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SHALIKA GERMS ON GSp(4)

THOMAS C. HALES

This paper calculates all of the Shalika germs of the group GSp(4) and its inner forms over

a local p-adic field of characteristic zero. As a consequence we conclude that the conjectures of

Langlands and Shelstad [LS2], relating linear combinations of germs on a reductive group G to

germs on the endoscopic groups of G, are valid for G = GSp(4) or one of its inner forms. More

generally, when G = Sp(4) or one of its inner forms we show that the germs associated to the

regular and subregular unipotent classes satisfy the conjectures of Langlands and Shelstad.

§1
§2
§3
§4
§5
§6
§7

A Review of Igusa Theory

Background on Shalika Germs

A variety which computes Shalika Germs
The symplectic group

The transfer of subregular germs of Sp(4)
The transfer of 2-regular germs of GSp(4)

Spurious divisors and some technical details.

§1. A REVIEW OF IGUSA THEORY

The approach to calculating Shalika germs used here was introduced by R.P. Langlands in

[L]. This paper fixes the group GSp(4) and studies all of its germs. This should be contrasted

with [H] which studies a particular germ, that associated to the subregular unipotent classes, for

all reductive groups. The essential ingredient is a theorem of Igusa on asymptotic expansions.

For the sake of completeness we restate the theorem.
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1. Let X be a smooth variety over a curve I' (X £ T) with X,T and ¢ defined over a local

p-adic field F of characteristic zero.

2. Suppose that there is a point zg on I'(F) such that X is smooth outside ¢ ~!(zo) and ¢ ~!(z()
is a divisor with normal crossings with the property that any irreducible component of ©~!(zo)
with an F-rational point is defined over F. Let € be the set of irreducible components of ¢! (z()

defined over F. Let a(E) for E € £ be the multiplicity of E in ¢ ~1(z,).

3. Let w be a form of maximal degree on X which is defined over the algebraic closure F of F

which is nonvanishing and regular outside ¢ ~!(z,). Write the divisor of w as D+ Z (5(E)-1)E

Ee¢
with (E) € Z. We may ignore the term D having no F-rational points.

4. Suppose that there is a torus T over F which is split by a Galois extension E/F and
rational functions t, € T(Kg) for 0 € Gal(E/F) and Kg the field of rational functions on
X X spec(F) Spec(E). Suppose that t, defines a cohomology class [t,], of H*(Gal(E/F),T(E))
for F-rational points p in a Zariski open set of X and that p — [t,], extends to a locally constant
function on the F-rational points of X \ ¢ ~!(zo). For any character k of H!(Gal(E/F),T(E))
and divisor D € £ we define a character kp of F* (kp : F* — CX) as follows. Pick local
p-adic coordinates pi,...,un over F at po € D(F) such that u; = 0 defines D locally. Choose,
if possible, kp so that £(t,)/kp(r1) extends to a function constant in a neighborhood of po. If
po lies in no other divisor of £ then such a character exists and is independent of py € D(F)

and the choice of local coordinates.

5. If @ is a character of finite order of F* and 8 € Q let £(8,8) be the set of divisors in £ such
that §%(F) = kg and b(E)/a(E) = 8. Let (8, 8) be the maximum number of divisors of £ (8, 3)

with non-empty intersection.
6. Let f be a locally constant function on X whose support is proper over T'.

7. Normalize the valuation on F by the additive Haar measure dz so that d(az) = |a|dz and set
m(A) = —logq|A| where g is the order of the residue field of F. Extend, whenever necessary, | - |
to extensions E of F. Normalize the Haar measure dz so that f|z|<1 dz = 1. Finally let A be a

local F-parameter on I' such that A = 0 defines the point zo.
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SHALIKA GERMS ON GSp(4)

PROPOSITION 1.1. In the above situation, for |A| sufficiently small there is an expansion

e(9,8)

def |w] 1 r—1
P [ ey = SOOI 3 m)E0,9)

r=1

The first sum runs over (8, 3) with £(0,8) nonempty. F,(6,8) is independent of A but depends
on r, 0’ ﬁ’ f’ K

PROOF: See [L] for a proof and details. The only difference in our presentation is that [L]

incorporates k() directly into the definition of f which is not assumed to be locally constant.

We also need the explicit formula for F,(6,8) when e(8,8) = 1,2. Begin with ¢(4,8) = 1.
By construction (t,)/0()) extends generically to E € £. Let mg g be its restriction to E. By
construction w/(AP~1d)) extends generically to E. Let wg be its restriction. Since § is rational

wg is defined up to a root of unity. Then we have

(1.2) Fi(0,8)= ), PV/ngfle|

E€E(0,8)
A principal value integral is required since wg may have poles and mp g might not be locally
constant. Now let e(f,3) = 2. We proceed as before but along the intersection of two divi-
sors E,E' in £(0, ) the forms wg and wg have simple poles, and the principal value integrals
PV [, mg gflwg| diverge. The difficulty stems from the fact that the form dz/z is scale invari-
ant. The problem is overcome by truncating the integral on E and E’ near the pole and adding
a principal value integral on £ N E’. We continue to write Fy(0,) as a sum of integrals over

divisors but when (8, 3) = 2 the integrals must be regularized in this manner.

LEMMA 1.3. Suppose that A = au(*...u%" in local p-adic F-coordinates on a patch U
containing p € D(F),D = E; N Ey, that u; = 0 defines E;, i = 1,2, a1 = a2 = 1, by = bs, and
E; € £(6,8) « = 1,2, for some (0,0). Set

wWE,
dyg
K2

wWp = Residuepwgl = = ResidueDwE2, and Mg,p = My E, ID = m9,E2|D .

D
Suppose that U is chosen small enough that || is constant on U. Suppose that the integrals on

E; are truncated by |ui| > ¢~™:, ¢ = 1,2, then the contribution to the term Fy(6,() from the

pole D is given locally by

(1- -)/UnD mo.p(1 - M)flwpl.
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where M = m(a) + aimi1 + agma + 3,5, a;m(u;).

PROOF: This is a special case of the general formula found in [L].

§2. BACKGROUND ON SHALIKA GERMS

Let G be a reductive group over a p-adic local field F of characteristic zero, and let T be
a Cartan subgroup over F. For every unipotent orbit O in G(F) let po denote an invariant
measure on O. Let dg be an invariant measure on T(F) \ G(F). Shalika [Sh] has shown that
there exist functions I'o(y) called germs defined on the regular elements of T'(F) for all unipotent
classes O in G(F) such that for every f € C2°(G) , the space of locally constant functions of
compact support on G(F), there is a neighborhood V of the identity element in T'(F) in which

the expansion

/ f(z7 yz)dg = Zuo(f)r‘o(z) holds for ~ regular in V7.
T(F)\G(F) 0

If g € (T \ G)(F), then o(g)g~! for o € Gal(F/F) defines a cocycle of H!(Gal(F/F),T). Now
let dg denote an invariant measure associated to an invariant form on T'\ G. Similarly normalize
measures go on unipotent classes belonging to the same stable conjugacy class by fixing an
invariant form on the stable conjugacy class. For h € G(F) such that o(h)h~! gives a cocycle
of Gal(F/F) in Z the center of G, define fj, by fa(z) = f(h~'zh). Let k be a character on
HY(Gal(F/F),T).

We form a k-orbital integral and take its germ expansion:

o7y, f) < / k(o(9)g™") (g™ vg)dg = D uo(f)Te (v) 4 inVy.
(T\G)(F) 5

Comparing the k-orbital integrals of f and fj it follows easily that

(2.1) T5F =T5"k(o(h)h™Y).

The character « restricted to H 1(Gal(f/ F), Z) depends only on the endoscopic group H
defined by (T,«) and not directly on T (see for instance [H]). For background on endoscopic
groups see [L2]. We may therefore write for an adjoint conjugacy class O (that is, the inverse

image of an F-orbit in the adjoint group)
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(2.2) w8 €Y won(o(h)h?)

The sum runs over all F-classes O’ in the adjoint class, and h is determined by O’ = 0’1‘ for
a fixed F-class O; in O. Using this fixed choice O; C O write I‘g'” for I‘g’ln. Then the germ

expansion becomes

(2.3) T (v, f)= Y. wE(HTT ().

O adjoint
All ordinary orbital integrals may be recovered as linear combinations of x-orbital integrals.
One advantage of considering x-orbital interals instead of ordinary orbital integrals is that one
is able to group F-classes belongiﬁg to the same adjoint class together in this way. In all that
follows a germ is associated to an adjoint unipotent conjugacy class using the measures ué’ .
We will make use of the following results from Harish-Chandra and Rogawski. Say that an
orbit O is r-regular if r = (dim Cg(u) — rank G)/2 for v € O. If r = 0,1 the classes are also
called regular and subregular respectively. Let Z2 be the connected center of G. For details on

normalizations of measures and proofs we refer to [H-Ch] and [R].
PROPOSITION 2.4. (1) If z € ZZ(F) and v € T(F) lie sufficiently close to the identity then
5" (z7) =T5"(7)-
(2) If X € Lie G(F) is regular and exp(X) is sufficiently close to the identity then
5" (ezp(t*X)) = [t|* 770G (ezp(X))

for t € F* sufficiently small for every r-regular class O, ro = (dim G — rank G)/2.
(3) Let M be the connected centralizer of a semisimple element ~o in T. Then for every

f € C(G) there exists fM € C®(M) such that

(v, f) = (v, M)

for regular elements « in a sufficiently small neighborhood V¢ of 7o in T(F).

(2.5) Statement (2.4.1) tells us that the centers are mostly irrelevant to the study of germs.

By passing to the derived group and then to the simply connected cover we may assume that G
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is simply connected or semi-simple. Notice that the function x(o(g)g~!) on (T \ G)(F) always
pulls back to the simply connected cover G, of the derived group and that Ts.\ Gsc — T\ G is
an isomorphism over F. Also (T, ksc) defines an endoscopic group H' of G, which differs from
the endoscopic group H of G defined by (T, k) only by a central factor. The simply connected
semi-simple group is more difficult to deal with than say the adjoint group because there are
more endoscopic groups associated to the simply connected groups.

(2.6) By combining (2.4.3) with (2.4.1) writing T = T;Z)s where Ty C M., for sufficiently
small v, € Ty(F), and sufficiently small 2,20 € Z3,(F) we have

87 (112120, f) = ®E(7120, f)

provided Cg(20)° = M. Thus we may consider the germs of the expansion of ®Z(~, f) near 2,
as functions on T alone instead of T.

(2.7) Langlands and Shelstad [LS2] have defined transfer factors Ag’”(’y) and have conjec-
tured that for every f € C2°(G) there exists a function f# € C°(H) on the endoscopic group
H associated to (T, k) such that identifying Cartan subgroups in H and G we have

(2.8) AT TR (v, f) = AR Ty, £F)

for all (T, k) associated to H. The integral on the right is a stable orbital integral on H (that
is, the character « is trivial). We define Ag'“ for « regular and sufficiently close to 1 for G

quasi-split by the condition
(2.9) A G (v, /) = uf (f)

for O the regular adjoint unipotent class and f supported on regular elements of G. The factor
A};'et is defined similarly. Implicit in our definition of transfer factors is a choice of measure
ud. In [LS2] the factors Ag’“ and Az'“ are combined into a canonically defined single factor
but they show the definition by (2.9) is equivalent to theirs (up to a scalar). For the reduction
of this problem (2.8) to the problem of matching germ expansions of AT*3T* and AZ}’“@T'”

near the identity element see [LS3].

Proposition (2.4) remains true with minor modifications when the transfer factor is included.
From this point on we shift notation to let I‘g"” be the germ of AT*®T:%, By (2.9) we conclude

that (2.4.1) holds for G quasi-split. More generally, [LS2] shows that there is a character 8 of Zg
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such that A(zv) = 6(2)A(y). By the explicit description of the transfer factor in [LS2] (2.4.2)
holds with ro = 0. A version of (2.4.3) with transfer factors is proved in (2.11).

Statement (2.4.1) gives a necessary condition for the transfer of germs to an endoscopic
group. Identifying the connected center Z% of H with a subgroup T C G it says that the germs
of k-orbital integrals on G associated to H should be invariant by Z§.

The rest of this section shows, roughly speaking, that to prove (2.6) for a fixed (T, k) when
H is a product H = Hq X Hj it is often enough to prove that the germs of AT*®T:%(~, f) have
a decomposition of the form '™ = 3" a;b; where a; are functions on T N (H; x {1}) and b;
are functions on TN ({1} x H3). Since the germs on a product of groups equal the products of
germs on the individual groups it is clear that such a decomposition is a necessary condition for
(2.8) to hold. This section does not show that the choice of fH can be made independently of
(T, «). This will be shown later in the special case G = GSp(4).

For any reductive group G let Gy, denote a quasi-split inner form of G. It is unique up to
an isomorphism over F. There is an injection of stable conjugacy classes of Cartan subgroups
in G to stable conjugacy classes of Cartan subgroups in Gg4,. If T is a Cartan subgroup over
F in G, write Ty, for an image in Gy, and for v € T write 74, for the corresponding element
in Ggs. T and Ty, are then isomorphic over F' and this isomorphism may be used to identify
characters on H!(Gal(F/F),T) and HY(Gal(F/F),Ty,).

If S is a torus over F in G let C(S) denote its centralizer in G.

DEFINITION 2.10. The k-orbital integrals on G are said to have quasi-split reduction (QSR)
if for every triple (S,T,k), 1 # § C T, S torus over F, T Cartan subgroup over F, k
character on H'(Gal(F/F),T) and for every function f € C2°(C(S)) there exists a function
fqs € C°(C(S)qs) such that

q)in’;)) ('77 f) = (P(quqg's':,) ('qu, qu)

for every v € T'(F) (the regular elements of T). We note that this condition is independent of
the choice of Tgs.

PROPOSITION 2.11. Suppose that G is quasi-split and the k-orbital integrals of G have quasi-
split reduction. Let (S,T,x) be a triple as in the definition of QSR. Let f € C°(G) and let
s € S(F) be an element sufficiently close to the identity such that Cg(s) = C(S). Then there
exists a neighborhood V (depending on f) of s in T(F) and a function fqs in C(C(S),s)
(depending on s) such that
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AGOE (1, 1) = AT B8 (Vaos o) for A EVATI(F).

PROOF: This is no more than (2.4.3) combined with the definition of QSR. A few details will
make this clear.

Set M = C(S). The map i : T — M gives i, : H(Gal(F/F),T) — H'(Gal(F/F),M).
If Tg € (T \ G)(F) then the cocycle i,(0(g9)g™}),0 € Gal(F/F) belongs to H(Gal( ), M).
Let g1,...,9, € G(F),Tg1,...,Tg, € (T \ G)(F) be such that i,(c(g:)g; 1), = 1,...,r are

F/F
F/F

representatives of the classes in H!(Gal(F/F), M) so obtained. Then M¥% is an inner form of
M. Set T; = T%,M; = M%,~; = ~%.

It is easy to check that (T \ G)(F) is a disjoint union of X; = ¢;((T3 \ M;)(F))G(F),
t = 1,...,r. The k-orbital integral on G is an integral over (T \ G)(F) which breaks up as a
sum of integrals over the X;. First we prove a version of the proposition for each Xj, i.e., that

there exists (f;)qs € C°(My,) such that

/ ki(ogg ") f(g™ vig)dg = <I>T""'°(7., (f)qs)
(971 X:)

where k; is the character on H!(Gal(F/F),T;) obtained by identifying T and T; by the isomor-

phism ~ — ~;.
Let €i,...,€l be the elements of the image of (T} \ M;)(F) in H'(Gal(F/F),T;) and let
mi,...,mi be representatives in(T;\ M;)(F). Then dropping super and subscript #’s on mJ % Ty

we have, using the definition of X;

[o=wte) [ fla™ A g)dg
x5 T3 (F)\G(F)
= Zn;(ej)/ fi(m™ 1y m)dm (by 2.4.3)
7 ™5 (F)\M; (F)
= 4)17\‘4"&(’1” f‘l)
= @ﬁ;;“(qqs, (fi)gs) by the definition of QSR .

Thus combining the X; and (fi)gs
K K o) oy _ T, a8
AGEOT (1, f) = 6 ARy @11 (Vgos f1s) = ARE @13 (190, 8 40), 6 = AG" [ AJE".

Fix s small enough so that (2.9) holds, then this equation becomes uf (f) = 6uZ, (fgs) where O'
is the regular unipotent class of My, and (Tys, k) defines the endoscopic group H'. Thus 6 and
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ence fgs = epends on vy € s Yqs € Tgs only through s € in a sufficiently
h fq 5fésd d T(F q Tys(F ly th h S(F) i flicientl

small neighborhood of the identity and sufficiently near s. The proposition follows.

As above let G be a reductive group over a p-adic field F of characteristic zero, and let H
be an endoscopic group of G. Suppose that up to a finite center H is a product H; X Hs over
F. Then we associate to G and H an intermediate group M as follows.

Select a Cartan subgroup T over F in H. Corresponding to H; x Hy we write T = T1T,
with T1 N T, finite. Identify T' = T1T, with a Cartan subgroup in G. It is determined up
to stable conjugacy. Let M = (Cq(T1) x Cq(T2))/{(z,z™1) : £ € T}. For example, if G =
Sp(2n), H = Sp(21) x SO(2(n — 1)), then M = Sp(27) x Sp(2(n —7)).

LEMMA 2.12. Mg, is independent of the choice of T C H.

PROOF: It is enough to check that T and T’ = T T4 give the same My,. Select g € Q(F) such
that T§ = T where Q@ = Cg(T1). Cog (1) (T1T2) = Co(T1T2) = T1T2 so T1T: is a Cartan
subgroup of Cg(T2). It follows that there is a Cartan subgroup Tye, of Cg(T2)der contained in
T;.

If m € Cg(T2)der 0 € Gal(F/F) then a(m)°®)97'9 = g(m9), 0(g)g~! = w, € No(T).
By the definition of Q, t¥s = ¢ for t € Ty4er(F) (C T1(F)). Since Ty, is a Cartan sub-
group, W, € Tyer(F) so that Co(T2)der and Cg(T5)der are inner forms. Using TCq(T2)der =

Ce(T2), TCg(T3)der = Ca(Ts) the result follows easily.

The following simple lemma is the key to what follows.

LEMMA 2.13. Let k be any field. Let X,Y be sets endowed with decreasing filtrations
X=X02X,2...,Y=YyDY,D.... Let ¥x, Fv be k-vector spaces of k-valued functions on
X and Y respectively. Suppose a function ¢ on X XY has the form p = Ele abi,a; € Fx,b; €
Fy, ¢ =1,...,p. Suppose further that there exist functions a} € Fx,b; € ¥y, ¢t =1,...,q and

an integer n > 0 such that for every z € X,, there is a j, such that

q
o(z,) = Zaé(z)b; as functions on Yj,.
=1

Then there exists a positive integer N such that ¢ = > !_, albl on Xy X Yn. Moreover, if the
al,. .., a;) are linearly independent over k on X, and if by,...,bq are linearly independent over
k onY, then there exists a matrix of constants e;; €k, =1,...,p 3 =1,...,q and a positive

integer N' such that
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o= iq:ai'eijbj on Xn» X Y.
i
PROOF: Choose n; > n so that the dimension of the span of the functions {a;}?_, or {a!}?_,
(resp. {b;} or {b}}) is constant on X; (resp. ¥;) for ¢ > n;. By combining terms in the sum we
may assume that the {b;} (resp. the {a!}) are k-linearly independent for all ¥;, i > n; (resp.
X, ¢ > n;). Assuming now that ai,...,aj are linearly independent on X, 1 > n,, we may select
Z1,...,Zq € Xp, such that the matrix A’ = (a;(z;)) is invertible. Then if A = (a;(z:)),b =
(b1,...,bp)E b = (b’l,...,b;)t it is clear that Ab = A'd’ on Y; for j > n, def I;lg.g((jz), S =
{z1...2} or that b’ = A'"'Ab. Set a = (ay,...,ap), a' = (a},...,a}). Suppose there exists
z € Xp, such that a(z) — a’(z)A’"1A # 0. Then by the assumed linear independence of the
b’s we have on Yj, j > maz(jz,ns) 0 # (a(z) — a’'(z)A""1A)b = a(z)b — a/(z)b’ = 0. This
contradiction shows that a = a’A’"!4 on X,,. Consequently for N = maz(ni,n;) and on
XN X XN, = ab; = ab = a’A""1Ab = a'b' = 3 albl. For the second statement of the

lemma we take e;; = (A1 A),;.

Suppose that up to finite center H is equal to H; X H,. Let (T, k) be a pair associated to
H and let f € C°(G). Write T = T,T,, Ty N T, finite as above. Let Ay,...,A; be the germs
of (Tys, k) on C(T3)qs normalized with transfer factors as in (2.9). These may be considered
functions on Ty. Let By, ..., By be the normalized germs of (Ty,, £) on C(T}) s, again considered

as functions on T.
PROPOSITION 2.14. Suppose G is quasi-split and that the k-orbital integrals on G have

quasi-split reduction. Suppose further that k-orbital integrals have the form

def  Toxr(T,
p AR, 1) = Zaz’(’h)bi('h) Yy=7172 HET

in a small neighborhood of the identity 1 € T(F).

(1) There exist constants e;; such that

p= ZAi(vx)eijBf(’Yz)

in some possibly smaller neighborhood of the identity.
(2) p = AL’:‘QIT\;}:’ (fM) for some function fM € C°(Mys) on a sufficiently small neighborhood

of the identity.
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PROOF: (1) Proposition 2.11 shows that for every v, € T1(F) such that Cg(v1) = C(T1) there

exists a function F' = F.,, such that
o = DG, 26, (Yoo Fa)
expanding the right side in a germ expansion
p = BiuiFy,)
i

where p; are measures on unipotent orbits of C(T)qs. These expansions hold in some neigh-
borhood V C T,(F) depending on ~;. Thus Lemma 2.13 holds with al(vyy) = ui(F,,) b;= By,
so that

0= ZAQB,' for some A

on some neighborhood of the identity. Interchanging the roles of T,T> we apply the lemma

again to conclude

o= Z A;B} for some B

on some neighborhood of the identity. By combining terms we may assume that the A; are
linearly independent on every sufficiently small neighborhood of the identity. Likewise for B;.

We apply the last part of the lemma this time with

a'4:A,-, b:':BZ, b; = By, aiZAi

1

to obtain ¢ = ) A;e,; B; in some neighborhood of the identity.
(2) The germs on My, are A;B;. The result is immediate.

§3. A VARIETY WHICH COMPUTES SHALIKA GERMS

This section reviews a geometric approach to Shalika germs. If X is a variety over F we
often write z € X instead of z € X(F).

Fix a curve T' in T whose tangent direction at the identity does not lie in a singular hyper-
plane. Let X be a local parameter on I' such that A = 0 gives the identity element of T'. Suppose
that T'()) is regular for A # 0, and let T'° = T'\ {0}. There is a variety Y over I' which fits into

the diagram

r°xr\¢ + v % G
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The following properties of Yt are known [H],[L].

(3.1) If T and T are over F then Yr,p,,? are also defined over F.

(3.2) m: Yr — G is proper.

(3.3) 7 embeds I'® x T'\ G as an open subvariety of Yr.

(3.4) If G is made to act on T'° x T\ G by translations on the second factor, on G by
inner automorphisms and trivially on T' then there is a G action on Y1 which makes ¢, p, 7 into
G-equivariant maps.

(3.5) moi(v,9) =%  poi(y,9) =1

(3.6) Let E be an irreducible component of ¢ ~1(0). Then n(E) is the closure of a stable
unipotent class O in G. Call E an O-divisor. If O is regular (resp. subregular) we also call £
a regular (resp. subregular) divisor. There is exactly one irreducible component Eq such that
7(E) coincides with the unipotent variety in G. Ej is isomorphic to the Springer resolution
{(u,B)|u € B, u unipotent in G, B a Borel subgroup } of the unipotent variety. Identifying Eq
and the Springer resolution, 7 becomes 7 (u, B) = u.

(3.7) A Zariski open patch of Yt may be described in local coordinates as follows. It depends
on a choice of opposite Borel subgroups (Boo, Bo). Let ® be the root system of G with positive
roots ®1, let p = |®*| be the number of positive roots and let A be the set of positive simple
roots. Consider the affine space A2P*1 the coordinates being labelled

w(y) 7E®T\A
z(a) a€eA
z(y) vedt
A (identifying A with its pull-back to Yr).

Q

There is an open set Yy = Yy (Boo, Bo) of Yr which is isomorphic to an open set of the product
AP x Z where Z = Zg is the Zariski closure in A2Pt! of the variety defined for A # 0 by the

equations

Aw(y) = z(y)z(a) ™ ~ = Zm(a)a a €A,

where w(a) =1 for a € A.
We write v(y) ~ € ®% for coordinates on the factor AP of AP x Z.

(3.8) There is a G-invariant differential form of maximal degree wy which is non-vanishing

for A # 0 which on Yy equals

wy =dA /\ dz(v) /\ dv().

NEDT yEDT
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(3.9) Let E be a splitting field of T and suppose that T is defined over F. Then the function
o(g)g~! for 0 € Gal(E/F), ¢ € (T \ G)(F) pushes forward to a function t,, € T(KEg), Kg
the rational functions on Yr X gpec(r) Spec(E). There is a cocycle 61?’)‘ in T(E(X) C T(KEg)
such that ¢, =9¢f 61?’,\t; satisfies condition (4) preceding Proposition 1.1. The factor 61?’,\ is
determined for quasi-split groups by the condition that x(t,) extends generically to the regular
divisor Ey and

[ wntto)on| = 18 vrec(@)

with O the unique adjoint regular unipotent class and p& determined as in (2.2).

(3.10) F()) = L _Ww*(f)n(ta)@'{’(j;—'m = ATRSTE(D(N), f)

for A sufficiently small and non-zero.

(3.11) The variety Yr, form wy, functions t,, 7*(f),etc., satisfy all of the conditions of
Proposition 1.1 ezcept that Yr is not in general smooth, and the irreducible components of
©~1(0) are not in general divisors with normal crossings. By blowing up Yr one obtains a

variety )N’p proper over Yr for which all of the conditions of Proposition 1.1 are met.

It is often convenient to consider all possible tangent directions at the identity in 7" simulta-
neously rather than fixing one direction. We introduce parameters Ty,...,T¢ € = dim 7T, and
let the vector (T,...,Te) denote the tangent direction (in Lie T'). Let R be the field of rational
functions in T4,...,Ty over E. There is then a natural action of the Weyl group on R fixing F.

We often consider the varieties Y, G, T, over R instead of F. Set Kr = Kg Qg R.

(3.12) Another system of coordinate patches are Yi(Buo, Bo,X) parametrized by pairs
(Bso, Bo) of opposite Borel subgroups together with a map ¥ : A — W where W is the set
of Weyl chambers. As By, Bo and ¥ vary, the patches Y;(Boo, Bo,Z) cover Y. We also let
Y1(Bo) denote the union of these patches for a fixed By,. The coordinates on Y;(Boo, Bo,Z)

are
z1(W,0) weW a€A wherez(Z(a),a) = 1(1/\);1, ~=T(A).

(o) a€A
z(y) ye®t
v(y)  vedt
A
The relation between IT'°x T\ G, Yy and Y} (Boo, Bo, I) is the following. Let T be the intersection

of Bg and Bo,. Let Ng and N, be the unipotent radicals of By and Bs. Fix a Borel subgroup
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B containing T'. The other Borel subgroups containing T are then B(W) = B¥, where W =
wTlW, € W and W, is the positive Weyl chamber with respect to B. Then for g € T\G(f)
such that B(W)? is opposite B, for all W we may write for ¢t = I'()\) regular

(tg,B(W)g) = (to‘ﬂ,ng)v, with nyw,v € Noo, to€ To, n € No.
Fixing an order on root vectors X, we may write
n = Iezp(z(v)X,),v = Hezp(v(v) X_)

nw = exp(z(ak)z1 (Wi, ak) X _o,) - - ezp(z(a1) 21 (Wi, 1) X _q,)

where W = w™ W, with w = O, " 0q,, a wWall of type o; separates the chambers W;,; and
W; and W, = W_. This gives the relation to I'° x T\G.

To relate this to the patch Yy, pick the function X : A - W E(a) =W, Va€ A. Select
go so that T9 =Ty, B(W,)% = By, B(W)9% = Bo(W), and set t9° = to. The set goToNoNeo
is open in G. If g lies in this open set we have the decomposition g = gottn'v which implies that
t9 = t2'Y. We obtain

(to-n, By¥)" = (t3,Bo(W)™)".

Define z(v), 2(a) and v(y) as above and set ty1tz’ = I exp((w(y)A)/(Mz(a)™®))X.,) where
4 = Em(ea)a. By the relation B} = Bo(W)™ we may consider the w(~) as rational functions
of the variables z;(W, ). The variables w(«) turn out to be independent of z(a). We identify
the variables z(7), v(v), 2(e) on Yy = Yy (B, Bo) and Y1(Beo, Bo,X) and relate w(v) on Yy
to z1(W, a) on Y1(Beo, Bo, ) through these relations.

(3.13) When G is split on an inner form of a split group, the action of Gal(F/F) on the
variety YT is given as follows. Fix a choice of (Boo, Bo); we assume that To = BoN By is a
Cartan subgroup defined over F. Let G, be a split inner form of G. Let F be a Galois extension
of F which splits To and T. Let p : G — G, be an isomorphism defined over E carrying T to
T.. We may assume that T is split and that T% = T, for some go € G(E). We identify Weyl

groups and Weyl chambers of To,T; T« by go and ¢.

loo~lopoo is an automorphism of G

Since G, is an inner form of G we may assume @~
of the form ad A;!, A, € Ng,,,(To) and that A, = 1 if 0 € Gal(F/E). In other words, we may

take A,-1 to be a cocycle of Gal(E/F).
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Let B be a Borel subgroup containing 7', for 0 € Gal(E/F) define or in the Weyl group
W of T by o(B") = B*°t" for all w € W. Notice that o exists because G is an inner form of
a split group. Also o — or is a homomorphism. Let Wr be the image of Gal(E/F) in W. It is
often convenient to identify Wr (using go) with a subgroup of the Weyl group of To. A different
choice of go will lead to a conjugate subgroup of the Weyl group of To.

Define an action of o € Gal(F/F) on Yy by

e o(n_—1 o(v)
ole, (B3 )" & (o), (o(Bo) ")) .

This extends to an action on Yr. Notice that if g* = t¢, and B = B¥9" with t € T°(F)
¢’ € (T\G)(F) then a(t9, (B*?")) = (t¢, (¢(B)*°r?(s))) = (¢¢', (B*9)) is an F-rational point.
This action may be more conveniently described by twisting an action which is independent of

T. To this end, define an action o, of ¢ € Gal(F/F) on Yy by

f

n d - “logop(n (p_loomp(u)
o [(9,B3")"] = (<p Yoo op(g), B el w)) .

T, is split and p~! 0 0 0 p(Bo) = Bo. Then by the definition of 4,
_ n v n,—lw vA,
o lol(g, BE")') = (9, (B, ™))
The action of A, by conjugation commutes with the action of or by permutation of Borel

subgroups.

The action of o through o7 may be expressed as a W action on Kg. If we wish to make
the dependence of the coordinates () on the elements b € B explicit we write z(b) for z(v).
When A, is trivial and o7 is a reflection o, through a simple root a’ then o4 acts on the

coefficients .y (b) of b by
-1
Ot T (b) o Ty (b)) B =" a) 4" a positive root.

W (o) = exp(z(a)z1(Wy, o) X _ o).

This together with o(A) = X and (3.7) determines the action of Gal(F/F) on Yy through o7.
To calculate the effect of A, when o7 = 1 and A, maps to a simple reflection, write

vAs = bov’ with bg € By, v/ € Ny, by using the matrix identity
1 0 0 —¢a\ _ f(a 0)\/1l/z —¢ 1 0
z 1/)\—-a 0 / \0 a 0 —¢z/\1l/¢cz 1)’
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(3.14) We consider cocycles on W x 4 instead of Gal(F/F) whenever convenient (meaning
almost always). (We should warn the reader that sometimes we treat W x A as Galois groups
and even apply results of class field theory to W x A with the understanding that the map
from Gal(F/F) to W x A may be used to give precise meaning to our statements.) We have a

function ¢ given on generators by

1v

oo > (2(a"))™ a' simple

€or + o/(T)2(e) )

Oy X Aal — ( z(a’)

where Ao is an element of A in the normalizer of Tp which maps to the simple reflection o
in the Weyl group. Here £, is the element such that v = e:cp(fa:X_a:)v"", v* € N_g the
unipotent radical of the parabolic subgroup containing B, associated to the root —a’ . Also
o/(T) is the root evaluated on the tangent direction. Using the cocycle relation b,y = o(br)bs
we have

1o I

Ay — (Ea’)a y Oqf (z(a,))a .

We have t, = t_b, where ¢, is the cocycle of (3.9) and b, depends on points of YT only
through A. To determine b, for quasi-split groups we use the fact that the cycycle ¢, restricted

to the divisor Eo becomes constant (3.9) on each regular unipotent class.

LEMMA 3.15. Define b), by g — (1/A)*", Aq — 1. Then there is a factor b/ which is
independent of A with values in T(E) such that b,bJJt! = t,.

PROOF: t!/b! is given by
oa = (1/2(e))*”, Aw = (6)*” o simple.

So it is enough to verify that the action of W X A on z(a'), £ is independent of the tangent
direction. For o € W the action is given by (3.13). But nw,) = 1 on Ep so that by 3.13
oa(z(a’)) = z(c'). By (8.13) the action of 0 € W on v is given by 0 : v = n -1y, v = v (since
Moziw, = 1on Eo). The action of A is given by (3.13) as (b, Bo)* — (b, Bo)"“- where A,
is an element of the normalizer of Ty independent of the tangent direction. So on Ey we have

(u,Bo)? ~ (u,Bo)?4- which is clearly independent of the tangent direction.

A factor b/ € T(E) may be needed to make t, agree with the cocycles of the transfer factor
[LS2] for various reasons. The boundary of t!! € T(KEg) lies in T(E) but is not necessarily zero.
Thus b is needed to make b’,6”t" a cocycle. Also the choice of measure u is made by selecting

g o o

an F-class O; in O the regular class unipotent orbit for split groups. A factor !/ will be needed
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to insure that «(tJb,bY)) = 1 on O; C O N Ey. Finally when G is not quasi-split, our analysis
has not been complete: the factor b will be chosen by the normalization of measures ug for
an orbit O which contains an F-rational element. At any rate, to prove the transfer of orbital

integrals to an endoscopic group all that is needed is that b” is constant which has been shown.

§4. SYMPLECTIC GROUPS

The argument in the remainder of the paper is divided into the following steps.
(1) List the endoscopic groups H of G and the pairs (T, k) associated to each H. Determine the
stable and adjoint unipotent orbits of H and G.
(2) Show that the patch Yy is regular in codimension 1 and determine its divisors.
(3) Obtain an explicit resolution of singularities of Yy .
(4) Fix a stable unipotent class O and look at all divisors E meeting Yy which are O-divisors.

By looking at the data defining the principal value integral

PV / fme glwgl|
E

on E either show that the principal value integral is zero or show that there is a decomposition
on Yy N E of the type described in the hypotheses of (2.14). The following simple implication
of (1.1) and (2.4.2) is often used. If E is an O-divisor, O is r-regular, and if b(E)/a(E) — 1 #r
then E makes no contribution to the germ of O. Also by (2.4.2) no logarithmic terms appear
in the expansion so that F,(0,8) =0 for r > 1.

(5) Show that the decomposition on Yy of step (4) extends to all points of the divisor E.

(6) Resolve the singularities on the rest of ¥r and show that the principal value integral
fE fmg glwg| is zero for any divisor not meeting Yy .

The remainder of this section carries out steps (1), (2), (3) (step (2) for an arbitrary
symplectic group). Sections 5 and 6 carry out step 4 for the subregular and 2-regular unipotent
classes. Section 7 contains the arguments needed to extend the decomposition obtained in §5,
§6 to points outside of the patch Y. The fact that the principal value integrals considered in
this paper are not birational invariants means that it is not enough to restrict ourselves to the
patch Y. However, the arguments become much more technical outside of Yy and these details,
including steps 5 and 6 are relegated to the final section.

We ignore the regular unipotent class in all that follows. By (2.9) we see that the transfer

factors are chosen so that the matching of regular germs on G and H is a triviality. We also
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ignore the identity element. By [R2] the germ associated to the identity element is known

explicitly. In particular, it is zero for a k-orbital integral if & is nontrivial.

We begin with the simply connected semi-simple symplectic group Sp(2n) of arbitrary rank
(or its inner form) and specialize to the rank 2 case toward the end of the section. If all of the
Cartan subgroups of H may be identified with Cartan subgroups in a Levi factor M of G then
(2.4.1, 2.4.3) shows that the x-orbital integrals on G may be realized inside M (since Mg, is
then also simply connected). We may then inductively assume that H is cuspidal, that is, the
L-group of H is not contained in a parabolic subgroup of £G. The possibilities for H have been

computed [H]. They are:
(4.1) FH; = Sp(20) x SO(2(n — 1))
EH; = Sp(2i) x ESO(2(n - 1)).

FH, is the quasi-split inner form of G, ¥ H,_, degenerates to a Levi factor and may be excluded.
EH, is also degenerate and may be excluded. Here E is the quadratic field extension which
splits the endoscopic group. Fixing 7, the Cartan subgroups T in G, associated to FH; are all

conjugate to a Cartan subgroup of
M; = Sp(2i) x Sp(2(n — 1)) C Sp(2n)

and every Cartan subgroup T in M; C Sp(2n) is associated to an endoscopic group EH,; for an

appropriate choice of quadratic field extension E. Given T, E is determined as follows.

Identify Wy, with the product of Wy (2:) and the subgroup of Ws,2(n—s)) generated by
short reflections. Then if T C M; and T is a split group in M;, pick 7™ = T and let
E be the quadratic extension associated to the homomorphism Gal(F/F) — o(m)m~! €
War, /Wg,= {£1}. Then T may be identified with a stable conjugacy class of Cartan sub-
groups in FH;. HY(Gal(F/F),PH;) has two elements. Fix the non-trivial character x on
HY(Gal(F/F),®H;). Then pulling « back to T, (T,«) is associated to the endoscopic group
EH,. (This is the only possible choice of k£ because for anisotropic T' one is guaranteed a non-
trivial character on H!(Gal,T) which must be trivial in H!(Gal(F/F),®H;). When n = 2 we
have PHy = £S0O(4), and PH; = SL(2) x Ug(1). where the letter E indicates the quadratic

extension splitting the group and Ug(1) is a one dimensional torus.

Next we determine some prime divisors of ¢ ~}(}) in Z = Zg for ® = C,. See (3.7). Label

the simple roots A of ® by

212



SHALIKA GERMS ON GSp(4)

Qn

Recall that the positive roots have the form ~(k,£) %

=4 ak + Qg1 + -0 oo
def
’7+(k)£)

g+ Qg1+ - F poy Fan Fono1 + o+ ag
of possibly empty pairs (S1,S2) € A x A, S; = {a;,...,q;}
ng{ajl,...,ajq} (]1 < e

£ > k or
£ > k. Let S be the set
(71 < 12 < -+ < 1p),

< j,) satisfying 1, < j; and jg # n. For each (§y,S;) € §
we define an open patch Z(s, s,) of Z by

(1) z(@) #0 i a¢ S US; (write () = 2z}, z(aj,) = 2k).

(it) z(a) #0if a € S,

z(Y(GrJes1)) 20 k#gq

&
e

z(v*(Jq> 3q)) # O.
wY(ksJe41)) 70 k#g

w(v* (Jg, Jg)) # O
Then on Z(s, s,y if Sz # @ we have by (3.7)
z(8)w () z(a)™(*)

z(v)

if z(v) #0 and § =+ Em(a)a m(a) >0

(i) z(v) = %)(1)@ ify=Tm(a)a a¢ S US,

z e o
(i) A= w—qu(Hz(a) ( )) 2a;, + Im(a)o = ¥ (5gs 7q)
q
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(notice that z4 # 0, TT2(a)™(®) # 0, so A = 0 if and only if zq = 0).

. B Tkt1 Wk 2(c)™(*)
(iv) 2k = zk42 (wk+1 2x TT2(a) ™ @

where ¥m(a)a + aj,,, = Y(Jk+1,Jk+2) and aj, + Zm/(a)a = Y(5k, Jk+1)

o wq_124112(a)™(*)
1715 2y wgllz(a) ™ (@)

where 205, + Em(a)o = 47 (5g, 74) and aj,_, +aj, +Z'm(a)a = y(jg—1,7q)-

A mgzy(Mz(a) ™)

V)  z= T(ag) qqu(ae) where 2a;, + Zm(a)e = 17 (jq, 5q), ae € S1.
Notice that (iv), (v) give z(a) = fq2§ for some f, regular and non-vanishing and € €
{0,1,2}.

(vi) Suppose v = Em(a)a with Hz(a)'"("‘) = f2q, fy regular and non-vanishing then

zq2g(T2()™ ) w(v)

frwq

z(y) =

s 2aj, + Em'(a)a = '7+(jq,jq).

Z is defined by p equations and is consequently p + 1-dimensional. A count of the equations in

(¢) ... (vi) reveals p independent equations. In fact for v = Em(a)a € &1 let e(y) € Z be the
Mz(e)™(*)
Z;("r)
exists). Let ¢/ = #{y € ®* | ¢(y) = 0 or 1}. Then the above equations show that z(«),
a € A\ (51U82); 2¢5 w(n), (e(7) =0,1); z(v) (e(v) >2)arep+1=(n—r—gq)+ (1) + (¢’ —

n+q+r)+ (p—¢') variables which generate the ring of Z(s, s,). Hence Z(g, s,) is regular. The

exponent which makes regular and invertible on Z(s, s,y (by (iv) such an exponent

divisor A = 0 on Z(g, s,) has the form (\) = a(E(s, s.))E(s,.5,) With a(E(s, s,)) = 2 where
(112) (1)2) (l|2) (1)2)

E(s,,s,) is the prime divisor given by 2z, = 0.

If S; = @ then on Z(g, g) we have by (3.7)
. _ z(6)w () M2 (e) ™)
(1) w(é) - Z(")’)

ifz(y) #0and § =7+ Zm(e)ae a>0.

Aw(v)

(i) =z(v) = (@ 4=Sm(a)a a¢S;.

(iv) zp=2 (:c(a,:r)> L#r o €8

Mz(a)™(®)

For y = Em(a)a € ®T define €’(y) € Z to be the exponent which makes )
Zr

regular and
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(i)

Qp -1 2an.—l + ay
A

This diagram illustrates the p equations for S; = @ and |S3| = 2

invertible on Z(s, 4). Let ¢’ = #{vy € ®* | ¢/(7) = 0}. Then (i)-(iv) show that the coordinate
ring of Z(s, 4y is generated by z(«), a € A\ S1; 2[5 w(7), (¢'(v) = 0); z(7) (¢/(v) > 1) and hence
byp+1=(n—r)+(1)+(¢"+r—n)+ (p—q’) variables. Again by a dimension count we see
that Z(s, ¢) is regular and that the divisor A = 0 on Z(s, ¢ has the form ()) = a(E (s, 0)) E(s, 0)
with a(E(s, ¢)) = 1 and E(s, g) prime.

We extend the prime divisors E(g,,s,) to all of Z by taking their closures. Given one of the
divisors E above, S is determined as the set of simple roots for which z(c) # 0 generically on
E, and S, is determined as the set of simple roots not in S; for which z(a) = 0 on E. Hence

the map from pairs (S, S2) to divisors is injective.
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LEMMA 4.2. (1) The codimension of the complement of U Z(s,,s,) in Z is at least
(51,52)€s
two.

(2) Z is regular in codimension one.

(3) The divisor (X) on Z is given by

(A) = Z a(E(s,,s5,))E(s,,s2)
(S1,52)

1 S;=0

with  a(E(s,,s,) = {2 otherwise.

PROOF: By the preceding remarks (2) and (3) follow immediately from (1). Z is clearly regular

for A # 0 so we study A near points of A = 0.

Consider a point p in Z where A = 0. Let Sy be the set of simple roots such that z(«) # 0.
Let Smin be the set of positive roots such that z(v) # 0 and such that whenever v = S+ Ym(e)e,
m(a) > 0 then z(8) = 0. Clearly S; C Spin- We may write & = S;, USHT U S—, where
St={6:6=v+Em(a)a m(a)> 0 for some ¥ € Smin, 6§ & Smin}. S~ = {B:z(B) = 0}.
We have equations

i) =z(B)=0 BeS”

(i) w(é)= w('v)x(&:’):gz)(a)m("‘) §€St, v€ Smin, 6 =7+ Zm(a)a m(a) >0.

(iii) if vy =~(k,€) or v (k,£) € Smin\S1.

w()z(y — k)

=0 by the definition of Spin
z(v)

w(y — ak)z(ak) =

(iv) 2z(a) = ﬁ =0ifa€ s,
(v) A=0.
Counting the number of equations we have at least p + 1 independent equations. For the proof
of (1) we may exclude sets of codimension 2. Thus we may assume that (i)-(v) give exactly
p + 1 independent solutions. In particular, we may assume that S~, S and Smin are disjoint
and that in (iii) if w(y — ax) = O then z(aj) # 0.
Suppose that § = ~y(k,£) or vt (k,£) € Smin \ S1, £ > k. Then as in (iii) we have w(6 —
ag)z(ag) = 0. Suppose that z(ag) # 0. Then w(é — a¢) = 0. This gives p + 2 equations unless
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8" =~(k—-1,£—1) or ~t(k—1,£—1) € Smin \ S1 and the equation (iii) associated to 6’ is
w(6' — ak—1) = w(6 — ar) =0 (and so z(ak—1) # 0). But then

z(6)z(arw(é')

w8) = 5o (ax )

gives p + 2 equations. This contradiction shows that z(a,) = 0.

Now if y7(r,€) € Smin \ S1 then z(a) = 0. This must be a consequence of (iii) so that
~(¢,m) or y*(£,m) € Spmin. But this contradicts the definition of Smiy unless r = £ = m.
Also by the definition of minimality there is at most one £ such that y*(£,£) € Smin \ Si.
Let (j1,J2) € Smin \ S1, then z(e;,) = 0 so there exists a ¥(j2,73) or ¥+ (J2,52) € Smin \ S1-
Continuing this way we obtain a chain v(j1, j2), ¥(J2,73) - - - 7T (Jg» Jg) € Smin \ S1, which we may
assume to be maximal in length. If also y(ky,k2) € Smin \ S1 We see that a new chain could be
formed which must also end in v* (kg, kg') kg = jq. But then v(kg' —1,kg'), Y(Jg—1,7q) € Smin\S1
and by the definition of Smin Y(kg'—1,kq') = ¥(Jg—1,Jq). Continuing in this manner one finds
that v(k1,k2) = Y(Jg—g'+1,Jg—g'+2)- Thus {7(s1,52), - YT (Ug»Jg)} = Smin \ S1 L 5,. Since
Yt (Jg»74) & Si, Jq # n. Since (i)-(v) give all equations which hold identically at p (excluding
sets of codimension 2) the inequalities defining Z(s,,s,) hold at the generic point of the variety

defined by (i)-(v) together with z(v) #0, ~ € Spmin. This completes the proof.

Turn to the case G = C3. We introduce new notation for thse divisors. Set a = a;, 8 = «as.

(4.3)
_‘Si & E(Sl ,52) W(E(Sl ,52))
{e,} ¢ Ey regular
{a} ¢ Eg subregular
Richardson class of Pg
{5} é E, subregular
Richardson class of P,
@ {a} E, 2-regular
¢ ¢ Eq identity.

The projection of each divisor to G is the closure of a stable unipotent conjugacy class. The

d
final column lists that conjugacy class. Write ~ ief a+f, 6=2a+p8.

There are 4 stable unipotent classes in Sp(4) [Sp]: the regular, the subregular, the 2-regular
and the 4-regular (the identity element). For a complete discussion see [Sp]. There is only

one adjoint regular class, one adjoint 2-regular class, and one adjoint 4-regular class. The
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adjoint subregular classes are in bijection with quadratic extensions (or elements of F'X/F*2),
To determine the quadratic extension associated to a subregular unipotent element v € G(F),

conjugate u by an element of G(F) so that it has the form

I, X (10
(0 IZ) I2—(0 1) XGMz(F),
. . o J 01
where Sp(4) is defined using the skew form Jo = 7 o) J = 1 0) Then

det X € F*/F*? depends only on the adjoint conjugacy class of u. Equivalently, B,, the
variety of Borel subgroups containing u, is a union of three projective lines. The lines of type 8
are defined over a quadratic extension of F depending only on the adjoint conjugacy class of u.

When G is the inner form of Sp(4) the regular, 2-regular, and 1-regular adjoint class associ-
ated to the trivial quadratic extension F*2 C F*/F*2) do not exist. If v € G(F) is unipotent
regular then there is a unique Borel subgroup over F containing u. If u € G(F) is 2-regular
unipotent, then the line of type § in B, is defined over F giving a parabolic of type 3 over F;
but the minimal parabolic of G is of type a. If v € G(F) is 1-regular corresponding to the
trivial extension then the Borel subgroup corresponding to the intersection of a line of type «
and a line of type 8 in B, is defined over F. Thus such unipotent classes do not exist for the

inner form G.

LEMMA 4.4. (1) The variety Zg ® = C, is regular except possibly at points p such that

7 (p) is the identity element of G or at points p where
A =z(a) = z(B) = z(7) = w(7) = w(8) = 2(e) = 2(8) = 0.

(2) The singularity at A = z(a) = z(8) = z(v) = w(7) = w(é) = 2(a) = 2(8) = 0 may be
resolved by blowing up once along the subvariety z(a) = z(8) = z(v) = w(v) = w(6) = 2(a) =
z(B8) = 0. Let Ep be the divisor introduced by blowing up.

(3) The divisors on the desingularized variety and their Igusa constants are given as follows

(assume 7 (p) # identity).

E a(E) b(E) n(E) B(E)-1
Eq 1 1 O-reg 0

E, 1 2 1-reg 1

Eg 1 2 1-reg 1

E, 2 6 2-reg 2

Ep 2 5 2-reg 3/2

PROOF: The divisors Eo, E, Eg, E2, Eiq are defined by
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w(y) =w(é) =0
Eq : z(a) = 2(8) = 0,2(a)z() =w(7)1(ﬂ),W(5) () = w(v)z(6)2(e)
0 =

)=
0

We consider several patches, showing that the coordinate ring on each is regular, and at the
same time we identify the divisors on each patch. The defining relations (3.7) of Z are used
repeatedly. The expression A = 2(8)z(8) (FEoEp) indicates that z(8) = 0 defines the divisor
E,, that z(8) = 0 defines the divisor Eg, and so forth.

(If z(a) #0) A= z2(B)z(6) (EoEp), z(a) = 2(B)=(B)/=(e),
w() = z(7)2(8)/ (@), w(é) = z(8)z(a)2(8)/=(e)

generators of local ring: 2(8),z(8), z(v), z(6), z(e).

(Ifz(B) #0) X =z2(e)z(a) (EoEa), 2(B)=2(e)z(a)/z(B),
w(v) = 2(7)2()/2(8), w(é) = =(8)2()*/=(8)

generators of local ring: z(a), z(a), z(8), z(n), z(6).

(If z(v) #0) A = z(a)z(B)w(7)/z(7) (EaEoEp), 2(a) = w(7),z(8)/=(7),
z(B) = w(")z(e)/z(7), w(6) = w(v)z(8)z(e)/x(v)

generators: z(8), z(a),w(v), z(v), z(6)-

(If 2(e) # 0) A = 2(B)z(8) (EaFia), z(a) = 2(8)z(B)/2(ex),

z(v) = w(7)z(B)/z(e), 2(6) = z(B)w(6)/2(a)?,

generators: z(8), 2(8), w(7), z(a), w(6)

(If w(6) # 0) A = 2(e)?2(B)z(8)/w(8) (E3EaEia)

(@) = z(a)2z(B)z(8)/w(8), z(B) = 2(a)*z(8) /w(6), z(v) = 2(x)w(7)z(6)/w(8)
generators: z(a), z(8),z(6)w(v), w(8)

Since we are assuming 7(p) # 1 and since the variety has now been shown to be nonsingular for

z(a), z(B) or z() # 0, we may assume in the remaining cases that z(§) # 0.

(If w(v) # 0) A = z(7)*w(8)2(8)/(w(7)?2(6)) (B3 EpEa)
z(a) = w(é)z(7)/(w(7)2(6)), =(a) = 2(B)=(v)/w (), 2(B) = =(7)*w(8)/(w(~)*=(6))

generators: z(7),z(6),2(8),w(7), w(§).
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(If 2(8) # 0) A = w(8)z()?/(2(8)=(6)) (EpE3) z(B) = w(b)z(e)?/(2(8)?(6)),
2(7) = w()z(@)/2(B), () = w(é)z(a)/(z(6)2(8))
generators: z(a), z(6), z(8), w(y), w(6).

This completes the proof of (1). The validity of (2) is easily checked using the same seven
patches. Details are omitted.
The only points that are not clear in (3) are the value of the constants 8(E) and the value

of a(Eg). b(E) — 1 is given as the order to which the form (3.8)
wy = dAdz(a)dz(B)dz(v)dz(6)dv

dv = dv(a)dv(8)dv(v)dv(6)

vanishes along E. For example, the form when expressed in terms of the coordinates on the

patch (w(~) # 0) becomes
wy = z(7)°w(8)2(B)/ (2(8) *w(v)*)dz(B)d(1/w(v))dw(6)dz(v)dz(6)dv (E3~'E5~"E;™").

Thus b(E2) = 6,b(Ep) = 2,b(Es) = 2. The Igusa constants b(E) for E = Epg, Ey are similarly
calculated using a blown up region. Introduce projective coordinates X, Xg, X, Zo,Ws,Zg, W,.
On X, = 1 we have Xpz(a) = z(8), X,z(e) = z(v). The patch (z(a) # 0) becomes (dropping
the assumption that z(a) # 0).

X =z(a)?ZpXp (EREoEp), Za = ZpXp, Wy = X, Zp,
W5 = z(6)ZoZp so that a(Ep) = 2.
wy = z(e)® ' 257 X5 dZpdz(a)d X pd X dz(8)dv
so that b(Eg) = 5, b(Eo) =1, b(Ep) = 2.

This completes the proof.

§5. THE SUBREGULAR GERMS ON G = SP(4)
We begin with a summary of the results of this section. Let G be Sp(4) or its inner form.
By (2.5) we will have determined all of the germs of GSp(4) once we have calculated those of

Sp(4). Details on normalizations of measures are found below. Let o’ be a root of Sp(4), let E be

a quadratic extension (possibly trivial of F), and let H be an endoscopic group. Let T'(c') be a
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Cartan subgroup corresponding to the homomorphism Gal(F/F) — W given by o € Gal(E/F)
(6 #1) 0 — 0o €W (or let T(a) be split if E = F). Let Ug(1) be a one dimensional unitary
group split by E.

Let Op be the subregular adjoint unipotent class associated to the quadratic extension E’
of F (see discussion following 4.3). Let T'(E’, E, a') be the germ of Op for the pair (T'(a'), st)
where st is the trivial character on H'(Gal(F/F),T(c')). Set T(E’, E,o') = 0 if T(a') does not
exist. The function I';(E’, E”, B) is defined in (5.18). Set §c = 1 if G is quasi-split, O otherwise;
set eg = 26g — 1; and set 6(E,E’) =1 if E = E’, 0 otherwise. Then we have for various (T, «)

in G associated to the nondegenerate cuspidal endoscopic groups H (4.1)

(5.1)

H T Germ of O E' # F Germ of Op
EH,E+#F  Ugn(1) x Ug(1) §(E,E')6cT,(E',E",B) ©
EQoE#F arbitrary 0 0
FH, T/(£1) = T'(E"E,a) I'(F,E,«a)

Ugn(1) x Ug(1) +ecT(E', E",) +ecT(F, E",~)
FH, arbitrary eGI‘g";,'St 6GI‘g“Ff'“.

Quasi-split reduction will be useful in identifying the germs of the subregular unipotent
classes. For a group of semi-simple rank 2, quasi-split reduction is a statement about the
matching of inner forms of rank 1 groups. This situation is well understood. See for example
[LS]. In particular it follows immediately from the well-known matching of orbital integrals on a
rank 1 group with orbital integrals on its quasi-split inner form that G has quasi-split reduction.

The variety of Borel subgroups containing a given subregular unipotent element in a group
of type C2 is a union of three projective lines and is called the Dynkin curve. There is one line
corresponding to the short root and two lines corresponding to the long root. If u is contained
in G(F) then Gal(F/F) permutes the lines £p, ¢, corresponding to the long root. We say that a
subregular class is distinguished if the quadratic extension associated to it is the trivial extension,
that is, all three lines are defined over F. Most of the analysis of this section will be devoted to

the classes which are not distinguished.

LEMMA 5.2. Suppose that H is an endoscopic group of G which is split by a nontrivial
quadratic extension E of F. Let (T,k) be a pair associated to H. Then the subregular germ
of the unipotent class O associated to the quadratic extension E’ for the pair (T, ) is zero

unless E' = E.
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PROOF: Let Z be the center of G. Let u € O(F) and let Cg(u)req be the reductive centralizer
of u. If k is nontrivial on ker(H'(Gal(F/F),Z) — HY(Gal(F/F),Cg(%)sea)) pick h so that
0" = 0, k(o(h)h™1) # 1 so that by (2.1) I‘g’” = 0. It was mentioned in (2.1) that « restricted
to H'(Gal(F/F,Z) depends only on the endoscopic group associated to to (T, k). We see this
directly as follows in the case that G is the inner form of a split group and Z = {+1} and H split
by a quadratic extension F of F. Directly from the definition of endoscopic groups we see easily
that E = F if and only if H (up to a central factor) is an endoscopic group of G which in turn
is true if and only if « restricted to H'(Gal(F/F), Z) is trivial. If E is a nontrivial extension
then k is nontrivial but trivial over the quadratic extension F of F. In other words, k is trivial
on the image of the corestriction map from H'(Gal(F/E), Z) to H'(Gal(F/F, Z). Identifying
HY(Gal(F/F),Z) with F* /F*? it follows that £ may be identified with the nontrivial character
on F*/NE where NE is by definition the group of norms of nonzero elements of E. To complete
the proof it is sufficient to show that ker(H!(Gal(F/F),Z) — HY(Gal(F/F), Cg(u)req)) is
NE'/F** C F*/F*2. Note that Z fixes the lines £, £ so that the image of HY(Gal(F/F),Z)
lies in H'(Gal(F/F),Cg(u)!.4) where Cg(u)! 4 is the subgroup of Cg(u)req Which fixes the
lines £4,£p. In the situation at hand it is known [Sp] that Cg(u)eq = Cc(u)?,,4 the identity
component of Cg(u)red, 50 that it is sufficient to work with Ce(u),,.

The connected reductive centralizer is computed when G is split as follows. Let B be a

Borel subgroup over F in the line of type « in the Dynkin curve of u. Conjugating B to the

uo (B X7
“\o L
01
10

upper triangular matrices we see that

where X = tX € GLy(F) and J = ( ) It follows immediately that

Cg(u) = <t64 JA131J> and Cg(t)red = (t;: JA0—1J>
where tAXA = X. Thus Cg(u)2y = Ug (1) a one dimensional torus split by E’. ker(H!(Z) —
H(Cg(u)%,)) is then identified with NE'/F*2 C F*/F*? and the lemma follows for G split.
When G is not split we make the following modifications. G contains a parabolic subgroup
P, over F which is identified modulo a Borel subgroup B with the line of type « in the Dynkin
curve of u. Thus we may assume that u has the same form. Over the quadratic extension E’ of
F G splits and u becomes distinguished so that over E’ it follows that C;’G(u)f_)ed 5 G, Butif

. . . . 0
C(u)% 4 were isomorphic to G, over F we would have a split torus in o JM-1J ) , where
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det M = 1, which would contradict the hypothesis that G is not split. Thus Ce(v)%y = Ug (1)
as before, and E’ # F. This completes the proof of (5.2).

We have seen there are two divisors which contribute to the subregular germ. On the patch

Yy given by (3.7)

A = 2(e)z(a)
A = 2(B)=(B)
Aw(y) = z(a)2(8)z(7)
Aw(8) = 2(@)*2(B)z(6)

E, is described by the equations z(e) = 2(8) = z(8)w(v)—2(a)z(7) = z(8)w(8) —2(e) 2z (6) = 0
and Ej is described by the equations z(8) = z(a) = w(§) = z(a)w(v) — 2(8)z(y) = 0.

LEMMA 5.3. If uo is not distinguished then Eg contains no F-rational points over uo and

consequently makes no contribution to the germ associated to uo.

PROOF: The lemma is an immediate consequence of two facts. First, if (uo,(B(W))) € Eg
then every Borel subgroup B(W) lies in the same line £45 of type 8 in the Dynkin curve. For
select local coordinates as in (3.12) such that By lies in £g and {5 contains B(W,). Then
B(W) = Bi"" where nw has the form

(5.4) nw = exp(z(a)zx X _o)ezp(z(B)zk—1X_p) - - - exp(z(a)z1 X _a)

for appropriate values of zy,...,25. So z(a) = O implies that the product (5.4) collapses to
nw = exp(z(B8)z'X_p) for some z'. Also By = B(W,) € £ and By, B(W,) C Pz where
B\Pg = {3 so Pg = Pp which implies that v € Noo N Pg or v = exp(§é X_p) for some ¢,
where N, is the unipotent radical of By,. Thus nywv € Pg and B(w) = By"" € Pg. Thus if
£p and £ are the lines of the Dynkin curve of uo we may separate points (uo, (B(W))) of Eg
into £g-points and l;,-points according to where the Borel subgroups lie. Second, the action of
Gal(F/F) on the points of Eg interchanges £-points with ¢5-points. For the action (3.13) is
given by (uo, (B(W))) = (uo, (0(B(o7'W)))) for o € Gal(F/F), uo € G(F). If B(W) lies in £g
then B(o7'W) lies in £ and o(B(o7'W)) lies in o(£s) = £ provided o has nontrivial image

in Gal(E/F) where E is the quadratic extension trivializing the action on the lines Lp, L5

We now devote our attention to the divisor E,. We fix uo a subregular element which is

not distinguished and let By be a Borel subgroup at the intersection of the line of type « and
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a line of type @ in the Dynkin curve of up. As in the discussion of the divisor Eg we find that
if (v, Bg™ )" lies in E4 over the subregular element uo then v¥ = ug and v € P, N N, so that

v =ezxp({X_,) for some &.

Select a Cartan subgroup To C B over F such that if o, is the simple reflection associated
to the simple root «, Bg* is equal to the Borel subgroup at the intersection of £, and Z;, (the
second line of type # in the Dynkin curve). Such a Cartan subgroup may be found by selecting
any Cartan over F in Bg and in a Levi factor over F' of P, where B\ Py = £,. Let By, be
the Borel subgroup opposite By through T. We consider the patch Yy = Yy (Boo, Bo) for this
choice of (Beo, Bo).

The choice of Bg forces ug to have the form ug = (];)2 f), X = (g z) . The choice
2

of B, forces o,upo; ! to have the same form which implies that y = 0 so that

_ 12 IIZ

We choose a Haar measure on O,, as follows. We select coordinates v’/ = (}[\2, IO>’
2
y = (%’ };), N = (ZZ ZS) , Y = (3; Zi) so that y"' describes points on an open
set of Oy,. Then
1 def 1
(5.6) 3 dy dv’ ief 3 dypdy~dysdngdn.dns
is an invariant measure on Oy,.
We consider the patch z(v) # 0 on Yy so that the equations (3.7) take the form
z(a)z(B)w z(B)w(vy z(a)w(vy z(B)w(v)%z(6)
(65.7) A= (a)z(8) ('7), 2(a) = (8) (), 2(B) = () (), w(6) = ;
z(7) () z(v) ()
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By (1.1), (3.8), and a change of variables

z(v) dw(n) wy
Wg, = —& dz(B)dz(v)dz(8)dv = P row
2(6) w()? NEG]
We divide by the Haar measure wo, = (1/2)dz dv' = (1/2)dy dv' (dz = dz(B) dz(v) dz(5))
to obtain a differential form wg, (u,) on the fibre Eq(uo) over ug. Making use of the fact that

v = ezp(éX_o) on Eq(uo) this gives

(5.8) WE, (uo) = szb(g) % w = w(y).

Next we note that if (u, B(W))" is a point of Eq(uo) with coefficients zg(u) = z(8) z,(u) =
z(7), zs(u) = z(6) we must have u® = uo with v = exp(£X_,). By (5.5) this implies that
z(6) = 0, and z()/z(B) = 1/2¢ so that (5.8) becomes

dw dt

(5.9) WEq(u0) = 73 ;

Note that it is always possible to recover the action of Gal(F/F) from the action of W x A and
the action o, for a split Cartan subgroup and By over F. The equation oo/ (z4(b)) = z4(b') of

(3.13) gives for an arbitrary divisor.

(5.10)
oa(z())/z(a) = 1
oa(z(8))/2(B) = 1+2(T1 — T2)w(v) + (T1 — T2)*w(6)
oa(e(7))/2(7) = 14 (T1 = T2)2(a)z(8)/z(v) = 1+ (T1 — T2)w(6)/w()
oa(z(8))/2(6) =1

op(z(a))/z(e) = 1—2Tw(v)

Here Ty, T, represents the tangent direction of the curve T' in T at the identity and o, and
op are simple reflections associated to the simple roots a and 8. From the choice of By made
following lemma 5.3 the image of the group A in the Weyl group is the subgroup of order two
generated by the reflection o,. Let 0o be the representative of 0, in A. Then (3.13) and (5.10)
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specializing to the divisor E, give

(5.11) op(é) =¢
Ua(f) = wA£
oo(§) =1/¢¢

op(w) = w/wp
oa(w) =w/wa

oo(w) = —w/wy
where we introduce abbreviations

(512) wy = Z(Tl - Tz)‘ll) +1
wp = —2Tw + 1

wp = 2T 1w + 1.

and ¢ is an element of F'*. Since 00,04 and og generate W X A we easily deduce the following

charts:
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o(w) o(wa) o(wp) o(wp)
w w4 wp Wp
w 1 wpg wp
wa  wa  wa  wa
w wp 1 w4
wp wp wp  wp
w wp w4 1

wp wp wp  wp
w 1 wp wp
wa wa  wa w4
w wa Wp wgB
w wp w4 1

wp wp wp wp
w wp 1 w4
ws wp wp  wp
o(w) o(ws) o(wp) o(wp)
—w 1 wp wp
wa  wa  wa  wa
—-w wA wp wp
—w wp wA 1

wp wp wp  wp
—w wp 1 wA
wp wp wp wp
—w WA wp wWp
—w 1 wR wp
wa  wa  wa  wa
—w wp 1 Wy
wp wp wp wp
—-w wpRB w4 1

wp wp wp  wp
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¢ is a constant in F*. It is a norm of an element in the quadratic extension E (associated to
the unitpotent element ug) if and only if G is split. To see this we argue as follows. w = 0
defines the intersection of E, with Eo. By (3.6) the fibre E,(uo)) N Eo may be identified
with a subvariety of the Springer variety. This fibre is 1-dimensional, closed, and consists of
(uo, (B(W))) € Ea(uo)N Eo with B(W) = B(W..) € £, for all W, and hence it is isomorphic to
£, with coordinate £. Pull the action of W x A back to Gal(F/F) (3.13) and note that since when
w =0, then wg = wp = wp = 1 it follows that £ is a coordinate over the quadratic extension
E of F whose absolute Galois group maps to the identity of A. The condition o? =1, for
1 # 0 € Gal(E/F) together with 0¢(¢) = é forces ¢ € F* and the elements of E,(uo)NEo — £,
are in bijection with elements of E with norm ¢. Also £, has F-rational points if and only if
B\ P, contains a Borel subgroup over F which is true if and ony if G is quasi-split. Thus ¢ is a
norm if and only if G is quasi-split. This fact will account for the signs eg (5.1) that enter into

the formulas for the germs.
It is shown in [H] that « is trivial on the cocycle
(5.14) oo XY o 1 oo L.

and & is trivial on the cocycle 0 — 1 0g + A" 6o — 1if and only if H is split.

Let E be the quadratic extension associated to the fixed unipotent element uo. We define a
cocycle taking values in the 1-dimensional torus Ug(1) split by E as follows. For a fixed w = wy,
the fibre over w, which is isomorphic over F to P!, does not necessarily have any F-rational

points. It does if and only if the cocycle depending on w
(5.15) as:0 — ol€][¢]7! € Ug(1)

is a coboundary when evaluated at w = wo. The germ, being a principal value integral
over E4(uo) may be expressed as a double integral over { and then w if we integrate only
over those points for which (5.15) is a coboundary. Let ng be the non-trivial character on

HY(Gal(F/F),Ug(1)). Then the subregular germ is equal to

dw d¢ d¢ <1+r)E(a,,)> dw
. A — —=|k(te) = |2 = — 2T ) — gkt
(5.16) A Ea (u0) | W? §llc( )= Nm1 |€] Jpi(r) 2 [wl? wlte)
_ m fi_z dw m g ) dw

= o = to)ne(as) -
2 Jnm1 €] Jpr () [wl* 2 Jnmi €] Jprr) ( |w|?
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Here ¢ ranges over the set of norm one elements in E: Nml =%f{¢ ¢ E | o(¢)¢ = 1 for
o € Gal(E/F) o # 1}. (In particular [y, is independent of the tangent direction.) Notice
that in (5.16) we integrate over P! x P1. To justify integration over P! x P! rather than over
the rational surface E(uo) we must consider coordinate patches other than Yy and check that
the principal value integral is unaffected. This is done in [H]. It is also a simple consequence of

calculations done in section 7 on other coordinate patches.
Identify roots in £SO(2n) and Sp(2n) as in the beginning of §4.

PROPOSITION 5.17. Let (T,«) be a pair associated to the non-split group £S0(4). Then the

subregular germs on G for the pair (T, k) are zero.

REMARK: The group £S0O(4) has no F-rational subregular elements. Proposition 5.17 gives

the transfer of the subregular germ in this case.
PROOF: By (5.2) we may assume that £SO(4) is split by the quadratic extension E' associated
to the unipotent class Ops (that is E’=E). Thus the group Wz X A is equal to a subgroup of

1 d
Wrx AC s Oay 0q0B003, 030403 éf 0,
0300, 0000, 0a0B0a00, 0a0B00

where Wr = {or | 0 € Gal(F/F)}.

We introduce the new variable ¢’ = wp¢ and remark that o(¢') = ¢ or 1/¢¢’ if 0 € 0, (by
the chart (5.13)) so that the cocycle a. is trivial if G is split and non-trivial if G is not split.
The factor Lﬂfﬁ of (5.16) is then identically 1 if G is split, O otherwise. This proves the
proposition when G is not split.

Let t = (1—;—%,1), b, = o(t)t~1. It is given on generators of Q; by 0o +— (—,%

030 — (—wp,1). t, and b,t, have the same class and b,t, is given by
oo — (&,¢7Y) opoo — (—€,1/z(4)).

It follows that b,t, for o € Q; is independent of w. We may integrate in (5.16) first over w. But
d
- ") ﬁ = 0 [LS1] so that the germ is equal to zero. This completes the proof. We remark

that the proof does not use the fact that « is a nontrivial character.

Next we consider the endoscopic group H = SL(2) X Ug(1). By (5.2) the subregular germ
for pairs (T, k) associated to H are zero except when H is split by the quadratic extension
associated to the unipotent class. We assume that E splits H. We identify the nontrivial

element of the Weyl group of H with the simple reflection 03 and the automorphism which
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twists the torus Ug(1) with the element c004004. The factor og reflects the fact that by (5.2)

d
we may assume E’ = E. Then we have Wr x A C {1,04,00040804, 0000030405} ef 0.

PROPOSITION 5.18. (1) Let (T,k) be a pair associated to the non-split endoscopic group
H = SL(2) x Ug(1). Then the nonzero subregular germ on G for the pair (T, k) considered as
a function of the tangent direction (Ty,T?) of the curve I' at the identity element depends only
on T2 not T;.
(2) The subregular germ of the unipotent class Og on G for pairs (T, k) associated to SL(2) x
Ug(1) are given by the first row of (5.1) where

dw

n dz 2
T(E,E",B) = |\ — wg) ——
i A= Nm1 |€] Jpr ne(w”/ws) |w|?

Here the action of Gal(F/F) on w is determined by the rule og(w) = w/wg, 0004050,03(w) =
—w. Nml denotes the group of norm 1 elements of E.

(3) The transfer (2.8) of subregular germs near the identity is compatible for various choices of
(T, k) associated to SL(2) x Ug(1). (In other words the function f# may be chosen independent
of (T,k).)

PROOF: The character k of H!(Gal(F/F),T) may be identified with the nontrivial character
on H*(Gal(F/F),Ug(1)) under the projection T C H = SL(2) x Ug(1) — Ug(1). We then see
using (5.13) that k(¢,) equals ng applied to w?/w wp € F*. (We use ng indiscriminately for
the nontrivial character on Ug(1) and the nontrivial character on Fx trivial on the norms of
E.) Again by (5.13) ng(as) of (5.15) is equal to ng applied to ZAYD wn P ¢eFx. By (5.16) the

germ is equal to

(5.19) m/m/ wpr w[? m/m/ 75y )|w|2

wp = —2T2w + 1 depends only on T, not T; and by (5.13) o(w),o(wp) for o € 2, depend only

on Ty not T;. Thus the second term of (5.19) depends only on Ts.
To show that the first term of (5.19) is independent of T; we introduce the variable

w' = w/2T1w + 1 = w/wp. Simple calculations give

(5.20) dw  dw' w? _ w'?
’ w2 w2’ wawp (—2Thw'+1)’
and writing wly = —2Tw’ + 1,
(5.21)
o(w) o(w) o(wp) o(wg)
og w/wp w'/wy 1/wp 1/wg
000a080403 —W —w' wp why
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We see that the first term is independent of T (because w’ wz,0(w’) and o(w}) are).
In fact, the second term of (5.19) is equal to ng(¢) times the first. In particular, if G is not

quasi-split the germ is zero; if G is quasi-split then the germ is

'”/m/ wp le2

(3) To prove compatibility it would be easy enough at this point to identify the principal value
integrals with those of [LS]. But instead, we use the fact that the subregular germ is invariant
in the direction of T;. Thus a function supported on regular and subregular elements satisfies
Ag"‘@g"(fy, f)= Ag"‘q)g"‘(zo'y, f) (assuming that zo = ezp(2T;) and ~ are sufficiently small),
so that the germ expansion at the identity coincides with the germ expansion at z5. By (2.11)
Ag’"‘I)T"(zo'y, f)= AA};"‘QT"‘ (v, f). & is trivial on (T'\ M)(F) and Mg.r— Hger so the result

follows.

Next we consider the case that H = Sp(4), G is not quasi-split and the integrals are all

stable.

PROPOSITION 5.22. If (T,1) is a Cartan subgroup of G and G is not quasi-split, Fgf’l) is the

germ on the quasi-split inner form and T'(T:1) js the germ on G. Then I'(T:1) = _1.\((1'5,1).

PROOF: The factor k(t,) of (5.16) is constant so that by the result [p, ) Idw — 0it follows

|2
that the first term of (5.16) is zero. The cocycle a, for G and a?® for the quasi-split inner form

differ only by the factor ¢. Thus we have

pien = m/m [REC /|e|/ O

_ T,21) _ T,1
- nE(g)rl(]S ) - _rt(;a )
since ng(¢) = —1 because ¢ is not a norm if G is not quasi-split.

Finally we consider the endoscopic group H = SO(4). Since H is split we must consider
all subregular unipotent classes including the distinguished one. The Weyl group of H may be
identified with {1,04,040403,04050,05}. The group Wr X A is a subgroup of

Q def |1, 04, 0p0a0p, 0a050,0g
1 - .
00, 0a00, OR0a0300, OqO0B00300

PROPOSITION 5.23. (1) Let (T, k) be a pair associated to the endoscopic group H = SO(4).

Then the germ on G for the pair (T, k) and a subregular unipotent class associated to a nontrivial
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quadratic extension E of F breaks into a sum of two terms. The first term depends on T; + T,
but not Ty — T2. The second term depends on Ty — T but not Ty + T.
(2) These germs are given as in (5.1) and the transfer (2.8) to the endoscopic group SO(4) is

valid for those germs.

PROOF: As in the discussion of the endoscopic group H = £S0O(4) we use coordinates ¢’ = wpé

and w instead of éand w. We have by (5.13) 04(¢') = &', 0a0p0a05(¢’) = €', 0o(¢') =
(waD ( BwD)’ WBWD _ px
wAS WAS

)( f') Thus ng evaluated on the cocycle a, of (5.15) equals ng

H = S0(4) is an endoscopic group (up to a central factor) even if G is of adjoint type, so
we may calculate the cocycle in the adjoint group. We form a cocycle in Ug/ (1) (where E’ is the
invariant field of 0, and 0o) by replacing the cocycle t, : 0 — (t15,t20) by €5 : 0 > t1,ta, €
Ug/(1). The fact that Wr x A is a subgroup of 2, insures that this is well-defined. By (5.13)
we find that e, is given by

(5.24) oo — 1, 040p0,08 — w?/z(y) wpwp € FX, oo+ 1.

Thus (ts) = ne(es). Since z(v) € F*, z(7)? € F*? and it may be removed without affecting
ng'(es). Write el for the cocycle so obtained.

We make the change of coordinates w = w’/(2Tew’ + 1). Then e, becomes o, — 1,
0,050,05 — w'2/(2(T1+T2)w'+1) € FX, 00 — 1. The action of 2; on the variable w' is easily
seen to be 04 (w') = w', oo(w') = —w'/(2(T1+T2)w'+1), aaapoaap( ’) =w'/(2 (T1+T2)w'+1)
which

Also dw/w? = dw'/w'2. It follows that the first term of (5.16) is AL e ng (e)) |d e
is independent of Ty — T2 because the action of 2; on w’ and the col(:€y|cle e! are independent
of Ty — T,. Moreover the action of oo on w', (T1 + T2) and 2(Ty + T2)w’ + 1 is trivial, so
the data defining the principal value integral is the same for Wy = (040p0,0p) as for W =
(00030408, 04) and (0g0,0p), and the same for Wr = (04) as for Wr = {1}.

To prove that the second term of (5.16) is independent of T'; +T, we return to the coordinates
(w, ¢'). Note that kwp/w lies in the quadratic extension E” which is invariant by 0404040300,
05040300 Where k is a constant chosen to satisfy o4(k) = k, 0405040500(k) = —k. Also if o
is a nontrivial element of Gal(E"/F) o(kwp/w)(kwp/w) = [o(k)klwpwp/w?. Thus up to
a constant ‘U)BU)D/‘U)2 modulo the norms of E’ is trivial or nontrivial according as wpwp/w?

modulo the norms of E. The result is that «(t,) = ng(el) = ng(el), and £(ts)ne(as) =
‘w2 waD) 2

WBWD  WAS

is required if E' or E” = F but it is easy to check that the conclusion &(t,)nE(as) = ng(w?/wa)

—1

a;) (nEg has order 2) = ng(

w .
nE(eza0) = nE(es = nE(E). Special argument
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still holds. Thus k(ts)nEg(as) depends only on T1 — T (through wa = 2(Ty — T2)w + 1) and not
on T; + T». Furthermore an examination of (5.13) shows that the action of 0; on w and w4
depends only on Ty — T3 and not Ty + T,. Moreover the action of ogo,05 on w, Ty — T3 and
w4 is trivial, so the data defining the principal value integral is the same for Wr = (0,0304,0p)
as for W = (0p0403, 0a0p0408) and Wr = (04), and the same for Wr = (0po40p) as for
Wr = {1}. Consequently, the second term of (5.13) depends only on Ty — T, and not Ty + Ts.
We conclude that the germs are given by the entries of (5.1).

Compatibility of (2.8) for various pairs (T, k) is known in the special case that T lies in a
parabolic subgroup of G. Since we have expressed the subregular germ in terms of the germs
associated to T lying in a parabolic subgroup compatiblity for all pairs (T, k) associated to

S0(4) follows.

The following proposition will complete our study of the subregular germs.

PROPOSITION 5.25. (1) Let (T,«) be a pair associated to the endoscopic group SO(4). Then
the germ on G for the pair (T, k) and the distinguished subregular class breaks into a sum of
two terms. The first depends on Ty + T2 but not Ty — T». The second term depends on Ty — T,
but not Ty + T,.

(2) These germs are given as in (5.1) and the transfer (2.8) to the endoscopic group SO(4) is

valid for these germs.

PROOF: In the analysis of the distinguished subregular class (5.2) does not apply so that there
are two divisors to consider. We select Bg, By, as before, noting that By, B, are now over F
so that the group A is trivial (0o does not occur). Recall that By was selected to lie in a line
g of type f in the Dynkin curve of uo and that the points (uo, (B(W))) of E(u) are such that
B(W) € £g for all W or B(W) € ¢} for all W. Let Ep(£g) or Eg(£s,uo) denote the points of
Ep(uo) for which the first condition holds.

The function k(t,) is seen to be identically 1 on Eq(uo) and Eg(uo) as follows. By definition
to is given by (3.15)

oo = (1/z(e)™

op = (1/2(8)”

Since H is split, x evaluated on the cocycle o4 — 1, 05 — zf, (z € F*) is trivial (5.14). Thus
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we may take t, to be given by
oo (1/2(a))™

r\oajw B
o5 (Mz(B)F = 2(8)" = ( (o) (’1)) .

z(v)

We adjust this by the coboundary ¢, = o(t)t™! ¢ = (1,z(c)) to obtain t,c, given by o4 + 1,
og — w/(wpz(a)z(v)). By (5.10) together with the fact that w(6) = 0 on E,(uo) N Yy and
Epg(uo) N Yy we see that w/(wpz(a)z(y)) € F*. Thus by (5.14) k(t,) is identically 1 on the
open patches E,(uo) N Yy and Eg(uo) N Yy and so identically 1 everywhere: «(t,) = 1.

We turn to the form on Ej3. Recall that Eg is given by the equations z(8) = 2(a) = w(d) =
z(a)w(y) — 2(B)z(y) = 0. For z(«) # 0 we use coordinates given on the patch z(v) # 0 in the
proof of (4.4). The form wg, on Eg is given by

(5.26) wg, = Resg,(wy/A?) = Res (i—/:dz(a)dz(ﬂ)dz(q)da:(&)dv)

_ dw(v) dz(e)

= z(’7)mmd&:(’y)d$(5)dv.

We take an invariant measure on the subregular class O to be
wo = dz(a) dz(n) dz(6) dv(a) dv(v) dv(6)

where we use coordinates z{a),z(v), z(6),v(a),v(v), on an open set of the double cover of O.

Set

1 1

m(wvzvyaz) = < Sp(4)’ JO =

Ty

1 w
1 -1

-1

Then (z(a),z(7),v(a),v(8),v(8)) are coordinates for the element m(0, z(c), z(v), z(6))v#,

where vg = J5 'm(0,v(e),v(v), v(6))Jo.

- % ¥ W

We take the quotient wg, /wo to obtain the form on Eg(£g)

8
—
=2
=

u

w(v)

(7)?

If (u,B{"™)" € Eg(€g) then By € g, By € £p which implies that v € Pg N No, so that

(5.27) dép where £g is given as follows.

A
&
g

v = exp(—&s X_p). Also recall that uo has the form (5.5) uo = m(0,0,z,0) provided By is
taken to be upper triangular and B, lower triangular. Thus ug_l = u = m(0, £, z,0) so that

on Eﬁ(@/j) zEZ; = -51—'3
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Finally we must normalize the form of (5.27) so that it is compatible with form on E.(uo).
The compatibility condition is
ResEBwEu = ResEa wEﬂ
and provided the forms on E4(uo) and Eg(€g,uo) are defined with respect to the same invariant
form wg on O

ResE, (65)WEa (u0) = ReSE, (uo)wWEp (¢)-

This condition forces the normalization

dw(y) dép
5.28 wE 2 = —_—
( ) 5 (€s) w()? &5
dw ()
for then Resp, (u,)WEs(85) = wm)?
Write wg for the restriction of w(y) to E(£g). Then by (5.10)
(5.29)
1 0o 030,03 04030403
a(§) wal wpé/wp wawpé/wp
o(w) w w/wa w w/wa
o(wa) wy 1/wa wy 1/wy
U(‘LUB) wg wB/wA wp wD/wA
o(wp) wp wp/wa wp wp/wa
o(és)  &p 3 wp,B¢p/wp,0 wp,BER/Wp,D
o(wg) wp  wp/wp,a wp w/wp,a
o(wp,a) wpa  1/wpa wp,A 1/wp,a
o(wg,B) wp,B wpB/wp,A wp,D wp,p/wp,A
o(wp,p) wpp wpp/wpa wg,B wp,B/Wp,A

where wg 4 = 2(Ty — T2)wpg + 1,wg,p = —2T2wp + 1, and wg,p = 2Thwg + 1.

We must also consider coordinates patches with By, Boo/F such that BJ? is the point of
intersection of £ and £q (resp. £j and £,). On this patch 2 =d¢f 2(B) and ¢ =%f v(B) serve
as coordinates on E(£g,uo) (resp. 2, & on E(€j,uo)).

To distinguish coordinates on various patches we add subscript a’s to coordinates on

E(£q,u0) and subscript A’s to coordinates on E(£g,uo) (resp. E(£j,u0)). On E(£,uo) we have
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(5.30)

wg = zc/(Ec + 2T230)7 ﬁﬁ = _l/fc

Ze = _wﬂ/eﬁ(l — 2T2‘Ulﬁ), £c = _l/fﬂ'

On E(£4,uo) we have

(5.31)

fa=—1/€ wa=—wl/(2T1 — To)w} +1)

€, =—1/t,, wh=—-ws/(2(T) — To)ws +1).

On E(¢j,uo0) we have

(5.32)

wp = z¢/(€; + 2T22(), &= —1/¢

2l = —wb/&},(l — 2T2w;,), €l =-1/¢.

The formon E(£p,uo) is —dz.d€./22 = dwpdép/w}€p and the form on E(£p,uo) is —dzldé]/2/* =
dwhdel [w2 e,

Truncate near E(£p,u0) N E(£q,uo) in E(£g,uo) (The £o-pole) by

—2Twp +1 >
(T1 —Tg)’ll)ﬁ"rl p=1

—-m

—ZTgwﬁ +1

By (6.29) ———F——
Y( ) (TI—TQ)IUﬁ+1

€p is a variable over F. Since by (5.30)

1 (—2Towp + 1)&5

€+ (T1+T2)ze  (Th—To)wg+1°
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E(ea,UQ)
E(eﬁ’uo) E(E’ﬁ,uo)
w w,
wg a @ !
‘ €a £ A
3
Zc &g
£ PV, PV, AN Z
PV
5
F’V1
T1 + T2 0 '[‘1 - T2
0 0

This diagram should help to clarify coordinates patches. It also identifies how the

principal value integral will be broken into five pieces by truncating the integrals

near the poles.

this region is the same as | + (T1 + Ty)ze| < ¢™. Let €. = &+ (T1 + T2)zc. Then 2. and ¢,

are variables over F' and
— dz.

PV, = f @&, | Z==o0
[€.1<q™ p |2Z]
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—2T2w’ﬁ “+ 1
(T] - Tg)wb +1
Truncate near the £g-pole in E(£s,u0) by [(2T1wa + 1)és| > ¢7™ and near the £j-pole in

Truncate in E(£j,uo) near the £,-pole by €5\ > ¢~ ™. Then similarly PVs = 0.

2(T1 — To)wa + 1 _ 2(Ty — TR)wl, +1
E(eouuo) by ( ((_12T2uz}2 _:1) )$Zx m. (2T1wa + l)fa and ( ((—12T2u§? _:1) )fla are
[e3 [e3
. . —2(T, — To)w!, +1 — :
variables over F'. Then since (@Tiw. T 1)Es = ( ((—12T2w’a)+al) )f& let £, = (2Thwa+1)E0.
-m<fEl<em [€al Jpi wal?

The contribution PV to the germ at the pole £, N £, is given by (1.3). The function M is
B

given by m(ag) + 2m where aq is defined by:

z(e)z(B)w(v)
oo = lim = = lim =)
A—0 €5 2(Ty — T2)w!, + 1 —2T2wﬂ +1 ) ot
—2Tw! +1 [ —T,) w + I:I gafﬁ

Here Z; and _f—; are variables over F. Their definitions — if not clear — may be read off from the

denominator of this limit. On Eq4(uo) z(7)/z(B) = 1/2€;, (5.8), on E(€j, uo) z(v)/z(a) = 1/¢&4

(5.27) and w/, = wj = w(y) on their intersection so that

o — i OO (T3 =Tow() +1) __ 2a(y)ws
P (2(Ty — TR)w(v) +1) (1—(T1 — T2)?w3)

where w3 = w!,/((Ty — T2)w!, + 1) is a coordinate over F. Thus M and hence PV, depend only
on T — T,.
Similarly the factor @ at the (€g N £q)-pole is up to inessential factors is
w Wy

—2Tw +1 2T\w + 1 ) = (1—(T1+ T;)?w?)
(T1 - T2)w +1 —2T2'LU +1

(

w
(Tl — Tz)w +1
in the proof of (5.23) we see that PV, is expressed in terms of the corresponding terms PV,

where wy = is a variable over F, so that PV, depends only on T} + T2. As

associated to a Cartan subgroup T’ contained in a parabolic subgroup (Wq = (o4) or {1})

for which compatibility is known. The term PV is analyzed similarly. Hence the proposition

follows.
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§6. THE TRANSFER OF 2-REGULAR GERMS OF GSP(4)

There are no 2-regular elements in G(F) if G is not split. Consequently, we assume in this
section that G is split. We also take G = Sp(4) but since we only prove the transfer of germs
(2.8) for GSp(4) we assume that the endoscopic groups of G are cuspidal and split. This leaves
the group H = SO(4). We may make this assumption by the remark of (2.5) and the fact that
all the endoscopic groups of GSp(4) are split. (They are split because the derived group of the
dual of GSp(4) is simply connected.)

Recall that all unipotent 2-regular elements are conjugate by PSp(4, F) or equivalently by
GSp(4, F). We have seen that there is one divisor E of the Igusa data which contributes to the 2-
regular germ. On the patch Yy, E is described by the equation z(a) = z(a) = z(8) = z(v) = 0.
On the smaller patch where z(§), w(y) # O the equations become

(6.1 X = £(7)?w(6)2(8)  (w(x)?2(6))
2(a) = 2(8)z(2) /w(")
2(8) = 2(2)w(6)/ (w(x)*=(6))
 a(y)u(s)
) = L m)=(d)

and E; is described simply by z(v) = 0. Coordinates on E; on this patch are z(6), w(v), w(é),
2(6), v(a), v(8), v(7), v(5).

By [Sp, p. 148] By, the 2-dimensional variety of Borel subgroups containing a given 2-regular
element ug, contains a unique projective line £ of type B and By, is a union of lines of type «
which intersect the line of type §. We consider the variety E3(uo) of all points p of E5 above
ug = 7(p) € G. We fix a Borel subgroup By in the line £3 (whose points are Borel subgroups)
and select any B, opposite Bo. Then by the choice of By z4(uo) = z5(uo) = z,(uo) = 0. Also
if in the notation of (3.12) we have (u, B{")* € E3(uo), then z4(u) = zg(u) = z4(u) = 0 and

v

u¥ = ug. This forces v = exp(€z_g) for some &. It follows that z(6),v(a),v(y),v(8) serve as

coordinates on an open set of the conjugacy class O,, of uo while 2 =def 2(B), € =2f v(0),
w =%/ w(y) and w =9/ w(6) serve as coordinates on an open set of the fibre E2(uo). We also

set

(6.2) wA :2(T1 —-Tz)‘w-i-l, wp = —2Tow+1, wp=2Tw+1

L= u")/wB
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The differential form on Ej is wg, =% Residuep,(wy/\P) B = b(E2)/a(E;) = 3. Using
the coordinates of (6.1) we obtain
dz dw , dz(v)

8= —z(8)= —dw
wy [N = —2(8) 7 Grdw

dz(8)d¢dv(a)du(v)dv(6)
and
(6.3) wEs = ~2(6) 2 9% o dz(8) d dv(c) do() dv(s).

We separate this form into two parts: an invariant form on the conjugacy class O, and a form
on the fibre E3(uo). wo = —z(6)dz(8)dv(a)dv(v)dv(6) is easily seen to be an invariant form on

dz d

Oy, and wg, (uo) = w—u;dwdﬁ is then the form on the fibre F5(uo).

22
z

Next we consider the action of the group W x A on the variables. By our choice of Borel
subgroup By, as with the subregular germs, A has two elements {1,00}.

Equations (5.10) give the first two rows of (6.4)

(6.4)
w ¢ z S L I
Ou w/wa 2/(1+ fre) z2/Wa ¢ T, T,
og w/wp 14 z 2Toz+ €& Ty —Ty
oo (Ew + 2)/(€ + 2T2) 1) z2[(€(2T22+¢€)) —-1/¢ T, T,

We have used the abbreviations £ = w/wp, W = w + (T — T2)w, Wa = wa + (T1 — T3)?w. The
last row of (6.4) as well as the relation oo(z(e))/z(a) = c£~! (for some immaterial constant ¢
depending on the representative A, in the normalizer), used below in the calculation of c,, is
found by the method described at the end of (3.13). The cocycle t, is given by o, — (1/z())*",
o5 = (1/2(8))", 00 (£6)7". We adjust t, by ¢, = o(t)t~), &= (1,2(a))

v

co:  ga = (2(a))*, 05 = (wpz(2)?) 7,00 = £F
Cote: 0o — 1,08 — (sz(a)Z:c(ﬂ))_ﬁ",ao — 1.

K is trivial on dy: 0o — 1,05 — (A%)#", 00 — 1. So we may consider

(6.5) Cotody = 0o — 1, 09 — 1 o»—»(z(a)z)ﬁvzfﬂv.
. ololo a ) [o] ) g sz(ﬂ)

k(ts) = k(t!) depends only on £.
We recall the fact that a(E2) = 2 implies that there is a term of the asymptotic expansion

Fy(8,3) for every character 6 in F* of order 2.
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PROPOSITION 6.6. F;(8,3) =0 if 0 is non-trivial.

PROOF: Let To be a split Cartan subgroup. Then the action of G on Yr gives an action
of To € G on Yr. To make this explicit select two Borel subgroups By, By, over F' with
Bo N By = Tp. Then the action of to € To(F) is given on Y3 (Beo, Bo, Z) by

(b,Bg)° — (b,B3")*".

In particular it acts on the fibres ¢ ~!()) in Yr. Supposing to € Cg(uo)(F), it is not difficult to
see that the action on points E2(ug) above ug € G(F) in E; is given by

2 — sz

€ — st

where s = ((to). By (6.4) this morphism from Ej(uo) to Ez(uo) is defined over F provided
s € F*. Call this morphism ;.

The morphism ¢, is easily seen to carry the form

dz dw

WE, (u) = poll dw d€ to itself.

The action of v, on mg, g is also easily calculated. By (6.4) o(z())z(y)~?! for 0 € Gal(F/F)
evaluated on E; is a function of w,£ and the tangent direction of T but not of £ or 2. By

Hilbert’s 90th we write z(v) = z(y)e with e a function of w,£ and the tangent direction, and

;(\'-7/) a variable over F. Then

_oz(y)z 1:-(77/)2152
A w2z(6)  alw2z(6)

and 0(A) = 8(grp2sy)- Thus

def . K(ty) k(ts)
mop = M oG0) T (B )’

a?w?z(6)

ts depends only on £ so that ¢, carries mg, g to

k(ts) _ Mmex
Bt )
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A change of coordinates does not change a principal value integral. Changing coordinates on

E4(uo) by the automorphism ¢, gives

1
Fi(0,3) = [/ Mo, BlwE, (uo)| | 16 (f) = ) {/mG,E|WE2(uo)|] w8 (f)-
E; (“o) (S)
So that if 8(s) # 1 for some s € F* we must have F((6,3) = 0.
We turn to the Cartan subgroups associated to the endoscopic group SO(4). We define a
birational map from E2(uo) to (P!)* by

-T +¢ def
wo = _"11%;—'1 6F (1+Ty(Ty + T2)8)(Ty + T)
2
y = frt deéf (—2T2w + 1)
(6.7) fre+2 wes
e
Gr=¢ fr= (T22“T12)
def 2T2£1
€2=¢€+pz P —-Tywp + £

where wa, €2, &1, €2 are coordinates on (A!)* C (P!)%. The map is birational, for it may be
inverted by inverting the relations for £2, {1, w2 and &3 in that order. The form wg, (4,) in these

coordinates is found to be

(T3 ~T}) dty dwy _dérdéy

6.8 e = 2 (uo
(6.8) 2 2 we (& —¢&2)2 “Ba (o)

Transferring the action of W x A via (6.7) to the coordinates wq, £3, &1, &2 gives:

(6.9)
1 oo 0poaop %
wy wy wa/f?  1/wy  (&2/&1)ws
62 ez —22 -EZ 82
&1 & €1 &2 -1/&
&2 & &2 &1 —1/¢;
(140,
where f = (1——@2)'
v 2¢ 1 M .
t"” is given by 0o — 1,00 — 1,05 — £/ = (f—21 I_—Z—)ﬂ . The factor 2¢2/fr lies
T 1—-4£

in F* so that k(t,) = x(t,) where t/ is defined by 0o — 1,04 — 1, g5 — (1 — £3) 7", This
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implies that ogoaos — ((1+£€2)71, (1 —€2)7*,1 —£2,1+ £3) so that as in the proof of (5.23)
k(ts) = ng (1 — £2) where E' = Inv(0g,04) the field invariant by o4 and oq.

We may always choose the homomorphism Gal(F/F) — A so that &;,£; = 0,00 are not
rational points. Thus £2/&; # 0,00 and is well defined. Assume that such a choice is made.
Also if Im((Gal(F/F) CW) = (0405040p) then £, = £1, f = 0,00 are F-rational points so
that the action of 0,030,0p on w; for f = 0,00 is not defined. But this has an effect because
the integrals are principal value integrals.

The following lemma is proved in section 7.

LEMMA 6.10. The principal value integral sz (4o) TR, E |w, (vo)| is preserved under the bi-

rational map (6.7).
COROLLARY 1. The 2-regular germ is zero if k is trivial and Wr C (1,04,050403).

PROOF: For s € F* the automorphism of E3(uo) sending wy to wz, £; to slz, €1 to & and
€3 to &3 is defined over F. It takes the form wg, (uy) to wg, (uo)/ s so that changing coordinates

using this automorphism

1 .
/ ol = 0By (uo) | (= 0 if [s] # 1).
E2(uo) E>(uo)

COROLLARY 2. The 2-regular germs have the form |T# — T2|c(T, ) for some constants ¢(T, k)

depending on (T, k).

PROOF: The data (6.9) is independent of T1,T; and |wg, (uo)| = |Tf — TF| |w’| where w’ is a

form independent of T4, Ts.

COROLLARY 3. The transfer of orbital integrals in (2.8) holds for a function f¥ independent
of (T, k) associated to H = SO(4).

PROOF: To prove the compatiblity of functions f# for various choices of (T, ) associated to
SO(4) we reason as follows. We find it convenient to pass to the adjoint group G/Z, Z = Z(G)
in which T'/Z becomes a product of two tori. Germs are not affected (2.5) but we must replace
SO(4) by the product H = PSL(2) x PSL(2). We write T/Z = S; X S, where the tangent
direction in Sy is Ty — Tz and T} + T in Sz. Fix a function f € C°(G) such that pk (f) =0
if O is not 2-regular. Using transfer factors Ag’” we fix normalized subregular germs Ag,, Bg,
on H. Ag, are functions on Sy of the form ATy — T:|as,, as, a constant independent of S, (see

[LS]). Similarly Bs, = ATy + T2|bs,. By (2.9)

AZFRE™ = NTE — TE|e(T, &) = NT1 — Talas, uB (f0)-
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It was argued in (2.9) that fg, is independent of Ty — T2. The choice of fy; may also be made
independently of S;. To see this we use the explicit formula for fM in [R] and note that the choice
of fgs in the definition of QSR (2.10) may be chosen independently of S;. Thus we conclude
that pf' (fos) = A|T1 + Ta|b, or ¢(T, k) = as, b, for some constants bl . Reversing the roles
of Sy and Sz we have ¢(T, k) = a§, bs, for constants a; . We conclude that ¢(T, k) = aias,bs,
for some constant a;. Thus the 2-regular germ is oy A2|T2 — T2|as, bs, = a;As, Bs, which up

to scalar a; is the 2-regular germ on H.

§7 SPURIOUS DIVISORS AND SOME TECHNICAL DETAILS

This final section contains the remaining details of the proof of the transfer of orbital
integrals on GSp(4). It is shown that the construction in the preceding sections satisfies the
conditions of (1.1), none of the divisors outside of Yy contributes to the germ expansion, any
amount of blowing up along subvarieties of divisors outside of Yy has no effect on the subregular
germs, and the birational map E2(uo) — (P)* of (6.7) preserves principal value integrals.

To obtain coordinates outside Yy we construct the variety Yr from scratch. The variety of

stars is defined on an open patch S(Buo, Bo) by

(7.1) €—alsa)e—p(ra)e—alss)e_p(ra)e_a(s2)e_p(ra)e_alsi)e—p(r1) = 1.

1 1

where €_,(s) = and e_g(r) =

1
—s 1 1
Multiplying out the relation (7.1) we obtain

(7.2)
81+82+S3+S4=0
7'1+T2+1'3+7'4=0
reS1 + T3(31 + 82) -+ 7'4(51 + 82 + 33) =0
ros? + ra(sy + .92)2 +r4(s1+s2+ 33)2 =0

There is @ Gy, X Gy, action on S(Bso, Bo) given by (sq,7i) +— (ssi,rr;). There is an action
of the cyclic group of order four given by (si,7;) — (Si+1,7i+1) With indices read modulo 4
and an action of an involution given by (si,r;) — (—S1—i,—7r2-:). They combine to give an
action of the Weyl group on S(Bs, Bo) which commutes with the G, X Gy, action.

We note for future reference that the equation (7.2) imply
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(7.3) 798152 = —T48453 plus identities obtained by permuting the indices cyclically.

There is a proper morphism S % S where S1(Boos Bo) = 9 1S(Beo, Bo) is covered by

coordinate patches U(m,n) m,n € {1,2,3,4}. The coordinates and relations on U{m,n) are

r,s, R1, Ry, R3, R4, 51,52, 53,54 satisfying the relations
R,=5,=1

Si1+8S2+83+854=0

Ri+Rs+R3+R4=0

R2S1 + R3(S1+ S2) + Ra(S1+ S22+ S3) =0

R2SE + R3(S1+ S2)2+ R4(S1+ S2 + S3)2 =0

The morphism ¢ from U(m,n) to S(Be, Bo) is given by (Si, Rj,s,r) — (sSi,rR;). It is
proved in [H] that ¢ is a proper map from S; to S.

LEMMA 7.5. (a) S; is covered by patches isomorphic to U(1,1)

(b) Sy is nonsingular.

PROOF: (a) The patches S(Boo,Bo) as (Boo,Bo) vary are all isomorphic. So we may fix
(BooaBO)'

Let Z = {R:, R2, R3, R4, S1,52,53,S4} and for p € U(m,n) set Z, = {z € Z | z(p) = 0}.
The possibilities for Z, are calculated in [H]. Up to a symmetry of the Weyl group acting on

the indices they are

(7.6) a+b+c=0,y#0. Ifa=0 then bc # 0.
y a 0
0 c
-y b 0
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(7.7 a+b+c=0 z#0.Ifb=0 then ac # 0.
a 0 c
0 - X
b X 0

(7.8) £#0.If y =0 then z # 0.
Y X z
0 0
-y - X -z

(7.9) y#0.If z = 0 then z # 0.
y X 0
z - X
0 -z -y

where the variables are arranged around the squares as follows:

Sy R, Sy
S3 Ry Sy

Notice that (7.3) now states that the product of variables along an edge is the negative of the

product of variables along the opposite edge.

246



SHALIKA GERMS ON GSp(4)

By examining (7.6)-(7.9) it is evident that there are always two adjacent variables on the square
that are non-zero. By the action of the Weyl group, we may take the adjacent variables to be
R,,S;. Such a point is contained in a patch isomorphic to U(1,1). This proves (a).

(b) By (a) it is enough to prove that U(1,1) is nonsingular. We consider two patches A
and B.
(A) Let £ = Sy, y = S3R4. Then inverting the relations (7.2) we find

SIZ]. R1=1

(7.10) Sy=zy+y—1 Ry = —zy/(zy+y—1)
S;3=—-r—y—zYy Ry=z/((zy +y+z)(zy+y — 1))
Si=1z Ry=—y/(zy +y +2)

We see that = and y are local coordinates, unless (z,y) = (0,1) or (0,0). (Unless the
numerator and the denominator of R,, R3, or R4 simultaneously vanish, £ and y describe a
point in S;(Beo, Bo) although not necessarily a point in U(1,1)). By (7.10) it follows that

_ S3Ry  —-Ry R,
T Sy  S3R;  R3S3S4

d
(7.11) téfy/a:

Near (z,y) = (0,0) we may select coordinates (z,t) or (y,1/t) unless R, = R4 =S4 =0, R;=
S; =1, SRz = 0. But the list of possible patterns Z, in (7.6)-(7.9) shows that this never
occurs. We conclude that patch (A) (together with the variants (z,t) or (y,1/t)) covers points
such that (z,y) # (0,1), i.e., S4=0,S3R4=1.

(B) Let Sy = Ry =1, a = Sy, b= R3. Then inverting the relations (7.4) we find

Sl =1 R] =1
(7.12) Sy=a Ry = —b(1 +a)?/(1 + ba?)
S4 = —ab(1+a)/(ab—1) Ry= —(ab—1)2/(1 + ba?)
We see a and b are local coordinates unless ab = 1 and 1 +a = 0, ie., a = —1, b = —1

(Sy=—-1,8; = 1,Rs = —1).

Points in the complement of both patches must satisfy S4 = 0; R;,S;,S3, R3, S3, R4 # 0. This
is impossible by the list of possible patterns (7.6)-(7.9).

Next we turn to a calculation of t"'n~1t n € N for n € N,t € T. Using the notation following

(5.26) we let
n=m(ng,ng,n,,ns) (nl, = ny—ngng)

Y = m(Yp, Yas Y» Us) (¥4 = Yy —Ya¥p), ny€EN

t = diag(t, ta,t5 " ,t71) € T.
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LEMMA 7.13.

Yo = (1 —tat7ng

yp=(1-t3%)np

vr = (1= t37t7 Inq + (877477 — taty nang
v, =1 -t Dy + (637 = Dnang

ys = (1 —t7%)ns + (13 't71 — tat7 ngn),

provided y = t " n"1t n.
PROOF: Elementary matrix computation.

Identify Bp with the group of upper triangular matrices and fix an ordering on the positive
roots a choice of root vectors by the condition

H CZP(Z('YI)X”/’) = m(z(ﬁ)a x(a)v 1(7)’ .’1:(5))
o

By definition (3.12) w(a) = w(8) = 1, w(v) = Ayy/yayp and w(8) = A%ys/y2yp so that with
a=t1t;1,8 =134 = t1t2,6 = t? we have:

(7.14)

wln) = (L—~"HA Ny (vt —a71)A
) = T () * Tt

w(6) = — 07 (2 >+( (' —aY) ( - ).

T =a 20 =57 \nlng/ T (1=072(1— 57 \nang

To complete the description of w(y) and w(é) it is necessary to compute n,/(nqang)) and
ns/(ning) in terms of coordinates on the star variety. The functions n4,ng,n, and ns are
determined by the relation Bnyn~=! € Bw for all w € W (the Weyl group) with W = W (w) (a
Weyl chamber).

LEMMA 7.15. nl/nang = S4/S1, ny/(nang) = (S4/S1) +1, ns/(ning) = (R1S4)/(R4S3),
2(a@) = —s4A /(1 — a™1), 2(B) = riA /(1 — B71).
PROOF: The final two relations are found in both [L] and [H]. By nwn~! € Bw we have (by
writing out these matrices)

ne = —1/sg,npg = 1/ry,nl, = —ng/s; = —1/ris1. ny = nl 4+ nang = —1/ris; —

1/r184, T484n5 = N + Tany = —1/s4 — ra/r181 — r4/r184 = —(r151 + S474 + 1r451)/r15154 =
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—r383/(r18184) = —r3s2/(—s2r3s3) = 1/s3, ns = 1/(s3ress) = —1/(rzs152). We have made use
of (7.2) and (7.3). This completes the proof.

Now combining (7.14) and (7.15) with A = (1—a~!)/A, B=(1-6"1/A, C=(1-
v~ 1 /A, D=(1-6"1)/X we find

(7.16) . o
wi)= (24 + L)
_ C S4 1
~  ABs, B
w(ﬁ) D (7'184) (A - C) S4

~ A’B (ras3) (A%B) s1
(341'1))( D ris; (A-C) r433)
(rass)’ A2Brs; A2B rysy’

We are now in a position to identify all divisors and calculate their associated constants a(E),

b(E), B(E). By (7.5) we may assume that R; = S, = 1.

Begin with the assumption that g =d¢f (A?B + AA;—g-R453) # 0 at p, a point on the divisor

E. We consider several patches. We begin by using (7.15), (7.16) to rewrite the equations

A
=) = @)

A
‘0= )

Aw(y

in the form.

(7.17)
)= R4S3S4s%rz(6)
- A?Bg
—S3Ryrz(6)s
(o) = —————"—
33R4S462.’E(5)
z(f) = 22240es 20)
(9) = 22
—S3Rysz(6) { C 1
= 28\ (25, + —
z(7) AZg A8 B
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(¢ #0, Patch A (z,y) # (0,0) z=254,53Rs=1y)

_ yzs?rz(8)
~ (42Byg)
The form w = dX dz(a) dz(B) dz(vy) dz(8) dv in these coordinates becomes (we may treat

(7.18)

A,B,C,D as constants as A — 0)

AA AB, Aw(7)AB

w=d\ d(—S4s) d(—r--) d( ~Sior ) dz(6) dv
A3z(6) CD |, dsdrdz

We obtain the divisors on this patch
E, defined by z =0; a(E;) =1, PB(E.)=3, S4=R2=R3=0,

o) = 22 Zse+ )

E, defined by y =0; a(Ep) =1, B(Es) =4, R2=R4=0,z(a)==z(8)=z(7)=0.
E; defined by s =0; a(E2) =2, p(E2)=3,z(a)==2z(8)==z(y)=0.
E, defined by r =0; a(Eq) =1, PB(Ea) =2, z(a) =0, etc.
E;4 defined by z(6) =0; z(a) = z(8) = z(y) = z(6) = 0.
Now we drop the assumption that (z,y) # (0,0) and introduce the assumptions g # O,
Patch A, coordinates t = y/z,z (y = tz).

(7.18) and (7.19) become

_ tz?s?rz(6)
A2Bg
\3z(8)CD |, dsdr
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We have previously considered the divisors given by t =0, s=0, r =0, z(6) =0. We
obtain the new divisor given by z = 0.
E.given by =0; a(E.) =2, B(E:.)=17/2
Now we drop our previous assumptions and introduce the assumptions g # 0, Patch A,
coordinates u = z/y,y (z = uy).

Equation (7.18) becomes

_uy?s?rz(6)

A
A?Bg

It is easy to see that all of these divisors meet a patch previously considered.

Again we drop our previous assumptions and assume that we are on patch B with coordi-

nates a, b and that g # 0. We have by (7.10) and (7.12)

—ab(1 + a) _ (L+a)(1—ab)
Toab-1 - 1+ ba? )
Since a = Sz and b = R3. If ab = 1 then S R3 = 1. But 1 = SoR3 = L so that
zyt+y+z
-1
(z,y) # (0,1). Likewise if 1 + ba? = 0 then S2Rs = —1. But —1 = S2R3 = seyty=1)
Ty +y+cz

that again (z,y) # (0,1). Since we have already investigated the divisors for g # 0 (z,y) # (0,1)
we may assume ab— 1 0 and 1 + ba? # 0. (7.18) and (7.19) become

_ab(1 + a)?s%rz(6)
"~ (1+ba?)(A2Byg)

.3 (1—ab) ,[(1+a)(1—ab)]| dsdr  [ab(l+a)
0=l g [ T+ ba? ] Tl [1—_7] dz(8) do.

s r?

The three divisors s = 0, r = 0, and z(6) = 0 have already been considered. If (1 +a) =0
then Ry = S3 = S4 = 0. Thus (z,y) = (0,0) and we find that (1 + a) = 0 defines the divisor
E. considered above. If b = 0 then S4 = R3 = Ry, = 0. (z,y) = (0,—1 — a) and we find that
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b = 0 defines the divisor E,. Finally if a = 0 then S; = §4 = 0 and (z,y) = (0,1). Call
this divisor Eq. We have a(E4) = 1. Moreover, writing (1 + a)(1 — ab)/(1 + ba?) = am; + 1,
b(1+a)/(1 — ab) = m, we have

(14 a)(1 — ab) ab(1 + a) _ B d(ami,ams)
d[ 1+ ba? ]d[ 1—ab ] = d(am,) d(am;) = Wda db.

Clearly ¢~ 8(ami,am2)/8(a,b) is regular at the generic point of E;. Consequently
B(E4) > 3. At this point we drop the assumption that we are on patch B with g # 0 with

coordinates a, b.

If g = 0 at p € E then by the definition of g we have S3R4 # 0. Also the assumption that
the tangent direction is regular implies that S3R4 # 1, or that (z,y) # (0,1),(0,0). Thus we
are on Patch A. Also the assumption that E does not meet Yy of (3.7) together with SzR,4 # 0,
S3R4 # 1, S = Ry = 1 implies that Sy = 0 at p. In fact, using (7.3) twice we have 0 =
51525384R1RyR3Ry = —S525,52R2RyRy = (S,R2S3R2)S3 hence S4 = 0 (Sy, Ry, S3, Ry # 0).
Since w(v) = 4554 + 5 we have that w(vy) # 0 at p. The relations (3.7)

become using (7.15) and (7.16)

_ —zsrz(y) _rz(n) _ —zsz(y) _ —ywsz(6)
=g =5 2f)=———, z(g=—7—

If z(~) # 0, then this last equation, together with the definition of g, yields

1_ BA? [——ws:z:(&) B ((A—C))] ‘

y D | Az(y) A?B
This is non-zero on patch A so that y is given by the reciprocal of the right hand side of this

equation. If z(6) # 0, then we obtain

s —Az(v)g
ywz(6)

If z(v) = z(8) = 0 then z(a) = z(B) = z(v) = z(6) = 0 and we obtain the divisor E;4 which is
irrelevant for our study of subregular and 2-regular germs. The only possible new divisor on this
patch is that given by z = 0. But z = 0 implies z(3) = 0, and by (7.6)-(7.9), R = R3 = S4 = 0.
We recognize this as the divisor E,.

We summarize the results in the first part of the following proposition.
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PROPOSITION 7.20. Let V be the open subvariety of elements in Y1(Boo) which do not lie
over the identity element. Then
(a) V is non-singular,
(b)  divisors have normal crossings in V,
(c)  divisors which do not meet YNV make no contribution to the germ expansion of k-orbital
integrals for k nontrivial,
(d) IfE is a divisor which does not meet Yy, B(E) < 3, and T is an elliptic Cartan subgroup

then E has no F-rational points.

PROOF: (a) and (b) have been verified on each patch.

(d) Up to conjugacy by the Weyl group the only divisors not meeting Yy are:

E, B(E)-1 =

Ey ﬁ(Eb) -1 =3
Ec ﬁ(EC) -1 = 5/2
E; B(Ed) -1 >2.

The condition that B(E) < 3 forces E = E, on which S4 = R, = R3 = 0. The corresponding
pattern is (7.7). Let p be an F-rational point of a divisor under the action defined in (3.12). It is
clear by (3.12) that if z;(W, a;) = 0 at p for some W and simple root a; then z;(c7'W, ;) =0
at p. In other words the set Z, of (7.5) is invariant under the Weyl group elements or € Wz. The
symmetries of pattern (7.7) fix a chamber wall, hence the elements o7 of W1 do as well. This
chamber wall corresponds to a proper parabolic subgroup over F' and W1 may be identified with
a subgroup of the Weyl group of P. It follows that T is stably conjugate to a Cartan subgroup
of P and hence that T is not elliptic.

(c) The germ expansion, excluding the germ of the identity element, has terms of homogeneity
0,1, and 2. A divisor E contributes a term of homogeneity B(E) —1 (1.1). The only possiblity
then is E, and homogeneity 8(E,) — 1 = 2. But we have seen that if £, has F-rational points T
is not elliptic. If T is not elliptic, the germ expansion reduces to an expansion on a Levi factor

for which the terms have homogeneity 0 and 1 but not 2. The proposition follows.
PROPOSITION 7.21. The morphism defined by (6.7) preserves principal value integrals.

PROOF: First we remark that the morphism extends to Eg(uo) — P! x P! (¢4, &;) with &1, &,
defined by (6.7). In fact, this morphism has a simple geometric interpretation. Let (b, (B(W))) =
(bo, B3™)¥. By the discussion following (6.1) nwv = ezp(2w X_p) for appropriate choices of

2w for points of Eg(uo). €1 and ¢, have been chosen so that ¢; = zw, and ¢, = zw_ where

253



T. C. HALES

W_ is the Weyl chamber opposite W,. Thus E3(uo) — P! x P! (&1, £2) may be identified with
the morphism Ej(uo) — P! x P! = Bo\Pg x Bo \ Pg, (b, (B(W))) — (B(W.),B(W_)). From
the definition of £(= ¢;) following (6.1) it is clear that ¢, = zw,. But é; = 0,0304,04(&1) =
0408040a(2w, ) = zw_ by (6.9) and the fact that oa0p0,05(B(W4)) = B(W_).

Next we prove that the birational map Es(uo) — P1(£;) extends to Y1(Boo, Bo) N E2(uo).
Up to a linear fractional transformation (6.7), (7.16) £; is equal to (S R1)/(R4Ss). By (7.3)

SiRy _RsSs —RiSy —R3S,
R4Ss ~ R2S1 R2Sy R4Sy

The morphism does not extend only if all the numerators and denominators in (7.22) simula-
taneously vanish. But if S; # 0 then R;, R;1+; = 0 which implies that R;;2, R;+3 # 0 so that
Sit1 = Si+2 = Sit+3 = 0 contradicting S; + S2 + S3 + S4 = 0. Thus the map extends.

Next we check that the birational map E2(ug) — P! (wp) extends to Y;(Boo) N Ez(uo).
Up to a scalar wp equals (7.16), (7.3) S4/S1 = —R2S2/(R4S3). By the patterns of (7.6)-(7.9) it
is not possible for S4 = S; = R3S2 = R4S3 = 0 so that the map extends.

By considering the zero patterns of (7.6)-(7.9) and assuming that T is elliptic (T is elliptic
when the 2-regular germ is non-zero) we may assume that we find ourselves at an F-rational

point so that one of the following holds:

) Si#0 R;#0 Vi

(7)) S1=83=0 Sy, Rj # 0 otherwise
(f27) Sy =84=0 Si, R; # 0 otherwise
(fv) Ri=R3=0 Si, R;j # 0 otherwise
(v) R2=R4=0 Si, R;j # 0 otherwise

Next we check that the birational map E3(uo) — P! (w2) given by (6.7) extends to Ex(uo)N

Y1(Boo)- Up to a linear fractional transformation it is enough to consider £, /wp or even

def S17r1 S4
¢ (1= 2y 2,
483 S1

1—b-—2ab
W. On patch B (a,b) ;é (—1,—1)

so that this gives a well-defined point in P!. If wg = 0, then S4 = 0 so that we fall into case

On the patch (B) of (7.12) g is calculated to be ¢ =

(iii). But in case (iii) Ry = Sy =1, Sz # —1 so that points of case (iii) lie in patch B. This case

has already been treated. If wg = co then S; = 0 so that we fall into case (ii). But in case (ii)
8171 RSy
-2 = (4
( 7483> ( " 3252)
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is finite, so that the map to P! extends to such points. Finally, if wp # 0,00 it is easy to see
that the map extends.
We consider coordinate transformations from one chart to another. We compare coordinates

for the pair (Boo, Bo) with those for the pair (B, Bo) = (BL,, Bo) with n € No. We have

"

(7.23) (b, B2%)¥ = (b", B )V'™

where nw,v € Noo, nii, v € B, b"" € By. Write vn™! = byv". Then b% = b". Write
bs =38y, s = diag(sl,s2,sz_l,si’l) y= m(yﬂayaay'yy y6) Then
(7.24)

z(a)” . z(B)" _ 2Tazyps+ 1 z(v)"  slygz+w  z(6)" s

= s S N 3 = ) = s
1 z(B) 52 z(v) S189W z(6) 1

___%B @ g%
(2T22s2yp + 1)’ (2T22skyg + 1)’

leze

wh =
where doubly primed objects are the corresponding variables on the new coordinate patch. Also
n s%z

2= 2
2T2s2ys + 1

We remark that this is the most general coordinate transformation that need be consid-
ered. For let By, B, be any two Borel subgroups. If there are any points of E2(uo) on
Y1(Bw), Y1(Bl,), say (p, (B(W))) and (p’,(B(W)')), then B(W.) € €3, B(W.)' € £3 the line
of type B in the variety of Borel subgroups contain ug. Since the set of Borels opposite By, is
open and B(W,) € £z and open sets of the Borels in £5 are opposite By,. Likewise for B.,.
Thus there is a Bo € ¢g opposite both B, and B, so that B, , = BZ for n € Ny C Bo.

We have

n

=vn"! = exp(€ X_p)ezp(—u Xg) mod Ng

_ <1/(1(; €u) 1:u$u> <€/(11— ) (1’) mod Ng

So that s1 =1, s2 = 1/(1 — €u), v’ = ezp(€"X_p), " = £/(1 — &u), sayp = —u,

bgv

z(a)” _ 1 z(B8)"
z(e)  (1-¢u)"  z(B)
w" (1 fu)wp " (1 - éu)w

= - > "n_ " _ "_
B (—2T22u +1 - fu)’ N (1 = éu — 2T22u) ¢ ¢, 1=4, =6

= (1-€u)(1-€u—2T;z2u), mx(q)” = —uz+(1-€u)w,
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" 2 & (1= (£+2T2)u) 4

2z = —_— = > e

(1—¢u—2Tpzu)(1 — €u)’ wh (1— &u) wp’
Since £ = £, the birational map E;(ug) — P!(£;) extends. Selecting u so that (1—£u) # 0
(¢+2T,u) # 0) the birational map E(uo) — P1(¢;/wp) extends so that Ez(ug) — P(w,)

does as well.
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