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INTERTWINING OPERATORS AND UNITARY REPRESENTATIONS II

M. W. Paldoni-Silva* and A. W. Knapp '

For a linear semisimple Tie group ¢ with a compact Cartan
subgroup, the paper [5] derived explicit formulas for the action of
intertwining operators on standard induced representations. These
formulas had been announced earlier ([1], [2], [%#]) and had been used
in combination with some known results to classify irreducible
unltary representations in certain situations (arbitrary such
representations for 8U(W,2), as well as most Langlands guotients
obtained from maximal parabolic subgroups for general G). The
present paper gives the derlvation of the remaining previously-
announced formulas, handling the case of standard induced
representations attached to a maximal cuspidal parabolic subgroup
when G has no compact Cartan subgroup. These formulas were
announced in [3] and [4] and were used in classifying irreducible
unitary representations in further situations (groups of real rank
two with restricted roots of type A2, as well as other Langlands
quotients obtained from maximal parabolic subgroups for general G).

The background for the formulas is as follows: The Tanglands
classification deseribes the irreducible "admissible" representations
as the unique irreducible quotients ("Langlands gquotients") of
standard induced representations. The irreducible unitary
representations in turn are those Langlands quotients that admit
invariant Hermitian inner products. It is known when there exists an
invariant Hermitian form, and the question is one of deciding
positivity of the form. The form is unigque up to scalars, if it
exists, and 1t 1ifts to the standard induced representation.

¥ Partially supported by National Science Foundation Grant

DMS 85-01793 at Cornell Umiversity.

** supported by National Science Foundation Grants DMS 85-01793
and DMA o7 -11593,
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M. W. BALDONI-SILVA, A. W. KNAPP

Relative to the (non-invariant) Lg immer product ¢n the standard
induced representation, the form is given by an explicit integral (or
singular-integral) intertwining operator. The question is whether
the interiwining operator is semidefinite.

Rather than try to evaluate the integral operator, we follow a
gstrategy that was used extensively by Klimyk, often in collaboraticon
with Gavrilik, for particular groups {see, e.g., [9]). The strategy
is to take advantage of the intertwining property to relate the
operator on one subspace to the operator on another subspace. TIndeed
it turns out in prineiple to be peossible to compute the form glcobally
just by computling the L2 inner product of an arbitrary iterated
representation-image of one particular function with itself.

In the present paper we consider the case in which the standard
induced representation comes from a maximal cuspidal parabolic
subgroup of G. IT this subgroup is a1l of G, then the standard
representation is a discrete series or limit of discrete series and
hence is unitary. Thus we may assume G has no compact Cartan
subgroup. We shall derive twe formulas, one for the effect of a
single step within the TLie algebra and one for the single step
followed by a step back to the start. In two applications we give
special cases that correspond to two previously announced results
(Temma 14.3 of [4] and Proposition 4.1 of [3]).

Contents. 1. Qccurrence of K types in a tensor product.

2. Representations to be studied. 3. Necessary conditions for
unitarity. 4. General formula. 5. Application to 8o (0dd,odd).
6. Application to certain groups of real rank two.

1. Qceurrence of K types in a tensor product

et G be a linear connected reductive ILie group, and let X
be a maximal compact subgroup. We dencte Lie algebras by
corregsponding lower case German letters, and we write € as a
superscript to indicate complexifications. TLet 8 e a Cartan
involution of g with respect to t, and write g =1%p as the
corresponding Cartan decompositlion. We fix on g a nondegenerate
symnetriec bllinear form BO invariant under & such that ad g
acts by skew transformations, BO is negative on Ix1 , 38 i;
O(I,P) =0. We extend B. to ag%xg

positive cn pxp, and B 0
g0 ag to be complex bllinear.



INTERTWINING OPERATORS AND UNITARY REPRESENTATIONS [T

Throughout thls paper we assume that g has no simple factor of
type G, (real or complex). We fix a maximal torus 5 in X and
let 7be the centralizer ¢f B in g. Then t dis a maximally
compact 8-stable Cartan subalgebra of g ({see p. 129 of [12]), and
E,tqj) he the set
The form B induces an

0
inner product {.,:) on the set of linear functionals on tqj that

we can write t=bPe with o < p. Let & = Ag

of roots of gC with respect to 1,

are real-valued on 1ib ®a , and we write p'oip" i (ut,u"™ -0.
In [5] we worked with the special case t =b. Thus for now
our results will generalize those in [5]. &gtarting in §2, we shall

introduce further assumptions that make the situation in this paper
disjeint from the one in [5].

If /2 1s a root, we often write 8-8

i sfp with gp - BI . and

at 1
Br=8ly - DMNo root has ‘BI =0 since t is maximally compact. (See
Proposition 11.16a of [12].) ret

Ay = (peal eaf =o).

B
The root vectors for the members of .{\E 1ie either in ‘.m or in
]‘Jﬂj , and we call the corresponding roots compact or noncompact,

respectively. Let

}

& = {eompact roots in A

E,c B

A = [noncompact roots in AB} .

R,n

We use a bar to denote the conjugation of gm with respect to

g - ifr g =;3R1’ -BI is a root, then we are Jed naturally to roots B

and BA, and these are given by E:BP -5 and 63 = -8

T R

Hence 6F =-3.
Using [7, pp. 155-156], we can select root vectors X, for g8

in A in such a way that

2

&3
&

BO(X‘,X_B) =2/ (1.1a)

and

For a real-valued linear functlional w© on ib&a, we let Hli be
the member of 1b©a such that u(H) = BO(HH,H) for all H.
(Warning: This normalization is different from the one in [5].)
Then it follows from (1.1) that
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P2

. (1.2)

for pean.

Propositicn 1.1. The selection of rcot vectors as in (1.1) can
be dene in such a way that SXﬁ = Xﬁg for all geA-4

B-

Remark. We assume henceforth that the selection is made in this
Way.

Proof. Under the assumption B fAB, g 1is neither real nor
imaginary. Hence {f, -p,B84f, -8p} is a set of four distinct roots.
First let us make a selection of XB’ X-B’ XBB’ X-BB so that (1.1)
holds. New we shall normalize this choice. Let us write

BXﬁ = aXBﬁ and Bx_ﬁ = bX-eﬁ‘
Then {1.la) implies
-2 B
2ap|p| ™" = abB,(Xy X g5} = By (8, 0% _4)
2
= B. (X, ,X =2 ’
and ab = 1. Thus we have
86X, = aX and 8X , = a”1x )
& 8B -p -9p
and application of 8 gives
0%, , = a x and 8X = axX , .
9g g =98 -
Using {1.1b}, we obtain
- = BX, = ax, = ~-afl = -aaX
X_IB XIB XB& X'BB -8’
and aa = 1. Let us leave X{3 and X_IB unchanged, and let us
redefine
XGB = aBXﬁ and X—BB = aBX_ﬁ.

Then (1.1) is unaffected for £, and aa = 1 implies (1.la) holds
for the new Xgg and X gp - Moreover {1.1b) holds for Xap and

X since
-9p

Bi%ﬁ = e(aeﬁb) = afﬁ = —aBX__!S = X g
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INTERTWINING OPERATORS AND UNITARY REPRESENTATIONS I

and
8% = 9 (as¥ = ax = -aB¥X_ = -X._ .
-8 (X ) -p p 9p
This completes the proof.
Let us fix some lexicographic ordering for a . I A is in

A-—AB, we can form the four roots g, -B,83, -89 of the preceding
proof. Two of these will have positive eqgual restrictions to a,
and the other two will have negative equal restrictions., The

relevani pairs are (f, -08) and (-f,88). From the decomposition

P =1l a2ale T .o T ox

A B B’
Ben AB ﬁEAB

we thus obtain

t? ~ vl ¢ £(X, +%g,) @ T 6%, (1.3a)
pra-ig pedy o
Bl >0

n€ - o® en;‘? B, - Ygy) ® T X, (1.38)
.BC‘—‘"i\-B : ;E./},B’
(ﬁ’a 0

Ap = 1B ! B€A—AB’H}

My = [BI Ip EA'_AB,C]'

From (1.3&) it follows that we can identify AK with the root system
A(iﬂ,bC) of t% with respect to vl . Trom (1.3b) we can identify
f,, as the set of nonzero weights for the action of Ad(K} on pl
moreover cach of these weights has multiplicity one. Note that
AKJWAn;éﬁ as soon as A contains complex roots.

Lemma 1.2. If B 1Is in A, then Iﬁl!g = C'ﬁ‘e with
1 —
¢ =g, 5, OF 1.
Proof. ¢Calculation gives
2B, B .
TaE Tt (1.4)

The left side of {1.4) is an integer from -2 +to +2, since
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[a]l = |E|] . The fact that there are no real roots implies (1.4} i=s
neither 42 nor -1: If it were +2, A would be a real root,
while if it were -1, f+5 would be a real root. Hence 2-Uc is
+1, 0, or -2, and the result follows.

Lemma 1.3. If Y1 is in A

and ﬁI is In A, then either

K 1§}

BI:=i2yI with BI EAB,n, or else

- 2
2prv 2 /vl (1.5)
is an integer from -2 to +2.
Proof. It is an integer since BT l1s a welght of pC under
the action of Ad(K). <Choose £ and y in A with @#=§8_+8
- S P N T
and Y"YR'+YI' By Lemma 1.2, YI = c|y wi o=

%, or 1.
If e=1, then y = Y1
is between -2 and +2. (

, and (1.5) equals 9(5’Y>/’Y12, which
Recall we are excluding Gp from our
caonsiderations. )

If ¢ = %, then (1.5) is

2<151Y> 2<B’Yj .
TTWIE TR (-

and this can be greater than 2 1in absolute value only if y 1s
short and @ is long. 1In this case both terms of {1.6) are even,
and the two terms must reinforce each other. Without loss of
generality, suppose

2{B,Y) 2{g. ¥

- =
[yl fyl

Then B -y 1is a short root, and vy .y implies

2<B'Y17}
Since B -y and y are both short, we conclude £ -y = -y . Thus
A=y -¥. Since the difference of the orthogonal roots y and y

is a root, so is the sum. But y-+7 is real, and we have a
contradiction.
If ¢ = %, then EYI is a root, and (1.5} esquals

136



INTERTWINING QPERATORS AND UNITARY REPRESENTATIONS IT

E(B,EYI)
EN

which is even. Tf this integer is greater than 2 1in absoclute
value, one possibility is that 5 = iSYI. Then BI’:E is in AB’
The other possibility is that £ is long and

hence is i .
ence 1s in AB n

L]
2y; 1is short {and hence vy 1is short). Lemma 1.2 gives

2 z 2 e
8ly_1% = 2[2y; 1% = [8]% = (4 or 2 or 2)|5;|7,
so that
2lpl
L (247 or 4 or U /7) .
v |
Thus the Schwarz inequality gives
Koy | 2led
| {—%=(2F or b4 or 4y3). (1.7)
v ] v !
It 4 is attained in (1.7) with |g]®=2]p_|%, then the ecuality in
the Schwarz inequality forces By = dyI for some d. Since (1.5)
is x4, 4 is 2. So 5I=12\;I. Since 2\'1 is a root, it

follows that BRf=B -ﬁI is a root, iIn contradiction to the fact that
there are no real roots. We conclude that 4 is attained in (1.7)

with |,B]2 =|ﬁI|2 , i.e., with £ 1imaginary. Then we have
4 = = = N
2 1 2 I
vy ! vl M

and |2¢p,v)/1v 1%

contradiction.

- 1. This equality forces |g| < vl ,

Temma 1.4, If y; isin A, and Bp 1s in A with
YIRS — - 2 _ 4 T2 _ 2

Proof. SupposeG By # Yy and let Np=B8p+Y- This is a

nonzero weight of »p and hence 1s in AN et R, Y, and n be
extensions of ﬁI s Yoo and ub to members of A, not necessarily
consistently. By Lemma 1.2,
2 a 2 2 b 2 2 c 2
P T M e 1 L N et
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for integers a, b, and c. The norms squared of any two roots in

A are in the ratio of 2, 1, or %, and thus [51[2 = Qd!YI'E
and |ﬂ1|2 = 28ly1|2. Expansion of $51-+YI|2 gives
2 2
Inc 1% lagl® 2,7, lo 1?
T Py SR s L

v 1® Ty 1?0 Tyl A

YI I YI YI
Hence 2° = Ed-l, and the only posslibility is that d=1 and
e=0.

Starting in §2, we shall work with a specific choice of AT,
the set of positive roots within A, and we shall let A; be the
set of restrictions of A+r1[(a-AB)U by o] . But for now let us

r

suppose that A£ is any positive system for AK. If wK denotes
Ly
b

the Weyl group of AK and if pu' isg a linear functional on
that is real-valued on ib , then there exists w EWK such that we'!
% deminant, and we write (u')” for the dominant form.

We say that a linear form ! on bC is integral if exp u’

is well defined on B. If p' is integral, then Q(p’,yl>/lyl[2

is A

is an integer for every Y1 € AK' (Recall the argument: If
v eA-AB,n restricts to Yr» then v gives us a copy of su(2)
within g . Since SU(2) is simply connected, 1t maps into G, and
our assertion follows from known properties of SU(2) .)

Because ¢ 1is linear, u!' integral implies E(p',ﬁ)/ﬁﬁlz is

an integer for every A<€A . This assertion follows because the

B,n
isomorphism
gl {2,R) == (CHﬁ +CXB + CX_‘B) Ng
and the linearity of ¢ give a homomorphism of §L(2,IR) into G.
If A' is integral and is A;;_ dominant, we let T,, be an
irreducible representation of K with highest weight A'. We

shall regard nC ag a representation of K under Ad(K); we have
observed that the nonzero weights of p@ are the members of An’
each with multiplicity one. The weight 0 has multiplicity equal to

dim a .

Proposition 1.5. TLet A' be integral and a dominant. Then

+
(2) every irreducible constituent of Ty 24 pg has highest
wejght of the form A'+p with B in AnU fo}.
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INTERTWINING OPERATORS AND UNITARY REPRESENTATIONS I

b every irreducible constituent of T, ® ¢ other than T
pr BP0 STOEX TRAR Taa

has multiplicity one.

This follows from the description of the weights of pc and

from Problems 13 snd 1} on p. 111 of [12]. We sharpen this result in
Thecrem 1.7 below,

If A' is dominant integral, we let AK,A' be the subset of
orthogonal to A'. This 1s a rool system, and the

¥ A

rocts In AK

simple roots of A flﬂg are simple in AL since A' 1is

Kyt T CEGAT K
W , be the Weyl group of A ;5 this 1s the
K, A L

subgroup of W, fixing A', by Chevalley's Lemma {p. 81 of [12]).

To simplify the notation, we shall drop the subscripts "I

from members of AK and An for the remainder of this section.

dominant. Let

Temma 1.6. Let A' be integral and A% dominant, and let 8

be in A . Then (A'+p)Y 1s of the form A' +pf with 8' in
AnU {0}, and B' 1is obtained constructively as follows: TLet By

be the result of making £ dominant for At by means of
K, o' —_
W, }. Then exactly cone of the following things happens:
K, AT 1%
{a) At +gy ds AE dominant, and B' =8, .
{(b) Thers exists a A% simple root y with 2(A',Y)/|y|2==+l,
2{n ,y)/}ylgzz—z. In this case f,=£,+y 1is in U{o}. Either
1 —————— 2 1 — —_—
A' 1s the result of making B dominant for A by means of
2 ————— "KM —_
Wg pt)s or B'=0.
Proof. Lemma 1.2 of [5] handles the special case a =0. In

the general case, we argue as in that lemma, fixing the proof as
necessary. If (a) fails, we are led to a Al simple root vy as in

K
{b) or else to a A% simple root ¥ with
2{A, sy 2{A B,y
__Iig_<-2 and ﬁ%———<o.
Y Y

In the latter case, Lemma 1.3 says ﬁl==—2y and By is in AB -
Lis
Since ¢ is linear, Q(A’,ﬁl)/lﬁllz

2(A',Y>/|Y|2 = 42, and we have

is an integer. Thus

sY(!\.' “8q) = (v -2y) -z, = A,

Hence 8'=0. {In any event By by is din A U {0l by
consideration of the vy weight string.)

fo we may assume vy 1s as in (b). Lz in [5], At 28 is
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conjugate via WK

'=0. Otherwiss Lemma 1.4 gives

to A' +B,, where By=p,+y. If f,=0, then

2 2 2
15,12 = 21p 12 = 21y|?. (1.8a)
Let 53 be the result of making B, dominant for AE,L" say
= i | - T —
B wﬁ3 with wesz,ﬁ,. We shall show that A O or B 53.
Notice that
2 2
leal= = lo,t" . (1.80)
If A'—+53 is not AE dominant, then we can repeat the argument in
the first paragraph of the proof to find y' simple for AE with
either
2(.".le|>
L =42 and By = ~2y' € ap o
v! ’
or else
2(at,y " 2ABosy ™
DT a3
Ly [y
In the first case, sy,(A'-+ﬁ3) = A', so that p'=0 and we are
done. 1In the second case, ﬁu::ﬁ3-+y' is such that AT +p, is

conjugate to A +ﬁu . It 54::0, then p'=20
Dtherwise Lemma 1.4 gives

and we are done.

2 2
851% = 21y 1% = 2ly1]%. (1.8¢c)
From the equation By=Bo~-y., we have
2(ppwy 'y 2Aps,wyy 20y, uy
T T T T 2
ty Ly byl
2Byt 2y,wy ) 2y, wy
_ BB’g _ o S Al (1.9)
1 t '
[yl |yl byl
Lemma 1.3 thus implies
fy = -2wy' e Ay (1.10a)
or
{yowyy €O (1.10b)
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INTERTWINING OPERATORS AND UNITARY REPRESENTATIONS [T

If {1.10a) holds, then the linearity of ¢ forces
2
2,80 /1841

to be an integer. This integer is
2{A, 2wy 1) (A, y 1)
1

- = % = =T o
ylyr|® by

contradiction. So (1.10b) holds.

In (1.10b), first suppose {y,wy!'> =0. Then (1.9) is -2, and
3
Lemma 1.1 says that either Bq=-wy' or |51[‘::2|y'|2; in either
case, (1.8} gives a contradiction.

We conclude that {y,wy') < 0, so that v iwy' 1s in A

by

3
vrom {1.8) we have |y|2 = 2!7'12, so that |y rwy'|” = [v112 and
E(Y;WY‘)/IY'!Q::—Q. Substituting into (1.9), we obtain
2(511Y+WY'> 2(51;Y> E(ﬁl,WYr> .
> Tt — = -hro=-h,
fy+wy?| 3vi [v 1]
and Lemma 1.3 gives ﬁlff—Q(y+wy') € Ap e Since ¢ is linear,
E(A‘,Bl>/!51|2 is an integer. This integer is
-2(AT, 2y42uwy ') 2(h, ) . 2(A Wy ") 3
z - z = =
2]yl v | [y

contradiction. This completes the proof of the lemma.

We come to the main theorem of this section, which goss in the
direction of identifying the irreducible constituents of Tn,8>bE.
Cur result will not handle every case, but we state it in enough
generality so that it includes both the situation & =0 and the
cases that are needed for our applications in this paper.

Theorem 1.7. Suppose that the length squared of any {(wo members
of &,UA  stand in the ratio £, 1, or 2. Let A' be integral

and AE dominant, let 5 be in A , and suppose A'+p3 1s A%

dominant. Then TA'+B fails to occur in The & p if andlonly if

there exists a AE simple root ¥ such that v 1s in ﬂ; Ao
oW

Yifp, and both y+p and v-2 arein A U{0}.

Proof. It is a routine exercise 1o take the proof of Theorem
1.3 ef [5], which handles the case a =0, and adapt it to the
situation here. The formula that replaces (1.1) in [5] is
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¢ .
Ty, ®p” = (dimadr,, + L sgn(At4pt48 0T 0y oy v e
A A prea K7 (AT4R +5K) by
where éy is half the sum of the members of Ag.
Theorem 1.8. Tet w' be integral, let A' = (u')Y, let B be

in A_, suppose T(u,ﬁﬁ)« occurs in T1,,® pC, and suppose

n
{prap) A AT, Tet ® = E( be the projection of Tn,:gpc on
u

g )
the (H'+%)V subspace (along the subspaces for the other K
o
types). If v' 1is a nonzero welght vector for Tt,, with weight
b ASIcs = A BN A < L
", then T wivie X is nonzero.
1. then T gy (V1@ X,)  Zo momsero

Remark. This theorcm generalizes Theorem 1.5 of [5], which
handles the case a =0.

Proof. Tor much of the proof, we shall assume that u'=A"',
i.e., that u' 1is Aé dominant. First suppose A' +5 1s AE
dominant. Then we can trace through the first part of the proof of

Theorem 1.5 of [5], adapting the notation to allow for the 0O welght

space in pqj to be nonzero, and see that E(v'e® XB) # 0. The next
cage to consider is that A' 188 1is AE dominant for some s in
WK,A‘ , and the argument for Theorem 1.5 of [5] handles this case

as well.

Next we conaider general 6. Choose & 1n wK,A' such that
sf is AQ,A' dominant. &inece (A'+8)Y #£ A' by assumption, the
previous pa}agraph and Lemma 1.6 show that there is a A% simple
root vy  with Q(A‘,Y)/|Y|2 = +1 and 2(sﬁ,y>/|y|2 = -2. Put
ﬁg:rsﬁ by - Then Lemma 1.6 shows that A +s'52 is A% dominant
for some s' in WK,L" By the result of the previous paragraph,
B{vieX, ) # 0. Since v! 1is a highest weight wvector for T,,, we

P A
have

Tneg)Y (XY)E(V' @XSﬁ) = E(T_A_, (XY)V' @XSB 4V ®ad(XY)ng)

= BE{vi®ad(X )X .

( (3,)%,)

The right side is a nonzero multiple of E(V|®:XSB+Y)’ which we have
Just seen 1s nonzero. Therefore E(v‘@lis ) on the left side is

nonzero. Applying s—l, we see that E(v'@jxﬁ) is nonzero.
#inally in the general case In which n' is not necessarily A}
3

dominant, we introduce a new positive system for A 80 that ' 1
dominant, and then the theorem reduces to the case that has already

been proved.
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INTERTWINING OPERATORS AND UNITARY REPRESENTATIONS If

2. Representations to be studied

our objective, as noted in the introduction, is to obtain
explicit formulas for the effect of standard intertwining operators
on certain K types of induced representations. 1In this section we
introduce the representations to be studied, note how to compute
their minimal K types, and establish some identities for halfl sums
of roots.

We continue with the notation of §1. In particular, ¢ has a
C,TC)

maximally compact Cartan subalgebra t=b®a, A 1is A(g , and

AK and An are certain sets of linear functionals on &%,
We selected root vectors X in (1.1} and Proposition 1.1 with

a certain normalization and found in (1.2) that [XB,X_B]:=2[5|—2Hﬁ.

For £ 1in A”'AB’ put
Y, =X,-X .
B g 7Bp
As in §1, we fix a lexicographic ordering on the linear functionals
on o oa . Then we can use o to form a parabolic subalgebra
mSa e with
m® =€~ T CX,
SCAB
nt - L 0%, -
-A
Bla >0

Thig parabolic subalgebra is maximal cuspidal. We have an Twasawa-

like direct sum decomposition

gc " (mﬂp)c‘ﬁaC@nC, {2.1)
and we let P[ , Ih , and F, be the respective projections on the
flret three factors. These projsctions can be read off from the
Tormulas

0 + 0 ¢ 0 s X if g'a >0

X, K + 0 + 0 -X ir g 0
x - (Xg+%q ) BB ‘,0 < (2.2)
: Xﬁ + 0 + 0 + O if B GAB,C
0 + X, + 0 + 0 it pea

B,n*

The Hermitian form
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(X, ¥ = -B.(X,67) (2.3)

0

is a positive definite inner product on qC that is invariant under
Ad(K). If (v,V) 1is any finite-dimensional representation of K
and if {.,-) is a positive definite K-invariant inner product on
V, then 7(X)*=-7(X) for X in 1, and it follows that

T(X)* = -7(F) = -T1(8F)  for xe1l.

From this identity and (Ll.1) we readily find that

T(HB) = T(Heﬁ) for pfc¢A
T(Xﬁ) = T(X'B) for fcag (2.4)
T([Yﬁ’Y’Sl]) :'T{[Y-ﬁ,Y-B']) for ﬁEA_AB’ ]B'E/}.-AB.
Also (1.1} allows us %o compute the norms of Xﬁ and YB relative
to (2.3) as

lX,s'? ~ 2/1pl° tor pea

2 o (2.5)
|Y5| = 4/|g| for fen-hg.

In view of (1.3b), an orthogonal basis of pc consists of
{YB | B A=Ay, B|u>>o} U {XIB toa EAB,n} U {orthogonal basis of nC}.
(P.6)
From (2.2) we read off

ﬂ%€h_mﬁ+%ﬁ)

Py = O (2.7)
PnYﬁ =0
for B €A~ Ag with 5|0 > 0. Also
P1Xﬁ =0
PoXp = Xp (2.8)
Paxﬁ =0
for pB €hp - We shall make use of the formula
:)
-2 .
(X gt gpr¥pl = -U4ig] P Hy for pen-ag, (2.9)

which is verifiesd by direct calculation.
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starting in §4, we shall use vector field notation for
differentiation of functions on ¢, letting

d -1
X (g) = & £({exp tx) g

if ¥ d1ein g. If X and Y are in g and if Z=X+1Y, we
let Zf=Xf+iYf. Then ZT=7f.

The representations that we study will be those in the
"fundamental series” of G. (Here is where we specialize our
gltuation so that we are no longer generalizing [5].) Namely ue
study certain representations induced from the parabolic subgroup
MAN that corresponds to mea@En . Let p be half the sum, with
multiplicities counted, of the roots of {g,e) +that are positive
relative to NW.

We fix a discrete series or limit of discrete series representa-
tion o of M. (In &5, we assume that ¢ 1s nondegenerate in the
sense of [14]., In $6, M will be compact, and nondegeneracy will be
automatic.) et M ::MOZ , the product of the identity component

and the center. By (12.82) and Proposition 12.32 of [12], ¢ is
induced from a di;crete geries or limit c# of acting in &
Hilbert space .

Wow Lemma 12.30a of [12] shows that _#:zMO, since there are no
real roots., Thus o is determined by its Harlsh-Chandra parameter
(xo,/\g) .

#

Let A be the minimal (KF\M#) type of o given on b by

A KO -6 +8

B,C B,n’
where bB c and éB n &re the respective half sums of the members
+ ’ 2 - .

n Wt . " ; w
of AB AB,C and ABH AE,n +Lollow1ng the p?ocedure of [11], we
introduce a positive system A containing Aﬁ and built from a
lexicographic ordering in which b comes before a . The subset

4 A . +
A% = {5 p with fea’, g KAB,H}

is then a positive system for AK. We let & and BV be the half
‘ Ay

sums of the members of A and A{, respectively,
We shall study the famlly of Induced representations
Uly) = U(MAN,o,v) = indﬁAN(cﬁ Vo), (2.10)

where v 1s a complex-valued linear functional on o and the
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induction is normalized so that imaginary v yields unitary U(vw).
We regard the induced representation as acting on functions by the
left regular representation.

By [11], U(v) has a unigue minimal K type given simply by

M= A= A 45 =26 . (2.11)

It is clear that A|b = A, The first part of the proof of the

minimal K type formula that appears on pp. 629-631 of [12] shows
that a highest weight vector for in U(v} 1s highest of type

A
T, for Kf\MO::KFWM#. The argument shows also that T, has
multiplicity cne in U(y) . This fact was shown criginally by

Vogan [17].

Theorem 2.1. Left wu! be an integral form on B, and define

= - = - Z .
I = H EAPGH ) I - H, EAPQHB
Blg 70 Blg?0
{ut,pd 20 {u',p} 20

Then

() T +1T =0

(b)Y W'=A' domlnant for AE implies
L

Proof of ga).

I+T = Hy, - XEAPGHS - E_APuHIB
Bla?70  B[y20
ut,B >0 {u,py o
w= }..;APQH'B - L;APaHB - EAPQHB =0.
gl,>0 B[,>0 B[,>0
{uv,py Lo {u',p ZO

The middle equality holds becausge PuH-Bﬁ = EhHﬁ'
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Proof of (b). TIf B|a > 0, then ,a'b is in 4. . If also

{nv,8) £ 0, then the sign of {(A!',8> determines whether £ 1is in

AF or -A+, since A' 15 A% dominant. Thus
I =% .PpH %P H
3es a s e @ &
B| >0 8u>0
{(rr,py >0
= T pH, - ¥ PH L pH
peat® B poat® B geato B

a
Br[ >0 ,5[3'>o 8lq >0
(hr,8y A0 (A',B8)Y =0

as regulred.

3. Necassary condltions for unitarity

Continuing with notation as in §2, we rescall the techniques of
[1] and [2] for proving nonunitarity. (Those papers assumed
rank ¢ = rank K, and we have to modify the techniques slightly in
our current situation.) Fix an element w in ¥ normalizing A
such that w2 centralizes A, and assume throughout that woe=g.
Then we can deduce from [13] that there exists a unique family of

intertwining operators T{v) with the following properties:

(1) 7T(v) dis defined for wv's In the -1 eigenspace of Ad(w)
such that Re v 1s in a suitable nelghborhood of the closed
positive Weyl chamber of the dual o' of a.

(?) For each A', T(v) carries the 1,6, K type for U(v) into

the 71,, K type for U(-v), varlies holomorphically in v ,

and satisfies

Ul=,X)T(w) = T(IUMV,X)

for all X in qC.

(3) T(v) is the identity on the minimal X type T, .

For Re v in the closed positive Weyl chamber (under our
hypotheses), U(v) has a unigue irreducibie guotient J(v), and
J(v) contains the K type T, with multiplicity one. Tf v is
real-valued, then J(v) admits an invariant Hermitian form, unicue

up to a real scalar; this form 1ifts to U(vw) , where it is given by
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(r, = f, . 3.1
Ty (T(v) g)Lg(K) (3.1)

Since the normalization (3) makes T(v) positive definite on the K
type TA s (3.1) shows that J{v) will fail to be infinitesimally
unitary for some real v lying in the -1 eigenspace of Ad(w)
within the closed positive Weyl chamber if we can produce a K type
Tyt such that T(v) fails to be positive semidefinite on that K
type.

The papers [1] and [2] introduce two techniques for finding such
a A'. Both use the following definitions. TIf T, is an
irreducible representation of K, we let P, te %%e projection of

the induced space to the T, subspace giveh by

1
£k} = o j‘ X—_(—)_Al 5 f(k‘lko) dk . (3.2)

K
Here d, is the degree of T , and X is the character.
Ay Al Al
Fix fo in the Induced spatce to be a nonzero highest weight

vector for the minimal K fGype T, - It Yo denotes a nonzerc

highest weight vector in an abstract representation space VA of K

of type T, , then fo is necessarily cof the form

)y (3.3)

fo(k) = ATA(k o

for a unique operator A in HomKﬂM#(VA,VG#) . It follows from th;
remarks after (2.11) that there exists a unigue element u, in W
of welght *» in the = subgpace such that

M
A Uy = Vg (3.4)
We fix this element Uy
Let T, be an irreducible representation of X, and let X1
be in gG. . Define
a(y,k) = <PAlU(V’Xl)fO(k)’uO> , (3.5)
#
the inner product being taken in W . Tet
b(\):k) = <P_’\_U(\)’El)P!_lU(V’Xl)fO(R),uo> . (3-6)
Theorem 3.1.
(a) Suppose T has multiplicity at most one in Ufv) and

by =
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a(v,k) is not identically © as a function of k in X. Then the

guotient

e(v) = a{-v,k)/alv,k)

is dndependent of k. If LAd{wiv =« , if v is real-valued, and

if v is in the closed positive Weyl chember, then c(v) < 0

implies that T(vw) is not positive semidefinite on the K type

T
A
* (b) Regardless of whether T,  has multiplicity one in U(v),

suppose Ad{w)v = -~y , vy is realuva}ued, and v 1s in the positive

Weyl chamber. TIf b(-y,1) > 0, then T(v) is noi positive

semildefinite on the K type T

fy

A proof can be obtalned by making slight adjustmentszs to the
arguments in [1] and [2].

4, general formula

The main result of this section, Theorem 4.1, will give formulas
for the guantities a(v,k) and bv,k) of §3 under certain
hypotheses. At this stage the Weyl group representative w of §73
does not enter the computation, since alv,k) and b{v,k) make
perfectly good sense without 1t. We shall make particular cholces of
w in §§5-6.

Theorem 4.1. ix a complex root a=a_ +a let X Dbe any

R 1’
member of pc, and define A; = (A+UI}V and
H. = L PH
O gearn P
ﬁlc>o
<."-!;S):O

Suppose that

(a) <.h.3aI> = 0

(b) ag ig short among the members of Do -

Then

(1} (P_A_lU(\),X)fO(k),uO> = {1 (k)_lﬁ,\ (v @ X), T, (v @ (H4H,))),

Ay b "1

and also
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(2) vreal vank 0 = dim o implles

(P, U(v,X)P, U{v,Y )T
) L

ol Tor vy

(T!‘_(l{)'lﬂiﬁ (E_,_l(v ®YG)®X),F‘1(EA (v.® (H\_)H-IO))@ (HG-HO))) .

0 Ay 0
Remarks. Note from {a) that |A1| £ |2l nence A # A . Both
{1) and (2) are trivial if T,l does not occur in T, ® pC; so we
may assume T, does occur in Ty ®nC‘

-1
Preliminaries for the precof. In the proof we shall use the

formulas (2.7) and (2.8) relating the root space decomposition of qC

{relative to (h@u)Gj ) and the Iwasawa-like decomposition (2.1).
Suppose that T 1s a member of the space of the induced representa-

tion and is given on K by the formula

£(x) = e, ()T

¢ we compute

#
with ¢f{v) in HomKﬁM#(Vﬂ",VU ). Fer X in g
(v, X)f(k) by the method of §5 of [5]. 4s in (5.7) of [5], the

result is
U(v,X)E(k) = [(vio) (B 7} ]C)T, , (1) 7y« [o (R v)]a(w)r, , (1) "ty
4 C(v)TA,(PTYjTA,(k)_lv,

where Y=TAd(K)_lX. Let {Hj} be an orthogonal basis of g .

Using our bhasis (2.6) and arguing as in the first part of the proof

of Theorem 5.1 of [H], we obtain

( P.h. nil (V, X) f(K) ] UO>

= Ly (ve ), m) (O uye Tl T () (1,)1,))
o . J I3 Ey
X 1617 ey o (vo 0w () (e () o (B ) u e x D)
"%EAB,H
bl e ), () (1, (R T) ) g Y)Y (1)
AEN
,c.[a >0

where T refers to the representation of ¥ on the tensor product.
We refer to the three lines of the right side of (4.1) as the @
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term, the m terms, and the ! terms.

Proof of conclusion (1). We take A'=A, A'=4 =(A+GI)V ,
V=V Clv) =4, and f::fq, remembering that A*uo 0"
term of (4.1) is simply

- (Ep,l(vo® X)om () (vy®Hy )

Let us see that the m  terms are all 0. In fact, U, has b
welght A, =0 that G#(PmXB)*uO has weight A-8. Since B8 is a
noncompact root for M, K-LB is not a weight of Th' Put A*
annihilates all KNMF types of c# other than TR’ and thus
A*O#(Rnxm)¥uﬂ =0, 8o the m terms are 0.

Noxt we consider the 1 term corresponding to £ with

ﬁ\o > 0. rormula (P.7) gives P‘Yﬁ::—(XB+BXB); hence (2.4) shows
that the 1t <ferm corresponding to the root £ 1is
Ly .12,
- - Wl,e.[ (L-_.!\_l(vor& X),m{k) (T!_(X_B+-X_BB)VO® Yﬁ)) . (h.2)

The welght of Tﬁ(xvﬁ+xdﬁﬁ)vO in T is A —ﬁI , and (A,B) S 0

"-
would lmply

[h-pgl® = Ta1% -2ty Lo ® 0 1al® w1y 1% > 1813,

thus (4.2) iz 0 unless {A,R) > 0.
When (AL,RY » 0, we can use (2.9) to write
Ty ()‘:Lgs*'x—ea)"-og Y =

N(X—ﬁ+x—eﬁ)(vo® Yﬁ)-vo® ad(x—ﬁ+X-BﬁJYﬁ

= w(X_ AKX a0 (v ey +u|3]‘2(v0® P H (4.3)

-A -8R o B) ﬁ)'

Tn this expression, the first term on the right projects to 0 under

D since A+ 8 cannot be a weight of A, :
,-t[ I l

.2 2 2 2
IAJ‘WST! = |."‘.] +2<.A.!B> +I'BII > 1-"-' + I.BIr2
2 2 2 2
2 l-"\-l FIOZIl = [-A-"“C!'Il = 1.‘“—1[ .

(iiere we have used that {A,3) > 0, that o isg short, and that
{A,a0 =0.) Putting (4.2} into (4.2), we see that the 1 term
corresponding to # 1s

= - (ﬁ;‘ (vo® XY, (k) (vo® Puﬂﬁ)) .

Adding the contributions from all the terms, we obtain
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(P!.lU(v,X)fO(R)’uO> = <E,n_l("o® x)m{k} (v ® (g - FéAPu Hel )Y s
Bl, >0
{a,8> >0
and this is
= (Eﬁ’l(v0® x),m(k) (v0® (HG +HO)))
by Theorem 2.1b., This proves conclusion {1).

Proof of conclusion {2). By Frobenius reciprocity the map

Al Al #
v 73 HomKnM#{V ,VU } into the induced space, given by

ve B B, (k) v, (4.4)
-'-l
is one-one onto the K type T, of the induced space. Put
fl = P.tlu(\),Yq)fo .
This 1s a member of the K type Ty and it has weight P} +uI,
which is extreme for Ty - Since oL r +aI is extreme, it has
multiplicity one as a we%ght, and multiples of v'="H, (v0® Ya) are

the only v's that can contribute to the realization-%f 'fl via
{4.4), as & consequence of Theorem 1.3. Thus

fl(l{) = B(\))T!‘_I(k)_lvr
A #
for unigue members B{v} of HomKnM#(V'l,Vc ) .
In (4.1) we take AU=ho, y v=v', C(v)=EBv), and
f= fl' The m terms are absent since the assumption real rank

AT =0

= dim ¢ wmeans that AB n is empty. Let us compute B(v)%uo. This
E)

A
is some vector of weight A=p in ¥'1. Thus if [vi} is an

orthonormal basis of the A weight space of Ty » We can write
~1

B(w)*u., =L BLvTv;  with  by{v) = (Vi,ﬂ(\;)*uo} . (L.5)

Then we have

L oby)r, (0)7hvr,v) = {r, (k) "Tvr, By ) Fu )

-1 Hl 0
= <B(v)7ﬁ_1(k)_ viug
- (Pﬁ U(v,Yd)fO(k),uO}
= <Thl(k)_lvr’EA1(vo® (HG+HO))) by conclusion (1}
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by kol -1
= 5 Wi’*!‘.l(VO@ (H\—)IHO)))<TA1(1{) v!,vi> ,
and the irreducibility of T, allows us to conclude
Ay
bi(v) = <Vi’EAl(VO® (HJLHO))>.
Hence
3 b, Tv, = Ehl(v0® (HG+HO)) . (4.6)

We substitute from (4.5) intc (4.1) and obtain
(R U(v,X}f (kK),uy

= b 0)UE (vex) Tk (v 255, )

- T lel ey (v ), () (ry (%X

e _eﬁ)vj_@Yﬁ))}.
5ﬁ1>0 (4,7)

Here wv. has b weight A and v, (X _4X
1 I3 _rB -6 B
welghts by QI. Since o is shor%, we have

} pulls down b

I
2 2 2 2
Ia-p )™ - Tarapl® = —2€a,py #1807 - fag)® 2 -2X8, 8,
and A - cannot be a weight of T, if {n,p» < 0. Thus the
™ 1 term is 0 unless {(A,8 st > 0. If (A8 » 0, then
A By is not a weight of Ty since

2 2
lappl = =10l

= oota,m +lagl” > 2L

So Iin this case

Substituting inte (4.7), we obtain

(Pﬂ_U(v,X)fl(k),uO} = ‘:i bi(v)(EA(v' ®X), (k) (v, ® (pr - .BZGAPQHB)))
a‘q S0
(r.8) 20
= :SL bi(v)(EA(v' ® X), (k) (v;® (G5-H,) )
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by Theorem 2.1. Taking (4.6) into account completes the proof of
conclusion (2).

5. Application to $o{odd,odd)

We shall apply conclusion {1) of Theorem L.l to a group G with
Lie algebra 4o (odd,odd) in order to supply & proof of Lemma 14.3 of
EAR

Let us recall the notation of §14 of [4]. The root system is of
type D
take b to correspond to indices 1, ..., N-1 and ¢ to correspond

y » vhich has roots ieiiej (i#3) in standard notation. We

to index N. The infinitesimal character for a representation o
of interest is

Ag = (Myse.asny 5,0,0)

with ng D e 2 Ny o > 0 and with integer entries. The positive

system At is the usual one, whose simple roots are

€175 5 eev 3 B 0"€p 15 By 178y s By 1 tEy -
We take a= eN—l+eN . Then a= Gn + G has
ap = ey_q  and A = Eye (5.1)

By convention, en is positive as a root of a .

As is noted on p. 24 of [47, the reflection s, in the weyl

group of ¢ a&acts on RO by reflection in qI and thus fixes RO;

hence 8, fixes the class of the representation ¢ of M that

correspongs to A, . Consequently we can take w in §3 to be a

0

representative in K of 8, and Theorem 3.1 will be applicable
R

5 Wwith ¢ > 0.

We shall see that the multiplicity assumption in part (a} of

when v = 3ca

Theorem 3.1 is actually satisfied and that Theorem 4.1 can be used
to compute the guantity a(v,k) in the theorem. Let

vO:E#{ﬁeA+ | ﬁ|a>o and {A,B8) =0}. (5.2)

Theorem 5.1. With notation as above, suppose that o 1is

: — v -
nondegenerate in the sense of [14]. Put Ay = (A+eN_l) . Normalize

the standard Hevrmitian form for U(%CQR) so that it is posifive on
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Ty Then T, has multiplicity one in U(%CQR), and the signature
of the standavd form on T is sgn(vo-c).
-1
proof. From the top of p., 116 of [4], we know that has

A
multiplicity at most one. Thus Theorem 3.1la is applicable, &nd we

are to compute a certaln quotient a(-v,k)/a(lv,k}. We szhall use
conclusion (1} of Theorem 4.1 with X=Y_, in order to make the
computation.

From {5.1), we have ﬁl::(A+eN_l)“::(ﬂ+aI)v » and Lemma 14.1 of
[4] shows that {f,o0) =0. Also it is apparent that o, is short

I

among the members of A Thus Theorem 4.1 applies. The conclusion

K
for v real is that
-1
afv,k) =41, {kK)7°E, (v.®vY ),E {(v.® (H +H.})) .
.A-l !‘.1 O 8] ."_1 0 N 0

Since ¢ has dimension 1, H is a multipie of Ha , the

0
multiple being given by R
-2
o L {p H,,H .
| geat & F C£R>
8l >0
{(A:B) =0

2!

Each of the g's in the sum has P.Hy=p and the number of

RTOR?

such p's is %vo, with v, &s in {5.2). fThus for v =%caR, we
have
— 1
H,+H, = g(c+vO)HaR.
Hence
-1
a(%caR,k) = %(VO+C)<Tﬁ (&) R (v0®‘Ya),Ehl(vo® H, 3.

‘1 " R

If the inner product in this expansion is not identically zero, then

a(-%caR,k) vo-C

a(%caR,k) v te

and Theorem 3.la will finish the proof.

First we check that T occurs in TAGJPC. Define Bi in
A Y I0Y by A = (Al -1 %, - (Recall Proposition 1.5a.) e
shall prove that ﬁi is conjugate to « by W e In fact, first
notice that ﬁi # 0 since [A1|2t:|A|2-+IQI|E?¥Ih|2. Let B8y 5 be

the result of making «. dominant for Al . . If A+B is not
I K, A 1,1
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/_\.; dominant, then Lemma 1.6 produces a A, simple vy, with
2(A,~(I>/|YI|2 =+l and E(Ql’I,YI> /lYI|2 =-2. The latter formula
shows that vy is short. Since the entries of A are integers,
2(A,YI)/IYI|2 is then an even integer and cannot be +1. TWe

conclude that A+g is AL dominant, so that B’ =p .
1,1 K 1 1,T
Now we apply Theorem 1,7 with A'=A and 5-:5& . The length
condition is clearly satisfied. If Tn dees not occur in T, ®n€,

4
then the theorem gives us a AE simple™ root Y such that

YI is in AK 5 <YI,SI>-O, and both YI+BI and vp-By are in

Ay Ufot. ; Since yIiﬁI are in AnU (o}, YI ig short. Since YI

is in Ap o, Lemma 4.2 of [4] shows that YijzeN—l::a From the
R

previous paragraph, 5& is WK canjugate to QI::Yi' Taking into

account that AK
Yiiﬁi are in &K’ But they are in AB also, since they are long.
But then they cannot be in AnU {0}, and

is a root system of type Bp—%Bq, we see that

Hence they are in A

we have a contradict?ég. We conclude that TAl occurs in TR_®p
Now let us return to proving that
<TA (k)"lA (v Y, Vs E, (VO®HOC b
1 1 Ly R
is not identically 0. Since A # A, T, occurs irreducibly in
T ®p® ; by Proposltion 1.5b. Thus it is Enough to prove that
(V ®Y, ) and Ey (V ®H, )} are nonzero. The first of these

vectors 1s nonzero by Theoreﬁ 1.8, and we examine the second. Since
B, (v ®'Ya) has welght A +a. and since

Jnl G I
(hrapap) = 1&112 >0,
Thl(X—a+X—8a}Eﬁl(Vo® Y ) is not zero. Thus
0 # Thl(x_un(_ea)Eﬁl(vO@ Y )
E,l{vo® [X_Q+X_ea,Ya]) since (A,a1)==o
= _alal'gEAl(vo® HOLR) by (2.9},

and the proof is complete.

5, Application to certaln groups of real rank two

We shall apply conclusion (2) of Theorem 4.1 to a group G with

restricted root system of type A? and with just one conjugacy class
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of Cartan subgroups. These groups are the subject of [3}, and our
objective in this section is to supply a proof of Proposition 4.1 of
that paper.

Let us recall the setting in [3]: A1l complex roots have the
same length and are orthogonal to their complex conjugates, by {1.1)
of [3]. We denote the positlive restricted roots by 81785 81_63’

eg-es. We take « ::el—e3 and define o as in Temma 3.8a of [10]

R T

to make a=q be a root; since M# is connected, this choice

R T
makes it sc that the action of =N on the equivalsnce class of o
is mirrored by the action of 8., Ron the infinitesimal character

+a

L. We let w be & representative In K of s, , and we assume
0 o

that wr=0 , so that the material in 33 applies. Tect A be the

minimal K +type of the induced representations, and deflne
np o= BB en | LA, =0} .

Proposition 1.4 of [3] says that A is generated by simple roots of
st Let L ©be the analytic subgroup of G corresponding fto b %o

and AL’ and let Lﬂs be the commutator subgroup. Thenh Propositlion
1.2 of [3] says that Lss has real rank one or ftwo, and our interect

is in the case that i1t has real rank two. Let be the functional

1,
p Tor Lss'

Theorem 6.1. Let notation be as above, in particular with 5,

fixing the equivalence class of g . Suppose that the standard

invariant form is normalized so that £, has (fﬂ.fq)‘:l. rut

Al::(A+QI)V . Then the function

£y = P_,_lU(ch,Ya) £y
is a nenzero member of the induced space, and {f

multiple of 1-c°.

1’f1> ig a positive

Remarks. The parabolic subgroup MAN is minimal under our
assumptions, and ¥ 1s thus compact. Hence ¢ 1s finite-

dimensional.

Proof. We are going to apply Theorem 3.1b with v =cp cyn.

Since is a positive multiple of the theorem is applicable.

Pr, R’
We are to compute a certaln cuantiiy b(v,k), which we take to be

b{v,k) = <P_A_U(v,Y_G}P_,‘_lU(v,Va)fo(k),uo> R
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and show that b{-vw,1l) is a positive multiple of c2 -1 when

v =Cp, .

To compute biv,k} , we use conclusion (2) of Theorem 4.1. By
(1.2c) of [37, we have (A,ap) =0. Let us check that «
among, the members of A

T is short

% Tn deing so, we shall assume that g is
simple, as we may for the proof of Theorem .1 without loss of
generality. If Qg is not short, then there exists ﬁ::ﬁR‘*BI in
A such that 5511 4 Lull and (aI,ﬁI> Z0. Since all complex roots
in A are orthogonal tc their conjugates and have the same length,

BR:ro. Thus is in A But then

SI

2 1 2 1 2
6,12 = Harl? = Hal

gives an 1llegal length relation among the roots of A. We conclude

that or is short.

Since there 1s Jjust one conjugacy class of Cartan subgroups in
G, we have 7real rank G = dim a . Thus Theorem 4.1b applies and

gives us

Div,k) = (T_A_(k)_lFA (e, (v0® Y_) ®Ya),EA(E£1(vO® (Hv+HO))® (Hv—HO)”

A

for v real. Now

U, = S PH, -~ L PMH, =3 L PH, =3 H

a = .
O geat 8 pepd gea O F 2y, oy
Bl >0 g5|a>o el,>o
(."'.3)‘-2-‘> =0

For v =cp., b{v,k) therefore reducss to

(o,k) = (e5-1)¢r, (1) TE, (B, (v

Y V@Y
1 o

LB (6 (v.®H eH_ .
-a) A( Al( 0 pL) pL)

{6.1)

0

Since the expression of interest for Theorem 3.1b is b{-v,1l), the
proof will be complete if we show that the inner product in (6.1) is
positive for k=1. Actually it is enough to prove that the inner
product is nonzero, since it is constant in v and since U{v) 1is
unitary for v =29.

Firzt we check that T oceurs in T, ®p¢}. Define Bi in

A A
s,V {0} by ﬂ+ﬁ'::(A+aI)'=:l (Recall Proposition 1.5a.) Ve

A
T =17
shall prove that ﬁi 1s conjugate to o by WK %. In fact, first
1 . Let ﬁl,I be

notice that ﬁi?éo since |_A.l|2::|_n_|2 +|QI]2 1A
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the result of making S dominant for A£ p+ I A+51 T is not
_ 2. s
A" domlnant, then Lemma 1.6 produces a A% simple Y1 with
=l !2 6o
Haavd /v T =42 (6.28)
and
2
22 S = -2
Xpy v /v (6.2b)
Fince real rank g = dim a , AB,n ls empty. Thus An « ﬁK’ and
A ig i A, . Glnce : =8 1 : is ¢
fp,7 isdin Ay ine }uI| i‘l,I! and since oy is short
within &, (G.2b) says By r=-Yp But then (6.2a) gives

O = (A = (8 D o= A,y £ 0,
and we have a contradictlon. We conclude that ﬁi::ﬁl T
b
A

Now we apply Theorem 1.7 with A' =A  and =pl. The length

I
condition is satisfiesd since ﬂn c AK and zince &K is a root
system. TIT T does not oceur in Th ®DC , Tthen ths theorem gives
N L 7 A o .
us a "A'K simple root y.& such that Y{. 1s in AK,!\. , <‘Y:1[,BP =0,

and both YIrB

r

1 and y:'[—;’%:'[ arce in Anru {0} . Now
? 2 2 2 2
Lol = Tpel® <lygl™ < Tedl™ = Ivpzeql

implies thatl, yiiﬁi arc in AB, henee in ﬁB,n {since all complex
roots have equal lengths and are orthogonal to their conjugates).
But Ah,n is empty, and we have a contradiction. We conclude that
T.M occurs in ’Tﬁ_®p®.

Arvgulng with characters, we see from the occurrence of Ta in
T, @ n@ that T, ocours in T, ® pﬂ. Hote that A],¥A sinaél
5,1 A1l . !

Now let us return to proving that the inner product in (6.1) is
nonzcro at k=1. Since Tﬂ occurs in TA§§DC and '1'_Iﬂ occurs in
TA1’SDF , Theorem 1.8 shows t%at

E.,\_(Eﬁ__l(vo®yq)®¥_a) {6.3)

igs nonzero. If we can prove that the vector
ho(E, (v.®@H )®H 6.4
AU NREE N (6.4)
is a nonzero multiple of (6.3}, then the inner product in (6.1) will
be nonzero at k=1, and the procf will be complete. In place of

(G.1), we may as well consider
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T
2

a (F

o (Y

We start from the identity

E, (B, (v.ed_ )®Y ) =20
A .A.l Q CXR =1 ’
which holds since A +ay 1s toc long toe be a welght of T, .
Applying TA(XQ+XGQ)’ we get -
0 = F!A(E!\_l(voﬁ} [X, ¥y 0 Hy ])®Y_q)
K
- E_n-(z_,,_l(vo® H, )@ [X % 7 1)
R
2. , -
= |al PJﬁ(rLﬂ_l(vO®yO)®Y_Q)

+ LL|(1E2EA(E_A_1(VK ®H, )@HG ) by (2.9).

o I i

This relation exhibits (6.5} as a nonzero multiple of [6.3), and the

proof is complete.
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