Asterisque

IGOR DOLGACHEV

DAVID ORTLAND
Point sets in projective spaces and theta functions

Astérisque, tome 165 (1988)
<http://www.numdam.org/item?id=AST_1988__165__1_0>

© Société mathématique de France, 1988, tous droits réservés.

L’acces aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique 1’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

NuMbDAM
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AST_1988__165__1_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

165 ASTERISQUE
1988

POINT SETS IN PROJECTIVE SPACES
AND
THETA FUNCTIONS

Igor DOLGACHEV and David ORTLAND

SOCIETE MATHEMATIQUE DE FRANCE

Publié avec le concours du CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE



A.M.S. Subjects Classification : 14-02, 14C05, 14C21, 14D25, 14E07, 14H10,
14H40, 14H45, 14J26, 14J25, 14J30, 14K25, 14N99, 14J50, 20C30,
17B20, 17B67.



TO HILARY AND NATASHA






Table of Contents

(WA R At Ye U1k A <] o PUUTUR U U SO UPRSUURS PRSP 3

I. CROSS-RATIO FUNCTIONS

1. The variety PN (first  definition) ...l 7
2. Standard MONOMIALIS. ...t e e e e ettt e e re et e e eaenseeeeeneees =~
B EXAMIPTIES. ..ceiieiiiiieieit ettt ee e e e e et e e et e s e st beeeeesee et st et b bbeebebeeese e eatbbabaraeae et s sons 13

Il. GEOMETRIC INVARIANT THEORY
1. P (Second  definitiON)......coooiuiiiiiiiieeieiceei ettt 21

2. A criterion of semi-stability

3. Most special point sets

A, EXAMIPIES...cuiitieiieeeee et eeeete et e et ee e et et e e et easeaseaeeseaeeaeeraatessete et aese et ease e et e eansenessenes 31

I1l. ASSOCIATED POINT SETS

1. The ASSOCIALION...c.ciiiiiiiiiiiiiii e e e e 33
2. Geometric properties of associated point sets..........in 41
3. Self-associated point SetS.........cciiiiiini 43

1V. BLOWING-UPS OF POINT SETS
1. Infinitely near point SeLS ... 53
2. Analysis of Stability i 2M e 57

V. GENERALIZED DEL PEZZO VARIETIES

1. The Neron-Severi bilattice.........ccccocimiiiiiii e 63
2. Geometric markings of gDP-varieties..............iiiii 67
3. The Weyl groupsS Wi oo 71
4. Discriminant coNAitionS.........ccccciiiiiiiiiiiiiiiiiii 79
S. Exceptional configurQtions ..........ccccciiiiiiiiiiiiiiiiiiiii e 81

VI. CREMONA ACTION

1. The Cremona representation of the Weyl group Wp moin 8 4
2. EXPlICIt  fOrMUIGR..... ..ottt e e Q4
3. Cremona action and association...........ccccciiiiiiiiiii ?6
4. Pseudo-automorphisms of gDP-varieties...........cccccoiiiiiiiiniiniinnl Q9
S. special subvarieties of Pl ... 104



1. DOLGACHEYV, D. ORTLAND

VIl. EXAMPLES

1. POINL SELS TN P ittt e s s e s 110
2. Point sets N P, (M € S) e 111
3. Cubic surfaces (N=2, M=6) ...t sae e e 116
4. Del Pezzo surfaces of degree 2. 120
5. Del Pezzo surfaces of degree 1. 123
6. Point sets N Py . OO 126
7. PoinNt SetS N IP 4 s 130
VIll. POINT SETS IN IP, AND HYPERELLIPTIC CURVES

1. Theta FUNCLIONS. ..ottt st 132
2. Jacobian varieties and theta characteristics........ccciiiiiiniiiniinnnenn 137
3. HYPErellipliC  CUIMVES. . oottt ae sttt e s e et ee e e s e e seneeeaeenes 141
4. Theta characteristics on hyperelliptic curves.......cc.cccciviciniiiieinncnnnnnd 146
5. Thomae's theorem

6. ENHPLIC CUMVES oottt ettt st s e s eare senn e e s enea s sreessan et

7. Abelian surfaces

IX. CURVES OF GENUS 3

1. Level 2 structures on the Jacobian variety of a curve of genus 3........ 160
2. Aronhold sets of bitangents to a quartic plane curve................... 165
3. The varieties Sg and M 3(2) ..o 173
4. Theta SLrUCLUMES.. ...t s 177
S. Kummer-Wirtinger varieties..............es 182
6. Cayley dianode SUFTACES.......cccoooiiiiiiiiiiiiiiiiii e 187
7. Gé&pel functions

8. Final remarks

BibDTiOGraPNY i s e e e e tbe e

NO B AR TONS ettt s st s a b s et be et s eaaae e n e ean 203
[ g e 1= PO U N 206
RESUM G ...ttt ettt st et e st estesees e bestesaes e se et ea s e ten ee e se e et es et et ebe e bt eue bt et e saeenesae sananes 209



Introduction.

The purpose of these notes is to re-introduce some of the work of A. Coble
[Co1] in a language that a modern mathematician can easily understand. There is
a well-known relationship between the theory of invariants of finite sets of
points in a projective line and the theory of hyperelliptic curves. The book of
Coble gives an account of the theory which generalizes this relationship to point
sets in projective spaces of higher dimension and non-hyperelliptic curves.
Though some aspects of this theory were known before Coble (see for example
[Fr 11, [Fr2], IKal,ISch1,[Sch 2],[Sch 31), his exposition is by far the most
complete and conceptually motivated. In recent years the book of Coble was saved
from oblivion and the number of references to it grew substantially. This
prompted us to serve the mathematical community by giving a modern account of
his theory.

The contents of these notes is the following. In Chapters | and !l we give a
development of the general theory of projective invariants for ordered point
sets. We use a presentation of these invariants by certain tableaux, along with
the straightening algorithm to describe the structure of the ring they form.
Following a now standard approach to the theory of invariants IMu 1], we
construct the moduli spaces P',',’ for the projective equivalence classes of sets of
m ordered points in a n-dimensional projective space PP, and provide a description
of the stable and semi-stable ones. A rather complete discussion of the “most
special” point sets is given. These are the point sets which are parametrized by
the spaces Prr',1 . The chapters conclude with some examples that illustrate how the
general techniques work for specific cases. Note that we are able to discern the
structure of the moduli spaces in these examples without too much effort,
whereas Coble had to devise rather complicated and ingenious methods to reveal

the same information.
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Chapter 11l is concerned with the classical concept of association, which is a
form of duality between the spaces P, and P _,.,. It is difficult to trace out the
origins of this concept, but it was refined and used extensively by Coble [Co S].
Our approach is to show that association arises from an isomorphism between
the coordinate rings of the respective moduli spaces, which is based on the notion
of duality between tableaux. In the case m = 2n+2 the notion of association leads
to the notion of self-association. We provide a criterion, essentially due to Coble,
for a stable set to be self-associated. This condition is closely related to
questions of independence of point sets with respect to the linear system of
quadrics through them which is extensively studied in modern and classical works
on algebraic curves. After various geometric properties of associated sets, we
prove the rationality of the moduli space S, that parametrizes projective
equivalence classes of ordered self-associated point sets.

In Chapter |1V we extend the invariant theory of points sets to the case
where some of the points are considered to be infinitely near. Following a
construction from [K1]l we construct the variety parametrizing such point sets,
and then consider the extension of the action of the projective linear group on
this variety. We use some recent results from [Reil to derive explicit criterion
of stability of infinitely near points sets. This allows to construct the spaces P
which are extensions of the spaces PJ, and birational morphisms PT — PJ.

In Chapter V we begin to consider point sets from a different point of view.
Blowing-up such a set gives a certain rational variety, which we call a generalized
Del Pezzo variety. The order on the set equips this variety with an additional
structure. This additional structure is interpreted as a certain marking in the 1-
codimensional and 1-dimensional components of the Chow ring of this variety. The
varieties P can be interpreted as certain moduli varieties of marked
generalized Del Pezzo varieties. Here the most interesting part of Coble's theory
enters into the discussion. This is the notion of root systems and their Weyl
groups. The discovery that Coble was aware of some of these notions even in the
case of infinite root systems, a long time before Cartan's work, and it goes
without saying, before the work of V. Kac and R. Moody, was the main motivation
for the first author to study his work. The theory of Del Pezzo surfaces and
surface singularities is known to have a relationship with this theory. A modern
account of this can be found for example in [Mal, [Del, [Pil. An earlier exposition
of this is due to P. Du Val IDV 1-DV 4] who apparently was not aware of Coble's
work. A new result of this chapter is a partial description of roots for certain
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root systems in hyperbolic vector spaces. The notion of roots corresponds to the
classical notion of a discriminant condition on a point set which substitutes the
condition for a binary form to have a multiple root.

In Chapter VI we develop the notion of the Cremona action on the point sets.
It was observed by Coble and S. Kantor ( in the case n = 2), and later by P. Du Val
[DuV 31, [DuUV 4] that certain types of Cremona transformations of the
projective space act birationally on projective equivalence classes of point sets.
More precisely: they give a representation of a certain Weyl group W, in the
group of birational automorphisms of P’,‘,’. Much effort was applied to give a
rigorous exposition of this beautiful theory. The kernel of the Cremona
representation of W,y can be identified with a subgroup of pseudo-
automorphisms (i.e. birational automorphisms which are isomorphisms in
codimension 1) of the blowing-up of a point set represented by a generic point of
P',T,‘. In the case n = 2, the kernel is the full automorphism group, and we prove,
following Coble, that this group is trivial if m 2 9. A modern proof of this result,
also based on Coble's ideas, was given in [Gil (m = 9) and [Hirl.

In Chapter VII we discuss all special cases where the Weyl group W, is
finite, and compute the kernel of the Cremona representation. This leads to a
beautiful interpretation of certain elements of the center of the Weyl groups as
certain types of Cremona transformations in the projective space. We refer to a
recent paper of P. Du Val [DuV 4], where, again without mentioning Coble's work,
a nice account of this is given.

Starting from Chapter VIII we study the relationship between point sets and
theta functions. The existence of this relationship in the case n = 2 and 3 goes
back to Frobenius, Schottky and Wirtinger. Much of Coble's book is devoted to an
exposition of Schottky's results. In the case n = 1, this relationship is based on the
observation that 2g+2 points in IP, define a hyperelliptic curve of genus g, and its
ordering equips the Jacobian variety of this curve with a level 2 structure. The
invariants of points can be translated into the language of theta functions. An
explicit formula of this kind which relates the fourth powers of theta constants

and coordinate functions of the varieties P39*?

is due to R. Thomae. In many
aspects we follow here an exposition of D. Mumford [Mu 2] of the theory of
hyperelliptic curves and their theta functions.

The last Chapter IX is the longest one. Here we give an account of classical
work on extension of the theory of the previous chapter to the case of curves of

genus 3. Coble's contribution to this is a clear understanding that seven points in
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the plane not only define a curve of genus 3 but also equip it with a level 2
structure in such a way that the natural action of Sp(6,F,) on these structures is
equivalent to the Cremona action on the variety P, This approach gives a nice
geometrical insight into the structure of the moduli space of principally
polarized abelian varieties of dimension 3 with level 2 structure, and also its
Satake compactification and its Igusa’'s blow-up.

Besides our primary goal to advertize Coble’s book we tried to take the
reader on an exciting journey where he meets the most fascinating objects of
classical algebraic geometry such as the sets of 27 lines on a cubic surface and
28 bitangents to a plane quartic, a Segre's cubic primal and its dual quartic 3-
fold, Kummer surfaces and their generalization for dimension 3, Cayley dianode
surfaces, nets of quadrics, Cremona transformations, theta functions, the
theory of invariants and many others.

These notes are based on a course of lectures of the first author at the
University of Paris-Orsay, in Winter of 1987, and on the thesis of the second
author. The first author would like to thank Professor Arnaud Beauville for the
invitation and for his hospitality. He also expresses his gratitude to all
participants in the course for their interest and patience. We are both thankful to
all mathematicians who shared our enthusiasm toward Coble's work and to
classical algebraic geometry in general. We are particularly indebted to Francois
Cossec and Bert van Geemen for numerous helpful discussions on different
aspects of Coble's work. Our special thanks go to the referee for his special
effort to improve substantially the presentation of this work.



I. CROSS-RATIO FUNCTIONS.

Throughout this chapter and later on we will use the following notations:
£ = an algebraically closed field of characteristic p 2 0;
P, = the n-dimensional projective space over &:
PT = P™ =Pyx..xP,, m times;
n:PT — P, = the i-th projection;
G = PGL(n+1,£) = AUt(P,):
0:6xPT — PT = the morphism of the diagonal action:

a(g.(x',...x™N = (gx",..gx™), ge6, (x'...x™Me PT ;

GxIPT = G, p,GxPT — PT = the projections;
P4 n P2 n n

m
T =® m*(Op (1), where 1 is the smallest positive integer satisfying the equality
i=1

Im = w(n+1)

for some integer w.

1.The variety PT (first definition).

Recall that a G-linearization of a sheaf ¥ on an algebraic variety X with

an action 0:GxX—X is an isomorphism:
o*(F) 3 pMTF),

where p,.GxX—X is the second projection (see [Mu 1], Chapter 1).

Proposition 1.E admits a unique G-linearization.

Proof. Since G does not admit nontrivial characters, it is enough to construct

one G-linearization of E (IMu 1], Chapter 1, Proposition 1.4). We may view G as an
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open subset of P,2,,, the complement of which is the determinantal hypersurface
of degree n+1. This implies that

Oc(®™ = Og(n+1) & Og .

since G acts linearly on each factor P, of P}, we have a natural isomorphism
(m;20)*(Op (1)) = p*Og(N)@(Mm;>p,)*(Op (1),

Thus

m
n’,‘(Opn(l))) = @ (mM-0)"(Op (1)) =

m
o*(E) = 0¥(®
i= i=1

i=1

n

m
® P70 (M;+p)*(Op () =
i=1

p3Oc(mN@piE = p1O0s(win+1))®piE =
p30c®p%3T = p3E.

Recall that for every G-linearized sheaf ¥ on a G-variety X there is a

natural linear representation of G in the space T(X,¥). It is derived from the

composition:
»
T(X,%) ST (GxX,0"F) — T(GxX.p4¥) — T(G.Oc)®T(X,¥),

where the second arrow is defined by the linearization of ¥ and the third one

is defined by the KuUnneth formula. Viewing every geG(#) as a homomorphism of
£-algebras T(G,0g) — &, we let

plg)(s) = (g®1)X(o™(s)), geG(#),seT (X, F).

As usual, T(X,¥)® will denote the subspace of G-invariant sections.

Returning to our situation (X = PR, F =T ), let us set
(- -]
RT =Ke_>°r(P',',‘,:c°")G.
where we equip E®X with the G-linearization that is the k-th tensor product of

the G-linearization of Z. Since £ is on ample invertible sheaf on P, the graded #-

algebra
P ®
® rePh 2%
K=0
is of finite type. The group G acts on this algebra by automorphisms of graded

algebras, and

oo
R = (@ r(Pf.z®n°
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is the subalgebra of G-invariant elements graded by
®KyG
(R = TP 2% .

Since G is a reductive algebraic group, RY is of finite type over & (IMu 11).
Thus we can set
PT = Proj(RY)
to obtain a projective algebraic variety over #. This is the principal object of our

notes. In the next chapter we will interpret P’,!,‘ as a certain quotient of an open
subset of P by G.

2. Standard _monomials.

Let P, =P(V) for a linear n+1-dimensional space V over £, ie. #£-points of
P, are lines in V. We have
T(P,.Op (k) = SymS(v*),
where

Sym(v*) = SymK(v»*)

4}

Tos

is the graded symmetric algebra of the dual vector space V*. Thus, by the

Kdnneth formula,

m
(R = TPR.E®X)C =TPY , @ m*0p (k1T = ((Sym<'(v*)®™)C,
i=1

The linear representation of G in T(PT,E®%) is the m-th tensor product of

its natural representation in the space of homogeneous polynomial functions on V
of degree Kl. Applying the First Fundamental Theorem of Invariant Theory
(IDi-C1) we obtain:

Proposition 2. Consider an element of (Rf), as a function p(v',...v™) on V™ which

is a homogeneous polynomial of degree kI in each variable. Then the functions

T, Tine
HeCvh, o v™) = I detv LSRR LASS!
151

span  (R),. where T;;€(1,2,...m} and each aqe{1,2,..m} occurs exactly k1 times
among the T;;'s.

A matrix
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Twk g = Twkn+1

is said to be a tableau and the corresponding function pr is said to be the
monomial that belongs to t. The number wk is the weight of Tt or 4, and the number
Kl is its degree.

We assume that t;; *# t;;for j # j' and each i. Otherwise the corresponding
monomial is zero.

A tableau T is said to be standard if

< Tijeg for each i

n

tu 1,...,WK, j = 1,...,n,

Tij € Tisyj for each i = 1,...wk-1, j = 1,..n+1.

A standard monomial is a monomial that belongs to a standard tableau.

Theorem 1. The standard monomials of degree kil and weight wk form a basis of
(R

Proof. We will prove only that standard monomials span the linear space (Rf),

and refer to [IDeC-P] for the proof of their linear independence.

Here is an algorithm (the “straightening algorithm”) that allows us to write
any monomial as a linear combination of standard ones.

Suppose |, is not standard. We permute the entries of each row of T so that

in the new tableau T’ all rows are in strictly increasing order. Then
He = e
Next we permute the rows of t' so that in the obtained tableau t"
T, € Ty for each i = 1,..,WK.
Continue permuting the rows so that if T;; = Tj,; then T, € Tj.q¢ Note that
these permutations do not change the monomial. We call the monomial obtained so
far semi-standard.

The rest of the algorithm proceeds by induction on the lexigraphic order of

tableaux defined by setting T < T if
(T4 Taners Tagee Tk potd € (Tyg i Taneg Tag o Tk ey )

with respect to the lexigraphic order.

Suppose that . is not yet standard and let i, be such that

10



CROSS-RATIO FUNCTIONS

Tigio > Tig+tio
for some j,.
Consider the

increasing sequences

Sy = (54m.8j0). Sg = (SjiaySpea). S = (S.Sy),
where
Sk = Tigex 1T K < Jo,

= Tigk-1 1T K> o

126

|7145_I
T= LzaoJ

345

we have (ig.Jo) = (2,2), and

For example, if

S, = (23), S, = (45), S = (2345).

Let A C I,,, be the subset of the permutation group IL.,, such that oceA iff

(Sg(1)--.Sa(jy)) and (sa(jo,,), ..Sg(n+2)) Ore increasing subsequences of S. We set for
every oOe€A

To = (Tg,1 'tio,jo—vsc(joﬂ)'""So(mz))'

to- = (86(1)""’sa(jo)'tio*‘ljo"‘l""'tiQ+1:n*1)'
In our example

A

((1234),(1324),(1423),(2314),(2413),(3412)},
‘Eg. =

((1,4,5),(1,3,5),(1,3,4),(1,2,5),(1,2,4),(1,2,3)},
‘Eo'“ =

For every sequence ¥

((2.3,6),(2,4,6),(2,5,6),(3,4,6),(3,5,6),(4,5,6)).
determinant

(iy,...iney? of numbers from (1,...m)} we will consider the

() = (iyipyy) = det(vh1, . vinene(vxyen*s
as a section of Tli’:@pn“)@.,.@'ﬂ *

ime QP (1). For example,
I.IT = ﬂ (ti)'

=1

where T; is the i-th row of t (TT is really the tensor product).
Then

11
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o}(:Asgn(a)(tq'tq") rPT 18 (Op (1))@ .@Ts¥ Op (1)=(v¥)en*?

is skew-symmetric and hence is identically zero (use that dim V = n+1).

Therefore we can write
(t U)(t ) =- I 'Sgn(O)(‘to')(‘(q").
I fo o€cA

where A' = A\(id).
Let t(0)' denote the tableau that is obtained from T by replacing Tio with tg .,
and replacing T, With Tg". Let t(o) be obtained from t(¢)' by rearranging the

rows in increasing order. Then

M =- I ,sgn(o)sgn(t(o))uc(a).
CeA

where Ur(g) = SgN(T(O)uc(g)’- It is obvious that
o) < T

for every ogeA’. Thus we can continue our algorithm until we express . as a
linear combination of standard monomials.

In our example we find

Mrize 1™ Mrize 1 M rize 1 M ri2e 7™ 1267 Hi2e
|-145_| |—135_l |-|34-| 125-| |-124-| |-123—|
|.236_| [246_' I_zsoJ 346J I_ase;J |-456J

345 345 345 345 345 345

and so on.

Remark 1. It would be interesting to find a general formula for dim(Rf).. In the
simplest case when 1 = k = 1, iie. m = w(n+1), our tableaux (resp. standard
tableaux) are equal to the Young tableaux (resp. standard tableaux) from the
representation theory of symmetric groups corresponding to the partition
(n+1,..,n+1) of m. Applying the "hook-formula” we obtain

m!ni(n-1)!.2!

dim(RY), = _
(n+w)(n+w-1)1. (w=1)!

In general,

12
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dim (R = Ka,u

is the Kostka number (IMcD 1]) corresponding to the pair of partitions of kmi

A = (Kw,..kw), 4 = (Kkl,..KD.

Remark 2. Since all standard monomials are equal to zero if m < n, we see that
for such m and n, qll the spaces P’,’,1 are empty. Similarly, if m = n+1 then ail

standard monomials are powers of of Wpy 2 . n.q;. Hence PY is a one-point set.

3. Examples.

Example 1 (n=1,m=4).

Here w = 2, 1 = 1. A standard tableau T of degree kK must look like

2
2
2
a3
a%ya?

where uf is a column vector that consists entirely of the integer i in the j-th

column of T. Let Io’il denote the height of o’i. It is clear that

lajl = Il = k, labl +Id3 = Iayl +Id| =k,
1 1 1) _ =
1ajl +layl +lahl = 1@l +Idl +Idl = 2k

This shows that the standard tobleau t is completely determined by the number
a = ld}l that satisfies
O0<ack
In particular
dim (R, = K+1.

Let

13
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Then
1K=
tot =
5 it ag
aja}
1.2
a30,

where a = ldyl = K-i.

Therefore
4
Ry = Kltyt,]
and
4
Pi=P,.

The field of rational functions of P}is generated by the function

_(12)(34) (a,-a,)(0a,-a,)
' (13)(24) (a,-a5)(a,-a,)

where (x'.x2,x3,x%eP? is represented by the vectors (g;1) from V. This

function is known as the double cross ratio of 4 points in P,.

Example 2(n=1,m=6). In thiscase 1 = 1 and w = 3.

A standard tableau of degree k and weight 3k looks like

ala
Q‘
a
ala
al a

2
2
2
3
2
s
2
5
2
&
Let
1, _ 1, _ ¢ 1, - ;
lagl= iy, lagl= iz lag = i,
They satisfy
0 < iyigiy € K, 2ig+ig 2 K,
K S ip+igriy $ 2K, 2iy+2ig+i, 2 2K
Setting

X = Qg Y = igtia, Z = iptigtiy

14
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we obtain that our tableau is completely determined by a vector (x,y,z) satisfying
O<XxXsK O<y-XxsK 05 z-y<K,
X+Y 2 K, Yy+Z 2 2K, K € Z € 2K
When O ¢ y ¢ k these inequalities are equivalent to
Yy 2 X 2 K-y, 2K-y § Z § Y+K.
This gives
K
T (2y-k+1)2
Y=o
solutions.

When 2k 2 y 2 K we have y ¢ z < 2K, which gives

2K
I (2k-y+1)?
y=kK

solutions.

Summing up by using the well-known formulae for the sum of consecutive

integers and for the sum of their squares, we find
dim(RY, = #(K3+3k2+4K)+1.
The Poincare function of the graded ring RS is
I (3(k3+3kZ+4R)+ DY = (1-t3H/(1-1)°
=0
This suggests that P{is isomorphic to a cubic hypersurface in P, This is true.

Let

to

]
"

(12)(34)(56), t, 13)(24)(56), t, = (12)(35)(46),

ty = (13)(25)(46), t, = (14)(25)(36)

be a basis of (R}), corresponding to standard monomials of degree 1 In the
notation of p. 11. For every (ij) = (0,3),(0,4) the product t;t; is a standard
monomial from (R3),. Applying the straightening algorithm, we find

toty = (12)(13)(25)(34)(46)(56) = -(12)(13)(23)(45)(46)(56)
+(12)(13)(24)(35)(46)(56) = -y, +t,t,,

where
Yy, = (12)(13)(23)(45)(46)(56)

is a standard monomial from (RS),.

Similarly,

15



1. DOLGACHEV, D. ORTLAND

toty, = (12)(14)(25)(34)(36)(56) = (12)(14)(24)(35)(36)(56)-
=-(12)(13)(24)(35)(46)(56)+(12)(13)(24)(34)(56)(56)+

+(12)(12)(34)(35)(46)(56)-(12)(12)(34)(34)(56)(56)

= Yz't1t2*t-ot1"‘totz'toz'
where

Y, = (12)(14)(24)(35)(36)(56)

is a standard monomial from (R}),.

We see that all standard monomials from (R$), can be expressed as linear
combinations of the products of standard monomials from (R®).. In fact every
standard monomial can be written in this way. By using the coordinates (iy.is.i,.K}
for the monomials and avoiding products of monomials: that are not standard, we

may write the general standard monomial as follows:

2k-20-b-c; K-c; c,, a+b-K
ty Ty,

Hea.b.cx) = to , it a+b 2 k;

= tozk-zo-b—ct1za~b-l<tzzu+2b¢c-2|< 1|<-b-¢.1 , it

y a+b < K:

whenever 2k22a+b+c, and:

2&K-a-b-c, K-a, a+c-K, Qa+b-k
t, ty t, ,

H(a,b,c.k) = b4 if a+b 2 K, a+c 2 k;

K-b} c, 2a+b+c-2Kk, kK-c-a i
t1 t2 t: 2 . if

y a+c < K;

t1K-c tzbtazo#b+c-2k 1K-b-u' if

y a+b < K,

whenever 2k<2a+b+c. Note how the inequalities on x,y, and z help to keep the
exponents positive.

It is immediately verified that
tyy, = titot,
This shows that the natural homomorphism of graded algebras
KIT g T /(T ToT = Ta(ToT 4+ T To-ToT - ToT+ T2 — RS
T~ t, i=0,..4,

is surjective. Comparing the Poincare functions we find that it is bijective.

Therefore

6
Pi=V;C P,

16



CROSS-RATIO FUNCTIONS

where V, is a cubic hypersurface given by the equation:

T T T TaT Tt TaT T+ TaTo T+ TaToT,-T3To2 = 0.
The permutation group I, acts linearly in R‘,’ by acting on tableaux.
Computing its character we find that this representation is isomorphic to the 5-
dimensional irreducible representation of I, associated to the partition (2,2,2)
(cf. Remark 1). In fact our realization of this representation is a special case of

MacDonald's construction of irreducible representations of Weyl groups

(IMcD 21). In new coordinates:

n

Zy = 2tg-ty-tortgrt,, Z, = t-ty-tgrt,, Z, = ~tyrt,-toet,,

]

Zs tirt-ta-t,, Z, = -ti-t+t-t,, Zg = -2t +t +t+t,-t,
our cubic hypersurface V, is defined by the equations:
£z;=0x2z% = o,
where I, acts by permutations (see [Co 1], p.114). In this form V; is known in

the classical literature as the Segre cubic primal (see [S-R], Chapter VIII, [Bal).

It contains 10 nodes and 15 planes. Note that by a theorem of Bertini, V; is the
unique (up to an isomorphism) cubic hypersurface in P, with the maximal possible

number of nodes (cf. [Kall).

Example 3 (n=2,m=6). In this case =1 and w=2.

A standard tableau of degree k and weight 2k looks like
1 2.3
a; azaj
1 2 .3
a,azay
1 42 3
az a5 ag
1 2 .3
a,as0%
Let
s 1 P (] PR P
ig = 10y, iy = la}l, jy = 1dY , iy = I
These integers must satisfy the following inequalities:
0 ¢ i3,i4,j3,j4 <K, i3+i4 < K, i3+j3 s K, i4+j4 <K, 2i4+i3_j3 < K,
2j3tigmiy € K, Jg $ dgtis , Jgtls € g -

Set

17
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X =g Yy = igtigy 2= j3 U= jg+], .
Then a standard tableau is completely determined by the integers x, y., z, and U

satisfying the following system of inequalities:
O<Xx<sysk,08ZsUSK,
Z <Y SZ-X+K, Z €Y § X-Z+K,
X S$USZ-X+K , X § U § X=Z+K .
After lengthy calculations we find
dim R}y = é(n‘+ox3+17x’+24|<)+1.

The Poincare series of Rj is

o 1
dim (R, = I TXk*+6k3+17k%+24K)+1tK =

k=012
1 oo { oo L] ©o
=TT (k(k+D(+2)(k+3)tK + T k(k+DtN + T ktK+ ¥ tK -
12¢=9 2g=p K=0 K=0
2t t t 1 (1-t4)

= - + - = .
-5 -3 -2 (t-1) (1-0501-t?)

This suggests that R‘; is generated by S5 elements of degree 1 and one element

of degree 2 with a basic relation of degree 4. In another words, P} is isomorphic
to a hypersurface of degree 4 in the weighted projective space P(1,1,1,1,1,2). This
is true. We have 5 standard monomials of degree 1:

to

(123)(456), t, = (124)(356), t, = (125)(346),

t, (134)(256), t, = (135)(246).
For every pair (i.j) = (2,3), (3,2) the product tit; is a standard monomial of

degree 2. The remaining two standard monomials of degree 2 are:
y, = (123)(145)(246)(356), y, = (124)(135)(236)(456).

Furthermore, the monomials t,,..t,y, and y, generate the graded algebra Rg

as the following formulae show:

-2y U-yp K-u-t - : :
Hixy.zuk) = toit, Y 2e Uy Jovtexy 22 ifxszsysu

tXt VT, Y VL KT TRy 27X ifxszsusy

= g0ty X U Xz X2, ifzsxsysu

18
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= tlt, XY TV Y TXezy X ifzsxsusy.
We find by the straightening algorithm
tats = ¥ymYartitertotirtot—toty-tota-to?,
Yi¥a = tott(~to+t -t -t +t ).
Thus, if char(#) = 2, by setting
ts = Yi-Ya
we obtain
ts? = (yyry)?-4yyy, = Fulto..ty),
where
Fa=(-totart t+tot +tot ~tot-tota-t )24ttt (~to+t —t-t +t ).
Together with the computation of the Poincare series this implies that
RS = &[Tq,... T51/(T52-F (T, T ).
In other words, P} is isomorphic to a hypersurface of degree 4 in P(15,2)
given by the equation
TZ - F(To...Ty = O.
If char(®) = 2, we find similarly that P°2 is isomorphic to the hypersurface
T§+T5(T2T3+T,T4+T°T1+T°T4+T0T2+T°T3+T°2)+T°T1T4(T°+T1+T2+T3+T4) = 0
in P(1%,2).
The inclusion Klt,,...t,) = R} realizes P; as a separable double cover of P,

branched along a hypersurface V, of degree 4 (resp. along a quadric Q, if p = 2)
given by the equation

FilTo,... T = O
(resp. ToTo#T T 4 ToT +ToT # ToTp+ ToTo+ T2 = 0.
The points over the branch divisor satisfy
Y=Y, = (123)(145)(246)(356)-(124)(135)(236)(456) = 0.

If we fix first 5 points (x',..x>eP} and let x° vary, we see that this equation

represents a curve of degree 2 that passes through x',..x% Thus Y;-Y, vanishes

on the sets of six points that lie on a curve of degree 2.
Remark 3. Assume # =C. By a change of variables
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Xo = To Xg = Ty Xg = Ty Xg = =Tp-To, X4 = -T5-Tg
we transform the equation of the hypersurface V, to the form:
(XX g+ XX+ X X2=XaX )2-4XoX KXo (Xo+ X+ X+ Xg+X ) = O.
This equation can be found in [lg 3], where it is shown that the corresponding

variety is isomorphic to the Baily-Satake compactification & ,(2) of the moduli

space of abelian surfaces with level 2 structure. In other words
Ry/(ts) = M(T(2),
where M(T',(2)) is the graded ring of modular forms with respect to the 2-level
congruence subgroup T,(2) of the Siegel modular group T, = Sp(4,Z) (see more
about this in Chapter 8).
Note that the Segre cubic primal V, and the quartic 3-fold V, are dual

hypersurfaces in P, The easiest way to see this is as follows. Let
s:P{— P}

be the 6-th Cartesian power of the Veronese map
vy Py = Py, (b t) — (12, t,t,.t%).

Under this map
s*(E) = £°2,

where, abusing the notation, we denote by the same letter our standard

sheaves for both spaces P{ and P3. Let u. be a standard monomial onP3, say
Hr = (123)(456). Then we immediately verify that

s*(U) = (12)(13)(23)(45)(46)(56)e(RY),,
aond, in the notation of Example 2, is equal to y, = -tyty+t,t,. Now note that

aF ,
T oty

.

Y1

where V, is given by the equation F; = 0. Similarly, we find that s* maps other
standard monomials to the elements of (R§), which are equal to linear independent
combinations of the partials of the cubic form F,. This shows that the image of V,
under the birational map given by the partials is isomorpic to V, This proves the
assertion.

We will call the quartic threefold Vv, the level 2 modular quartic 3-fold. The

reader is referred to IvdG] and [Bal for further information about this
3-fold.
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Il. GEOMETRIC INVARIANT THEORY.

In this chapter we will show that the spaces P§ from the previous chapter
are certain quotient spaces of some open subset of IPT,. Most of the notions and

the results that we introduce here can be found in [Mu 1].

1. P} (second definition).

Let G be a reductive algebraic group (e.g. G = PGL(n+1)) that acts regularily
on an algebraic variety X. Let £ be a G-linearized ample invertible sheaf on X. A
point xeX is said to be semi-stable (with respect to E) if there exists a G-
invariant section of some positive tensor power of E such that s(x) = 0. A semi-
stable point is stable if G acts with closed orbits in Xg = {xeX: s(x) # 0} and the
stabilizer group Gx = [geG: gx = x} is finite.

We denote by X35(Z) (resp. X5(Z)) the subset of semi-stable (resp. stable )
points of X. Both of these subsets are open G-invariant subsets of X. The

usefulness of them is explained by the following:

Proposition 1. Assume that X is proper. Then the categorical quotient XS5S(Z)/G
exists and there is an isomorphism

XSS(2)/G = Proj(® T'(X,E®%)C).
K=0

Moreover, the open subset X3(E)/G of X°S(E)/G is a geometric quotient of XS(E).

Recall that a categorical quotient X/G is an algebraic variety together with

a surjective morphism mX — X/G which is G-equivariant, where G acts identically

on X/G, and is universal with respect to this property. A geometric quotient is a

categorical quotient the fibres of which are the orbits of G in X.
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Corollary.

PR = PTHS(E)G .

The idea of the proof of Proposition 1 is very simple. First we note that

(- -]
X = Proj(® T(X,E®*)) because X is proper and £ is ample. Let
K=0

(- -]
Ax = ® T(X,E®%), cx = Spec Ay .
K=0

The group G acts on Ay and on Cx and Spec(AX)G is a categorical quotient Cy/ G
(IMu 11, Theorem.1.1). Let o0eCyx/G be the point defined by the maximal ideal

e)aol‘(x,:c“") of (AX)G. Then its pre-image in Cy is the set of all points which
K

define non-semi-stable points in X. Thus the projection Cx — Cy/G induces a
morphism XSS(Z) — Proj(Ax)®). It is easy to verify that it is a categorical
quotient of XSS(E) by G.

We will denote
m m
o (PTHSS — PR
the canonical projection of the categorical quotient. We set

49

w®THss N rTHSs,

H = W),

The projection
e PTHS = P \O

is the geometric quotient.

2. A criterion of semi-stability.

To describe the set of semi-stable point sets we use the following

numerical criterion of Hilbert-Mumford. Let Aa:£* — G be a one-parameter

subgroup of G . For every closed point xeX we define the map
Ux : &% — X, a — alo)x.

Assume X is proper. Then U, extends uniquely to a morphism:
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Hx A, = X
and defines the point
Hx(0): = limAalo)x.
=0

Clearly this point is fixed under the action of A(£%*) ond the restriction of E to it
defines a #*-linearized invertible sheaf on it. As such it is completely determined

by a character
2(A,x): K* — K*,
and the latter, in turn, is defined by the integer r(a,x) such that

r@AX)@ = o X for each oed™*.

Proposition 2. Assume X is proper. Then
xeXSS(Z) iff r(ax) ¢ 0 for all Ak* — G,

xeXS(I) iff r@@x) < 0 for all A&* — G.
Now we are ready to make the analysis of semi-stable points in IPT.

Theorem 1. Let x = (x',..xX™)elPT.Then xe(PT)S(E) if and only if for any proper

subset {ig,...i,} of {1,..m)

dim <X, ...%; >+1 2 K(n+1)/m,

i
where < > denotes the projective span of a finite set of points in IP,. Moreover,

X is stable if and only if strict inequalities hold.

Proof. (cf. [Mu 1D). Let a:k* — G be a 1-parameter subgroup of G. Choose

homogeneous coordinates in P, in such a way that the action of a(&*) is

diagonalized:
ALy, ty) = (o Ot,,...a Nty
for some integers r;. We may also assume that
) Mfo2My2 .20y i€1ri =0,ry>0.

Let
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m m)
to .t
X=] = « -
) m)
th’ ..ty
be the matrix whose columns are the projective coordinates of the points

1

x',...x™. For every | = {iy,...im). i;¢(0,...N) we denote by X, the monomial t; V..tj ™.

The monomials X, are the coordinates of points of PN in the Segre embedding

m
given by the sheaf .010p a1, For every I = (i(1),..1(1) the products
i=

1
Xy =TT Xty

are the coordinates of points of P',T,‘ in the Segre-Veronese embedding given by
the sheaf i§10pn('). A 1-parameter subgroup Aa:&#* — G acts on these coordinates
via:

A xp = a¥Px,,
where

n
N(D) = T n;r;,
i=0

and where n; is the number of times that i appears in (1),..,1Q0).
By Proposition 2 we have to look for the points (x',..x™) such that

(") minIN(D:X; # 0} s O (resp. < 0).

m

Permuting the points x',...x™ we may assume that the matrix X of their

coordinates has the following form:

where the bottom most entry in each column that is indicated by a "*" is

non-zero. Obviously the minimum N(lI) occurs when

IKiY = (0,..,0,1,...1,...n,...n}
gt o St
Ko Ky Kn

24
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n

1X riK; .

i=o0
Now note that every vector r = (r,..r, satisfying (*) coan be written as a linear
combination of the vectors

= = ~-d,...n=d,-(d+1),..,-(d+1
rqa = rg,4..Fa.n) (n-d,...n-d,-(d+1) (d+1))
d+1

d = 0,..n, with positive coefficients. This shows that it is enough to check (**)

for each A defined by r =rq for some d < n. We find that

n d n
N(')/] = Z rd';Ki = (n-d)z K] - (d+1) Z Ki =
i=0 i=0 i=d+1
d d
= (h-d)X Ky - (d+1){m- X KI) =
i=0 i=0
d
= (N+DX K - mid+1).
i=o0
Thus (**) holds if and only if
d
L k; < md+1)/{n+1) for d = O,..n-1.
i=o

It remains to observe that the maximal number of pcints among the x''s which

d

span a projective subspace of dimension ¢ d is equal to X k;. Thus (**) holds if and
i=0

only if the condition of the theorem is satisfied. This proves the theorem.

Corollary.
PTH* = PT)* = m and n+1 are coprime.

In particular, F>’,.',1 is nonsingular in this case.

Remark 1. Assume m < n. Then

dim <Xy Xm-g2+1 ¢ m=-1 < (M-1)(m+1)/m < (M-D(+1)/m < n+1.
This shows that

PTHYS =9 if ms<n

This agrees with Remark 2 from n°2 of Chapter |.

Similarly, we see that

(PTYS=@ if m = n+1.
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3. Most _special point _sets.

Here we describe the image & of
o = P\
in P.
Let x = (x',..xM)ed. Then x contains kK < m points which span a subspace of

dimension
_k(n+1) 1

1
m

Choose such a subset (x'1,..x 1) with minimal possible d,. Let '1,..x 1, . x ®4*%3) be
the subset containing (x'1,...,xi"1) and spanning a subspace of minimal possible

dimension d,+d,-1 2 d, that satisfies (K,+k;)(n+1) = m(d;+d;). Continuing in this way
we will be able to find an element geG and a permutation ¢ of the set (x',..x™) such

that the coordinate matrix of the point set o-g-x has the form:

lg, X! 0 X7 . o x!

where K; = md;7(n+1), xlj is a dyx(k;-d;)-matrix, i¢j, with no column zero when

i=] and |dJ- is the identity matrix of order d;. We say that x is of type (d,,...d)) if
its coordinate matrix is of the above form. We extend this definition by assigning
the type (n+1) for every stable point set. Clearly n+1 = d,+d,+..+d;, i.e. (d,..dy) is a
partition of n+1. Evidently the type of x is not defined uniquely.

Let us see how the 1-parameter subgroup Aq:£" — G defined by the vector
rq from the proof of Theorem 1 acts on x. Observe that

limagla)xe(PTHSS
a—o0

if and only if
t
d-= Dt .= Z di
i=1
for some t<j. In this case the specialization is a point set defined by the matrix
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- 1 . -
lg, X o xt o o )
0 0 . . g, Xf 0 © 0o o

. :
00 0 0 lgyyy Xged - 0 X3,
Lo 0 000 O g, X3

The stabilizer of this point set contains the subgroup of transformations of the
form

al (o]
B¢

0 elp;-o,
Therefore the orbit of such point set Is of dimension smaller than the dimension
of the general fibre of the projection ¢: (PT)%% — PT.
We say that a point set is special if its stabilizer is of positive dimension.
The orbit of such a point set is called special too. It is clear that every special

orbit is contained in the closure of an orbit of some non-special point set.
Applying all the 1-parameter subgroups ?\Dl(k*), we can specialize x further

to obtain a point set with coordinate matrix of the form:

1
lg, X! 0 0 .. 0
2
0 0 lg,X3. 0

000 O . |djxj

This will be called a most_special point set of type (d,...d;). It is easy to
see that a most special point set cannot be specialized further. Its orbit is closed

and is of dimension:
dim G-dim Gx = n(n+2)-j+1.

Every fibre of ¢ (PT)% — PT over & contains the orbit of some most

special point set (o most special orbit). We extend this definition by also calling
the orbits of stable point sets most special.

Let d = (d,..d;) be a partition of n+1. We call it admissible with respect to m
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if K, = dms(n+1) is an integer for each i = 1,..,j. The partition d = (n+1) is always
admissible and is called trivial. For each admissible partition of n+1 with respect
to m, let L,..L; be disjoint subspaces of P, of dimension d,-1,..d;-1 respectively,
and let Uq(L,..L; be the image of the natural map

(L f0Sx. (LS — p T
and Ug be the union of all subsets Ug(L,...L;) and their images under
permutations of the factors. It follows from the above discussion that Ug is equal
to the union of most special orbits of type d. It is easy to see that

J
dime(Uqg) = £ dim((L,*)3/PGL(d)) =
i=1

J J
= L (dj-1(K;-d;-1) = J-m+(E d;2)(m-n-1)/(n+1).
i=1 i=1

Note that ¢(Ug) consists of several components permuted under the natural

action of Iy in (PT)SS. Moreover

™S g0 =
U(hep) =P R 0 d“%rl"”Um

Note that a non-trivial admissible partition of n+1 with respect to m exists

if and only if m is not coprime to n+1. This agrees with the Corollary to Theorem 1.

Theorem 2. PT is a normal rational variety of dimension n(m-n-2) if m > n+2 and
dimension zero if m = n+1. Its singular locus Is contained in &.

o
Proof. It is well known that the ring Keorcp'“,z“) is normal ( it follows from the

fact that the Segre and Veronese varieties are projectively normal). By a
standard argument this implies that the ring of invariants R is normal, and

PT = ProjRT)
is normal. We know that, if m 2 n+2,

dim Pf = dim «PT)®) = dim ¢U¢,,,) = n(m-n-2),
and P is a point if m = n+1.

The assertion about the singularities of PT and its rationality follows from

a stronger result asserting that P',',‘\.(ﬁ is covered by open subsets each of which
is isomorphic to an open U © A (qn-n-2). TO see this we note that a point set x =

(x',...x™eWPT)® cannot be separated by two disjoint linear subspaces. That is,

there do not exist disjoint linear projective subspaces L' and L" of PP, such that
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every x; lies in either L' or L". In fact, if this happens, after a permutation of the

points, the coordinate matrix of x looks like

%]

This easily implies that dim Gx > O , and hence x is not stable. Thus we can choose

n+1 points x' which are not in one hyperplane, say x',..x™' without loss of

n+1

generality we may assume that the coordinate matrix of x',..x is equal to the

identity matrix I, Now for each k between 2 and m-n we let S, be the set of

integers i such that the points x'..X'..x™'x" span P, In other words,

S = (ief0,..n): x; ™% + 0},
where x™K= (x,™%,  x,"*K). It is obvious that {0.1,...n) cannot be separated into
two disjoint subsets |I' and |I" such that every S, is contained in I’ or I". Thus we can

find a suitable set of subsets S, © S, such that

@ Us, = {0.nk

(i) $;N(s;_\V..US,) consists of one integer, for 3 < i < m-n.
Let U be the open subset of P defined by

P = ' XL x™ x™K 5 for all ies;, k = 2,...m-n,
P = ' x™

There exists a unique geG such that for every xeU the coordinate matrix of gx

has the following form:
[lhey X1,

where for each Kk, the k-th column of X has 1 as the entries in the rows whose
\
indices are from S,. For example, if (S,,...Spm-n) = ((0,....nL{N},...{N}), the coordinate

matrix of g-x must look like

100..01 » ..x
010.01 % .. x=

0oo0.O0111.1

To see this we observe that after reducing the points x'..x™!

to the points
(1,0...,0),...(0,..,0,1) by a suitable geG, there are still non-trivial transformations

left in G which fix x'....x™' They are the homotheties
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(to....ty) = (Agt,....AntL), Ao Py = 1.
Thus we may use them to normalize the j-th coordinate of x.,, Jj€S,. Then we
normalize the j-th coordinate of x™3 for jeS,NS, by a projective factor. Next use
again the homotheties to normalize the remaining i-th coordinates of x™3 for

ieS;, and so on. Clearly this defines g uniquely and defines a G-equivariant
isomorphism

GxAp(m-n-2) 3 U,

where G acts on G by left multiplication and identically on the affine space. Of
course, the affine space A(m-n-2) IS the space of all non-normalized coordinates
of the points from gx. This shows that (PT)® Is covered by the invariant open
subsets UN(UPT)® whose quotients are open in Ap,(m-n-2)- This proves the assertion.

Moreover it shows that the projection
. m\ &
¢ PTHS = PT\D

is a principal fibre bundle of G over PR\ in the sense of IMu 1], Definition
0.10.

Remark 2. It is convenient to use Pp(m-n-2) OGS a birational model of PT in such a
way that the factor projection ¢ identifies the set U, ¢ P of points with the
coordinate matrix:

) )

100..01t7%% . t9

010..01tN»

n m)

0..0101t0F M

co.o11 1 .. 1
with the open subset ((t,....th(m-n-2)7€Pn(m-n-2): thtm-n-20 = 1} by assigning to the
point set x = (x'...x™) the point

(t(ngs)’t(n:a),mlt(nn) ,t(rg)m't(m) 1.

n=1 + n-1-

Remark 3. One can also show that P§ is a Cohen-Macaulay variety with rational
singularities. This follows from general properties of the orbit spaces under

reductive groups or from the fact that Pr,',' is a toroidal embedding (M.Hochster).
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4. Examples.
Example 1 (n=1, m is odd).
In this case
CHOMENCE
and P is a nonsingular rational variety of dimension m-3.

For instance, if m =5, P} is isomorphic to a Del Pezzo surface of degree 5,
that is, a surface obtained by blowing up 4 points In the projective plane.

Example 2 (n=1,m=2K is even).

A point set x = {x',..,x*) belongs to & = PTHYS\N(PT)Sif and only if exactly
k of the of the points x' coincide. The fibre of ¢(®(x)) for such a point set x
contains @ most special orbit of type (1,1). It consists of point sets x such that
x't = . =xK xlj = =x for the complementary subsets {i,,...ig}, {jj..Jc} Of
{1,...m}. The subavriety & is the union of ¥(¥) points, each of which is a singular
point of PJ. For instance, if m = 6, P‘; is isomorphic to the Segre cubic primal Vv,
with 10 = %) nodes. Their coordinates are (t1,#1,£1,£1,£1,£1), where exactly half
of them are positive. Here we assume that the equation of the cubic is taken in its

L,-invariant form (cf. p.17).

Example 3 (n = 2, m = 6).

There are three different partitions of n+1 = 3: d = (3),(1,2), and (1.,1.1). All
of them are admissible with respect to 6. The first corresponds to stable points.
The second one corresponds to most special orbits of point sets x = (x',..x%),
where two of the x''s coincide and the four remaining points lie on a line disjoint
from the two coinciding points. The images of these orbits define 15 = ("2) one-
dimensional components of 4. We denote them by 1;;. Each of them is isomorphic to
PIND = P,\{0,1,).

The third partition (1,1,1) corresponds to most special orbits of point sets
which contain 3 disjoint pairs of coinciding points {x;.x;}, (XX}, and {Xm.x,). The

images of these orbits give
! 6y 4
15 = X))

points in L. We denote them by X;; 1, mn It is easy to verify that each line 1;;
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contains in its closure exactly 3 points X« mn Moreover, each point X;; i ,mn iS
contained in the closure of the 3 lines ljj. 1, and 1.
Note that most special point sets lie on a curve of degree 2. Hence
d cv,=(tg =0 cF;.
The lines 1j; are the double lines of the level 2 modular quartic 3-fold V,. The

points X;; 1.mn are the triple points of Vv, The union of the singular lines & is the
boundary of & ,(2) and is described for example in [vdGl.
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In this chapter we describe a duality between point sets known in classical

literature as gassociation. it establishes an isomorphism of algebraic varieties:
m m
Am,n' Pn — Pm-n-2.
satisfying

_ oA
9m,m-n-2 = 9m ,n-

From now on we will always assume that

m 2 n+2.

1. The _association.

Let xeP and X be its matrix of projective coordinates. A point set yeP .. _,
is said to be associated to x if its coordinate matrix Y satisfies
XeAely = 0
for some diagonal matrix A = diag(a,,...Am) with all ; = 0. Note that the relation
g is associated to p" is symmetric and is preserved under the G-actions.
Another way of viewing the definition of association is to consider X and ty
as linear transformations

X: KM = (™ by Mot M

Then xePT and yeP ..., are associated if and only if they have coordinate
matrices X and Y, respectively, such that the following sequence is exact:

t
Y X
0= kMM kMo ™ o

Note also that for every permutation oeIm the point sets x = (x',..x™) and
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y =(y',...,y™) are associated if and only if ox = (X7, x7™) and gy = (y7",.. ,y? ™)
are associated.
We will see later that a point set associated to a stable point set x is stable

and its G-orbit is determined uniquely. Thus there is an isomorphism:

Am.n PTS/PGLIN+1) — P, )S/PGL(M-n-1).

Example 1. Let x = (x'....x*) be a stable point set in P{.A point set yeP{is
associated to x if and only if it is projectively equivalent to x. Let us verify this.
By the stability criterion, x consists of distinct points. Replacing x by a

projectively equivalent point set we may assume that the coordinate matrix X of

1011
O11a|’

1

X has the form:

Assume that y = (y'...y* is associated to x. If y' = y?, we can choose a coordinate

matrix of y in the form

11bd

[OOC e]
and find nonzero A,A,Aj;and A, satisfying

A, +Agb+a,d = O,

Ac+Ae = O,

A+Azb+Aad = O,

nc+ice = 0.
Computing the determinant of the coefficent matrix of this sytem of linear
equations in A, we find that a = 1. This contradiction shows that y' = y2 Similarly

we verify that yI * yj for any i # j. Thus y must be stable. Then, applying a

projective transformation to y we may assume that its coordinate matrix has the

1011
011b

and obtain the following system of equations for the @;'s:

form
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A, +0g+0, = O,

Ag+Ab= O,

Ap+n,a= O,

Ay+Rg+aab = O
This implies that a = b, i.e. X = y. Moreover, the system can be solved in this case
by taking A, = 1, A; = -q, A, = a(1-q), A; = a-1, all non zero

2 3

Note that the assertion fails if x is not stable. For example, if x' = x? = x® =

x*, we can find an associated set y to x with y' = y? = y® = y4

The main algebraic property of associated point sets is that the
complementary minors of maximal order in their suitable coordinate matrices
are proportional (see Theorem 1 below). This implies that the images of
associated points in the spaces P§ and Pq.,_,are equal after we establish a
certain isomorphism between the graded algebras R| and RM.,.,. Let us do first
the latter.

Let T = (t;,) be a tableau of degree k1 and weight wk. We denote its rows by
T = (T Tine) 1 = 1,..WK. We view it as an ordered subset of (1,..m).

Define the associated tableau A(t) by

AT, = (L MN\Ty o jeg
reordered in the increasing order. Clearly A(t) is of weight wk and of degree kI’
with 1" = w-1. If
Twik-i+1 = (Twi=i+1 1. Twi-1+1n+1)s
we have
AD); = (L Tywiojer 1= 1 Twi-i+1 110 Twi-i+1 ne1= 1. Twi=i+1 neg v 1..M),
Al = (Lo Tywk-i 171 Twi=i 171 Twik-i ne1= 1 Twi-i ne1t1o.M),

hence A(t) is standard as soon as T is.

Note that A is involutive, i.e.
A? = identity.
The association Tt — A(T) extends to the corresponding monomials
Al = Ha(o)

and by linearity to an isomorphism of graded vector spaces
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. ~ pMm
Anm: R'r? % Rm-n-2-

Theorem 1. A, is an isomorphism of graded algebras
An.m: R'r'\' s I-‘~’r:11"-n-2'

Proof. We have to verify that
AU A = Alucle).

Note that the RH.S. can be defined by writing the product as a sum of standard
monomials and extending A by linearity. The L.H.S. can be written also as a sum
standard monomials. Thus we achieve our goal if we can show that the steps in
algorithm of straightening monomials are the same for both . and pa(gy. This
verification is rather tedious and we skip it (see [Orl]).

Corollary. The isomorphism Apm: RN 3 Rm-n-, induces an isomorphism

. ~ pM
An.m: PR 3 Po-n-z-

We will call this isomorphism the association isomorphism.

Example 2. Let n = 1, m = 4. Under the association

Hl 12| = H]12

34 34
Hf 13— K| 13
24 24
Thus A, R{3 R{ s the identity isomorphism, hence a,, P{3 P} is the

identity isomorphism. This is in accord with Example 1.

Example 3. Let n = 1, m = 6. We use the notation of Example 2 from Chapter 1.

Under the association of standard monomials:

ty = (12)(34)(56) — (1234)(1256)(3456) = z,,
t, = (13X24)(56) — (1234)(1356)(2456) = z,,
t, = (12)(35)(46) — (1235)(1246)(3456) = zZ,,
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ty = (13)(25)46) — (1235)(1346)(2356) = z,,

t, (14)(25)(36) — (1235)(1346)(2356) = z,.

Both of the varieties P and P4 are isomorphic to the same cubic hypersurface in
P, (the Segre cubic primal). Note that if we fix S points in general position among
(y'....y®)eP$§ and let the other vary, say y®, the functions z; represent quadrics in
P, passing through the points y'..y®. These quadrics mop IP, birationally onto a

cubic hypersurface in P, isomorphic to the Segre cubic primal Vj.

Example 4 (n = 2, m = 6).
In the notation of Example 3 from Chapter 1, we find that under the
association isomorphism A,,: R§3 R

tp— t ,i=0,..4

i
y; = (123)(145)(246))(356) — y,=(124)(135)(236)(456).
Thus the association involution
%G P2 — P
is the cover involution of the projection P — IP,. In particular, its locus of

fixed points is the divisor parametrizing point sets lying on a curve of degree 2. If

p # 2, it is isomorphic to the level 2 modular quartic 3-fold V,.

Theorem 2. Let xe(PT)%%and ye(Pq-,_,)°%be associated point sets.
Then

An,m (@(X) = @(y).

The proof will follow from the next two lemmas.

Lemma 1. Let xePT and yeP ..., be associated point sets. One can choose the

coordinate matrices X and Y of x and y, respectively, such that

Y.

X "'inﬂ i1 ...jm_n_1

Y tXi1' =0,

i1ips1 " J1im-n-1

where (i, ...insqd Ugosdm-n-gd OGN (i)' tineg LUy o wsdmn-4) Qre any two pairs of
"inf1l Yj1"'jm"n-1’“.
minors of X and Y composed of the columns indexed by these subsets. Moreover,

complementary subsets of (1,...m}, and Xi,- are the corresponding

the sign + must be taken if and only if (i....inyg} and (iy'....in.,) differ by an odd

number of entries.
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Proof. Obviously we may assume that the sets (ij....inegd GNd (iy'....insy) differ only

in one element. Also, after reindexing, we may assume that
(ijoiinesd = (M-n-1,m-n+1,...m},
iy, .insg) = (M-n,m-n+1,...m}.

For every 1 ¢ i € m-n, we expand the minor Xim-p+s....m along the first column to
obtain

M
Mex, .
o

Xl.m -n+1,-.m

TMso

Similarly we have for every m-n-1 < i < m
m-n-2 a
= )
Y1....,m-n-2.i - .Z Nij .
i=o

Choose X and Y in such a way that

Xsty = 0.
Then
m
o= x%;" . K = 0.0, j=0,..m-n-2
i=1
implies
n m-n-2m
o= ¥ zImxy"N =
K=0 j=o0 I=1
m
= 'Z1Xi,m—nu,-".in,...,m—n-z,l-
i=
In this sum only the terms corresponding to i = m-n-1 and m-n are non zero.

Thus we obtain

0 = Xm-n-1.m “N+1,.m Yy...m-n-2.m-n-1*Xm-n.m-n+1,~.m Y1,...m-n-2.m-n-

Lemma 2. Let xe(PT)®% and y ¢(Pq-,.,)°° beassociated point sets. Assume that
R is generated by (Rf).. Let u; be a monomial of weight wk and degree k1 that
does not vanish on x. Then the monomial pa() does not vanish on y, and for any

other monomial T weight wk and degree k1 we have
(' 7HD) = (A )/ Haco))(Y).

Proof. Clearly we may assume that T and tT' are both semi-standard. Note that any
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semi-standard tableau may be obtained from a fixed one by a series of the

operations T — T, where

Tio = Wigar:Tigjyr Tigne)

ti1 = (ti1:1""'tioljo""'thrn"")’
T =T, 0 * gy
and T, j, appears in slot j,. t'o'jo appears in slot j,, followed by row straightening.

Thus it suffices to show that

Mo (X Haceh(y)
(X)) Ua(Y)

)

for such pairs T and T'. Note that, if ug(x) # O, there exists T such that pacc'y(y) # O
because ye(Pq-n-2)%% and (Rp-n-p)¢ generates Rpn-,. This shows that pacgy(y) # O
and checks our first assertion.

We have in the notation of Lemma f1:

et (X) (utio-uri1-”i;,n,,iutl')(x)=

He(Xx) (utiouthl'l uti)(x)

i*ig.iq

X . Lt X+ et '
~ ‘Ei°1"t|QN"‘1 '[;11 "i,nﬂn uti (X)_

i‘lo:lﬂlti(x)

X X
Ti 4...T§ Ty 4T
ig1 ign+1 iq1 in+1

YA(‘E')WK-i +117 A('E.)wK-i141 n+1YA(‘E')w|<-|1+1 1"'A('E')w|<-i1o1 n+1 uA(T'h(y) -

= ° I

Y ]tWK'io,WK-i1uA(t)i(y)

Y
AlDWK=ig+117 AlDWK=-igsin+1 ADWK=11411 A(Dwk=-i+1n+1

HAeH(Y) .
Haco(y)

Proposition 1. Let xe(PT)SSbe of type (d,....d)). There exists an associated point

set ye(Pq_n-p°% of type (d,...d;), where

di = Ki"di = di(m_n"1)/<n+1)),

Proof. After the reordering the points of x, we may assume that the coordinate

matrix of x is of the form
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lg, © 0. 0 X{x3 .. X3

01g,0.. 0 0X3. X5

0 00.1g0 ...oxﬁ

d,' dz'... d;,
where the numbers at the bottom of the matrix indicate the number of columns

i
in the submatrices X; We can find a matrix Y of order mx(m-n-1) satisfying Xoty

= 0 and having the form

where
tyl J
Yj + X‘ =0
This shows that Y is the coordinate matrix of an associated point set which is of

type (d,’,...d;").

Corollary 1.

An.m(PANS) = P\

Corollary 2. For every xe(PT)®there exists a unique associated point set y up to

projective equivalence. Moreover ye(P M. _,)%.

Remark 1. In the notation of Remark 2 from Chapter Il, let xeU,cPPT be
identified with a point

(N+3)

(n+3)
o X4

(N+3) (m m) 1)

)
(x reeeXnmg s X g oo Xpeqs

of Pn(m-n-2)- Similarly, we may identify the subset
Vo = lyeP M, :y®=(0,..,1,...0), k=n+2,..m, y™ =110, yn -2 Ymin-2* O

with Phm-n-2) by sending yeV, to the point
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2 = YD Y m I YRy ™).
Then it is verified by direct computation that x is associated to y if and only if

the corresponding points in Pp¢m-n-) are equal.

2.Geometric properties of associated point sets.

So far our definition of associated point sets was purely algebraic. In this
section we look at the association from the geometric point of view. We will
restrict ourselves to general point sets. A point set xePT is said to be general if
any subset of K < n+1 points spans a (k-1)-dimensional linear projective space. We

gen

denote the subset of general point sets by (PT)9%". It is clear that

®THEN = (PTHS,

Proposition 2. If x=(x',..x™%)e(P" )9 is associated to ye(P";3)9°" then there
exists a unique isomorphism from IP, onto a rational normal curve R, which sends

y to x (preserving the order).

Proof. Recall that a rational normal curve R, is the image of P, under a map given

by the complete linear system I0p (). Counting constants we check that any set
of n+3 points in P, lies on a rational normal curve. The uniqueness of such a curve
is clear in the case n = 2. The general case is reduced to this case by projecting
the curve to P, from a subset of n-2 points (see [G-HI). Let us verify the other
assertion of the proposition. Note that a linear parametrization on R, is given by a
pencil of hyperplanes through any (n-1)-secant (n-2)-plane, for example the

(n-2)-plane L., that is spanned by the points x>,..x™3. Let
M) = <x>,..x"3uu'>

denote the bilinear form that vanishes whenever the line <u,u’'> intersects
the (n-2)-plane L,.,. M(x,U) is then the equation of a hyperplane on the n points
x,x%,...x™2, unless xelL,., in which case it is identically zero. Thus M may be
considered as a rational map from P, onto the pencil inside the dual projective
space IP,* spanned by the hyperplanes through L,,. It follows that M may be
represented by a 2x(n+1) matrix M = (M;;), so that, once a basis (h(U'),hW),} is

chosen for the pencil, we have
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n+1
M) = .}:1(h(u'),M,juj»fh(u'),M,juj)‘
=

Now apply M to the left side of the equation XsAe'Y = O for the association of x and

y, and use M(x'.u) = 0 for i = 5,..n+3 to obtain
4 N+t
£ M x%2y,% =0
ketroq LrXe kY j

The 2x4 matrix obtained from MeX by throwing away the zero columns can be
considered as the matrix of coordinates for the projection of x',...x* onto a line
from L., Thus the above equality says that this projection of (x',..x% is
associated to (y'...y*). By Example 1 they are projectively equivalent. Since this
is true for any choice of four points, the entire sets are projectively equivalent
to each other (when x is considered as a subset of R, = P,), and we are done.

In a similar way we can prove:

Proposition 3. Let xe(P')9°" be associated to ye®P T ,)9", and &",..%'™) be a
point set on P, obtained by projecting an ordered subset (x'",...,xlm) of x fromthe
(n-2)-plane spanned by x'...x""'. Then there exists a unique isomorphism from P,
to a rational normal curve in P, which sends &'"....x'™) to the ordered subset

(y'",...y'"') of y.

We shall call a rational normal curve R, a basic rational normal curve if it

passes through a fixed general set of n+2 points (a basis of P,) which is assumed
to be fixed from now on. The set of basic R, has dimension n-1 and may be used as
a model of P2 since the projective equivalence classes determined on each of the
R, by the n+2 points in the basis are distinct. Thus, to construct a point set y that
is associated to a given point set x, we proceed as follows. First choose y'..y™ "

to be a basis for P,,_h-,and set, for i = m-n+1,..m:

-

Li = <x'"'“”,...,x',...,x'"> c Pn~

Then find the unique basic rational normal curve R' in Pp_,., for which there

exists an isomorphism to P, which maps the basis of P _,, to the projection of

1 m-n

x',...x from L;onto IP,. Finally set y'eR' equal to the point which is mapped to the

projection of x'.
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We may generalize the technique used to obtain the previous two

propositions to provide one more property of associated sets.

Proposition 4. If xe(PT)9°" is associated to ye(P.,.,)9%" then the projection of
the point set (x'...x™ %) from the plane L spanned by x™™**', _ x™ toP,_ is

associated to the point set (y'..y™ ™).

Proof. Use

m-K+1

. 1 - ) . m
MU, Uy, Upog ) = KUy, Upo JULX I

>

to denote the muiltilinear form that, for fixed u, vanishes when the (n-k-1)-plane
<U,",...Up-¢ > intersects the subspace spanned by L and u. As such, M may be
viewed as a map from P, to the (n-k)-dimensional linear subspace of the
Grassmannian G(n-k,n+1)* = G(k+1,n+1) given by the k-planes that pass through L.

Represent M with an (n-k+1)x(n+1) matrix and proceed as in Proposition 2.

3. Self-associated point _sets.

Assume
m = 2n+2.
Then
%= Gnm: PR — PR
is an involution.
We set
Sp = XePA"% ay(x) = x).

A point set xe(P2"*?)%S s said to be self-associated if ®(x)eS, It follows from

Corollary 2 in the previous section that a stable point set is self-associated if

and only if it is associated to itself.

We have already seen in Example 4 that xe(P3)°%is self-associated if and

only if it lies on a curve of degree 2, and
S, =V,

the level 2 modular quartic 3-fold. Note also that
S, = P}.

We will generalize these two examples by proving a theorem of Coble that
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asserts that a sufficiently general point set is self-associated if and only if it
imposes “one less condition on quadrics”’. The latter means the following.
Let Z be a O-dimensional closed subscheme of P, n > 1, with the ideal sheaf
9z. The exact sequence
0 —9; = Op —0; =0
defines, after twisting by Op (k) and passing to cohomology, an exact sequence
0 — HXPp,02() — HWP,O0p (K) — HAZOZK) — H'(P,8;K) — O,
where the middle map
re : HP,,0p (k) — HAZ,0z(k))
is interpreted as the restriction of a homogeneous form of degree k to the
subscheme Z. Its kernel consists of hypersurfaces of degree k that vanish at Z.
We set
8(zk) = dim Coker(r,) = dim H'(P,.087(k)).
Clearly
dim H°(P,82(k) = dim HP,,0p () - U2 + &(ZK),
where
€Z) = dim H%Z,0;)

is the length of Z.

If Z = Zreq, WZ) = #Supp(Z), and we expect that each point from Z imposes
one condition on a hypersurface of degree K to pass through it. This shows that
s(Zk) is the number of “extra” linearly independent hypersurfaces passing
through Z.

We apply this to our situation where Z = (x'

,...xM} is equal to {x}, and is
considered as a reduced subscheme. We assume that all the points x''s are

distinct.
Remark 2. Note that H(x},Opg(1) = K™ and H'((x},9p(1) = k™™ if x',..x™ span
P, The points x' define an ordered subset in P(H%({x),®;3(1))) and their projections

to P(H'({x),0x1(1))) define an associated set of points (see [Ty 21).

We start with the following generalization of a lemma from [Shl:
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Lemma 3 . Let Z = (x'...x>™" be a set of 2n+1 distinct points in P, n >1, such that
p n

any subset of 2k+2 points spans a linear projective space of dimension > k. Then:
8(Z,2) = 0,

or equivalently, the dimension of the linear system of quadrics passing through Z

is equal to #n(n-1)-1.

Proof. We prove this by induction on n. For n = 2 we have to show that (x',...x%
is not contained in the base locus of a pencil of conics. If it does, the pencil must
contain a fixed line 1 and consist of reducible conics 1+1', where 1 belongs to a
pencil of lines through a point y. Thus either four of the x''s lie on 1, or two of
them coincide with y. Both of these cases are excluded by the assumption of the
lemma.

Assume now that the lemma is true for the sets Z of 2m+1 points in Py for

all 2 < m < n. Note that for any subset Z' ¢ Z we have
8(z',2) < 8(22) = 0

since completing Z' to Z will reduce the dimension of the linear system of

quadrics through Z' by at most #Z-#Z'.
Let S be a set of 2n+1 points in P, satisfying the assumption of the lemma.

We can write
s = s,ls,,

where S, consists of some sxn points spanning a hyperplane H. We have
dim H°(P,,85(2) < dim H(H,8g (2))+dim HPp,85, (1))

by restricting quadrics to H.

Applying the inductive assumption to Z = S, € H = IP_,, we have §(S,2) = O.

Hence
RH.S < (n(n+1)-s) + n+ 1 -(2n+1-5)+8(S,,1) = In(n-1)+8(S,.1),
and
5(S,2) = dimH°(P,,95(2)) -4(N+2)(N+1)+2n+1 ¢
< EIn(n-1)-3(n+2)(N+1)+2n+1+8(S,,1) = 8(S,,1).
Evidently,

8(s,,1) = O iff the set S, is linearly independent.

Thus we are done in the case where S, spans a subspace of dimension 2n-s. If it

does not, we choose the separation S = S,LIS, differently. Take a subset S, © S
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which consists of n points that span H. Then S,U(S\\S,) consists of n+1 linearly
dependent points. This shows that we can find a hyperplane H' that contains this
set. Now set

S, = S,US\Sy), S,' = S,
and replace H by H. For this new decomposition of S we have 8(S,,1) = O and,

repeating the argument, we prove the lemma.

Theorem 3. A stable point set x = (x'...x*™)eP2M2 with x' « x! for all i+j is self-

associated if and only if

8({x},2) = 1.

Proof. For every subset x'1,..,x'2k+2), k < n, we have by the stability criterion:
1+dimex't, . x'2K425 5> (2k+2)(N+1)/(2n+2) = K+1.

This shows that every subset of 2n+1 points in x"1,..,x'2k+2) satisfies the

assumption of the previous lemma. Hence
§(0.2) < 1,
and it suffices to prove that s({x),2) 2 1, i.e.
dim H°(P..80(2)) 2 #(n+2)(n+1)-2n-2+1 = #n(n-1).
Let X = (x‘;’) be the coordinate matrix of x. Then x is self-associated if and
only if
XeAetX = 0

for some A = diag(d,....Ayn.,) with all A; # 0. This condition is equivalent to the
condition that (d,,..,A,n.,) is a solution of the system of #(n+2)(n+1) linear
equations
) CeA = 0,
where
c = X = (e, p)-
If x is self-associated
rk(C) < 2n+t
and there exists a matrix Q of maximal rank such that

Q«C = 0.

For every column C; of C and row Q; of Q the equality
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Q;eC; = O
expresses the condition that a quadric whose coefficients are the entries of Q;
passes through the points X,..X,n.,. Thus we obtain

rk(@) = F(n+2)(n+1) -rk(C) 2 *(+2Xn+1) -2n-1 = In(n-1)

linearly independent quadrics passing through (x). Conversely, if Q«C = 0 as
above, we have rk(C) < 2n+1 and there exists a nonzero vector A = (A,,..,An.,)
satisfying (*). Hence

XeAelX = 0,

where A = diag(d,,..,A;n.,)) - The only problem is that some of the A;’s may be zero.
Suppose this happens for some d;. Then the matrix obtained from C by deleting the
j-th column is of rank < 2n. This implies that xA\x! lies on n(n-1)+1 linearly

independent quadrics, i.e. s(Ix\x),2) » 1. This contradicts Lemma 3.

Remark 3. The assumption of stability of x is essential. For example, a semi-
stable point set in 1P, that consists of 6 coplanar points and 4 collinear points lies
on a linear system of quadrics of dimension S , but it is not self-associated unless
the six coplanar points lie on a conic. If that is the case, the dimension of the
linear system of quadrics will jump to 6. In the other direction, a semi-stable
point set in IP; that consists of two sets of four collinear points is self-
associated, but there is a linear system of quadrics of dimension 3 that contains
them. We do not know a clear cut geometrical statement for the general set in &
to be self-associated. However, if we use the block-diagonal coordinate matrix
for a most special point set x of type (d,...d), it is easy to see that x is self-

associated if and only if each of the subsets of 2d;+2 points that span a subspace
of dimension d; are self-associated when considered as a point set in Pg,.

Remark 4. One can strengthen a little the assertion of Lemma 3 by assuming in it
that Z spans P, and that every subset of 2k+2 points in Z spans a linear subspace
L of dimension 2> Kk, as long as we assume that such a subset is not self-associated

in L in the case when the equality holds (cf. [ACGH], Exercise F-1 on p.199).
Example S.Llet C c Pg_, be a canonical non-trigonal curve of genus g 2 3. A

general hyperplane section H cuts C in 2g-2 points. The corresponding ordered

point set in Pg_, = H is self-associated. This follows from Theorem 3 and a well-

a7



I. DOLGACHEV, D. ORTLAND

known property of the linear system of quadrics containing a canonical curve
(IG-HI, p.528).

Example 6. A point set x = (x'..x®»eP5Swith x' # xJ,i#j, is self-associated if and
only if it is contained in the base-set of a net of 3 quadrics. Generically (we will
make this more precise later in Chapter IX), it is equal to the base-set. By
Proposition 4 the point set y = (y'...y)) in P, obtained by projecting x'.x’ from
x® is associated to the point set (x'...x"). Conversely, let (y'..y")eP be
associated to (x'...x7)eP].The linear system of quadrics containing x',..x” is 2-
dimensional and, again generically, contains one more base point x® The point set

(x',...x%) is self-associated. This establishes a natural birational map
7
P3 - Sg

We will return to this example in Chapter IX.

Let us give another geomeric characterization of general self-associated

point sets.

Lemma 4. Given a hyperplane H € P, not containing any of the basis points, there
is a nonsingular quadric Q4 such that any basic rational normal curve that is

tangent to H is tangent along QyNH.

Proof. The unique basic rational normal curve that passes through a given point

p = (ty...t)eP, not on any linear space spanned by a proper subset of the basis

can be constructed as the image of p: P, — P, given by:

t th

n 0
(to.ty) (T (Ty-1t it ))C ) =
Pl A o MR ity To-Tytn

= (PolTo.Tq)....Pn(To. Ty,
where, if we let o);(t) denote the j-th elementary symmetric function in the

n variables t,....t;...,.t, Multiplied by (-1,

n .
pi(To.Ty) = tilzoc”(t)tﬂto"".
J=

Note that

p(1,0) = p, pO.1) = (1.0, plt,1 = (0,..1,..,0).
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Let H be given by Ia;x; = O, and suppose that R, is tangent to H at p. Define R, by
using the coordinates of p so that we have:

(Lq;ap;/30)(1,0) = -Ig;it;o(t) = -I aitit; = Lait? = o,

i i i*] i

where Tt = T,/t, Thus the quadric that we are seeking is

Q) = Ia;x;2,
I

and its nonsingularity follows from aq; # O for all i, due to the condition on H.
We will call the quadric Qq constructed in the previous lemma the basic quadric
with respect to H.

Lemma S. Let H be a general hyperplane in IP,,. For every basic rational normal

curve R, the points HNR, are mutually polar with respect to the basic quadric Q.

Proof. Let R, be defined as the unique basic rational curve passing through a

point p = (to,..tpdeH, and let p' = (t5....t,) = p(1,DeHNR, We must show that
aulp.p) = Iqgtt; = o,

where H is given by an equation Zqgx; = O. Let thi = ti‘...t,j denote the monomial

indexed by an increasing sequence |;=(i,...i;) where i€(0,...,n} (also, let tle =1 for lo

= @). We can write the coordinates of p' in the form:
\ n . n . .
t' = 4ot =, L X T ¢-nithicd

j=0 ° =01;iq);

By using Zg;it; = 0, we may write Iqt;’ = 0 as:

0=

TiMs
(]

Z Z (_1)Ja|t'tl-’t1= -
01. i¢

. . n-1 . .
ZIZX (-Datthitd =tZ T (-nlo ¢ttt
¢
J

1 =115iq1; =154

! J

Since tit'" = tot,..t, for i¢l, we obtain
Ia;t(t;t'n) = o
1
By adding this to the last equation above, we obtain that:

n . .
0=tIILL (-Dgtit;tlnei=
i=04i41;
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n
=1:.£°aiuit.,t,' = Toy(t,t).
i=

Lemma 6. Let pP, — P, be a morphism whose image is a rational normal curve
Ry and let m :(IP,\L) — P, be the projection from an (n-2)-plane L. If the set of
n+2 points ',..x™? in P, is projectively equivalent to the point set
((mrep)(x"), ... (T p)(x™?)) then LNMR, consists of n-1 points and T R, — P, is an

isomorphism.

Proof. Let {Hy)ipt! be a pencil of hyperplanes through L and s be a parameter for

P, adjusted so that the parameter s; of x' is equal to t; where p(x')ch. The points
in RyNHy, satisfy an equation ay(s) = 0 that has degree n in s and is linear in t. The
restituted form ag(s) of degree n+1 has the n+2 roots s; and hence is identically

zero. The form ay(s) must then have s-t as a factor, and so by writing
ai(s) = (s-t)b(s)

for some form b(s) of degree n-1 we see that the n-1 roots of b(s) represent

base points of the pencil (Hy)ip! ON R,

Proposition 5. A general set of 2n+2 points in P, is self-associated if and only
if, when n+2 of its points are used as a basis, the remaining n points are ail
mutually polar with respect to the basic quadric Qq, where H is the hyperplane
that they span.

Proof. Let x = (x'....x*?) be a self-associated general point set in P, Choose the

first n+2 points to be a basis and let R, be the unique basic rational normal curve

that contains them along with x™3. By Proposition 4, the point set on P' obtained

n+3 n+4 20#2

by projecting x'....x onto a line from the (n-2)-plane L = <x °,.., > is

)

projectively equivalent to the point set (x'...x™3) on R,= ®' By the previous
lemma, L intersects R, in n-1 points and the projection is an isomorphism of R, to
P, Let H = <x"*3,. x2"*25 pe the hyperplane containing L and the point x™3. By
Lemma 5, the points HNR, are mutually polar with respect to Q. Thus L is polar to
x™3 with respect to Q. .By repeating this argument for each of the last n points in
x we find that they all lie in the same hyperplane H, and that each point x' is

determined as the intersection:
2n+2

X = HACN  anxd),
j=n+3,j*i
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where Qn(x;) denotes the polar hyperplane of xJ with respect to Q4. The converse
follows easily from the construction of the associated point set given in the

previous section.

Theorem 4. The variety S, of projective equivalence classes of self-associated

point sets in P, is a rational variety of dimension in(n+1).

Proof. We will show that the open set of projective equivalence classes of
general self-associated point sets is isomorphic to the open set of full flags
{LoC..CLh-4CPL that do not contain any point in the basis. First, given a self-
associated point set x, we construct the flag by sending the first n+2 points in x
to a basis and by setting

n+3+i

Ly = <x™3,..x >.

Conversely, given a flag, we shall use the polarity Q4 for H = L,, as prescribed by
the previous proposition to construct a self-associated set. Once again, set the

first n+2 points of x equal to the basis. Define:

X™3 = Lo, and XM = oL NL; for i o= 1,..n-1,

where Qu(L;) denotes the polar (n-1-i)-plane to the i-plane L; with respect to the
basic quadric Q4. Note that the construction forces each of the last n points to be
mutually polar, hence the previous proposition gives us that the point set x is
M3 X3 5o that the two

constructions are inverse to each other. Since the flag variety is rational of

self-associated. Also note that L; contains x

dimension #n(n+1), we are done.

Remark S. Applying the previous theorem in the case n = 2 we obtain the proof of
the rationality of the level 2 modular quartic 3-fold Vv, without using that it is

dual to the Segre cubic primal.

Remark 6. We will see later that, when n ¢ 3, there is a natural birational
isomorphism between the varieties S, and the moduli space @ (2) of principally

polarized abelian varieties of dimension n with level 2 structure. Note that
dim s, = dim @,(2)

for all n 2 1, however, the rationality of S, and the non-unirationality of @&, for
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n2 9 (ITal) implies that such an isomorphism does not exist for n 2> 9. However

one may find an interesting correspondence between these varieties.
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IV. BLOWING-UPS OF POINT SETS.

Let x = (x",...x™MePT be a point set. There is a natural variety associated to

it. Namely, we consider (x) = {x'

...x™"} as a O-dimensional closed subscheme of PP,
and blow it up. Of course, this is well-defined only if x consists of distinct points.
To define the blowing-up variety V(x) for a general point set x we have to enlarge
our original notion of a point set assuming that some of the points are infinitely
near. In this chapter we will define simultaneously, following S. Kleiman [KI1], the

variety parametrizing infinitely near point sets and the blowing-ups of such sets.

1. Infinitely near point sets.

Let Z be a smooth algebraic variety of dimension m>1, zeZ be a closed point,

and Z' = Z(z) be the blowing-up of z. Recall that Z(z) is defined uniquely (up to
isomorphism) by the properties:

(i) there exists a proper birational morphism m:Z(z) — Z that is an isomorphism
over Z\(z)

(ii) there is a natural isomorphism

™2 3 P(T(Z)) = P,_,.

where T(Z); is the tangent space of Z at z.

A closed point z'ez(z) lying in E = n(z) is called an infinitely near pointof

order 1 toz It is denoted by

zZ -z
An infinitely near point of order k to z is defined by induction as an infinitely near
point of order 1 to an infinitely near point of order k-1 to z . It is denoted by

(K) (4]

z

- .= Z

- Z
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Let Z™ denote the Cartesian product of m copies of Z. For every subset | of
{1,...m} with #I > 2 we denote
aA(m) = ((Z'....z2™)eZ™ : z; = z; for all ijel},
AlM)= Ug =A(m)y, Alm) = A(m),,
utm), =ZM\alm),, Um) = Uu(m),,
m: 2™ — Z, the i-th projection,
m

= . 7Mm m-1
M= XXMy 2T = 27T

Theorem 1. For every m 2 1 there exists a proper birational morphism of smooth

varieties
bm : 2™ — ZM
satisfying the following properties:
(i) the restriction of by, over U(m) is an isomorphism;

(ii) by, is a composition of blowing-ups with smooth centers:

(iii) if m22 there exists a smooth proper morphism
M. 2M — 2m-1
such that the fibre (i™)"(z) over ze2™™' is isomorphic to the blowing-up of z

considered as a closed point on the fibre (i™M~")'(A™ " "(z):

(iv) the diagram

commutes;

) If m=1

% ™2) = z(z) = blowing-up of zeZ.

Proof. Let 2° be a single point, 2' = z, 72" — 2° Then for each i > 1 define

inductively a Y=2'"'-variety @':2' — 2'"' as follows. By assumption, 2'" is a
v=2""2_variety. Define 2' as the blowing-up of the diagonal of YxyY, and the
morphism

Fl2l o 2t
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as the composition of the blowing-up morphism with the projection of the fibred
product to the first factor. Define the projections b;: F AN 4 by induction as
follows. Let b, be the identity. Assume that b,_,;:2'"' — Z'™' is defined. The
composition of the two projections YxyY — Y= 2" with b,_, define two
projections to Z'"', hence 2i-2 projections p, and g, to Z, kK = 1,.,i-1. Since p, = g
for k=1,...i-2, we obtain i projections p,,...p;-.0;-y to Z . Let b, be the composition
of the blowing-up morphism 2' — YxyY with the product YxyY — Z' of these

projections. Since we only blow up smooth projective varieties along smooth

' are proper and

centers, all the varieties 2' are smooth and the morphisms T
birational. We only sketch the proofs of properties (i) — (v) stated in the
theorem, leaving the details to the reader. Only (ii) and (iii) do not follow
immediately from the construction. To see (iii) we use the definition of the
tangent space of a variety Z at a point zeZ as the fibre of the inverse transform
of the normal sheaf of the diagonal of ZxZ under the diagonal map Z — ZxZ. To see
(i) we use induction on m. By construction b,: 22 — Z2 is the blowing-up of A,,.
Assume by _: 2™ — Z™7' is a composition of blowing-ups with smooth centers.

The morphism
9o = T 7x1: Xy = 2™z = ZM = ZM "%z
is a composition of blowing-ups with smooth centers. Then one easily checks that

the morphism by: 2™ — Z™ is equal to the composition:

?®m Py Po
2™ = Xm = X = e = X = Xy — 27T,

where ¢ X, — X, is the blowing-up of ¢, '(AM)ym). ¢,; X, — X, is the blowing-up

of ((po-cp1)'1(A(m)2m ), and so on. It is easy to see that
Xmoqy 2 2™ % 5m-22M"1,

and ¢, is the blowing-up of the diagonal isomorphic to (cpo-...otpm_,)"(A(m)m-m).

It is natural to view every closed point of 2™ as a m-tuple z = (z'..z™),
where each point Z' is either a point of Z or an infinitely near point to some 2! with
J < i. We usually drop the hat over a point from Z. In this notation the morphism bp,:
2M = ZMsends z = (2'..2™) to z = (z'...z™), where z'¢z and Z' is either equal to Z',

or is infinitely near to some Z, j < i. The projection ™ is the map:

G',...2M - (3',.z2™ .
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We define the blowing-up variety Z(2) of 2 = (2',..2™)e2™ by setting

Z() = @M*NHYYZ) < 2™,

Thus the blowing-up variety Z(Z) comes with a natural birational morphism:
0(2): Z(2) = Z

which is the composition of the morphisms

o3) 6oy OE) o3)
2Z(GE,.2M) =z, zmy T TS ey =z

where
o= Z(E@'..2" - z(@',..2""W

is the blowing up of the point (Z',..2)ez(('...2""" < 2'. Note that it is natural to
identify each Z™ with the point (z'...,2™) considered as a point of zZ((z'...zM™").
Let
A(m), = by (Aa(m))),

Am), = by am)). A&m) = by a(m)),

d(m)y = by (Z2™\Alm)), Om) = by, (UM,
It is easy to see that A(m)y,_,m is the exceptional divisor of the blowing-up of the
diagonal of 2™ 'x5;m-22M"",and
Alm); = p, A=) for 1 < i< j < m-1,
Am)im = P AM-1)m s i s m-2.
For example, if m = 3, A(3),,, consists of points of type
(2,,2,—2,,23—2)) or (Z,,2,—Z,,Z3—Z,—Z,),
A(3),,\A(3),,, consists of points of type
(z,,25—2,.23),

ond so on.
The following proposition follows immediately from the above description

of A(m):

Proposition 1. A(m) is a hypersurface in 2™. Its irreducible components are the

hypersurfaces A(m), with #| = 2.
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Remark 1. Note that the “diagonals” &;;(m) are not isomorphic subvarieties of 2™
contrary to the case of Z™. However, their intersections with the open subset
O(m), are isomorphic. This open subset can be characterized as the maximal
subset of 2™ which the natural action of the permutation group Im on Z™ extends

to.

Remark 2. The analog for the space 2™ for the variety of unordered point sets
z™ = z7M/r;n is the Hilbert scheme Hilbm(Z) of O-dimensional closed subschemes

of length m in Z. It is known [Fol that the canonical cycle map:

Hilbm(2) — z™
is a resolution of singularities. Let Hilby,(Z)© be the open subscheme of Hilby(Z)
that parametrizes O-dimensional subschemes whose ideal is, locally at each point

of their support, of the form (t, .t,..t,, where (t,..t;) is a suitable system of

local parameters. According to [Ral there is a natural rational map
2™ s Hilbm (Z)x 5 m>z™

whose restriction to O(m), is an isomorphism onto its image.

Remark 3. We refer tolHa 1], where the variety 2™ is defined as

representing a certain functor of families of point sets.

Returning to our situation where Z = IP,, we have defined the space

pm = om,

the birational morphism

m

bm: PR —PT,

and the projection
S m m m-1
am: PR =P,

satisfying the properties stated in Theorem 1.

2. Analysis of stability in 2™.

Let

LGXZ—Z
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be an action of an algebraic group G on Z, and
pum: 6 x zM - zM

be the corresponding diagonal action on Z™. wWe want to extend this action to an

action
gm:.gx2Mm - 2m

such that the following diagrams commute

ﬁm am
ox2m L gm Gx2m L gm
x| lam 1xb, | lom
(qm-1 m
Gxam-t Mo gm-1 exzm W gm

This can be done step by step by using that each Z'*' is obtained from Z' by

al

blowing up the diagonal of 2'xz“l-12' and that the extension of the action p' to the
fibred product leaves the diagonal invariant.

To be a little more explicit, we denote by Tm the relative tangent bundle of

the morphism #™:2™ — 2™ et 2 = (2'...2™Me2™. 1t 2™ is infinitely near of order

1 to some Z', then it belongs to some fibre of

P(Tm|E™™Z',.. 2" = P(T@UZE,...2M™ "))

and we verify that
AM(g.(2',...2Mn = @M (g.(2....2" ")dg(z ™),

where dg is the differential of the map
A™@: @G™7E,. 2™ - @™NEM UgE,. 2T ).

If 2M=zMez we have as usual
iMeg.(z',...2™» = @M g.(z"....2M "Ngz™N.

To find stable points in 2™ we need to study the functorial behavior of

stability under G-equivariant maps. The following result is the first step toward

this problem:
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Proposition 2. Let G be a reductive group acting on algebraic varieties X and Y,
and f:X — Y be a G-equivariant morphism. Let £ (resp. M) be a G-linearized
invertible sheaf on Y (resp. on X). Assume that T is ample and M is f-ample. Then

for sufficiently large n the sheaf f*(Z®™em is ample, and

XS(FPHE®MeMm) D F(YS(E))

Proof. See (IMu 11, Proposition 2.18).

More precise results about the behaviour of stability under blowing-ups
were recently obtained in [KIi 2] and in a thesis of Z. Reichstein [Reil. We state

Reichstein's results without proof.

Proposition 3. In the notation of the previous proposition
XSS(r(2®Mem) c rYysS(z)

for sufficiently large n.

Next we assume that f: X — Y is the blowing-up of a G-invariant closed
subscheme C of Y. The action of G on Y extends naturally to an action on X. Denote
the exceptional divisor of f by E. Fix a very ample G-linearized invertible sheaf
on Y, and let

2 = ™ME®e0x(-E).
Then £, is a very ample G-linearized invertible sheaf on X if k is sufficiently
large. Let p: Y5 — Y°S,G be the quotient map and let T = p'(p(CNYSS)). For every

subvariety Z of Y we denote by Z' its proper inverse transform under f, that is,
the closure of f(zZ\(CNZ) in X.

Proposition 4. Assume X and C are smooth. Then, for sufficiently large k, the
open subsets X(£,)%° and X(&,)° are independent of k and

(M X&)% = U E)ISNE "

(i) X(E S = XEISS\NY(E)SS\Y(2)S)".

We want to apply these results to the case where f:X — Y is the map

bp:2™ — z™. By Theorem ; the morphism by, is a composition
K K-1 1
Yy =2 = Yy = .o Yy=2Z"

of blowing-ups with smooth centers. It follows from the proof of this assertion
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that each such blowing-up is G-equivariant, and that its center is isomorphic to a
certain proper inverse transform of some A(m);;. Choose a G-linearized ample
invertible sheaf E,on Y, = Z™, then define a similar sheaf Z, = f1*(3°®n)®®y1(-E1),
where n is sufficiently large and E, is the exceptional divisor of f,, and proceed in
this way until we obtain a sequence of G-linearized ample invertible sheaves E; at
each Y;. Each of them defines the subset Y;°° (Y;%) of semi-stable (stable) points.
Let

¢: Y= Y*¥/6
be the corresponding quotient projection. Set
o, =Y\ YS,
¢ = ¢ e;(c;nY;%%N,
where C; is the center of the ‘blowing-up f;,,. Applying Propositions 3 and 4 to
each f;, we obtain that
Yia3S = 70GINE
Yier® = Vit N0,
where “prime” denotes the proper inverse transform. In particular, we have
Y:.,55 c 1,79y,

YieS 2 1705,

Since
NG = o,
we have
Yiea®S = T METOSINE L NG
where €;" is the proper inverse transform of C; under f.f,, Starting with i = 0,
and climbing up to i = kK, we use the previous properties to obtain the following:

Theorem 2. Let C' (resp. &8,) be the proper inverse transform of
€ = o, (e,(Alm)) (resp. of &) under b,. There exists a G-linearized ample

invertible sheaf 2, on 2™ such that
() 2™(2,)°% = by, (ZM(EHSINE,
(i) 2™(E % = 2™M(E NN\, .

In particular,
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2™M(2 %% c by, (ZM(2 %),
2™(2 )% 5 b, (zM (2 %)
Returning to our situation where Z = P, G = PGL{n+1), we take for Z, our
standard sheaf E, and obtain a G-linearized ample invertible sheaf £ which allows

us to define the open subsets of PT:
wTHss, TS,
the quotient
PR = PTH%%/6,
the projection
3. BM)SS P,
and the morphism
Bpm: BT — P
such that the following diagram is commutative:
m,ss Bm m,ss
®;THs =" et

3| ®|

Note that this diagram is Cartesian if (PT)% = (PT)S (see [Mul,

Definition 0.7 and Theorem 1.10)

Corollary 1. Assume n > 2. The following properties are equivalent
M wPTH = PHS;

(i) iBTHsS = BTHs,

(iii) m and n+1 are coprime.

Proof. (i) = (ii) Follows from Theorem 2.

(i) = (i) By Theorem 2, (ii) implies that & = (PTSS\(PT)® is contained

in € = ¢NeamNPT)I®SY). It follows from the description of & = ®(®) given in
section 3 of Chapter Il that in this. case, for every non-trivial admissible
partition (d,,...d;) of n+1 with respect to m, one of the d;'s is equal to 1. This
implies that n+1 divides m, hence every partition of n+1 is admissible. Since n > 2,
(2,n-1) is a partition of n+1 which does not contain 1. This contradiction shows

that n+1 admits only trivial admissible partition, hence & = @ and (ii) holds.
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(i) & (i) This is Corollary of Theorem 1 from Chapter II.

Corollary 2. Assume n = 2, m 2 4. Then
m

PTHS = B,
In particular, the morphism

Bp: BT — PT
is a resolution of singularities.
Proof. Since every non-trivial -admissible partition of 3 contains 1, we obtain, in
the notation from the proof above,

» cC.
By Theorem 2 this implies that (P7)%% = (PT)%, hence the projection

. (BT)HSS — BT
is a geometric quotient. It is easy to see that for each point set X in (P7)S the
stabiliser group Gy is trivial. Applying Luna's slice theorem [Lul, we obtain that

the quotient space DST is smooth. Obviously, the morphism b,, is birational and

proper.

Remark 4. We refer to [1shl, where the analog of the space P for unordered

point sets is discussed in the case n = 2 and m < 8.
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V. GENERALIZED DEL PEZZO VARIETIES.

In this chapter we study the rational varieties obtained by blowing up a

: Sosm
point set XePT.

1. The Neron-Severi bilattice.

A generalized Del Pezzo variety (gDP-variety) of type (nm) is

. . " . . s - ~ _cam
an algebraic variety V isomorphic to a blowing-up V(x) of some point set xcllfn. A

blowing-down structure of type (n.m) is a pair (V,0), where V is a gDP-variety of

type (n.m) and o is a sequence of birational morphisms

Om Om-1 02 Oy
V=Vy = Vpoy = >V, = Vy=P,,

where each o;: V; — V;,, is a blowing-up of a closed point. Two blowing-down
structures (V,0) and (V',0) are jsomorphic if there exist isomorphisms
PV, — Vi'
such that
0/'°@; = @¢;_4°0;,

i = 0,..m We say that (v,0) is relatively isomorphic to (V',o") if ¢, = identity.

Thus, by definition, IIS',':,' parametrizes the relative isomorphism classes of

blowing-down structures of type (n.m). The projection

FMTPT T
isa universal family (see the corresponding functorial statement in [Ha 1D).
The varieties

BMe - BM)S,G AT
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are the coarse moduli varieties of isomorphism classes of blowing-down
structures of type (n.m) corresponding to stable point sets X.

Now note that the action of Iy onP', whenever it is defined, changes the
blowing-down structure but leaves the gDP-variety itself unchanged. Also note
that, if n > 2, the blowing-down structure of a gDP-variety is defined uniquely up
to isomorphism and up to the Ip-action. Indeed, assume for simplicity that v =
V(x) & V(x) for some x, X ePT\A(m) = PT\A(m). Let E,..En be the disjoint
exceptional divisors in V(x), and let E,...E, ' be the same for V(x). Assume that
some E; intersects two different E;' and E,. Since each exceptional divisor is
isomorphic to P,., and n>2, E;/NE, * 8. This contradicts the assumption that all E;
are disjoint. Therefore we may assume that each E; intersects at most one E;j.
But then E; = Ej', otherwise E; is a proper inverse transform of a hypersurface in
P, with respect to the blowing-down structure defined by the point set x', hence
it is numerically effective. This shows that (E,....Em} = (E,....Em’) as sets of
divisors.

However, we obtain many different blowing-down structures if we consider
varieties up to pseudo-isomorphism.

Recall that a pseudo-isomorphism of smooth algebraic varieties is a

birational map:

f: X - Y
that induces an isomorphism in codimension 1, that is, an isomorphism of open
subsets whose complements are of codimension 2 2. Note that every pseudo-

isomorphism of surfaces is an isomorphism, as follows trom the theorem of

decomposition of birational maps of surfaces.

Let X be a smooth algebraic variety of dimension n,
n oAl
AX) = @& A'(X)
iI=0

be its Chow ring of algebraic cycles modulo algebraic equivalence graded by
codimension. We set

N'(X) AlX)/=,

N, = A"'(X)/=,

where = denotes numerical equivalence. We denote by [¥] the numerical class

of a cycle ¥.
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The pair
NOXO = (NN, (X))

is called the Neron-Severi bilattice of X. It is a pair of free abelian groups of

finite rank equipped with a pairing:

NIOX) x NJOX) = Z,  (3'%) = %',
defined by the intersection of cycles.

1. Let X be a smooth complete variety of dimension n > 1, 06X’ — X be a

blowing-up of its closed point x, E = 67(x) = P,., be the exceptional divisor, 1 be a

Lemma

line in E. Then

N'(X) = o*(IN'(X) + ZIE],

o*(N,(X)) + ZI11,

N, (X))
o*(¥)e0*(¥,) = %'ex, for any (¥',%)eN(X),
o*(¥)ell] = [Eleo*(¥,) = O for any (¥'%)eN(X),
[Elel] = -1.

Proof. This is well-known and is left to the reader.

Applying this lemma to the blowing-down structure
Om Om-1 02 Cq
V=Vn = Vmy = . =V, = V=P,

on a gDP-variety V, we obtain:

Proposition 1. Let V be a gDP-variety of type (n,m) and

Om Om-1 O2 04
V=Vm = Vm — . =V, =V,=0P,,

be a blowing-down structure. Then

N'(V) = Zhg+Zh,+..+Zhm,

Ny(V) ="Z15+Z1 +. . +Z1py,

where

ho = [(G,..0m)"(H)l, H is a hyperplane in P,

hy = [(oje..oom)'XDI, i = 1,..m,

= (04001, 1 is a line in P,
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1, = [GjsgomeOm)'APL, 1, is a line in 0D = P, i = 1,..m.
Moreover

hO']O =1, hi.]i = -1, i = o, hi.hj: 0, i= j

Let

o X — X
be a blowing up of a closed point x on a smooth variety X, and Z be a hypersurface
in X such that x is a k-multiple point of Z. We have

o(1z]) = Z'+ko™(x),
where Z' is the proper inverse transform of V'. For every infinitely near point
x'—x of order 1 we define the multiplicity multy'(Z)_of Z at x' as the muiltiplicity of
Z' at x'. Proceeding by induction we can define the multiplicity of Z at an infinitely
near point of arbitrary order. Thus, in the above notation, if Z is a hypersurface

of degree Kk, in P with mult i(Z) = k;, and Z' its proper inverse transform in
vix', ... x™)), then

[Z1 = Kghy -K4hy = .=Kmhpm-

A similar result is true for the class of the proper inverse transform of a curve

in P,.

Proposition 2. Let V = V(X) be a gDP-variety of type (n,m) and [KyleN'(V) be its

canonical class Ky modulo numerical equivalence. In the above notation

[Kyl = =(n+Dhg+{n-1)(hy+..+hm).

Remark 1. Recall that a Del Pezzo surface is usually defined as a nonsingular

rational surface V with ample anti-canonical class -Ky (cf. [Mal). It is easy to
prove that each such surface is isomorphic to a gDP variety of type (2,m) with m
< 8 obtained by blowing up a point set XeP]  satisfying the following conditions:
(i) X does not contain infinitely near points;

(i) no 3 points from X are collinear;

(iii) no 6 points from X lie on a conic;

(iv) if m = 8, X does not lie on a cubic with a singular point at one of the points
from X.

In the terminology of [Del, this means that X is in "general position”. We will
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later interpret these conditions by saying that X is an unnodal point set. If m < 6,

the anti-canonical linear system of V maps it isomorphically onto a nonsingular
surface of degree d = 9-m in IP4. In general, the number d = 9-m is called the
degree of V. We extend the definition by defining a nodal(or degenerate) Del Pezzo
surface of degree d by requiring that -Ky is not ample but aimost ample in the

sense that for large m the linear system I-mKyl is base-point-free and defines a

birational morphism onto a normal surface. This will include gDP varieties of type
(2,m) with m < 8 which are obtained by blowing up a point set ielﬁ"z‘ satisfying the
following conditions:

(i) X does not contain two different points which are infinitely near of order 1 to
the same point;

(i)’ no 4 points from X are collinear;

(i)’ no 7 points from X lie on a conic.

In the terminology of [Del this means that X is in "almost general position".

If m < 6, the image of V under the map given by the linear system I-Kyl is a normal
surface V of degree d = 9-m in P4 with double rational singularities. We will call

the latter surface an anti-canonical Del Pezzo surface of degree d. Its minimal

resolution of singularities is a degenerate Del Pezzo surface of degree d. We will

return to a description of Del Pezzo surfaces in Chapter VII.

2. Geometric markings of gDP-varieties.

Among various concepts related with the word lattice we use one that
means a free abelian group of finite rank L equipped with a symmetric bilinear
form

LxL—2Z, V') = vev'
Tensoring L by IR defines a quadratic form on the real vector space Lg. We apply
the usual terminology of the latter to L. Thus we can speak about the signature,
rank, etc. of L. For our purposes we need a slightly more general concept of a
bilattice. We define it to be a pair (L,L,) of free abelian groups of finite rank
equipped with a bilinear form

Ly xL,— Z, (VVy) = Vyev,,
A lattice L is considered as a bilattice (L,L). One naturally defines @ morphism

of bilattices
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¢ = (9.9 @ Ll — (L, L)
as a pair of homomorphisms of abelian groups o;L; — L;  satisfying
PV depy(vy) = vyev, for any v,eL,v,el,.
Every bilattice (L,L,) admits natural morphisms to the bilattice L.,
where
LT = Homg(L;,2Z)
is the dual abelian group, and xex* = x*(x) for every xeL; x*eL}, i = 1,2. A bilattice

is said to be unimodular if these morphisms are isomorphisms.

Our main example of a lattice is the standard hyperbolic lattice of rank m+1

Hm =Zey+Ze+..+Zeny,
where
€€ = 1. €9¢¢; = -1, 1 #0, eqee; =0,1i= ]
The Neron-Severi bilattice N(X) of a smooth complete variety X gives an example

of a bilattice. Similarly, the homology bilattices

(H'(X,Z)/Tors, H{(X,Z)/Tors)

are examples of unimodular bilattices.

Proposition 3. Let V be a gDP-variety. In the notation of Proposition 1 the maps
¢ Hpn — NV, ¢ — h,
@ Hm — NV, g — 1,

define an isomorphism of bilattices
¢ = (@.9) : Hn — NV

In particular, N(V) is unimodular.

Ltet L = (L,L,) be a bilattice. We define a L-marking of a smooth complete

variety X as an isomorphism of bilattices:
¢: L — N(X).

An L-marked variety X is a pair (X,9), where ¢ is a L-marking. An isomorphism

of L-markings (or of L-marked varieties) is an isomorphism f: X — Y such that

f*oq)' = .
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Lemma 2. Let f: X -» X' be a pseudo-isomorphism of smooth complete varieties.
Assume that the Neron-Severi bilattices of X and X' are unimodular. Then there

exists a natural isomorphism of these bilattices:

7 NIXD) = NXO.

Proof. The pseudo-isomorphism f defines an isomorphism f: U — U of open
subsets whose complements are of codimension > 2. Then we have a composition
of isomorphisms of groups:

r-1

W P N
A'X) SANUD SATW) —AT0,

where r: AYX) — AYU) and r: A%X) — A'(U) are the restriction homomorphisms.
The composition A'(X') — A'X) induces an isomorphism

(P N'(XD - N'XO.
Since N(X) and N(X) are unimodular, the groups N,(X) and N,(X") can be identified
with the dual groups N'(X)* and N'(X')* respectively. This allows us to set

(), = tennh?,

to obtain that the pair f* = ((f*)',(f*),) is an isomorphism of bilattices.

The previous lemma allows us to define a pseudo-isomorphism of L-marked

varieties (X,9) and (X'.¢) as a pseudo-isomorphism f: X -» X' such that f*¢ = ¢.
Remark 2. The assertion of the previous lemma is probably true without the
assumption of the unimodularity of the Neron-Severi bilattices. It can be verified
for example in the case dimX = 3 by applying Danilov's theorem on the
factorization of small birational morphisms (IDal).

Here comes our main definition:

A strict geometric marking of a gDP-variety V of type (n,m) is an

Hm-marking
¢ = @) (Hy Hm) — (N'(VIN(V))
defined via a blowing-down structure on X by

o'tep) = hy, i = 0,..m,
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pe)) =1, i = 0,..m,

in the notation of Proposition 1. A geometric marking of V is an Hh-marking

pseudo-isomorphic to a strict geometric marking.

Lemma 3.Let f:IP,--» P, be a pseudo-isomorphism. Then f extends to an

isomorphism ¥: P, = IP,.

Proof. The rational map f is given by a linear system W of hypersurfaces of some
degree d > 0. Since f* induces an isomorphism A'(P,) — A'(P,), both groups being
isomorphic to Z, we obtain that d = 1. Thus f is given by a linear system of

hyperplanes, hence is a projective isomorphism.

Corollary. Two strict geometric markings of gDP-varieties of type (h.m) are

pseudo-isomorphic if and only if they are isomorphic.

Proof. Induction on m. If m = O this is asserted in Lemma 3. Let

Om Om-1 O2 04
V=Vy = Vnoy = .=V, >Vy=P,,
‘ ,Om ., Om-1 02 0Oy
Vi=aVn = Vm oy = =V, = V=P,

be two blowing-down structures corresponding to the given pseudo-isomorphic
strict geometric markings of gDP-varieties V and V'. Obviously they define
pseudo-isomorphic strict geometric markings of gDP-varieties Vg ., and V_, of
type (n.m-1). By induction they are isomorphic. The corresponding isomorphism f'"
V-1 = Vm-4 Sends the image of the exceptional divisor of o, to the image of the
exceptional divisor of o and hence lifts to an isomorphism f: V — V. Obviously, it

defines the needed isomorphism.
From the previous definitions and results we obtain:
Theorem 1. There is a natural bijective correspondence between the set of G-

orbits in BT and the set of pseudo-isomorphism classes of geometrically marked

gDP-varieties of type (n,m).
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3. The Weyl groups Wpm.

We are looking for a group that acts on the G-orbits in BT by acting on
the geometric markings. A natural candidate for this group is the isometry group
O(Hm) of the lattice Hy,. It certainly acts on Hm-markings ¢: Hm — N(X) by
composing them with isometries ¢: Hp — Hym. However, there is no reason to
expect that this action preserves the subset of geometric markings. Thus we are
led to look for a suitable subgroup of O(Hm) which will consist of isometries
(= automorphisms) of H,, preserving the set of geometric markings. It turns out
that the right subgroup is the Weyl group of a certain natural root basis in Hp.

Let us recall the necessary definitions (cf. [Lo 2]).

A root basis in a bilattice L = (L, Ly is a pair (B,B) of subsets of L, and L,

respectively, together with a bijection B — B, a — &, satisfying:
(i) aed = -2
(i) asg 2 O for any a,geB, « = g.
A root basis is said to be symmetric if the following additional property holds:
(iii) asg = ge& for any a,geB.
For every aeB the formulae
Sqi X; = Xy + (X000, for any Xx.elL,,

Sgi X; = X, + (Xpe0)X,  for any X,elL,

define linear involutions of L, and L, respectively, called simple reflections.
The subgroup of GL(L,) (resp. of GL(L,)) generated by such transformations is

denoted by Wg (resp. Wg). The map s — Sgextends to an isomorphism:
Wg — W5, w — w.
Each of these groups is called the Weyl group of the root basis (B,B). We will

denote it by W if no confusion arises.

For any weWg we have
WX oW (X,) = XqoXy, for any x,el,XyelL,.

This shows that W is isomorphic to a subgroup of the isometry group O(L).

An element of a Wg-orbit of B in L, (resp. of B in L,) is called a B-root

(resp. B-root). The set of such elements is denoted by Rg (resp. Rg). An element
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of B (resp. B) is said to be a simple B-root (resp. simple B-root) The bijection a—
& between simple B-roots and simple B-roots extends naturally to a bijection «
— & from Rp to Ry:

w(@ — Ww(&) for any aeB, weWg.

A B-root o is called positive (resp. negative) if it can be written as a linear
combination of simple B-roots with integral non-negative (resp. non-positive)
coefficients. Let Rg* (resp. Rg~ ) denote the set of positive (resp. negative) B-
roots. It can be shown (see [Kacl], [Lo 2]) that

Rg =Rg* LIRg™.

Rp™ = {-a: aeRp’).

similar definitions and corresponding properties hold for B-roots.

we denote by Q(B,B) = (Q(B),0(B)) the sub-bilattice of (L,L,) spanned by the
subsets B and B of L, and L, respectively.

For every root basis (B,B) one can define its Dynkin diagram (oriented

graph) T(B,B) by assigning to every simple B-root aeB a vertex o and joining two
distinct vertices « and g by a«g arcs ending at g. If the root basis is symmetric we
forget about the orientation of T'(B.B). It is easy to see that in this case all B-
roots (resp. B-roots) are W-equivalent if and only if T'(B,8) is connected and all
vertices are joined by at most one arc.

The generating set S = (s; = Sq;)i=o,...m Of Wp satisfies the relations:

52 =1, (spesp® = 1 if a; and a; are connected in T(B.B) by one arc,
(siesp? = 1 if & and a; are not connected in T(B,B),

sies; is of infinite order otherwise.

One can show that these relations are the basic relations for the s;'s and that the

pair (W,S) is a Coxeter group (see [Kacl).

Returning to our situation when L is equal to Hym ., m 2 n+1 > 3, we define a

canonical root basis of type n >1 in Hnp by setting:

By = (0g...Qm-q). By = {&g...0m ).
where

(!o = eo-e1'...‘em1, (Xi = ei-ei,1, 1 = 1,...,m"1,
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&o = (n-1)e°—e1'...—en,1, &i = Qi = ei-ei.n, i = 1,...m-1.
It is a symmetric root basis. Denote its corresponding Weyl group by W ..

Let

Knm = (n+1)e,-e,~-..-eq,

Kn.m = (n+1)eg-(n-1)(e +..+eqy).
Then

QB = (Zkp,m)t = {veHy: vekym = 0},

QB = ZKpm)t = (veHy: veKyp, = O

Note that the subgroup of W, generated by the simple reflections Sa; i#0,
is isomorphic to the permutation group Im. It is the Weyl group of the root basis

(B\Mag) B\&g). It acts on the set {e,..em)} by permutations. The simple reflection

Sq; acts as the transposition (i.i+1).
The Dynkin diagram of a canonical root basis of type n in Hp looks as
follows:
QG X Qn QO am-1
A

If n =2 m = 3,..,8 we recognize the familiar Dynkin diagrams of root
systems of finite-dimensional simple Lie algebras of type
A¢+A,, A, Dg E, E, and Eg,
of rank 3,..,8, respectively.
If m = n+2 (resp. n+3), we obtain the Dynkin diagram of type A, (resp. D). If
n =3 m =7 we get the diagram of type E,. In all other cases we have the
Dynkin diagram of type T,n.q,m-n-q ©f an infinite-dimensional simple Kac-Moody
algebra (see IKacl).
We say that a canonical basis in Hy is of finite type if
(n,m)e((2,3),(2,4),(2,5).(2,6),(2,7),(2,8),(3,7),(n,n+2),(n,n+3)}
It is easy to see that a canonical basis (B,B) is of finite type if and only if the set

of B-roots Rgis finite, or if and only if the Weyl group Wg is finite. We use the
‘notation W(A.), W(D,), W(E, to denote the group W, in these cases.

73



I. DOLGACHEY, D. ORTLAND

Remark 3. By Proposition 2, for every strict geometric marking ¢:H;, — N(V) we
have that

¢ (Kpm) = -Ky.
Since the canonical class is invariant under a pseudo-isomorphism, the same is
true for any geometric marking of a gDP-variety. What is the geometric
significance of ¢,(k, ) expressing the virtual class of a normal elliptic curve

through m points?
The next proposition gives us a partial description of B,-roots in Hpy:

Proposition 4. Let a = q,e,-a,e,-..-Qn €, be a positive By-root in Hy. Then

(i) (n+1)ay-a,-..-am = A*Kym = O:

(i) (n-Nay?-a2-.-ap? = -2

(i) ay 2 O, and if a,= O, then a = e;-e; for some 1 < i < j s m;

Assume q, > 0. Then

(iv) (n-Dag < qj +..+a; ifa 20, 2. 20, i;el1,...m)

v) g 2 0 for i = 1,.m;

i) (n-Dag 2 ap+..+a; 1 a1, a2 @, 2 .. 2 Q.

Proof. (i) Note that for every simple B,-root a; we have
a;e((n+1)ey,-e,-..-ey) = 0.

Therefore the action of Wg in Hy, leaves the vector
Kn.m = (n+iley-e,—..-eq

invariant. Hence for every weW and aq;eBp,
W(x)eKn,m = oW (Knm) = XeKnm = O.

If o = w(ai)eRBn this equalit)) is equivalent to (i).

(i) Let o = wla)eRg,. Then
ae@ = WCOeW(X) = oed; = -2.

This implies (ii).

(iiiy In the decomposition of a as a sum of simple roots the root ay,=e,-e;-..-€p,,

enters with nonnegative coefficient. This implies that a, 2 0. If a, = 0, we apply (i)
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and (ii) to obtain that a = e; - e; for some i # j. Since «a is positive, we obtain i < j.
(iv) Applying elements weI, to a we may assume that (i,...in) = {1,..m).
Assume the opposite inequality holds. Then

@, = (n-1)ay-q,-..-0p,, 2 O and

aed; = g - Qj,y 2 0, i = 1,...m,
This means that
aeC(B,) = (VeHm: ve&; 2 O for all &;eB)

Now we use the following property of C(B,) (called the fundamental chamber):

(*) Let weWw be written as a product of a minimal number of simple

reflections (which is well-defined and is denoted by 1(w)), then for every «;eB,
W(C(B,) C (veHm: ve; € 0} if and only if 1(sqg,*w) < 1(w).

(see [Bol ChapterVv, S$4, n°4).

Let us argue by induction on k = 1(w) that, for any weW,
(**) w(a) = a + Cylo+..+Cp-4&m -y, With all ¢; 2 0.
If K =1, W= sqeB, for some i and aea; > O for every «;eB, hence
W) = sg (@) = a+laeape; = o+c; for some ¢ 2 0.

If k> 1, we write w = sai-w' with 1(w’) = 1(w)-1 and apply (*) to obtain

0 2 Wed; = S *W'(@ed; = WI(@esq, (&) = -w()eq;.
By induction
W@ = a+Cy'&gt..+Cm-q &m-y. With ' 2 0O,
hence we have
W) = sgew'(0) = WI)+(W (@)@ = +Co'0o+..+Cryy Am_y+C @,

for some c;’.,c' 20. Now choose w so that a, = w(a) and observe that the equality
a = o —(Co'Og+..+Cmoq Am_q+C 0;)
contradicts the assumption that a is positive, unless a = «, in which case (iv)

holds.
(v) We use induction on a, The assertion is true for g, = 1. Indeed subtracting

equality (ii) from equality (i) we obtain
m
Z Qi(qi’1) = 0.
=1
This implies that each q; is equal to O or 1. Assume that the assertion is true for
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all « with 1 < g, = asf, < N. We may assume, as in the previous case, that
Q, 2 .. 2 Q. By (iv)
. n+1
a = e, = (n-1)a, - .}:1oi <0,
i=
and
' ((:9) ( ) r;iﬂ( ) T
a = sq. (@) = a+ax, = (a,+q)e,- a;+a)e;- L Qq;e;.
Ao (4] 0 o i=1 i i i=n+1 ivi
It is known that for every simple root a; we have
0q,(Rp, M) © Rg *
(IKacl, Lemma 1.3). This shows that a,+a > 0. If g,+a > O, we are done by induction.
Finally, if q,+a = O, we apply (iii) to obtain
n+1( m
_IE1 Qi+o)ei-'i=§“1aiei = i(ej-ex)
for 1 ¢ j < k € m. Thus at least n-1 coefficients g;+a, 1 < i < n+1, must be equal to

zero. Equivalently, at least n-1 coefficients a;, 1 < i < n+1, must be equal to a, By

examining (i) and (ii) we deduce that a, < 1 again.

(vi) Assume the contrary. Applying sq, to oa#a, we find as above that

) m .
@ = s (0 = dgep- I g ejeRg ",
where
. n .
G = (n-1)a°-):10‘ <0, Guz = Gnea
=
By (v)
. n+1
Gy = NGp-r @ =0,
i=1
and, by (iii),

Qs = 0, Gy = O Or 1.
Applying (i), we obtain

m
0 = (n+Naq, - iE1°' = Qy=COpayp

Thus @, < 1, which is excluded by the assumption.

Corollary. Let a = 0,8,-0,8,~..-Omem be a positive B,-root in Hy. Then
g, = (n-Da, for some integer a,, and
() (n+Dag-(n-1)(a+..+am) = aKym = O;

(i) ax2-(n-1)(a2+..+am? = -2(n-1);
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@Giii) a5 2 0, and, if ; = 0, a = e;-e; for some 1 ¢ i< j<m;
Assume d, > 0. Then

(iv) g < at..+an,, ifQ 2 0, 2 .. 2 Oy

(v) ay 2 0, and q,,...am 2 O;

(vi) a5 2 a,+..+a, if a>1, a; 2 G, 2 .. 2 Q.
Proof. Use that the bijection a— & between Rs, and Rg, is given by the formula:

€y -04€84-..~Omem — Qyln-1)e, -a,e,-..-Omem.

Remark 4. We will see in Proposition 6 that in case n = 2, m < 10, properties (i)
and (ii) alone imply that a is a B,-root. However, already if n = 2, m = 11, it is not
true that every vector a = a4,€,-Q,8,-..-Qmem satisfying ()-{vi} is a B-root. For
example

a = 7e,-3e,-3e,-3€;-3€,-365-6,-€,-€5-€5-€,5—€,
satisfies (i) - (vi) but is not a B,-root. To see this we apply Sq, to a to obtain

o = sg (@) = 5Seg-e,-e,-e;-3e,-3e5-e,-€,-€5-€5-€,5-€,,,
which does not satisfy (vi). Therefore « is not a B,-root, hence « is not a

B,-root.

The following well-known result shows that in the case n = 2 properties (i),

(i) and (v) imply (iv).

Proposition 5 (Noether's inequality). Let & = a,e,-0,8,~..-Qn€meHm satisfy
the following properties:
(ay,>0,a,2..20am 20;
(i a = ay-a2-..-am2el-2,-1,0,1}
(i) 3a,-q,-..-am = a+2;
Then either
QO < G1+Qz+(]3,
or 0 = €,-€,, OF & = e,
Proof (following [Cool). We have
0 < ay(a+.+am)-(a 2+..+am? =

= 0,(30,-0,-0,-05-0-2)-(0y2-a-0a,2-a,%-a,%) =
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= 0,%+0,%-0,(0,+08,)-(0y-30,)0,+a-0,(a+2).
Assume
Uy 2 Q4+Qy+Qy.
Then
0 < a,2+0,%-a,(a,+0,)-(0y-30,)0,+a-0,(a+2) <
¢ a,2+a,%-a,(a,+a,)-(a,+0,-20,)(a,+0,+05) +a-0,(a+2) =
= a,2+0,2-a,(a,+0;) - (0,+0,)%+a,(a,+0,)+20,%+a-a5(0+2) =
= 2(ay%-0,0,)+a-a,(a+2) .
This is only possible if a, = a; = 0, which implies a = e, if a = 1, and a = e,-e, if

a=0.

Proposition 6. Let (B,B) be a canonical root basis of type 2 in Hy. Assume that
m < 10. Then

Rg =Ry = (veHm: vev = -2, veK, 1y = O}

Proof. By Proposition 4 the set Rg is a subset of the RHS.. Assume m < 8. Then
(B,8) is of finite type and the set Rz is a root system (in the sense of [Bol) in the

space
Eg = (VeHR ®R: VoK, m = O).

In this case the result is well-known. We recall its proof. Let v be a vector from

the RH.S. Since B spans Eg we can write
V = Byt..+Bg

for some (not necessary simple) roots g;. Choose such a representation with

minimal s. We have (IBol, ChapterVl, S3, Theorem.1),

Bi*B; < O
unless g; = -gj, Or B;+B;eRg. By the minimality of s neither of these cases occurs.
Thus

V2 < ByeBy*..*Bg'Bg = -2S.
Since v2 = -2 this implies s = 1, hence VveRp.

Assume m = 9. Then

K2o°Kao = 0,
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hence for any v = 0,€,-Q,8,-..-05€5€Rp

Vi = v-aK, o= (a,-3)e,-(a,-1)e,-..-(ag-1)e,

satisfies
Viev' = -2, VK, g = O.

By the previous case v'¢Rg' C Rg, where B’ = B\Magl. In particular
B = K, o-0g €Rp.

Now

SgoSag(V) = splv+(veag)ag) = sSp(v+a,ag) = V+(BevIB+ay(ag+(agep)s) =
= V-(0geVIB+05(0g+2B) = V-0QgB+UgK, o+UgB = V+QgK,o = V.
Since v' is a B-root, v’ € w(B) for some weW, hence
B
vV € ((Sg“SqB) ~w)(B)

is a B-root.

Assume m = 10. Then (B,B) is a hyperbolic (or crystallographic) root basis in
the sense that Wg is of finite index in the isometry group 0(Qg) of its root lattice.
By [Vil, every reflection sy = x — x+(X*¥)%, ¥eQp. ¥?=-2, is conjugate in Wg to some

reflection sq, aeRg. This implies the assertion.

Remark S. As we saw in the previous Remark, Proposition 6 cannot be extended

to the case m > 10.

4, Discriminant conditions.

Let ¢H, — N(V) be a geometric marking of a gDP-variety V of type (n,m)
and (B,B) be a canonical root basis of type n in Hy,. We set

Re(p)* = {aeRg: ¢'(a) is effective),

Rg ()"

{aeRg: ¢, (o) is effectivel.

If xellS','11 and ¢@.H, — N(V(X)) is the corresponding strict geometric marking

we define:

RB(X)* RB((PX)+I

Ry )"

Ry ()"

The elements of the set Rg(p)* (resp. Rz(p)*) are called effective (or nodal)
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B-roots (resp. effective B-roots) with respect to the geometric marking ¢.

Also, the elements of Rg(X)* are said to be the discriminant conditions on the

point set x. A point set x (resp. a geometric marking ¢) is said to be unnodal if
Rg(X)* = @ (resp. Rg(p) = 9).
Note that
Rg(p) < Rg*.

We say that a gDP-variety V is unnodal if all of its geometric marking are

unnodal.

Proposition 7. Assume that a gDP-surface V admits an unnodal geometric

marking. Then V is unnodal.
Proof. As follows from Theorem 2 of the next Chapter, for every two geometric
markings ¢:Hp — NV), ¢H;, — N(V) there exists weW, ., such that
¥ = Qow.
Thus
aeRg(p)" & wl@eRg(p)*.

This proves the proposition.

Corollary. Let V be a gDP-surface. Assume m < 8. The following properties are
equivalent:
(i) Vv is unnodal for some geometric marking ¢:Hy, — NV
(i) V is a Del Pezzo surface (see Remark 1);
(iii) the anti-canonical model
©
vV = Proj(regol“(v,(!)v(—rKv))

is a nonsingular surface.

Proof. (i) & (ii) We have to show that to be unnodal is equivalent to satisfying the

following properties:

(@) X does nmot contain infinitely near points;

() no 3 points from X are collinear;

(©) no 6 points from X lie on a conic;

(d) if m = 8, X does not lie on a cubic with a singular point at one of the points from

-~

X.
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Using Proposition 4, we can easily find all positive B-roots with

respect to a canonical root basis in Hy, of type 2, m < 8. They are:
a=e-g, 1<icjem,
o = e,-€;-€;-€, i*j*K, i,jk * O,

a =

1
>

c

|
i

=
o

]
o

!
o

|
@

]
g

o4

3e,-€,-..—€g-€;, 1< i < 8.

This obviously proves the assertion.

(iiy & (iii). This is well-known. See [Del, [Mal.

Proposition 8. Let V be a Del Pezzo surface. An Hp,-marking ¢:Hy, — NV) is
geometric if and only if @K, ) = -Ky.
Proof. The condition is obviously necessary. Let

el = hy, 1= 1,..m.
Assume @(K, m) = -Ky. Then

h? = -1, hjeKy = -1.
By Riemann-Roch

hoh)+h%(Ky-h) 2 1.
Since

(Ky-hpe(-Ky) = -Ky2-1 < 0O,
and -Ky is ample, h°Ky-h) = 0. Thus e; is effective. Since -K, is ample and
hi«(-Ky) = 1, h; = IE;] for some irreducible curve, which must be an exceptional
curve of the first kind. This shows that (E,,...E,} is the set of m disjoint

exceptional curves of the first kind. |t can be blown down to define a geometric

marking of V equal to ¢.

S. Exceptional configurations.

An ordered sequence (v,,..,v.) of vectors from Hp satisfying viev; = -1 is

called an exceptional r-sequence (cf. [Del).

We denote the set of exceptional r-sequences by Bm(r). Let B, ()" denote
the W,m-orbit of the sequence (e,,..e.). Clearly e;eB, (1) for all i > O.

Let Z be a nonsingular complete variety. An ordered sequence of elements
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(hy....h) from N'Z) is called an exceptional r-configuration if Z is isomorphic to

the blowing-up Z'(x) of some nonsingular variety Z' at some point set
x = (x',..x")eZ™, and each h; is equal to the class of the inverse image of x' under
the blowing-up map Z — Z'(x',..x'™".

We denote the set of exceptional r-configurations on Z by ¥B.(Z). For
example, if @Hm — N(V) is a strict geometric marking of a gDP-variety V, the

sequence (¢(e,)....p(em)) is an exceptional m-configuration on V.

Lemma 4 . Assume m < 92, n = 2. Then W, ,, acts transitively on the set B (r) if
r = m-1, and W, has 2 orbits in 8,(r) represented by the sequences (e,,...em_-,)

and (e,-e,-€,,€5,...6m) if = m-1.

Proof. See [IDel, [Mal.

Proposition 9. Let ¢H, — N(V) be a geometric marking of a gDP-surface V.

Assume that |-Kyl contains an irreducible divisor. Then

B(V) = (8, m(N).

Proof. See [Lo 1].

Corollary. Assume m < @ and I-Kyl contains an irreducible divisor. Then

B,(V) = @Bm(1)).

Proposition 10. Let V be a Del Pezzo surface. Then &,(V) is equal to the set of
exceptional curves of the first kind on V, and for every geometric marking
¢:Hm — N(V)
Bm(V) = ¢(B, n(m)).
Proof. Since m < 8, by Lemma 4,
En(V) C @B, (m) = @B, ,(m)).
By Riemann-Roch, for every hep(8,(m)),
h%(h)+h°%(Ky-h) > 1.
Since -Ky is ample and (-Ky)e(Ky-h) = -Ky?-1 < 0, h%Ky-h) = 0, and h°) > 0. Let
h = [E+.+E(L

where E; are irreducible curves. Intersecting both sides with -Ky, we obtain that
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1= Z(-KV).EI'
This implies that r = 1, and hence h is the class of an exceptional curve of the

first kind. This shows that
P(Bm(m)) € Bpr(V)

and we are done.

83



1. DOLGACHEY, D. ORTLAND

VI. CREMONA ACTION.

Let Im be the permutation group on m letters. It acts naturally on the
varieties PT via its natural action on P . In this chapter we will see that this
action can be extended to a birational action of the Weyl group W,.,. Roughly
speaking, this action arises from applying to the point sets certain types of

Cremona transformations of P, .

1. The Cremona representation of the Weyl group W, .

Recall that a standard Cremona_ transformation T, in P, is a birational

transformation of P, defined by the formula:

To: (tgtn) — (ot totitn o tontn ).
The linear system of hypersurfaces defining T, consists of hypersurfaces of
degree n that pass through the points x' = (0,..1,..0) with multiplicity n-1. The
choice of the basis in this linear system is determined by the property:

T2 = identity.

Note that T, is defined everywhere except at the points x' which are

transformed to the hyperpianes:

H;

= {(tg,..tp)ePy t; = O

Lemma 1. There exists a commutative diagram of birational maps:

vy & v

fl f]
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where g is an isomorphism, and f is the composition

fn-1 f1
Y=Yy = Yoo — =Y, =Y,=P,,

where
f«Ye — Y, is a blowing up of the proper transforms of the subspaces

Hi N NH e 08 Ti<cingg¢$ N+1, under e (fy = id),

and

(Fe@)(F'(H N .OH; ) = H N NH

Jn+1-x’
where f{i,,...I) and {j;,...Jn+4-x} Gre complementary subsets of (1,...n+1).
Moreover, under some identification of f"(Hi'ﬁ...(\Hin) and H; with P, the

rational map
-1
fe@efhy: Ppy = Ppoy
is a standard Cremona transformation.

Proof. Left to the reader.
Corollary. Let o: V(x) — P, be the blowing-up of the point set x = (x',..x™",
Px: Hpey —N(V(X) be the corresponding strict geometric marking. Then there exist

a pseudo-isomorphism h:V(x) -» V(x) and commutive diagrams:
Px

Vo v Hoy 3 NOVOXO)
lo lo Isq, 10"

To Px
P, - P, Hoey 3 NOVOO).

Proof. It follows from the previous lemma that T, induces a rational map
h= (fooqomofdegelfnqonef)™ Y, = V(X - Y,
which is a pseudo-isomorphism that sends the strict geometric marking

PyHhey — N(Y) of Y, to the geometric marking ¢ = h*ep,: H,,,— N(Y,) defined by
x-in+q 1 1 g X Pneq 1

9'eg) = ne'leg)-(n-1(p'(e)+..+p'(en, ),

e = @'le)-p'lep+.+p'len, )+p'le), 1 = 1,..n+1,

@, (e) = nyleyl)-(p,(ed+. . +p,(e ),

wie)) = (n=1p,(e)-(p,(e)+. +¢p,(en, N+ (e)), i = 1,..n+1.

Recalling the action of the simple reflection sq . this yields:

P = ‘Px°5u°~
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Thus in its natural action on the set of markings ¢: Hp,, — N(V), the
reflection sq, transforms a strict geometric marking ¢ = ¢, of V defined by a
point set x = (x'..x™") into a geometric marking ¢ = h"ep. Similarly, a simple
reflection Sa; transforms ¢, into ¢,, where

y = L oxT I xt x*2, L x Y,

This suggests that the whole group W, acts on the set of pseudo-isomorphism

classes of geometric markings of any gDP-variety V of type (n,m).

Proposition 1. Let x = (x'...x™)ePT. Assume that all points x' are distinct and
the first n+1 points span P, Then for every i = 0,..m-1, there exist a point set y
(y',..y™ePT, a pseudo-isomorphism f: V(x) -» V(y), a birational transformation

Ti: Py ~» P, and commutative diagrams:

f hid
V(X) -» V(y) Hney 3 NCVCYD)
lo lo Isq, L=

T Px
P, - P, Hoey S NOVOXD).

Proof. Let
oV(X) = Vi = Vg — .. =V, = P,

be the corresponding blowing-down structure on V(x). Assume first that i = O.

Choose a projective transformation T; of P, which permutes the points x' and x'*'
and sends the the remaining points x! to some points yj. Define the point set y by

i-1

y = Ly xM Ly ™,

The composition T;-0 maps the exceptional divisors E,,..E, of o to the points
y1”__'ym

corresponding to y. The composition T;e0: V(x) — P, blows up the same set y. By

of y respectively. Let (V(y),0') be the blowing-down sructure

the uniqueness of the blowing-up, there exists an isomorphism f: V(x) — V(y)

defining the first diagram in the statement. It is clear that
(o " (yHD) = 107D if j =+ Qi+,
(o' 'yhD = 67",
o'y = 107 xHD.

This immediately implies that
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Px°Sa, = ey,
proving our assertion.
Next let i = 0. Since x'....x™! span P,, we may replace x by a projectively

equivalent set to assume that x' = (0,..1,..,0), i = 1,...n+1. Let
f':Vner = Vi
be the pseudo-isomorphism defined in the previous Corollary. It extends to a
pseudo-isomorphism
f: VX)) - V(y),
where
y = Tox) = L. XML T,6™M2),., To(x™).
It is immediately verified, using the Corollary, that PxSq, = o9y This proves

the proposition.

Using the previous proposition we can apply any product of simple

reflections to a geometric marking to obtain another geometric marking,

provided that at every step the resulting point set x = (x',..x™)

satisfies:
(i) x does not contain infinitely near points:

iy o' x™s =P

This can be stated in terms of the strict geometric marking

@ :Hm — NVOO)

by saying that all simple B-roots a; are not effective.

Observe that
w(Rg(@") = Rglp-w™™* for any wewg.
This shows that we can apply every weWg = W, to x if
Rg(x)* = g,
i.e. if x is unnodal in the sense of the previous Chapter.
Hence we are led to the study of the orbits in the set
PN =PpT\Z,

where

z= U z(w),
aERB
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Z(o) = xeP:aeRg(x)*).
Note that for any i > j > O, a = e;-e; = @;+..+a;_,€Rg, and
Z(a) = A;tm).
This shows that
EMHNcPT\ Am = P \a(m),
thus it allows us to use
B, "
we obtain that

to denote the same set. Taking a = e,-e -€;

11 inet’

Z(a) = (f(clf’,',’: no n+1 points lie in a hyperplane).
It follows from the criteron of stability of point sets that
BTN < T \am)s.
Set
(P = o(PTH'™ < PIND.
Note that, when the number of roots is infinite, (PT)"" is neither open nor

closed.
Let us see first that (PT)HY" is not empty.

Theorem 1. For every B-root o« the subset

Z(@ = (xePT:aeRg(x)*}).
is a closed subset of BT . Moreover, its restriction to (PT\A(m)»S® is
an irreducible hypersurface.

Proof. Let

& = 0y8,-0,84~..~0mem€Rp.
Assume @, (a) > 0. Since h, = ¢,(e,) is numerically effective,
P lodehy = (aghg-a,hy-..-aphpdeh, = a5 2 0.
If a, = 0, a = e;-e; for some i, j > O (Proposition 4 of Chapter V). Hence
9@ = h-h; > 0 iff x! is infinitely near to X',
and Z(a) = &U(m) in this case. By Proposition 1 of Chapter IV, it is a hypersurface.
Assume q, > O. By Proposition 4 of Chapter V

Q 20 i=1.m
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Assume that x does not contain infinitely near points. Then
¢ () = aghg-a,h,-..-anhp
is the class of an effective divisor D if and only if there exists a hypersurface in

i

P, of degree q, that passes through the points x' with multiplicity > q;. In this case

D = D'+KEq*..+KmEpm.
where D' is the proper inverse transform of the hypersurface. The existence of
such a hypersurface is expressed by algebraic equations in the coordinates of the

points x'. This proves that Z(cNWPT\A(m)) is a closed subset of BT\A(m).

Assume xeA(m). For simplicity we also assume that x¢A;(m) with #| > 2 and
leave the general case to the reader. Without loss of generality we may take x in
A, (m). If k = sup(-a,+#0,,0), any effective divisor with class ¢,(a) contains K(E,-
E;). where ¢,(e;) = [E;)l. Thus ¢, (x) 2 O if and only if there exists a hypersurface in
P, of degree a, passing through x' with multiplicity » a,+K, passing through the
infinitely near point x2 — x' with multipliicty » a,, and passing through the
remaining points with muitiplicity 2> q;, i > 2. This is expressed by algebraic
conditions on the coordinates of the x''s.

So far we have only shown that each Z(a) is a closed subset in F'R. It
remains to prove that its codimension is 1 at every point of PT\A(m). Obviously,

this is true for simple roots «;¢B. Indeed, we have seen this already for i > O, and
Z(@y) = XeP: (12.n+1X) = 0},
where

I n+1
(12.n+1) = det((x(j)))el“(ﬁ',',’,br':,(igTri*Opn(ﬂ)).
Evidently each Z(x) is G-invariant. Let

2(a) = by -$ (I (M)°NZ(a)) < sUmM)®) < FY.

The assertion will follow if we show that each Z(a) is an irreducible

hypersurface in ¢(U(M)®). Assume a¢B and write
By = Sye..o5 ()

for some simple reflections s; = S j=1.K Then
Sg: Z@NZ(ag ) —  Z(s(aNZ(a;, )

is an isomorphism. By induction on k, we may assume that Z(sx(a))\Z(uiK) is open

and dense in Z(s(®), and Z(s.(a)) is a hypersurface. Thus Z(x) is a hypersurface.
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Corollary. Assume that the canonical root system of type n in Hy is of finite

type. Then (PTHUM (resp. (PF)Y™ is an open Zariski subset of P (resp. PT).

Remark 1. If n = 2, one can prove that each Z(a)NO(m) is a hypersurface by
“counting constants®. In fact, the condition that a« = a,e,-a,e,-..-q e eB, a, > O, is

m
effective imposes %I q;(g;+1) linear equations on the %(ay+1)(a,+2)
=1

coefficients in the equation of a plane curve of degree a, By Proposition 4 from

Chapter S5, these numbers are equal.

Let w =$“i,°"’°s°‘i,(€w"'m' It follows from the above discussion that w acts
regularly on the open dense subset
O(w) = @Uw)),
where
Uw) = (PR \A(m))\Z(a,K)\Z(sa,K(a;K_1))\...\Z(saiK-.,.esaiz(ai1)))s.
The restriction of w to the generic point of U(w) is a k-automorphism of the field

of rational functions on PT. This defines a birational action of Wnn, on PR:
crpm: Wam — BIrPT) = cr(ntm-n-2)),

where Cr(k) denotes the Cremona group in dimension K, i.e. the group of

birational transformations of IP,. We will call this action the Cremona

representation (or action) of Wpn.

If (8,B) is of finite type, Rg and W, are finite, and W, acts biregularly on

the open set (PT)UN.

m
Ph.

In general, W,m, does not act regularly on any open subset of

The next result shows, at least in the case n = 2, that the Weyl group acts

transitively on the set of unnodal geometric markings of the same gDP-variety.

Theorem 2. Let ¢Hy — N(V) and ¢Hy, — N(V) be two geometric markings of a

gbP-surface. Then there exists weW,, such that
P = Pow.

Proof. Let
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wleg) = aghy-a;hy-..—anhg = ¢logeq-a.e-..~anen).
Since ¢(ey,) is numerically effective,
Gy = @leg)ehy > O, a; = glegleh; 2 0, i > 0.

Set

<
i

0o€0~04€4~..~Qm €y,
so that
pv) = ¢ley).

Suppose we show that there exists an element weW, , such that

wlv) = e,
Then
wlopleple,) = e,
hence
wlepele)) = egqpy. | = 1..m,

for some permutation ¢ of {1,..m}. Replacing w by we.0, we may assume that
wlepegle) = ¢, i = 1,..m.

This certainly implies that
P = Pow.

To show that such a w exists we assume first that ¢ is unnodal. By assumption,
Rg(p)* = @. Hence

Rp(p-w)* = 2 for any weW, .
Thus for every weW, ., the composition ¢ew is an unnodal geometric marking.
Obviously, @(v) = o(e,) is represented by an irreducible curve. Thus there exists
an irreducible plane curve of degree a, with a;-multiple points at the x"'s. Applying

an element of X, we may assume that

This implies that ¢(e,) satisfies the assumptions of Noether's inequality, and
a= a,-q,-0,-a; < 0

unless v = e, in which case we are done. If v # e, we apply Sg, to v to obtain
wv) = Vv = (gy+a)ey-(a,+ade,-(a,+ade,-(az+a)e;-a,e,-..~anen.

Since ¢esq, is a geometric marking, ¢(sq,(v)) is the class of a numerically
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effective divisor. Hence
0<gy+a<q,, q+a20,i=1,2 3.

Proceeding in this way, we decrease the coefficent at e, until we reach the case
wlv) = e,

for some WweW, .
Assume ¢ is any geometric marking. Let x be a generic point set, that is,

the generic point of PT. Let
DePic(V(x))
represent the class ¢,(v). We know that
D? = 1, DeKy(x) = -3.
Since
(Ky(x)-Dlep, (e5) = -3-q, < O,
it follows that h°(Ky(x)-D) = 0. By Riemann-Roch
h°D) > 3

and we may assume that D20. Specializing x to the point set X representing the

geometric marking ¢ we obtain that D specializes to an element of the irreducible
linear system @)l = Igp(ey)l on V(X). Thus we can choose D to be irreducible. This
easily implies that the linear system IDI is of dimension 2 and defines a birational

morphism V(x) — IP,. Thus there exists a geometric marking ¢’ of V(x) such that
DI = '(ey).
By Theorem 1, x is unnodal. Thus we are in the previous situation and can find

weW, o for which w(v) = f, This completes the proof of the theorem.

Remark 2. The previous theorem is essentially due to M. Nagata (INal, Corollary
on p. 283).

Remark 3. We do not know whether W, ., acts transitively on the set of pseudo-
isomorphism classes of unnodal geometric markings for n > 2. To prove this we

would need an analog of Noether's inequality
(n-1Ma, < qQ+..+0n,,

for vectors aye,-a,e,-..-Gmem satisfying properties (i), (ii),(iv) and (vi) of

92



CREMONA ACTION

Proposition 4 of Chapter V. This question is closely related to the following one. A

birational transformation
T: Pp - Pp,
is said to be punctual (cf. [DuV 31) if there exists a commutative diagram
LA
V - V
le lo
T
Pn —»Pp .
where 0: V — P, ond 6: V' — IP,, are blowing-ups of point sets from P , ond f

is a pseudo-isomorphism. An example of a punctual transformation is a standard

Cremona transformation of P, Since

rRIN'(V)) = rkONYV')),
V and V' are gDP-varieties of the same type. One can prove that all punctual
transformations form a subgroup

Punct(n) < Crin)

of the Cremona group Cr(n) = Bir(Pp). This subgroup contains a subgroup Crreg(n)
generated by the standard Cremona transformation and projective automor-
phisms. Elements of this group are called regular Cremona transformations. By

Noether's factorization theorem (see [AS], [Cool)
Cr(2) = Punct(2) = Crreg(2).

It is hinted in [Co3] and [DuV 3] that
Punct(n) = Crreg(n)

for all n. However, we were not able to find a proof of this result. Note that Cr(n)

is "much bigger” than Punct(n) for n > 2.

Theorem 3. Assume m < 8 and char(k) = 0. Then the quotient space
m
(P /Wy m
is an algebraic variety isomorphic to the coarse moduli variety Mpp(m) of

Del Pezzo surfaces of degree 9-m.

Proof. First let us recall a construction of the latter space. If m = 4, Myp(4) is

a one-point set. If m = 5, the anticanonical linear system [|-Kyl maps the surface V
isomorphically onto the intersection of two quadrics in IP, In this case Mpp(5)

can be realized as an appropriate quotient of an open subset in the Grassmann
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variety of pencils of quadrics in P, If m = 6, |-Kyl maps V isomorphically onto a
nonsingular cubic surface in P, In this case Mpp(6) is constructed by standard
methods of geometric invariant theory. If m = 7, I-Kyl defines a double cover of
degree 2 onto IP, branched along a nonsingular quartic curve. Thus Mpp(7) is
isomorphic to a certain quotient of an open subset of the space of quartic curves.
Finally, if m = 8, |1-2Kyl defines a double cover onto a singular quadratic cone Q in
P, and ramifies along a curve of degree ‘6 cut out on Q by a cubic. The construction
of Mpp(8) in this case is similar to the previous case.

Let

(PN = Mpp(m)

be the map defined by forgetting the blowing-down structure. It follows from
Theorem 2 and Proposition 7 of Chapter S that this map factors through the

quotient by the finite group W, m and defines a bijective map
P /W,y m = Mpp(m).
Since both spaces are normal algebraic varieties, the assertion follows from

Zariski's Main Theorem.
Remark 4. We believe that the birational action of the finite Weyl groups W, n,on

PT can be extended to a biregular action on PY. The quotient PT /W, , (m < 8)

would be a certain compactification of the moduli space M pp(m).

2. Explicit formulae.

Let us give explicit formulae for the action of simple reflections Sq; on

PT via the Cremona representation cr,,. We use a birational model of PT
introduced in Remark 3 of Chapter 2. According to this we assume that a point set

x = (x',..x™) is normalized by a projective transformation to satisfy:
x' = (1,0,..,0),.., X™' = (0,.,0,1), xX™2 = (1,10, X, = 1, i > n+2,

and then identify x with the point

(N+3) (N+3) ((N+4) (N+4) m) (m)
(X0 X nmq X g s Xymg e X g e Xp=q)
of Anm-n-2-
Assume W = Sg., i=1,..n-1. Then w switches the points x' and x™' and leaves
I

the remaining points unchanged. Applying the projective transformation
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Koo X XjugowXn? = (Xgoo s Xjug Xjo X
we see that w(x) is G-equivalent to a point set x' defined by the projective

coordinates

(N+3) N+3)  (N+4) (N+4) (m) mm)
o YR Y Y YR Y R YD,

(y
where

y‘f’ = xi‘j’1 \ yi‘\{"1 = x‘g’, y‘i’ = ‘i’ K # Li+1, j = n+3,..m.
Assume w = Sq,. Then w switches x" with x™' and leaves other points unchanged.
Using the projective transformation

X Xpn) = (Xo.Xq,e Xno2. X0, Xno1),
we find that w(x) is G-equivalent to a point set x' defined by the projective

coordinates

TS e XM xm
( ) o s ’ P P . )
n+3) N+3) n+3) m) m) @m)
X'n-1 X'n-1 X'n-q Xp-1 Xnoq1 Xpeq

Note that in this case w is not defined everywhere on U,.

Assume W = sq,,. It switches x™! and x™2. Using the projective transformation
(Xg, o Xn) = (Xp=Xg....Xp=Xn-1.Xp).

we find that w(x) is G-equivalent to a point set x' defined by the coordinates
=X =X =X 1-x T,

Assume W = sq . In this case we easily find that w(x) has the coordinates

(N+4) N +4) (m)
; 1 ) 1 Xo Xn-1 Xn-1
n+3) T e T e T e T T T3y -
Xo X'n-1 Xo Xn-1 Xn-1
Assume W = Sg., i > n+2. This is the simplest case. The point set remains
al

normalized after applying w, and w{x) has the coordinates

(N+3) (N+3) (1+1) (i+1) () (i) (m) <m))
o .

(x v X ey s X g e Xnag X s X e X g e Xy

Finally let w = sy _. The point set x is transformed under crp, , to the point set
o /
..y™), where
(R B
y =X, = 1,.,n+2,
y = P X xOxD . x,L xOxP L x P, 0> ne2,

Normalizing the last coordinate of every yi with i > n+2, we obtain that the

coordinates of the point set w(x) are equal to
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1 1 1 1
(o fei—y .
m m
Xo X'n-1 xQ’ X,

We see again that sq, is not defined everywhere.

3. Cremona action and association.

Recall that the association map is an isomorphism:
h,m:PR = Pm-n-2-

defined in Chapter 3. In this section we will show that this isomorphism is

compatible with the Cremona action.

First, let us observe that the Dynkin diagrams of the canonical root bases
in Hy of type n and m-n-2 are obtained from each other by the permutation
o = (1,m-13(2,m-2)..(lm],Im-[#ml) of the vertices «,,...& ., corresponding to

simple roots a,,...Qm_4:

Qqy QAn+q am_1 Q Am-n-1 am-1

qQ Qo

This observation implies that there is an isomorphism Wp .. — Wqg_,_, m defined by
Sag ™ Sap  Sa; 7 Sug(i)r O

Composing it with the inner automorphism of W _n-2.m
W — Oeweo", WeW _n-2.m-

where ¢ is considered as an element (1,m)(2,m-1)..{[3m],m-[Emi+1) of
Im € Wm-n-2,m. We obtain an isomorphism

T Wnm 3 Wm-n-2.m.
By definition

©(sq,) = c-su(')-o", t(sui) = Sq,", 1 #0.

Theorem 4. Let aybe the restriction of a,, to the generic point. Then for any
WeWn m

Crnm-n-2(T{W))ean = Gyecrp (W),
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Proof. Let U, be the locally closed subset of PT, defined by the conditions:

x' = (1,0,..,0),... x™' = (0,..,01), xX™2 = (1,11, x® =1, 0> n+2.
Similarly, let V, denote the locally closed subset of IP . _,defined by the
conditions:

y™" = (1,0,..0)..., Y™ = (0,00, Y™ = (1.0, Yy, =11¢<n
As in the previous section we make a birational identification of U, (resp. V)
with P[ (resp. Py-,-,). Both of these sets are also identified with a subset of
affine space A m-n-2) Dy assigning to a point set x = (x'...x™)eU, (resp. y =

(y',...y™evy) the point

200 = XD, XDy m)y
(resp.

2 = (Y Do Y B YO YD),
We have already noted in Remark 1 of Chapter IIl that

An,m (@) = o(y) & z(x) = z(y).

We will identify point sets x and y with the points z(x) and z(y).

To verify the theorem it suffices to show that
z(sai)('b(x)) = z(t(su[)(Q(y))) if z(x) = z(y),

for each simple reflection Sq; - The needed formulae are given in the previous

section. Let i = 0. Then
1 1 1 1
Sa,(P(X)) = ( > - oo ).
0 x x O x M x M

We know that t(sq,) = Sa. Where « = ey—€p,,-..-€m. This shows that

z(Ttlsg )@y = ( :,, 1@ ‘1? _1(';,')
m-n-3 Ym-n-3 Yo Yo
hence
z(s%@(x))) = z(’c(s%)(@(y))) if z(x) = z(y).
Let i = 1,..n-1. Assume i = 1, since the other cases can be treated similarly. Then
Sa, (@00 = XM XD, xQEP XD XD, X,
TS MBlY) = Sa, @YD) = Y B aymiP-a - Ymies - Y ¥ Y,
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hence
z(sui(Q(x))) = z(t(sai)(q’(y))) if z(x) = z(y).
Let i = n. Then
n xPI? xR xQT ™ ™ ™

The corresponding transformation t(sq,) interchanges y" = (y@,...ym‘h-p) with

yo*t = (1,1, Thus

Y <Ps Y0 1 y® y v g
e = e s YmBs vD YD YD
hence it is equal to z(sy (®(x)).
Let i = n+1. Then
z(sa,,, 00N = (-xg"%,. 1-xQIP, . 1-xF . 1-x{T),
and
2(t(sa,, )@Y = Q-yn D 5 1-YmPag 1-¥S . 1-Y D).
This again verifies the assertion.
Let i = n+2. Then
. 1 1 xQ’ X3
2(Sap, (800D = Clnay” ™ e 7 s T Jnva) -
and
1 1 y® y @
Z(t(sa, ey = C— 7 """ @ T T m
m-n-3 Ym-n-3 Ym-n-3 Ym-n-3
This verifies the assertion.
Let i > n+2. Then
Z(sq (200N = &P, xPP, L x5V, L QP XD x {0 XL XA,
and
Z(tlsq @M = (mIn-aYm g Y ivi Vit Y o YT Y0 o ¥E.
hence

2(sq (@) = z(t(sqNey) if z(x) = z(y).

This proves the theorem.
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4. Pseudo-automorphisms of gDP-varieties.

Here we study the kernel of the Cremona representation
cram:Wa.m — BiIreT).

First let us show that any element of the kernel can be interpreted as a

pseudo-automorphism of a generic gDP-variety of type (n.m).

Lemma 2. Let weW,, and XeU(w). Then crp,(w)X) = X if and only if for any

x<c1>"()?)e|P',"11 there exists a pseudo-automorphism g:V(x) -+ V(x) such that
“"")("’V"‘P):l = g"
as isometries of N{(V(x)).

Proof. This follows from the definition of pseudo-isomorphic geometric

markings and Theorem 1 of Chapter V.

Theorem S. There exists an injective homomorphism of groups
Ker(crp,m) — Psaut(vin)/&(n),

where n is the generic point of P’},‘ Moreover for any finite subgroup A of
Ker(cr, m) one can find a Zariski open subset U € PT such that for every XeU the
group Psaut(V(X)) of pseudo-automorphisms of V(X) contains a subgroup

isomorphic to A.

Proof. The Weyl group W, mq is nhaturally embedded into Wpm. as a subgroup
generated by the simple reflections sq,, i = O,.,m-1. Restricting crpmn., to this

subgroup we obtain a homomorphism
Cro.met Wnm — Bir(PR*".
Let
=AM M pm,
bm: BT - P
be the projections defined in Chapter [V. For every weW,., we set
Ow) = bpuwn < ®BTH*
Ow) = AMOwW»® c 1B+
0w’ = &0w)) c P,

where Uw) < (PT)° is defined above.
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It is easy to see that crpm,., is defined on O(w)' and that there is a

commutative diagram

. Sfams  _
Ow) - Otw)
ml ml

Mn.m

0wy - 0w,

where i is induced by the projection fi: O(w) — O(w) by passing to the gquotient.

The fibres of i1 are isomorphic to the fibres of . If

o, xMyeulw),

X

x

&' XM eby T (x)ed (W),
' XM xMMer ) c Otw)',
then
A6 = VR = &M ev)(X,. XM XM DeBTHS) c vk
By Theorem 2 of Chapter IV we know that
VXY D b VX)),
where
VGO = XMMeP:(x!, L xM xM e (PT*)S).
We may change U(w) to a smaller open subset to assume that all xeU(w) are

in general position in sense of Chapter I|ll. Then the stability criterion from

Chapter Il implies that

codim(P, P,\VG)") 2 2.
Moreover, by Theorem 2 of Chapter IV, a generic point set of every AU is always
stable in BT *. This implies that

codim(V(X) VEONV(X)) 2 2.
Thus, replacing U(w) by a smaller open subset on which cr,{w) is invertible,
we obtain that crpm..(w) induces a pseudo-isomorphism

V) = @R s TNy m (W), XeO(w).
In particular, if weKer(cry m), crpm., (W) defines a pseudo-automorphism of
each V(X), where XeO(w). Obviously, if w=1, this pseudo-automorphism is not

trivial (because it defines a non-trivial isometry of NS(V(X)). If A is a finite

subgroup of Ker(cr,m). we obtain an injective homomorphism
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Crames A = Psaut(v(x)), f(ewrgAlJ(w).

Finally we can restrict the action of crp ;.. (W) over the generic point of U(w) and

thus obtain the first assertion of the theorem.

Lemma 3. Let V be a gDP-surface and ¢:H;, — N(V) be a geometric marking. The

image of the homomorphism
@*:AULY) — O(Hp), g — @sg*ey
is contained in W, .
Proof. Obviously
ge = 9¢*(g)
is a geometric marking. By Theorem 2 there exists weW, such that

giep = pow,

w = @legrep = 9" (gleW, .

Corollary. Assume that £ is uncountable. Then there exists a non-empty subset U
c P7 . the complement of which is the union of a countable number (finite if m < 8)

of closed subsets, such that
AUL(V(x)* = Ker(crym)

for every xeU. Here
ALL(V(XN® = AULIV(X) if m 2 4,
AUL(V(X))* = AULIVOOI/H, if m < 4,

where H, is the subgroup of PGL(3) that fixes the point set x.
Proof. By the previous lemma we have a natural homomorphism

@ % AULIV(X)) — Wym © O(Hp). X P,

By definition of the Cremona action for each w:lm(tpx*), the G-orbit of x is a
fixed point of crynL{(w). Now for every weW, \Ker(cr, ) the set of fixed points
of crom(w) on U{w) is a proper closed subset. Thus for some open subset V of

n U(w)
wew

Im(p,*) = Ker(cr,m) for all xeV.
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It remains to use that Ker(y,*) is isomorphic to H,, and that, if m 2 4, H, is

trivial for all x which belong to a certain open Zariski subset.

Theorem 6. The Cremona representation
crom:Wam — Bir(PY)
is injective if m 2 9.
Proof. Let E7 be the subvariety of ¢U(m)®) c P} parametrizing the
orbits of stable point sets that lie on a plane cubic curve. For any weW, , the
generic point of ET belongs to U(w) and is fixed under the map crym,(w): U(w)
— w(U(w)). In fact, the condition X¢E] means that -Ky) 2 O for every xe¢™(x), and

hence is independent of a choice of a geometric marking. This implies that for any

weKer(cr, ) there exists a dense subset E(w) € E7 such that
Aut(V(x)) = (1), for any xeE(w).

Let us show that this is contradictory if m 2 9. We may assume that x lies on a
nonsingular cubic C. Since m 2 @, we can also assume that such a cubic is unique.
Then a non-trivial automorphism g of V(x) preserves C and induces an
automorphism g of C. We may obviously assume that C does not have complex
multiplications. In this case it suffices to verify the assertion when g is either a

translation

X — xeda, aeC,
or the inversion

X — =X

Let € be defined as equal to 1 in the first case and equal to -1 in the second

case. Let
tr: Pic(v(x)) — Pic(C)

be the restriction map. In the usual notation
hy = ¢.(e), i = 0,...m,

where @,:H, — Pic(V(x)) is the geometric marking defined by the point set x. Let
d = [a-o] (e = 1), = 2[0] (¢ = -1),

where o is an inflection point of C taken to be the zero of the group law on C, and

[ 1 denotes the divisor class. We have
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trig*thp-ehyp) = d, i = t,..m,

tr(g*(hy)-chy) = 3d.
Now note that the restriction homomorphism tr is injective. Indeed, if tr(x) = O
for some x = Iqh;, then we obtain

[3a,0 + }:a;x'l =0,

egx' =0
i
in the group law of C. Taking X general enough we avoid this possibility.

It follows that the divisor class

D = g*(h)-eh
is independent of i = 1,...m, and
tr(d) = d.

Recall that Cel-Ky(x)l. Therefore
DeKv(x) = £-1€2Z,
and thus
D? = -2¢d
for some integer A. We have also
-1 = g*hp? = (eh;+D)? = -1+D?+2e(h;eD),
1 = g*(hy)? = (ehy+3D)? = 1+6e(hyeD)+9D%

This implies

Hence
tr@AICH = tr(a(3h,-Ih))) = trD)
and
D = AlCl, a # 0.
Now it is easy to finish the proof. We have
DeKy(x)y = -1 = Alm-9),
D? = -2ea = A%(9-m).

This is absurd if m # 10 or 11. If m = 10 (resp. 11), € = -1, A = -2 (resp. -1). However,
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D = g*(h)+h; is effective and cannot be equal to AICl. This shows that g* is the
identity and hence g leaves the points x' fixed. Since x is a generic point set in E7,
this implies that g is the identity.

Corollary. Assume that £ is uncountable and m 2> 9. Then there exists a non-
empty subset U € P} the complement of which is the union of a countable number
of closed subsets such that

Aut(v(x)) = (1)

for every xeU.

In the next chapter we will describe Ker(c,m) for m < 8.

Remark 5. Theorem 6 is due to A. Coble [Co 2]. The lacking point in Coble's proof
is the justification of the reduction to the case of point sets lying on a cubic
curve. It has been mended in [Hil. The application of this theorem to
automorphisms of rational surfaces was first noticed in [Dol, see also [Gil (m =
%) , [Hil, IKol

5.Special _subvarieties of PT .

In this section we give some examples of subvarieties vV of PT whose
generic point belongs to the domain of definition of each crp,(w), weW, and is
fixed under the Cremona action. We will call such subvarieties special. The most
interesting among them are those for which the Weyl group W, is infinite but

the induced Cremona representation:
Wnh.m — Bir(v)

factors through a finite quotient. All examples known to us of such special

varieties will be presented here.

We have already used one such special subvariety. It consists of point sets
in P, lying on an irreducible cubic curve (see the proof of Theorem 6). We refer to
[Ha 11, [Ha2l, ILo1]l for some special properties of these point sets. Let E(m)
denote the subvariety of P7 corresponding to point sets lying on an irreducible

cubic curve. These are all stable by Theorem 1 of Chapter Il. Note that "X lies on a
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plane curve” means that each point in X lies in the proper inverse transform
under the blowing-down map V(X) — P, We know that the restriction of cr,, to

E(m) is a faithful representation
Ccrom :Wa,m — BIir(E(m)).
It may happen however that the restriction of the Cremona action to an
invariant subvariety of ﬁ'n factors through a finite group. Here we give some

examples when this occurs. Assume n = 2 and m = 9. A point set XelP} is said to be

an Halphen point set if the blowing-up surface V-= V(X) has a structure of a

minimal rational elliptic surface (an Halphen surface). It follows easily from the

theory of elliptic surfaces that this is equivalent to the condition that I-rKyl is an
irreducible pencil for some r > 0. The number r is called the index of x (resp. of
V(x)). The image of this pencil on P, is a pencil of curves of degree 3r with nine r-

muitiple points at the points X' (an Halphen pencil, see [Hal, [Gil, [C-D 2D).

Let % a(r) be the subvariety of 15; which parametrizes the projective
equivalence classes of stable Halphen point sets of index r. Since the action of the
Weyl group W = W, in N'(V(X)) preserves the canonical class, the generic point of
s a(r) belongs to every U(w) , weW, and is fixed under the Cremona action cr,.

This defines a birational action
Croeolr): W — Bir(%a(r)).

Its kernel is isomorphic to the automorphism group of a generic Halphen surface

of index r.
To state a result about Ker(cr,o (r)) we recall some well-known facts about
the Weyl group W,, Let Q, = Q(B,) be the root lattice of the root system of type 2

in Hy. Its radical is spanned by the vector

Koo = 3€p-€-..-85 = 3Ay+20+40;+603+50x ,+405+3x,+2x,+qg

and
Qo/ZK, o = Qg,

where Qg is the root lattice of type Eg for W,, = W(Eg). Using the projection map
Q, — Qy/ZK, o the lattice Qg can be identified with the sublattice of Qg spanned by
the first 8 simple roots a,...0,. The Weyl group W, preserves K,, and acts
naturally on Qg Let aW,o, — 0(Q)) = W, be the corresponding restriction

homomorphism.

105



I. DOLGACHEYV, D. ORTLAND

Lemma 4. There is an exact sequence of groups:
1_’oal"wz,99'°wz.a"1'

where for every root aeQg
ia)Xv) = v + (BeVIKyg +(veK, ) = syesg(v), for any veH,,

where B = K,o-a is easily checked to be a root.

Theorem 7. Let x be a generic Halphen point set and ¢,: Hy, — NYV) be the
corresponding geometric marking. Under the natural injection AUt(V(X)) = W,,,

g - cpx'1og*oq>x, there is an exact sequence:
! a
1 = rQg — Auvt(V(x)) — {z1} — 1.

In particular cr, o(r)(W, ) acts on %$a(r) via its finite quotient isomorphic to the

group G given by the extension

1= (Z/rZ) - G — W(E/{£1) — 1.

Proof. See [Co 11,852 (r < 2), [Gil.

Remark 6. An Halphen surface V(x) of index 1 is a jacobian elliptic surface. This
means that its elliptic fibration has a section. After fixing a section, the set of
sections is equipped with a structure of an abelian group of finite rank equal to 8
if x is generic. The group of sections acts on V(X) by translations (see [ASI],
IC-D 21). The corresponding subgroup of Aut(V(x)) is the image of Qg = Z°% in W,
The element -1eAut(V(X))/i(Qg) corresponds to the automorphism of V(x) which
induces the homomorphism z — -z on each nonsingular fibre of the elliptic

fibration.

Assume now that n = 2, m = 10. A point set xePY (resp. its blowing-up V(x))

is said to be a Coble point set (resp. a Coble surface) if |-2Kyl contains an

irreducible curve. It is easy to see that this curve is a smooth rational curve C
with €2 = -4. Its image in P, is a sextic with double points at each %'

Let 8 Cﬁ"f be the variety parametrizing projective equivalence classes of
stable Coble point sets. As in the above example, the generic point of B is

invariant under the Cremona action cr,.,. This defines a birational action
om0 ¢ Waio — BIr(B).

Its kernel is isomorphic to the automorphism group of a generic Coble surface.
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Theorem 8. Let x be a generic Coble point set and ¢,: H,, — N'(V(x)) be the

corresponding geometric marking. Under the natural injection Aut(V(X)) < W, .
g = 9 gy
AUL(V(X)) = W, ,0(2) = (WeW, o0 WX} = x mod 2Q(Rg)).

In particular, cr,,, acts on 8 via its finite quotient isomorphic to W, /W, (2.

Proof. See [Co 11,852, [CoSl1, [Do2],IC-D 31.

Next, let n = 3 and m = 8. A point set XeP3 = IP3 is called a Cayley octad (cf.
[Cal) if it is the base-set of the proper inverse transform of in V(X) of a net of
quadrics in P2 One easily verifies that every Cayley octad is a stable point set
with no three collinear points, and no five coplanar points. Its image in P2 is a
semi-stable point set with no three coinciding points. We denote by 8O the
subvariety of ﬁg parametrizing the orbits of Cayley octads. The projection of B8 O

to P} defines a birational map:
80 7, S,

onto the variety of the orbits of self-associated point sets. It follows from
Theorem 4 that the generic point of the variety S < F>°3 is invariant with respect

to the Cremona action cry, Let
Crag: Wig — BIr(Sg)

be the restriction of cryg to S,

To state a result about Ker(crj,) we use some facts about the Weyl group

W3,g Which are similar to those from above about the group W,.,. We have
3Ky = 2€5-€4-..-85 = 20o+0+20,+30;+40 +305+20,+X,€Qg.
Ka.g = 4€g-2(e-..—€g) = 20 +& +20,+303+4& +3&5+20+A,€Qp.
It is easy to check that the map
(0;.G)) — (a; mod Z3K,e O; mod ZKyg), ij = 0.6
defines an isomorphism of bilattices:
0, = (QB)/Z3K, . Q(B)/ZK, ),

where Q, is the root lattice of type 2 in H, (the root system of type E,).
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Lemma S. There is an exact sequence of groups:
! a
1 = Q= W4 = WE) — 1,
where for every root aeRg in Q,
W) = v + 3(ved)Kyg +3(VeK;g)E= Suosg(V), for any veH,,

where g = 3K,;,-a is easily checked to be a root.

Theorem 9. Let xcP‘:’, be a generic Cayley octad and ¢,: Hg — N(V(X)) be the
corresponding geometric marking. Under the natural injection
PSQUL(V(X)) e W,q g — @ sg*-p, there is a subgroup Psaut(V(x))' of Psaut(v(x))

given by an exact sequence:
i . a
1 = Q, = Psaut(V(x)) — {z1} — 1.
In particular cry,e'(W,, ) acts on Sy via its finite quotient isomorphic to

W(E,)/{x1} = Sp(6,F,).

Proof. This is similar to the proof of Theorem 7 (r = 1). We know that a generic
point xeS, is the base set of a net of quadrics in P;. This net defines a morphism
mV(x) — P,
which is an elliptic fibration. Fixing a section of T corresponding to one of the
exceptional divisors of o: V(x) —P,; we equip the generic fibre of m with a
structure of an abelian variety A of dimension 1 over the field K of rational
functions on IP,. Its group of rational points A(K) is isomorphic to the subgroup of
N'(V(x)) of the divisor classes whose restriction to the generic fibre is a divisor

of degree O. It is easy to see that

AK) = Z7,
and is generated by the classes @,(a;), i = 0,..6. A direct calculation shows that
the pseudo-automorphisms of V(x) induced by the translation automorphisms tq,
acA(K), of A is isomorphic to the group Q,. The inversion automorphism x — -x of

A is mapped to -1 under the map W5, — W(E,).

For ancther more direct proof see [Co 1], S53.

Finally, we assume that n = 3, m = 10. A point set xeP'\A(10) is said to be a
Cayley decad if there exists a web W of quadrics in P; such that x is the set of
double points of the Hessian surface of this web. Recall that the latter is defined

as the subvariety of W parametrizing singular quadrics. We refer to ([Cal, [Co 1],
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[Co51, I[Cosl, [C-D31) for the beautiful geometry of such Hessian surfaces

(called Cayley symmetroids). Let 8& be the subavariety of P'3° corresponding to

stable Cayley decads. It is easy to see that its generic point is fixed under the

Cremona action crj,, and defines a birational action:
Cra0: Wi — BIr(8L).
Let
W3,10(2) = (WeWy 00 W(X) = x mod 2Q(B) for any xeQ(B)).
It is known (see [Co 6], [Gri1l) that the factor group W, ,,/W;.0(2) is given by an
extension
12 (Z/2Z)° = W,,0/W;,0(2) — SpP(BF, — 1.

Let W5, be the inverse image of (Z/2Z)® in W,,, under the projection

Wa,i0 = W3,107W3,10(2).

Theorem 10. Let x be a generic Cayley decad and ¢,: H,; — N(V(x)) be the

corresponding geometric marking. Under the natural injection
Psaut(V(x)) = W,, g — epx’1-g*~£px, we have
Wi © Psaut(vix)'.
In particular, the homomorphism cry,, factors via its finite quotient isomorphic

to Sp(8.F,).

Proof. see [Co 1], S§53, [CoS], I[C-D 1], I[C-D3l].

Remark 7. we refer to [Pil for applications of the Cremona action to

simultaneous resolutions of singularities of rational double points.
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Vil. EXAMPLES.

Here we review in examples everything we have learned so far.

1._Point_sets in IP,.

In this case we complete our definition of the Cremona action by setting
Wim= Inm
and by defining
crym: Wym — BIrPT)
to be the action of the permutation group via its natural action on IPT. Note

that we have an analog of Theorem S5 from Chapter Vi:

crimWX) = X & w(x) = g(x) for some gePGL(2)
for any representative x of XePT.
m)s
1

The spaces PT are defined for m 2 3. Its open subset ¢((P )parametrizes

the G-orbits of point sets where strictly less than #m points coincide; it is equal
to P when m is odd.
We have
P3 = (point),

Ker(cry s = L

Py =P,

Ker(cr, ) = (Z/2)* c I,
The quotient group is

r/Ker(cr, ) = SL(2,F,),

and the nontrivial elements in Ker(cr,,) are the permutations
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(12)(34), (13)(24), (14)(23).
For example, if x' = (1,00, x2 = (0,1), x> = (1,1, x* = (1,a), a = 0.1,
23 x T8 Y axtdxd S xxx),
where
g (to.ty) — (at,ty).
The analog of Theorem 6 from Chapter VI says that
Ker(cry,,m) = (11 if m > 4.
This is almost trivial because the only non-trivial normal subgroups of I, are
the alternating subgroup Am and Iy itself. Let us identify I, _, with the subgroup

of ¥y, that fixes the subset {m). Then , if A C Ker(cry ).
Am-1 = ApNIn-, © Ker(crym-4).
which is contradictory for m = S.

The explicit formulae for the Cremona action can be applied in our case

also. Our final remark is that
PT /W,m =2P(SYym™(v*)SS/PGL(2) = (P,,)°S/PGL(2)

The approach to the invariant theory of binary forms via the Cremona action
Cry,m is due to E. Moore [Mol. We refer to [Rel and [Sz] for some interesting

details in the case m = 5.

2. Point_sets in P, (m ¢ 5).

Although the spaces PT are defined only for m > 3 we make some

remarks starting from the case m = 1. All root bases B, considered below are of
canonical type 2 in Hp (m 2 3). Their Dynkin diagram is of type A,xA, (m = 3), A,
(m = 4), Dy (m = 5). We denote by

m m
(PBTIPS cipT
the subset of point sets in "almost general position” in the sense of Remark 1 of

Chapter V. This is the set of points X such that the gDP-surface V(X) is either a

Del Pezzo surface or a nodal Del Pezzo surface.

m = 1. There is one orbit of G = PGL(3) in B} =P). For every xeP}, the blowing-up

V(x) is a Del Pezzo surface of degree 8. It is isomorphic to the minimal ruled
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surface F,, and its anti-canonical model is a nonsingular surface of degree 8 in
Pg. The automorphism group of V(x) acts identically on N(V(x)). There is only one
geometric marking of V(x), and one exceptional curve of the first kind.

r_n__i_z.llszzis the union of two G-orbits: A(2) and its complement. For every
xeP2\A(2), the blowing-up surface V(X) is a Del Pezzo surface of degree 7. Its
anti-canonical model is a nonsingular surface of degree 7 in IP,. If XeA(2), V(X) is a
nodal Del Pezzo surface, its anti-canonical model is a surface of degree 7 with
one ordinary double point. Every Del Pezzo surface V(X) of degree 7 has exactly
two geometric markings. They differ by an automorphism of V(X) that is induced
by a projective transformation of P, There are three exceptional curves of the
first kind on V(X). In the nodal case V(X) has only one geometric marking, and two

exceptional curves of the first kind.

m = 3. Here
PH%=PH® =g,
P3H%S = bR = PIH9en
consists of non-collinear point sets witn no coinciding points. We have
P3 = P3 = [point).
The set of positive roots consists of four elements:
€o-€,-€,-€;, ©e,-e, €,-e; e,-e,
This shows that
PHM = PH3S.
The set
PI\NPHPFY =+ g
consists of point sets of the form:
(x',x2=x',x3-x").
Obviously,
Ker(cryg) = Wya & IgxZ/2.

The homomorphism Aut(V(x)) — W, is surjective. Its kernel is isomorphic to the
torus £%2,

Every Del Pezzo surface V(x), xe(P3)“", has 6. exceptional curves of the first

112



EXAMPLES

Kind. If ¢: Hy — N(V(x)) is a geometric marking of V(x), then the classes of the

exceptional curves are the images of the following vectors:
€,-€;-€,, €,-€,-€3, €,-€,-€;, €,6,6e,
The number of geometric markings on a Del Pezzo surface of degree 6 is
equal to the order of the Wweyl group W,, which is 12.

We leave to the reader the study of geometric markings on V(x) for
x¢ (P35S,

m = 4. We have
wPHsS =w@Hs =whHoe"
consisting of point sets with no coinciding points and no three points on a line,
®HZ= =@H%= b WPHS,
and
P2= P3= (point).
There are 10 positive roots in Rg. They are given by
€-€-€;-6., 1 si < j<K¢g 4,
e -ej, 1¢i¢j < 4.
This implies that
PPN = PSS,
Thus for every xe(P$)SS, its blowing-up is a Del Pezzo surface of degree 5. Its
anti-canonical model is isomorphic to a nonsingular surface of degree 5 in Pg,

which is defined by five equations of degree 2. We have
AUt(V(x)) = Ker(cry ) = W,, = L
The number of geometric markings of a Del Pezzo surface of degree S is equal to
the order of the Weyl group W, , which is 120. Any two geometric markings of
V(x) differ by an automorphism of V(x).
A Del Pezzo surface of degree 5 has 10 exceptional curves of the first kind.

Their classes are the images under ¢, of the following vectors in H,
eo'ei-ej, 1¢i«< J < 4, ei, i= 1,...,4.

A curious remark is that
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V() = P; for any xe(P3SS.

This can be seen in various ways. One of them is as follows. We know from
Chapter 1l that P is a nonsingular rational surface. The projection IP$— P}
induces a map

ﬂ:P?—' P:
Its general fibre is isomorphic to P,, and its 3 degenerate fibres are composed of
two irreducible components intersecting transversally. They lie over the
boundary & < P{ . One of the components lies over the orbit in IP{ of a point set in
which two points coincide, the second one over the orbit of point sets in which
the complementary pair of points coincide. The intersection point lies over the
orbit of the point sets in which two complementary pairs of point coincide. There
are four disjoint sections of m. They are defined by the maps:

X233 x = (xx2 3 x4 xh.
A standard argument shows that the images of these sections can be blown down
to an unnodal point set from P${. Finally note that the action of Ig on V(x)

corresponds to the action of Ig on P; via permutation of the factors of P?.

m = S. We have

P = wps
consisting of point sets where no points coincide and at most three points are

collinear.
P3s = @PS=pPH.
By association
P2 =P = P,
and, by the previous remark, is isomorphic to a Del Pezzo surface of degree 3.
There are 20 positive roots in Rg. They are given by
€,-€;—€;-€, 1 ¢ 1 < J<K <S5,
e;-e;j, 1¢i<j s S.
Thus
PHM = IP5\(WUZ,;0),

where
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Zijl( = Z(eo-ei—ej-e,().
The anti-canonical Del Pezzo surface is a complete intersection of two quadrics

iniP,. If it is nonsingular, the corresponding quadrics can be given by diagonalized

equations:

where all a; are distinct. The group (Z/2)* acts on V(x) by automorphisms
(Zg,...2) — (£2,,..,22,).
For every xe(lpg)s, its blowing-up is a Del Pezzo surface of degree 4. Under
the homomorphism
Ker{cr,s) — Aut(V(x)),

the subgroup (Z/2)* c Aut(V(X)) corresponds to the subgroup H of W,5 & WI(Dg)
generated by the products of two reflections sgesg, where a = e,-e;-€;-€,
B = e-—eg (i.jKINr,s) = @.
There is an isomorphism:
Was/H = Is,
as is predicted by the association isomorphism, and cr,s defines a faithful
representation
cr,s Is — BIir(P3)
that is induced by the permutation of factors of P .

There are 16 exceptional curves of the first kind on a Del Pezzo surface of

degree 4. Their classes correspond to the following vectors in Hg:
€-€i—€j, 1 s i<j ¢ 5,
e, i =1..,5,
2e,-€,-..-€g.
The number of geometric markings on a Del Pezzo surface of degree 4 is equal to

the order of the Weyl group W,s which is 2%5! = 1920.

All possible singularities of an anti-canonical nodal Del Pezzo surface are
known. For every nodal Del Pezzo surface V(X), the set of nodal roots defines a
root basis B" in Hy,. Its Dynkin diagram T(B™ is a connected sum of Dynkin

diagrams isomorphic to subdiagrams of T(B). Its root lattice is isomorphic to a
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sublattice of Q(B). Each connected component of T'(B™ is equal to the intersection
graph of irreducible components of the exceptional locus of one of the singular
points of the anti-canonical model of V(X). This allows one to classify all possible
configurations of singular points of an anti-canonical Del Pezzo surface. We

refer to [Duv1l, [Til, [Url for the corresponding lists.

3. Cubic surfaces (n = 2, m = 6).

By the stability criterion from Chapter I, we have

P®® = (x = (x'...x»eP$: no 3 points coincide and no 5
points are collinear},
wPH% = x = x"..x5ePS: no 2 points coincide and no 4
points are collinear}.
By Theorem 2 from Chapter |V, we have

P23 =PH= x = &',..xeP5: X¢A(6); and no 4
points are collinear).

The variety F"; is a normal rational variety of dimension 4 isomorphic to a

hypersurface of degree 4 in the weighted projective space IP(1,1,1,1,1,2) (see its

equation in Chapter 1). The morphism
By: P — P
is a resolution of singularities. Its fiber over -a nonsingular point of the singular

locus & of 5 is isomorphic to a nonsingular quadric.

Note that

(P53 c (PP,

For every Xe(P$)P9 the anti-canonical linear system maps V(X) onto a cubic
surface V in P, with at most rational double points. It is an anti-canonical Del
Pezzo surface of degree 3. Those which have at most nodes as singularities
correspond to point sets from (P$)°5. The variety P§ is a natural compactification
of the coarse moduli variety of nonsingular cubic surfaces with a geometric
marking.

There are 36 positive roots in H, with respect to a canonical root basis of

type 2:
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€-€-€€. 1 S i< j<K 6,

e;-e;, 1< i¢j <6,

2e5-€,-..-€,.
Each of them can be realized as a discriminant condition for V(X), Xe(P$)S. Thus
(P5V" consists of point sets X¢A(6), x does not lie on a conic, and no three points

from X are collinear. The boundary
6 6
BONPHY"
consists of 36 irreducible hypersurfaces, each of which corresponds to one

discrimimant condition. Note that the permutation group ¥, acts biregularly on
P$ (see Remark 2 in Chapter 1V). The quotient space

P/ E,
is a compactification of the moduli space of Del Pezzo surfaces of degree 3
together with a contraction sheaf(cf. [Ishl). Unfortunately, the birational action
of the whole group W,, = W(E,) does not extend to a biregular action on P$. We
believe that it can be biregularly extended to the variety BS obtained from P% by
blowing up all intersections of discriminant hypersurfaces. If this is true, the
quotient variety would be a natural compactification of the moduli space of
nonsingular cubic surfaces.

The Weyl group W,, & W(E,) is of order 51840. This is also the number of
geometric markings of a nonsingular cubic surface. The Weyl group is “almost”
simple. The only non-trivial proper normal subgroup of W is the subgroup W' of
index 2 generated by the products of pairs of simple reflections.

We have

Ker(cr,,) = {1}
In fact, the only other possibility is W' < Ker(cr,,). In this case W' contains the
alternating group Ag that acts by permutations of the first 5 points. This implies
Ker(cr,s) D Ag which is impossible.
Every nonsingular cubic surface V contains 27 lines, which are exceptional

curves of the first kind. Their classes are the images of the following vectors:

€-€i-ej, 1 ¢ i¢j £ 6,
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Each geometric marking ¢:H, — N(V) defines a double-sixer of lines. This is a
set of 12 lines the classes of which are given by

h, = ¢le), and hy' = @(2e,-e,-..-e,+€) , i = 1,..,6 .
They are determined by the property:

hieh; = hy'shy = 0, hyehy’ = 1, 1 s i < js6,
heh =0, i=1..6.
Conversely, every double-sixer (l,,..141,....1,} defines a pair (¢, ;) of geometric
markings which satisfy:
ple) = 1, @ le) = 0L, 0 =1,.6.
We will see a little later that, if ¢, = ¢, ¢, = ¢, for some x,yeP‘z’, then x is

associated to y. Also note that
Py = P2°Sa.
where
a& = Omax =2€o-€4-..-€, ("the maximal root™).

The Weyl group W acts transitively on the set of 27 lines and can be defined
as the group of bijections of this set preserving incidence relations. It acts
transitively on the set of double-sixers. The isotropy subgroup of a double-sixer
is a subgroup I x(sq). Thus the number of different double-sixers is 36, which is
also the number of positive roots with respect to the root system of type E,.

Finally, let us show that the association map

%G P2 — P
restricted to the subset of point sets not lying on a conic coincides with

Crae ). This shows that the geometric markings corresponding to the same

(S“max
double-sixer are associated.

Let
x = (x',..x9eP$3% \ Zlamax) © P35 \ A6,
and x’,x8x° be three non-collinear points that together with the first 6 points

form the base set of a pencil of cubic curves. Replacing x by a projectively

equivalent set, we may assume that
x’ = (1,0,0), x® = (0,1,00, x* = (0,0,1).

Let T, be the standard Cremona transformation. Let us verify that
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X' = (Tox",... To(x®) is associated to x.

Let X = (x‘j") be a coordinate matrix of x. We have to show that

[~ (D, (D M, (g, (1 7]
Xq X T Xg UXp'T Xg' Xy
@, @ , @, @, @, @
x, %% X 2% Xo %X
1 X2 o X2 o X4
My, @, D, D, ), &
X0 x Xo %% x _|
M, @, @, @, ), &)
[x, Xq TOX T J./\. =0
My, @, @, D, ), ©
X, %, %, x, Wx, Bx
2 Xz X Xy XXy
Sy, (5) ,, (S, (5) ,, (5), (5)
X7 X Xg X Xg Xy
©1y,© x Oy © y ©
L. Xq "X Xo X3 X, _

for some A = diag(d,....A,), A; * 0. Expanding the product we obtain the following

system of 7 linear equations in 6 unknowns #a;:

&

g A x(°|)x(|)x(|) = 0,

& 2 X0

I i 0,0¢j<ks¢2,
i=

¢ (M2 :
ga.xJ'xK =0,0SJ<K$2.

o

Let

L a.ttt =0
08i<jikga WKITHIK

be the equation of a generic cubic passing through the points x',...x°. Obviously

Goo0 = G441 = Gppp = O,
and we observe that the coefficient matrix of our system of linear equations is
equal to the transpose of the coefficient matrix of the system of 6 linear
equations:

), (), 0V _

oSis)j:sxsz kX7 XjXe=0,1<nc<6,
in 7 unknowns ;. (i.jk) * (0,0,0), (1,1,1), (2,2,2). By the choice of x’x%x%, the
space of solutions of this system is of dimension 2. Thus our original system has
a non-trivial solution (A,..,A,). If & = O for some i, then the points x'..X',..x° lie
on a net of cubics. It is easy to see that this is impossible. This proves that x is

associated to x' = Ty(x).
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Let X = (x'...x") and ¥ = V(X). The pencil of cubic curves passing through X
defines the structure of a minimal elliptic surface on V. We have

Px *Sa = Px"

where X' = (x'x".x%x%), a = e,-e,~eg-e,. On the other hand, we have
Px °Sg = Px".

where g = 2e,-€,-..-€,eH,, and

X" = arae(Sy g ) XX X5X7),
This shows that
Px" = Px'e(Sq°sp).
Since a+g = K,,. it follows from Theorem 7 of Chapter VI that
SasSp = 95 '-g"-9x
for some geAut(V) (inducing a translation on the generic fibre of the elliptic

fibration of V). This implies that X' is projectively equivalent to X". Hence

0, ,(P(X)) = cry (X)) = @(X) .

Remark 1. The following group theoretical argument gives an indication why the
previous result should be true. Let us identify W = W(E, with a subgroup of
Bir(P$ by means of the Cremona representation cr,,. Then the association

automorphism a:Pj — P5 defines an automorphism of W
w — a'ewea.
It is known that every automorphism of W(E,) is inner. Thus
alewea = wylewew,
for some wyeW. Since a preserves the subvariety of point sets lying on a conic,

w, must be equal to Somax- Unfortunately it does not yet prove that aeWw.

4, Del _Pezzo surfaces of degree 2

Assume n = 2 and m = 7. In this case
wpHss = w@Dhs
consists of point sets such that at most two points coincide and at most 4 lie

on a line.
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By Theorem 2 of Chapter 1V,
B = ®H%= b, WPH).
The morphism
B,: P, — P%
is a birational morphism of nonsingular varieties of dimension 6. It is an
isomorphism over ¢(U(7)%), its restriction over the subvariety of orbits of point
sets with exactly two coinciding points is a P,-bundle.
For every xe(PJ)Swith at most 3 collinear points, the blowing-up surface
V(X) is a (nodal) Del Pezzo surface of degree 2. The anti-canonical linear system
defines a morphism of degree 2
™ V&) — P,
that factors through a birational morphism V(X) — V' onto a surface V' with at
most double rational points as singularities and a double cover m:V' — P, If
char(&) # 2 the branch curve B of T is of degree 4 (see [Del). Conversely, for
every plane quartic curve B such that the double cover V' of IP, branched along B
has at most rational double points as singularities, a minimal resolution of
singularities of V' is a Del Pezzo surface of degree 2. All possible configurations
of singularities of V', and hence of B, are known (IDuV 11, I[Til, [Ur]).

There are 63 positive roots in H, given by:
€€-€j-€, 1 <i<j<K<7,

e;-ej, 1¢i<j<7,

2e4-€4-..~e,+e, 1 = 1,..7.

Each of them can be realized as a discriminant condition for V(X), Xe(P7)°. A point
set X is unnodal if and only if Xxe0(7) = U(7), no conics pass through 6 points from
X, and no three points from X are collinear. Nonsingular plane quartics
correspond to unnodal point sets.

The Weyl group W,, = W(E,) is of order 2903040 = 2'%3%5.7. This is also
the number of geometric markings of an unnodal Del Pezzo surface of degree 2.
The Weyl group has a non-trivial center. It is generated by an element w, of order
2 that can be characterized as the “longest” element of W, that is, its length with
respect to the set of Coxeter generators is maximal. The element w, acts on the
root lattice Q(B) as -1. If ¢: H, — N(V) is a geometric marking of a Del Pezzo

surface of degree 2, then
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P-worp” = g%,
where g is the involution of V defined by the covering transformation of mvV—-P,.

Indeed the LH.S. preserves Ky = ¢(-K,;) and acts as -1 on the orthogonal
complement L = (ZKy)nv)t= @(QB)). Since m is given by I-Kyl, for every xeN(V)

g*(x)+x = mKy € ZKy = m*(Pic(P,))
for some meZ. Intersecting both sides with K, , we obtain
(@*(x)+x)eKy = g*(X)eg*(Ky) + XKy = 2xeKy, = mKy «K, = 2m.

This implies that g* = cpowoo(p"= -1 on the orthogonal complement of Ky .
Let
o) = aB)/20(B) = FJ.
We equip it with the symmetric bilinear form defined by
(@,B) = asg mod 2
for every & = a+2Q(B), ae€Rg. The vector
T o= Qg+l +0,
spans the radical of this bilinear form, and
a®) = GB)/GF) = F3

has a structure of a symplectic space over F, The Weyl group acts naturally on

0(B) and G(B), and we have an exact sequence:
1 — (wg) — W(E;) — Sp(6F,) — 1.
This shows that the Cremona representation cr,, factors through a

homomorphism
CFaq: SP(6,F,) — BIir(P)).
The group Sp(6.F,) is simple. As in the case m = 6, this easily implies that cr,, is

injective, and hence
Ker(cry,) = (Wy) & Z/2.
It is easy to verify that
woley) = 8e,-3e,-..-3e,,
wole)) = 3ey-e,~ .. -e,+e, i =1,..7.

The Cremona transformation corresponding to w, is the so-calied Geiser

involution. It is given by the linear system of plane curves of degree 8 with triple
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points at x',...x’ (see [S-RI1, ChapterVii, 8.1).
A Del Pezzo surface of degree 2 has 56 exceptional curves of the first kind.

Their classes are equal to
€-€-€j 1 < i<j ¢ 7,
e, i =1.7,
2e4-€,-..-e,+€;, 1 < i<j £ 7,
3e,-€4-..-€-g, i o= 1,..7.
Under the covering involution g they are divided into 28 pairs, each of which is

mapped to a bitangent of the branch quartic B.

S. Del Pezzo surfaces of degree 1.

This is very similar to the previous case. We have
P =wH*®
consisting of point sets in which at most two points coincide and at most 5 lie
on a line.
By Theorem 2 of Chapter 1V,
8,Ss 8 -1
P%% = PH%= b (P D®).
The morphism
8
By BS — P8
is a birational morphism of nonsingular rational varieties of dimension 8. It is a
IP,~-bundle over the subvariety of the orbits of point sets with exactly two
coinciding points.
For every Xe(P2)° with at most 3 collinear points, the blowing-up surface
V(X) is a (nodal)Del Pezzo surface of degree 1. The anti-bicanonical linear system
I-2Ky(x)!l defines a morphism of degree 2
m VX) = P,
that factors through a birational morphism V(X) — V' onto a surface V' with at
most double rational points as singularities and a double cover m:V' — C, where C
is an irreducible singular quadric. If char(#) # 2 the branch curve B of m belongs
to 10¢c(3) and does not pass through the singular point of C (see [Del). Conversely,
for every curve Bel®c(3)l such that the double cover V' of C branched along B has

at most rational double points as singularities, a minimal nonsingular model of V'
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is a Del Pezzo surface of degree 1. All possible configurations of singularities of
V', and hence of B, are known (IDuV 11, [Til, [Url).
There are 120 positive roots in Hg given by:
€-€-€€. 1 si<jc<kKs8,

e;-¢j, 1¢i<jg¢8,

2e4-e4-..-e, 4+ 1 < 1 < j <8,

3e,-€,-..-€g-€;, i = 1,..,8.
Each of them can be realized as a discriminant condition for V(X), Xe(P3)S.
Note that a nonsingular B is a canonical model of a nonsingular curve of genus 4
with a vanishing theta constant. All such curves correspond to unnodal point sets.

The Weyl group W,, = W(Ey) is of order 696729600 = 2'43%5%.7. This is

also the number of geometric markings of a Del Pezzo surface of degree 1. The
Weyl group has a non-trivial center. It is generated by an element w, of order 2
that can be characterized as the “longest” element of W, that is, its length with
respect to the set of Coxeter generators is maximal. The element w, acts on the
root lattice Q(B) as -1. If ¢: Hy — N(V) is a geometric marking of a Del Pezzo

surface of degree 1, then
PoWoep™ = g,
where g is the involution of V defined by the covering transformation of mV — C.

This can be proved in the same way as in the previous case.
Let

aB) = a(B)/20(B) = F3.
We equip it with the symmetric bilinear form defined by

(@B) = as¢ mod 2
for every a = a+2Q(B), aeRg. This form is non-degenerate and is associated to
the quadratic form q:Q(B) — F, defined by

q(x) = #xex mod 2

for any X = x+20(B)eQ(B). This quadratic form is of Witt index 1 and its orthogonal
group is denoted by 0'(8,F,). The Weyl group acts naturally on G(B) preserving q

and there is an exact sequence:
1 — (wg) — W(Eg) — O0%(8.F,) — 1.

This shows that the Cremona representation cr,, factors through a
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homomorphism

CF,e O'(8F, — BIrFd.
The group O*(8,F,) contains a simple subgroup of index 2. As in the previous case
this immediately implies that

Ker(crp,g) = (wWy) & Z/2.

It is easy to verify that

Woleg) = 17e,-6e,-..-be,,

wole)) = 6ey,-2e,- .. -2e4,-€;, i =1,..8.
The Cremona transformation corresponding to w, is the so-called Bertini
involution. It is given by the linear system of plane curves of degree 17 with
sextuple points at x',..x® (see [S-Rl, Chaptervii, 8.2).

A Del Pezzo surface of degree 1 has 240 exceptional curves of the first

Kind. Their classes correspond to the following vectors in Hg:

ei,

i=1..8,
€-€-€, 1<i<js8
2e,-€4-..—egtej+ej+e, 1 < 1 < j < K ¢ 8,
3ep-€y-..—€g-€;+ej, I,j = 1.8, i = |,
4e,-€,-..—€g-€;-€;-6, 1 < 1 < j < K ¢ 8,
Sey-2e,-..-2eg+e;+e;, 1 < i < j ¢ 8,
bey,-2e,- ..-2eg-€;, i = 1,.,8,.
Under the covering involution g they are divided into 120 pairs, each of which is
equal to the inverse image under m of a tritangent plane to the branch curve B.
The anti-canonical linear system [|-Ky(x)l of a Del Pezzo surface V(x) of
degree 1 is composed of a pencil and has one base point x°. Blowing it up, we obtain
).

a gbP-surface V(X), where X = (x',..x%x®. The linear system I|-Ky(x)l is base-

point-free and defines an elliptic fibration

fVv = vix) = P,.
The exceptional curve of the first kind blown-up from x° can be taken as -the zero
section of the group scheme V¥ = V\(singular points of fibres of f}. The inversion
automorphism of V¥ extends to an automorphism of V and defines a Cremona
transformation of IP,. If V is unnodal (equivalently, V is unnodal), this is the

Bertini involution defined above (see Theorem 7 of Chapter VI).
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6. Point_sets in IP,.

We start with m = 4, the first case where P} is defined, and leave the

cases m < 3 to the reader.

If m = 4,

wPH3S = PH®,

PHs =E®HS = b PH®),

P3 =P3 = (point},

Ker(cra ) = Wi, = WIAIXW(A)) = I xZ/2.
If m=35,

wp3®S = wPS,

P33 =@ = b 'PH,

P3=P3 = [point),

Ker(cras) = Was = W(Ag) = L.
If m= 6,

(P53 =(P$°° = (xeP$\AL): at most 3 points
are collinear and at most 4 are coplanar),
(P = PH%= (xeP$\AL): no 3 points are
collinear and at most 4 are coplanar},

Pé = P, =P by association,

Ker(cryo) = (Z/2)° © Wy, = WD) = (Z/2)%xE,.

The elements of Ker(cry,) can be described as follows. Let
Wi = Sa °Sa,.

Then crs.{w,) acts by the standard Cremona transformation T, composed with

® = (a,b,c,d), ab,cd *# O.

the transposition (56). We may assume that x* = (1,111, x
Let
crae(wy) = x° = (" x2x3x%y%y®),
where y° = (bcd,acd,abd,abc), y®* = x°. Let A be the projective transformation
(totptyty) — (atgbt.ctydty).

Then
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AX) = x,
hence
wieKer(cry o).

We find that for every oer, C W

EXAMPLES

= 1
Wg = O°W,e0 = sa(ao,asa(as)cKer(cra,b).

Since Qgets

Wq is of order 2. Let us show that

0, the simple reflections Sa, and sq commute.

the elements wg commute. Note that

o) = 2e5-€5(;)~ €g(2) ~ €g(a) ~ €o(s)-

0(as) = €g(s) ~ €ge) -

Let 0.0'eX,, 0 * o’. Then
#0({5,6NN0' (5,61

In the first case

olag)ec’(ay) = O,

olag)ed'(ag) = O,
hence

WgeWg' = Wg' oWg.
In the second case

olag)eo(ay) = -1,

olagleo’(ag) = #1

One easily verifies that
WgeWg'

where

{6"(5),6"(6)IN(0(5),0(6)) =

=0, 1, or 2.

= Wg' °Wg= Wg",

#  {0(5),0(6))N{6"(5),0'(6)).

In the third case

Wg = Wg'.

Thus all the wg's commute. They generate a subgroup H

(z/2)5.

Therefore,

{0"(5).6"(6NN[6'(5),0'(6)) =

every

of W,, isomorphic to

There is a distinguished element w, in Ker(cry,). It defines a non-trivial
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pseudo-automorphism g, of the gDP-variety V(x), xe(P$)9°", equal to the covering

transformation of the rational map of degree 2
mV(X) -+ Py

given by the linear system of quadrics passing through x'...x° Note that 7 blows
down to- points each of the proper inverse transforms of 15 lines joining pairs of
points x"'s. It also blows down the proper inverse transform of the unique rational
normal curve passing through all of the x""s. The ramification surface

X © V{x) of m is a minimal nonsingular model of the Weddle surface, a quartic

surface in P, with nodes at the x''s, defined as the locus of nodes of quadrics

passing through the x's. The branch surface Y C IP; of mis a Kummer surface,

birationally isomorphic to the Weddle surface X. Its 16 nodes are the images of
the 15 lines and the rational normal curve from above (see [S-Rl, ChapterVill,
2.3).

Since Ker(cry,) is abelian, each of its elements commute with w,, and hence
leaves the ramification locus of m invariant. This shows that Ker(cr;,) maps to
the automorphism group of the Weddie surface with w, mapped to the identity.
The image is a subgroup of Aut(X) isomorphic to (Z/2)*.

Let ¢: H, — N(V(x)) be a geometric marking of V(x). Let us compute

Wo = @lego*ep €W, .
We know that

90" (Ky(x)) = Kyxy-

6

For every i = 1,.,6, let Q; be the quadric passing through the points x',...x° and

having a node at the point x', and let E; be the exceptional divisor blown-up from it.

Then
E;+Q;e 1-3Kypyl,
and hence
G ED = g1, i = 1...6.
Thus
plogo*ep(e;) = 2e,-e,-.-e,-€;, i = 1..6.
Similarly we observe that the union of the planes <x'xZx® and <«x*x%x® belongs
to I-3Ky(x)!. Hence

¥ - -
Pego*-pleg-ei-ey-€3) = €y-€,-€5-6.
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Together, this yields

9 legorepley) = Tey-4de,-..-de,.
An easy calculation shows that

Wo = WgeWg'oWg",
where

a((S.6NNo’((5.6H = o((5.6hNa"([5,6)) = o' ((5.6DNG" (5,6 = B.

Finally we note that the representation
Fae L, — BIir(P%)

through which cr,, factors is induced by permutations of the factors of IP$.

Assume m = 7. Then
PH% =PH%= PN =P
consists of point sets x = (x',.x")¢A(7) with no more than 3 points lying in a

line and no more than S points lying in a plane. By association,
87 =¥} =7,
and the Cremona representation
Craz: Wi, = W(E,) — BIir(P))
is isomorphic (twisted by an involution Tt of W,;,) to the Cremona representation
croq Wop = W(E,) — Bir(P).
In particular, we obtain
Ker(cry,) = (wg) = Z/2.
Let xePD c P)H%and ¢H, — N(V(X)) be the corresponding strictly
geometric marking. Then
"P°\”’o""”-1 = go"
for some pseudo-automorphism g, of V(x). The action of g, is similar to the one of

the Bertini involution. One easily checks that

V(x) =Proj(r€POH°(V(x),0v(x)(-%rKv(x))))

is isomorphic to the weighted projective space IP(1,1,1,2) (that is, the cone over

the Veronese surface in IP%). The canonical map
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mVx) — V(x)

is a rational map of degree 2. The pseudo-automorphism g, is the covering
birational transformation of 7. Its fixed locus is a proper transform of a certain

sextic surface in IP; (the Cayley dianode surface [Cal). We will return to this

surface later in Chapter 9.

One finds
Woley) = 15e,-4e,-..-4e,,
wole;)) = Bey,-2e,-.-Ze,-e;, i = 1,..7.

Thus g, is given by the Cremona transformation defined by the linear system of

7

surfaces of degree 15 passing through x',..x’ with multiplicity » 4.

The linear system of quadrics through x',..x7

is two-dimensional. Adding to
x its 8-th base point x®, we obtain a point set X = (x'...x®), the blow-up of which

V = V(X) admits an elliptic fibration
f:V =P,

It is defined by |-iKyl, the proper transform of the net of quadrics. The open
subset V¥ = V\(singular points of fibres of f} has a structure of a group scheme
over IP,, with the image of the zero section equal to the exceptional divisor blown
up from the point x® The inversion automorphism of v* extends to the pseudo-
automorphism g, of V.

Starting from m = 8, the Weyl group W, becomes infinite. We do not know

whether crym, is injective.

7. Point _sets in IP,.

As in the previous section we start with m = 5, the first case where P is

defined, and leave the cases m < 4 to the reader.

If m=5,
(P33 = PH%%= 39",
P = w3° =9,
P% = P, = (point),
Ker{cr s) = Wys = WIAIXW(A)) = I xZ/2.
If m=6,

(P8 = PSS = P§HS= PSS = P9,
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Pé =P, = (point),
Ker(crge) = Wyae = WA = I,
Ifm=7,
(B = PP = PH==wPH%= PHo°",
P?, =F, =P by association,
Ker(cr,,) = (Z/2)° © W,, = WD, = (Z/2)°xx,.

The argument is similar to the case n = 3, m = 6. However in this case there are
not any distinguished involutions in Ker(cr,,).
The last case when W,nq is finite is the case m = 8. Here
8y 8 8 8
PHE == ;rH=w
and consists of point sets xePﬂ\A(s) with no more than 3 collinear points

and no more than 4 coplanar points.

By association
B = P = P,
Ker(cr,g) = Ker(cryg) = (Wy) C© W, = W(E,.

We do not know any nice geometric description of the involution w, considered as

a Cremona transformation of P, (cf. [DUV 41).
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VIIl. POINT SETS IN IP, AND HYPERELLIPTIC CURVES.

with this chapter we begin our discussion about the relationship between

theta functions and point sets in P,.

1. Theta functions.

Let us recall some facts from the theory of theta functions which we will

need in this and the next chapter (see [1g1]1). We will use the following notations:

%g = (teMg(C): 't = T, Im(T) > 0), the Siegel half space,

AB ¢ 0o-1 0o-1
rg = Sp(2g.Z) =M = co €GL(2g.Z): M. lgO ™M = 'go ), the

Siegel modular group,

Tgn) = MeTg : M = I.‘.g mod n}, the level n congruence subgroup,

Az = {tem+n: m,nez®) c €9, t¢ %g.
Ac =€97Ac, an abelian variety of dimension g.

The group A acts on €9xC by

w: (z,t) — (z+w,ec(z,W)t),
where w = Tem+neA., and

elzw) = exp-ﬂi(tm-t-m+2tm-z).
The quotient space

L= CIXC/ AL

has a natural structure of a line bundle on Ar.

The pair (Ag.Ly) is aprincipally polarized abelian variety (ppav), i.e. a pair
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consisting of an abelian variety A and an algebraic equivalence class of an ample
line bundle L on it with dim H’AL) = 1. The latter is equivalent to the property
that the map

nL : A = Pic(A)” = A, a— tg*(L)eL™
is an isomorphism.

The group Tg acts properly discontinuously and holomorphically on $t4 by

the formula
M:T— M := (At+BXCT+D)™.

One easily checks the commutativity of the following diagram:

(m.n)—=tm+n

y &) — c9
thas D-C
tet+D) TLMTIC+A
co|lT|-Ba
729 (m,n):th*n o

AB

co}‘rg' and each pair of the vertical arrows consists of a map and

where M = [
its inverse. This diagram shows that the map
Em : 2 mod Ag — Y(Cet+D) 'z mod Amc
defines an isomorphism of abelian varieties
Em: A = Amc
and of invertible sheaves
E;(LMT) nd Lc[ .
In other words &y defines an isomorphism
(Ag.Lg) = (Aye. L)
of principally polarized abelian varieties.
This allows us to define an isomorphism of complex varieties:
s}ag/rg 3 0.9,

where the latter stands for the coarse moduli variety of isomorphism classes

of ppav of dimension g.
The factor space %4/Tgis an algebraic variety. It is isomorphic to an open

Zariski subset of
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6.9= Proj(M(Tg)),
where for every subgroup T of Ty
MT) = {feO(%g): f(MT) = det(Cot+D)*f(t) for any MeT)
oo
M) = & M(T),,
K=0

is the space of Siegel modular forms of weight k with respect to I', and the

graded algebra of Siegel modular forms with respect to T, respectively. The

space dg is called the Satake compactification of Qg

For every integer n and an abelian group G we denote by [nl the
homomorphism of multiplication by n.

Let

AL = Kerl2l = 3A /AL
A natural homomorphism
Z?9 — AL, (mn) — Ftem+in mod AL
factors through an isomorphism
‘PtrFig = A
Both groups have a structure of a symplectic vector space over F,. The first one

is defined by the bilinear form

e, |97 t t
ey (Xy) — “xe Ig O Y = "X4Y2t "X2Yy.

where X = (X4.Xp), ¥ = (YY), xi,yich. The second one is the Weil pairing, defined
by the formula:
e (xy) = log(t,(x)),
where
Ly 1 2Ar = Uy = (21)
is the homomorphism obtained via the identification of the point nL(y)e, AL with

an element of
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2 [2]
Ker(A — A) = cChar(Ker(A—A)) = Hom{A .u,;)
and logH, — IF, is an isomorphism of groups.
One verifies that
29
PoFa = A
is an isomorphism of symplectic spaces.
The triple
(Ac.Le.9g)

is a ppav_with a level 2 structure.

The action of Ty on %y changes the triple (A¢,L . 9¢) to the triple
(Apmg LMt . PMe?.
where
Py EppreM
and
M= M mod 2 € Sp(2gF,)

is an automorphism of the symplectic space F:g.

In particular, we see that Mel‘g(Z) defines an isomorphism
Ev (Ar Lo @) 3 (Aye.Lye Puc)
of principally polarized abelian varieties with level 2 structure. In this way one
obtains an isomorphism
¥#g/Tg(2) = ag(2),
where 0.9(2) is the coarse moduli variety of isomorphism classes of principally

polarized abelian varieties of dimension g with level 2 structure.

Note that
Sp(29.F ) = Tg/T4(2)
acts naturally on @4(2) with the quotient variety isomorphic to G4. A

compactification of 0.9(2) is given by

6.9(2) = Proj(M(I'g(2)).

This is the Satake compactification of @ 4(2).
Recall that, for every line bundle L on A;, its holomorphic sections can be

viewed as holomorphic functions f(z) on €9 satisfying
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fz+w) = e-(zwW)f(2) for any weA., and any zec9 ,
where e' is the automorphy factor defining L (i.e.
LsC9xC/A,,

where weA; sends (z,t)e€9 x Cto (z+w,e"(z,w)t).
In our case L. has a unique, up to a scalar factor, section on A;. The

corresponding holomorphic function can be given by the following infinite series:

Iz = L g expmi(tmetem+2tm.2).
meZ

This is called the Riemann theta function of A;. The corresponding automorphy

factor is e (z,w) defined above.
For every a = #tex+iyeC9 , x,yeRY9, the translation tz: A — A by the element
a = a mod A; defines a line bundle tg*(L .) algebraically equivalent to L. . One of its

sections (defined uniquely up to a scalar factor) can be given by the series

X
«T[ ](Z;‘t) = L g exprit(m+3x)eTe(m+3x)+ 2 m+3x)e(z+3y))
Y meZ

that relates to the function e(z;t) by

X 1 1
I(z+a;t) = J[Y](z:t)exp-ﬂi(;txvl:-x+tx-(z+2‘y)).

X X
The function a[y](z;t) is called a theta function with characteristic [Y]

We will be using mostly theta functions with half integral characteristic

€
J[ ~](Z:t) = YL g expriiCt(m+3e)ete(m+2e)+ 2 (m+de)e(z+3e"))
€ meZ

where €, ¢ have values in the set (0,1).

Observe that
€ t ' €
I g (-z;T) = (-1)"EeEJ ¢ (z:1).

This easily implies that we have
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€
2971(29+1) even theta functions J[:-](Z;t), and

€

29°1(29-1) odd theta functions JL](Z;'E).

X

y](zzt) satisfies

As a function of the parameter te%Q, the theta function a[

the following functional equation:

x' X
a[y.](z';t') = Cexpni(tz-(C1:+D)'1-z)det(C-t+D)'/2J[Y](Z;'E),
where
D ¢ 4 AB
(z. ) = C(Cet+D)ZMT), M = | [eTg.
(x',y") = (Dex-Coy,-Bex+Aey)+((Cs'D).,(AB).),
teC depends on (x,y) and M only,
and for every matrix X we denote by X, the vector of its diagonal elements.

X
If [y] is a half integral characteristic and Melg(2), the constant &t satisfies
¢t =1,
which implies that
X 4 x 4
3 y () = 3 y (0:T)%eM(Tg(2)),.
X
The values 4| y (0;t) of theta functions with half integral characteristic at zero

are called theta constants.

2.__Jacobian varieties and theta characteristics.

Let C be a nonsingular projective algebraic curve over C of genus g > O.

Recall the definition of its Jacobian variety (see [G-HI).
Let

[3‘11..' 1329}

be a symplectic basis of the first homology group H,(C.,Z), ie.
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%e¥; = 0, li-jl = g, i.j = 1....29,
Fi*Ti+g = ~Fi*Tisg = 1,i=1,..9
with respect to the intersection form on H(C,Z).
There exists a basis
{©y,...Qg)

of the space H°(C,Qé) of holomorphic differentials on C satisfying:

L

[AN
L

The matrix

Q) = (J Qi)15i.j59
tjfg

belongs to %gand is called the period matrix of C.

The Jacobian variety of C is defined as the abelian variety

Jacl©) = Agcey = €I/ Ag(oy-

It can be identified with the component Pic®C) of the Picard scheme Pic(C) of C

parametrizing divisor classes of degree O . This is done by means of the Abel-

Jacobi map:

aj: Pic®C) — Jac(C), D — ".03 = (Iw,,...,ng) mod Ar.
D D D

The choice of a point c,eC allows us to define an isomorphism
Pic™c) — Pic®(C), D — D-nc,,

whose composition with the Abel-Jacobi map defines an isomorphism
ajc,: PICC) — Jac(C).

Let c™ be the n-th symmetric product of C parametrizing effective divisors of

degree n on C. There is a canonical map
€™ = Pic©)
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whose fibre over a divisor class DePic™C) is equal to the complete linear system
IDI. The image of |, is a closed subvariety W" of Pic™C). In the special case n = g-1
that we need, Wg_, is a hypersurface. The fundamental theorem of Riemann says
that

ajc (Wg-y) + KlcT) = © := {ze€9 :9(z,T) = OWA.

for some point Kk(c,T) in At (the Riemann constant). Moreover, if
Wgl, = (DeWg_y: dim IDI 2 1),
then
ajc(Wgly + K(co = Sing™(®) = (ze®: mult,(8) > r+1).
The Riemann theorem asserts also that
D(co ™ = ajc,(K(Co, TeTH(C),
where
Th(C) = (DePic(C): 2D = Kcl

is the set of theta characteristics on C. Note that this set has a natural

structure of an affine space over ,Pic(C) = ,Jac(C), and hence consists of 229
elements.

For every DeTh(C), we have

h°D) = mult )@ = multy(e+ny),

ajco(D)ﬂ((Co,t

where
Np = Al (D)+k(cq, TIezdac(C).
Use T to define a level 2 structure

29

@ lF,” — LJdac(O).

Let
¢ (e€) = np,

where we identify elements of F;g with binary vectors. Then
€
h°(D) = multy(8+np) =mUltyI(z+ny:T) = multoa[c.](z;n.
This implies that

ho(D) = teec’ mod 2.
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A theta characteristic D is called even (odd) if h%D) is even (odd). We see that
there are 297'(29+1) even and 297'(29-1) odd theta characteristics on C. Thus a

choice of the period matrix t of C and a point c,eC allows us to make a bijective
correspondence between the set of theta characteristics and the set of theta
functions with half integral characteristics in such a way that even theta
characteristics correspond to even theta functions.

Also observe that for every n = ¢ (a,a’)e,tac(C)

E+Q €
h%(D+m+h°(D) = multoa[c-m-](z;thmulto«‘r[s-](z;t) =

tie+a)e (e +a )+ teee’ = taee'+

9 2 . 2 .
IZ ;g +0; oG mod 2.
=1

t t

ol + 00 =

This shows that the function
n — hPMD+n+h°MDd) mod 2

2
is a quadratic form on ,Jac(C) = Fzg. Under this correspondence, even and odd

theta characteristics define even and odd quadratic forms
qp: Jac(C) — F,,
distinguished from one another by the property that
#q7'0) = 2971(29+1)
for even quadratic forms, while
#q'0) = 2971(29-1)
for odd quadratic forms. The orthogonal group of an even (resp. odd) quadratic
form is isomorphic to the orthogonal group
0*(2g.F,) (resp. 07(2g.F,))

of the quadratic form

g g-1 rot )
i§1xixi*9 ( resp. i);1xixi+9+xg+x29

on F2%. Note that

[Sp(29.F,):0%(2g.F 1 = 297'(29+1),

2971(29-1).

[Sp(2g.F,):07(2g.F )]
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The bilinear form associated to qp is equal to the Weil pairing

er: dac(Cixydac(C) — F,
defined by the principal polarization L. of Jac(C). Thus the mop D — qp is a
bijection

Th(C) — s2(dac(C),

between the set Th(C) of theta characteristics on C and the set of quadratic

forms on ,Jac(C) with associated bilinear form equal to e..

3. Hyperelliptic curves.

Let C be a hyperelliptic curve of genus g > 1 over C. By definition C has a

unique linear system g‘.‘, of degree 2 and dimension 1 that defines a double cover
mC— P,

ramified at 2g+2 points c,....Cogs, Of C. Let x',..x?9*? be their projections to P,,
the branch points of m. In this section we will show that an ordered set of branch
points defines a level 2 structure on Jac(C), and in this way the variety (Pl;gﬂ)Un
becomes isomorphic to an irreducible component of the moduli variety of
hyperelliptic Jacobians with level 2 structure.
We begin with a convenient notation for points of order 2 in Jac(C) (see

[Mu 21). For every subset T € B = (1,..,2g+2) let

er = i)t:TCi = #TCyg,, € Div(C).
Then

2er = (L x' - #Tx?9*?) ~ o,

ieT

where ~ denotes linear equivalence of divisors. Hence

ere,Pic(C).

Note that

Z Ci ~ (29+2)C2g¢2:
ieB

and for every integer a, we have

Ic+ -(#T+a)c = L ¢ - #TC .
oS ACag+2 2ge2 7 LG 2g+2
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This shows that
er ~¢r
where T = B\T, and
ér ~ ey
for some T with #T° = 0 mod 2.

Let IFE be the set of subsets of B (or functions B — IF,) equipped with the

structure of a vector space over F, with the addtition law:
T+T° = TUT\(TNT).
It carries also a symmetric bilinear form defined by
(T.,TY — #TNT mod 2.
The restriction of this bilinear form to the subspace (F E)ev spanned by subsets
of even cardinality is degenerate, the radical being equal to {9,B). Let

B
Eqg cF;/(8.B)

denote the factor space of this subspace by the radical. Its elements are subsets

of B of even cardinality modulo T ~ B\T.
Note that the symmetric group Iog+2 acts naturally on Eg and preserves the

symplectic form. This gives a natural inclusion:
Iyg+2 = SP(2g.F))

well known to group theorists.

Lemma 1. The map
e Eg — ,Jac(C), T = ey

is an isomorphism of linear spaces.

Proof. Easy (cf. IMu 2]).

To define the period matrix of C we choose a special symplectic basis
(¥,....%,g) of H{(C.Z) . we view C as a two-sheeted cover of the Riemann
sphere. Each class %, i < g. is represented by a path which goes from c,_, to c,
along one sheet of C and returns from c, to c,._, along the other sheet. Each class

¥, i>g. is represented by a path which goes from C, to C,q,, along one sheet and
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returns from c,g,, to ¢, along the other sheet. We call such a basis a branch point

basis.
Let (Q,,...0g} be a basis in H%C,9¢) normalized in the usual way with

respect to a branch point basis. The corresponding period matrix

™C) = ( ij):,j=1....,g
¥j

will be called a branch point period matrix of C.

Lemma 2. Let t(C) be a branch point period matrix of C, and
2
q)t(c):lF,g — LJac(C)
be the corresponding level 2 structure on Jac(C) = €9/A (). There exists an
isomorphism of symplectic spaces
29
l: Eg = F,
such that the composition
Yr(cy°:Eg — 2dac(C)

is equal to the map e defined in Lemma 1. In particular e is an isomorphism of

symplectic spaces. The map | is uniquely defined by the property:
Icyi-.C) = (8,,0), i = 1.9
l((Czi,...,ngﬂ]) = (o’ei)' i = 1,...,9.

Proof. It is immediately verified that the subsets
Ty = [C1-1.Cai)e Tiag = {CoionCogugd T = 1.0,
form a symplectic basis in Eg. Thus we can define | by sending this basis to the

standard symplectic basis of IF:g. The assertion will follow if we verify that under

the Abel-Jacobi map
ajler,) = orerlep. 1 = 1,..29

Note that each «, reverses its sign when one switches the sheets of C. Hence

C2i-4 C2i-1 C2j
%8” = % IC\)J = IC\)J = IQ“ - ij:
¥i C2i Cag+2  Cag+2
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C2i-1 C2 Cai

- I(,.)j+ I«.lj—z J'wj

Cage2  Cage2 Cag+2

Since
Caj Caj
2¢( jw,,..., J‘wg) = aj(2cy-2c,9.)) = O,
Cag+2 Cag+2
we obtain
C2i-1 Cai
ajler)) = Qj(Cy_+Cy=2Cog4¢) = JC) + J-<.3=%ei mod Ac(cy, 1 = 1.8

C2g+2 C2g+2

Similarly, we check that

ajler,) = it i = g+l...2g

-g-
and prove the lemma.
Recall that by the Torelli theorem the map

C — Jac(O
defines a closed embedding

T: mg - 0.9
of the coarse moduli variety of nonsingular projective curves of genus g. We
denote by

¥ypg € Qg
the image of the subvariety of Mg parametrizing isomorphism classes of
hyperelliptic curves. The inverse image of 3¥%ypg under the projection ag(2> = Qg
is denoted by %ypg(2). It is a coarse moduli variety of Jacobians of hyperelliptic

curves with level 2 structure.

Theorem 1. Let (P2 H¥" = ®39"2\a)/PGL(2). There is a natural isomorphism
2 °
(Pfg‘ NS %ypg(2)°,
where %ypg(z)" is an irreducible component of %ypg(2). This isomorphism

associates to a point set x = (x' x29*2) the isomorphism class of the Jacobian

ey
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variety of the hyperelliptic curve C(x) obtained as a double cover of IP, branched
over x',..x28*2 equipped with the level 2 structure defined by the branch point

period matrix of C(x).

Proof. The map

2g+2

Py "™MA = Hypg(2), x — (JaclCOMN.Pr(cix)))

un

factors through (Pfg*z) and defines a map

N

N — %ypg(2).

Let C be a hyperelliptic curve of genus g. It defines, uniquely up to projective
equivalence, the set of ramification points (c;,..,C,g.;} Of its double cover onto IP,.
We have to show that its order is determined uniquely by the level 2 structure

p: leg—- ,Jac(C) defined by a branch point period matrix t(C). Let
(g4, ...}
be the image under ¢ of the standard symplectic basis in IF:g. Let

9

2
l: Eg = F,” be the map defined in Lemma 2. Then the order of ramification points

can be reconstructed by setting
Czi = l_‘(el)ﬂ|'1(8|,g), i = 1,...,9,
Coieg = 1MeNCy), T = 1.8,

The projection of the ordered set of ramification points to IP, defines the point

set X such that i(x) = (Jac(C).¢). We have a natural isomorphism

-

(P} un

7Lag+2 3 ¥YPg
such that the diagram

.2y, i
(Pfg o ®ypg(2)

is commutative. Since the projections p and p' are finite morphisms, the
morphism i is finite. As we showed above its degree is 1. Therefore i is a closed

embedding onto an irreducible component of %ypg(2).

Corollary. The number of irreducible components of %ypg(2) is equal to
#Sp(2g.F,) 29°(229-1)(22972-1) _(22-1)
#T0000 (2g+2)
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In particular, %ypg(2) is irreducible for g < 2 and is isomorphic to (Pfg*z)””,

Proof. The group Sp(2g,F;) of covering transformations of %ypg(2) — ¥ypgacts
transitively on the set of irreducible components of %ypg(2). The stabilizer of
the component %ypg(2)° contains the subgroup Zzg,z.lt is known that this

subgroup is a maximal proper subgroup of Sp(2g.F,). Thus the stabilizer is equal

to this subgroup. This proves the assertion.
Remark 1. We do not know whether %ypg(2) is smooth, or equivalently, if

¥ypg (2)°is a connected component of %ypg (2). This would follow from the

smoothness of the hyperelliptic locus in the Siegel half space %g.

4. Theta characteristics on hyperelliptic curves.

Following [Mu 2] we give a very convenient notation for theta
characteristics on hyperelliptic curves that is similar to the notation for points
of order 2 on its Jacobians given in the previous section. We keep the notation
from that section.

Let

o, c F2/12,B)

9
be the subset represented by subsets S of B = (1,.,2g+2} with

#S = g+1 mod 2 .
It has a natural structure of an affine space over Eg with respect to the addition
in IF E.

We have the following analog of Lemma 2 from the previous section:

Lemma 3. Let C be a hyperelliptic curve with ramification points c,,..,Cyg,,. FoOr

every subset S of B with #S = g+1 mod 2 define

fs = i)‘:sci»e(g—1—aers)c29,2
Then

fs € Th(QO),

fg = fg' iff S =S or S =B\S,
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and the map S — fg defines a bijection
f:Qqg — Th(C)
such that the pair
(f.e): (Og,Eg) = (Th(Q), ,Jac(Ch)

is an isomorphism of affine spaces.

Proof. Left to the reader (cf. IMu 21).

t 9

Lemma 4. Let gy (e.€) — “cee’ be the standard quadratic form on Fz . by be

its associated bilinear form, and
1*(qp): Eg = F, , T — goI(T),
be its pull-back to Eg. Then
1*(Qe)(T) = 3(#(T+U)-g-1) mod 2 = 1#T+#TNU mod 2,

where U = (1,3,..,2g+1) is the subset of odd numbers in B.
Moreover, for every quadratic form q on F"'z9 with associated bilinear form

equal to b, there exists a unique element SeQg such that

*@XT) = 2#T+#(TNS) mod 2 = F(#(T+S)-#S) mod 2.

Proof. We check first that
T —  3((T+W-g-1) mod 2

is a quadratic form on Eg with associated bilinear form equal to
(T.TY — #TNT mod 2.

Then we verify that the values I1*(g)(T) and #(#(T+U)-g-1) mod 2 are equal for T
belonging to a symplectic basis of Eg. We leave this to the reader.

Let Sz(lf-'ig)0 be the set of quadratic forms associated to the bilinear form
b,. To establish the second assertion we observe that every qeS2(F29), can be

uniquely written in the form

q = qo+l*

9 g

2
where lc(Fig)* is a linear function on IF,”. identifying 1 with an element n of IFi by
2
means of the standard symplectic form on leg, we verify that

PEUT) = Mg )(M+#1 ™ MNT = 2T+ (TNU+£TNI ()
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= #T+£(TNW+7M)) = 3#T+2(TNS) = #(#(T+S)-#S) mod 2,

where S = U+,

We will identify Qg with S’(Eg)o by viewing each element SeQq as the

quadratic form
T — 3(#(T+S)-#S) mod 2
on Eg.

The analog of lemma 2 is the following:

Lemma S. Let
S2(Egl = Qg — SAF;), — Th(© = $2(Jac(e)
be the sequence of the bijections obtained from the sequence
Eg = Fz — ,lac(®
by applying functors (™* and ((pt(c)")". Then the composition

Q, — Th(C)

9

coincides with the map f.

Proof. Easy verification (cf. IMu 21).

2
Our final observation is that each set Qg, S’(Fzg), and Th(C) contains some

distinguished elements. They are
U, @ (g odd), {cyg.p) (g even) in Qq,
q in S2F 29,
(g-1)Cag42 (@-1)Czg42+K(C3g.,,T(C)) in TH(C)

(note that the Riemann constant in Jac(C) is a point of order 2 if C is

hyperelliptic). We leave to the reader to verify that
aH*W = q,
(g-1)Cg4, = fg if g 0dd,
= f[czg,z) if g even,
fu = (g-1)Cyg4p + K(Cygsn, T(C)).

In particular this explicitly computes the Riemann constant
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K(Cpge2.TC) = fy - fg = ey, g odd,
=1y - f(ngq} , g even.

Under o(c)” this corresponds to the characteristic
€ 11111
e[|~ |101..01) 9 °%
111..1
“loto..1] 9 &V
(see [Mu 2], p.3.82 and p.3.99).

Ssummarizing we get the following commutative diagram:

e

| 2g Y@ Y
Eg—> F;° —— ,Jec(C)

TeT+U a=al+qg N=k(Cqy,T(C))+n
ooy (q't(C)-i)* v
o, — s?(]pgg)o——> Th(C)
f

where the dotted arrows can be considered only if C is hyperelliptic, t(C) is its

branch point period matrix, and c; = Cyg,,.

Lemma 6. For every EeQg. #S < g+1,
h°(fg) = #(g+1-#S) mod 2.
In particular,
fg is even iff #S = g+1 mod 4,

fs is odd iff #S = g-1 mod 4.

Proof. Since

I ¢ - (2g+1cyg., = (y)
i€B

for some rational function y on C, we have
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fs = L ¢ + (g-1-#S)Cyq,; ~ (g-1+#S5)Cyg.,~ I C;.
i€es i€s

Recall that
€ = Clxy), x = T*(L), y2eC(x)

for some rational function t on P, Since g-1+#S < 2g, and y has a pole at c,g,, of
order 2g+1, every rational function on C with only a pole at c,g,, of order < 2g

must be equal to m*(p(t)) for some polynomial p(t) of degree < g. Thus
H(C,0c(fs)) = space of polynomials in t of degree si(g+1+#T)

with zeroes at all m(c)), ieS.

The dimension of this space is equal to #(g+1-#S).

The indexing of the set ,Jac(C) (resp.Th(C)) by the set Eg(resp.Qg) can also

be used for non-hyperelliptic curves C. We can set
Ny = (Pt(c)(l(T))inQC(C), T(Eg,
Ds = (@rcy M™(I™H*XNS) ¢ Th(C), SeQyg,

for every curve C. This indexing depends only on the choice of the period matrix

T(C). The same choice allows us to define a bijection
Ds — J5(z;v):= JMS+WN(Z:T)

between theta characteristics and theta functions with half integral

characteristic. Note that for hyperelliptic curves C

nT = eT, Ds = fs

Corollary 1. Let C be a nonsingular projective curve of genus g. Then
h%(Dg) = #(g+1-#S) mod 2.

In particular,
Dg is even iff #S = g+1 mod 4,
Dg is odd iff #S = g-1 mod 4.

Proof. We know that this is true for hyperelliptic curves. It remains to use that

the parity of theta characteristics remains constant in a family (IMu 41).
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Corollary 2. Assume C is hyperelliptic. Then
h%(Dg) > O iff #S = g-1 mod 4 (Dg is odd), or

#S = g+1 mod 4 (Dg is even), and #S = g+1.

(2g+2n

In particular, C has 297'(29+1) _-2(g+1)'2 vanishing theta constants J5(0;T) (i.e.

Jg(0;T) = O for so many even S's, namely when #S # g+1).

Remark 2. According to a theorem from [Mu 2] the last property characterizes
hyperelliptic curves. That is, C is hyperelliptic iff J5(0;T(C)) = O for all SeQg such
that #S = g+1 mod 4, #S # g+1.

summarizing the above, we obtain for every SeQq:
Dg is even & #S = g+1 mod 4,
Dg is odd & #S = g-1 mod 4,
h%(Dg) = multyes(z;T(C)) ,
dpg(ny) = 0 & h°Dg+n1)+h%(Dg) = 0 mod 2 < 3#T+#TNS = 0 mod 2,
Is(nr:T(C) = 0 & ##T+#SNT = 1 mod 2 if Ds is even and h°(Dg) = O

0 & 1#T+#SNT

I s(hy:TCN 0 mod 2 if Dg is odd .

Note that for a generic (in the sense of the moduli space) curve C no even theta
characteristic is effective. If one of them is effective, a curve is called a curve

with a vanishing theta constant. By the above this happens if and only if

Jg(0:T(C)) = O for some SeQg with #S = g+1 mod 4.

It never happens for g < 2 and happens for g = 3 if and only if C is hyperelliptic.

Examples.g = 1:
3 even “thetas™: ¥, = ¥, = I[10] that vanishes at n,, = Ny,

T3 = J,4 = JI00] that vanishes at n,; = n,,.
Y4 = V3 = JI01] that vanishes at n,, = N,
1 odd theta: Jg = T34 = J[11] that vanishes at 0 = nhy.

g=2:

o1
10 even thetas: Ji23 = Y4s6 = «7[10] that vanishes at N,,.M;3.M13.N45.N46Ms6
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00
V124 = a6 = GLW-
[00]
Tias = T3 = I 44 |
(1]
Vize = Vaus = "_11_
-10W
'3234 = ‘3156 =3 01
(10
'3235 = ‘a‘“ = -ULOO_
(01 ]

00

Vse = V134 = 9| o

o1

6 odd thetas: Vy = Taaum6 = V| 01

V3 = Vioass = ‘7\_10
Vs = V2386 = Y 40

Vs = Viz348 =

|
29
—
-
-

01
Vo = Vizaus = 7 1

that

that

that

that

that

that

that

that

that

that

that

that

that

that

36 even thetas of type Jg. Jxl.

28 odd thetas of type ;.

vanishes

vanishes

vanishes

vanishes

vanishes

vanishes

vanishes

vanishes

vanishes

at  Ny2.N24:N14.N4s: N6 56

at  Ny2.Nzs5.Ms:N34-N36 MNasr

at  Nyz.MyeM26:M34-N3s Nas

at  Np3.MasMNasigNae- e

at  My2.N24M14NasNae-Mse

at  Ny3.M26N36-M1a-Nasis:

at  NpsMas M3 Mas.Ms Mas:

at  NaeMa4N43NasMNae s

at  NasMaeMyaMiazafse:

vanishes at Ng.My2.N43.N14.MNys N6

vanishes at fg.My5.N23:M24.M25MN26-

vanishes at Ng.,Ny3.N33.N34.Nas-Nae:

vanishes at Ng.Nq14.N24.MN34-Nas Nse-

vanishes at Ng.Nys.N3s5.M45.N25.Ms6-

vanishes at

136 even thetas of type ¥; and Jj3am .

120 odd thetas of type ;.
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5. Thomae's _theorem.

This theorem establishes a relationship between cross-ratio functions on

.2 2
P

and fourth powers of theta constants.
First we observe that a hyperelliptic curve C has in general exactly %(299”2 )
non-vanishing theta constants J5(0;T(C)), #S = g+1. Each subset S = {ij....ig.,} of

(1....2g+2} of cardinality g+1 defines a tableau

[i,... ig,,]
ts =1. .
J1-~~J91~1

where {j;,...Jjg«} is the complementary subset, and hence the corresponding
monomial

P . . 2g+2
Hs = (yigeyd Uy dgegde (l‘«’,g H.

Let

2g+2  20+2 _ 2g+2
Vg : Py Pg

be the map induced by the Veronese map vg:iP, — IPg. Note that its image lies in
the variety Sgof self-associated point sets.

A remarkable result of Thomae [Th] asserts that under the embedding

2g+2

(PY YN = %ypg(2) = ag(2)

established in Theorem 1, the pull-back of the J5(0:T)*'s (which are modular

forms of weight 2 with respect to T'g(2)) are proportional to the pull-backs of
2Qg+2

the monomial s under the Veronese morphism vgg*‘

This follows immediately from the following:

Theorem 2 (R. Thomae). Let x'..x?9*2 pe the branch points of a hyperelliptic

curve C. Assume that they are (1,0, i = 1,.,2g+2. Then
JsOT(eN* = Il (a;-aptl (a;-a;
i<j,i,jeT+U i<j,i,j4T+U

for some constant ¢ independent of S.

Proof. See [Fayl.
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Corollary 1. There is a commutative diagram:

(Pigﬂ)”" S %ypg(2)°
2g+2
vl L !
2g+2
Pg — Py C P 2g+2

(9,1 w2’

2g+2
where N = (99:1 )/(g+2), the right vertical arrow is given by ws(o;t)"),sw”, and

the lower horizontal arrow is given by (Uusles=g.1-

Proof. We have only to justify the value of N. This follows immediately from the

"hook formula”

dim (P33, = /g2,

Remark 3. We have already noticed in Chapter 1 that the space (Ri:gn)1 is an
irreducible representation of the symmetric group Iog+2 corresponding to the
partition (2,..,2) of 2g+2. The Thomae formulae show that this representation
can be realized in the subspace of the space of modular forms M(I'g(2)), spanned

by the fourth powers of theta constants Js(0;T)4, #S = g+1.

Remark 4. We get some linear relations between 9501 coming from the

straightening algorithm for monomials.

Remark 5. We shall see in the next Chapter that even theta constants Js(0;t)*
span an irreducible representation Tg C M(Ig(2)), of Sp(2gF,) of dimension
13'(29+1)(29"+3). Restricting the theta constants to the hyperelliptic locus
¥%ypg(2), we obtain only (zé’.?)/(g+2) linearly independent functions. This shows

that there are
1 - 2g+2
Ng = 5(29+1)(297"+3)-(guy )/ (g+2)

linearly independent even theta constants vanishing on the hyperelliptic locus.

For example, N3 = 1, which agrees with the fact that the codimension of the
hyperelliptic locus is 1 in case g = 3. For g = 4 we have N, = 26, very far away

from the codimension. See in this connection [Ac].
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6.__Elliptic curves.

We already know from Chapters 1 and 2 that
a2 = PHU" = P,\(0,1,00).

The three deleted points correspond to the orbits of point sets with coinciding
points. The map @,(2) — P, C P, is given by three fourth powers of odd thetas 97,

0,4

4 and 937, satisfying the relation

4 _ g4 _ o4
Via = V3~ iz

This relation corresponds to the relation between monomials

T el

coming from the straightening algorithm.
The group I, acts on @ ,(2) and P‘: via its quotient group
Sp(2,F,) = £; = ¥,/G,
where G = Z/2®Z/2 is generated by the permutations (12)(34) and (13)(24).

The boundary & = (0,1,0) C P§{ forms an orbit under the action of I, and there are

natural isomorphisms of the quotient spaces
a,=0a,(2)/Sp(2,F,) = PHY/L, = P,\(=).

The compactification @& ,(2) (resp. &,) of &.,(2) (resp. @) is identified with P} =P,
(resp. P{/L, = IP,)).
Let
ma,2' - a,2)
be the universal elliptic curve. It parametrizes the isomorphism classes of

elliptic curves with level 2 structure with a marked point on the curve. The

morphism T defines the structure of an abelian scheme on @ (2)'. Let
T a,2)" - a,2)

be the inversion involution x — -x, and
xum(2) = a,(2)'/(1)

be the corresponding quotient space.

The next result gives a modular interpretation of the space P? (isomorphic

to a Del Pezzo surface of degree 5).
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Theorem 3. There is a natural isomorphism
f:xum,(2) — EHY".
Moreover, f extends to an isomorphism of compactifications
T Lum(2 — P
The projection P? — P} defines a morphism P; — P{ such that the diagram

N f
rum2 5 P
l l
a2 = P}

is commutative.

Proof. We leave this as an exercise. The reader is referred to Chapter 7 for

the geometry of the map P; — Pj.

7. Abelian _surfaces.

We know from Chapters 1 and 2 that
(PHY" = %yp,(2) © @ ,(2).

It is known (see [1g 31) that the algebra of modular forms M(T,(2)) is generated
by the fourth powers of theta constants JS(O,t)‘.Applying Thomae's theorem, we
obtain an isomorphism of graded algebras

RY/(ty) 3 M(T,(2)
and of their projective spectra
a,2) 3 S, C P
Under the Veronese morphism
Vg: Pﬁ — S¢
the hyperelliptic locus %yp,(2) is identified with the moduli space S, of

self-associated point sets in IP,. This immediately implies

Theorem 4. There is a nhatural isomorphism

(SN = SNEYPT" — %yp,(2)
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which extends to an isomorphism

S, — G,(2).

Recall from Chapter 1 that the variety S, is isomorphic to the level 2
modular quartic 3-fold vV, © P,.
Let %yp,(2) denote the closure of %yp,(2) in &,(2).

Theorem 5. Let G ,(2) be identified with S, and Vv, Then
M H = &,(2)\a,(2) = Sing(Vy), and is equal to the union of 15 lines.
(i) @,(2)\%yp,(2) is the union of 10 irreducible components, each of them is

isomorphic to a nonsingular quadric.

Proof. (i) Recall from Chapter 2 that the image 4 of semi-stable non-stable

point sets in P} is contained in S,. We know also that its complement in P5 is
nonsingular. Since P} is isomorphic to the double cover of P, ramified along S,
this implies that S,\& is nonsingular. On the other hand we have checked in

Chapter 2 that & consists of 15 double lines of V,. This shows that

& = sing(& ,(2)).
It is known that T,(2) does not have torsion elements and hence acts freely on the
Siegel half space. This implies that @.,(2) is nonsingular. Moreover, it is known

that the boundary @& ,(2)\@,(2) is equal to the set of singular points of & ,(2). This

implies that
@ ,(2) =S,\&.
(i) wWe know from Chapter 2 that
SMSHUN = G, (2)\%yp,(2),
and is equal to the union of hypersurfaces parametrizing the images in S, of point

sets with 3 collinear points. Each such hypersurface is given by the equation
He =0,

for some tableau of the form

[ijk]
T =
Imn

The number of such tableaux is 10. In the embedding S, = V, = IP, these

hypersurfaces are hyperplane sections. We claim that each of these hyperplane

1567



1. DOLGACHEV, D. ORTLAND

sections is a quadric taken with multiplicity 2. The group X, acts on V, and
permutes these 10 hyperplane sections. Thus it is enough to verify this assertion
for one of them. Note that the coordinate functions correspond to standard

monomials. Using the equation of V, given at the end of Chapter 1, we find that
(T = 0NV, = ((-T,T4+T,TH? = 0.

This proves the assertion.

Remark 6. The irreducible components of @,(2)\%Yyp,(2) are called Humbert
surfaces. We refer to [vdGl for more information about these surfaces. Note
also that the equation of their union in @& ,(2) is given by the product of the
squares of 10 even theta constants. As follows from Thomae's theorem and
Chapter 1, under the birational map V3:P§ -+ S, = G,(2) the inverse image of this
product is equal (up to a constant factor) to the product

m G2

1€i<jg6

This function is I -invariant and coincides with the discriminant of a
homogeneous binary form of degree 6. We refer to [Grl for another proof of this

result which also gives the value of the multiplicative constant.

Next we describe a resolution of singularities of vV, = & ,(2). We leave to the

reader the verification of the following:

Theorem 6. Let V, = P; C P, be the Segre cubic primal, and m: V; — V; be the
resolution of its 10 nodes obtained by blowing up the corresponding points in IP,.
The rational map PP, -» P, given by the partials of the equation of V; extends to a
birational morphism

f: \73 -V,
which is a resolution of singularities of V,. The image under f of the exceptional
locus of m is equal to the complement of the hyperelliptic locus in Vv, The
exceptional locus of f is equal to the proper inverse transform under m of the
nodal locus P5\(P$Y". The latter consists of the union of 15 surfaces E;
isomorphic to Pf;‘r,Tm,(z). The induced map f: E; — f(E;)) = 1; corresponds to the

natural projection KU m(2)— G,2) = P,.
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Remark 7. The resolution of singularities of & ,(2) described in the previous
theorem is a special case of Igusa's blowing-up of & g(2) [1g 2] defined for every g
2 2.

Remark 8. Note that there exists another “small® resolution of singularities of

V5. It is given by the map

Pl-4Kyeol — Va

where xe(P3)9°". In other terms it is obtained by the linear system of quadrics
through a generic set of 5 points x',...x° in P (see [S-RI1). The exceptional locus
of this resolution consists of proper transforms of the ten lines <!, x)>. The nodal
locus & in Vg = P“’ is equal to the image of the union of 5 planes blown up from the

oints x' and the ten planes <x',xj,x'<>.
p p

Remark 9. We refer the reader to [Co4], [SBl for the beautiful geometry of the

modular variety @& ,(3) parametrizing abelian surfaces with level 3 structure.
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IX. CURVES OF GENUS 3.

The relationship between point sets in P, and moduli spaces of hyperelliptic
curves can be extended a few steps further. In this chapter, by two different

methods, we construct an isomorphism
ML (2)\%ypy(2) — (PHU",
(C.p) — geometrically marked Del Pezzo surface of

degree 1 which is a double cover of P, branched

along C,

where M ;(2) is the moduli space of curves of genus 3 with a level 2 structure on

its Jacobian variety. We shall show that it extends to a birational morphism:

Mm,2) — P.

1. Level 2 structures on the Jacobian variety of a curve of genus 3.

As in the case of hyperelliptic curves, it is possible to give a geometric

interpretation of a level 2 structure on Jac(C), where C is a nonsingular
projective curve of genus 3.

Recall from Chapter VIl that every C as above can be realized as the
ramification curve of a finite cover of degree 2, m: V — PP, where V is a uniquely
defined (up to isomorphism) Del Pezzo surface V of degree 2, and 7 is given by the
linear system I-Kyl. It follows from the formula for the canonical class of a double

cover that
CEI-ZKvl.
Let

PicV)o = ZKy)picvy = ZICDpic(v)
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and
r: Pic(v), — Pic(C)

be the restriction map.

Lemma 1. For every DePic(V),

r(2D) = o.

Proof. We know from Lecture 7 that the covering transformation g, of m acts on
Pic(V), as -1. Thus for every DePic(V), we have

rD) = go(r(d) = r(gy(d) = r(-D) = -r(D),

that is,
2r(D) = r(2D) = O.
Denote
FI(V)o = Pic(V)o/2Pic(V),
and let

r: N(V), — ,Pic(C)
be the homomorphism induced by r. The intersection form on the lattice
N(V) = Pic(V) defines by reduction mod 2 a symmetric bilinear form on N(V),. If
¢: H, — NV)
is a geometric marking of V, then ¢ induces an isometry
¢: @g = 0g/20Qg — N(V),,
where Qg is the root lattice of type 2 in H,. We easily find that the radical of Qg is

spanned by the vector

Vo = Og+0,+0, mod 2Qg.
Thus
$: 0g' =08z 7/Rad — N(V),' = RN(V)o/Rad

is an isomorphism of symplectic spaces of dimension 6 over IF,.

Lemma 2. The homomorphism

F: RV, = LPic(O)
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factors through an isomorphism
' V), — PiclC) = ,Jac(C)
of symplectic spaces.
Proof. It is enough to show that r is compatible with the corresponding
symmetric bilinear forms. Observe first that
Pic(V)/2Pic(V) = HA(V.i,),
Pictyv) = HY(v.uy)
as follows from the Kummer exact sequence, and
N(V)g = HAVH,), = Ker(1+gh:H2(V, 1) —HA(V,1,)).
Note that the symmetric bilinear form on Pic(V)/2Pic(V) induced by the
intersection form (resp. the Weyl pairing on ,Pic(C) = ,Jac(C)) corresponds to the

usual multiplication in the cohomology defined by the cup-product. Now we

observe that the map r is equal to the map
H2(V.1p), — H'(Cu,)
coming from the Smith exact sequence for the involution g, (see [Brl):
— HXP,.C.1y) — HAV.up) k2 H3(C 1) ®H2(P,, T(C), 1) %2 H3P ,, T(C),W,).
We use that the kernel of the component
H2(V,u) — HACu,)
of B, is equal to HXV.u,),, the component
H2(C.up) — H3P,,m(C)uy)

of %, is equal to the coboundary homomorphism from the exact sequence of the
pair (P,,m(C)), and the image of H3(V,u,), in H2(P,,m(C),u,) under B, is equal to
H'(C,u,). The latter is identified with a subspace of H?(P,,m(C),u,) by means of the
exact sequence of the pair (P, m(C)). It remains to use that the Smith exact

sequence is compatible with the cup-product.

Remark 1. The fact that the radical {0,V,} of N(V), goes to zero under © can be

seen without using that F is compatible with the bilinear forms. In fact,
Vo = @lag+a,+a,) = ¢ley-e,-e,-ej+te —eg+e,-e;) =
= p(3ey-e,-..—e,)-p(2e,-2e,-2€,) = -Kv -2¢(ey-€,4-8,).

Note that by adjunction
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Qe = Gv(Kv"’C)@QC = ev("Kv)@GC
On the other hand, m(p(e,-e,-e.)) is a bitangent to m(C) = C and hence cuts out on

C an odd theta characteristic. Thus v, goes to zero under the restriction

homomorphism Pic(V) — Pic(C).

Corollary. Let ¢H, — N(V) be a geometric marking of V, Qg = (ZK,,)* be the root
lattice of type 2, Qg = Qg/2Qp be equipped with the symmetric bilinear form
induced by the lattice structure on Qg, @g' = Og/Rad, and

$: G =FS — RV

be the induced isomorphism. The composition of ¢’ with the isomorphism F'

from the previous lemma defines a level 2 structure on the curve C.

Lemma 3. Let L and M be two lattices isomorphic to the root lattice Qg of the
root system of type E,, L and M be their reductions mod 2, L' = {/Rad and
M'=M/Rad be the corresponding symplectic spaces over IF,. Then the canonical
map

v o=

¥:lsom(L.M) — Isom(C'.M")

between the corresponding sets of isometries is surjective and ¥(x) = %(g) if and

only if a = 8.

Proof. By fixing an isomorphism L 3 M we may assume that L = M. Then it suffices
to show that the canonical map O(L) — O(C") is bijective. But
oLy = W(E,), O = Sp(oF,),
and we have already observed in Chapter Vil that our map O(L)—O(L")
corresponds to a surjection W(E;) — Sp(6,F,) with kernel {+1}. This proves the

lemma.

Let
Mg (resp. mg(zn
denote the subvariety of Qg (resp. @4(2)) parametrizing the Jacobian varieties of
nonsingular projective curves of genus g (resp. with level 2 structure). Note that

by the Torelli theorem the first of these varieties is isomorphic to the coarse

moduli variety of nonsingular projective curves of genus g.
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Theorem 1. There is a natural isomorphism of algebraic varieties:
f:(PHV" 3 M, (2)\%yp,(2).
It maps a geometrically marked unnodal Del Pezzo surface (V,p) representing a

point of (P to the isomorphism class (Jac(C),a), where C is the ramification

curve of the map V — P, given by I-Kyl and a = 7o’

Proof. We have already defined the morphism f. Let us define its inverse. Given a

nonsingular nonhyperelliptic projective curve C of genus 3, we can construct a
Del Pezzo surface V of degree 2 as the double cover of IP, branched along the

canonical image of C. It remains to show that a level 2 structure a: F3 — ,Jac(C)
-

defines a geometric marking of V. Composing o with the homomorphism 7", we
obtain a symplectic isomorphism
' F; - RV, .
By Lemma 3 this isomorphism induces an isomorphism of lattices
¢ @Ky H, = @KY\(yy = PictVyg
which is defined uniquely up to composing with 1. We can extend #¢ to
isomorphisms
(.- (ZKy ) @ ZKy,; —= (ZKYH, O ZKy,.
Finally we can extend these isomorphisms to isomorphisms:
¢*: H, - Pict»)
satisfying
e*(Ky ) = ~Ky.
This follows easily from the fact that the canonical homomorphism
(OOH0(K, ) = Kyz) = OUZKy )4 )= WEE,)
is an isomorphism. Indeed, it is surjective because every simple reflection in

W(E,) is in the image, and it is injective because (ZKZ,.,),.:“_,GB ZK,, is of finite index

in H,. Note that
Pr = ¢9ego™.
where g, is the covering transformation of mv — P, We finish the proof by using

Proposition 8 from Chapter V where it was shown that every H,-marking of a Del

Pezzo surface V that sends K,, to -Ky is geometric.
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2. Aronhold sets of bitangents to a quartic plane curve.

In this section, following [vG 1], we explain another way to reconstruct a

level 2 structure on the Jacobian of a curve of genus 3 from a point set in Pj.

Proposition 1. Let C be the curve of genus 3 associated to a Del Pezzo surface V
of degree 2. Under the anti-canonical map m: V — PP, the image of every
exceptional curve of the first kind on V is equal to a bitangent to C. For every
bitangent to C its inverse transform under m is equal to the union of two

exceptional curves which are conjugate under the covering involution g, of m.

Proof. Let E be an exceptional curve of the first kind on V. Then [-Ky-El consists

of an exceptional curve of the first kind E' equal to go(E). This shows that the
image of E (and E') is equal to a line 1(E) which intersects the branch curve C at
two points. Therefore m(E) is a bitangent. Conversely, the double cover T splits
over any bitangent to C. Its inverse image under T is the union of two nonsingular
rational curves E and E', each intersecting the ramification curve at two points.
Since the ramification curve of m belongs to I-2Kyl, we have Ee«Ky = E'eKy = -1. Thus

E and E' are exceptional curves of the first kind.

Let 2 be a bitangent to C, 2NC = 2p+2q for some points p and g. The divisor
D(2) = p+q is a theta characteristic on C. Since h°(D(2)) = 1, it is an odd theta
characteristic. Conversely, each odd theta characteristic D is linearly equivalent
to the divisor p+q for some points p and q such that 2p+2q is cut out by a line. This
shows that the set of bitangents can be identified with the set of odd theta
characteristics on C. Note that the equation of the bitangent corresponding to an
odd theta characteristic can be given by the linear term of the Taylor expansion

of the corresponding theta function at the origin (see [Fr 11).

Corollary. There is a natural 2-to-1 map from the set of exceptional curves of

the first kind on V and the set of odd theta characteristics on the curve C.

Another way to see the odd theta characteristics on a nonsingular curve C

of genus 3 is furnished by the Steinerian embeddings of C. We recall what this

means (see [Bel, I[Ty1D).
Let T € P(T(P;0p3(2))) denote a net of quadrics in P, whose base locus

consists of 8 distinct points. The Hessian curve of U is the closed subset H(N) of
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T parametrizing singular quadrics. It is isomorphic to a plane quartic curve C © T

= P, given by the equation:
det(toAg+t,A+t,A) = O,

where [tonx = o,txA,x = O,txA,x = 0} is a basis of .. The Steinerian curve of N is

a subset S(N) of P, parametrizing the set of singular points of quadrics from .
It has a structure of a closed subscheme of P, given by the vanishing of the 3x3-
minors of the 4x3-matrix
[AgX Ax AXI.

The net M is called regular if H(M) is smooth. This implies that the base locus
of U consists of 8 distinct points. In this case S(TL) is a smooth curve of degree 6,
and the map t — sSing(Q(t)) is an isomorphism given by the linear system I|Kc+8l for
some even theta characteristic 6. The correspondence N — (C,0) establishes a
bijective map between the classes of regular nets of quadrics in IP; modulo
projective equivalence and the isomorphism classes of smooth curves of genus 3
with a fixed even theta characteristic.

Let x',..x® be the base points of a regular net of quadrics .. The pencil
£;; © N of quadrics from N passing through the line «'.x}> contains exactly two
singular quadrics with nodes at some points ¢; and c; which are the singular
points of the base curve of the pencil. Thus the line «'.xJ> is a chord of the
Steinerian curve joining the two points c¢; and c; In the plane M, the line £;;
intersects the Hessian curve C at two points. Hence it is a bitangent to C, and,
under the isomorphism C — S(I), the two points¢; and c; go to an odd theta
characteristic 6;; defined by the bitangent 2;;. Since there are 28 odd theta

', xj, we can account for all odd

characteristics for C and 28 pairs of points x
theta characteristics in this way. Notice that the subscript notation o;; agrees
with the subscript notation for odd theta functions ¥;;(z:t) used in the previous

Chapter.

In what follows we shall assume that distinct letters represent distinct

values for indices, unless it is mentioned otherwise.

Lemma 4. For every i 1,...8

Opikr: = ©;j*0ic~8ir ~ ©;;+6;+8;-—K¢

isan even theta characteristic on C.
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Proof. Suppose that, to the contrary, 6, is odd aond equal to &, for some m and

n. Since the chords of N(TL) that connect the points x', x), and x* tie in a plane, and

since a plane cuts out the divisor Kc+6, we have the relation:
6;j*0+8jc ~ 6+Kc.
This implies that
O *+Oir*+Omn ~ O+Kc,
and hence, that the chords <x),x%> and <«x'x™> lie in the same plane. The point of

intersection of these chords must be a base point of two different pencils of

quadrics in N, therefore a base point of the whole net M. Obviously this is absurd.

Remark 2. One can easily show that it is possible to suppress the isolation of an
index in the previous notation ©; ;. for the even theta characteristic 6;;+8;,,-6;- and
write it simply by &y, Then we verify that ;= &mpp for compiementary sets of
indices. In this way 6;;, and & account for all even theta characteristics. We again
see the agreement of the notation for even theta characteristics 6, 6;;, with the

one given in Chapter VIII.

The following result follows immediately from the previous discussion and

results from Chapter |III:

Proposition 2. Let x'...x® be an ordered point set in P, which consists of base

points of a regular net N of quadrics (a regular Cayley octad). The projection of

this set from the point x® defines a point set y = (y'....y") in P, which is associated
to (x'....x"). The image of the Steinerian curve of T under this projection is a

sextic with seven double points at y'..y’

The proper transform of this sextic in
V(y) is the ramification curve C of the anti-canonical double cover m: V(y) — P, of
the Del Pezzo surface of degree 2. The images of the exceptional curves E,,...E,

7

blown up from the points y',..y’ are the seven bitangents to m(C) corresponding

to the seven odd theta characteristics 6, defined by the chords ' xl> .
Definition. An Aronhold set is an ordered set of seven odd theta characteristics

8, (1€i<7) such that 6;+6;-6, is an even theta characteristic for all triples (ijk) of

different indices.
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Proposition 3. Let C be a smooth projective curve of genus 3. There is a natural
bijection between the set of symplectic isomorphisms ¢: F5 — ,Jac(C) and the set
of Aronhold sets.

Proof. Let {o,,..,8;} be an Aronhold set. Define n;e,Jac(C) by

n=6-96,i=2.7.
Let e:Jac(C)xyJac(C) — F, be the canonical symplectic form on ,Jac(C). As we
saw in the previous Chapter, for every theta characteristic 6, the function
n — h%n+6)+h%e) mod 2
is a quadratic form on ,Jac(C) with associated bilinear form equal to e. Thus
en.ny = hon+e)+n°n;+@)+h°(n;+n;+8)+h°®) mod 2.
Setting & = 6,, we obtain for i = j
etn.ny = h°eP+h°@;+n°(e,+6;-6,)+h°(6,) = 1 mod 2
because ©;, €;, and ©, are odd theta characteristics but 6;+8;-6, is an even one.
This implies that {n,....n,) is a basis in yJac(C), since n = Ian; = O implies that

enn) = 0 for all i = 1,..,6, contradicting e(n;,n) = 1 for i # j. Now define a
symplectic basis in ,Jac(C) by

€y = M By = MytNg, B3 = N4ths,

€4 = M+t B = Ma*NgtNs*he, €6 = M5+
To obtain an Aronhold set from a symplectic basis (g,,..c,} we first reconstruct
the points n,....n, from the above system of linear equations. Then we define a
quadratic form q on ,Jac(C) by

q(za;n;) = Eaa;.
It is immediately verified that the associated bilinear form of q is equal to e, and
that g vanishes at 28 points of the form Ian; having exactly 1,2,5 or all 6 zero
coefficients. Thus q defines an odd theta characteristic 6, Adding to this
quadratic form the linear form e( .n;) we obtain 6 more odd theta characteristics
8, i = 2,.,7. We leave it to the reader to verify that the seven odd theta
characteristics (e,.8,....8;) form an Aronhold set which defines the symplectic

basis (e,....e,] we started with.

Corollary. Let C be a smooth non-hyperelliptic projective curve of genus 3, and
V be the Del Pezzo surface of degree 2 corresponding to C (the double cover of PP,
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branched along the canonical model of C). There are natural bijections between
the following sets of 368! = #Sp(6,F,) elements:

(i) the set of Aronhold sets;

(ii) the set of level 2 structures on Jac(C):

(iii) the set of isomorphism classes of geometric markings of V:

(iv) the set of exceptional 7-configurations on V;

(v) the set of projective equivalence classes of self-associated point sets from
Sg such that the Hessian curve of the corresponding net of quadrics is isomorphic

to C.
This gives another proof of Theorem 1 from the previous section.

We define the subvariety
(Sg)™%0 c P
of regular Cayley octads, i.e. ordered base-sets of regular nets of quadrics.
Clearly
(Sg)™9 c §,c B,
where $4 is the variety of all Cayley octads. The projection bg: P% — P§
defines an open embedding:
(Sa)r‘eg = S,
Lemma 5. ¢7'((Sy)"%9) consists of self-associated point sets x = (x',..x®ep2
satisfying the following conditions:
(i) an x' are distinct;
(ii) every 4 points in x span P,:

(iii) x is not contained in a rational normal cubic curve.

Proof. Let xe(Sa)reg. We know already that (i) is satisfied. If x contains 4 coplanar
points, the net M(x) of quadrics through x cuts out a net of conics through these 4
points, unless one of the quadrics contains the plane. In the former case, we find
3 collinear points among the four coplanar points. Then the line joining them is
contained in the base-set of M (x). This contradicts the regularity of TN (x). In the
latter case, M (x) contains a quadric of corank 2. It is known that, together with
(i), this implies that the Hessian curve has a singular point. This contradicts the

regularity of M(x). Thus (ii} is satisfied. If x is contained in a rational normal
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curve, then this curve is contained in the base-locus of M (x). Again this is
contradictory. Thus (iii) is satisfied.

Conversely, assume (i) - (iii) are satisfied. First of all, L(x) does not
contain reducible quadrics. Otherwise, one of the irreducible components of such
a quadric contains at least 4 points from x. Let B be the base-scheme of the net
NL(x). It follows from the previous remark that each irreducible component of B is
of dimension < 1. Since two quadrics from N (x) intersect along a curve of degree
4, each one-dimensional irreducible component of B is a curve of degree < 3. By
(iii), the case of degree 3 is impossible. If B contains a conic, the plane containing
this conic is contained in a pencil of quadrics from N (x). This is impossible by our
first remark. Assume B contains a line £. By (ii), # contains at most 2 points from
x. Let m be the plane containing £ and a point x' from x not on £. Each guadric from

N (x) cuts out in T the line 2and a line £' passing through x'. Since the lines &' form

at most a pencil, there exists a quadric in ML(x) which contains the plane . As we
saw above this is impossible. Thus the base scheme B of TL(x) is O-dimensional.
Condition (i) tells us that it is smooth. Then the Hessian curve of N (x) is singular
if and only if M(x) contains a reducible quadric. Since the latter is impossible,

N(x) is regular.

Corollary 1.

e((S) %9 < iPD®.

Corollary 2.

(Sg)7%9 = s nPPY".
Proof. A canonical root system in Hg of type 3 is isomorphic to an affine root
system of type E,. As in the case of an affine root system of type Eg isomorphic

to a canonical root system of type 2 in Hy, this allows us to find the set of positive

roots Rj (see Chapter V). We obtain that this set consists of vectors:

ali,j) = e;-e; 1gi<js8,

ali,jm) = e;-e;+m(2e,-e,-..-eg), m > O

ai.jk1l:m) = e,-e;-e;-e,-€,+Mm(2e,-€,-..-€g), 1<i<j<k<1s8, m 2 0.
Conditions (i) and (ii) from Lemma 5 are equivalent to the non-effectiveness of

¢, (@(i,j:0) and @ ali,jk1;0)), where @, Hg — N(V(X)) is the geometric marking
corresponding to x. Let xe?"((san(Pg)“”). To show that x is a regular Cayley octad,
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we have to verify condition (iii) of Lemma 5. By Theorem 3 of Chapter III, x is
contained in the base-set B of a net M of quadrics. Assume x lies on a rational
normal cubic curve C. Then C B, and for every point x' from x, each quadric from
T contains the tangent line to C at x' in its tangent plane at x'. This implies that
there exists a quadric @ from T with a singular point at x'. Let [Q1 be the class of
the proper transform of this quadric in V(x), and [E,] be the class of the
exceptional divisor blown up from x2 Then

9, (@(2,1:1)) = @, (2e,-2e,-e;-..—8g) = [Q'1+[E,]
is effective, hence x is nodal. This contradiction proves that

SgNPHI c (s %9,
To prove the reversed inclusion we have to show a regular Cayley octad is an
unnodal point set. We already know that the roots «(,j) and «(i,j.k,1:1) are not
nodal with respect to the geometric marking ¢,. Suppose

¢, (ali,j;m)) = D]
for some m 2> 1 and an effective divisor D on V{(x). Let

f: V(x) - P,

be a rational map given by the net M(x) of quadrics containing x. Since the base
locus of M (x) consists only of the point set x, f is a morphism. Then its fibres are
quartic curves representing the class (y,),(4e,-e,-..-eg). Since
o(i,j:m)e(de,-e,~..~eg) = O,
D = fB) for some curve B. In particular, D intersects a general quadric from the
net in Kk = deg(B) quartic curves with class (¢,),(4e,-e,-..-eg). This implies that
K = m, and one of the quartic curves must have a singular point at x). since every
such curve is a base curve of a pencil of quadrics from the net, one of the
quadrics from this pencil must have a singular point at x}. This contradicts

condition (i). Suppose now that
¢ adi,jk,;m) = I[D]

for some m » 1 and an effective divisor D on V(x). A similar argument shows that

D intersects a general quadric from T(x) in m quartic curves and a conic passing

through x',xJ,x%, and x'. This implies that these points lie on a plane. This
9 P

contradicts condition (ii) of Lemma 5.

Let
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f:(Sg)%9 = a,y(2)
be the morphism given by associating to a regular Cayley octad (x',..x%) the
Jacobian variety of the Hessian curve of the net M (x) of quadrics through x and

the level 2 structure defined by the Aronhold set cut out on the Steinerian curve

by the chords «<x',x%.

Theorem 2. The projection (x'...x®) — (y'...,y") from P, to P, with center at x®
induces an isomorphism p: (Sg)™® — (PHY". Composition of this morphism with the
morphism (PP — M 3(2)\Hyp,y(2) C @,(2) from Theorem 1 is equal to fi(Sg) %9 —

@ ,(2). In particular f induces an isomorphism:

(Sg)™® = M ,(2)\Hyp,(2).
Finally, note the following curious fact.

Proposition 4. Let S be the Steinerian curve of a regular net of quadrics T

with base points x',...x%,

embedded into P, by the linear system IKc+6l, where C is
the Hessian curve of ML ond © is an even theta characteristic on C. Then the
Steinerian curve of the net corresponding to C and the even theta characteristic
O IS obtained from S by the standard Cremona transformation with
fundamental points at x'.x/,x*,x" or at the complementary set of points

x™,x",xP,x9.
Proof. The standard Cremona transformation is given by maopping P, to itself via
the linear system I3H-2x'-2x/-2xX-2x"1 of cubic surfaces with nodes at x'x’,xX,x"
Since the chords that connect these nodes belong to the base locus of this linear
system, and since the hyperplane divisor H, when restricted to S, cuts out the
linear system of the divisor, we have:

3(K5+8)-(6;;+6;+6;-+0;-+0; +8,) ~

~ 4Ks+e-(Ks+e+e“—+er+eKr) ~ BKS-(GUK,-"'KS) ~ Ks"‘einr.

Since 8- = Omnpq. this proves the proposition.

Remark 3. The previous proposition gives another proof that the Cremona action
of W54 on Sy factors through Sp(6,F,) (see Chapter VII). In fact, let A eW;, be
the reflection with respect to the root e,-e;-e;-e.~e.. It is known that the kernel

G of the canonical surjection W;, — Sp(6,F,) is a minimal normal subgroup
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containing the product A ,;,°Ag.,e. It follows from the proposition that this
product induces the identity transformation of S,. Hence G is contained in the
kernel of the Cremona representation of W; g in Bir(Sy).

3. The varieties S and M ,(2).

In this section we want to extend an isomorphism from Theorem 2 to take
into account hyperelliptic curves of genus 3. For this we construct a morphism
from M ;(2) to Sg whose restriction to M ;(2)\%yp,y(2) is the inverse of the
isomorphism  f:(Sg)"®9 — M ;(2)\%yp,(2) constructed in Theorem 2.

Let C be a nonsingular curve of genus 3 and 6,,..,6; an Aronhold set of odd
theta characteristics on C. Denote by 6, the even theta characteristic which is

not equal to any of the 35 even theta characteristics 6, = ©;+6;-6,. Let

Gij = 9|+GJ-—6°

be the remaining odd theta characteristics, and

Tk = ©ij*8;*OicelKc+ 6ol

for 1<i<j<ks7.
The linear system IKc+8,l maps C into P4 = IKc+8,1*. This map is an embedding

if and only if h%@ey,) = 0. If h%®g,) = 2, then C is hyperelliptic and its image is a
rational normal cubic. We will identify the divisor f;;, with the corresponding
plane F;; in P, For every fixed pair of indices i,j the planes F;; belong to the
pencil

ij = 8;+18¢j+05d = 8;;+18;+81 C IKc+6,l.
This defines 21 lines in P;. All planes F;, with the same index i belong to a
two-dimensional linear system. Let x' be the common intersection point of all
such planes. This defines 7 ordered distinct points x',..x” in IP5 such that each line
l;; passes through x' and x). If C is not hyperelliptic, we easily see that the net of
quadrics through x'....x’ has the curve C as its Hessian curve and the image of C
under the map given by IKc+8, as its Steinerian curve. Let x°® be the eighth base
point of this net. Then the map

(C.(84,...0.0) €M 5(2)\Byp,(2) — (x',...x%)e(Sg) 9

is the inverse of the map f:(Sy) %9 — M ,(2)\%yp,(2) from Theorem 2.

Now let us see what happens if C is a hyperelliptic curve. Assume first that
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Igg] = g, on C. Then the image of C by the linear system IKc+8, is a rational normal
curve C in IP5. The plane F;, cuts this curve at 3 points. It follows from our
description of odd theta characteristics on hyperelliptic curves that these three
points are necessarily the branch points of C — €. Thus the points x!...x" are
branch points, and the lines 1;; are the 21 chords joining them by pairs. Together
with the eighth branch point x® we obtain a well-defined (Up to projective
equivalence) self-associated point set (x',..x®). Since every odd theta
characteristic 6;; corresponds to a divisor p;+p; where {p;p;} is a pair of
ramification points of C — C, we see that the only odd theta characteristics p;+pg
unaccounted for must correspond to the odd theta characteristics ©; from the
Aronhold set. This gives an identification of an Aronhold set with 7 ordered
branch points. Also we see that the level 2 structure defined by an Aronhold set in
Proposition 3 coincides in this case with a branch-point level 2 structure on

hyperelliptic curves defined in Chapter VIIl. This extends the map
M,(2)\%Bypy(2) — S,

to the irreducible component of the hyperelliptic locus corresponding to branch-
-point level 2 structures. Note that a point set (x'...x®) lying on a rational normal
curve is nodal, since for every point x' there exists a cone with a node at x'.

Assume now that h°(e°) = 0. We use our old notation for theta
characteristics on hyperelliptic curves. In this notation ;= &;; for some
i.je(,..8), i # j, and 8, = ©;,, for some subset (i.jkr} of 4 elements from (1,..8}
An example of an Aronhold set is a set

(84,...87) = (8,3,034.815.055.834.037,634)

with 8, = ©,,35. It contains 3 theta characteristics ©,,,8,5.6,5 which define the
even theta characteristic 8,,+8,5-8,5 With h°(8,,+8,5-8,5) = 2. The remaining theta
characteristics are defined by a choice of a number 3 different from 1,2,5 and
takiing 84 for all k different from 1,2,5 and 3. Permuting (1,2,3,5] and (4,6,7,8)
separately and switching {1,2,3,5) with {4,6,7,8], we obtain all Aronhold sets with
8y = ©y,3s. Permuting all the numbers {1,...8} we obtain 35 sets of Aronhold sets
with fixed 6, This shows that all Aronhold sets with 6,=6;;, are accounted for in
this way. Thus, without loss of generality we may assume that an Aronhold set is
given as above.

Let p,..ps be the eight ramification points of the g, on C. We observe that

fioz = Ti2a = Taas = Py*P2+P3+2P4Ps.
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fias = Tuse = Tia7 = Ti2s = Tizz = Tuse = Tis7 = Tie7 = P4*2Ps*Pe*P7+Ps
This implies that the points x'.x3x* (resp. x2x°x®x”) are on a line 1, (resp. 1,). We
define the eighth point x® as the unique point on 1, such that the double ratio of
x'x3x*x® is equal to the double ratio of x2x%x®x’. This gives us a well-defined
self-associated point set x = (x'....x®). Note that in this case x is not stable but
semi-stable and belongs to one of the 35 two-dimensional boundary components
of &§NS® determined by admissible partitions d = (2,2) of n+1 = 4. Each such
component is naturally birationally isomorphic to IP,xIP,, and the self-associated
point set x constructed above belongs to the diagonal of the boundary component.

Summarizing, we have proven the following:

Theorem 3. There is a morphism

P: M4(2) — Sg
satisfying the following properties:
(i) Its restriction to M ;(2)\%yp,(2) defines a map to (Su)"®9 which is the inverse
to the map f from Theorem 2.
(ii) Its restriction to the irreducible component %yp;(2)° of %yp,(2)
corresponding to branch point level 2 structures is the composition of the map
%yp3(2)° = (PHY", which is the inverse of the isomorphism constructed in
Chapter VIlI, and the Veronese map V3: (PH" — s,

(iii) It blows down the 35 remaining irreducible components of %yp,;(2) to the
diagonals of the 2-dimensional boundary components of Sg.

Remark 4. It is known that every point of the boundary @ ;(2)\@ 4(2) of & ,(2)

represents an isomorphism class of an abelian variety of dimension 1 or 2 with a
level 2 structure. By [1g 2] the blow-up of the boundary is a nonsingular algebraic
variety @,(2) together with a projection & ,(2) — @,(2) the fibre of which, over a
point representing an abelian variety of dimension 2, is isomorphic to the variety

itself. It is quite natural to guess that the birational map

9 Sg = My2) © @,(2)
is "essentially” the Igusa blow-up. First, we have to replace Sg; by its proper
inverse transform Sg' in l‘-”g (containing but not equal to the variety §; of the

orbits of Cayley octads) to include the case of point sets ',..x% with x' = xifor

some i # j, and then blow up further the diagonals of the boundary components
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parametrizing non-stable point sets in P; The so obtained variety should coincide
with & 4(2). Recall that we have 64 different discriminant hypersurfaces Z(a) in

Sg. They correspond to
28 = ( components Z;; = Z(e;-e)), 1<i<js8 parametrizing
point sets with x)— X,
35 = 4(§) components Zixr = Z(ey-e-ej-e.—e.) parametrizing
point sets with coplanar points x'xI x"and ¥, 1<i<je<k<rs8.
1 component Z, parametrizing point sets on a rational normal curve.
Note that since we consider only self-associated point sets

Zixr = Zmnop
for complementary sets of indices. Also note that the discriminant conditions
Qi = 2€5-€,-€,-€3-€,-65-€,-€,-€5-€;+8;
are reduced to one of the previous conditions or to the condition that x lies on a
rational normal curve. It follows from the proof of Corollary 2 to Lemma 5 that
all discriminant conditions are accounted for.

For every discriminant hypersurface Z different from Z, there is a natural
birational map Z(a) — M (2) whose fibre over a point [Cl representing a curve of
genus 2 with a level 2 structure is isomorphic to Jac(C). For example, let
Z(x) = Z,, . Let X be a generic point set from Z,,. Then the net M (X) of quadrics
through X contains a singular quadric @ with a node at x’. The Hessian curve C of
TN (X) is a plane quartic curve with a node z(Q) representing Q. The lines <«x*,x7>,
k=1,..,6, define 6 bitangents 1; of C passing through the node. They define an
ordered set of ramification points of the g7 on the normalization € of C. Thus the
map X — (E.Q,...1,)) defines a birational map from Z,; to @,(2). Note also that X
defines canonically 2 points on € corresponding to the branches of the node of C.
Conversely, given a plane nodal quartic curve and its 6 bitangents from the node,
we can reconstruct a unique net of quadrics which will define a point set X. Note
that a nodal plane quartic C is the image of a hyperelliptic curve € of genus 2
under a map given by the linear system IKg+p+gl for some points p.qeC,
corresponding to the branches of the node of C. This shows that the fibres of the
birational map Z,, — @ ,(2) are naturally isomorphic to the symmetric square c®
of €, which in its turn is birationally isomorphic to Jac(C). If Z(x) # Z,,, we define
the map Z(a) — @ ,(2), as the composition Z,, — @ ,(2) and the birational

isomorphism Z(a) — Z,; defined by the Cremona action of Sp(6,F,) on S
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4. Theta structures.

Here we recall some more definitions from the theory of theta functions.

We refer to [Mu 3,Mu 51 for the details.
Let (AL) be a ppav of dimension g such that L satisfies:

[-11%(L) = L.
For every ne,A we have an isomorphism
tp* LD = L2
The (level 2) theta group of L is the group
GIL) = NPl LD 3 L2 neAl
with multiplication law:
N@)en. @) = (n+n'.@et* (")),
We have a natural central extension of groups:
1= €C*% = G(L) — A = 1,

where C€* is identified with the group Aut(L?).
The commutator [(.¢).(n',¢)1 of any two elements of G(L) belongs to the

center, and induces (after composing it with log) the Weyl bilinear form

eb: JA x LA = F,.
Thus, as an abstract group, G(L) isomorphic to the set

H(@ = C*xIFIxFJ

with the group law
@eer@nn) = (-D'en'+tnean’ ceneen).

The homomorphism (a,ee) — (g,c') defines an extension of groups:
1 C* = H@ — F% —1.

An isomorphism
o H(@ 3 GL)

is called a ( level 2) theta structure on L.

By projection to IF229, o defines a level 2 structure
= 2
a: F 29 = LA
on A. Two theta structures o« and o defining the same level 2 structure differ by

a character
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x: F229 = U,
that is, o’-a’ is an isomorphism of H(g) given by

(nee) — (xee)nee).
A choice of an isomorphism (AL) — (A¢,Lg) for some matrix te¥g defines a theta
structure. One verifies that it is independent of a choice of T modulo the action of

the subgroup

AB

rg(24) =M = [c D]er9(2>: (AB), = (CD), = O mod 4).

In this way
Qg(2,4) = %g/T4(2,4)

parametrizes the isomorphism classes of ppav with theta structure (A,L.0).
Next we observe that G(L) has a natural linear representation in the space
9
Va = HALD = ¢?.
It is given by the formula
x.9)s)@) = @y (sla+x)),
where aeA, 9q: t,*LDg = W — LAg .
On the other hand, H(g) acts linearly in the space V(g) = Maps(F$,C) by the
formula

. ot e’
(@.EEINW = A1+ VT r(yae), veF §.

This defines a linear representation of H(g). One checks that it is an irreducible
representation. It is known that all irreducible representations of dimension > 1
of the group H(g) are isomorphic. Hence, there exists an isomorphism of linear

representations
Po: V(@) — Va
which, by Schur's lemma, is defined uniquely up to a scalar multiplication.

We denote by H,(g) the subgroup of H(g) of elements (Aece) with a2 = 1. 1t is

a nontrivial central extension
1= U, = H@ — F38 — 1.
By restriction, V(g) is a linear representation of H,(g).

For every vchg let
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Z,evV(g)

be the characteristic function of the subset {vl. We have
(e.e)Z, = a-nTEVIEZ

After fixing an order in ng, we obtain a canonical basis

Zylerd

of V(g). Under the isomorphism ¢, this basis corresponds to the basis

(J[:](ZZ:Zt)}gerg
of VAr.
Let
Tha Ap = P(VLD)

be the map

€
z— (.. 3[0](22;21:)...)

€

given by the linear system IL2l and the basis («7[0](2z;2t))ccrg. Composing this
map with the unique G(L.)-H(g)-equivariant isomorphism

Cog) (PIVALY = P(V(G)™),
obtained from ¢, by transposing and passing to the projectivization, we get a
map

Thar.o: A = PV(@)*).
Note that the group ,A. = G(L)/C* acts by translations on A. and the group

A(@ = H(@/c* = F2%9 acts on P(V(g)*) by the projectivization of the dual

representation of H,(g) on V(g)". These actions are compatible in the sense that

Thag oX+m = &MTha, () for any NeAc, XeAr.

Toking the value of Th,_ . at the origin allows us to define a map
Th®: @ag(2,4) = PV(@") = P,g_,,

(Ar@ — Thy, (0).

Note that 1‘9(2,4) is a normal subgroup of 1‘9(2) with quotient
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isomorphic to F"’,g . Thus there is a natural action of this group on @ g(2,4)

with quotient space isomorphic to @4(2). The map Th? is an equivariant map with

respect to this action. Now there is more symmetry involved. Let
T4/Tg(2,4) = Sp(29.F,).

Using an isomorphism 1‘9/1‘9(2) = sp(2g,F,), we have an extension of groups
1 - F2%9 — Sp(2gF,) — sSp(2g.F,) — 1.

The group Sp(2g.F,) acts naturally on @ 4(2,4) with quotient isomorphic to Q.

Using an isomorphism
Sp(2g.F,) = [ocAUt(H(g)l olCent(H(g) = 1)

under which F’.‘,g is mapped onto the subgroup of inner automorphisms, and

applying Schur’'s lemma, we see that the same group acts on P(V(g)*). In this way

we obtain a Sp(2g.F ,)-equivariant map
Th®: ag(2,4) — P(V(@™).
Note that the projective linear representation of Sp(2g.F),) on P(V(g)™) comes

from a linear representation of a certain extension of Sp(2g.F,) described for
example in [Gri 2].

Lemma 6. Let SymX(v(g)) be the k-th symmetric power of the linear
representation Vv(g) ofH,(g)., and (Sym"(V(g)))H?(g) denote the subspace of H,(g)-
invariant elements. Then

(i) (Sym®(v(g)N™@ = (0) for k < 4;

(i) sym*(v(g) = @(Sym*(V(g)),, where %eX(H,(g) = Hom(H,(g).C*)

1
(s*(v(g)"2'® has a basis consisting of F(29+1)(297'+1)
polynomials

Pi= LgZyZyav'Zyay'Zyay'sy' . | = OV ¥ V4 C ng
VEIF,

Proof. This can be easily verified (cf. [VG 2D.

We denote by J(g) the space (Sym‘(V(g)))Hz(g). A choice of an order in the

spanning set (P;} of I(g) defines a H,(g)-equivariant map:
P V(@) — P(T(g)).

Its composition with the map
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factors to a Sp(2g.F,)-equivariant map
Th: ag(2 — P(T(g)*).

The following lemma explains our notation for the maps Th® and Th“.

Lemma 7. Let
© 9
Xe(zm) = I, [(2z:21), eeF,.
Then

€ t .
e[c-](z:t)z = Lg (1% Xe,(0:0Xg(Z:T).
oeF,

Proof. see [I1g 1], 1V.1,Theorem.2.

It follows from this formula that under the identification of the spaces V(g)
and Va,. the composition of Th® with the Veronese map is given by the squares of

€
even theta constsants e|;:.:|(o;'c)2 (considered as modular forms of

weight 1 with respect to T(2,4)). Also the map Th“ is given by the fourth powers
of even theta constants (considered as modular forms of weight 2 with respect
to T(2)). In fact, one can show that these forth powers span the space J(g) (see

[vG 2] for details).

Example. Assume g = 2. Then the map

Th?: a,(2,4) = PNV2)*) = P,
is a birational isomorphism, and the map

Th: a,(2) — PT @™ = P,

is a birational isomorphism onto a quartic hypersurface isomorphic to a level 2

modular quartic 3-fold V,. In particular, we see that

V, = P(V(2)*)/H(2)
is rational. By brute computation, it can be verified that IP(V(3)*)/H(3) s
rational (D. Ortland). It is not known whether the quotient IP(V(gf")/H(g)

is rational for g > 4. The proof of the corresponding statement in [Bogl is false.
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Proposition 5. Assume g = 3. Then
Th?: @a,2.4) —» PV = P,

is a birational map onto a hypersurface of degree 16, and
Th: a,2) — PITE™ = P,,

is a birational map onto its image.

Proof. The first assertion is proven in [vG-vdG] (cfiCo 8], p.487). The second

one easily follows from it.

S. Kummer-wirtinger varieties.

The Kummer-Wirtinger variety of a ppav A of dimension g is defined as

the quotient Kum(A) of A by the involution x — -x. Fix a theta structure on A, and
choose a basis {X(z,T)) in the space H%(A.L?) corresponding to a basis (Z,} in the
space V(g) as in the previous section. Assume that A is indecomposable i.e. is not
equal to a product of abelian varieties of smaller dimension. Then the

corresponding map
A = PHUALHY = PVIG)™)
factors through Kum(A) and defines an embedding:
i: Kum(A) = P((V(g)™)

which is ,A-HA,(g)-equivariant (the first group acts on A, and hence on Kum(A), by
translations by points of order 2, and the second acts on IP(V(g)*) via its linear

representation in V(g)). It is easy to compute the degree of i(Kum(A)) and get
deg(i(kum(A)) = #(20)9= 29"'g1.

Note also that Kum(A) has 229 singular points locally isomorphic to the vertex of

the affine cone over the Veronese variety vg(Pg").

Proposition 6. Assume g = 2. Then i(Kum(A)) is given by an equation:
Ao (Z g+ Ze+ Zior 210+ 20, (ZZ A+ 23,270 + 205 (Z5Z '+ Z1oZ {0
+205(Z3Z {+ Z{Z o+ 404Z0oZorZ10Zy = O,

where the coefficients o, &, &, a;,a, satisfy the equation:

(") ad-agla e ray?-a 20,0, = 0.
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Conversely, every quartic surface given by such an equation is isomorphic to a

Kummer surface Kum(A), provided the coefficients a; satisfy (*) and also
the following 15 inequalities:

Ay # &, Oy * *OGrO-GG-G, | =1,2,3, jke(1,2,3N0), j=k.

Proof. We know that i(Kum(A)) is an A, (2)-invariant quartic surface. This implies

that its equation can be given by a quartic polynomial belonging to some
eigensubspace Sym‘(v(2)*), with respect to the action of H,(2). By Lemma 1 this
equation is as above if the eigenvalue x is equal to 1. If x = 1, it is easy to verify
that the fixed line of some involution ceH,(2) must lie on the surface. However,
each such a line meets the surface in a set of 4 points y, the images of the points
yeA such that 2y = x, t(y) = y, where xe,Jac(A) corresponds to o, and t is the
transiation of A corresponding to ¢ (cf. [Co 1], p.103).

Finally, the condition on the coefficients is necessary and sufficient for the
quartic to have a node (and hence 16 of them since the quartic is H’(_z)—invariant)

(see [Jesl, p.99).

Now we observe that the cubic hypersurface in P, given by the equation
aod-agtad+ad+ad-a,D+20,0,0, = O

is isomorphic to the Segre cubic primal V5. In the notation of Lecture 1, the
projective transformation defining the isomorphism is given by the formulae:

o, = to. ay = ty-2t,, a, = ty-2t,, @y = -ty+2t-2t,,
o, = -2t,+2t,+2t -2t -2t .

This shows that when (A,T) varies in @ ,(2,4), the coefficiens (a,.a,.a,.0;a,)

define a map:

a,2,4) — P(S*V(2))"2) = p(T @ C 10py(2)(4)!
which factors through a map

Th*.0,2) — P(T(2)%).
Recall that earlier we defined a map:

Th:a,2) - P (2)

given by the invariant quartic polynomials corresponding to the coefficients
04....0,. The image of the first map is projectively isomorphic to the Segre cubic
primal V5 and the image of the second map is isomorphic to its dual hypersurface
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which is a level 2 quartic modular 3-fold V,. Thus the cubic equation satisfied by
the coeffients of the equation of Kum(A) expresses the condition that Kum(A) is
the inverse image of a tangent hyperplane of V, under a map:

f:P(V2) — P(T(2) = P,
given by the linear system of H,(2)-invariant quartic polynomials. Note that the
image of a Kummer surface Kum(A) under this map is isomorphic to the quotient
space

K = Kum(A)/H(2).
The action of H,(2) on Kum(A) corresponds to the action of the group ,A on A by
translations. The quotient A/,A is canonically isomorphic to the image of A under
the isogeny x — 2x, hence is isomorphic to A. This easily implies that

K = Kum(A).
Thus we obtain that

Kum(A) = fY(H) = v NH

for some hyperplane H in P,.The variety V, has 15 double lines, hence HNV, has
16 singular points if H is tangent to V, at some nonsingular point aeV,. This gives
another explanation why H must be a tangent plane to V, and hence the
coefficients of the equation of a Kummer surface must satisfy a cubic equation.
Now recall that the nonsingular points of V, parametrize principally
polarized abelian surfaces with level 2 structure. It is natural to ask whether the
tangent hyperplane H to V, at a nonsingular point aev, cuts out the Kummer
surface of the abelian surface from the isomorphism class defined by the point a.
The answer is yes. We refer to [Co 1], p.141, and [vdG] for verification of this

fact.
Let us now see some analogs of the previous facts in the case g = 3.

Proposition 7. Let A be a principally polarized abelian variety of dimension 3
with a fixed theta structure. Then i(Kum(A)) is contained in the singular locus of a

unique hypersurface C, given by an H,(3)-invariant quartic polynomial L, on V(3):
Cy: Ly =XqP, =0.
Moreover, if A = Jac(X), where X is a nonsingular nonhyperelliptic curve of genus

3, then i(A) = Sing(C,).
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Proof. The embedding of Kum(A) into P, = IP(H(3)) is given by the subsystem of
1261 corresponding to symmetric divisors, i.e. their corresponding theta
functions on €3 are even. This easily implies that the restriction of the complete
linear system of cubic hypersurfaces in P, on K = i(Kkum(A)) cuts out on K a linear
system of symmetric divisors from 166l. Its dimension is equal to 111. This
immediately implies that there is a cubic hypersurface vanishing on K. In fact,
since K is projectively normal in P, there are 8 linearly independent cubic

polynomials vanishing on K. Suppose that a cubic polynomial
F = ZaikainijK

vanishes on K. Since K is Hy(3)-invariant, and H,(3) contains projective
transformations which change the sign of each coordinate Z,, it is easy to see
that one such F defines another where the indices v;v; v, corresponding to a
nonzero coefficient a;; add up to some veng. This easily implies that we have 8
cubic polynomials Fy vanishing on K, each corresponding to a vector veF3. The
group H,(3) permutes these polynomials. Further computations (see [Co 1], p.105)
show that each F, must be the Zy-partial of the H,(3)-invariant quartic
polynomial

L, = IZyFy = LqP,.
This proves the existence and uniqueness (up to a scalar factor) of a
H,(3)-invariant quartic polynomial containing K in its singular locus. On the other
hand, it is shown in [N-R], that the moduli space SUx(2) of semi-stable rank 2
vector bundles with trivial determinant on a nonsingular nonhyperelliptic curve X
of genus 3 is naturally isomorphic to a quartic hypersurface in P, with singular
locus equal to Kum(Jac(X)). Note that this isomorphism is H,(3)-equivariant,
where H,(3) acts on SUx(2) via the action of ,Jac(X) defined by the tensor product
E — L,®E, where L, is the line bundle associated to ne,Jac(X). This shows that
SUx(2) must be equal to our quartic C, given by L, = O.

We propose to call the quartic hypersurface corresponding to an

indecomposable ppav of dimension 3
Caily,=0

the Coble quartic of A.

Its equation looks like the equation of a Kummer surface:
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0o (Z§+..+Z9)+20,(2322+723722+ 2272+ 7222 + .. +20,(2222+ 22 2%+ 2222+ 2272) +
+A0G(Z0qZ 4, ZZ3+Z,Z,Z 7 )+ . .+ A0, (252,77 ,+2,2,72,75) = O,

where Z,= Zoos, Zy = Zygor Z2 = Zoyor Z3 = Zoot Z4 = Zoywe Zs = Zioy Ze = Zygor Z7 = Zyyq -

Proposition 8. Let eeH(3)/C*=F 3, e#1. Then the set of fixed points of € in V(3)
s the union of two disjoint linear subspaces Hg* and Hg~ of dimension 3. Let C, be
the Coble quartic of a ppav A. The intersections

C NHE
are isomorphic to a Kummer surface K. Making the identification of € with the

corresponding 2-torsion point of ,A, K is isomorphic to the Kummer surface of

the Prym variety of (A.e).

Proof. This together with the definition of the Prym variety can be found in

[vG 3l

Corollary. The coefficients a,....a,, of the Coble quartic satisfy 63 cubic

equations.

Thus, as in the case of genus 2, the coefficients «a,,..,a,, of the Coble

quartic define a map
Th*.a,(2) = P(T(3))

whose image lies in the intersection of 63 cubics. This map is injective on the

complement of the hyperelliptic locus.

Remark 5. If A = Jac(X), where X is a hyperelliptic curve, then the Coble quartic
is equal to a double quadric (see [vG 31). Compare this with the fact that in the
case where A is a decomposable ppav of dimension 2 the map Kum(A) — IP5 is a
double cover onto a quadric. Note that the cubic hypersurface defined by the

equation (*) from Proposition 7 has 10 nodes:
(ag.04,05,05,0,) = (1,1,1,0),(1,1,1,-1,0),(1,1,-1,1,0),(1,-1,1,1,0),
= (0,0,0,1,£1),(0,0,1,0,£1),(0,1,0,0,£1).

The corresponding quartic surface is a double quadric. Recall that the nodes of
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the Segre cubic primal correspond to the 10 Humbert surfaces in @ ,(2)
parametrizing decomposable abelian surfaces. It seems plausible, though we have
not checked this, that the image of each decomposable abelian surface in P, is

given by the corresponding quadric equation.

6. Cayley dianode surfaces.

We have already defined these surfaces in Chapter VIl as the ramification
divisor of the map V(x) — IP(1,1,1,2), where xe(PJ)9°". Here we interrelate these
surfaces with Kummer-Wirtinger 3-folds.

Let K = i(Kum(A)) € IP,g_,, where A is the Jacobian variety of a
nonhyperelliptic curve C of genus g. For every €e,A let €, = B+c denote the
translation of the Poincare divisor @ of A. The image of 6g under the map
i:A — IP,g_, given by |26l is a trope T(e) of K, i.e. a subvariety of K which is cut out
by a hyperplane everywhere tangent to K. It follows from Chapter VIII that each of
the 2?9 tropes passes through at least 297'(29-1) singular points of K.

Clearly each trope T(g) is isomorphic to the quotient ©/(t), where T is the
involution x - -x of A.

Assume now that g = 3. Let U be a net of quadrics through 8 points x',...x% in

IP; such that C is equal to its Hessian curve. Denote by

f:Vv-oP,=INI*
the elliptic fibration defined on the blowing-up V of x'...x% Fix a section of f
defined by the exceptional divisor Eg blown up from x® Let A be the discriminant
curve of f, ie. the curve in P, of points z such that the fibre f'(z) is singular. It is
easy to see that A is isomorphic to the dual curve of C. The open subset f"(le\A)
is an abelian scheme over IP,\A. Let D be the closure in X of the set of non-trivial
points of order 2 in fibres of this scheme. The projection

mD-—-P,
is a 3-sheeted cover branched along A.

Now we recall from the geometric proof of Torelli's theorem for curves

(see [G-HI) that the Gauss map from € to P, factors through T = e/(t) and

defines a 3-sheeted cover of P, ramified along the dual curve of C. This suggests
that D and T are birationally isomorphic.
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Theorem 4. Both of the varieties D and T are birationally isomorphic to a Cayley

dianode surface R corresponding to the point set (x'...x").

Proof. Let us show first that D and R are isomorphic. Let X' be the blow-up of

x',...x7 and

X — P,

be the map given by the linear system I-Ky'| represented by gquartics through

x'...x7. It is easy to see that each such quartic can be written in the form:

F = HF4+ZC|UQiOJ- = 0,.
where Q,=0,Q0,=0,0;=0 are the quadrics spanning the net N and F,=0 is a quartic

not passing through x® (called a dianode quartic, see ICal). The fibres of the

elliptic fibration f: X — P, are the base curves of pencils of quadrics from M. Thus
each quartic F = O cuts out a divisor of degree 2 on the fibres of f, and hence ¢
induces @ map ¢  of degree 2 from X to the image Y and blows down to a point the
exceptional divisor Eg. Obviously the ramification divisors of ¢ and ¢’ are
birationally isomorphic. The first divisor is a Cayley dianode surface, the second
is the surface D. Note that ¢(Y) is isomorphic to IP(1,1,1,2) embedded naturally
into P,. The divisor Eg is blown down to the vertex of IP(1,1,1,2). The situation is
quite similar to the case of the bi-anticanonical map of a Del Pezzo surface of
degree 1.

Now let us see that D is birationally isomorphic to T. Obviously
T = W/(T),

where W, C Pic?(C) is the hypersurface of effective divisors of degree 2, and T
is the involution of Pic%(C) given by d — Kc-d. In the Steinerian embedding of C a
canonical divisor can be represented by 4 nodes q,....q, of the singular quadrics
Q,....Q, in some pencil £ of L. Let E(2) be the base curve of this pencil. We assume
that £ is such that E(2) is nonsingular. Let us show that each of the three
nontrivial points a;(£) of order 2 naturally corresponds to a pair of opposite
edges of tetrahedron formed by the points q....q,.

Let 1; denote the line of the quadric Q; passing through the point x® and let
Di=xs+pi denote the divisor of degree 2 that it cuts out on E(2). A hyperplane in 1P,
cuts out a divisor H of degree 4 on E(2) such that 2D;~H. Since we are assuming
that E(2) is nonsingular, the gquadrics Q; do not contain a common line. Thus the
divisors D; are all distinct, and since they all contain the point x5, they must also

lie in distinct divisor classes. Thus the divisors of degree zero g; = D;-D, for i =
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12,3, and £, = O are all distinct and of order 2. We aiso have that g;+g; ~ g+ for
distinct indices.
Now consider the planes:
Hiy = <quqpx® = <ulp,
Her = <qK,q.,X°> = <1,
which contain opposite edges of the tetrahedron spanned by the ¢q;, and consider

the divisors that they cut out on E(£):
HijNE(R) = x%+pi+p;+p,
HerNE(R) = xB+p+p+p’.
Since Dj+D; = 2x%+p;+p; ~ H+g;+e; we find that
P ~ H-x®-p;-p; ~ x%+gj+e;
Similarly,
p ~ x%+g.re,
which shows that p and p' are the same points on E(2). Moreover, we have that
2p ~ 2x8,
which shows that p is one of the points a;(2) of order 2 on E(2). This ends the

proof of the theorem.

Remark 6. It is easy to see that the surface T is isomorphic to the branch divisor
of X’ = IP(1,1,1,2). It is a hypersurface of degree 6 in IP(1,1,1,2) isomorphic to a
canonical model of a nonsingular regular surface of general type with Pg = 3 and
K2 = 3. It has 28 nodes, and the projection map R — T is a resolution of singular
points of T whose exceptional curves are the proper inverse transforms in R of
the lines joining pairs of points from {x',...x%. The projection R of R in P, is a
surface of degree 6 with 7 triple points at x'..x’. This is another birational
model of the surfaces R, T, and D. Note that R may be obtained directly from the
theta divisor ® < Jac(C) by mapping it to IP; via a subsystem of 146lgl that depends
on a choice of an Aronhold set on C. The seven singular points are ordered via the
Aronhold set. This gives another way to reconstruct a point set (x'..x")eP§ = P}
without appealing to the fact that the Abelian variety is the Jacobian of some
curve. We refer to [Sch 1] for the corresponding construction or to an account of

his work in [Co1],S47.
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7. Gopel functions.

In this section we construct a Sp(6,F,)-equivariant

map
Pl — P(T(3)

whose image is contained in the intersection of 63 cubic hypersurfaces, and is an
there

analog of the Segre cubic primal in the case g = 3

It is asserted in [Co 1] that
is a commutative diagram:

P75 @4(2)\%ypy(2)
N 7/

P (T (3N.

However, we postpone the proof of this until we understand it better.

canonical root basis of type 2 in H,. Recall that in section 1 we constructed a
natural isomorphism of

symplectic spaces:
®: Fg - @,

Let Q be the root lattice of type E, isomorphic to the root lattice Qg of the

where Q' =

(Q/20)/Radical. We denote by v the image of veQ in Q.

Lemma 8. For every eeng\(Ol, there exists a unique positive root aeQ such that
ele) = a.

The correspondence € — « is a bijection between the set IF;’\(O] and the set
of positive roots in Q which preserves the orthogonality relations.

Proof. Note that both sets consist of 63 elements. Thus it is enough to verify that
x=pea=g

for any two positive roots o,reQ. Assume &

g. then under the canonical

map
0(@) — Sp(6.F,)

the images of the reflections sy and s, are the same. By Lemma 3 this implies
that sy = sg, hence «

g. Suppose that a and g correspond to orthogonal vectors e
and €' respectively. Then asg = 0 mod 2, and

sq (B) = g+(aeg)a = g mod 2Q.

This implies that the roots g and sy (B) correspond to the same vector from IFg.
By the previous argument this implies that
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g+{aeg)a = g , or p+(ae)x = -B.
In the first case (0eg) = O, and we are done. In the second case, a = -3(aeg)g,

which is absurd.
Let L © IFg be a maximal isotropic subspace (a Gdpel subspace in old
terminology). It contains 7 nonzero elements. Denote by R(L) (the G6pel subset)

the subset of the corresponding 7 orthogonal positive roots in Q. We use the

notations a(i,j),a(,jk),a(i) to denote the positive roots

e.-e

=€) 12i<j<7; ey-e-ej-e,, 1€i<jks?, 2e,-e,-..-€,+e, i=1,..7

respectively.
There are 135 different GoOpel subsets R(L),
90 of type (a(1,2,3),a(1,4,5),x(2,4,6),a(3,5,6),a(1,6,7),a(2,6,7),0(3,5,7)}
45 of type ({(a(1),a(1,2,3),a(1,4,5),0(1,6,7),0(2,3),a(4,5),a(6,7)).

For each Gopel set R(L) we define a G&pel function F| € (R}),:

90 of type F. = (123)(145)(246)(356)(167)(267)(357),
45 of type F_ = d,(123)(145)(167),
where
d, = (347)(567)(235)(246)-(357)(467)(234)(256)

expresses the condition that the point set (x%..x") lies on a conic (see Chapter 1).

Proposition 9. The Gdpel functions F_ span a 15-dimensional subspace T in (R}),.
and the group Sp(6,F,) acts linearly on T via its action on G6pel subspaces L. The
representation T of Sp(6,F,) is irreducible. For every eeng\(O), the set of all Gdpel

functions F_ with eeL span a S-dimensional subspace and satisfy a cubic relation.

Proof.Let 1 © F5 be an isotropic plane. It is easy to see that there are
exactly 3 GCdpel subspaces L which contain 1. Let F,F, and F,; be the correponding
Gopel functions. We prove that they satisfy a linear relation of the type:

F,tF, £+ Fy=0.
Since Sp(6,F,) acts transitively on the set of isotropic subspaces of the same
dimension, it suffices to check it for one subspace 1. Choose 1 in such a way that
its three nonzero vectors correspond to the positive roots:

a(1) = 2e,-e,-..-e,, a(6,7) = e,-e, «a(1,6,7) = e,-e,~e,-e,.

Then the three GoOpel functions F; are given by:
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F, = d,(167)(123)(145), F, = d,(167)(124)(135), F, = d,(167)(125)(134)

Factoring out d,(167), we have to verify that
(123)(145)-(124)(135)+(125)(134) = O.

We consider the Gopel functions as functions on P5. Without loss of

generality we may assume that the point x' has coordinates (1,0,0). Then the
functions (123)(145),(124),(135),(125)(134) satisfy the same relations as the
monomials (23)(45), (24)(35), (25)(34) from R? This relation is the straightening

relation:
(25)(34) = (24)(35)-(23)(45).

Let v, = €3 be the permutation representation of Sp(6,F,) arising fromits
action on the set of isotropic planes 1, and Jet V, = €' pe the similar
representation corresponding to Gdpel spaces. It is clear that the space T
spanned by the Gdpel functions F_ is a representation of Sp(6,F,) isomorphic to a
quotient of V, by the subspace isomorphic to V,, the cokernel of the map

Vi = Vo, 1 = Litl,il,
of the representations. Decomposing V, and V, into irreducible representations
we find that V, contains an irreducible representation of dimension 15 which is
not isomorphic to an irreducible component of V, On the other hand, Tis, as easily
seen, isomorphic to an irreducible representation of the Weyl group W(E,) given
by a construction from [McD 2], cf. Remark 7 below. This shows that T is an
irreducible representation of dimension 15.

Let cele\(O), and o be a positive root in Q corresponding to €. Without loss of

generality we may assume that
a = al7) = 2e5-e~..-€,.

Then each Gépel function F_ with eel. has the form:
FL = d,(j7)K17)(mn7),

where i<jk<l,m<n, (1,...6) = (i, jilk NU{m,n}. Factoring out d, we have to check
that the functions (ij7)(k17)(mn7) span a S5-dimensional subspace and satisfy a
cubic relation. Following the same argument as above, we may assume that

x’=(1,0,0). Then the functions (ij7)(k17)(mn7) satisfy the same relations as the
functions from (R$), It follows from Chapter 1 that they span a S-dimensional
space and define a map of P‘,’ onto a cubic 3-fold isomorphic to the Segre cubic

primal. This proves the assertion.
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Theorem S. Let

¢: Py P(T = P,
be the Sp(6,F )-equivariant rational map given by the linear system ITl. Then ¢ is
defined outside the union of 35 subvarieties of dimension 3 representing point
sets lying on two lines. Its image is isomorphic to a subvariety V defined by 63
cubic equations. Each of them corresponds to a cubic relationship between Gé6pel

functions F_ with eeL, eeF 5. The induced map ¢': P, —» V is birational.

Proof. The assertion about the set of definition of ¢ is verified directly from the
definition of GoOpel functions. The only nontrivial assertion is the birationality of
9. We have to show that a generic point set (x'...x”) can be reconstructed
uniquely from a point of V. Assume that the first 4 points are normalized in the

usual way. Let (tyt,t,) be the coordinates of x> Then we observe that

t, (124)(135) d,(124)(135)(167)
t, (125)(134) d,(125)(134)(167)

N

t, (125)(234) d,(125)(234)(267)
t, (124)(135) d,(124)(235)(267)

to (134)(235) d;(134)(235)(367)
t, (135)(234) d,(135)(234)(367)

We verify that the relation

t, ty to =1
('-z)(to)('H)

is equivalent to the cubic relation
(d,€(124)(135)(167))(d,(125)(234)(267))(d;(134)(235)(367)) -

-(d,(125)(134)(167))(d,(124)(235)(267))(d;(135)(234)(367))
between the GoOpel functions. It turns out that this relation follows from the
cubic relation between Gépel functions corresponding to the fixed root o(6,7). We
refer to [Co 1], p. 195 for this verification and also for the completion of this

proof.

Note that the 15-dimensional irreducible representations T* and J(3) of
Sp(6.IF,) are isomorphic. Thus the image V of P"2 under the map ¢ given by Gdpel

functions and the image V' of @& ,(2) under the map f given by the coefficients of
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the Coble quartics are birationally isomorphic Sp(6,F,)-invariant subvarieties of
P(T*) = P(JT(3)). Let eeF3\(0} and let G, be the isotropy subgroup of Sp(6F,) in its
natural action on F$. Then

Ge = WD) = (Z/2)5xE,.
The restriction of T* to G; contains a unique irreducible subrepresentation L(g)
of dimension 5 which factors through X,. The projective subspace P(L(g))
intersects V and V' along a variety isomorphic to the Segre cubic primal. This is
the image of a boundary component of @& ,(2) and of discriminant component of P72
under f and ¢ respectively. Coble claims in [Co 1], p.197, that V is projectively

isomorphic to V'. Unfortunately, in our opinion his proof is not complete.

Remark 7. The construction of the representation T of Sp(6,JF,) is a special case
of MacDonald's construction of some irreducible representations of Weyl groups
(see [McD 21). In fact, let p be a Cartan algebra of a simple Lie algebra of type E,.
Consider every root o of W(E;) as a linear function on h. For every subset S of the

set of positive roots which form a root basis in the root lattice Q denote

= #S o0 n
Fs = (M aesym*S (3",

Let Vg be the subspace of Sym“'s(b") spanned by the functions Fy(s), WeW(E,).
Then Vgis an irreducible representation of W(E,). If S consists of seven
orthogonal positive roots, we obtain a representation isomorphic to T.
Let- P, =IP(p). There is a canonical W(E,)-equivariant birational morphism

s:P, — (p72)un
which is obtained from the identification of P, with the variety of projective
equivalence classes of point sets (x',..x") lying in the set of nonsingular points of
a fixed cuspidal cubic (cf. [Pil). As is easy to see the pull-back of Go6pel functions
to P, under the map s spans a subspace of the space of homogeneous polynomials
of degree 7 which is isomorphic to the Macdonald representation Vg
corresponding toa set S of seven orthogonal positive roots. Thus the map

P(p) — IVgl* =P, ,
given by the linear system Vgl C |01p6(7)| factors through the map

(PP = P,

given by Gopel functions, and hence has the same image in P, In particular we
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see that the Macdonald functions from Vg satisfy 315 three-term linear relations
and also 63 cubic relations. This of course can be verified directly without using
Gépel functions.

Since every net of cubics through a generic set of 7 points in P, contains
exactly 21 cuspidal cubics, the map s is of degree 21. By the Chevalley theorem
(IBol):

P,/WE,) = P,.

This defines a rational map of degree 21:

4 -~ ~
P, — PHU/WE) S 05(2/8pe,Fy) = My

This is a rational map from P, to M, of smallest degree known so far.

8. Final remarks.

The relations between point sets in P, and moduli varieties of curves goes
a little further. It is easy to extend some of the results from this chapter to the
case of curves of genus 4 with a vanishing theta constant. We obtain that the
moduli variety of such curves is isomorphic to (P‘;)U“. One of the possible
relationships between these varieties is seen via Del Pezzo surfaces of degree 1.
(see [Co 1], Chapter V). There must also be some interesting connections between
some special point sets in the sense of Chapter VI and certaion moduli varieties
of curves. Some indications to this can be found in Chapter VI of Coble's book.
Further connections have still to be explored. The call of Coble (see the last page
of [Co1]1) to find curves of genus larger than 4 associated to some point sets is
still  unanswered.

We refer to [C-D 3], [Cos]l, where some other interesting relations
between Cayley decads and Enriques surfaces are discussed.

In [Ki1, Ki2] F. Kirwan gives a method for computation of Betti numbers of
the orbit spaces. This can be applied to our spaces P or PT.

Many topics from Coble’'s book have not been covered in these notes. One of
the reasons for this is our failure to fully understand what is going on there. For
example, Coble gives some formulas, due to Schottky, which express the Gépel
functions in terms of theta constants (ICo 11,828). The derivation of these
formulae looks rather formal and is not very illuminating. Note also that Coble

omits many other interesting developments closely related to the topic of his
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book. For example, he does not even mention Frobenius work [Fr2l in which an
equation of a canonical curve of genus 3 is given explicitly in terms of theta
constants or in terms of the equations of an Aronhold set of bitangents. A modern

exposition of a part of this work is given in [vG-vdG]l. We hope to return to all of
this later.
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RESUME

Dans ce volume sont traités les liens entre la géométrie algébrique classique et la théorie
des invariants des ensembles finis ordonnés de points dans les espaces projectifs, des
transformations de Cremona et des fonctions théta. La majeure partie du contenu se trouve
dans la littérature, notamment dans le livre de A. Coble intitulé "Algebraic geometry and theta
functions". Néanmoins nous traitons ici ce sujet d'un point de vue moderne. On y a inclus les
discussions des constructions classiques de I'ensemble des 27 droites d'une surface cubique,
de l'ensemble des 28 bitangentes a une courbe plane quartique, des surfaces de Kummer et de
del Pozzo ainsi que de leurs analogues en dimensions supérieures, des réseaux de quadriques
et des surfaces dianodes de Cayley associées, des involutions birationnelles de Bertini et
Geyser. Tout ceci est reli€ a des sujets plus récents tels que les quotients géométriques, les
tableaux standards, les syst¢émes de racines infinis et leur groupe de Weyl, les représentations
de groupes, les groupes d'automorphismes des surfaces rationnelles, les espaces de modules

des variétés abéliennes, etc.
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ABSTRACT

This volume is concerned with some topics in classical algebraic geometry
concentrated around the theory of invariants of finite ordered point sets in
projective spaces, Cremona transformations and theta functions. Most of the
material can be found in classical literature, and especially, in a book of A.Coble,
however we treat this subject from a modern point of view. Among other things it
discusses some famous classical constructions like the set of 27 lines on a cubic
surface , the set of 28 bitangents to a plane quartic curve, Del Pezzo and Kummer
surfaces and their higher-dimensional analogs, nets of quadrics and Cayley
dianode surfaces associated to them, Bertini and Geiser birational involutions.
This is interrelated with such modern topics as the geometric quotients,
standard tableaux, infinite root systems and their Weyl groups, group
representations, automorphism groups of rational surfaces, moduli spaces of

abelian varieties and others.
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