove that for the group 

algebra of an abelian p-group our invariants determine the isomorphism type of the p-group, 
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C. BESSENRODT 

and we see that they come from trivial source modules. Thus, in particular, the structure of an 

abelian defect group can be deduced from the invariants for the block (see [5]), but also some 

other types of p-groups can be handled with this method. Unfortunately, our invariants can not 

decide whether the defect group is abelian, we have to assume this in advance. In fact, note that 

so far it is not even known if the whole modular group algebra determines whether the Sylow 

p-subgroups are abelian. In the last section we calculate the sequence of invariants for various 

p-groups. 

I would like to thank the Deutsche Forschungsgemeinschaft for financial support during the 

time while this research was done at the University of Essen. It forms part of a manuscript which 

was accepted as a Habilitationsschrift by the Department of Mathematics at the University of 

Duisburg. 

Let us fix some notation for the following. By G we will always denote a finite group, and by 

F a field of characteristic p > 0. Furthermore, R will always be a complete discrete valuation 

ring of characteristic 0 with residue field of characteristic p > 0, which we will then also denote 

by F. We assume that the quotient field of R is sufficiently large relative to G, so that it is 

a splitting field for G and its subgroups. The ring A will be one of the rings R or Fy and an 

AG-module is always supposed to be finitely generated and free over A. For an AG-module M 

we denote by CQ(M) the complexity of M (see e.g. [3]). For n 6 IN we write np for the highest 

p-power dividing n. Other standard notations and terminology may be found in the books by 

Benson [3] and Feit [14]. 

2 S o m e n e w invariants for g r o u p a lgebras a n d b locks 

In this section we want to introduce some new invariants for blocks and group algebras, which 

are derived from looking at modules of a certain complexity; we refer the reader to Benson [3] 

and the papers by Alperin-Evens [1], Avrunin-Scott [2] and Carlson [11] for the properties of the 

complexity and the variety of a module. For the isomorphism problem we want to exploit the 

relationship between the complexity and the rank of an AG-module. 

Now let us come to the precise definition of our invariants. 
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Let A G {R, F\ as before and let A be a union of p-blocks of AC For i € 1N0 we set 

Mi(A) = {V I V indecomposable AG-module in A and CQ(V) < i}. 

Let \GL = pa. Via the following recursive procedure we define a sequence of invariants associated 

with A: 

m = n\{A) — min{n E IN pa~n I rankAV for all V e M1(A)h 

Hi = Tli(A) = min{n G IN = min{n G IN ranfcAV for all V e Mf(A)}, 

for all i > 2. For abbreviation we will write n(A) = (»i(^))ieN' 
PROPOSITION 2.1 Le£ B be a p-block of AG with D as a defect group, r = r(D) the rank of D, 

and \D\ = pd. Then the sequence n(B) = (nT)L€M has the following properties: 

(i) m — 0 for all i > r , and nr > 0. 

(a) 
r 

1=1 
rii = d . 

Proof. The first part of (i) holds because Mr(B) is the set of all indecomposable modules in B, 

and (ii) follows from the well-known fact that there is an indecomposable module of height 0 

in B. The second assertion in (i) is a consequence of the fact that modules of complexity < r 

have always dimension divisible by pa~d+1 (this will follow from a later result; or see [6]). • 

Remark. We see from the above that our invariants determine the rank of the defect group 

of a block, which is no surprise since it is known that the rank equals the maximal complexity 

of a module in the block. For the whole group G, not only the order of its maximal elementary 

abelian p-subgroups is given by cohomology theory, but Quillen [21] has even proved that the 

minimal prime ideals of the mod p cohomology ring of G are in one-to-one correspondence with 

the conjugacy classes of maximal elementary abelian p-subgroups. So the group algebra FG 

determines the number of these conjugacy classes. 

Knowing the rank pf the defect groups already suffices to handle the smallest cases. Let us 

here give an immediate application for the smallest non-abelian situation. Remember that the 

order of the defect groups is always easily obtainable from the dimensions of the modules in the 

block. 
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PROPOSITION 2.2 Let B he a p-block of FG with defect groups of order 8. Then the isomorphism 

type of the defect groups is determined by B. 

Proof. Since we know the rank of the defect groups from the dimensions of the modules in B, 

we only have to be able to distinguish between the groups 7L2 x 2Z4 and D&, respectively 7L% and 

Qs- Now if the defect groups are isomorphic to 2Z2 x Z4, then B is of wild representation type, 

if they are dihedral or quaternion, then B is of tame type, and if they are cyclic, B is of finite 

type. Thus we are done. • 

Sometimes it will also be useful to have a short notion for the following invariants, which are 

just as good as the nt-'s defined above: 

l{ = li(B) = max{pl pl I rankAV for all V G M{(B)}, 

for all i £ IN. 

Note that we always have IQ(B) = p° by Brauer [8], so usually we will just consider the sequence 

1(B) = (/i(B)),-€N, starting from i = 1. 

The relationship between these sequences is given by: 

LEMMA 2.3 Let B be a p-block of AG, n(B) = (nt)lGiM, \(B) = (/,),€]N. Then we have for all 
i e IN: 

LiU = P = minf 

= min{n sdd 
df 

Now a word on the dependency on the ring A is in order. Note that for a ring extension 

A C A' we just have U{AG) > lt(A'G), and if we go from R to its residue field F we have 

U{RG) > h(FG). This follows from the fact that the complexity of a module is well-behaved in 

these situations. 
Another easy property of these invariants is contained in the following lemma: 

LEMMA 2.4 If X <G, then for all i e IN we have: 

(i) h(AX) < li(AG). 

(ii) i 

i=l 
nAAX) < 

i 

i=i 
nj(AG), 

or equivalently: h(AG) < li{AX)\G : X\p. 
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In general, it is not at all clear whether the isomorphism type of the group algebra AP of a 

Sylow p-subgroup P of G is determined by the group algebra AG. Even for many invariants of 

AP, it is not known how to compute them given just the group algebra AG. So it is nice to see 

that the invariants given above are well-behaved in this respect: 

COROLLARY 2.5 If P is a Sylow p-subgroup ofG, then 1(AP) = \{AG) and n(AP) = n(AG). 

Of course, now the next problem is: does this even hold blockwise, i.e. are the invariants for 

a block B the same as the invariants for AD, where D is a defect group of B ? We will later give 

a positive answer at least for certain types of defect groups. 

The easiest situation for which we know the invariants defined above is, of course, the case 

of a group G with cyclic or generalised quaternion Sylow p-subgroup of order pa where we just 

have rii(AG) = a. Another easy case is treated in the following result. 

LEMMA 2.6 Let P be a Sylow p-subgroup ofG, \P\ = p° as before. If P has a cyclic or generalised 

quaternion subgroup of index p, then the invariants of AG are: 

ni(AG) = a - 1 , n2(AG) = 1 . 

Proof By the previous corollary, rii(AG) = n,-(AP) for all i G IN. Of course, r(P) = 2, 

so ni(AP) = 0 for i > 2. Inducing the trivial module from a cyclic or generalised quater

nion subgroup of index p to P, gives an indecomposable periodic AP-module of rank p, hence 

n-i(AP) > a — 1. Now Proposition 2.1 proves the assertion. • 

REMARK 2.7 At least for A — F, the invariants do not characterise groups with a Sylow p-

subgroup of the type above. Take for example G — P to be extraspecial of order p3 and expo

nent p. If F ^ GF(p), then by a result of Carlson [9] FP has an indecomposable FP-module of 

dimension p, so also in this case we have n^FP) = 2 and n2(FP) = 1. 

3 A n e w lower b o u n d for t h e p-part in t h e r a n k of a 

latt ice 

We will now improve Green's lower bound for the p-part in the rank of a lattice, in which we 

get an extra factor which comes from the invariants defined above. A first step in this direction 
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was the bound given in [6] which will be obtained as a special case here. Whereas there only the 

rank of the vertex, i.e. its elementary abelian subgroups were considered, we will now take the 

invariants for the vertex group algebra into account. Also compare the results in [5], where we 

had looked at abelian subgroups of the vertex. 

THEOREM 3.1 Let V be an AG-module. Suppose V is D-projective for some p-group D < G. 

Let X < D and c = CY(VY), then 

\G:D\plc(AX) rankAV. 

Proof Let P be a Sylow p-subgroup of G with D < P. Then Vp = (B,VJ, where the V{ are 

indecomposable AP-modules. As V is £)-projective, each is £),-projective for D{ = DXi D P , 

with a suitable a;,- E G. Thus V{ ~ U{P for an indecomposable FDj-module U{. 

Set X{ = XXi fl Di = XXi D P. As U{\Xi | VXn we have 

cxi(Ui\Xi) < cxXVxi) < cx(Vx) = c, 

and hence lc(AXi) I ranfc f̂/j. Since X{ <G X, we know that 

ULAX) < UAXt) \X : Xi\ . 

Furthermore, we have 

\X\ = \X*<\ = XXi\\X« : X" n DA < \XiWD*' : A l = \Xi\\D\ 
\Di\ 

and these inequalities together yield: 

\P : D\lG(AX) \P : A I UAX{) \P : A | rankAUi = rankAV{, 

for all i . Hence \P : D\ lc(AX) divides rankAV. • 

The theorem immediately implies the following result for the invariants of blocks: 

COROLLARY 3.2 Let B be a block of AG with defect group D. Then for all i e { 1 , . . . ,r(Z>)} we 

have: 

h{AD) \G:D\P<U(B), 

or equivalently: 
i 

E 
¿=1 

nAB) < 
i 

•1 
dqs 

nAAD). 

Of course, in the above we would like to have equality, i.e. n(B) = n(AD). This would be 

the generalisation of Corollary 2.5 to blocks that we are looking for. We will later obtain this at 

least for a certain class of p-groups. 

18 
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4 Trivial source m o d u l e s 

In this section, we define a set of invariants for a group G, which is related to the (n;)-sequence 
for AG. 

The sequence t(G) = (£t(£r))*€N is defined recursively by 

= min{n G IN = max{ \P\\P <G a p-group, r(P) < i}. 

Already from the definition it is clear that G has the same invariants as its Sylow p-subgroups. 

Corresponding to the invariants U(AG), we also set 

Si(G) = min{\G : P\p P <G a p-group,r\ (P)<i} 

and s(G) = (si(G))ien. These invariants can also be defined via special modules. We consider 

the set 
Ti(G) = {V I V e Mi(AG), V is a trivial source module}. 

In this context, 'trivial source i4G-module' is always supposed to mean a module which has 

trivial source with respect to G. Note that here it doesn't matter whether A = R or A = F. 

Let again \G\P = p°; since the trivial module over a p-group P has complexity r(P), we have: 

U = ti(G) = min{n e IN = min{n G IN rankAV, for allV eTi(G)}. 

Furthermore, the invariants si(G) satisfy 

Si = Si(G) = max{p3 p° I rankAV for all V 6 Tt(G)} , 

and the relationship between the invariants (st) and (£,•) is given by 

Si = p° Si = p° and ti= 5.-1 
5. . 

Moreover, it is clear that for all i 

i E 
3=1 

Si = p°vv 
e 
E 
•7=1 

nj(AG). 

If B is a block of AG, we define similarly 

7i(£) = {v e B I v e Ti(G)}. 
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Corresponding to the invariants U{G) and si(G) we define the invariants U(B) and S{(B) by 

replacing the set T{(G) by Ti(B). Here, one should always keep in mind that these invariants 

depend on the chosen group basis G, so we should write more precisely t{(B) = U(B\ G). Clearly, 

U(B) < Si(B) since Ti(B) Ç Mi(B). 

These invariants have similar properties as the ones defined before: 

LEMMA 4.1 IfX<G, then for all i G IN we have: 

(i) si(AX)<si(AG). 

(n) £}=1*i(AX)<E}=1*i(AG), 

or equivalently: Si(AG) < Si(AX) \G:X\P. 

This observation also allows to write down a version of Theorem 3.1 for trivial source modules: 

THEOREM 4.2 Let D < G be a p-group, V an indecomposable D-projective AG-module with 

trivial source. Let X < D and c = cx(Vx)- Then 

\G:D\psc(D)\rankAV. 

Before we can prove the next theorem, we need a result on the existence of certain trivial 

source modules in a given block B (see [5]). 

PROPOSITION 4.3 Let Q < G be a p-group, B a p-block of AG with a defect group D > Q. Then 

B has an indecomposable AG-module U with source AQ such that 

\G : Q\p = (rankAU)p 

(i.e.: U is of vertex-height 0). 

We can now show that for a block these new invariants do only depend on its defect group. 

THEOREM 4.4 Let B be a block of AG with defect group D. Then we have 

sAB) = sdD) \G : D\p for all i, 

or equivalently, t(B) = t(D). 

20 
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Proof. By Theorem 4.2 we have: sA{B) > Si(D) \G : D\p. 

Now let P be a subgroup of D with r(P) < i and \D : P\ = s,(Z>). By the preceding proposition, 

Apis a, source for a vertex-height 0 module V in B, so cG(V) = r(P) < i and hence by definition 

of the sAB) we have 
Si(B) (rankAV)p = Si(D) \G : D\p. 

Thus Si(B) < Si(D) \G : D\p, which proves the assertion. • 

As we will see later, for some types of p-groups D the group theoretic invariants (ti(D)) are 

the same as the algebra invariants (nt(AD)). The invariants of blocks with such defect groups 

are also under control: 

COROLLARY 4.5 Let D be a p-group for which n(AD) = t(D) (or equivalently, \{AD) = s(D)). 

Then any block B of AG with defect group D satisfies: 

i(B) = t(B) = n(AD) , 

?r equivalently, 1(B) = s(B) = l(AD). 

Proof By Corollary 3.2 and the theorem above we obtain: 

U(B) < Si(B) = Si{D) \G : D\p = h(AD) \G : D\p < h(B). • 

5 S o m e r e m a r k s a n d quest ions 

Now suppose that we already know that our given block B has a defect group D satisfying 

the condition in Corollary 4.5, but without knowing the invariants of D. This is for example the 

case if we know for some reason that the defect groups are abelian. Then we want to compute 

the invariants n(B) = n(AD) to get some information on D. 

Of course, the sets Mi(B) are usually too large to use them in practice to determine the 

nt-(2?)'s. But Corollary 4.5 implies that the nt(J5)'s can be computed with the sets M{(B) 

replaced by the much smaller sets 

Mi(B) = {ve Mi(B) rankAV < |G|}, 
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which still do not depend on a special group basis, and these are finite if A = F is finite! 

In the very special case where G is a p-group one might even take: 

Mi(FG) = {Ve Mi(FG) I V principal right ideal in FG with 

symmetric Loewy series, dim V a p-power} 

Now it is natural to ask: 

(1) How can we compute the nt's ? 

(2) For which p-groups D do we have n(AD) = t(D) ? 

(3) Which properties of D can we deduce from the n,(AD)'s, or even from the nt(2?)'s, when 
B is a block with defect group D ? 

First a remark concerning question (3). Unfortunately, for a block B of FG, the invariants 

rii(B) cannot even determine whether the defect groups of B are abelian, for a non-abelian p-

group D the n,(AjD)'s cannot even determine the exponent. The easiest example for this is 

provided by ZZ8 and the quaternion group of order 8, which both just have m = 3. For p ^ 2, 

consider the following examples. By Lemma 2.6 the group 7LP2 x 7LP and the extraspecial group 

of order p3 and exponent p2 both have invariants ni = 2 and n2 = 1. By Remark 2.7, the 

extraspecial group of order p3 and exponent p has the same invariants for A = F ^ GF(p). So 

the groups of order p3 and rank 2 cannot be distinguished by their (n.-)-sequence. 

But at least for the case A = 2L, Kimmerle and Sandling proved that the group ring TLG 

determines whether the Sylow subgroups are abelian [16]. 

On the other hand, even the exponent of the defect groups of a p-block B of FG can be 

obtained from the algebra B by a result of Kulshammer [18]. 

6 Invariants for abe l ian p-groups 

The answers to questions (1) and (3) of the previous section for abelian p-groups are very 

satisfying. 

Before we state the main result of this section, we introduce the following definition: an 

abelian p-group X is said to be of type (ni > ... > na) if X ^ 7Lpn\ x • • • x 7Lpn,. For the details 

of the proofs in this section we refer to [5]. 

22 



NEW BLOCK INVARIANTS 

THEOREM 6.1 Let G be an abelian p-group of type (mi > . . . > mr), then 

mi = m(AG) = tAG) for all i. 

The crucial result for the proof of the Theorem is the following proposition which generalises 

a result of Carlson on periodic modules [10; 5.1]. One can prove it by a modification of the proof 

given there. 

PROPOSITION 6.2 Let G be an abelian p-group, F an algebraically closed field of characteristic 

p > 0 and M an FG-module with c = cG(M). Then there exists a group G' Ç U(FG) such that: 

(i) G ~G' and G' <-» FG induces an isomorphism FG' ~ FG. 

(ii) There is a subgroup H in G' with r(G'/H) = c and MJJ projective. 

From the theorem above and Theorem 3.1 we can now deduce the following generalisation of 

the bounds given in [4] and [6] (see [5]): 

THEOREM 6.3 Let V be an AG-module, A G {R,F}. Suppose V is D-projective for some p-

group D < G, X < D is an abelian p-group of type (mi > . . . > ma) and c = cx{Vx)- Then 

\G : D\P 
\X\ 

pini . . . pmc I rankAV. 

Furthermore, if we assume that we have a block with abelian defect groups, then we can 

determine the isomorphism type of the defect groups. This answers, in the abelian case, the 

question raised by Scott and Alperin even for modular group algebras. Note that it was conjec

tured by Brauer that the degrees of the ordinary irreducible characters in B indicate whether 

the defect groups of B are abelian. 

THEOREM 6.4 Let B be a p-block of AG with abelian defect group D of rank r. Then D is of 

type (n1(B)>...>nT(B)). 

Proof. Apply Corollary 4.5 and Theorem 6.1. • 

In connection with the classical isomorphism problem and the result of Kimmerle and San-

dling [16] we also state: 

COROLLARY 6.5 If G has abelian Sylow p-subgroups, then the isomorphism type of the Sylow 

p-subgroups is determined by AG (in particular, it is determined by 7LG). 
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7 Invariants for various p-groups 

Suppose we already know the invariants of the p-group P. We want to determine the invariants 

of a group which is a direct product of P with a 'small' abelian group. We will see that p-groups 

with the property defined below are well-behaved in this situation. 

DEFINITION 7.1 Let P be a p-group with invariants rij = rij(AP), for 1 < j < r = r(P). We 

say that the invariants ni,...,n,- come from abelian subgroups of P, if there exists an abelian 

subgroup D of P of type (mi > . . . > ma), where s >i, such that 

\D\ 
pmi . . . ptni d \ua 

type (n1(B)>. 

In other words: 

U(AD) = Si(D) = U(AP). 

We say that the invariants of P come from abelian subgroups if the above is satisfied for all i <r. 

PROPOSITION 7.2 Let X be an abelian p-group. Suppose the invariants nl7..., nt- of the p-group 

P come from an abelian subgroup which is of type (mi > • • • > m,(t-)) with pm* > expX, for all 

i<k. SetG = Px X. Then 

rn(AG) = ni(AP) Jor all i < k, 

or equivalently: U(AG) = Z,-(AP) \X\. 
Furthermore, if r = r(P) then li+r(AG) = U(AX) = Si(X) for i>l. 

Proof. By Lemma 2.4 we have h(AG) < \X\ U(AP) for all i < r(G). Now let D be an abelian 

subgroup of P of type (mi > . . . > m3) with mt- > expX such that 
D 

type (n1(B) x \P\ 
pni ptii 

Suppose V is an AG-module with CG(V) < i, then we apply Theorem 6.3 with the abelian 

subgroup D x X of G to obtain: 

\G\ 
pni . . . pni ̂ = № 1 

pni . . .pni = 
DxX\ 

pmi . . . pm rankAV, 

hence 
\G\ 

pni . . . pni < U{AG) 

and thus: U(AG) = U{AP) \X\ for all i such that the first i invariants of P come from abelian 

subgroups with large enough z-th invariant. • 
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COROLLARY 7.3 Let X be an elementary abelian p-group and suppose that all invariants of the 

p-group P come from abelian subgroups. Then the invariants of G = P X X are: 

(ni(AG),.. .,nr(AG)) = (n1(AP),...,nri(AP),n1 {AX),...,nT2{AX)) 
= (n!(AP),...,nri = (n!(AP),...,nri 

where r = r(G), r\ = r(P) and r2 = r(X). 

EXAMPLES. 

(a) Let Q2n be the generalised quaternion group of order 2n. Then the proposition above is ap

plicable with any abelian 2-group X of exponent < 2n_1, say X is of type {m1 > ... > ms). 

So G = Q2n x X has invariants: 

t(G) = n(AG) = (ni,... ,ns+1) = (n, Tîll, . . . , Wis) • 

In particular, the non-abelian hamiltonian 2-groups are among the groups handled with 
this example. 

(b) Let P be dihedral or semidihedral of order 2n. In both cases, the invariants of P are 

(n — 1,1) and they come from abelian subgroups. So we can apply our result with an 

elementary abelian 2-group X. 

(c) Let P be extraspecial of order p3 and exponent p2, then P has invariants (2,1). If P is 

extraspecial of order p3 and exponent p, then assuming that F ^ GF(p) we also have 

n(FP) = (2,1). In both cases the invariants come from abelian subgroups. 

(d) Let P = 7Lpl TLV. Then P has invariants t(P) = (2,1,... , 1) = n(AP), and these come 

p-i 
from abelian subgroups. Again, we can apply the corollary. 

Note that the groups in example (a) and the extraspecial groups of exponent p can easily be 

distinguished from the abelian groups with the same invariants. One just has to use the fact 

that the exponent is also determined by the modular group algebra, and for these two types the 

exponent is not equal to its first invariant as is the case with the abelian groups. 

Since even the exponent of a defect group is determined by the block [18], Corollary 4.5 now 

leads to the following improved version of Theorem 6.4: 
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THEOREM 7.4 Let B be a p-block of AG, and assume that a defect group D of B is abelian or 

of type (a) above. Let n(B) = (n\ > . . . > nr). 

If expD = pni, then the defect group D is abelian of type (ni > ... > nr), otherwise we have 
x"3 =yP = l,x* = x1+p2 >x"3 =yP where {ri\ > n2 > . . . > nr). 

In particular, if the defect groups of B are known to be hamiltonian, then their isomorphism 

type is determined by the block algebra. 

Let us make a few observations on the examples given above. In all cases, the sequence (nt) is 

decreasing. Furthermore, for all i < rp(G) the invariants rii(AG) are non-zero. Is this always the 

case ? Another obvious question is whether there is a good characterisation of p-groups whose 

invariants come from abelian subgroups. 

At the end of this section let us look at the p-groups of order p4, where p > 3. A list of these 

groups can be found in Huppert [15, p.346]. The modular isomorphism problem for these groups 

was solved by Passman [19]. Using the commutator quotient, the centre, the Brauer-Jennings-

Zassenhaus M-series, and in some critical cases the kernel size of certain canonical maps, he 

showed that the isomorphism type of all of these groups is determined by their group algebra 

over GF(p). 

Remember that p-groups P with t(P) = n(AP) are especially good, because then we have 

n(B) = n(AP) for a block B with defect group P. We will see below that several groups 

of order p4 satisfy this condition. But even together with the knowledge of the exponent our 

invariants do not suffice to distinguish between all the non-abelian groups of order p4. 

Non-abelian groups of order p4, for p > 3 

(1) G = <x,y\ x"3 =yP = l,x* = x1+p2 > 

This group is met acyclic of exponent p3. By Lemma 2.6 we have 

n(AG) = (3,l) = t(G), 

and the invariants clearly come from its abelian subgroups. 

(2) G = < x,y I xP2 = yp = l,xy = x1+p > 

The group G is metacyclic of exponent p2. We claim: 

n(AG) = (2,2) = t(G). 
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So the invariants do not come from the abelian subgroups. 

Proof. Let U be an indecomposable periodic FG-module. As VG(U) is a line [12], U is 

projective on <xp> or on <yp>, hence it is projective on <x> or on <y>. Thus p2 

divides dimpU. This also implies the assertion for A = R. • 

(3) Let G be the central product of an extraspecial group P of order p3 and exponent p with 

C = 7LP2. Here we have: 

t(G) = (2,2) and n(FG) = (3,1) , for F ¿ GF(p). 

In particular, the n-invariants come from abelian subgroups. 

Proof. We already know that P has a periodic module of dimension p on which Z(P) 

acts trivially, so we can consider this as an î G-module on which C acts trivially. As it is 

periodic on the maximal elementary abelian p-subgroups of 6?, it is a periodic FG-module. 

This Droves n(FG) = (3.1). • 

(4) If G is the direct product of an extraspecial group of order p3 and exponent p with a 7LP 

or the semidirect product of a 7L3 with a Zp, then we have: 

t(G) = (1,2,1) and n(FG) = (2,1,1), for F¿GF{p), 

and the n-sequence does come from abelian subgroups. 

(5) If G is one of the three non-split extensions of ZZP3 with ZZP, then the invariants are: 

t(G) = (2,l,l) = n(AG), 

so the n-sequence comes from abelian subgroups. 

(6) For the groups of the form 

G = < x,y, z I xp = yp = zp2 = [y,z] = l,yx = yzap,zx = zy> , 

where 5 = 1 resp. a quadratic non-residue modulo p, we note that t(G) = (2,2). But it is 

not clear whether there is a periodic module with rank only divisible by p but not by p2. 

(7) For p = 3 we have to replace one of the groups under (5) by the group: 

G = < x.y.z I x9 = y3 = \x,y] = l,x3 = z3,xz = xy, yz = x3y>, 

for which we also have t(G) = (2,2). Again, there could be a periodic module whose rank 

is only divisible by 3. 
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