Astérisque

George Lusztig

Representations of affine Hecke algebras

Astérisque, tome 171-172 (1989), p. 73-84
http://www.numdam.org/item?id=AST_1989__171-172__73_0
© Société mathématique de France, 1989, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Representations of affine Hecke algebras.

George Lusztig

This is an expository paper ; it is concerned with establishing Langlands' conjecture for an interesting family of irreductible representations of a split reductive p-adic group : the representations which admit non-zero vectors invariant under an Iwahori subgroup. This represents only the tip of the iceberg ; the rest of the iceberg remains to be explored. It is remarkable that equivariant $\mathrm{K}-$ theory plays such a central role in this problem. These ideas were developed in [11] , [4] , [8] , [9] . We shall also explain a second approach to the same problem following [12].

1. Affine Hecke algebras.

We recall (cf. e.g. [14, 9.1.6]) that a root datum is a quadruple (X, Y, R, R) where X, Y are free (additive) abelian groups of finite rank with a given perfect pairing $<,>: X \times Y \rightarrow \mathbb{Z}$ and R, K are finite subsets of X, Y with a given bijection $\alpha \leftrightarrow \stackrel{\vee}{\alpha}, \mathrm{R} \leftrightarrow \stackrel{\vee}{\mathrm{R}}$.

For $\alpha \in R$ we define endomorphisms

$$
\begin{aligned}
& \mathrm{s}_{\alpha}: \mathrm{X} \rightarrow \mathrm{X}, \mathrm{~s}_{\alpha} \mathrm{X}= \mathrm{x}-<\mathrm{x}, \stackrel{\vee}{ }>\alpha \\
& \text { and } \\
& \mathrm{s}_{\alpha}: \mathrm{Y} \rightarrow \mathrm{Y}, \mathrm{~s}_{\alpha} \mathrm{Y}=\mathrm{y}-<\alpha, \mathrm{y}>\stackrel{\vee}{\alpha} .
\end{aligned}
$$

It is required that for all $\alpha \in \mathrm{R}$:

$$
\begin{aligned}
& \langle\alpha, \stackrel{v}{\alpha}\rangle=2 \\
& \mathrm{~s}_{\alpha} \mathrm{R}=\mathrm{R}, \mathrm{~s}_{\alpha} \stackrel{\vee}{\mathrm{R}}=\stackrel{\vee}{\mathrm{R}} \\
& 2 \propto \notin \mathrm{R} .
\end{aligned}
$$

We assume given a basis Π of R : thus any $\beta \in R$ can be written uniquely as

[^0]$\sum_{\alpha \in \Pi} n_{\alpha} \alpha$ where n_{α} are integers which are all ≥ 0 or all ≤ 0. It determines a partition $R=R^{+} \cup R^{-}$.

The Weyl group W_{0} is defined as the subgroup of $G L(X)$ generated by the $s_{\alpha}: X \rightarrow X(\alpha \in R)$. It is a Coxeter group with set of generators $S=\left\{s_{\alpha} \mid \alpha \in \Pi\right\}$. Using the natural action of W_{O} on X, we form the semidirect product $W_{O} \cdot X$ with X normal : the product of $w \cdot x$ and $w^{\prime} \cdot x^{\prime}$ is $w w^{\prime} .\left(w^{\prime-1}(x)+x^{\prime}\right)$.
$W_{O} . X$ is called the affine Weyl group. This is slightly different from the usual definition : usually one calls affine Weyl group the normal subgroup W_{0}. of $W_{0} . X$ where Q is the subgroup of X generated by R.

Define a function $\ell: W_{0} . X \rightarrow \mathbb{N}$ by

$$
\ell(\mathrm{w} \cdot \mathrm{x})=\sum_{\mathrm{W}\left(\alpha \in \mathrm{R}^{+} \in \mathrm{R}^{+}\right.}|\langle\mathrm{x}, \stackrel{v}{\alpha}\rangle|+\sum_{\substack{\alpha \in \mathrm{R}^{+} \\ \mathrm{w} \alpha \in \mathrm{R}^{-}}}|1+\langle\mathrm{x}, \stackrel{v}{\alpha}\rangle| .
$$

(See [5].)
Let $\Omega=\left\{w \cdot x \in W_{0} . X \mid \ell(w, x)=0\right\}$
$\widetilde{S}=\left\{w \cdot x \in W_{0} \cdot Q \mid \ell(w \cdot x)=1\right\}$.
Then $\left(W_{0} \cdot Q, S\right)$ is a Coxeter group with $\left(W_{0}, S\right)$ a parabolic subgroup, and Ω is an (abelian) subgroup of $W_{O} . X$ complementary to $W_{O} \cdot Q$ and normalizing \tilde{S}.

Let A be the algebra $\mathbb{C}\left[{\underset{=}{q}}^{1 / 2},{\underset{\sim}{q}}^{-1 / 2}\right]$ where ${\underset{\sim}{q}}^{1 / 2}$ is an indeterminate. Let H be the free A-module with basis $T_{w . x}$, $\left(w, x \in W_{0} . X\right)$. According to IwahoriMatsumoto [5], there is a unique structure of associative A-algebra on H such that :
$T_{w \cdot x} T_{w^{\prime} \cdot x^{\prime}}=T_{(w \cdot x)\left(w^{\prime} \cdot x\right)}$ if $\left.\ell(w \cdot x)\left(w^{\prime} \cdot x^{\prime}\right)\right)=\ell(w \cdot x)+\ell\left(w^{\prime} \cdot x^{\prime}\right)$
$\left(T_{w . x}+1\right)\left(T_{w}, x^{-q}\right)=0$ if $w \cdot x \in \tilde{S}$. The unit element is $T_{w . x}$ where $w . x$ is the neutral element of $W_{0} . X$.

The A-algebra H is called the affine Hecke algebra.
An alternative description for H has been given by Bernstein and Zelevinskii (unpublished, but see [10]). Let H_{0} be the subalgebra of H spanned by the elements $T_{w .0}(w \in W)$. Let Γ be the group algebra of X over A. Thus Γ
has an A-basis $\left\{\theta_{x} \mid x \in X\right\}$ and $\theta_{x^{\prime}} \theta_{x^{\prime}}=\theta_{x+x^{\prime}}\left(x, x^{\prime} \in X\right)$. Let $H^{\prime}=H_{0} \otimes r$; it is a free A-module with basis $T_{w .0} \otimes \theta_{X}\left(w \in W_{0}, x \in X\right)$. There is a unique structure of associative A-algebra on H^{\prime} such that properties (a)-(b) below hold :
(a) $h \rightarrow h \otimes l$ and $\gamma \mapsto 1 \otimes \gamma$ are A-algebra homomorphisms $H_{0} \rightarrow H^{\prime}, \Gamma \rightarrow H^{\prime}$.
(b) Let us write $T_{\text {w.0 }}$ instead of $T_{W \cdot 0} \otimes 1$ and θ_{x} instead of $1 \otimes \theta_{x}$. Then $T_{\text {W.O }} \cdot \theta_{\mathrm{x}}=T_{W_{.0}} \otimes \theta_{\mathrm{x}}$ and

$$
\theta_{\mathrm{x}} \cdot \mathrm{~T}_{\mathrm{S.0}}=\mathrm{T}_{\mathrm{S.0}} \cdot \theta_{\mathrm{S}(\mathrm{x})}+\underset{=}{(\mathrm{q}-1)} \frac{\theta_{\mathrm{x}}-\theta_{\mathrm{S}(\mathrm{x})}}{1-\theta_{-\alpha}}
$$

for all $x \in X, \alpha \in \Pi$, where $s=s_{\alpha}$. (The fraction above is an element of Γ).
The relationship between $\mathrm{H}, \mathrm{H}^{\prime}$ is a follows. There is a unique A-algebra isomorphism $\mathrm{H} \xrightarrow[\rightarrow]{\sim} \mathrm{H}^{\prime}$ which is the identity on H_{0} and which maps $\mathrm{T}_{1 . \mathrm{x}}$ to $\mathrm{q}^{\ell(1 . \mathrm{x}) / 2_{\theta^{\prime}}}$ for any $x \in X$ such that $\langle x, \stackrel{v}{\alpha} \geq 0$ for all $a \in \Pi$.

We shall identify H and H^{\prime} via this isomorphism. For any complex number $\mathrm{q} \in \mathbb{C}^{\star}$ we shall denote $\mathrm{H}_{\mathrm{q}}=\mathrm{H}_{\mathrm{A}} \mathbb{C}$ where \mathbb{C} is regarded as an A-module with $\mathrm{q}^{1 / 2}$ acting as multiplication by $q^{1 / 2}$, a fixed square root of q.
2. Relation with representations of p-adic groups.

Let F be a p-adic field whose residue field has a finite number q of elements. Let $\overline{\mathrm{F}}$ be an algebraic closure of F.

Let G be a connected reductive group defined over F such that G has a maximal torus T defined and split over F. To G one can associate in the usual way a root datum

$$
\left(X(T), Y(T), R^{\prime}, \mathrm{K}^{\prime}\right): \text { we define } X(T)=\operatorname{Hom}\left(T, \mathrm{~F}^{\star}\right), Y(T)=\operatorname{Hom}\left(\mathrm{F}^{\star}, T\right) ;
$$

R^{\prime} is the set of roots, $\stackrel{\vee}{R}$ ' is the set of coroots. We assume that $X(T)=Y, Y(T)=X, R^{\prime}=\stackrel{\vee}{R}, \stackrel{V}{R}^{\prime}=R$, where $(X, Y, R, \stackrel{\vee}{R})$ is the root datum in Sec.l.

Let I be an Iwahori subgroup of $G(F)$; this is a certain compact open subgroup of $G(F)$. Let \mathcal{H} be the \mathbb{C}-algebra of all I-biinvariant functions with compact support $\mathrm{f}: G(\mathrm{~F}) \rightarrow \mathbb{C}$ with respect to convolution product.

A \mathbb{C}-basis is given by the characteristic functions of the I-I double cosets, which are parametrized by the elements of $W_{0} . X$; these functions multiply in the same way as the basis elements $T_{w . x}$ of H_{q} (see | 51). It follows that the algebra π is naturally isomorphic to H_{q}.

G. LUSZTIG

According to [2] , [3] the irreducible admissible representations of $G(F)$ wich have non-zero I-invariant vectors are in natural bijection with the simple \mathcal{F}-modules. (The bijection associates to the representation V of $G(F)$ its space V^{I} of I -invariant vectors, regarded as an \mathcal{F}-module in a natural way). Thus an interesting part of the representation theory of $G(F)$ is captured by the algebra $\mathcal{H}=\mathrm{H}_{\mathrm{q}}$.

This justifies the study of simple H_{q}-modules.
3. The Langlands dual.

We consider a complex connected reductive group G, with Lie algebra 9 . We can associate a root datum to G just as for G, in terms of a maximal torus of G.

It will be more convenient to define it in an intrinsic way. Let B be the variety of Borel subalgebras of g. Let X be the set of isomorphism classes of algebraic G-equivariant line bundles on B. (This is an abelian group under \otimes). Let P be a conjugacy class of parabolic subalgebras of g of semisimple rank l and let $\pi: B \rightarrow P$ be the natural \mathbb{P}^{1}-bundle. Let $L_{P} \in X$ be the tangent bundle along the fibres of π. Let $h_{p}: X \rightarrow \mathbb{Z}$ be defined by $h_{p}(L)=m$, where $m+l=$ Euler characteristic of $L \in X$ restricted to any fibre of π (regarded as a coherent sheaf).

Then h_{p} is a homomorphism so it is an element of $\mathrm{Y}=\operatorname{Hom}(\mathrm{X}, \mathrm{m})$. Let $\mathrm{s}_{\mathrm{p}}: \mathrm{X} \rightarrow \mathrm{X}$ be defined by $s_{p}(L)=L \otimes I_{p}{ }^{-h}{ }_{p}^{(L)}$. The s_{p} for varying p generate the Weyl group $W \subset G L(X)$. We set $\Pi=\left\{L_{P} \mid P\right.$ as above $\} \subset X, V=\left\{h_{P} \mid P\right.$ as above $\} \subset Y$, $R=W I \subset X, \stackrel{V}{R}=W I \subset Y$. Then $R, \stackrel{V}{R}$ are naturally in bijection and ($X, Y, R, R)$ is a root datum. We assume that it is the same as the one in Sec.l.

This means that G is the Langlands dual of G.

4. The Deligne-Langlands conjecture.

According to the general Langlands philosophy, the irreductible admissible representations of $G(F)$ should correspond to certain objects related to the geometry of G. For those representations of $G(F)$ which have non-zero vectors invariant by the Iwahori subgroup, this philosophy predicts (using the reformulation in Sec.2) that the simple H_{q}-modules should correspond to G -conjugacy classes of pairs (s, N), where $s \in G$ is semisimple, $N \in g$ is nilpotent and $A d(s) N=q N$. This statement, known as the Deligne-Langlands conjecture, has been verified for GL_{n} by Bernstein and Zelevinskii [1], [15]. In that case the correspondence is a bijection. In general it is not a bijection. In [10] it was suggested that in

REPRESENTATIONS OF AFFINE HECKE ALGEBRAS

order to make it a bijection, to (s, N) one should add a third ingredient ρ, an irreducible representation of the finite group $\frac{Z(S, N)}{Z^{0}(S, N)}$ appearing in the homology $H_{\star}\left(B_{N}^{S}, \mathbb{Q}\right)$ where $B_{N}^{S}=\{b \in B \mid N \in b, A d(s) b=b\}$. (Here $Z(s, N)=\{g \in G \mid g s=s g$, Ad $(g) N=N\}$; it acts naturally on B_{N}^{S}. This was suggested by an analogy with Springer's work on W-modules and by working out examples corresponding to subregular N.

In the rest of this paper we shall assume that G has simply connected derived group. We now state :

Theorem 4.1. [9] Let $q \in \mathbb{C}^{\star}$ be a complex number which is not a root of 1 . Then the simple H_{q}-modules (up to isomorphism) are in the natural bijection with the G-conjugacy classes of triples (s, N, ρ) as above.

The bijection in the theorem will be constructed in Sec. 5 using in essential way methods of equivariant K-theory. The approach to the Deligne-Langlands conjecture using equivariant K-theory has been developed in $|11|,|8|$; the conjecture itself is proved in [9].

5. Equivariant K-theory.

Let M be a linear algebraic group over \mathbb{C}. An M-variety is an algebraic variety over \mathbb{C} with an algebraic action of M. If Z is an M-variety, let $K^{M}(Z)$ be the Grothendieck group of the category of M-equivariant coherent sheaves on Z. Then $R_{M}=K^{M}$ (point) is the Grothendieck group of finite dimensional algebraic representations of M. Note that R_{M} is a commutative ring and $K^{M}(Z)$ is an $R_{M}-$ module in a natural way using tensor product.

Let Z^{\prime} be another M-variety and let $f: Z \rightarrow Z^{\prime}$ be an M-equivariant morphism. If f is smooth, then the inverse image $f^{\star}: K^{M}\left(Z^{\prime}\right) \rightarrow K^{M}(Z)$ is well defined ; if f is proper, then the direct image $f_{\star}: K^{M}(Z) \rightarrow K^{M}\left(Z^{\prime}\right)$ is well defined : it is defined using an alternating sum of higher direct images.

Now let $\phi: \varepsilon_{0} \rightarrow \mathscr{\varepsilon}_{1}$ be an M-equivariant map of M-equivariant vector bundles on Z, and let Z^{\prime} be a closed M-subvariety of Z such that ϕ is an isomorphism on all fibres over $Z-Z^{\prime}$. Let F be an M-equivariant coherent sheaf on X. Let K_{0}
 are M-equivariant coherent sheaves on Z such that $K_{0}\left|Z-Z^{\prime}=0, K_{1}\right| Z-Z^{\prime}=0$. Let I be the coherent sheaf of functions on Z which vanish on Z^{\prime}. For

G. LUSZTIG

any $i \geqslant 0$, there is a 11 defined M-equivariant coherent sheaf \bar{K}_{O}^{i} (resp. \bar{K}_{1}^{i}) on Z^{\prime} whose extension to Z by O outside Z^{\prime} is $I^{i} K_{O} / I^{i+1} K_{O}$ (resp. $I^{i} K_{1} / I^{i+1} K_{1}$). For large i we have $I^{i} K_{O}=I^{i} K_{1}=0$ hence $\bar{K}_{O}^{i}=\bar{K}_{1}^{i}=0$; now $F \rightarrow \underset{i}{\Sigma}(-1)^{i} \bar{K}_{O}^{i}-\underset{i}{\Sigma}(-1)^{i} \bar{K}_{1}^{i}$ defines a homomorphism $\gamma_{\phi}: K^{M}(Z) \rightarrow K^{M}\left(Z^{\prime}\right)$.

6. Construction of H-modules.

Fix a nilpotent element $N \in g$. Let $M(N)=\left\{(g, \lambda) \in G \times \mathbb{C}^{\star} \mid A d(g) N=\lambda N\right\}$. If $(\mathrm{s}, \mathrm{q}) \in \mathrm{M}(\mathrm{N})$ is a semisimple element we denote by $\mathrm{M}(\mathrm{s}, \mathrm{q})$ the smallest algebraic diagonalizable) subgroup of $M(N)$ containing (s, q). Let $B_{N}=\{b \in B \mid N \in b\}$. Note that $M(N)$ acts on B_{N} by $(g, \lambda): b \mapsto A d(g) b$. In particular, $M(s, q)$ acts on B_{N} and therefore $K{ }^{M(s, q)}\left(B_{N}\right)$ is an $R_{M(s, q)}$-module. Now $(s, q) \in M(s, q)$ defines a ring homomorphism $h: R_{M(s, q)} \rightarrow \mathbb{C}$ (it attaches to an $M(s, q)$-module the trace of (s, q) on that module). This makes \mathbb{C} into an $\mathrm{R}_{\mathrm{M}(\mathrm{s}, \mathrm{q})}$-module, hence we can form $E=K^{M(s, q)}\left(B_{N}\right) R_{M(s, q)}^{\otimes} \mathbb{C}$. On this complex vector space we want to define endomorphisms corresponding to the generators of the algebra H_{q}.

We define for $x \in x, \theta_{x}: K^{M(s, q)}\left(R_{N}\right) \rightarrow K^{M(s, q)}\left(B_{N}\right)$ by $\theta_{x}(F)=F \otimes L_{x}$ where L_{x} is the G-equivariant line bundle on B indexed by x. (We regard L_{x} as a $G \times \mathbb{C}^{\star}$-equivariant line bundle on B with \mathbb{C}^{\star} acting trivially, and we retrict it to B_{N}; the restriction is an $M(s, q)$-equivariant line bundle on $\left.B_{N}\right)$. This is $R_{M(s, q)}$-linear, hence it induces a \mathbb{C}-linear map $\theta_{X}: E \rightarrow E$.

Now let P be a conjugacy class of parabolic subalgebras of g of semisimple rank 1. Let P_{N} be the set of all $p \in P$ such that $N \in_{p}$. Consider its inverse image $\pi^{-1}\left(P_{N}\right)$ under the natural map $\pi: B \rightarrow P$. Then π restricts to

$$
\pi^{\prime}: B_{N} \rightarrow P_{N} \quad \text { (a proper map) }
$$

and to

$$
\pi^{\prime \prime}: \pi^{-1}\left(P_{N}\right) \rightarrow P_{N} \quad\left(a \mathbb{P}^{1} \text {-bundle }\right) .
$$

Let $\&$ be the line bundle on $\pi^{-1}\left(P_{N}\right)$ whose fibre at b is p / b where p is the unique subalgebra in P containing b. It is the restriction of a $G \times \mathbb{C}^{\star}$-equiva-

representations of affine hecke algebras

riant line bundle on B, hence it is $M(s, q)$-equivariant. It has a canonical section defined by the image of $N \in p$ in p / b. This section is not $M(s, q)$-equivariant, but it becomes so if \mathcal{L} is replaced by $\lambda^{-1} \otimes \mathcal{L}$. (Here λ is the trivial line bundle on which $M(s, q)$ acts in the fibre direction by multiplication with the character $\mathrm{pr}_{2}: M(\mathrm{~s}, \mathrm{q}) \rightarrow \mathbb{I}^{\star} ; \lambda^{-1}$ denotes the dual of that line bundle. The sections of \mathcal{L} are the same as the sections of $\lambda^{-1} \otimes \mathcal{L}$). Our section of $\lambda^{-1} \otimes \mathcal{L}$ vanishes exactly over $B_{N} \subset \pi^{-1}\left(P_{N}\right)$. It defines a map of line bundles $\mathbb{C} \rightarrow \lambda^{-1} \otimes \mathcal{L}$; taking duals we find a map of line bundles $\Phi: \lambda \otimes \AA^{-1} \rightarrow \mathbb{C}$ which is an isomorphism outside B_{N}. It gives rise by the construction in Sec. 5 to a map

$$
\gamma_{\phi}: K^{M(s, q)}\left(\pi^{-1}\left(P_{N}\right)\right) \rightarrow K^{M(s, q)}\left(B_{N}\right) .
$$

We define an operator $\underset{=}{-T_{S p}}: K^{M(s, q)}\left(B_{N}\right) \rightarrow K^{M(s, q)}\left(B_{N}\right)$ as the composition $\gamma_{\Phi} \cdot\left(\pi^{\prime \prime}\right)^{\star} \cdot\left(\pi^{\prime}\right)_{\star}$. This operator is $\mathrm{R}_{\mathrm{M}(\mathrm{s}, \mathrm{q})}$-linear hence it defines by extension of scalars a \mathbb{C}-linear map $\underset{=}{q-T_{S p}}: E \rightarrow E$.

Next we note that $M(N, s)=\{(g, \lambda) \in M(N) \mid g s=s g\}$ acts on B_{N} (restriction of $M(N)$-action) and it cormutes with the action of $M(s, q)$. For any $m \in M(N, s)$ and any $M(s, q)$-equivariant coherent sheaf F on B_{N}, we can consider the inverse image $m^{\star} F$; it is again an $M(s, q)$-equivariant coherent sheaf on B_{N}. This defines an action of $M(N, s)$ on $K^{M(s, q)}\left(B_{N}\right)$, which is $R_{M(s, q)}$-linear, hence it defines an action of $M(N, s)$ on E. For any irreducible \mathbb{C}-representation ρ of $M(N, s)$, trivial on $M^{0}(N, s)$, we consider $E_{\rho}=\operatorname{Hom} M(N, s)(\rho, E)$. The operators $\theta_{\mathrm{x}}, \stackrel{q}{=}-\mathrm{T}_{S_{p}}$ on E commute with the action of $M(\mathrm{~N}, \mathrm{~s})$ hence they define analogous operators on E_{ρ}.

We can now indicate the construction of the bijection in Theorem 4.1. Assume that $q \in \mathbb{C}^{\star}$ is not a root of 1 . One shows that the operators $\theta_{x}, q-T_{S_{p}}$ define an H_{q}-module structure on $E_{\rho}(\underset{=}{q}$ acts as multiplication by q). One shows that $E_{\rho} \neq 0$ if and only if ρ appears in $H_{\star}(B \underset{N}{S}, Q)$ regarded as a $M(N, S)$-module in a natural way. If $\mathrm{E}_{\rho} \neq 0$ then E_{ρ} has a unique simple quotient H_{q}-module $\overline{\mathrm{E}}_{\rho}$. Then $(s, q, \rho) \rightarrow \bar{E}_{\rho}$ is the required bijection. (Note that $\left.\frac{Z(s, N)}{Z^{0}(s, N)}=\frac{M(s, N)}{M^{0}(s, N)}\right)$.

The proof of 4.1 given in [9] (and the statements given there) involve equivariant topological k-homology $\mathrm{K}_{\text {top }}$ () instead of Grothendieck's K-theory of
coherent sheaves, which was used only as a heuristic guide. Subsequently, as a consequence of [3] it became known that the natural map

$$
K^{M(s, q)}\left(B_{N}\right) \quad \underset{R_{M(s, q)}}{\otimes} \mathbb{C}-K_{t o p}^{M(s, q)}\left(\mathcal{B}_{N}\right) R_{M(s, q)}^{\otimes} \mathbb{C}
$$

is an isomorphism. Indeed, using the localization theorem (Atiyah, Segal, Thomason) in the two kinds of K-theory we see that it is enough to show

$$
K\left(B_{N}^{S}\right) \otimes \mathbb{C} \sim K_{\text {top }}\left(B_{N}^{S}\right)
$$

with non equivariant K -groups). This follows from the main result of [3] which asserts that for B_{N}^{S}, the integral homology in even degrees is isomorphic to the Chow group, while in odd degrees it is zero.

This allows us to define the bijection 4.1 in terms K-theory of coherent sheaves ; we note however that topological K-homology seems to be still needed in the proofs.
7. Roots of unity.

The statement of Theorem 4.1 is not true in general when q is a root of l (for example for $G=S L_{2}, q=-1$). However, it is true for $q=1$ when it can be deduced from Springer's results on W-modules (an observation of S.Kato [6]). It is likely that the statement of theorem 4.1 remains true for any $q \in \mathbb{C}^{\star}$ such that
(a) $\sum_{y \in W_{0}} q^{\ell(y)} \neq 0$;
thus it can only fail for finitely many roots of unity.
We will show that for $q \in \mathbb{C}^{\star}, q \neq 1$, the inequality (a) is equivalent with each of the following two statements (b), (c) below.
(b) $\operatorname{det}(q-w) \neq 0$ for all $w \in W_{0}$ (in the standard reflection representation of W_{0}).
(c) For any semisimple element $s \in G$, the eigenspace $g_{q}=\{\xi \in \mid A d(s) \xi=q \xi\} \quad$ consists entirely of nilpotent elements.

We may assume that G is semisimple. It is well known that $\operatorname{det}(q-w)$ divides $\left(\underset{y \in M_{O}}{ } \stackrel{q}{q}^{l(y)}\right) \cdot\left(\underset{=}{q-1)^{r}},\left(r=\operatorname{rank}\right.\right.$ of $\left.W_{0}\right)$ as polynomials in $\mathbb{Z}[q]$. Hence $(a)=>(b)$. It is also well known that

$$
\left|W_{0}\right|=\sum_{w \in W_{0}}(-1)^{l(w)}\left(\sum_{y \in W_{0}} \stackrel{q}{l}^{l(y)}\right) \stackrel{(q-1)^{r}}{=} \cdot \operatorname{det} \underset{=}{(q-w)^{-1}} .
$$

Hence (b) => (a).
Assume that (b) doesn't hold. Then we can find a maximal torus T of G with Lie algebra t and an element $\dot{w} \in N(T)$ such that $(q-A d(\dot{w})) \xi=0$ for some $\xi \in \underline{t}-0$. We may assume that \dot{w} is of finite order hence semisimple ; we see that (c) doesn't hold. Thus we have (c) \Rightarrow (b).

Assume now that (c) doesn't hold. Let $s \in G$ be a semisimple element and ξ be a non-nilpotent element such that $\operatorname{Ad}(s) \xi=q \xi$. The same identity is then satisfied by the semisimple part of ξ so that we can assume that ξ is semisimple, non-zero. Let $G^{\prime}=\left\{g \in G \mid A d(g) \xi \in \mathbb{C}^{\star} . \xi\right\}$ and let $\psi: G^{\prime} \rightarrow \mathbb{C}^{\star}$ be the homomorphism defined by $\psi(\mathrm{g})=\lambda$ where $\mathrm{Ad}(\mathrm{g}) \xi=\lambda \xi$. If $\mathrm{Ad}(\mathrm{g}) \xi=\lambda \xi$ with λ not root of 1 then ξ is clearly nilpotent, a contradiction. Hence the image of ψ contains only roots of 1 . Being a closed subgroup of \mathbb{C}^{\star}, the image of ψ must be finite. Since the centralizer $Z_{G}(\xi)$ is connected we have $\operatorname{ker} \psi=Z_{G}(\xi)=\left(G^{\prime}\right)^{0}$. Hence $\psi^{-1}(q)$ is a connected component of G^{\prime}, so it contains some element of finite order. Hence we can assume that s has finite order. Let γ be the space of all maximal tori of $Z_{G}(\xi)$. It is well known that γ has the same rational cohomology with compact support as an affine space. Now s acts on γ by conjugation. By the fixed point theorem it follows that $\gamma^{S} \neq 0$ so that there exists a maximal torus T of $Z_{G}(\xi)$ normalized by s. Let \underline{t} be the Lie algebra of T. Then $\xi \in \underline{t}$ and $A d(s)$: $\underline{t} \rightarrow \underline{t}$ has ξ as a q-eigenvector. Hence $\operatorname{det}(q-A d(s), \underline{t})=0$. But $\operatorname{Ad}(s)$ acts on \underline{t} as an element of the Weyl group of T and we see that (b) doesn't hold. Thus
(b) => (c). The equivalence of (a), (b), (c) is proved.
8. Simple $\mathbb{I}\left[W_{0} X\right]$-modules and simple H_{q}-modules.

We shall indicate a procedure which establishes a bijection
(a) $\left\{\begin{array}{l}\text { simple } H_{q} \text {-modules } \\ \text { up to isomorphism }\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}\text { simple } \mathbb{C}\left[W_{0} X\right] \text {-modules } \\ \text { up to isomorphism }\end{array}\right\}$
when q is not a root of 1 .
The proofs can be found in [12].
Let $\omega \cdot \zeta, \omega^{\prime} \cdot \zeta^{\prime}$ be two elements of $W_{0} X$
$\left(\omega, \omega^{\prime} \in \Omega, \zeta, \zeta^{\prime} \in W_{0} Q\right)$. Since $\left(W_{0} Q, \tilde{S}\right)$ is a Coxeter group, the polynomials $P_{\zeta, \zeta^{\prime}}$ of $|7|$ are well defined. We define $P_{\omega \zeta, \zeta^{\prime} \zeta^{\prime}}$ to be $P_{\zeta, \zeta '}$ when $\omega=\omega^{\prime}$ and 0 when $\omega \neq \omega^{\prime}$. As in [7] we consider for each $w . x \in W_{0} . X$ the element

G. LUSZTIG

$C_{w X}=\sum_{v \cdot y \in W_{0} . X}(-1)^{\ell(w x)-\ell(v y) q} \stackrel{\frac{\ell(w x)}{2}-\ell(v y)}{=} P_{v \cdot y, w X} \stackrel{\left(q^{-1}\right) T_{v}^{=}}{=} \in H$.
The element $C_{W X}\left(w x \in W_{0} X\right)$ form an A-basis of H. Hence we have

$$
C_{w x} C_{w ' x}=\sum_{w " x "}^{\sum} h_{w x, w^{\prime} x^{\prime}, w " x "} C_{w " x "}
$$

where $h_{w x, w^{\prime} x^{\prime}, w^{\prime \prime} x^{\prime \prime} \in A .}$
There is a unique function $a: W_{0} X \rightarrow \mathbb{N}$ such that for any $w " x$ " $\in W_{0} X$,
 it has non-zero constant term for some $w x, w^{\prime} x^{\prime}$.

Let \underline{J} be the \mathbb{C}-vector space with basis $\left\{t_{W X} \mid w x \in W_{0} X\right\}$. There is a unique structure of associative \mathbb{C}-algebra on \underline{J} such that

$$
\begin{aligned}
& t_{w x} \cdot t_{w^{\prime} x^{\prime}}= \\
& \sum_{w^{\prime \prime} x^{\prime \prime} \in W_{0} x} \quad \text { (const. term of }(-1)^{a\left(w^{\prime \prime} x^{\prime \prime}\right) q^{q}} \stackrel{\frac{1}{2} a\left(w^{\prime \prime} w^{\prime \prime}\right)}{=} \cdot h_{\left.w x, w^{\prime} x^{\prime}, w^{\prime \prime} x^{\prime \prime}\right) t_{w^{\prime \prime}} x^{\prime \prime}} .
\end{aligned}
$$

This algebra has a unit element of form $1=\sum_{d \in \mathcal{D}} t_{\mathrm{d}}$ where \mathcal{D} is a certain set of involutions in $W_{O} X$. For any $q \in \mathbb{C}^{\star}$, the \mathbb{C}-linear map $\psi_{q}: H \rightarrow \underline{J}$ defined by

$$
\begin{aligned}
\psi_{q}\left(C_{w}\right)= & \sum_{d \in \mathcal{D}}^{\sum_{v z \in W_{0} X}} h_{w X, d, v z}\left(q^{l / 2}\right) t_{v z} \\
& a(v z)=a(d)
\end{aligned}
$$

is a \mathbb{C}-algebra homomorphism preserving l. (Here $h_{W X, d, v z}\left(q^{1 / 2}\right)$ is the evaluation of $h_{w x, d, v z} \in A$ at $q^{l / 2}=q^{l / 2}$). Moreover, ψ_{q} is injective. Thus all
algebras $H_{q}\left(q \in \mathbb{C}^{\star}\right)$ appear as subalgebras of a single \mathbb{C}-algebra \underline{J}.
Let M be a simple H_{q}-module (resp. J-module). We attach to M an integer $\mathrm{a}=\mathrm{a}_{\mathrm{M}}$ by the following two requirements : $\begin{array}{lllll}C_{W X} M=0 & \text { (resp. } & \left.t_{w X} M=0\right) & \text { for all } & w X \in W_{0} X, a(w X)>a . \\ C_{W X} M \neq 0 & \text { (resp. } & \left.t_{w X} M \neq 0\right) & \text { for some } w X \in W_{0} X, a(w X)=a .\end{array}$

Theorem 8.1. Assume that $q \in \mathbb{C}^{\star}$ is either 1 or is not a root of 1 . There is a unique bijection
(b)
$\left\{\begin{array}{l}\frac{\text { simple }}{} \mathrm{H}_{\mathrm{q}} \text {-modules } \\ \underline{\text { up to isomorphism }}\end{array}\right\} \longrightarrow\left\{\begin{array}{l}\underline{\text { simple }} \mathrm{J} \text {-modules } \\ \underline{\text { up to isomorphism }}\end{array}\right\}$.
$\left(M \rightarrow M^{\prime}\right)$ with the following properties :
$a_{M^{\prime}}=a_{M}$ and the restriction of M^{\prime} to H_{q} (via ψ_{q}) is an H_{q}-module with exactly one composition factor isomorphic to M and all other composition factors of form $\bar{M}, a_{\bar{M}}<a_{M}$.

The proof of this result given in [12] makes use of the main results of [9] among other things. Applying (b) once for $q=1$ and once for q not a root of l we obtain the bijection (a). (Note that $H_{1}=\mathbb{C}\left[W_{0} \mathrm{X}\right]$).

References

1. J.Bernstein, A.V. Zelevinskii, Induced representations of reductive p-adic groups, I. Ann. Sci. E.N.S. 10 (1977), 441-472.
2. A.Borel, Admissible representations of a semisimple group over a local field with fixed vectors under an Iwahori subgroup, Invent. Math. 35 (1976), 233259.
3. C. De Concini, G.Lusztig, C.Procesi, Homology of the zero set of a nilpotent vector field on a flag manifold, J. of Amer. Math. Soc. l (1988).
4. V.Ginsburg, Lagrangian construction for representations of Hecke algebras, Adv. in Math. 63 (1987), 100-112.
5. N.Iwahori, H.Matsumoto, On some Bruhat decomposition and the structure of Hecke rings of p-adic Chevalley groups, Inst. Hautes Etudes Sci. Publ. Math. 25 (1965), 237-280.
6. S.Kato, A realization of the irreductible representations of affine Weyl groups, Proc. Kon. Nederl. Akad. A. 86 (1983), 193-201.
7. D.Kazhdan, G.Lusztig, Representations of Coxeter groups and Hecke algebras, Invent.Math. 53 (1979), 165-184.
8. D.Kazhdan, G.Lusztig, Equivariant K-theory and representations of Hecke algebras, II, Invent. Math. 80 (1985), 209-231.
9. D.Kazhdan, G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), 153-215.
10. G.Lusztig, Some examples of suqare integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc. 277 (1983), 623-653.

G. LUSZTIG

11. G.Lusztig, Equivariant K-theory and representations of Hecke algebras, Proc. Amer. Math. Soc. 94 (1985), 337-342.
12. G.Lusztig, Cells in affine Weyl groups, in Algebraic groups and related topics, Hotta R. (ed) Advanded Studies in Pure Math.vol.6, Kinokunia and North Holland 1985 ; II J. of Alg. 109 (1987), 536-548 ; III J. Fac. Sci. Tokyo Univ. A (1987).
13. H. Matsumoto, Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Lectures Notes in Math. 590, Springer Verlag, 1977.
14. T.A. Springer, Linear Algebraic Groups, Birkhaüser, Boston- Basel-Stuttgart 1981.
15. A.V.Zelevinskii, Induced representations of reductive p-adic groups II. On irreducible representations of GL_{n}. Ann. Sci. E.N.S. 13 (1980), 165-21O.

George LUSZTIG
Department of Mathematics M . I . T .
Cambridge, MA O2139
U.S.A.

[^0]: Supported in part by the National Science Foundation.

