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Introduction. 

The purpose of these notes is to re-introduce some of the worK of A. Coble 
[Co 11 in a language that a modern mathematician can easily understand. There is 
a well-Known relationship between the theory of invariants of finite sets of 
points in a projective line and the theory of hyperelliptic curves. The DOOK of 
Coble gives an account of the theory which generalizes this relationship to point 
sets in projective spaces of higher dimension and non-hyperelliptic curves. 
Though some aspects of this theory were Known before Coble (see for example 
[Fr1l, IFr21, EKal, [Sen 1, [Sen 2], [Sen 31), his exposition is by far the most 
complete and conceptually motivated. In recent years the booK of Coble was saved 
from oblivion and the number of references to it grew substantially. This 
prompted us to serve the mathematical community by giving a modern account of 
his theory. 

The contents of these notes is the following. In Chapters I and II we give a 
development of the general theory of projective invariants for ordered point 
sets. We use a presentation of these invariants by certain tableaux, along with 
the straightening algorithm to describe the structure of the ring they form. 
Following a now standard approach to the theory of invariants [Mu 11, we 
construct the moduli spaces P™ for the projective equivalence classes of sets of 
m ordered points in a n-dimensional projective space IPn and provide a description 
of the stable and semi-stable ones. A rather complete discussion of the "most 
special" point sets is given. These are the point sets which are parametrized by 
the spaces P™ . The chapters conclude with some examples that illustrate how the 
general techniques worK for specific cases. Note that we are able to discern the 
structure of the moduli spaces in these examples without too much effort, 
whereas Coble had to devise rather complicated and ingenious methods to reveal 
the same information. 
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Chapter III is concerned with the classical concept of association, which is a 
form of duality between the spaces P™ and Pm-n_2. It is difficult to trace out the 
origins of this concept, but it was refined and used extensively by Coble [Co 51. 
Our approach is to show that association arises from an isomorphism between 
the coordinate rings of the respective moduli spaces, which is based on the notion 
of duality between tableaux. In the case m = 2n+2 the notion of association leads 
to the notion of self-association. We provide a criterion, essentially due to Coble, 
for a stable set to be self-associated. This condition is closely related to 
questions of independence of point sets with respect to the linear system of 
quadrics through them which is extensively studied in modern and classical worKs 
on algebraic curves. After various geometric properties of associated sets, we 
prove the rationality of the moduli space Sn that parametrizes projective 
equivalence classes of ordered self-associated point sets. 

In Chapter IV we extend the invariant theory of points sets to the case 
where some of the points are considered to be infinitely near. Following a 
construction from IK1] we construct the variety parametrizing such point sets, 
and then consider the extension of the action of the projective linear group on 
this variety. We use some recent results from [ReM to derive explicit criterion 
of stability of infinitely near points sets. This allows to construct the spaces P™ 
which are extensions of the spaces P™, and birational morphisms P™ —• P1^ -

In Chapter V we begin to consider point sets from a different point of view. 
Blowing-up such a set gives a certain rational variety, which we call a generalized 
Del Pezzo variety. The order on the set equips this variety with an additional 
structure. This additional structure is interpreted as a certain marKing in the 1-
codimensional and 1-dimensional components of the Chow ring of this variety. The 
varieties P™ can be interpreted as certain moduli varieties of marked 
generalized Del Pezzo varieties. Here the most interesting part of Coble's theory 
enters into the discussion. This is the notion of root systems and their Weyl 
groups. The discovery that Coble was aware of some of these notions even in the 
case of infinite root systems, a long time before Carton's worK, and it goes 
without saying, before the wonc of V. Kac and R. Moody, was the main motivation 
for the first author to study his worK. The theory of Del Pezzo surfaces and 
surface singularities is Known to have a relationship with this theory. A modern 
account of this can be found for example in [Ma], [Del, CPU. An earlier exposition 
of this is due to P. Du Val [DV 1-DV41 who apparently was not aware of Coble's 
worK. A new result of this chapter is a partial description of roots for certain 
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root systems in hyperbolic vector spaces. The notion of roots corresponds to the 
classical notion of a discriminant condition on a point set which substitutes the 
condition for a binary form to have a multiple root. 

In Chapter VI we develop the notion of the Cremona action on the point sets. 
It was observed by Coble and S. Kantor ( in the case n = 2), and later by P. Du Val 
[DuV 3], [DuY4] that certain types of Cremona transformations of the 
projective space act birationally on projective equivalence classes of point sets. 
More precisely they give a representation of a certain Weyl group Wn m in the 
group of birational automorphisms of P™. Much effort was applied to give a 
rigorous exposition of this beautiful theory. The Kernel of the Cremona 
representation of Wnm can be identified with a subgroup of pseudo-
automorphisms (i.e. birational automorphisms which are isomorphisms in 
codimension 1) of the blowing-up of a point set represented by a generic point of 
P1̂ . In the case n = 2, the Kernel is the full automorphism group, and we prove, 
following Coble, that this group is trivial if m > 9. A modern proof of this result, 
also based on Coble's ideas, was given in [Gil (m = 9) and [Hirl. 

In Chapter VII we discuss all special cases where the Weyl group Wn m is 
finite, and compute the Kernel of the Cremona representation. This leads to a 
beautiful interpretation of certain elements of the center of the Weyl groups as 
certain types of Cremona transformations in the projective space. We refer to a 
recent paper of P. Du Val [DuV 4], where, again without mentioning Coble's worK, 
a nice account of this is given. 

Starting from Chapter VIII we study the relationship between point sets and 
theta functions. The existence of this relationship in the case n = 2 and 3 goes 
bacK to Frobenius, SchottKy and Wirtinger. Much of Coble's booK is devoted to an 
exposition of SchottK/'s results. In the case n = 1, this relationship is based on the 
observation that 2g+2 points in IP1 define a hyperelliptic curve of genus g, and its 
ordering equips the Jacobian variety of this curve with a level 2 structure. The 
invariants of points can be translated into the language of theta functions. An 
explicit formula of this Kind which relates the fourth powers of theta constants 
and coordinate functions of the varieties P̂9+2 is due to R. Thomae. In many 
aspects we follow here an exposition of D. Mumford [Mu 2] of the theory of 
hyperelliptic curves and their theta functions. 

The last Chapter IX is the longest one. Here we give an account of classical 
worK on extension of the theory of the previous chapter to the case of curves of 
genus 3. Coble's contribution to this is a clear understanding that seven points in 
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the plane not only define a curve of genus 3 but also equip it with a level 2 
structure in such a way that the natural action of Sp(6/F2) on these structures is 
equivalent to the Cremona action on the variety P̂ . This approach gives a nice 
geometrical insight into the structure of the moduli space of principally 
polarized abelian varieties of dimension 3 with level 2 structure, and also its 
SataKe compactification and its Igusa's blow-up. 

Besides our primary goal to advertize Coble's booK we tried to take the 
reader on an exciting journey where he meets the most fascinating objects of 
classical algebraic geometry such as the sets of 27 lines on a cubic surface and 
28 bitangents to a plane quartic, a Segre's cubic primal and its dual quartic 3-
fold, Kummer surfaces and their generalization for dimension 3, Cayley dianode 
surfaces, nets of quadrics, Cremona transformations, theta functions, the 
theory of invariants and many others. 

These notes are based on a course of lectures of the first author at the 
University of Paris-Orsay, in Winter of 1987, and on the thesis of the second 
author. The first author would like to thanK Professor Arnaud Beauville for the 
invitation and for his hospitality. He also expresses his gratitude to all 
participants in the course for their interest and patience. We are both thankful to 
all mathematicians who shared our enthusiasm toward Coble's work and to 
classical algebraic geometry in general. We are particularly indebted to Francois 
Cossec and Bert van Geemen for numerous helpful discussions on different 
aspects of Coble's worK. Our special thanks go to the referee for his special 
effort to improve substantially the presentation of this work. 
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I. CROSS-RATIO FUNCTIONS. 

Throughout this chapter and later on we will use the following notations: 
£ = an algebraically closed field of characteristic p i 0; 
IPn = the n-dimensional projective space over ft; 
IP™ = (IPn)m = IPnx...xlPn, m times; 
TTjiIPp — IPn = the i-th projection; 
G = PGL(n+1,ft) = Aut(IPn); 
a:GxlPm -> IP™ = the morphism of the diagonal action: 

a(g,(x1 xm)) = (g(x1) g(xm)), gcG, (x1 xm)c IPm ; 
p̂GxIP™ — G, p2:GxlPm IPm = the projections; 

m 
X = ® TTj**(Op (D), where I is the smallest positive integer satisfying the equality 

i =1 n 
1m = w(n+D 

for some integer w. 

I.The variety Pm (first definition). 
Recall that a G-linearization of a sheaf ^ on an algebraic variety X with 

an action a:GxX—X is an isomorphism: 
a*(S) * p2*(S), 

where p2:GxX->X is the second projection (see IMu 11, Chapter 1). 

Proposition 1.X admits a unique G-linearization. 
Proof. Since G does not admit nontrivial characters, it is enough to construct 
one G-linearization of X ([Mu 11, Chapter 1, Proposition 1.4). We may view G as an 
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open subset of Pn2+2rv tne complement of which is the determinantal hypersurface 
of degree n+1. This implies that 

©G(1)*n+1 » Oo(n+1) a ©G . 

Since G acts linearly on each factor Pn of P̂ J , we have a natural isomorphism 

(TT,.a)"(0P <D) * p1-(DG(l)0(TTrp2)»*(Op (1». 
Thus 

o*CX) = a*( 
m ® =1 TT?(©P (1)» = 

m a 
i =1 

(TT}.a)*(0pn(D) a 
m a ® p*0G(l)®(TTrp2)*(0p (1» a i =1 n 

a p*0G(ml)®p5Z = p*0G(w(n+1))®p5Z a 
a p*©G®p*Z a p*X. 

Recall that for every G-linearized sheaf ? on a G-variety X there is a 
natural linear representation of G in the space HX,^). It is derived from the 
composition: 

a* 
TCX,*) —rCGxX â*1̂ ) - r(GxX,p5?) — r(G,0G>®r(X/3r), 

where the second arrow is defined by the linearization of & and the third one 
is defined by the Kunneth formula. Viewing every gcGte) as a homomorphism of 
^-algebras r(G;0G) -» we let 

p(g)(s) = (g®1)(a*(s», g€G(ft),S€r(X,S). 
As usual, TCX,?)0 will denote the subspace of G-invariant sections. 

Returning to our situation (X = P ^ , ? = X ), let us set 

RT = © r ( P T ,X*K)C, N K=O " 

where we equip X*K with the G-linearization that is the K-th tensor product of 
the G-linearization of X. Since X is an ample invertible sheaf on IP™, the graded £-
algebra 

e r(lP™ ,i8K) 
K = 0 

is of finite type. The group G acts on this algebra by automorphisms of graded 
algebras, and 

R™ = (© r(P™,:e®K))G 
1 1 l#» — A 1 ' 
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is the subalgebra of G-invariant elements graded by 
(R™)K = niP^E®*)0 . 

Since G is a reductive algebraic group, R™ is of finite type over & (IMu 11). 
Thus we can set 

Pn = Proj(R^) 
to obtain a projective algebraic variety over ft. This is the principal object of our 
notes. In the next chapter we will interpret P™ as a certain quotient of an open 
subset of IP™ by G. 

2. Standard monomials. 

Let IPn = IP(V) for a linear n+1-dimensional space V over -fe, i.e.-fe-points of 
IPn are lines in V. We have 

r(IPn/Opn(K» s SymK(V»), 
where 

SymCV*) = © SymK(V*) 
K = 0 

is the graded symmetric algebra of the dual vector space V**. Thus, by the 
Kunneth formula, 

(R )̂K = HIP™,*®*)0 = rCIPTJ ,<? TTi*Opn(Kl))G s ((SymKl(V*))®m)G. 

The linear representation of G in TOP™,X*K) is the m-th tensor product of 
its natural representation in the space of homogeneous polynomial functions on V 
of degree Kl. Applying the First Fundamental Theorem of Invariant Theory 
([Di-CD we obtain: 

Proposition 2. Consider an element of CR™)* as a function u(v\...,vm) on Vm which 
is a homogeneous polynomial of degree Kl in each variable. Then the functions 

Mv1 vm)= n det(vTj1 vT,n+1) 

span (RnV' where ^€{1,2 m} and each ac{1,2 m} occurs exactly Kl times 
among the t^'s. 

A matrix 
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т = 
1̂1 xin*i 

-TWK 1 TWKITM -

is said to be a tableau and the corresponding function ut is said to be the 
monomial that belongs to x. The number WK is the weight of x or \iz and the number 
Kl is its degree. 

We assume that Xjj * Xjy for j * j* and each i. Otherwise the corresponding 
monomial is zero. 

A tableau x is said to be standard if 
TU < for eacn ' = 1,.,WK, j = 1,...,n, 
Tij * Tini for EACN • = 1 WK-1, j = 1 n+1. 

A standard monomial is a monomial that belongs to a standard tableau. 

Theorem 1. The standard monomials of degree Kl and weight WK form a basis of 
(Rmn)K 

Proof. We will prove only that standard monomials span the linear space (R™)* 
and refer to [DeC-Pl for the proof of their linear independence. 

Here is an algorithm (the "straightening algorithm") that allows us to write 
any monomial as a linear combination of standard ones. 

Suppose \xx is not standard. We permute the entries of each row of T SO that 
in the new tableau x' all rows are in strictly increasing order. Then 

UT - ±MT'-

Next we permute the rows of x' so that in the obtained tableau t" 

xh" < for each i = 1 WK. 
Continue permuting the rows so that if x{i = x i + 1 j then x i j + 1 s Note that 
these permutations do not change the monomial. We call the monomial obtained so 
far semi-standard. 

The rest of the algorithm proceeds by induction on the lexigraphic order of 
tableaux defined by setting x < x if 

(x1 1 /...,x i n + 1,x2 1,...,xW K n + 1 ) < (x^ m̂-M 'T21 '-'TWK n+i ) 
with respect to the lexigraphic order. 

Suppose that \xx is not yet standard and let i0 be such that 
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CROSS-RATIO FUNCTIONS 

T. • > T. 'oJo to+1Jo 
for some j0. 

Consider the increasing sequences 

S1 = <S1 V ' S2 = <Sj0*1 W ' S = (S,,S2), 

where 

S1 = <S1 if К * Jo 

= Î0K-I «F < > Jo-
For example, if 

T = 

1 2 6 
1 4 5 
23 6 
3 4 5 

we have (i0,j0) = (2,2), and 
S1 = (23), S2 = (45), S = (2345). 

Let A c ln+2 be the subset of the permutation group En+2 such that aeA iff 
(so(l) sa(jn>) and (sCT(i +0 sCT/n+20 are increasing subsequences of S. We set for 
every acA 

To " T̂i0'i Tio'Jo-1/S (̂i0*i)'-'sa(n*2)>' 
xo = <saO) sor(j0)̂ i0+ij0+i t|0 + 1,ITM> 

In our example 
A = ((1234),(1324),(1423),(2314),(2413),(3412)}, 
TA' = {(1,4,5),(1,3,5),(1,3,4),(1,2,5),(1,2,4),(1,2,3)), 
ta" = {(2,3,6),(2,4,6),(2,5,6),(3,4,6),(3,5,6),(4,5,6)}. 

For every sequence z = (̂  in+i> of numbers from 0,...,m} we will consider the 

determinant 

W = Cii-in+i) = det(v'i vin+i)€(V**)®n+1 

as a section of TT,*©pn(l)®...®TTin*+i©pn(i). For example, 

i = 1 

where x-{ is the i-th row of T (FT is really the tensor product). 
Then 
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^E^sgnCaXTa'xa") cT(Pm .flf/Op^l ))®...®TTSn*+2©pn(1))3(v*)®n+2 

is sKew-symmetric and hence is identically zero (use that dim V = n+1). 
Therefore we can write 

(Tj )(Tj +1) = - r fsgn(a)(xa)(xor"), ° ° ac A 

where A' = A\{id). 
Let x(a)' denote the tableau that is obtained from t by replacing z]q with ZG , 

and replacing xio+1 with XQ". Let x(a) be obtained from x(a)' by rearranging the 
rows in increasing order. Then 

= - I 1sgn(a)sgn(t(a)')ux(a), acA 
where jix(a) = sgn(x(a),)uT(a)'. It is obvious that 

x(a) < x 
for every acA'. Thus we can continue our algorithm until we express \XX as a 
linear combination of standard monomials. 

In our example we find 

U 126* 
1 45 
236 
.3 45. 

= u 126 
135 
246 
345 

-и 126 
134 
256 
345 

-и 126 
125 
346 
.345 

+U 126 
124 
356 
345. 

-м 126 
123 
456 
345 

and so on. 

Remaric 1. It would be interesting to find a general formula for dim(Rm)K. In the 
simplest case when 1 = K = 1, I.e. m = w(n+1), our tableaux (resp. standard 
tableaux) are equal to the Young tableaux (resp. standard tableaux) from the 
representation theory of symmetric groups corresponding to the partition 
(n+1 n+1) of m. Applying the "hooK-formula" we obtain 

dim(R^)1 
m!n!(n-D!...2! 

(n + W)!(n + W-1)!...(W-1)!' 

In general, 
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dim (R™)K = Ka#|l 

is the KostKa number ([McD 11)corresponding to the pair of partitions of Kml 
ft = (KW KW), |I = (Kl Kl). 

RemarK 2. Since all standard monomials are equal to zero if m s n, we see that 
for such m and n, all the spaces P™ are empty. Similarly, if m = n+1 then all 
standard monomials are powers of of uM 2 n+n- Hence P™ is a one-point set. 

3. Examples. 

Example 1 (n=1 ,m=4). 

Here w = 2, 1 = 1. A standard tableau z of degree K must IOOK liKe 

oí al 
aia», 
a13a24. 

where af is a column vector that consists entirely of the integer i in the j-th 
column of t. Let lajl denote the height of aj. It is clear that 

lâ l = lâ l = K, la2l ^ = la!,! +la|l = K, 

lajl +la12l +lâ l = ld|l +la*l +\c?A\ = 2K. 

This shows that the standard tableau t is completely determined by the number 
a = la2l that satisfies 

0 < a < K. 

In particular 
dim (R?)K = K+1. 

Let 

t0 = Ц 12 
34 

t1 = µ 13 
24_ 
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Then 
tit*;'- ц 

• a X 
a'2a| 
Уз*2, 

where a = la1,l = к-i. 
Therefore 

R? * leitet,] 

and 
Pi *p, • 

The field of rational functions of P\ is generated by the function 

to/t, = 
( 1 2 X 3 4 ) (a1-a2)(a3-a4) 
( 1 3 ) ( 2 4 ) (a1-a3)(a2-a4) 

where (x\x2,x3,x4)€P? is represented by the vectors (a^D from V. This 
function is Known as the double cross ratio of 4 points in PR 

Example 2 (n = 1,m = 6 ) . in this case 1 = 1 and w = 3. 
A standard tableau of degree K and weight 3K IOOKS Ike 

al. al 
al. al 
al al 
al. al 
al. al 

Let 
la12i = i2, la3i = i3, la4i = i4. 

They satisfy 
0 £ i2,i3,i4 * K, 2i2+l3 i K, 
K < i2+i3+i4 * 2K, 2i2+2i3+i4 i 2K. 

Setting 

x = i2, y = i2+i3, z = i2+i3+i4, 
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we obtain that our tableau is completely determined by a vector (x,y,z) satisfying 
0 < X < K, 0 < y-x £ K, 0 £ z-y £ K, 
X+y > K, y+Z i. 2K, K £ Z £ 2K. 

When 0 < y < K these inequalities are equivalent to 
y > x > K-y, 2K-y £ z £ y+K. 

This gives 
K 
I (2y-K + 1)2 y=o 

solutions. 
When 2K > y > K we have y £ z £ 2K, which gives 

2K E (2K-y + 1)2 y = K 
solutions. 

Summing up by using the well-Known formulae for the sum of consecutive 
integers and for the sum of their squares, we find 

dim(R*)K = i(K3+3K2+4K)+1. 
The Poincare function of the graded ring R* is 

oo 
Z <i(K3 + 3K2 + 4K) + 1)tK = (1-t3)/(1-t)5. K=o 

This suggests that P61 is isomorphic to a cubic hypersurface in IP4. This is true. 
Let 

t0 = (12X34X56), t1 = (13)(24)(56), t2 = (12X35X46), 
t3 = (13X25X46), t4 - (14)(25)(36) 

be a basis of (R̂ )1 corresponding to standard monomials of degree 1 In the 
notation of p. 11. For every (i,j) * (0,3),(0,4) the product tjtj rs a standard 
monomial from (R̂ )2. Applying the straightening algorithm, we find 

t0t3 = (12)(13)(25)(34)(46)(56) = -(12)(13)(23X45)(46)(56) 
+ (12)(13)(24)(35)(46X56) = - y ^ t ^ , 

where 
y1 = (12)(13)(23)(45)(46)(56) 

is a standard monomial from (R*)2. 
Similarly, 
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t0t4 = (12)(14)(25)(34)(36)(56) = (12)(14)(24)(35)(36)(56)-

-(12)(13)<24)<35)(46)(56) + (12)<13)(24)(34)(56>(56> + 

+ (12)(12)(34)(35)(46)(56)-(12)(12)(34)(34)(56)(56) = 

• Ya-tiVtoti+toV^2' 
where 

y2 = (12)(14)(24)(35)(36)(56) 

Is a standard monomial from (R^)2. 

We see that all standard monomials from (R*)2 can be expressed as linear 
combinations of the products of standard monomials from (RVi- In fact every 
standard monomial can be written in this way. By using the coordinates (i2,i3,i4,K) 
for the monomials and avoiding products of monomials that are not standard, we 
may write the general standard monomial as follows: 

H(a,b,c,K) " t0 aa-b-ct1 t1 t2 y2 a+b-k , if a+b i K, 

= t0*-aa-b-ct12a*b-Kt22a*ab*c-2lcy1lc-b-a , if a+b < K; 

whenever 2K*2a+b+c, and: 

M<a,b,c.K) - t12K-a-b-ct2K-at3a+c-Kt4a+b-K , if a+b * K, a+c > K; 

= tlK-bt2ct32a+b+c-2Ky2K-c-Q , if a+c s K; 

- t1lc-ct2bt32a*b*c-2lcy1IC-b-a. if a+b < K, 

whenever 2K<2a+b+c. Note how the inequalities on x,y, and z help to Keep the 
exponents positive. 

It is immediately verified that 

t3y2 = t,t2t4. 
This shows that the natural homomorphism of graded algebras 

KlT0 T41/(T1T2T4-T3(T0T4+T1T2-T0T1-T0T2+T02)) - R*, 

T, - t,, i = 0 4, 
is surjective: Comparing the Poincare functions we find that it is bijective. 
Therefore 

P*s V3 c P4, 
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where V3 is a cubic hypersurface given by the equation: 
TiTjT.-TgToT.+TaT^+TaToT^ToToTj-TaV = 0. 

The permutation group I6 acts linearly in R̂  by acting on tableaux. 
Computing its character we find that this representation is isomorphic to the 5-
dimensional irreducible representation of I6 associated to the partition (2,2,2) 
(cf. RemarK 1). In fact our realization of this representation is a special case of 
MacDonald's construction of irreducible representations of Weyl groups 
([McD 21). In new coordinates: 

Z0 = 2t0-t,-t2+t3+t4, Z, = t,-t2-t,+t4. Z2 = -t1+t2-t3+t4. 

z3 = t1+t2-t3-t4, z4 = -W t 3 - t 4 , Z5 = -2t0+t,+t2+t3-t, 

our cubic hypersurface v3 is defined by the equations: 

IZj = 0, IZ |3 = 0, 
where Zb acts by permutations (see [Co 11, p.114). In this form V3 is Known in 
the classical literature as the Segre cubic primal (see [S-Rl, Chapter VIII, IBal). 
It contains 10 nodes and 15 planes. Note that by a theorem of Bertini, V3 is the 
unique (up to an isomorphism) cubic hypersurface in IP4 with the maximal possible 
number of nodes (cf. [Kail). 

Example 3 (n = 2,m = 6). In this case 1=1 and w=2. 

A standard tableau of degree K and weight 2K IOOKS liKe 

al a ia . 
a12a3a34 
a3a24a| 
a 4 a l a | 

Let 

¡3 = 10з1. ¡4 = la4l, J, = \c$ , j4 = \ctA\. 

These integers must satisfy the following inequalities: 

0 * i3'U'Ì3'Ì4 * K • »3+i4 * K < '3+J3 * K > U+J4 * K , 2i4+i3-j3 < K, 

2J3+J4-'4 - ^ , j3 S »3+U ' J3+J4 <~ U 

Set 
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x = U- y = i3+U< 2 = J3< u = J3+J4 • 

Then a standard tableau is completely determined by the integers x, y, z, and u 
satisfying the following system of inequalities: 

O s x s y < K , 0 $ z s u s K , 
z < y < z-x+k , z < y s x-z+K, 
X < U £ Z-X+K , X S U S X-Z+K . 

After lengthy calculations we find 

dim (R^ = t̂K4+6K3+17K2 + 24K) + 1. 

The Poincare series of R̂  is 

dim (Rl). = I 7nK4+6K3 + 17K2+24K) + 1)tK = 
1 oo Is0 oo oo 

= — E (K(K+1)(K + 2)(K + 3)tK + TE K(K + 1)tK + E KtK+ E tK = 
1 2K=0 2K**0 K=*0 K=0 

2t t t 1 _J (1-t4) 
(t-1)5 (t-1)3 (t-1)2 (t-1) (1-t)5(1-t2) 

This suggests that R̂  is generated by 5 elements of degree 1 and one element 
of degree 2 with a basic relation of degree 4. In another words, P̂  is isomorphic 
to a hypersurface of degree 4 in the weighted projective space P(1,1,1,1,1,2). This 
is true. We have 5 standard monomials of degree 1: 

t0 = (123X456), t, = (124X356), t2 = (125X346), 
t3 = (134X256), t4 = (135X246). 

For every pair (i,j) * (2,3), (3,2) the product tjtj is a standard monomial of 
degree 2. The remaining two standard monomials of degree 2 are: 

y, = (123X145X246X356), y2 = (124X135X236X456). 

Furthermore, the monomials t0,...,t4,yv and y2 generate the graded algebra R2, 
as the following formulae show: 

H<x.y.z.u.K) = t0xt/-zt3u-Vt/-u-t+xyi*-x . if x i Z S y < u; 

= t o V ^ ' ^ S ' V ' ^ Y f ' * - t + x y i if x s z i u i y: 

= t0zt/-xt3u-yt4K-u-x+zy2x-z, if z i x i y i u; 
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= t zt u-xt y-ut K-y-x+z x-z if Z S X S U S y. 

We find by the straightening algorithm 

t2t3 = = -yi-y2+tit4+toti+tot4-t0t2-t0t3-t02. 
viv2 - t0t1t4(-t0+t1-t2-t3+t4). 

Thus, if char(fe) * 2, by setting 

t5 = yi-y2< 
we obtain 

t52 = (y1+y2)2-4y1y2 = F4(t0 t4>, 
where 

F4 = C-t2t3+t1t4+t0t1 + t0t4-t0t2-t0t3-t02)2-4t0t1t4(-t0+t1-t2-t3+t4). 
Together with the computation of the Poincare series this implies that 

R2 s fc[T0 T5l/(T52-F4(T0 T4)). 
In other words, P̂  is isomorphic to a hypersurface of degree 4 in P(15,2) 
given by the equation 

Tl - F4(T0 T4) = 0. 
If char(&) = 2, we find similarly that P2 is isomorphic to the hypersurface 

T^T5(T2T3+T1T4+T0T1+T0T4+T0T2+T0T3+T02)+T0T1T4(T0+T1+T2-HT3+T4) = 0 

in IP(15,2). 
The inclusion Klt0 t4l <=_ R| realizes P| as a separable double cover of IP4 

branched along a hypersurface V4 of degree 4 (resp. along a quadric Q2 if p = 2) 
given by the equation 

F4(T0 T4) = 0 
(resp. T2T3+T1T4+T0T1+T0T4+T0T2+T0T3+T02 = 0). 

The points over the branch divisor satisfy 

y1-y2 = (123)(145)(246>(356)-(124)(135)(236)(456) = 0. 
If we fix first 5 points (x1 x5)clP2 and let x6 vary, we see that this equation 
represents a curve of degree 2 that passes through x1 x5. Thus y^-y2 vanishes 
on the sets of six points that lie on a curve of degree 2. 

Remarie 3. Assume & =C. By a change of variables 
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XQ - TQ, X-J - Tj, X2 - T4, X3 - -T2 TQ, X4 - T3-T0 

we transform the equation of the hypersurface V4 to the form: 

(X0X1+X0X2+X1X2-X3X4)2-4X0X1X2(X0+X1 + X2+X3+X4) = 0. 

This equation can be found in Mg 3], where it is shown that the corresponding 
variety is isomorphic to the Baily-SataKe compactification <£2(2) of the moduli 
space of abelian surfaces with level 2 structure. In other words 

RjVCtg) a M(r2(2)), 
where M0T2(2)) is the graded ring of modular forms with respect to the 2-level 
congruence subgroup r2(2) of the Siegel modular group r2 = Sp(4,Z) (see more 
about this in Chapter 8). 

Note that the Segre cubic primal V3 and the quartic 3-fold V4 are dual 
hypersurfaces in P4. The easiest way to see this is as follows. Let 

s : P ? - P* 
be the 6-th Cartesian power of the Veronese map 

v2: P1 - P2, (t^t,) - (t2,t0tvt2). 

Under this map 
s*(X) = X*2, 

where, abusing the notation, we denote by the same letter our standard 
sheaves for both spaces P* and P2 . Let [xz be a standard monomial onP2, say 
\xz = (123X456). Then we immediately verify that 

s*(uT) = (12)(13)(23)(45)(46)(56)c(R*)2, 
and, in the notation of Example 2, is equal to y1 = -totj+t^. Now note that 

3F3 
Yl = a t4 ' 

where V3 is given by the equation F3 = 0. Similarly, we find that s* maps other 
standard monomials to the elements of (R*)2 which are equal to linear independent 
combinations of the partials of the cubic form F3. This shows that the image of V3 
under the birational map given by the partials is isomorpic to V4. This proves the 
assertion. 

We will call the quartic threefold V4 the level 2 modular quartic 3-fold. The 
reader is referred to IvdGl and [Bal for further information about this 
3-fold. 
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II. GEOMETRIC INVARIANT THEORY. 

In this chapter we will show that the spaces P™ from the previous chapter 
are certain quotient spaces of some open subset of IP p. Most of the notions and 
the results that we introduce here can be found in [Mu 11. 

1. En (second definition). 
LetG be a reductive algebraic group (e.g. G = PGL(n+D) that acts regularly 

on an algebraic variety X. Let X be a G-linearized ample invertible sheaf on X. A 
point xcX is said to be semi-stable (with respect to X) if there exists a G-
invariant section of some positive tensor power of X such that s(x) * 0. A semi-
stable point is stable if G acts with closed orbits in Xs = (xcX: s(x) * 0} and the 
stabilizer group Gx = (gcG: gx = x} is finite. 

We denote by XSS(X) (resp. Xs(2)) the subset of semi-stable (resp. stable ) 
points of X. Both of these subsets are open G-invariant subsets of X. The 
usefulness of them is explained by the following: 

Proposition 1. Assume that X is proper. Then the categorical quotient Xss(£)/G 
exists and there is an isomorphism 

XSS(Z)/G s Proj( © r(X,Z®K)G). 
K = 0 

Moreover, the open subset Xs(£)/G of XSS(X)/G is a geometric quotient of XS(X). 

Recall that a categorical quotient X/G is an algebraic variety together with 
a surjective morphism TT:X -> X/G which is G-equivariant, where G acts identically 
on X/G, and is universal with respect to this property. A geometric quotient is a 
categorical quotient the fibres of which are the orbits of G in X. 
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Corollary. 

P™ » (PfT)ss(2)/G 

The idea of the proof of Proposition 1 is very simple. First we note that 
oo 

X s ProjC e r(X,X®K)) because X is proper and I is ample. Let 
K = 0 

oo 
Ax = e r(X,X®K), Cx = Spec Ax . 

K = 0 
The group G acts on Ax and on Cx and Spec(Ax)G is a categorical quotient Cx/G 
([Mu 11, Theorem.1.1). Let ocCx/G be the point defined by the maximal ideal 
®^T(X,X*K) of (AX)G. Then its pre-image in Cx is the set of all points which 
define non-semi-stable points in X. Thus the projection Cx -* Cx/G induces a 
morphism XSS(3C) — Proj((Ax)G). It is easy to verify that it is a categorical 
quotient of XSSCE) by G. 

We will denote 

*: (P™)SS - Pft 

the canonical projection of the categorical quotient. We set 

£> = (P™)SS \ (P™)S, 

¿9 = *(J9). 

The projection 

*: (P™)S - P™ \J3 

is the geometric quotient. 

2. A criterion of semi-stability. 

To describe the set of semi-stable point sets we use the following 
numerical criterion of Hilbert-Mumford. Let TVfe* -> G be a one-parameter 
subgroup of G . For every closed point xcX we define the map 

jix : &* — x, a — a(a)x. 

Assume X is proper. Then ux extends uniquely to a morphism: 
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Ux :A, - X 

and defines the point 

5x<°)- = 11 m 7H(a)*x . 
oc-o 

Clearly this point is fixed under the action of a(k) and the restriction of X to it 
defines a linearized invertible sheaf on it. As such it is completely determined 
by a character 

%(a,x): K* — K*, 

and the latter, in turn, is defined by the integer r(fl,x) such that 

%(a,x)(a) = ar(?1'x) for each acfc*. 

Proposition 2. Assume X is proper. Then 

xcXss(£) iff r(*,x) £ 0 for all 7\:&* - G, 

X€XS(2C) iff r(?u) < 0 for all a.-fe* - G. 

Now we are ready to make the analysis of semi-stable points in IP™. 

Theorem 1. Let x = (x1 xm )cIP ™. Then X€(IP™)SS(X) if and only if for any proper 
subset {\it...,]K} of {1 m} 

dim <Xj1,...,xJK>+1 i K(n+1)/m, 

where < > denotes the projective span of a finite set of points in IPn. Moreover, 
x is stable if and only if strict inequalities hold. 

Proof, (cf. [Mu 11). Let 7V£* -* G be a 1-parameter subgroup of G. Choose 
homogeneous coordinates in IPn in such a way that the action of fl(è*) is 
diagonal ized: 

TlCaXto tn) = <ocr°t0 arntn) 

for some integers R-R We may also assume that 
n 

(*) r0 > r, > ... > rn, Erj = 0, r0 > 0. 
Let 
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X = 
..(1) t<m> 
t0 ... I. Q 

Lt«> ... t"R>J 

be the matrix whose columns are the projective coordinates of the points 
x1,...,xm. For every I = (i1 im}, ijC{0,...,n} we denote by X, the monomial tii(1)...tjm(m) 
The monomials X, are the coordinates of points of P ™ in the Segre embedding 

m 
given by the sheaf .^©p^D For every i • (IC1) I(D) the products 

l 
X| = nxid) 

are the coordinates of points of P™ in the Segre-Veronese embedding given by 
m 

the sheaf ® Opn(l). A 1-parameter subgroup a(k*)-» G acts on these coordinates 
via: 

Ma)(X|) = aN(l)X|, 

where 
N(l) = Z mr,, 

and where nj is the number of times that i appears in I(1),...,I(1). 
By Proposition 2 we have to IOOK for the points (x1,...,xm) such that 
(**) min|{N(l):X| * 0} £ 0 (resp. < 0). 

Permuting the points x\...,xm we may assume that the matrix X of their 
coordinates has the following form: 

It ... M « ... * ... * ... 
0 ... 0 * ... * ... * 

. 0 ... 0 0 ... 0 ... * 

K 0 K1 KN 

where the bottom most entry in each column that is indicated by a "*" is 
non-zero. Obviously the minimum NCI) occurs when 

l(i) = (0 0,1 1 n n} 
K0 K1 KN 
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n 
1 I TtK: . ¡=0 ' 

Now note that every vector r = (r0 rn) satisfying (*) can be written as a linear 
combination of the vectors 

rd = (rdJ rd,n) = (n-d, .,n-d,-(d+l) -(d+D) 
d+1 

d = 0 n, with positive coefficients. This shows that it is enough to checK (**) 

for each a defined by r = rd for some d < n. We find that 
n d n 

N(l)/1 = I rd ,K, = (n-d)EK, - (d+1) I K, = 
i=o ' i =o i=d+i 

d d 
= (n-d)lKl - (d+1)(m-lK,) = 

i=o i =o 
d 

= (n+DI K| - m(d+1). 
i =o 

Thus (**) holds if and only if 

I Kj s m(d+1)/(n+1) for d = 0 n-1. 
i =o 

It remains to observe that the maximal number of points among the xj's which 
span a projective subspace of dimension s d is equal to Z Kji=o. Thus (**) holds if and 

only if the condition of the theorem is satisfied. This proves the theorem. 

Corollary. 

(pm)ss= (|pm)S^ m and n+1 Qre coprjme 

In particular, P™ is nonsingular in this case. 

RemarK 1. Assume m £ n. Then 

dim <x1 xm-1>+1 < m-1 < (m-1)(m+1)/m s (m-1)(ji+1)/m < n+1. 

This shows that 

(IP™)SS = 0 if m < n. 

This agrees with RemarK 2 from n°2 of Chapter I. 

Similarly, we see that 

(IP™)5 = 0 if m = n+1. 
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3. Most special point sets. 

Here we describe the image J9 of 
S = OP n>*sNCf>7J>* 

in P"R. 

Let x = (x1 xm)cd2). Then x contains K < m points which span a subspace of 
dimension 

K(n+1> 
d, = i. 

m 
Choose such a subset (xV-.V'S) with minimal possible dr Let {x,i,...,x,|ci XIKI+K2) be 
the subset containing {x 1 x *i} and spanning a subspace of minimal possible 
dimension d1+d2-1 i d1 that satisfies Ô +KjXn+O = mCd^d .̂ Continuing in this way 
we will be able to find an element gcG and a permutation a of the set (x1 xm) such 
that the coordinate matrix of the point set o»gx has the form: 

idix; 0 X2 ... 0 X\ 
0 0 id2x2... 0 Xj2 

0 0 0 0... ldjXJ. 

where Kj = mdj/(n+1), Xj* is a d|X(iCj-dj)-matrix, with no column zero when 
i = j , and Iclj is the identity matrix of order dj. We say that x is of type (d1 dp if 
its coordinate matrix is of the above form. We extend this definition by assigning 
the type (n+1) for every stable point set. Clearly n+1 * d^dj+.-.+dj, i.e. (d1 dj) is c 
partition of n+1. Evidently the type of x is not defined uniquely. 

Let us see how the 1-parameter subgroup fld-£* ~* G defined by the vector 
rd from the proof of Theorem 1 acts on x. Observe that 

1 im 
a-o r^d(a)X€(P^)ss 

if and only if 

d = Dt : = Ed, 
= 1 

for some t<j. In this case the specialization is a point set defined by the matrix 
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Id X1 О X, О О О О 

О О ... .:. idt х£ О 0 ... 0 0 

° ° ° о dt+1 х£; . . . о xti1 

JO 0 0 0 0 О ... Idj xj 

The stabilizer of this point set contains the subgroup of transformations of the 
form 

cclDt О 

o elDJ-DT 

Therefore the orbit of such point set is of dimension smaller than the dimension 
of the general fibre of the projection 0 (IP^)35- P™. 

We say that a point set is special if its stabilizer is of positive dimension. 
The orbit of such a point set is called special too. It is clear that every special 
orbit is contained in the closure of an orbit of some non-special point set. 

Applying all the 1-parameter subgroups flD|(&*), we can specialize x further 
to obtain a point set with coordinate matrix of the form: 

ld X1 0 0 ... 0 0 ai 1 
0 0 ld X2... 0 0 

0 0 0 0 ... Id. xJ 

This will be called a most special point set of type (dv...,dj). It is easy to 
see that a most special point set cannot be specialized further. Its orbit is closed 
and is of dimension: 

dim G-dim Gx = n(n+2)-j+1. 
Every fibre of 0 (IP™)SS-- P™ over £ contains the orbit of some most 
special point set (a most special orbit). We extend this definition by also calling 
the orbits of stable point sets most special. 

Let d = (d1 d:) be a partition of n+1. We call it admissible with respect to m 
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if Kj = djm/(n+1) is an integer for each i = 1 ..j. The partition d = (n+1) is always 
admissible and is called trivial. For each admissible partition of n+1 with respect 
to m, let L1 Lj be disjoint subspaces of Pn of dimension dT-1 dj-1 respectively, 
and let Ud(L, Lj) be the image of the natural map 

(L1Ki)sx...x(LjKJ)s - P „ 

and Ud be the union of all subsets UdCLj Lj) and their images under 
permutations of the factors. It follows from the above discussion that Ud is equal 
to the union of most special orbits of type d. It is easy to see that 

j 
dim*(Ud) - I dim((L1lc,)s/PGL(d,)) = 

j j 
= L (drl)(Krd,-1) = J-m+(E d|2)(m-n-1)/(n+1). 

1=1 ¡=1 
Note that $(Ud) consists of several components permuted under the natural 
action of Zm in(P™)ss. Moreover 

u(n+l) = ( P - ) s ^ = d<iu+iud. 

Note that a non-trivial admissible partition of n+1 with respect to m exists 
if and only if m is not coprime to n+1. This agrees with the Corollary to Theorem 1. 

Theorem 2. P™ is a normal rational variety of dimension n(m-n-2) if m i n+2 and 
dimension zero if m = n+1. Its singular locus is contained in J9. 

oo 
Proof. It is well Known that the ring e r(Pn,3S®K) is normal ( it follows from the 
fact that the Segre and Veronese varieties are projectively normal). By a 
standard argument this implies that the ring of invariants R™ is normal, and 

P™ = ProjCR™) 

is normal. We Know that, if m i n+2, 

dim P™ = dim ^((P^)5) = dim *(U<n+l)) = n(m-n-2), 

and Pp is a point if m = n+1. 
The assertion about the singularities of P™ and its rationality follows from 

a stronger result asserting that Pp\ J9 is covered by open subsets each of which 
is isomorphic to an open U c An(m_n_2). To see this we note that a point set x = 
(x1 xm)€(P™)s cannot be separated by two disjoint linear subspaces. That is, 
there do not exist disjoint linear projective subspaces L" and L" of Pn such that 
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every x} lies in either L' or L". In fact, if this happens, after a permutation of the 
points, the coordinate matrix of x IOOKS Ike 

x , 0 
0 x^ 

This easily implies that dim Gx > 0 , and hence x is not stable. Thus we can choose 
n+1 points x1 which are not in one hyperplane, say x1 xn + 1. Without loss of 
generality we may assume that the coordinate matrix of x1 x n + 1 is equal to the 
identity matrix ln+1. Now for each K between 2 and m-n we let SK' be the set of 
integers i such that the points x1 x1 x n + 1,x n + K span P n . In other words, 

SK' = {¡€(0 n): x j

( n + K > * 0 }, 

where xn+K= (x 0

( n + K > x n

( n + l°). It is obvious that {0,1 n} cannot be separated into 
two disjoint subsets f and l" such that every SK" is contained in I* or l". Thus we can 
find a suitable set of subsets SK c SK' such that 
(i) USK = {0 n}; 
(ii) S^CS^^^USj) consists of one integer, for 3 < i < m-n. 

Let U be the open subset of IP™ defined by 

P n = <x1 x1 x n + 1,x n + K > for all i€S{, K = 2 m-a 

IPn = <x1 xn+\>. 

There exists a unique gcG such that for every xcU the coordinate matrix of gx 
has the following form: 

Nn.1 XI, 

where for each K, the K-th column of X has 1 as the entries in the rows whose 
indices are from SK. For example, if {S2,...,Sm_n) = {{0,...,n},{n} {n}}, the coordinate 
matrix of gx must IOOK liKe 

1 0 0 ... 0 1 * 
0 1 0 ... 0 1 * ... * 

0 0 ... 0 1 1 1 ... 1 

To see this we observe that after reducing the points x1 x n + 1 to the points 
(1,0 0) (0,...,0,1) by a suitable g€G, there are still non-trivial transformations 
left in G which fix x1 xn+1. They are the homotheties 
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<t0 tn> - (a0t0 antn), V^n • 1. 
Thus we may use them to normalize the j-th coordinate of x^ , jcS2. Then we 
normalize the j-th coordinate of xn*3 for jcS2ns3 by a projective factor. Next use 
again the homotheties to normalize the remaining i-th coordinates of xn+3 for 
i€S3, and so on. Clearly this defines g uniquely and defines a G-equivariant 
isomorphism 

GxAn(m-n-2) =* u ' 
where G acts on G by left multiplication and identically on the affine space. Of 
course, the affine space An(m_n_2) is the space of all non-normalized coordinates 
of the points from gx. This shows that (P™)8 is covered by the invariant open 
subsets un(Pp)s whose quotients are open in An(m.n.2).This proves the assertion. 
Moreover it shows that the projection 

*: (P™)s - P™\J0 
is a principal fibre bundle of G over Pp\JKf in the sense of IMu 1], Definition 
0.10. 

RemarK 2. It is convenient to use Pn(m-n-2) as a birational model of P™ in such a 
way that the factor projection $ identifies the set U0 c P™ of points with the 
coordinate matrix: 

1 О О ... О 1 t01*3' ••• t-T 
0 1 о... о i tm:3>... t(T' 
о... о l o i t^:3)... tí™ 
О О ... О 1 1 1 ... 1 

with the open subset {(t0 tn(m_n.2))€Pn(m.n.2): t ^ . ^ ) = 1} by assigning to the 
point set x = (x\...,xm) the point 

/t(n+3) f(n+3) f(n+3) f(m> |.(m) -\ VL 0 'L 1 In-1 ' *'t o ln-i'i;-

RemarK 3. One can also show that P™ is a Cohen-Macaulay variety with rational 
singularities. This follows from general properties of the orbit spaces under 
reductive groups or from the fact that P™ is a toroidal embedding (M.Hochster). 
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4. Examples. 

Example 1 (n=1, m is odd). 

In this case 

(IP™)5 = (IP m ) s s 

and Pm is a nonsingular rational variety of dimension m-3. 
For instance, if m =5, P̂  is isomorphic to a Del Pezzo surface of degree 5, 

that is, a surface obtained by blowing up 4 points in the projective plane. 

Example 2 (n=1,m=2K is even). 

A point set x = (x1 x2K} belongs to & = (Pm ) s s \ ( P m ) s if and only if exactly 
K of the of the points x' coincide. The fibre of $"1($(x)) for such a point set x 
contains a most special orbit of type (1,1). It consists of point sets x such that 
x'1 = ... = xi|c, xji = ... = xJK for the complementary subsets {\v...f\K}9 {j1,...,jK} of 
{1 m}. The subavriety ¿9 is the union of i( m ) points, each of which is a singular 
point of P m . For instance, if m = 6, P̂  is isomorphic to the Segre cubic primal V3 

with 10 = ¿(3) nodes. Their coordinates are (±1,±1,±1,±1,±1,±1), where exactly half 
of them are positive. Here we assume that the equation of the cubic is taKen in its 
I6-invariant form (cf. p.17). 

Example 3 (n = 2, m = 6). 
There are three different partitions of n+1 = 3: d = (3),(1,2), and (1,1,1). All 

of them are admissible with respect to 6. The first corresponds to stable points. 
The second one corresponds to most special orbits of point sets x = (x\...,x6), 
where two of the x's coincide and the four remaining points lie on a line disjoint 
from the two coinciding points. The images of these orbits define 15 = (̂ ) one-
dimensional components of s. We denote them by lM. Each of them is isomorphic to 

P7\<0 = IP AC0.1.00}. 
The third partition (1,1,1) corresponds to most special orbits of point sets 

which contain 3 disjoint pairs of coinciding points {xf,Xj}, {xK,xi>, and (xm,xn). The 
images of these orbits give 

15 = i 
3! 

6 2 4 
2 

points in «0. We denote them by xn k,i m n . It is easy to verify that each line 1M 
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contains in its closure exactly 3 points Xjj/Kl>mn. Moreover, each point xijKl mn is 
contained in the closure of the 3 lines ljj, lKl, and lmn. 

Note that most special point sets lie on a curve of degree 2. Hence 
c v4 = (t5 = 0) c F*. 

The lines ly are the double lines of the level 2 modular quartic 3-fold V4. The 
points xu Kl mn ore the triple points of V4. The union of the singular lines «© is the 
boundary of S2(2) and is described for example fn IvdGl. 
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III. ASSOCIATED POINT SETS. 

In this chapter we describe a duality between point sets Known in classical 
literature as association. It establishes an isomorphism of algebraic varieties: 

um,rv rn rm-n-2-
satisfying 

-1 
am,m-n-2 ~ am,rv 

From now on we will always assume that 
m * n+2. 

1. The association. 

Let xclP™ and X be its matrix of projective coordinates. A point set yelP^.p. 
is said to be associated to x if its coordinate matrix Y satisfies 

X-A^Y = 0 
for some diagonal matrix A = diag(flv...,?im) with all ify * 0. Note that the relation 

q is associated to p" is symmetric and is preserved under the G-actions. 
Another way of viewing the definition of association is to consider X and W 

as linear transformations 
X" Km —+ Kn+1 Ŷ' Km~n~1 • Km 

Then X€lPp and ytP™-n-2 are associated if and only if they have coordinate 
matrices X and Y, respectively, such that the following sequence is exact: 

0 - Km-n_1 -Km - Kn+1 - 0. 

Note also that for every permutation a€lm the point sets x = (x1 xm) and 
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y =(y1 ym) are associated if and only if ax = (xa<1) xa<m)) and ay = (ya(1) ya(m)) 
are associated. 

We will see later that a point set associated to a stable point set x is stable 
and its G-orbit is determined uniquely. Thus there is an isomorphism: 

amn: (Pm)s/PGL(n+1) - (P™_n_2)s/PGL(m-n-1). 

Example 1. Let x = (x1 x4) be a stable point set in P4.A point set ycPfis 
associated to x if and only if it is projectively equivalent to x. Let us verify this. 
By the stability criterion, x consists of distinct points. Replacing x by a 
projectively equivalent point set we may assume that the coordinate matrix X of 
x has the form: 

1011 
011a_' 

Assume that y = (y\...,y4) is associated to x. If y1 = y2, we can choose a coordinate 
matrix of y in the form 

1 1 bd 
0 0 c e_ 

and find nonzero 1̂,̂ 2,̂ 3,and fl4 satisfying 
flj+f^b+f^d = 0, 
fl3c+fl4e = 0, 
fl2+fl3b+fl4ad = 0, 
fl3c+fl4ae = 0. 

Computing the determinant of the coefficent matrix of this sytem of linear 
equations in ?V we find that a = 1. This contradiction shows that y1 * y2. Similarly 
we verify that y1 * yj for any i * j . Thus y must be stable. Then, applying a 
projective transformation to y we may assume that its coordinate matrix has the 
form 

1011 
0 1 1 b_ 

and obtain the following system of equations for the T\{s: 
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fl + f3 +f4 = 0, 
3̂+7̂ 4b= 0, 

fl3+fl4a= 0, 

fl2+fl3+fl4ab = 0. 
This implies that a = b, i.e. x = y. Moreover, the system can be solved in this case 
by taking fl4 = 1, fi3 = -a, fl2 = a(1-a), \ = a-1, all non zero 

Note that the assertion fails if x is not stable. For example, if x1 = x2 * x3 * 
x4, we can find an associated set y to x with y1 * y2 * y3 = y4. 

The main algebraic property of associated point sets is that the 
complementary minors of maximal order in their suitable coordinate matrices 
are proportional (see Theorem 1 below). This implies that the images of 
associated points in the spaces P™ and P^-n-2are equal after we establish a 
certain isomorphism between the graded algebras R™ and R^-n^ • Let us do first 
the latter. 

Let z = (TJJ) be a tableau of degree Kl and weight WK. We denote its rows by 
tj = (Tm xin+1), i = 1 WK. We view it as an ordered subset of (1,...,m). 

Define the associated tableau A(x) by 

A(x)} = (1 m}\tWK.i+1 

reordered in the increasing order. Clearly A(T) is of weight WK and of degree Kl' 
with 1" = w-1. If 

TWK-i+1 = ŴK-i + H'-'̂ WK-i+l n + 
we have 

A(T)J = (1,...,xWK_l+11-1,xWK_j+11 + 1#«wTWK„j+1 n+1-1,TWK_I+1 N+1 + 1 ,...,m), 

A(x)i+1 = (1 tWK_j t-l^wK-j ! + 1 tWK-i n+r1'TwK-i n+1 + 1,...,m), 
hence A(x) is standard as soon as x is. 

Note that A is involutive, i.e. 
A2 = identity. 

The association z -» A(x) extends to the corresponding monomials 

A(Uk> = UA(T> 

and by linearity to an isomorphism of graded vector spaces 
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An,m pm 21 Pm-2 

Theorem 1. An,m is an isomorphism of graded algebras 

Ап.т* Kn Km-n-2-

Proof. We have to verify that 
A(iaT)A(|aT') = ACUt-Ut-O. 

Note that the R.H.S. can be defined by writing the product as a sum of standard 
monomials and extending A by linearity. The L.H.S. can be written also as a sum of 
standard monomials. Thus we achieve our goal if we can show that the steps in the 
algorithm of straightening monomials are the same for both iiT and UA(T>- TN'S 
verification is rather tedious and we sKip it (see [Or]). 

Corollary. The isomorphism AN,M: R™, Rm-n-2 induces an isomorphism 

an,m1 Pn ^ Pm-n-2 • 

We will call this isomorphism the association isomorphism. 

Example 2. Let n = 1, m = 4. Under the association 

u 12 
34 

Ц 12 
34 

И 13 
24 

u 13 
24 

ThusA1/4: R4^ R4 is the identity isomorphism, hence a1/4: P4^ P4 is the 
identity isomorphism. This is in accord with Example 1. 

Example 3. Let n = 1, m = 6. We use the notation of Example 2 from Chapter 1. 
Under the association of standard monomials: 

t0 = (12)(34)(56) (1234)(1256)(3456) = Z0, 

t- = (13)(24)(56) (1234)(1356)(2456) = ZV 
t2 = (12)(35)(46) (1235)(1246)(3456) = Z2, 
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t3 = (13)(25)(46) — (1235)(1346)(2356) = z3, 
t4 = (14)(25)(36) - (1235X1346X2356) = z4. 

Both of the varieties P6 and P̂  are isomorphic to the same cubic hypersurface in 
P4 (the Segre cubic primal). Note that if we fix 5 points in general position among 
(y1,...,y6)cP3 and let the other vary, say y6, the functions Zj represent quadrics in 
P3 passing through the points y1,...,y5. These quadrics map IP3 birationally onto a 
cubic hypersurface in P4 isomorphic to the Segre cubic primal V3. 

Example 4 (n * 2, m - 6). 
In the notation of Example 3 from Chapter 1, we find that under the 

association isomorphism A2F6: R£ 

t, — t, , i = 0 4, 
y1 = (123)(145)(246))(356) -* y2=(124)(135)(236)(456). 

Thus the association involution 

an#m(*(x» = *(y) 
is the cover involution of the projection P2 -» P4. in particular, its locus of 
fixed points is the divisor parametrizing point sets lying on a curve of degree 2. If 
p * 2, it is isomorphic to the level 2 modular quartic 3-fold V4. 

Theorem 2. Let xc(Pm)ssand y€(Prm.n_2)ss be associated point sets. 
Then 

an#m(*(x» = *(y). 

The proof will follow from the next two lemmas. 

Lemma 1. Let xcPmand y€Prm-n-2De associated point sets. One can choose the 
coordinate matrices X and Y of x and y, respectively, such that 

Ah"*in+1T Ji"-jm-n-i M ''n+1 TJ1 -Jm-n-1 u' 

where ti, in+i)̂ Ji Jm-n-i> and <V W>'Ui' Jm-n-i'> are any two Pairs of 
complementary subsets of {1,...,m}, and X .̂..in+l, Y^.-.j^^,... are the corresponding 
minors of X and Y composed of the columns indexed by these subsets. Moreover, 
the sign + must be taKen if and only if {i1 in+1) and {i/ in+1'} differ by an odd 
number of entries. 
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Proof. Obviously we may assume that the sets Ci1 in+1} and {i/ in+1'} differ only 
in one element. Also, after reindexing, we may assume that 

{iv...,in+1} = {m-n-1,m-n+1,...,m}, 

{!/ in+i'} = (m-n,m-n+1 m). 

For every 1 s i £ m-n, we expand the minor Xi/m.n+1 m along the first column to 
obtain 

n 
X|,m-n+i,-,m = K̂XK 

K=0 
Similarly we have for every m-n-1 £ \ £ m 

m-n-2 
î,...,m-n-2,i = ^ NjVj 

Choose X and Y in such a way that 

X-W = 0. 

Then 
m 

0 = 1 xK(l)yi(I) . K = 0 n, j = 0 m-n-2. 
1=1 J impl ies 
n m-n-2 m 

0 = 1 E I MKXKCI)yj(,)Nj = 
K=0 j=0 ¡ = 1 

m 
~ E X¡,m-n+i,--,m ̂ 1,...,m-n-2,i-¡=1 

In this sum only the terms corresponding to i = m-n-1 and m-n are non zero. 
Thus we obtain 

u ~ Xm-n-i,m-n+1 ,m 1̂ ,...,m-n-2,m-n-i + ̂ m-n,m -n+1 ,m 1̂ ,...,m-n-2,m-rv 

Lemma 2. Let xc(IPm)ss and y c(Prm-n-2)SS beassociated point sets. Assume that 
Rm is generated by (Rm)K. Let \iz be a monomial of weight WK and degree Kl that 
does not vanish on x. Then the monomial |iA(x) does not vanish on y, and for any 
other monomial x weight WK and degree Kl we have 

(|iT7M<x> - CUA(T')/HA(x)><y>-

Proof. Clearly we may assume that x and x' are both semi-standard. Note that any 
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semi-standard tableau may be obtained from a fixed one by a series of the 
operations x x\ where 

Til = (tM Ti0<j0Tlvn+1>' 

Til = (tM Ti0<j0Tlvn+1>' 
T,' - X, . I * \0,\V 

and ti1.j1 appears in slot j0, x{ #j appears in slot jv followed by row straightening. 
Thus it suffices to show that 

UT'(X) UA(0<y> 
(*) = 

UT<x) UA(T)<y> 
for such pairs x and x'. Note that, if |iT(x) * 0, there exists x' such that UA(T')(y) * 0 
because yc(IPr{J1_n„2)ss and (R^-n^K generates Rrm-n-2- Tn's shows that |iA(T>(y) * 0 
and checKs our first assertion. 

We have in the notation of Lemma 1: 

Ur<x) ^Tl0i-Ti0n+i^Tl1i-Tl1n+i 
Ur<x) d:' = K:-d: = d;(m-n-1)/(n+D). 

d:' = K:-d: = d;(m-n-1)/(n+D). 
^Tl0i-Ti0n+î Tl1i-Tl1n+i 

n 
1*1, 

|iTî'(x) 
D'îiH-c.Cx) 

YA(T')WK_Î +1 1-A(x')WK_j +1 n+iYA(t*)WK-i 1+1 f A(T')WK_, +1 N+1 
Y Y A(-c)WK_i +11 -AdJv/K-i 0+m+l A(TZ)WK_] A(TZ)WK_j +1n+i 

n 
i*WK-iQ/WK-i 

UA(T')i(y) 
Ur<x) 

UACT̂ Cy) 
UA(x)(y> 

Proposition 1. Let xc(IPm)ssbe of type (d< dj). There exists an associated point 
set ycOPm-n-o)33 of type (d' d;'), where 

d:' = K:-d: = d;(m-n-1)/(n+D). 

Proof. After the reordering the points of x, we may assume that the coordinate 
matrix of x is of the form 
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IH 0 0 ... 0 x\x* ... x; 
0 ld 0 ... 0 0 X\... XJ2 

0 0 0 ... Id. 0 ... 0 XJ. 
d/ d,'... dj', 

where the numbers at the bottom of the matrix indicate the number of columns 
in the submatrices Xj. We can find a matrix Y of order mx(m-n-l) satisfying X»tY 
= 0 and having the form 

Yj Yj ... Ŷ  0 ... 0 0 ld-

Y12 Y\ ... O 0 ld ' 0 ... 0 
Y\ 0 ... 0 ld ' 0 0 ... 0 
a, a, ... dj 

where 
tY] + xj = 0 

This shows that Y is the coordinate matrix of an associated point set which is of 
type (d/^dj'). 

Corollary 1. 
< W P n ^ > = P™-n-2U9. 

Corollary 2. For every xc(Pm)s there exists a unique associated point set y up to 
projective equivalence. Moreover yc(P,{J!-n-2>s-

Remane 1. In the notation of Remane 2 from Chapter II, let X€U0cpm be 
identified with a point 

( v<n+3) v(n+3) v(n+3) v<m > v <m ) 1 N 
O 'A 1 /«.**n-1 ' O '""An-1'i; 

of Pn<m-n-2)- Similarly, we may identify the subset 

V0 - (yePm-n-2 ^^- (0 1 0), K=n+2 m, y(n+,)=(1 1), ym™_2 ym%-2 + 0i 
with Pn(m-n-2) bY sending ycV0 to the point 
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z(y> = <ym«>_, ym™.3.~.W y0<n>-D-
Then it is verified by direct computation that x is associated to y if and only if 
the corresponding points in Pn<m-n-2)are eclual-

2.Geometric properties of associated point sets. 
So far our definition of associated point sets was purely algebraic. In this 

section we IOOK at the association from the geometric point of view. We will 
restrict ourselves to general point sets. A point set xclP ^ is said to be general if 
any subset of K s n+1 points spans a (K-D-dimensional linear projective space. We 
denote the subset of general point sets by (P™)gen. It is clear that 

(pm}gen c (|pm)S 

Proposition 2. If x=(x1 xn+3)€(Pnn+3)9en is associated to ycCP"!3)̂ 6" then there 
exists a unique isomorphism from P1 onto a rational normal curve Rn which sends 
y to x (preserving the order). 

Proof. Recall that a rational normal curve Rn is the image of P1 under a map given 
by the complete linear system IOp (n)l. Counting constants we checK that any set 
of n+3 points in Pn lies on a rational normal curve. The uniqueness of such a curve 
is clear in the case n = 2. The general case is reduced to this case by projecting 
the curve to P2 from a subset of n-2 points (see IG-H1). Let us verify the other 
assertion of the proposition. Note that a linear parametrization on Rn is given by a 
pencil of hyperplanes through any (n-D-secant (n-2)-plane, for example the 
(n-2)-plane Ln_2 that is spanned by the points x5,.../xn+3. Let 

M(u,u) = <x5 xn+3,u,u'> 

denote the bilinear form that vanishes whenever the line <u,u*> intersects 
the (n-2)-plane Ln_2. M(x,u') is then the equation of a hyperplane on the n points 
x,x5,...,xn+2, unless xcLn_2, in which case it is identically zero. Thus M may be 
considered as a rational map from Pn onto the pencil inside the dual projective 
space IPn* spanned by the hyperplanes through Ln_2. It follows that M may be 
represented by a 2x(n+1) matrix M = (Mjj), so that, once a basis {h(u)vh(u')2} is 
chosen for the pencil, we have 
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n+1 
M(u,u) = Ê ChCu'̂ M Ûj+hCu >2M2jUj>. 

Now apply M to the left side of the equation X»A»TY = 0 for the association of x and 
y, and use MCX'A/) = 0 for i = 5,...,n+3 to obtain 

KirCM|'rXr(,c)̂ yj<K) = °' 

The 2x4 matrix obtained from M«X by throwing away the zero columns can be 
considered as the matrix of coordinates for the projection of x\...,x4 onto a line 
from Ln_2. Thus the above equality says that this projection of (x1 x4) is 
associated to (y1 y4). By Example 1 they are projectively equivalent. Since this 
is true for any choice of four points, the entire sets are projectively equivalent 
to each other (when x is considered as a subset of Rn » pp, and we are done. 

In a similar way we can prove: 

Proposition 3 . Let xc(Pm)gen be associated to y€(Prm_n_2)gen, and (xn x,m) be a 
point set on obtained by projecting an ordered subset (X1r xlfT1) of x from the 
(n-2)-plane spanned by x1 xn-1. Then there exists a unique isomorphism from P1 
to a rational normal curve in Pm-n-2 which sends (xlr\...,xlm) to the ordered subset 
(yln,...ylm) of y. 

We shall call a rational normal curve Rn a basic rational normal curve if it 
passes through a fixed general set of n+2 points (a basis of Pn) which is assumed 
to be fixed from now on. The set of basic Rn has dimension n-1 and may be used as 
a model of P",*2 since the projective equivalence classes determined on each of the 
Rn by the n+2 points in the basis are distinct. Thus, to construct a point set y that 
is associated to a given point set x, we proceed as follows. First choose y\...,ym~n 
to be a basis for Pm_n_2 and set, for i = m-n+1 m: 

Lj = <xm_n+1 x1 xm> c Pn. 

Then find the unique basic rational normal curve R1 in Pm_n-2 for which there 
exists an isomorphism to P1 which maps the basis of Pm-n-2 t0 tne projection of 
x1 xm"n from Lj onto Pv Finally set y]eR] equal to the point which is mapped to the 
projection of x1. 
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We may generalize the technique used to obtain the previous two 
propositions to provide one more property of associated sets. 

Proposition 4. If X€(Pm)9en is associated to y*<P™-n-2^en then the projection of 
the point set (x1 xm"K) from the plane L spanned by xm'K+1 xm to IPn_K is 
associated to the point set (y\...,ym~K). 

Proof. Use 

M(u,uy un.K") = <u/ un_K\u,xm~K+1 xm> 
to denote the multilinear form that, for fixed u, vanishes when the (n-K-D-plane 
<u1',...,un.Kl> intersects the subspace spanned by L and u. As such, M may be 
viewed as a map from Pn to the (n-K)-dimensional linear subspace of the 
Grassmannian G(n-K,n+D* = G(K+1,n+1) given by the K-planes that pass through L. 
Represent M with an (n-K+1)x(n+1) matrix and proceed as in Proposition 2. 

3. Self-associated point sets. 

Assume 

m = 2n+2. 
Then 

a = a • Pm — Pm un- un,m • Kn *n 
is an involution. 

We set 

Sn = {xcP2̂ 2: OpCx) = x). 
A point set X€(P2n+2)ss is said to be self-associated if *(x)cSn. It follows from 
Corollary 2 in the previous section that a stable point set is self-associated if 
and only if it is associated to itself. 

We have already seen in Example 4 that xcCP*)85 is self-associated if and 
only if it lies on a curve of degree 2, and 

S2 > V4. 

the level 2 modular quartic 3-fold. Note also that 

Si = Pf-
We will generalize these two examples by proving a theorem of Coble that 
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asserts that a sufficiently general point set is self-associated if and only if it 
imposes "one less condition on quadrics". The latter means the following. 

Let Z be a O-dimensional closed subscheme of Pn, n > 1, with the ideal sheaf 
&z. The exact sequence 

0 - Opn - Oz - 0 
defines, after twisting by ©pn(K) and passing to cohomology, an exact sequence 

0 - H°(Pn,0z(K)) - H°(Pn,Opn(K)) - H°(Z,0Z(K)) - H1(IPn,0z(K)) - 0 , 
where the middle map 

rK : H0(Pn,©pn(K» -> H°(Z.0z(K» 
is interpreted as the restriction of a homogeneous form of degree k to the 
subscheme Z. Its Kernel consists of hypersurfaces of degree k that vanish at z. 
We set 

s(Z,K) = dim CoKer(rK) = dim H1(Pn,0z(K)). 
Clearly 

dim H°(Pn,0z(K)) = dim H°(Pn,0pn(K)) - 1(Z) + s(Z,k), 

where 
HZ) = dim H°(Z,©Z> 

is the length of Z. 
If Z = Zped* KZ) = #Supp(Z), and we expect that each point from Z imposes 

one condition on a hypersurface of degree K to pass through it. This shows that 
s(Z,K) is the number of "extra" linearly independent hypersurfaces passing 
through Z. 

We apply this to our situation where Z = {x\...,xm} is equal to {x}, and is 
considered as a reduced subscheme. We assume that all the points x^s are 
distinct. 

RemarK 2. Note that H°({XJ,0{X>(1)) * Km and H^OcMood)) - Km"n"1 if x1 xm span 
IPn. The points x' define an ordered subset in P(Ho({x},0{X}(1»> and their projections 
to PCH^Cxl̂ cxjCD)) define an associated set of points (see ITy 21). 

We start with the following generalization of a lemma from [Shi: 
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Lemma 3 . Let Z = {x1,...,x2n+1} be a set of 2n+1 distinct points in IPn, n >1, such that 
any subset of 2K+2 points spans a linear projective space of dimension > k. Then: 

S(Z,2) = 0, 
or equivalently, the dimension of the linear system of quadrics passing through Z 
is equal to in(n-1)-1. 

Proof. We prove this by induction on n. For n = 2 we have to show that {x1 x5) 
is not contained in the base locus of a pencil of conies. If it does, the pencil must 
contain a fixed line 1 and consist of reducible conies 1+1', where 1' belongs to a 
pencil of lines through a point y. Thus either four of the xj's lie on 1 , or two of 
them coincide with y. Both of these cases are excluded by the assumption of the 
lemma. 

Assume now that the lemma is true for the sets Z of 2m+1 points in IPm for 
all 2 £ m < n. Note that for any subset Z' c Z we have 

S<Z',2) < 8(Z,2) = 0 

since completing Z' to Z will reduce the dimension of the linear system of 
quadrics through Z' by at most #Z-#Z". 

Let S be a set of 2n+1 points in IPn satisfying the assumption of the lemma. 
We can write 

S = SAUS2, 
where S1 consists of some s>n points spanning a hyperplane H. We have 

dim H°(Pn,0s(2)> < dim H°(H,0Sl(2))+dim H°(Pn,0s2<1» 
by restricting quadrics to H. 

Applying the inductive assumption to Z = S1 c H s IPn_v we have s(Sv2) = 0. 
Hence 

R.H.S < (in(n+1)-s> + n+ 1 -(2n+1-s)+s(S2,1> = in(n-1)+s(S2,1), 
and 

S(S,2) = dimH°(Pn,0s(2)) -i(n+2)(n+1)+2n+1 < 

< in(n-1)-i(n+2)(n+1)+2n+1+S(S2,1) = 5(S2/1). 

Evidently, 

s(S2,1) = 0 iff the set S2 is linearly independent. 

Thus we are done in the case where S2 spans a subspace of dimension 2n-s. If it 
does not, we choose the separation S = S.,L1S2 differently. TaKe a subset s0 c s 
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which consists of n points that span H. Then SJLKS^SQ) consists of n+1 linearly 
dependent points. This shows that we can find a hyperplane H' that contains this 
set. Now set 

s; = SjLKŜ So), S2' = S0 
and replace H by H'. For this new decomposition of S we have s(S2',1) » 0 and, 
repeating the argument, we prove the lemma. 

Theorem 3 . A stable point set x = (x1 x2n+2)cP21n*2 with x1 * xj for all \*j is self-
associated if and only if 

s({x},2) = 1. 

Proof. For every subset {x'1 x,2K+2), K < n, we have by the stability criterion: 

1+dim<xll,...,x,2K+2> > (2K+2)(n+1)/(2n+2) = K+1. 
This shows that every subset of 2n+1 points in tx'1 x'2l(+2} satisfies the 
assumption of the previous lemma. Hence 

s({x},2) s 1, 
and it suffices to prove that s({x),2> i 1, i.e. 

dim H°(Pn,0(X}(2)) > i(n+2)(n+1)-2n-2+1 = in(n-1). 
Let X = (x^) be the coordinate matrix of x. Then x is self-associated if and 
only if 

X.A.lX = 0 
for some A = diag(̂ 1 fl2n+2) with all 7̂  * 0. This condition is equivalent to the 
condition that fl2n+2) is a solution of the system of i(n+2)(n+1) linear 
equations 

(*) 0?l = 0, 

where 

C = (x^x^) = (Cfe.rt.j). 
If x is self-associated 

r<(C) s 2n+1 

and there exists a matrix Q of maximal ranK such that 

Q*C = 0. 

For every column Cj of C and row Oj of Q the equality 
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0,.Cj = 0 
expresses the condition that a quadric whose coefficients are the entries of Oj 
passes through the points xv...x2n+2. Thus we obtain 

rK(Q) = i(n+2)(n+1) -rK(C) * }(n+2)(n+1) -2n-1 = in(n-1) 

linearly independent quadrics passing through {x}. Conversely, if 0»C = 0 as 
above, we have TK(C) < 2n+1 and there exists a nonzero vector ft = (ftv...,ft2n+2) 
satisfying (*). Hence 

X-A^X = 0, 

where A = diagCft .̂..,̂ ^)) . The only problem is that some of the ftj's may be zero. 
Suppose this happens for some 7\y Then the matrix obtained from C by deleting the 
j-th column is of ranK < 2n. This implies that (x}\xJ lies on in(n-1)+1 linearly 
independent quadrics, i.e. s({x}\xj,2) i 1. This contradicts Lemma 3. 

RemarK 3. The assumption of stability of x is essential. For example, a semi-
stable point set in IP4 that consists of 6 coplanar points and 4 collinear points lies 
on a linear system of quadrics of dimension 5 , but it is not self-associated unless 
the six coplanar points lie on a conic. If that is the case, the dimension of the 
linear system of quadrics will jump to 6. In the other direction, a semi-stable 
point set in IP3 that consists of two sets of four collinear points is self-
associated, but there is a linear system of quadrics of dimension 3 that contains 
them. We do not Know a clear cut geometrical statement for the general set in ¿9 
to be self-associated. However, if we use the blocK-diagonal coordinate matrix 
for a most special point set x of type (d .̂̂ dj), it is easy to see that x is self-
associated if and only if each of the subsets of 2dj+2 points that span a subspace 
of dimension dj are self-associated when considered as a point set in IPd.. 

RemarK 4. One can strengthen a little the assertion of Lemma 3 by assuming in it 
that Z spans IPn and that every subset of 2K+2 points in Z spans a linear subspace 
L of dimension > K, as long as we assume that such a subset is not self-associated 
in L in the case when the equality holds (cf. [ACGH1, Exercise F-1 on p.199). 

Example 5. Let C c pg_1 be a canonical non-trigonal curve of genus g i 3. A 
general hyperplane section H cuts C in 2g-2 points. The corresponding ordered 
point set in IPg_2 s H is self-associated. This follows from Theorem 3 and a well-
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Known property of the linear system of quadrics containing a canonical curve 
UG-H1, p.528). 

Example 6. A point set x = (x1 x8)c(P|)s with x1 * xj, i*j, is self-associated if and 
only if it is contained in the base-set of a net of 3 quadrics. Generically (we will 
mcnce this more precise later in Chapter IX), it is equal to the base-set. By 
Proposition 4 the point set y = (y1 y7) in P2 obtained by projecting x1 x7 from 
x8 is associated to the point set (x\...,x7). Conversely, let (y1 y7)€P2 be 
associated to (x\...,x7)cP3 .The linear system of quadrics containing x1 x7 is 2-
dimensional and, again generically, contains one more base point x8. The point set 
(x1 x8) is self-associated. This establishes a natural birational map 

P7 ~> S8. 

We will return to this example in Chapter IX. 

Let us give another geomeric characterization of general self-associated 
point sets. 

Lemma 4. Given a hyperplane H c Pn not containing any of the basis points, there 
is a nonsingular quadric 0H such that any basic rational normal curve that is 
tangent to H is tangent along 0HnH. 

Proof. The unique basic rational normal curve that passes through a given point 
p = (t0 tn)cPn not on any linear space spanned by a proper subset of the basis 
can be constructed as the image of p: P1 — Pn given by: 

To-T.t:)) 
n 

i=o (To-T.t:)) 
to 

To-T.t:)) 
tn 

To-T.t:)) 

= (Po^o^i> Pn^O'tl»' 

where, if we let Ojj(t) denote the j-th elementary symmetric function in the 
n variables t0 t, tn multiplied by (-1)j, 

Pi(VTi> = ti 
n 
Z 
j=o 

O::(tHA0n-J. 

Note that 

p(1,0) = p, p(0,1) = (1 1), p(ti,1) = (0 1 0). 
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Let H be given by Ea:X: = 0, and suppose that Rn is tangent to H at p. Define Rn by 

using the coordinates of p so that we have: 

(Ea,ap,/aT)(1,0) = -ra,t,OY,(t) = -E a,t,tj = East/ = 0, 
i i i*j j 

where x = x^/x0. Thus the quadric that we are seeking is 

QH(x) = Ea;X|2, 

and its nonsingularity follows from Oj * 0 for all i, due to the condition on H. 
We will call the quadric 0H constructed in the previous lemma the basic quadric 
with respect to H. 

Lemma 5. Let H be a general hyperplane in IPn. For every basic rational normal 
curve Rn the points HflRn are mutually polar with respect to the basic quadric QH. 

Proof. Let Rn be defined as the unique basic rational curve passing through a 

point p = (t0 tn)€H, and let p' = (t0' tn') = p(1,T)€HHRn. We must show that 

QH(p,p) = Ia,t,t.' = 0, 

where H is given by an equation EOjX: = 0. Let t J = t?i... tŝ  denote the monomial 
indexed by an increasing sequence lj=(i1 ij) where iKc{0 n} (also, let t'° = 1 for l0 
= 0). We can write the coordinates of p" in the form: 

n n 
ti' = t¡ Z <7¡j(t)TJ = t, I I I С1 )Jt'JTJ. 

j=0 j=0|ji^|; 
By using Ia¡t¡ = 0, we may write Ea,tj* = 0 as: 

n n П-1 
0 = 1 1 1 (-l)Ja¡t¡t,JxJ = - I I I (-1)Ja¡t¡t,JxJ = x l I I (-DJQlil(tît,J)TJ. 

J=oiji4ij j=1'jH|j J=1iji4"j 

Since t.t'n = ^t^^tp, for i4ln, we obtain 

EOjtjUjt'n) = o. 

By adding this to the last equation above, we obtain that: 

n 0 = x I I I (-1)jait](tit,J)xj = 
J = 0|.i4|. 
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n 
= x E aidjtjti' = xQH(t,t'). 

i=o 
Lemma 6. Let p:P1 — Pn be a morphism whose image is a rational normal curve 
Rn, and let TTL:(Pn\L) P1 be the projection from an (n-2)-plane L. It the set of 
n+2 points (x\...,xn+2) in P^ is projectively equivalent to the point set 
((TTLop)(x1) (TTL<>p)(xn+2)) then LHRn consists of n-1 points and TT̂Rp P1 is an 
isomorphism. 

Proof. Let {Ht}tcPi be a pencil of hyperplanes through L and s be a parameter for 
P1 adjusted so that the parameter Sj of x1 is equal to tj where pCx̂ cH .̂ The points 
in RnnHt. satisfy an equation at(s) = 0 that has degree n in s and is linear in t. The 
restituted form as(s) of degree n+1 has the n+2 roots s5 and hence is identically 
zero. The form at(s) must then have s-t as a factor, and so by writing 

at(s) = (s-t)b(s) 
for some form b(s) of degree n-1 we see that the n-1 roots of b(s) represent 
base points of the pencil (Ht)tcPi on Rn. 

Proposition 5. A general set of 2n+2 points in Pn is self-associated if and only 
if, when n+2 of its points are used as a basis, the remaining n points are all 
mutually polar with respect to the basic quadric QH, where H is the hyperplane 
that they span. 

Proof. Let x = (x1 x2n*2) be a self-associated general point set in Pn. Choose the 
first n+2 points to be a oasis and let Rn be the unique basic rational normal curve 
that contains them along with xn+3. By Proposition 4, the point set on P1 obtained 
by projecting x1 xn+3 onto a line from the (n-2)-plane L » < xn+4 x2n+2> is 
projectively equivalent to the point set (x\...,xn+3) on Rn.« P* By the previous 
lemma, L intersects Rn in n-1 points and the projection is an isomorphism of Rn to 
Pv Let H = <xn+3,...,x2n+2> be the hyperplane containing L and the point xn+3. By 
Lemma 5, the points HC\Rn are mutually polar with respect to 0H. Thus L is polar to 
xn+3 with respect to QHBy repeating this argument for each of the last n points in 
x we find that they all lie in the same hyperplane H, and that each point x1 is 
determined as the intersection: 

2n+2 
xj = HfV H QH(xJ)), j=n+3,j*i 
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where OhCxj) denotes the polar hyperplane of x-i with respect to Qh- The converse 
follows easily from the construction of the associated point set given in the 
previous section. 

Theorem 4. The variety Sn of projective equivalence classes of self-associated 
point sets in IPn is a rational variety of dimension in(n+1). 

Proof. We will show that the open set of projective equivalence classes of 
general self-associated point sets is isomorphic to the open set of full flags 
{L0cz... cLn>1 cip^ that do not contain any point in the basis. First, given a self-
associated point set x, we construct the flag by sending the first n+2 points in x 
to a basis and by setting 

L, = <xn+3 xn+3+l>. 

Conversely, given a flag, we shall use the polarity QH for H = LN.^ as prescribed by 
the previous proposition to construct a self-associated set. Once again, set the 
first n+2 points of x equal to the basis. Define: 

xn+3 = L0, and xn+3+f = (V,(LM)nL, for i = 1 n-1, 

where Qh(Lj) denotes the polar (n-1-D-plane to the i-plane L{ with respect to the 
basic quadric 0H. Note that the construction forces each of the last n points to be 
mutually polar, hence the previous proposition gives us that the point set x is 
self-associated. Also note that L{ contains xn+3,...,xn+3+I so that the two 
constructions are inverse to each other. Since the flag variety is rational of 
dimension in(n+1), we are done. 

RemarK 5. Applying the previous theorem in the case n = 2 we obtain the proof of 
the rationality of the level 2 modular quartic 3-fold V4 without using that it is 
dual to the Segre cubic primal. 

RemarK 6. We will see later that, when n < 3, there is a natural birational 
isomorphism between the varieties SN and the moduli space &n(2) of principally 
polarized abelian varieties of dimension n with level 2 structure. Note that 

dim SN = dim Clp(2) 

for all n > 1, however, the rationality of SN and the non-unirationality of an for 
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n * 9 (ITa!) implies that such an isomorphism does not exist for n i 9. However 
one may find an interesting correspondence between these varieties. 
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Let x = (x\...,xm)cPm be a point set. There is a natural variety associated to 
it. Namely, we consider {x} = {x\...,xm} as a O-dimensional closed subscheme of IPn 
and blow it up. Of course, this is well-defined only if x consists of distinct points. 
To define the blowing-up variety V(x) for a general point set x we have to enlarge 
our original notion of a point set assuming that some of the points are infinitely 
near. In this chapter we will define simultaneously, following S. Kleiman IK 11, the 
variety parametrizing infinitely near point sets and the blowing-ups of such sets. 

1. Infinitely near point sets. 

Let Z be a smooth algebraic variety of dimension n>1, zeZ be a closed point, 
and Z" = Z(z) be the blowing-up of z. Recall that Z(z) is defined uniquely (up to 
isomorphism) by the properties: 
(i) there exists a proper birational morphism TT:Z(Z) — Z that is an isomorphism 
over ZMz); 
(ii) there is a natural isomorphism 

TT'1(Z) * IP(T(Z)Z) = IPn.,, 
where T(Z)Z is the tangent space of Z at z. 

A closed point z'cZ(z) lying in E = TT"1(Z) is called an infinitely near point of  
order 1 to z. It is denoted by 

z' -» z. 

An infinitely near point of order K to z is defined by induction as an infinitely near 
point of order 1 to an infinitely near point of order K-1 to z . It is denoted by 

Z<K> _» _» Z<D _» Z 
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Let Z denote the Cartesian product of m copies of Z. For every subset I of 
{1,...,m} with #I > 2 we denote 

A(m), = {(z1 zm)€Zm : z, = Zj for all ijcIL 

A(m)K= U#,=KA(m)|/ A(m) = A(m)2/ 

U(m)K =Zm\A(m)K/ U(m) = U(m)2, 

TTj.- Zm Z, the i-th projection, 

TTm = TT1x...xTTm.1: Zm - Zm_1. 

Theorem 1. For every m i 1 there exists a proper birational morphism of smooth 
varieties 

bm : 2m - Zm 

satisfying the following properties: 
(i) the restriction of bm over U(m) is an isomorphism; 
(ii) bm is a composition of blowing-ups with smooth centers; 
(in) if m>2 there exists a smooth proper morphism 

<nm: 2m — 2m"1 

such that the fibre (TTm)"1(z> over Z€2m_1 is isomorphic to the blowing-up of z 
considered as a closed point on the fibre (TTM"1)"1(TTm"1(z)>; 
Civ) the diagram 

2m bm 
2m 

TT m 
TT 

2 m1 
bm-i zn-1 

commutes; 
(v) If m = 1 

V = Z1 = Z, 

(TT2)"1(Z) = Z(z) = blowing-up of zcZ. 

Proof. Let 2° be a single point, V = Z, TT1:?1 — 2°. Then for each i > 1 define 

inductively a Y=2M-variety fV:?1 — 2M as follows. By assumption, Zi-1 is a 

V=2'"2-variety. Define 2l as the blowing-up of the diagonal of YxvY, and the 

morphism 

IT1:*1 _ ¿1-1 
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as the composition of the blowing-up morphism with the projection of the fibred 
product to the first factor. Define the projections bji 21 -» Z1 by induction as 
follows. Let b1 be the identity. Assume that bi_1:21"1 -* Z1"1 is defined. The 
composition of the two projections YxvY -» Y= 2M with bM define two 
projections to Z1"1, hence 2i-2 projections pK and to Z, K = 1 i-1. Since pK = qK 
for K=1 i-2, we obtain i projections p1/.../pl«1,qj_1 to Z . Let b| be the composition 
of the blowing-up morphism 2f -* YxvY with the product YxvY Z1 of these 
projections. Since we only blow up smooth projective varieties along smooth 
centers, all the varieties 21 are smooth and the morphisms TV are proper and 
birational. We only sKetch the proofs of properties (i) -* (v) stated in the 
theorem, leaving the details to the reader. Only (ii) and (iii) do not follow 
immediately from the construction. To see (iii) we use the definition of the 
tangent space of a variety Z at a point zcZ as the fibre of the inverse transform 
of the normal sheaf of the diagonal of ZxZ under the diagonal map Z -* ZxZ. To see 
(iî) we use induction on m. By construction b2: 2 2 Z2 is the blowing-up of A12. 
Assume b^^: 2m~1 — zm~1 is a composition of blowing-ups with smooth centers. 
The morphism 

<p0 = TTm-1x1: X0 = 2m"1xZ - Zm - Zm"1xZ 
is a composition of blowing-ups with smooth centers. Then one easily checKs that 
the morphism bm : 2m — Zm is equal to the composition: 

?m = Y —• Y -* » y _» y 7m 
Am Am-1 — A1 Ao ' 

where X, — X0 is the blowing-up of tf>0~1(A(m)im), <p2: X2 — X1 is the blowing-up 
of (<P0otPi>~1(A(m)2m)/ and so on. It is easy to see that 

Xm-1 a 2m-1xf m-22m-1. 

and cpm is the blowing-up of the diagonal isomorphic to (cp0o...otpm_1)"1(A(m)m_lm ). 

It is natural to view every closed point of 2m as a m-tuple z = (z\...,zm), 
where each point z1 is either a point of Z or an infinitely near point to some zJ with 
j < i. We usually drop the hat over a point from Z. In this notation the morphism bm: 
Zm _> zm sends z = (z1 zm) to z = (z1 zm), where z'cZ and z1 is either equal to z1, 
or is infinitely near to some zj, j < i. The projection frm is the map: 

(z1 zm) - (z1 zm"1). 
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We define the blowing-up variety ZCz) of z = (z1 zm)c2m by setting 

ZCz) = Cfim+1)"1Cz) c 2m+1. 

Thus the blowing-up variety ZCz) comes with a natural birational morphism: 

aCz): ZCz) -> Z 

which is the composition of the morphisms 
k1 .m t aCz)m-i ^<z)2 a(z)1 
:1 zm_1) - ... - ZCCz1)) - Z, -, -m ŒCz)m -, -m , a(z)m-i ff(Z>2 <*<z>i Z«z' zm» - Z((z' zm ') - ... - Z((z')) - Z, 

where 

a(z)i:= ZCCz1 z'» - ZCCz1 zM» 

is the blowing up of the point CzV̂ ẑ cZCCz1 z'"1)) c 21. Note that it is natural to 
identify each zm with the point Cz1 zm) considered as a point of ZCCz1 zm~1)). 

Let 

ACm), = bm-1CACm),), 

A(m)K = bm_1CA(m)K), ACm) = bm"1CACm)), 

0Cm)K = bm_1CZm\ACm)l<:)/ OCm) = bm"1CUCm)). 

It is easy to see that ACm)m_lm is the exceptional divisor of the blowing-up of the 

diagonal of 2m~1x£m-22m~1,and 

ACm̂ j = p̂ CACm-Djj) for 1 s i < j < m-1, 

ACm)im = p2"1(A(m-1)im_1 < i < m-2. 

For example, if m = 3, AC3)123 consists of points of type 

Cz^z^z^Za-zp or Cz1,z2-z1,z3-z2-z1), 

AC3)12\£C3)123 consists of points of type 
Cz1,z2-z1,z3), 

and so on. 
The following proposition follows immediately from the above description 

of ACm): 

Proposition 1. ACm) is a hypersurface in 2m. Its irreducible components are the 
hypersurfaces ACm), with #l = 2. 
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Remark 1. Note that the "diagonals" Ajj(m) are not isomorphic subvarieties of 2m 
contrary to the case of Zm. However, their intersections with the open subset 
0(m)3 are isomorphic. This open subset can be characterized as the maximal 
subset of 2m which the natural action of the permutation group Im on Zm extends 
to. 

RemarK 2. The analog for the space 2m for the variety of unordered point sets 
z<m> _ zm/im is the Hilbert scheme Hilbm(Z) of O-dimensional closed subschemes 
of length m in Z. It is Known [Fol that the canonical cycle map: 

H¡lbm(Z) -> z(m) 

is a resolution of singularities. Let Hilbm(Z)c be the open subscheme of Hilbm(Z) 
that parametrizes O-dimensional subschemes whose ideal is, locally at each point 
of their support, of the form ( t / ,^ tn), where (t,,...,^) is a suitable system of 

local parameters. According to [Ra] there is a natural rational map 

2m Hilbm(Z)cxz<m)Zm 

whose restriction to Û(m)3 is an isomorphism onto its image. 

RemarK 3. We refer toEHaU, where the variety 2m is defined as 
representing a certain functor of families of point sets. 

Returning to our situation where Z = Pn, we have defined the space 

lPm = 2m. 

the birational morphism 

b • lßm 
DM. IK N 

P 
m n ' 

and the projection 

7Tm:lP m n n ' 

satisfying the properties stated in Theorem 1. 

2. Analysis of stability in 2 m 

Let 

[i: G x Z —» Z 
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be an action of an algebraic group G on Z, and 

\Xm: G x Zm - Zm 
be the corresponding diagonal action on Zm. We want to extend this action to an 
action 

jim: G x 2m -+ 2m 

such that the following diagrams commute 

ftm Q m 
G x 2m - 2m G x 2m - 2m 

1xfrm| ifrm 1xbm| ibm 
Qm-1 miti 

G x 2m"1 - 2m_1 G x Zm - Zm 

This can be done step by step by using that each Z is obtained from Z by 
blowing up the diagonal of z^x-̂ i-ii1 and that the extension of the action pi1 to the 
fibred product leaves the diagonal invariant. 

To be a little more explicit, we denote by Tm the relative tangent bundle of 
the morphism TTm:2m -> lm~\ Let z = (z1 zm)c2m. If zm is infinitely near of order 
1 to some z1, then it belongs to some fibre of 

P(TM|(TTm)"1(z1 zm"1)) * P(T(Z((z1 zm"1»)> 

and we verify that 

Um(g,(z1 zm)> = (&m-1(g,(z1 zm-,».dg<zm», 

where dg is the differential of the map 

jim(g): (TT'VCZ1 zm"1) - i*m)A$m-Hq)lV zm-1)). 

If zm= zmcZ we have as usual 

j I^Cz1 zm» = (^"'(g.Cz1 zm-1ftg(zm)). 

To find stable points in 2m we need to study the functorial behavior of 
stability under G-equivariant maps. The following result is the first step toward 
this problem: 
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Proposition 2. Let G be a reductive group acting on algebraic varieties X and Y, 
and f:X -* Y be a G-equivariant morphism. Let X (resp. HI) be a G-linearized 
invertible sheaf on Y (resp. on X). Assume that X is ample and HI is f-ample. Then 
for sufficiently large n the sheaf f*(3e®n)®Jn is ample, and 

Xs(f*CE®n)®m) => f1(YsCE)) 

Proof. See ([Mull, Proposition 2.18). 

More precise results about the behaviour of stability under blowing-ups 
were recently obtained in IK I 21 and in a thesis of Z. Reichstein [Reil. We state 
Reichstein's results without proof. 

Proposition 3. In the notation of the previous proposition 
Xss(f*(X0n)®m.) c f1(Yss(2)) 

for sufficiently large n. 

Next we assume that f: X - Y is the blowing-up of a G-invariant closed 
subscheme C of Y. The action of G on Y extends naturally to an action on X. Denote 
the exceptional divisor of f by E. Fix a very ample G-linearized invertible sheaf X 
on Y, and let 

iK = f*(Z®K)«>©x(-E). 
Then iK is a very ample G-linearized invertible sheaf on X if K is sufficiently 
large. Let p: Yss — Yss/G be the quotient map and let C = p"1(p(OTrss)). For every 
subvariety Z of Y we denote by Z" its proper inverse transform under f, that is, 
the closure of f'̂ ZNCCPiZ)) in X. 

Proposition 4. Assume X and C are smooth. Then, for sufficiently large K, the 
open subsets X(£K)SS and X(£K)S are independent of K and 
(i) X(£K)SS = f1(YCE)ss)\C'; 
(ii) X(£K)S= X(£K)SS\(Y(X)SS\Y(X)S)'. 

We want to apply these results to the case where f:X -» Y is the map 
bm:2m -> Zm. By Theorem 1, the morphism bm is a composition 

Y = 2m — Y — — Y=Zm 

of blowing-ups with smooth centers. It follows from the proof of this assertion 
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that each such blowing-up is G-equivariant, and that its center is isomorphic to a 
certain proper inverse transform of some A(m)jj. Choose a G-linearized ample 
invertible sheaf X0 on Y0 = Zm, then define a similar sheaf £1 = f1**(3eo®n)0Oy -̂E.,), 
where n is sufficiently large and E1 is the exceptional divisor of f1# and proceed in 
this way until we obtain a sequence of G-linearized ample invertible sheaves X} at 
each Yj. Each of them defines the subset YjSS (YjS) of semi-stable (stable) points. 
Let 

Oi : Y:ss - Yî  / G 

be the corresponding quotient projection. Set 
J9j = YjSS \ Yjs, 

C, = *,"(*i<cinYi »-
where C| Is the center of the«blowing-up ff+1. Applying Propositions 3 and 4 to 
each fj, we obtain that 

Yi.iSS = ffVY^AC,', 
Yi + iS - YI+1S3\*,\ 

where "prime" denotes the proper inverse transform. In particular, we have 
YI+1SS c ff̂ Y,85). 
YI+1S => f f V ) . 

Since 
c^ne,' * 0, 

we have 
Yi*2ss - fi+1-l(fi-1(Yiss))\ei+1,\ei", 

where Cj" is the proper inverse transform of C} under fj°fi+1. Starting with i = 0, 
and climbing up to i = K, we use the previous properties to obtain the following: 

Theorem 2. Let C' (resp. <©0') be the proper inverse transform of 
C = $0~1(*0(A(m)) (resp. of <©0) under bm. There exists a G-linearized ample 
invertible sheaf £0 on 2m such that 
(i) 2m(£0)ss = bm-1(Zm(r0)ss)\C', 
(ii) 2m(£0)s = 2m(£o)ss\<0o'. 
In particular. 
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2m(iQ)ss c bm-1(zm(x0)ss), 

2m(i0)s z> bm-1(zm(i0)s). 

Returning to our situation where Z = Pn, G = PGL(n+1), we taKe for X0 our 
standard sheaf X, and obtain a G-linearized ample invertible sheaf X which allows 
us to define the open subsets of IE™: 

(Pmn) ss, (Pmn) s 

the quotient 

?n = (Oss /G , 

the projection 

oi : (Pmn) ss, (Pmn) 

and the morphism 

Dm- Kn Kn 

such that the following diagram is commutative: 

( O 5 5 *™ (IPm)ss 

Am J71 pm K n "n 

Note that this diagram is Cartesian if (IPm)ss = (IPm)s(see (Mul, 

Definition 0.7 and Theorem 1.10) 

Corollary 1. Assume n > 2. The following properties are equivalent 

(i) (IPm)ss = (Pm)s; 

(ii) ClKm)ss = (l*m)s, 

(iii) m and n+1 are coprime. 

Proof, (i) -* (ii) Follows from Theorem 2. 

(ii) =* (i) By Theorem 2, (ii) implies that «0 = (IPm)ss\(IPm)s is contained 
in C = *"1(*(A(m)n(Pm)ss)). It follows from the description of ¿9 = 4>(i9) given in 
section 3 of Chapter II that in this- case, for every non-trivial admissible 
partition (d .̂̂ dj) of n+1 with respect to m, one of the df's is equal to 1. This 
implies that n+1 divides m, hence every partition of n+1 is admissible. Since n > 2, 
(2,n-1) is a partition of n+1 which does not contain 1. This contradiction shows 
that n+1 admits only trivial admissible partition, hence «(9=0 and (ii) holds. 
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(I) «=> (iii) This is Corollary of Theorem 1 from Chapter II. 

Corollary 2. Assume n = 2, m i 4. Then 
(P™)ss = (P™)s. 

In particular, the morphism 
5 . Am _̂  pin 

is a resolution of singularities. 

Proof. Since every non-trivial admissible partition of 3 contains 1, we obtain, in 
the notation from the proof above, 

JB c C. 

By Theorem 2 this implies that (P™)ss = (P™)s, hence the projection 
*: (IP™)53 - £m 

is a geometric quotient. It is easy to see that for each point set x in (lPm)ss the 
stabiliser group Gx is trivial. Applying Luna's slice theorem [Lul, we obtain that 
the quotient space Pm is smooth. Obviously, the morphism Bm is birational and 
proper. 

RemarK 4. We refer to Mshl, where the analog of the space £m for unordered 
point sets is discussed in the case n = 2 and m s 8. 
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In this chapter we study the rational varieties obtained by blowing up a 
point set X€lPm. 

1. The Neron-Sever? bilattice. 
A .generalized Del Pezzo variety (gDP-variety) of type (am) is 

an algebraic variety V isomorphic to a blowing-up V(x) of some point set xclf5™. A 
blowing-down structure of type (am) is a pair (V,a), where V is a gDP-variety of 
type (am) and a is a sequence of birational morphisms 

V = Vm —• Vm _., —» ... —» V, -* V0 = IPn, 

where each o}: V( — VM is a blowing-up of a closed point. Two blowing-down 
structures (V,a) and (V',a') are isomorphic if there exist isomorphisms 

<*: V, - V,' 
such that 

a/otpj = <pM.a,, 

i = 0,...,m. We say that (V,a) is relatively isomorphic to (V\a') if <f>0 = identity. 

Thus, by definition, IPm parametrizes the relative isomorphism classes of 
blowing-down structures of type (am). The projection 

TTm+1:IPm+1 -IPm 

is a universal family (see the corresponding functorial statement in [Ha 11). 
The varieties 

Pm° = (Os /G c Am 
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are the coarse moduli varieties of isomorphism classes of blowing-down 
structures of type (n,m) corresponding to stable point sets x. 

Now note that the action of £m on£m, whenever it is defined, changes the 
blowing-down structure but leaves the gDP-variety itself unchanged. Also note 
that, if n > 2, the blowing-down structure of a gDP-variety is defined uniquely up 
to isomorphism and up to the Im-action. Indeed, assume for simplicity that V s 
V(x) a V(x') for some x, X€^m\A(m) = Pm\A(m). Let E1 Em be the disjoint 
exceptional divisors in V(x), and let E1" Em' be the same for V(x'). Assume that 
some Ej intersects two different Ej' and EK\ Since each exceptional divisor is 
isomorphic to Pn-1 and n>2, E{nEK' * 0. This contradicts the assumption that all Ef' 
are disjoint. Therefore we may assume that each Ej intersects at most one Ej'. 
But then Ej = Ej', otherwise Ej is a proper inverse transform of a hypersurface in 
Pn with respect to the blowing-down structure defined by the point set x\ hence 
it is numerically effective. This shows that {E1 Em} = CE/ Em'} as sets of 
divisors. 

However, we obtain many different blowing-down structures if we consider 
varieties up to pseudo-isomorphism. 

Recall that a pseudo-isomorphism of smooth algebraic varieties is a 
birational map: 

f: X ~> Y 

that induces an isomorphism in codlmension 1, that is, an isomorphism of open 
subsets whose complements are of codimenslon * 2. Note that every pseudo-
isomorphism of surfaces is an isomorphism, as follows from the theorem of 
decomposition of birational maps of surfaces. 

Let X be a smooth algebraic variety of dimension n, 

A(X) = © a'(X) 
¡=0 

be its Chow ring of algebraic cycles modulo algebraic equivalence graded by 

codimension. We set 

N1(X) = A'CX)/-, 

NT(X) = AN_1(X)/=, 

where = denotes numerical equivalence. We denote by W the numerical class 

of a cycle y. 
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The pair 
N(X) = (NVX^N/X)) 

is called the Neron-Severi bilattice of X. It is a pair of free abelian groups of 
finite ranK equipped with a pairing: 

N1(X) x N/X) - Z, (tf1,̂ ) - V1-̂ , 
defined by the intersection of cycles. 

Lemma 1. Let X be a smooth complete variety of dimension n > 1, a:X' -» X be a 
blowing-up of its closed point x, E = a'1(x) s ipn_1 be the exceptional divisor, 1 be a 
line in E. Then 

N1(X") = â N^X)) + ZIEl, 
N̂ X") = â CN/X)) + ZI1L 
a^ffVa*^) = V̂ Vi for any (vVvpcNCX), 
a*(y1).[l] = (ENa*^) = 0 for any (yV ĉNCX), 
[El-Ill = -1. 

Proof. This is well-Known and is left to the reader. 

Applying this lemma to the blowing-down structure 
V = Vm - Vm., - ... - V, - V0 = IPn, 

on a gDP-variety V, we obtain: 

Proposition 1. Let V be a gDP-variety of type (n,m) and 

V = Vm - Vm., - ... - V, - V0 = IPn, 

be a blowing-down structure. Then 

N1(V) = Zh0+Zh1 + ...+Zhm, 

N/V) =*Zl0 + Zl1 + ... + Zlm, 
where 

h0 = [(â .-Om )"1(H)1, H is a hyperplane in IPn, 
^ = [(ar...oam)"1(xl)L i = 1 m, 
10 = Ka1»...am)"1(l)l, 1 is a line in IPn, 
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lj = [(ai+1»...*am)"1(lj)], 1| is a line in â Cx1) s ipn_v i = 1 m. 
Moreover 

h0*l0 = 1' ni#1i = i * 0, hfhj = 0, i * j . 

Let 
a: X" - X 

be a blowing up of a closed point x on a smooth variety X, and Z be a hypersurface 
in X such that x is a K-multiple point of Z. We have 

a"1([Zl) = Z'+Ka"1(x>, 
where Z" is the proper inverse transform of V'. For every infinitely near point 
x —x of order 1 we define the multiplicity multv(Z) of Z at x' as the multiplicity of 
Z* at x'. Proceeding by induction we can define the multiplicity of Z at an infinitely 
near point of arbitrary order. Thus, in the above notation, if Z is a hypersurface 
of degree K0 in IPn with multxi(Z) = K{, and Z* its proper inverse transform in 
V((x1 xm)>, then 

[Z'l = K0h0 -Kfii - ...-Kmhm. 
A similar result is true for the class of the proper inverse transform of a curve 
in IPn. 

Proposition 2. Let V s v(x) be a gDP-variety of type (n,m) and [KvlcN1(V> be its 
canonical class Kv modulo numerical equivalence. In the above notation 

[Kvl = -(n+1)h0+Cn-1)(h1 + ...+hm). 

RemarK 1. Recall that a Del Pezzo surface is usually defined as a nonsingular 
rational surface V with ample anti-canonical class -Kv (cf. [Mai). It is easy to 
prove that each such surface is isomorphic to a gDP variety of type (2,m) with m 
< 8 obtained by blowing up a point set xclPm satisfying the following conditions: 
(i) x does not contain infinitely near points; 
(ii) no 3 points from x are collinear; 
(in) no 6 points from x lie on a conic; 
(iv) if m = 8, x does not lie on a cubic with a singular point at one of the points 
from x. 

In the terminology of [Del, this means that x is in "general position". We will 
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later Interpret these conditions by saying that x is an unnodal point set. If m < 6, 
the anti-canonical linear system of V maps it isomorphically onto a nonsingular 
surface of degree d = 9-m in PH. In general, the number d = 9-m is called the 
degree of V. We extend the definition by defining a nodal (or degenerate) Del Pezzo  
surface of degree d by requiring that -Kv is not ample but almost ample in the 
sense that for large m the linear system l-mKvl is base-point-free and defines a 
birational morphism onto a normal surface. This will include gDP varieties of type 
(2,m) with m < 8 which are obtained by blowing up a point set xclPm satisfying the 
following conditions: 
(i) x does not contain two different points which are infinitely near of order 1 to 
the same point; 
(ii)' no 4 points from x are collinear; 
(iii)' no 7 points from x lie on a conic. 

In the terminology of [Del this means that x is in "almost general position". 
If m < 6, the image of V under the map given by the linear system l-Kvl is a normal 
surface V of degree d = 9-m in PD with double rational singularities. We will call 
the latter surface an anti-canonical Del Pezzo surface of degree d. Its minimal 
resolution of singularities is a degenerate Del Pezzo surface of degree d. We will 
return to a description of Del Pezzo surfaces in Chapter VII. 

2. Geometric marKings of gDP-varieties. 

Among various concepts related with the word lattice we use one that 
means a free abelian group of finite ranK L equipped with a symmetric bilinear 
form 

L x L -* Z, (vV) -» v»v'. 
Tensoring L by IR defines a quadratic form on the real vector space LR. We apply 
the usual terminology of the latter to L. Thus we can speaK about the signature, 
ranK, etc. of L. For our purposes we need a slightly more general concept of a 
bilattice. We define it to be a pair (LVL2) of free abelian groups of finite ranK 
equipped with a bilinear form 

L1 x L2 —• Z, (vvv2) v1»v2. 
A lattice L is considered as a bilattice (L,L). One naturally defines a morphism 
of bilattices 
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<p = (<p1#<p2> : <LVL2) - (L^L^) 
as a pair of homomorphisms of abelian groups tpj:L_j -» L|' satisfying 

^(v^-^CVj) = v̂ Vj for any v1€L1,v2cL2. 
Every bilattice (LVL2) admits natural morphisms to the bilattice (L|,L*), 
where 

L* = Homz(Lî,Z) 
is the dual abelian group, and x»x* = x*(x) for every xcL|, x*cL*, i = 1,2. A bilattice 
is said to be unimodular if these morphisms are isomorphisms. 

Our main example of a lattice is the standard hyperbolic lattice of ranK m+1 
Hm = Zeo+Ze^ + Zem, 

where 

eo*eo = 1' ei#ei = -1, i * 0, e^ej = 0, i * j . 
The Neron-Severi bilattice N(X) of a smooth complete variety X gives an example 
of a bilattice. Similarly, the homology bilattices 

(Hl(X,Z)/Tors, Hi(X,Z)/Tors) 

are examples of unimodular bilattices. 

Proposition 3. Let V be a gDP-variety. In the notation of Proposition 1 the maps 
cp1: Hm - N'CV), e} - hv 

9r Hm - N,(V), e, - 1,. 
define an isomorphism of bilattices 

tf = (tp1,̂ ) : Hm -> N(V). 
In particular, N(V) is unimodular. 

Let L = (L1,L2) be a bilattice. We define a L-marKina of a smooth complete 
variety X as an isomorphism of bilattices: 

<f: L -> N(X). 
An L-marKed variety X is a pair (X,tf>), where cp is a L-marKing. An isomorphism 
of L-marKings (or of L-marKed varieties) is an isomorphism f: X -> Y such that 

f*oU) = (ö 

68 



GENERALIZED DEL PEZZO VARIETIES 

Lemma 2. Let f: X —» X' be a pseudo-isomorphism of smooth complete varieties. 
Assume that the Neron-Severi bilattices of X and X' are unimodular. Then there 
exists a natural isomorphism of these bilattices: 

f*: N(X') — N(X). 

Proof. The pseudo-isomorphism f defines an isomorphism f': U -> U' of open 
subsets whose complements are of codimension > 2. Then we have a composition 
of isomorphisms of groups: 

A1(X") r-A1(U') f-̂ A1(U) r-A1(X), 

where r: A1(X) — A1(U) and r": A1(X') — A1(U') are the restriction homomorphisms. 
The composition A^X') — A1(X) induces an isomorphism 

(f*)1: N1(X") - N1(X). 
Since N(X') and N(X) are unimodular, the groups N,(X) and N^X') can be identified 
with the dual groups N*(X)* and N1(X')* respectively. This allows us to set 

(f*), = t((f")1)"1, 
to obtain that the pair f* = ((f*)\(f*).,) is an isomorphism of bilattices. 

The previous lemma allows us to define a pseudo-isomorphism of L-marKed 
varieties (X,cp) and (X',tp') as a pseudo-isomorphism f: X —» X* such that f*°<p' = ip. 

RemarK 2. The assertion of the previous lemma is probably true without the 
assumption of the unimodularity of the Neron-Severi bilattices. It can be verified 
for example in the case dimX = 3 by applying Danilov's theorem on the 
factorization of small birational morphisms ([Dal). 

Here comes our main definition: 

A strict geometric maridng of a gDP-variety V of type (n,m) is an 
Hm -marKing 

<P = (<p1'9i>: <Hm,Hm) - (N^VXN/V)) 
defined via a blowing-down structure on X by 

tf>1(ej) = h|, i = 0 m, 
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ip̂ ej) = lj, i = 0 m, 
in the notation of Proposition 1. A geometric marKing of V is an Hm-marking 
pseudo-isomorphic to a strict geometric marking. 

Lemma 3 . Let f: Pn —» IPn be a pseudo-isomorphism. Then f extends to an 
isomorphism 1: IPn -* Pn. 

Proof. The rational map f is given by a linear system W of hypersurfaces of some 
degree d > 0. Since f* induces an isomorphism A1(Pn) — A1(IPn), both groups being 
isomorphic to Z, we obtain that d = 1. Thus f is given by a linear system of 
hyperplanes, hence is a projective isomorphism. 

Corollary. Two strict geometric markings of gDP-varieties of type (n,m) are 
pseudo-isomorphic if and only if they are isomorphic. 

Proof. Induction on m. If m = 0 this is asserted in Lemma 3. Let 

V = Vm ~~" ^m-i ~** ~* ̂  —» V0 = IPn, 

V = Vm —> Vm _1 —• ... —* —» V0 = IP n, 

be two blowing-down structures corresponding to the given pseudo-isomorphic 
strict geometric markings of gDP-varieties V and V'. Obviously they define 
pseudo-isomorphic strict geometric markings of gDP-varieties V^-^ and Vm_1 of 
type (n,m-1). By induction they are isomorphic. The corresponding isomorphism f': 
vm-i ~* vm-i sends the image of the exceptional divisor of am to the image of the 
exceptional divisor of am and hence lifts to an isomorphism f: V — V". Obviously, it 
defines the needed isomorphism. 

From the previous definitions and results we obtain: 

Theorem 1. There is a natural bijective correspondence between the set of G-
orbits in lPm and the set of pseudo-isomorphism classes of geometrically marked 
gDP-varieties of type (n,m). 
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3. The Weyl groups Wn,m. 

We are looKing for a group that acts on the G-orbits in lPm by acting on 
the geometric marKings. A natural candidate for this group is the isometry group 
0(HM) of the lattice Hm. it certainly acts on Hm-marKings tp: Hm -» N(X) by 
composing them with isometries a: Hm.-* Hm. However, there is no reason to 
expect that this action preserves the subset of geometric marKings. Thus we are 
led to IOOK for a suitable subgroup of 0(Hm) which will consist of isometries 
(= automorphisms) of Hm preserving the set of geometric marKings. It turns out 
that the right subgroup is the Weyl group of a certain natural root basis in Hm. 

Let us recall the necessary definitions (cf. [Lo 21). 

A root basis in a bilattice L = (L,,L2) is a pair (B,E§) of subsets of L, and L2, 
respectively, together with a bijection B -> S, a — a, satisfying: 

(i) o>a = -2; 

(ii) o>,i > 0 for any ocpcB, a * $. 

A root basis is said to be symmetric if the following additional property holds: 

(HI) a*! = p«a for any a,p€B. 

For every aeB the formulae 

SA: X1 -* X1 + (X^oba, for any x^L^ 

sa. x2 -> x2 + (x2«a)à\ for any x2€L2 

define linear involutions of L, and L2 respectively, called simple reflections. 
The subgroup of GLCL,) (resp. of GL(L2)) generated by such transformations is 
denoted by WB (resp. Wg). The map sa -» sa extends to an isomorphism: 

WB -* Wg # w — w. 

Each of these groups is called the Weyl group of the root basis (B,£). We will 
denote it by W if no confusion arises. 

For any WCWB we have 

w(x1)«w(x2) = x1-x2. for any x1cL1,x2cL2. 

This shows that W is isomorphic to a subgroup of the isometry group 0(L). 

An element of a WB-orbit of B in L, (resp. of B in L2) is called a B-root 
(resp. B-root). The set of such elements is denoted by RB (resp. Rg). An element 
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of B (resp. 6) is said to be a simple B-root (resp. simple 6-root) The bijection a-* 
a between simple B-roots and simple 6-roots extends naturally to a bijection a 
-» a from RB to Rg: 

w(a) -> w(a) for any acB, wcWB. 
A B-root a is called positive (resp. negative) if it can be written as a linear 
combination of simple B-roots with integral non-negative (resp. non-positive) 
coefficients. Let RB+ (resp. RB~ ) denote the set of positive (resp. negative) B-
roots. It can be shown (see [Kacl, ILo 21) that 

RB = ^B* J-l ' 
RB~ = {"OC: OCCRB*). 

Similar definitions and corresponding properties hold for 6-roots. 

We denote by Q(B,6) = (Q(B),Q(6)) the sub-bilattlce of (LVL2) spanned by the 
subsets B and 6 of L1 and L2, respectively. 

For every root basis (B,6) one can define its DynKin diagram (oriented 
graph) r(B,S) by assigning to every simple B-root acB a vertex a and joining two 
distinct vertices a and p by a»i arcs ending at p. If the root basis is symmetric we 
forget about the orientation of T(B,6). It is easy to see that in this case all B-
roots (resp. S-roots) are W-equivalent if and only if r(B,6) is connected and all 
vertices are joined by at most one arc. 

The generating set S = {Sj = saj)j = o,...,m °* WB satisfies the relations: 
Sj2 = 1, (Sj*Sj)3 = 1 If af and aj are connected in r(B,6) by one arc, 
(Sj-Sj)2 = 1 if aj and aj are not connected In r(B,§), 
Sj»Sj is of infinite order otherwise. 

One can show that these relations are the basic relations for the s,'s and that the 
pair (W,S) is a Coxeter group (see [KacD. 

Returning to our situation when L is equal to Hm , m > n+1 > 3, we define a 
canonical root basis of type n >1 in Hm by setting: 

Bn = Ca0 am-J, 6n = (a0 ^ . ^ 

where 
a0 = e^e^ -e^ , , a{ = erej+1, i = 1 m-1, 
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oc0 = (n-1)e0-e1-...-en+1, a, = ô  = e,-el+1, i = 1 m-1. 
It is a symmetric root basis. Denote its corresponding Weyl group by WR/I 

Let 
*n,m = (n + 1)e0-e1-...-em, 
Kn>m = (n+1)e0-(n-1)(e1 + ...+em). 

Then 

Q(Bn) = (ZKn,m)̂  = {V€Hm: VKn,m = 0), 
0(6n) = (ZKn,m)̂  = {V€Hm: vKn,m = 0}. 

Note that the subgroup of Wn,m generated by the simple reflections sa., i*0, 
is isomorphic to the permutation group Im. It is the Weyl group of the root basis 
(B\[a ,̂§\{a0}). It acts on the set Ce1,...,em} by permutations. The simple reflection 
sa. acts as the transposition (i,i+1). 

The DynKin diagram of a canonical root basis of type n in HM IOOKS as 
follows: 

<>1 •— a2 ocm <*n+i 

oc0 

ocm-1 

If n = 2, m = 3,...,8, we recognize the familiar DynKin diagrams of root 
systems of finite-dimensional simple Lie algebras of type 

A.,+A2, A4, D5/ E6, E7 and E8, 
of ranK 3,...,8, respectively. 

If m = n+2 (resp. n+3), we obtain the DynKin diagram of type Am (resp. Dm). If 
n = 3, m = 7, we get the diagram of type E7. In all other cases we have the 
DynKin diagram of type T2/n+im_n_1 of an infinite-dimensional simple Kac-Moody 
algebra (see [KacD. 

We say that a canonical basis in Hm Is of finite type If 

(n/m)c{(2,3)/(2/4)/(2/5)/(2/6)/(2,7),(2,8),(3/7),(n,n + 2)/(n,n + 3)} 

It Is easy to see that a canonical basis (B,S) is of finite type if and only If the set 
of B-roots RB is finite, or if and only if the Weyl group WB is finite. We use the 
notation W(An), W(Dn), W(En) to denote the group Wn,m in these cases. 
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RemarK 3 . By Proposition 2, for every strict geometric marking ip:Hm -> N(V) we 
have that 

<P1<Kn,m> - "Kv. 
Since the canonical class is invariant under a pseudo-isomorphism, the same is 
true for any geometric marking of a gDP-variety. What is the geometric 
significance of ^(kp^) expressing the virtual class of a normal elliptic curve 
through m points? 

The next proposition gives us a partial description of Bn-roots in Hm: 

Proposition 4. Let a = aQeQ-â -.-.-Oĵ er̂  be a positive Bn-root in Hm. Then 
(i) (n+DaQ-a^ .̂-am = a«kn/m = 0; 
(ii) (n-1)a02-a12-...-am2 = -2; 
(iii) a0 i 0, and if a0= 0, then a = erej for some 1 s i < j s m; 
Assume a0 > 0. Then 
(iv) (n-1)a0 < a,1 + ... + a,n+1 if ah > a,2 > ... > aim,ij€{1 m); 
(v) a; t O for i = 1,...,m; 
(vi) (n-1)a0 > â  + .-. + a^ if a0>1, ah i ai2 i ... i a,m. 

Proof, (i) Note that for every simple Bn-root af we have 

a^CCn+DeQ-e^.^-erp) = 0. 
Therefore the action of Wg in Hm leaves the vector 

Kn,m - (n+1)e0-e1-...-em 
invariant. Hence for every wcW and aj€Bn 

Wl*0'*n.m ' ai'W"Wm> - <V«<n,m =0. 
If a = w(ai)cRBn this equality is equivalent to (i). 
(ii) Let a = w(aj)cRBn. Then 

o>a = wCap-wCdj) = â ocj = -2. 

This implies (ii). 
(iii) In the decomposition of a as a sum of simple roots the root a0=e0-e1-...-en+1 
enters with nonnegative coefficient. This implies that a0 > 0. If a0 = 0, we apply (i) 
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and (ii) to obtain that a = ei - ej for some i * j . Since a is positive, we obtain i < j . 
(iv) Applying elements wcEm to a we may assume that (\v...,lm) = (1,...,m). 
Assume the opposite inequality holds. Then 

o>a0 = (n-1)a0-a1-...-an+1 > 0 and 
a»6cj = a} - aj+1 i 0, i = 1,...,m, 

This means that 
acC(Bn) = CvcHm: v-oCj i 0 for all ajc6n}. 

Now we use the following property of C(Bn) (called the fundamental chamber): 
(*) Let wcW be written as a product of a minimal number of simple 

reflections (which is well-defined and is denoted by l(w)), then for every af€Bn 
w(C(Bn)) c (vcHm: v»6cj < 0 } if and only if l(sa.«»w) < l(w). 

(see [Bo] ChapterV, S4, n°4). 
Let us argue by induction on K = l(w) that, for any wcW, 
(**) w(a) = a + c0a0+...+cm_1am_1, with all q > 0. 

If K = 1, w = sa.cBn for some i and a-oCj > 0 for every oCjCBp, hence 
w(a) = sa.(a) = a+(a>aj)0Cj = a+qoCj for some q i 0. 

If K > 1, we write w = sa.«w' with l(w') = l(w)-1 and apply (*) to obtain 
0 > w(a)»ccj = So^w'Ca)* !̂ = w,(a)«s0Cj(di) = -w'(a)»aj. 

By induction 
w'(a) = a+c0,a0+...+cm_1,am_1, with q" > 0, 

hence we have 
w(a) = Sa.̂ w^a) = w,(a)+(w'(a)«di)ai = a+c0'a0+...+cm_1,am_1 + c,ai 

for some q',c >0. Now choose w so that a1 = w(a) and observe that the equality 
a = a, -(c0'a0+...+cm.1'am.1 + c,ai) 

contradicts the assumption that a is positive, unless a = a1 in which case (iv) 
holds. 
(v) We use induction on a0. The assertion is true for a0 = 1. Indeed subtracting 
equality (ii) from equality (i) we obtain 

m 
L q(a,-1) = 0. 
1 = 1 

This implies that each Oj is equal to 0 or 1. Assume that the assertion is true for 
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all a with 1 < a0 = a«f0 < N. We may assume, as in the previous case, that 
a1 > ... > am. By (iv) 

n+i 
a = a»a0 = (n-1)a0 - Z Qt < 0, 

and 
n+i m a = sao(a) = a+aa0 = (a0+a)e0-Z (a{ + a)ej- I a^e^ 

It is Known that for every simple root otj we have 
a (RB %{a,}> e RB + 

(IKacl, Lemma 1.3). This shows that a0+a * 0. If a0+a > 0, we are done by induction. 
Finally, if a0+a = 0, we apply (iii) to obtain 

n+i m - I (a:+a)e:- I a:e: = ±(ere.J 1=1 ' ' i=n-M 11 J * 

for 1 < j < K < m. Thus at least n-1 coefficients Oj+a, 1 < i < n+1, must be equal to 
zero. Equivalently, at least n-1 coefficients â  1 < i < n+1, must be equal to a0. By 
examining (i) and (ii) we deduce that a0 s 1 again. 
(vi) Assume the contrary. Applying S0q to a*a0, we find as above that 

m t 
a = sa0<a> - aoeo-=^+1ai eicRBn < 

where 
an+1' = (n-DOo-E î < 0, a^' = c w 

By (v) 
n+i 

ao = na<r.E al = °-
and, by (iii), 

a^' = 0, a ^ = 0 or 1. 
Applying (i), we obtain 

m 
0 = (n+1)a0 - l a - a0-an+2. 

1=1 
Thus a0 < 1, which is excluded by the assumption. 
Corollary. Let a = a0e0-ale1-...-amem be a positive Bn-root in Hm. Then 
a0 = (n-1)a0' for some integer a0\ and 
(i) (n+1)a0-(n-1)(a1 + ...+am) = a>Kn/m = 0; 
(ii) a02-(n-1)(a12+...+am2) = -2(n-1); 
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(iil) a0 i 0, and, if a0 = 0, a = erej for some 1 < i < j < m ; 
Assume a0 > 0. Then 
(iv) a0 < 0^...+^ if a1 i a2 i ... > am; 
(v) a0 > 0, and a-,,...^ > 0; 
(vi) a0 > ^+...+0^ if a0>1, a1 i a2 > ... i am. 

Proof. Use that the bijection a— a between Rsn and Rgn is given by the formula: 

aoeo _aier-"amem — a0(n-1)e0 -a1el-...-amem. 

RemarK 4. We will see in Proposition 6 that in case n = 2, m < 10, properties (i) 
and (ii) alone imply that a is a B2-root. However, already if n = 2, m = 11, it is not 
true that every vector a = a0e0-a1e1-...-amem satisfying (i)-(vi) is a B-root. For 
example 

o« 7eg—3e.j —3e2—3e3—3e4—3eg—ê—e7—eg—e9—êQ—e.j ̂  

satisfies (i) - (vi) but is not a B2-root. To see this we apply saQ to a to obtain 

a" = s0{)(a) = 5e0-el-e2-e3-3e4-3e5-e6-e7-e8-e9-e10-elv 
which does not satisfy (vi). Therefore a* is not a B2-root, hence a is not a 
B2-root. 

The following well-Known result shows that in the case n = 2 properties (i), 
(ii) and (v) imply (iv). 

Proposition 5 (Noether's inequality). Let a = a0e0-a1e1-...-amem€Hm satisfy 
the following properties: 
(i) a0 > 0, a1 > ... > am > 0; 
(ii) a = a02-a12-...-am2c{-2,-1,0,1}; 
(iii) Sao-a^-am = a+2; 
Then either 

a0 < 0^02+03, 
or a = e0-ev or a = e0. 

Proof (following [Cool). We have 

0 < a3(a4+...+am)-(a42 + ... + am2) = 

= a3(3a0-a1-a2-a3-a-2)-(a02-a-a12-a22-a32) = 
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= ai2+a22-a3(a1+a2)-(a0-3a3)a0+a-a3(a+2). 
Assume 

a0 > a,+a2+a3. 

Then 
0 < a12+a22-a3(a1+a2)-(a0-3a3)a0+a-a3(a+2) < 

s a12+a22-a3(a1+a2)-(a1+a2-2a3)(a1+a2+a3)+a-a3(a+2) = 
= a12+a22-a3(a1+a2) - (a1+a2)2+a3(a1+a2)+2a32+a-a3(a+2) = 
= 2(a32-a1a2)+a-a3(a+2) . 

This is only possible if a2 = a3 = 0, which implies a = e0 if a = 1, and a = e0-e1 if 
a = 0. 

Proposition 6. Let (B,é) be a canonical root basis of type 2 in Hm. Assume that 
m < 10. Then 

RB = Rg = {V€Hm: VV = -2, V«K2/m = 0). 

Proof. By Proposition 4 the set RB is a subset of the R.H.S.. Assume m £ 8. Then 
(B,B) is of finite type and the set RB is a root system (in the sense of IBol) in the 
space 

EB = {vcHm®IR: vK2/m = 0}. 
In this case the result is well-Known. We recall its proof. Let v be a vector from 
the R.H.S. Since B spans EB we can write 

v = +̂...+̂ 5 

for some (not necessary simple) roots p;. Choose such a representation with 
minimal s. We have (IBoL ChapterVI, S3, Theorem.1), 

Bi + Bj < 0 
unless £; = Bj or pj+pj€RB. By the minimality of s neither of these cases occurs. 

Thus 

v2 < .̂̂ +...+£5.35 = -2s. 
Since v2 = -2 this implies s = 1, hence vcRB. 

Assume m = 9. Then 

L2,9 . K2,9 = 0 
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hence for any v = a0e0-a1e1-...-a9e9cRB 
v" = v-a9K2/9= (a0-3)e0-(a1-1)el-...-(a8-1)e8 

satisfies 
vW = -2, v'-K28 = 0. 

By the previous case V'CRB* <= RB, where B' = B\{a8}. In particular 
$ = K2/9-a8 cRB. 

Now 
Sp°sas(v) = sp(v+(v«a8)a8) = s?(v+a9a8) = v+(p»v)p+a9Ca8+(a8.p)p) = 

= v-(a8-v)3+a9(a8+2p) = v-a9p+a9K2/9+a9p = v+a9K2/9 = v'. 
Since v' is a B-root, v" c w(B) for some wcW, hence 

v c ((sp«»sa8)"1«»w)(B) 
is a B-root. 

Assume m = 10. Then (B,B) is a hyperbolic (or crystallographic) root basis in 
the sense that WB is of finite index in the isometry group 0(QB) of its root lattice. 
By [Vil, every reflection sy = x — x+(x»y)tf, tfcQB, ?r2=-2, is conjugate in WB to some 
reflection sa, acRB. This implies the assertion. 

RemarK 5. As we saw in the previous RemarK, Proposition 6 cannot be extended 
to the case m > 10. 

4. Discriminant conditions. 
Let <f:Hm — N(V) be a geometric marKing of a gDP-variety V of type (am) 

and (B,B) be a canonical root basis of type n in Hm. We set 
RB(tp)+ = {acRB: <p1(a) is effective), 
Rg(tp)+ = (occRg: tp^a) is effective). 

If xclPm and 9x:Hm — N(V(x)) is the corresponding strict geometric marKing 
we define: 

RB(x)+ = RB(<f>x)+, 

Rg(x)+ = Rg(cpx>+-
The elements of the set RB(tf>)+ (resp. Rg(<p)+) are called effective (or nodal) 
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B-roots (resp. effective 6-roots) with respect to the geometric marking tp. 
Also, the elements of RB(x)+ are said to be the discriminant conditions on the 
point set x. A point set x (resp. a geometric marking tp) is said to be unnodal if 
RB(x)+ = 0 (resp. RB (tp) = 0). 

Note that 
RB<<P>+ C *B+-

We say that a gDP-variety V is unnodal if all of its geometric marking are 
unnodal. 

Proposition 7. Assume that a gDP-surface V admits an unnodal geometric 
marking. Then V is unnodal. 

Proof. As follows from Theorem 2 of the next Chapter, for every two geometric 
markings <p:Hm — N(V), tp:Hm — N(V) there exists W€W2/m such that 

9 = tp»w. 

Thus 
acRB(cp)+ <=> w(a)cRB(tp)+. 

This proves the proposition. 

Corollary. Let V be a gDP-surface. Assume m < 8. The following properties are 
equivalent: 
(i) V is unnodal for some geometric marking tp:Hm — N(V); 
(ii) V is a Del Pezzo surface (see Remark 1); 
(in) the anti-canonical model 

V = Proj( © r(V,(9v(-rKv)) r = o 
is a nonsingular surface. 

Proof, (i) (ii) We have to show that to be unnodal is equivalent to satisfying the 
following properties: 
(a) x does not contain infinitely near points; 
(b) no 3 points from x are collinear; 
(c) no 6 points from x lie on a conic; 
(d) if m = 8, x does not lie on a cubic with a singular point at one of the points from 
x. 
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Using Proposition 4, we can easily find all positive B-roots with 
respect to a canonical root basis in Hm of type 2, m < 8. They are: 

a = ©rBj, 1 < i < j < m, 
oc = e0-ei-ej-el<, i*j*K, i,j,K * 0, 

a = 2e0~eiref2"ei3""eU""ei5"ei6' 1 " '< <'s * m [f K < s -
a = 3e0-e,-...-eB-e]f 1< i < 8. 

This obviously proves the assertion. 
(ii) <=> (iii). This is well-Known. See [Del, [Ma]. 

Proposition 8. Let V be a Del Pezzo surface. An Hm-marKing <f:Hm — N(V) is 
geometric if and only if <p(K2/m) = -Kv. 

Proof. The condition is obviously necessary. Let 

tptej) = hj, i = 1 m. 
Assume <p(K2#m) = -Kv. Then 

h|2 = -1y hj*Kv = -1. 
By Riemann-Roch 

h0(hi) + h°CKv-hl) > 1. 
Since 

(Kv-h|).(-Kv) = -Kv2-1 < 0, 
and -Kvis ample, h°(Kv-hj) = 0. Thus ej is effective. Since -Kv is ample and 
hj»(-Kv) = 1, hj = [Ejl for some irreducible curve, which must be an exceptional 
curve of the first Kind. This shows that {E1 Em) is the set of m disjoint 
exceptional curves of the first Kind. It can be blown down to define a geometric 
marKing of V equal to 9. 

5. Exceptional configurations. 

An ordered sequence (v1 vr) of vectors from Hm satisfying Vj»vf = -1 is 
called an exceptional r-sequence (cf. [Del). 

We denote the set of exceptional r-sequences by §m(r). Let Snm(r)' denote 
the WR/m-orbit of the sequence (e1 er). Clearly e^S^mO)' for all i > 0. 

Let Z be a nonsingular complete variety. An ordered sequence of elements 
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(hv...#hr) from N Ẑ) is called an exceptional r-configuration if Z is isomorphic to 
the blowing-up Z'(x) of some nonsingular variety Z' at some point set 
x = (x1 xr)€Z'r, and each ht is equal to the class of the inverse image of x1 under 
the blowing-up map Z -» Z'(x1 x1"1). 

We denote the set of exceptional r-configurations on Z by 5r(Z). For 
example, if <p:Hm — N(V) is a strict geometric marking of a gDP-variety V, the 
sequence (tf(e1),...,tp(em)) is an exceptional m-configuration on V. 

Lemma 4 . Assume m < 9, n = 2. Then W2/m acts transitively on the set Bm(r) if 
r * m-1, and W2/m has 2 orbits in §m(r) represented by the sequences (e1,...,em_1) 
and (e0-e1-e2,e3,...,em) if r = m-1. 

Proof. See [Del, [Mai. 

Proposition 9. Let <p:Hm — N(V) be a geometric marking of a gDP-surface V. 
Assume that I-Kyi contains an irreducible divisor. Then 

S/V) = cp(g2m(l)'). 

Proof. See ILo 11. 

Corollary. Assume m < 9 and I—Kv I contains an irreducible divisor. Then 
^(V) = ip(Bm(D). 

Proposition 10. Let V be a Del Pezzo surface. Then Ŝ V) is equal to the set of 
exceptional curves of the first kind on V, and for every geometric marking 
<p:Hm - N(V) 

Sm(V) = <p(S2,m(m)'). 

Proof. Since m < 8, by Lemma 4, 

Bm(V) c <p(Sm<m)> = tpCB^mCm)'). 

By Riemann-Roch, for every hcipCS^m)), 
h°(h) + h°(Kv-h) > 1. 

Since -Kv is ample and (-Kv).(Kv-h) = -Kv2-1 < 0, h°(Kv-h) = 0, and h°(h) > 0. Let 

h = IE1 + ...+Erl, 
where E] are irreducible curves. Intersecting both sides with -Kv, we obtain that 
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1 = E(-KV)»E,. 
This implies that r = 1, and hence h is the class of an exceptional curve of the 
first Kind. This shows that 

<p(Bm(m» c Bm(V) 
and we are done. 
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VI. CREMONA ACTION. 

Let Im be the permutation group on m letters. It acts naturally on the 
varieties Pm via its natural action on P „ . In this chapter we will see that this 
action can be extended to a birational action of the Weyl group Wn,m. Roughly 
speaKing, this action arises from applying to the point sets certain types of 
Cremona transformations of Pn . 

1. The Cremona representation of the Weyl group Wn m. 

Recall that a standard Cremona transformation T0 in IPn is a birational 
transformation of Pn defined by the formula: 

TG: <t0 tn) - (V.tn t0...t,...tnf...,t0...tn.1). 
The linear system of hypersurfaces defining T0 consists of hypersurfaces of 
degree n that pass through the points x1 = (0 1,...0) with multiplicity n-1. The 
choice of the basis in this linear system is determined by the property: 

T02 = identity. 
Note that T0 is defined everywhere except at the points x' which are 
transformed to the hyperplanes: 

H| - Kt0 tn)€lPn: t, = 0). 

Lemma 1. There exists a commutative diagram of birational maps: 
Y - Y 

fi a 
To 

pn ~> pn, 

84 



CREMONA ACTION 

where g Is an isomorphism, and f is the composition 
Y - Yn_1 —*Yn2~* — ~* Y1 —» Y0 - IP n, 

where 
fK:YK YK_1 is a blowing up of the proper transforms of the subspaces 

H,/Y..nH,n+1_K. 0 < i ^ - ^ w ^ n+1, under fKM (f0 = id), 
and 

<f.g>(f-1<HI/V..nHI|C> = HJin...nHJn+1.K. 
where {iv...,iK} and (j1,...,jn+1_K) are complementary subsets of [1 n+1). 

Moreover, under some identification of f"1(H, n...fiHin) and Hj1 with IPn-,, the 
rational map 

f-g^n-r1: pn-i - Pn-i 
is a standard Cremona transformation. 
Proof. Left to the reader. 

Corollary. Let a: V(x) — IPn be the blowing-up of the point set x = (x1,...,xn+1), 
*Px: Hn+i ~*N(V(x) be the corresponding strict geometric marKing. Then there exist 
a pseudo-isomorphism h:V(x) »-» V(x) and commutive diagrams: 

V(X) V(x) Hn+1 =T N(V(x)) 
la la lsao lh« 

T *P x 
Pn ~° IPn Hn+1 * N(V(X». 

Proof. It follows from the previous lemma that T0 induces a rational map 

h- (fn.i-...-f2>-g-<Vi'-̂ 2>"^ Yi = v<x> - Yi 
which is a pseudo-isomorphism that sends the strict geometric marKing 
4>x:Hn+1 -> NCY.,) of Y1 to the geometric marKing y = h*«»ipx: Hn+1— NCŶ  defined by 

91(e0) = n4>1(e0)-(n-1)(tp1(e1)+...+<p1(en+1)), 

91(©i> = 4>1(e0)-ip1(e1)+...+ip1(en+1)+tf1(ei), i = 1 n+1, 

9i<e0> = ntp1(e0)-(«p1(e1)+...+91(en+1»# 
9i(ej) = (n-1)vf>1(e0)-(<f1(e1)+...+cp1(en+1))+91(ei), i = 1 n+1. 

Recalling the action of the simple reflection saQ, this yields-. 

9 = 4>YeSc, . 
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Thus in its natural action on the set of markings tp: Hn+1 — N(V), the 
reflection saQ transforms a strict geometric marking tp = <px of V defined by a 
point set x = (x\...,xn+1) into a geometric marking cp = h*»tp. Similarly, a simple 
reflection sa. transforms tpx into <py, where 

y = (x1 xl'\xu\x\xU2 xn+1). 
This suggests that the whole group Wn,m acts on the set of pseudo-isomorphism 
classes of geometric markings of any gDP-variety V of type (n,m). 

Proposition 1. Let x = (x1 xm)€Pm. Assume that all points x1 are distinct and 
the first n+1 points span Pn. Then for every i = 0 m-1, there exist a point set y = 
(y1 ym)cPm, a pseudo-isomorphism f: V(x) ~» V(y), a birational transformation 
T{: IPn —» Pn, and commutative diagrams: 

V(x) f V(y) 
a a 

Pn Ti Pn 

•"•n+1 
o 
a N(V(y)) 

S<*i 2 

Mn+1 
Sa N(VCx)). 

Proof. Let 
a:V(x) = Vm - VM^ - ... - V, - Pn 

be the corresponding blowing-down structure on V(x). Assume first that i * 0. 
Choose a projective transformation Tj of Pn which permutes the points x1 and xl+1 
and sends the the remaining points xj to some points y*. Define the point set y by 

y = (y1 y,-\x,,x,*\yl*2 ym). 
The composition T^o maps the exceptional divisors Ev...,ErT1 of a to the points 
y1,... ,ym of y respectively. Let (V(y),a) be the blowing-down sructure 
corresponding to y. The composition T^a: V(x) -» Pn blows up the same set y. By 
the uniqueness of the blowing-up, there exists an isomorphism f: V(x) -> V(y) 
defining the first diagram in the statement. It is clear that 

f*([a,"1<yj)l) = [o_1(xj)l if j * u+1, 
PCIa'Vy1)!) = [cT1(xl+1)]), 
P([a'"1(yf+1)l) = laV)]). 

This immediately implies that 
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<PXOSA| = f^y, 
proving our assertion. 

Next let i = 0. Since x1 xn+1 span IPn, we may replace x by a projectively 
equivalent set to assume that x1 = (0,...,1,...,0), i = 1,...,n+1. Let 

f :̂ n+i n̂+i 
be the pseudo-isomorphism defined in the previous Corollary. It extends to a 
pseudo -isomorphism 

f: V(x) -> V(y), 
where 

y = T0(x) = (x1 xn+1,T0(xn+2) T0(xm)). 
It is immediately verified, using the Corollary, that <px°sa[ = f*°tpy. This proves 
the proposition. 

Using the previous proposition we can apply any product of simple 
reflections to a geometric marKing to obtain another geometric marKing, 
provided that at every step the resulting point set x - (x1,...,xm) satisfies: 
(i) x does not contain infinitely near points; 
(ii) <x1 xn+1> = IPn. 
This can be stated in terms of the strict geometric marKing 

<px:Hm -» NCV(x)) 
by saying that all simple B-roots a{ are not effective. 

Observe that 
w(RB(tp)+) = RB(tf«»w"1)+ for any wcWB. 

This shows that we can apply every wcWB = Wn,m to x if 
RB(x)+ = 0, 

i.e. if x is unnodal in the sense of the previous Chapter. 
Hence we are led to the study of the orbits in the set 

(IPm)un = lPm\Z, 

where 
Z = U Z(a), acRB 

87 



I. DOLGACHEV, D. ORTLAND 

ZCoc) = (xcl̂ 'SracRBCx)*}. 

Note that for any i > j > 0, a = ej-ei = aj+.-.+â ^RQ, and 

Z(a) = iSjj(m). 

This shows that 

(^^)un <zP™\ A(m) s P™ \A(m), 

thus it allows us to use 

(0Un- (<)Un 

to denote the same set. Taking a = eQ-e: -...-e: n+1 , we obtain that 

Z(a) = {xc^p: no n+1 points lie in a hyperplane}. 

It follows from the criteron of stability of point sets that 

(l?rn)un c Qpm \A(m))s 

Set 

(prn}un = ̂ (pmjunj c P^\J. 
m Nun Note that, when the number of roots is infinite, (Pj|)un is neither open nor 

closed. 
Let us see first that (P™)un is not empty. 

Theorem 1. For every B-root a the subset 

Z(a) = {xc^^:a€RB(x) + }. 

is a closed subset of IE™. Moreover, its restriction to (IÊ™\A (m))s is 

an irreducible hypersurface. 

Proof. Let 

a = a0e0-a1e1-...-amem€RB. 

Assume <px(a) > 0. Since h0 = ^x^o^ 's numerically effective, 

<px(a).h0 = (a0h0-a1h1-...-amhm).h0 = a0 > 0. 

If a0 = 0, a = ej-ej for some i, j > 0 (Proposition 4 of Chapter V). Hence 

<px(a) = hj-hj > 0 iff xj is infinitely near to x', 

and Z(a) = Ajj(m) in this case. By Proposition 1 of Chapter IV, it is a hypersurface. 

Assume a0 > 0. By Proposition 4 of Chapter V 
a; > 0, i = 1 m. 
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Assume that x does not contain infinitely near points. Then 
<px(a) = a0h0-a1h1-...-amhm 

is the class of an effective divisor D if and only if there exists a hypersurface in 
IPn of degree a0 that passes through the points x1 with multiplicity t o-r In this case 

D = D'+K1El+...+KmEm# 
where D' is the proper inverse transform of the hypersurface. The existence of 
such a hypersurface is expressed by algebraic equations in the coordinates of the 
points x'. This proves that Z(ocVMl£m\A(m» is a closed subset of lî NACm). 

Assume xcA(m). For simplicity we also assume that x4A|(m) with #l > 2 and 
leave the general case to the reader. Without loss of generality we may taKe x in 
A12(m). If K = supt-a^a^O}, any effective divisor with class 9x(a) contains KCE^ 
E2), where <px(e|) = [Ejl. Thus tpx(a) i 0 if and only if there exists a hypersurface in 
Pn of degree aQ passing through x1 with multiplicity i a^K, passing through the 
infinitely near point x2 — x1 with multipliicty > a2, and passing through the 
remaining points with multiplicity > Oj, i > 2. This is expressed by algebraic 
conditions on the coordinates of the xhs. 

So far we have only shown that each Z(a) is a closed subset in !F*m. It 
remains to prove that its codimension is 1 at every point of l̂ 'JJXACm). Obviously, 
this is true for simple roots a^B. Indeed, we have seen this already for i > 0, and 

Z(a0) = {X€ff*m: (I2...n+1)(x) = 0), 
where 

(12...n+1) = det((x(])))€r(l̂ m,bm(®i1TTj».C)pn(1))) . 

Evidently each Z(a) is G-invariant. Let 
Z(oc) = Bmo$(G(m)sriZ(a)) e $(u(m)s) c P^. 

The assertion will follow if we show that each Z(a) is an irreducible 
hypersurface in $(U(m)s). Assume a<B and write 

a0 = ŝ .-.̂ Sĵ Ca) 
for some simple reflections Sj = sajj, j = 1 K. Then 

sK: Z(a)\Z(al|C) - Z(sK(a))\Z(aiK) 

is an isomorphism. By induction on K, we may assume that Z(sK(a))\Z(aJK) is open 
and dense in Z(sK(oO), and Z(sK(a)) is a hypersurface. Thus Z(a) is a hypersurface. 
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Corollary. Assume that the canonical root system of type n in Hm is of finite 
type. Then (IP )̂un (resp. (PTJ >un> is an open Zariski subset of IP™ (resp. P™). 

Remark 1. If n = 2, one can prove that each Z(a)nO(m) is a hypersurface by 
"counting constants". In fact, the condition that a = a0e0-a1e1-...-amem eB, a0 > 0, is 

m 
effective imposes i l a^a^D linear equations on the i(a0+1)(a0+2) 

1 = 1 
coefficients in the equation of a plane curve of degree a0. By Proposition 4 from 
Chapter 5, these numbers are equal. 

Let w = sff. °...*s„. cwnm. It follows from the above discussion that w acts 11 IK 
regularly on the open dense subset 

U(w) = *(U(w», 
where 

U(w) = (CP'S \A(m»\Z(aiK)\Z(saiK(aiK.1))\...\Z(saiK«»-..*Sai2(afi)))s. 
The restriction of w to the generic point of U(w) is a K-automorphism of the field 
of rational functions on P™. This defines a birational action of Wn,m on P™: 

crn/m: Wn,m - Bir(P^) s Cr(n(m-n-2)), 
where Cr(K) denotes the Cremona group in dimension k, i.e. the group of 
birational transformations of PK. We will call this action the Cremona  
representation (or action) of Wn,m. 

If (B,B) is of finite type, RB and Wn,m are finite, and Wn>m acts biregularly on 
the open set (P*n1)un. In general, Wn,m does not act regularly on any open subset of 
r n • 

The next result shows, at least in the case n = 2, that the Weyl group acts 
transitively on the set of unnodal geometric markings of the same gDP-variety. 

Theorem 2. Let tp:Hm — N(V) and <?:Hm — N(V) be two geometric markings of a 
gDP-surface. Then there exists W€W2,m such that 

V = <p«w. 

Proof. Let 

cptej) = hf, i = 0,...,m, 
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9(e0) = a0h0-a1h1-...-amhm = TP(A0E0-Q,E,-...-AMEN]). 

Since 9(e0) is numerically effective, 
a0 = ¥tec>no > 0, Oj = v(e<P#ni 1 0 ' ' > °-

Set 
v = a0e0-a1e1-...-amem, 

so that 
if(v) = y(e0). 

Suppose we show that there exists an element W€W2/m such that 
w(v) = e0. 

Then 
w-1o<p-1ocp(e0) = e0/ 

hence 
w"1otp"1*9(ej) = ea(i), i = 1 m, 

for some permutation a of {1 m). Replacing w by w«a, we may assume that 
w"1*<p"1»9(e,) = ej, i = 1 m. 

This certainly implies that 
9 = tp°w. 

To show that such a w exists we assume first that is unnodal. By assumption, 
RB(ip)+ = 0. Hence 

RB(tp°w)+ = 0 for any W€W2rTV 
Thus for every wcW2/m the composition tp°w is an unnodal geometric marxing. 
Obviously, cp(v) = y(e0) is represented by an irreducible curve. Thus there exists 
an irreducible plane curve of degree a0 with a{-multiple points at the xrs. Applying 
an element of Zm we may assume that 

a, > a2 > ... > am > 0. 
This implies that q>(e0) satisfies the assumptions of Noether's inequality, and 

a= 00-^-02-03 < 0 

unless v = e0, in which case we are done. If v * e0 we apply sao to v to obtain 
w(v) = v" = (a0+a)e0-(a1+a)e1-(a2+a)e2-(a3+a)e3-a4e4-...-amem. 

Since tfosao is a geometric marKing, y(sao(v» is the class of a numerically 
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effective divisor. Hence 
0 < a0+a < a0 , cij+a > 0, i = 1, 2, 3. 

Proceeding in this way, we decrease the coefficent at e0 until we reach the case 
w(v) = e0 

for some wcW2/m. 
Assume tp is any geometric marking. Let x be a generic point set, that is, 

the generic point of IP™- Let 
DcPic(V(x)) 

represent the class <px(v). We Know that 
D2 = 1, D.KV(X) = -3. 

Since 
(KV(x)-n>.ipx(e0) = -3-a0 < 0, 

it follows that h°(Kv<x)-n> = 0- By Riemann-Roch 
h°(D) > 3 

and we may assume that D*0. Specializing x to the point set x representing the 
geometric marKing <p we obtain that D specializes to an element of the irreducible 
linear system ltp(v)l = lcp(e0)l on V(x). Thus we can choose D to be irreducible. This 
easily implies that the linear system IDI is of dimension 2 and defines a birational 
morphism V(x) — IP2. Thus there exists a geometric marKing v' of V(x) such that 

[Dl = v'Ceo). 
By Theorem 1, x is unnodal. Thus we are in the previous situation and can find 
weW2,m for which w(v) = f0. This completes the proof of the theorem. 

Remark 2. The previous theorem is essentially due to M. Nagata ([Nal, Corollary 
on p. 283). 

Remark 3. We do not Know whether Wn,m acts transitively on the set of pseudo-
isomorphism classes of unnodal geometric marKings for n > 2. To prove this we 
would need an analog of Noether's inequality 

(n-1)a0 < a1+...+an+1 
for vectors a0e0-a1e1-...-amem satisfying properties (i),(ii),(iv) and (vi) of 
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Proposition 4 of Chapter V. This question is closely related to the following one. A 
birational transformation 

T: Pn - Pn 
is said to be punctual (cf. [DuV 31) if there exists a commutative diagram 

f 
V ~» V 
la la 
IPn - P n , 

where a: V — IPn and a': V" -» PN are blowing-ups of point sets from m , and f 
is a pseudo-isomorphism. An example of a punctual transformation is a standard 
Cremona transformation of IPn. Since 

rK(N1(V)> = rK(N1(V')), 
V and V' are gDP-varieties of the same type. One can prove that all punctual 
transformations form a subgroup 

Punct(n) c Cr(n) 
of the Cremona group Cr(n) = Bir(IPn). This subgroup contains a subgroup Crreg(n) 
generated by the standard Cremona transformation and projective automor­
phisms. Elements of this group are called regular Cremona transformations. By 
Noether's factorization theorem (see [AS], [Coo]) 

Cr(2) = Punct(2) = Crreg(2). 
It is hinted in [Co3] and [DuV 3] that 

Punct(n) = Crreg(n) 
for all n. However, we were not able to find a proof of this result. Note that Cr(n) 
is "much bigger" than Punct(n) for n > 2. 

Theorem 3. Assume m < 8 and char(K) = 0. Then the quotient space 
CP?>un/W2,m 

is an algebraic variety isomorphic to the coarse moduli variety 7HDP(m) of 
Del Pezzo surfaces of degree 9-m. 

Proof. First let us recall a construction of the latter space. If m = 4, ÜHDP(4) is 
a one-point set. If m = 5, the anticanonical linear system I-Kyi maps the surface V 
isomorphically onto the intersection of two quadrics in IP4. In this case 3HDP(5) 
can be realized as an appropriate quotient of an open subset in the Grassmann 
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variety of pencils of quadrics in IP4. If m = 6, l-Kyl maps V isomorphically onto a 
nonsingular cubic surface in P3. In this case fllDp(6) is constructed by standard 
methods of geometric invariant theory. If m = 7, I-Kyi defines a double cover of 
degree 2 onto IP2 branched along a nonsingular quartic curve. Thus mDp(7) is 
isomorphic to a certain quotient of an open subset of the space of quartic curves. 
Finally, if m = 8, l-2Kvl defines a double cover onto a singular quadratic cone Q in 
IP3 and ramifies along a curve of degree 6 cut out on Q by a cubic. The construction 
of m.Dp(8) in this case is similar to the previous case. 

Let 
(Pm)un - mDP(m) 

be the map defined by forgetting the blowing-down structure. It follows from 
Theorem 2 and Proposition 7 of Chapter 5 that this map factors through the 
quotient by the finite group W2,m and defines a bijective map 

(IPm)un/W2,m - mDP(m). 
Since both spaces are normal algebraic varieties, the assertion follows from 
ZarisKi's Main Theorem. 

RemarK 4. We believe that the birational action of the finite Weyl groups Wnmon 
P™ can be extended to a biregular action on Pm. The quotient Pm/W2 m (m < 8) 
would be a certain compactification of the moduli space fllDP(m). 

2. Explicit formulae. 

Let us give explicit formulae for the action of simple reflections sa.on 
Pm via the Cremona representation crn/fn. We use a birational model of Pm 
introduced in RemarK 3 of Chapter 2. According to this we assume that a point set 
x = (x1 xm) is normalized by a projective transformation to satisfy: 

x1 = (1,0 0) xn+1 = (0 0,1), xn+2 = (1 1,1), xn(l) = 1, i > n+2, 

and then identify x with the point 
(v(n+3) v<n+3) v(n+4) v(n+4) Y<m) Y<mK 
VA Q r...,*n-1 '* O / — /An.1 ,A Q ...,AN.1/ 

of ^n(m-n-2)-
Assume w = s~, i=1 n-1. Then w switches the points x' and x,+1 and leaves 

the remaining points unchanged. Applying the projective transformation 
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(X0,.../Xj,Xj+1/.../Xn) —» ((X0,...,Xj+1,Xj,...,Xn), 
we see that w(x) is G-equivalent to a point set x' defined by the projective 
coordinates 

/ w(n+3) ..(n+3) ̂ (n+4) v(n+4) . (m) ..cmK 
W O '""/n-1 '/ 0 ""'/n-1 '"'7 0 ""'/n-1;' 

where 
y(j) = x<j) y<j) = x<j) y(j) = x<j) K # i,i + 1 = n+3 m. 

I 1+1 '1+1 I K K 
Assume w = s«n . Then w switches xn with xn+1 and leaves other points unchanged. 
Using the projective transformation 

(x0,...,xn) —» (x0,x1,...,xn_2,xn,xn_1), 
we find that w(x) is G-equivalent to a point set x' defined by the projective 
coordinates 

v (n+3) 
v<n+3) A n-1 

v (n+3) 
A n-2 v (n+3) A n-1 

1 
w (n+3) 
A n-1 

Y(m) A o 
Y(m) An-1 

v (m) An-2 
Y(m) An-1 

1 
Y(m) An-1 

Note that in this case w is not defined everywhere on U0. 
Assume w = san+l. It switches xn+1 and xn+2. Using the projective transformation 

(x0,...,xn) —* (xn-x0,...,xn-xn_1,xn), 
we find that w(x) is G-equivalent to a point set x' defined by the coordinates 

(1-x(0n+3) 1-x(n_+?> 1-x(LJ)...#t-x«!!1)). 
Assume w = sa ^ In this case we easily find that w(x) has the coordinates 

n+2- ' 1 
Y (n+3) A o 

1 
Y(n+3) A n-1 

Y(n+4) *0 
Y (n+3) x o 

Y (n +4) 
An-1 Y (n +3)' 
An-1 

Y(m) An-1 
Y (n +3)' 
An-1 

Assume w = sa., i > n+2. This is the simplest case. The point set remains 
normalized after applying w, and w(x) has the coordinates 

(Y(n+3) Y(n+3) Y(i + D V(! + D V(D Y(i) Y(m) Y(m)s 
V AQ /...,AN_1 ,...,A Q ,AQ /.... , Apj_-j, ... , A. o ,...,AN_W. 

Finally let w = sao. The point set x is transformed under crm/P to the point set 
y = (y1 ym), where 

y1 = x1, i = 1,...,n+2, 

yj = (x?... x .̂x^x™... x(n} x̂ >x(1,)...xncI)1). i > n+2. 
Normalizing the last coordinate of every y1 with i > n+2, we obtain that the 
coordinates of the point set w(x) are equal to 
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1 
v<n+3) 
X 0 

1 v(n+3) * n-1 
1 

v<m> o 
1 

v<m> An-1 
We see again that sa is not defined everywhere. 

3. Cremona action and association. 

Recall that the association map is an isomorphism: 

a . pm _» p ™ 

defined in Chapter 3. In this section we will show that this isomorphism is 
compatible with the Cremona action. 

First, let us observe that the DynKin diagrams of the canonical root bases 
in Hm of type n and m-n-2 are obtained from each other by the permutation 
a = (1,m-1)(2,m-2)...([imUm-[iml) of the vertices a, am_1 corresponding to 
simple roots a1,...,am.1: 

a1 <*n+i 

<*0 

am-l <*1 am-n-l 

<*0 

a m-1 

This observation implies that there is an isomorphism Wn<m — Wm_n_2/m defined by 

s«0 -* s°0 s«i s^\y] > °-
Composing it with the inner automorphism of Wm_n_2/m 

w - a*w<f1. W€Wm_n_2,m, 

where a is considered as an element (1,m)(2,m-1)...([im],m-[iml + 1) of 
Im c Wm_n_2,m, we obtain an isomorphism 

T 1 ̂ n,m * Wm -n-2,m • 
By definition 

x(sa > = aosa;oa-, t(s0j) = sa.\ i * 0. 

Theorem 4. Let an be the restriction of aR/m to the generic point. Then for any 
W€Wn,m 

crn,m-n-2^<w))-an - <*Tcrn,m<w>-
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Proof. Let U0 be the locally closed subset of P™ defined by the conditions: 
x1 = (1,0 0) xn+1 = (0 0,1), xn+2 = (1 1,1), xft = 1, i > n+2. 

Similarly, let V0 denote the locally closed subset of IPr{|n_n_2 defined by the 
conditions: 

ym = (1,0 0) y"+2 = (0 0,1), yn+1 = (1 1), ym>_n_2 = U ^ n. 
As in the previous section we maKe a birational identification of U0 (resp. V0) 
with P™ (resp. P^-p.j). Both of these sets are also identified with a subset of 
affine space An(m_n.2) by assigning to a point set x = (x1 xm)€U0 (resp. y = 
(y1 ym)cV0) the point 

z(x) = (x(0n+3) x ^ f x(™ x*™) 

(resp. 

*V> = (Ym -̂a Ym-Ta-./o' vV^-
We have already noted in RemarK 1 of Chapter III that 

an,m(*(x)) = *(y) <=> z(x) = z(y). 
We will identify point sets x and y with the points z(x) and z(y). 

To verify the theorem it suffices to show that 
z(sa.)($(x)) = z(T(sa.)(*(y))) if z(x) = z(y), 

for each simple reflection sa. . The needed formulae are given in the previous 
section. Let i = 0. Then 

sCn($(x)) = 
1 

v <n+3) 
* o 

1 
v (n+3) 
* n-1 

1 
v(m> x o 

1 
v(m) *n-i 

We Know that x(sa_) = sa, where a = e0"en+2"-~em• This shows that 

z(T(sa >(*(y))) = 
1 

v <" /m-n-3 
1 

v <"> /m-n-3 
1 

V(D / o 
1 

Y<n>' 
7 0 

hence 

z(s<v OKx))) = z(x(sa )(*(y))) if z(x) = z(y). 
Let i = 1 n-1. Assume i = 1, since the other cases can be treated similarly. Then 

sai(*<x» = (x<n+3),x(0n+3) x(S_T x(m),x(m) xnm>), 

T(sai)»(y» = sai(*(y)) = (ym.(2).3,yml1n)_3 ym_™ 3 Yl?J?....Y{2>). 
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hence 

z(s0l(*(x))) = z(x(sa.)(4»(y)» if z(x) = z(y). 
Let i = n. Then 

San(*(x)) = 
v(n+3) x o 
msSi 
i lBI 

v<n+3) 
A n-2 v0l+3) 
A n-1 

1 
v(n+3) A n-1 

v(m) * o 
v<m> An-1 

v (m) An-1 
v<m> An-1 

1 
v<m) An-1 

The corresponding transformation T(s0n) interchanges Yn = (y(on> ym-nn-2) with 
y01*" = (1 1). Thus 

z(T(sa )(*(y))) = 
y m-n-3 
v ™ /m-n-3 

v <n"1> /m-n-3 
v <™ /m-n-3 

1 
v <n> /m-n-3 

(D 
7 0 <n) y o 

(n-D y o 
(n> y o 

1 
<n>' y o 

hence it is equal to z(sa ($(x)). 
Let i = n+1. Then 

z(sa rt(x))) = (1-xy*3' l-x^lr l - x T - J - x ^ Y 
and 

z(r(san+1)Wy)» = (1-ymi^3 l-Yin^n-a Wo" Wo')-
This again verifies the assertion. 
Let i = n+2. Then 

z(sa (*(x)» -
1 

v<n+3) 
* n-1 

1 
v<n+3) * n-1 

v(m) o v (n+3) A o 

vcm) An-1 
v (n+3) A n-1 

and 

z(i:CSa_0)($(y))) = 
1 

y m-n-3 
1 

v 01) y m-n-3 

(D / o 
v (1> y m-n-3 

(m y o 
v <n) ' y m-n-3 

This verifies the assertion. 
Let i > n+2. Then 

z<sa.(*(x))> = /v<n+3> v(n+3) V<i + D V(i+D v(i) v(i) v(m) vcm K 
VAn ,An_., o /..wAn_1 ,A« , ... , An_1... , A n ,...,AN_W, and 

z(T(.s«f)<*(y)» = (V (1) v v.(1) v.™ vv1} v(P> vU) vtm) v/m-n-3'-'/m-n-3'"'/i + i /i+v/i ' - ' / i ' — 'Jo /o 

hence 

z(s„.($(x») = z(T(sfl!)(*(y») if z(x) = z(y). 
This proves the theorem. 
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4. Pseudo-automorphisms of gDP-varieties. 
Here we study the Kernel of the Cremona representation 

crn,m:Wn,m - Bir(P^). 
First let us show that any element of the Kernel can be interpreted as a 
pseudo-automorphism of a generic gDP-variety of type (am). 

Lemma 2. Let wcWn,m and xcU(w). Then crR/m(w)(x) = x if and only if for any 
X€$~1(x )clP p there exists a pseudo-automorphism g:V(x) ---» V(x) such that 

<Px°Wo(Px~1 = 9* 
as isometries of N(V(x)). 

Proof. This follows from the definition of pseudo-isomorphic geometric 
marKings and Theorem 1 of Chapter V. 

Theorem 5. There exists an injective homomorphism of groups 

Ker(crn#m) -> Psaut(V(ti)/fe(n», 
where r\ is the generic point of P™ . Moreover for any finite subgroup A of 
Ker(crn/m) one can find a ZarisKi open subset U c Pm such that for every xcU the 
group Psaut(V(x)) of pseudo-automorphisms of V(x) contains a subgroup 
isomorphic to A. 

Proof. The Weyl group Wn/m is naturally embedded into Wn>m+1 as a subgroup 
generated by the simple reflections sa., i = 0,...,m-1. Restricting crn,m+1 to this 
subgroup we obtain a homomorphism 

crn,m + i':Wn,m - Bir^*1). 
Let 

fr = irm:l|5^+1 - P™, 

bm:P™ -ip?; 

be the projections defined in Chapter IV. For every W€Wn,m we set 

0(w) = bm_1(U(w)) c (P™)s 

U(w)' = TT"1(U(W))s c (IP™*1)3 

U(w)' = $(0(w)') c Pmn+1, 

where U(w) c (IP™)55 is defined above. 
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It is easy to see that crn#m+1" is defined on U(w)' and that there is a 
commutative diagram 

crn,m-M U(w) - U(w) 
TT i TT 1 

$(0(w» C-'m $(0<w)), 

where TT is induced by the projection fr: 0(w)' — U(w) by passing to the quotient. 
The fibres of ft are isomorphic to the fibres of fL If 

x = (x1 xm)€U(w), 
X = (X1 Xm)€bm-1(x)€0(W>, 
(x1 xm,xm+1)€ft-1(x) c 0(w)\ 

then 
TV1(X) a V(X)' = (xm+1€V(x):(x1 XM ,XM +1>€(lPm+1)s] C V(x). 

By Theorem 2 of Chapter IV we Know that 

V(x)' 3 bm+1~1(V(x)"), 
where 

V(X)" = {xM+1€PN:(X1 Xm,xm+1)c(IPm+1)S}. 

We may change U(w) to a smaller open subset to assume that all xelKw) are 
in general position in sense of Chapter III. Then the stability criterion from 
Chapter II implies that 

codim(PN,Pn\V(x)") i 2. 
Moreover, by Theorem 2 of Chapter IV, a generic point set of every Ajj is always 
stable in l̂ m+1. This implies that 

codim(V(x),V(x)\V(x)') > 2. 

Thus, replacing U(w) by a smaller open subset on which crn,m(w) is invertible, 
we obtain that crn<m+1(w) induces a pseudo-isomorphism 

V(x)' = TT10KX)) ~> TT'1(crn/m(w)(*(x))>, xcU(w). 

In particular, if wcKer(crn m), crnm+1'(w) defines a pseudo-automorphism of 
each V(x), where xcO(w). Obviously, if w*1, this pseudo-automorphism is not 
trivial (because it defines a non-trivial isometry of NS(V(x». If A is a finite 
subgroup of Ker(crnm), we obtain an injective homomorphism 

100 



CREMONA ACTION 

crnm+i: A -* Psaut(V(x)), X€ n G(w). 
W€A 

Finally we can restrict the action of crn m+1'(w) over the generic point of U(w) and 
thus obtain the first assertion of the theorem. 

Lemma 3. Let V be a gDP-surface and <f:Hm -» N(V) be a geometric marKing. The 
image of the homomorphism 

4>*:Aut(V) - 0(Hm), g <f'1«g*-«p 
is contained in W2m. 

Proof. Obviously 
g*.<p = lf»(f#(g) 

is a geometric marKing. By Theorem 2 there exists wcW2/m such that 

g*.<p = q w 
i.e. 

w = 9"-g*»«p = 9 (g)€W2,m. 

Corollary. Assume that is uncountable. Then there exists a non-empty subset U 
c lPm . the complement of which is the union of a countable number (finite if m < 8) 
of closed subsets, such that 

Aut(V(x))* s Ker(cr2,m) 
for every xcU. Here 

Aut(V(x))* = Aut(V(x» if m > 4, 
Aut(V(x))* = Aut(V(x))/Hx if m < A, 

where Hx is the subgroup of PGL(3) that fixes the point set x. 

Proof. By the previous lemma we have a natural homomorphism 

<px*: Aut(V(x)) - W2,m c 0(Hm), x clPm. 

By definition of the Cremona action for each W€lm(ipx#), the G-orbit of x is a 
fixed point of cr2,m(w). Now for every weW2/m\Ker(cr2/fT1) the set of fixed points 
of cr2,m (w) on U(w) is a proper closed subset. Thus for some open subset V of 

n U(w) 
W€W 

lm(tpx*) = Ker(cr2,m> for all xcV. 
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It remains to use that Ker(ipx*) is isomorphic to HX, and that, if m i A, Hx is 
trivial for all x which belong to a certain open ZarisKi subset. 

Theorem 6. The Cremona representation 
cr2,m:W2,m-. BirCP™) 

is injective if m > 9. 
Proof. Let Em be the subvariety of $(U(m)s) c pm parametrizing the 
orbits of stable point sets that lie on a plane cubic curve. For any wcW2/m the 
generic point of Em belongs to U(w) and is fixed under the map cr2/m(w): U(w) 
— w(U(w)). In fact, the condition xcEm means that -KV(X) > 0 for every xc$"1(x), and 
hence is independent of a choice of a geometric marking. This implies that for any 
wcKer(cr2/m) there exists a dense subset E(w) c Em such that 

Aut(VCx)) * (1), for any xcE(w). 
Let us show that this is contradictory if m i 9. We may assume that x lies on a 
nonsingular cubic C. Since m > 9, we can also assume that such a cubic is unique. 
Then a non-trivial automorphism g of V(x) preserves C and induces an 
automorphism g of C. We may obviously assume that C does not have complex 
multiplications. In this case it suffices to verify the assertion when g is either a 
translation 

x — xea, acC, 
or the inversion 

X — -X. 
Let c be defined as equal to 1 in the first case and equal to -1 in the second 
case. Let 

tn Pic(V(x» - Pic(C) 
be the restriction map. In the usual notation 

hj = tfxCej), i = 0 m, 
where 9x:Hm — Pic(V(x)) is the geometric marking defined by the point set x. Let 

d = [a-ol (c = 1), = 2(o] (e = -1), 
where o is an inflection point of C taken to be the zero of the group law on C, and 
[ ] denotes the divisor class. We have 
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trKg^hp-eh,) = d, i = 1 m, 
tr(g*(h0)-ch0) = 3d. 

Now note that the restriction homomorphism tr is injective. Indeed, if tr(x) = 0 
for some x = Zafy, then we obtain 

[3a0o + lajX1] = 0, 
i.e. 

eOjX1 = 0 
i 

in the group law of C. Taxing x general enough we avoid this possibility. 
It follows that the divisor class 

D = g"(h,)-ch, 
is independent of i = 1 m, and 

tr(D) = d. 

Recall that Ccl-KV(x)l- Therefore 

D«Kv(x) = e-1c2Z, 
and thus 

D2 = -2c?l 
for some integer 7\. We have also 

-1 = g*<h|)2 = (chj+D)2 = -1+D2+2c(h|.D), 
1 = g*(h0)2 = (eh0+3D)2 = 1+6c(h0.D)+9D2. 

This implies 

hj.D = fl, h0O =3* 
Hence 

tr(?i[Cl) = trCriOho-Ihî» = tr(D) 
and 

D = niCl, * 0. 
Now it is easy to finish the proof. We have 

D.KvCx) = e-1 = fl(m-9), 
D2 = -2efl = ?l2(9-m). 

This is absurd if m * 10 or 11. If m = 10 (resp. 11), c = -1, 7\ = -2 (resp. -1). However, 
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D = g*(hj)+hj is effective and cannot be equal to 7MC1. This shows that g* is the 
identity and hence g leaves the points x1 fixed. Since x is a generic point set in Em, 
this implies that g is the identity. 

Corollary. Assume that k is uncountable and m i 9. Then there exists a non­
empty subset U c p'J the complement of which is the union of a countable number 
of closed subsets such that 

Aut(VCx)) = (1) 
for every xcU. 

In the next chapter we will describe Ker(c2/m) for m 5 8. 

Remaric 5. Theorem 6 is due to A. Coble [Co 21. The lacking point in Coble's proof 
is the justification of the reduction to the case of point sets lying on a cubic 
curve. It has been mended in [HU. The application of this theorem to 
automorphisms of rational surfaces was first noticed in [Do], see also [Gil (m = 
9) , [Hi], IKO]. 

5.Special subvarieties of ft™ • 

In this section we give some examples of subvarieties V of Pm whose 
generic point belongs to the domain of definition of each crn,m(w), wcWnm and is 
fixed under the Cremona action. We will call such subvarieties special. The most 
interesting among them are those for which the Weyl group Wn m is infinite but 
the induced Cremona representation: 

Wn,m - Bir(V) 
factors through a finite quotient. All examples Known to us of such special 
varieties will be presented here. 

We have already used one such special subvariety. It consists of point sets 
in P2 lying on an irreducible cubic curve (see the proof of Theorem 6). We refer to 
[Ma II, [Ha21, [LoU for some special properties of these point sets. Let E(m) 
denote the subvariety of P2 corresponding to point sets lying on an irreducible 
cubic curve. These are all stable by Theorem 1 of Chapter II. Note that "x lies on a 
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plane curve" means that each point in x lies in the proper inverse transform 
under the blowing-down map V(x) -* P2. We Know that the restriction of cr2 m t o 
E(m) is a faithful representation 

cr2,m :W2,m "* Bir(ECm)). 
It may happen however that the restriction of the Cremona action to an 

invariant subvariety of Pm factors through a finite group. Here we give some 
examples when this occurs. Assume n = 2 and m = 9. A point set xcP2 's SQid t0 De 
an Halphen point set if the blowing-up surface V = V(x) has a structure of a 
minimal rational elliptic surface (an Halphen surface). It follows easily from the 
theory of elliptic surfaces that this is equivalent to the condition that l-rKvl is an 
irreducible pencil for some r > 0. The number r is called the index of x Cresp. of 
VCx)). The image of this pencil on P2 is a pencil of curves of degree 3r with nine r-
multiple points at the points x1 (an Halphen pencil, see [Hal, [Gil, [C-D 21). 

Let %a(r) be the subvariety of P\ which parametrizes the projective 
equivalence classes of stable Halphen point sets of index r. Since the action of the 
Weyl group W = W2,9 in N1(V(x)) preserves the canonical class, the generic point of 
î№a(r) belongs to every U(w) , wcW, and is fixed under the Cremona action cr2/9. 
This defines a birational action 

cr2/9(r): W - Bir(«a(r)). 
Its Kernel is isomorphic to the automorphism group of a generic Halphen surface 
of index r. 

To state a result about Ker(cr2/9(r)) we recall some well-Known facts about 
the Weyl group W2,9. Let 09 = Q(B2) be the root lattice of the root system of type 2 
in H9. Its radical is spanned by the vector 

K29 = 3e0-e^-...-e9 = 3a0+2a1+4a2+6a3+5a4+4a5+3a6+2a7+a8 
and 

Q9/ZK2/9 s Q8, 

where Q8 is the root lattice of type E8 for W2/8 s W(E8). Using the projection map 
Q9 -» Q9/ZK2,9, the lattice Q8 can be identified with the sublattice of 09 spanned by 
the first 8 simple roots a0,...,oc7. The Weyl group W2/9 preserves K2/9 and acts 
naturally on 08. Let a.W2/9 — 0(08) = W2/8 be the corresponding restriction 
homomorphism. 
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Lemma 4. There is an exact sequence of groups: 

1 - o8 - w2,9 - W2(8 - 1, 

where for every root ac08 

i(a)(v) = v + (p«v)K2/9 +(v»K2/9)a = sa»sp(v), for any vcH9, 

where p = K2/?-a is easily checked to be a root. 

Theorem 7. Let x be a generic Halphen point set and <px: H9 -> N1(V) be the 
corresponding geometric marking. Under the natural injection Aut(V(x» W2/9, 

9 ~* *Px~1o9*°*Px' tnere 's an exact sequence: 
• a 1 - r08 - Aut(V(x» — {±1} - 1. 

In particular cr2 9(r)(W2/9) acts on Ma(r) via its finite quotient isomorphic to the 
group G given by the extension 

1 — (Z/rZ) — G — W(E8)/{±1} - 1. 

Proof. See ICo 11,852 (r i 2), [Gil. 

Remark 6. An Halphen surface V(x) of index 1 is a jacobian elliptic surface. This 
means that its elliptic fibration has a section. After fixing a section, the set of 
sections is equipped with a structure of an abelian group of finite rank equal to 8 
if x is generic. The group of sections acts on V(x) by translations (see [ASi, 
IC-D21). The corresponding subgroup of Aut(V(x» is the image of Q8 s z8 in W29. 
The element -1cAut(V(x))/i(Q8) corresponds to the automorphism of V(x) which 
induces the homomorphism z -» -z on each nonsingular fibre of the elliptic 
fibration. 

Assume now that n = 2, m = 10. A point set X€£12 (resp. its blowing-up V(x)) 
is said to be a Coble point set (resp. a Coble surface) if l-2Kvl contains an 
irreducible curve. It is easy to see that this curve is a smooth rational curve c 
with C2 = -4. Its image in P2 is a sextic with double points at each x'. 

Let 3 c Ê12° be the variety parametrizing projective equivalence classes of 
stable Coble point sets. As in the above example, the generic point of 3 is 
invariant under the Cremona action cr2r10. This defines a birational action 

cr2,io' : W2,io - Birds ). 

Its kernel is isomorphic to the automorphism group of a generic Coble surface. 
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Theorem 8. Let x be a generic Coble point set and ipx: H10 -> N1(V(x» be the 
corresponding geometric marKing. Under the natural injection Aut(V(x)) <̂  W2/10, 
9 M>x'°g*0«Px 

Aut(VCx)) as W2/l0(2> = CwcW2/10: w(x) a x mod 2Q(RB)}. 
In particular, cr2/10" acts on T3 via its finite quotient isomorphic to W2/10/W2/10(2). 
Proof. See [Co 1],S52, [Co51, [Do 2], IC-D 31. 

Next, let n = 3 and m = 8. A point set xelf̂  = lP>| is called a Cayley octad (cf. 
[Ca]) if it is the base-set of the proper inverse transform of in V(x) of a net of 
quadrics in IP3. One easily verifies that every Cayley octad is a stable point set 
with no three collinear points, and no five coplanar points. Its image in IP| is a 
semi-stable point set with no three coinciding points. We denote by 3 0 the 
subvariety of P% parametrizing the orbits of Cayley octads. The projection of is © 
to P3 defines a birational map: 

SO .Z S8 

onto the variety of the orbits of self-associated point sets. It follows from 
Theorem 4 that the generic point of the variety S8 c P3 is invariant with respect 
to the Cremona action cr3/8. Let 

cr3,s': W3,B - Bir(S8) 
be the restriction of cr38 to S8. 

To state a result about Ker(cr3/8') we use some facts about the Weyl group 
W3/8 which are similar to those from above about the group W29. We have 

iK3/8 = 2e0-e1-...-e8 = 2a0+a1+2a2+3a3+4a4+3a5+2a6+a7€QB. 

K3,8 = 4e0-2(e1-...-e8) = 2a0+a1+2a2+3a3+4a4+3a5+2a6+a7eQB. 

It is easy to checK that the map 

(â Ofj) — (aj mod ZiK3,8, 0Cj mod ZK3/8), i,j = 0 6 

defines an isomorphism of bilattices: 

07 ^ (Q(B)/ZiK3/8,Q(g)/ZK3/8), 

where Q7 is the root lattice of type 2 in H7 (the root system of type E7). 
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Lemma 5. There is an exact sequence of groups: 
1 - 07- W3/8 - W(E7) - 1, 

where for every root acRB in QJ 
i(a)(v) = v + i(v»a)K3/8 +4(v«K3>8)£ = saoSg(v), for any veH9, 

where $ = iK3/8-a is easily checked to be a root. 

Theorem 9. Let xcP| be a generic Cayley octad and tpx: H9 — N(V(x)) be the 
corresponding geometric marking. Under the natural injection 
Psaut(VCx)) W28, g 4>x1°9*0<Px tnere is a subgroup Psaut(VCx))' of Psaut(V(x)) 
given by an exact sequence: 

1 . a 1 — ^ Psaut(VCx)) -> {±1} — 1. 
In particular cr3/8'(W2,8) acts on S8 via its finite quotient isomorphic to 
W(E7)/{±1) s Sp(6,F2). 

Proof. This is similar to the proof of Theorem 7 (r = 1). We know that a generic 
point xcS8 is the base set of a net of quadrics in P3. This net defines a morphism 

TT:V(x) — P2 
which is an elliptic fibration. Fixing a section of TT corresponding to one of the 
exceptional divisors of a: V(x) -HP3, we equip the generic fibre of TT with a 
structure of an abelian variety A of dimension 1 over the field K of rational 
functions on P2. Its group of rational points AGO is isomorphic to the subgroup of 
N1(V(x)) of the divisor classes whose restriction to the generic fibre is a divisor 
of degree 0. It is easy to see that 

AGO s Z7, 
and is generated by the classes H>x(0C|), i = 0 6. A direct calculation shows that 
the pseudo-automorphisms of V(x) induced by the translation automorphisms tQ/ 
acAGO, of A is isomorphic to the group Q7. The inversion automorphism x — -x of 
A is mapped to -1 under the map W3/8 W(E7). 

For another more direct proof see [Co 11, S53. 

Finally, we assume that n = 3, m = 10. A point set X€lP13\A(10) is said to be a 
Cayley decad if there exists a web W of quadrics in P3 such that x is the set of 
double points of the Hessian surface of this web. Recall that the latter is defined 
as the subvariety of W parametrizing singular quadrics. We refer to ([Cal, [Co 1], 
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[Co 51, [Cos], [C-D3D for the beautiful geometry of such Hessian surfaces 
(called Cayley symmetroids). Let TJ«0 be the subavariety of P3° corresponding to 
stable Cayley decads. It is easy to see that its generic point is fixed under the 
Cremona action cr3/10 and defines a birational action: 

^a/io'-' W3,io - Bir(S<G>). 
Let 

W3/10(2) = CwcW3/10: W(x) = x mod 20(B) for any X€Q(B)). 
It is Known (see [Co6], [Grill) that the factor group W310/W3/10(2) is given by an 
extension 

1 -> (Z/2Z)8 -> W3/10/W3/)0(2) - Sp(8,IF2) - 1. 
Let W3/10 be the inverse image of (Z/2Z)8 in W310 under the projection 
3̂,10 ~~* ^3,10^^3,10^ '̂ 

Theorem 10. Let x be a generic Cayley decad and 4>x: H10 — N(V(x)) be the 
corresponding geometric marKing. Under the natural injection 
Psaut(V(x)) »̂ W2,9, g —- <px~1<»g*o<Px, we nave 

W3>10 c Psaut(V(x))'. 
In particular, the homomorphism cr3/10' factors via its finite quotient isomorphic 
to Sp(8,IF2). 

Proof. See [Co 11, S53, [Co 51, [C-D11, [C-D31. 

RemarK 7. We refer to [Pi] for applications of the Cremona action to 
simultaneous resolutions of singularities of rational double points. 
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VII. EXAMPLES. 

Here we review in examples everything we have learned so far. 

1. Point sets in P1. 

In this case we complete our definition of the Cremona action by setting 

^1 ,m = Em 
and by defining 

cr1<m: W14n - Bir(Pm) 
to be the action of the permutation group via its natural action on IPm. Note 
that we have an analog of Theorem 5 from Chapter VI: 

cr1/m(w)(x) = x <=» w(x) = g(x) for some gcPGL(2) 
for any representative x of xcP1?. 

The spaces P1? are defined for m i 3. Its open subset <*>((P m )s> parametrizes 
the G-orbits of point sets where strictly less than im points coincide; it is equal 
to P^ when m is odd. 

We have 
P3, = {point}, 
Ker(cr1/3) s I3, 
P? SPV 
Ker(cr1>4) s (Z/2)2 c E4. 

The quotient group is 
Z4/Ker(cr1t4) = SL(2,F2), 

and the nontrivial elements in KerCcr^) are the permutations 
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(12X34), (13K24), (14X23). 
For example, if x1 = (1,0), x2 = (0,1), x3 = (1,1), x4 = (1,a), a * 0,1, 

(x1,x2,x3,x4) (12̂ 34> (x2,xV,x3) i (x\x2,x3,x4), 
where 

g: (t^t,) - (atvt0). 
The analog of Theorem 6 from Chapter VI says that 

Ker(cr1#m) = {1} if m > 4. 
This is almost trivial because the only non-trivial normal subgroups of Im are 
the alternating subgroup Am and Em itself. Let us identify Im-i w'tn tne subgroup 
of Im that fixes the subset {m}. Then , if Am c Ker(crlm), 

AM-1 " Am^m-i c KeKcr,^^), 
which is contradictory for m = 5. 

The explicit formulae for the Cremona action can be applied in our case 
also. Our final remarK is that 

PT /wi,m = IP(Symm(V*))ss/PGL(2) = (IPm)ss/PGL(2) 
The approach to the invariant theory of binary forms via the Cremona action 
cr1#m is due to E. Moore [Mol. We refer to [Rel and [Szl for some interesting 
details in the case m = 5. 

2 Point sets in IP2 (m < 5). 

Although the spaces Pm are defined only for m > 3 we maKe some 
remarKs starting from the case m = 1. All root bases Bn considered below are of 
canonical type 2 in Hm (m > 3). Their DynKin diagram is of type A2xA1 (m = 3), A4 
(m = 4), D5 (m = 5). We denote by 

(lPM)P9 clPm 

the subset of point sets in "almost general position" in the sense of RemarK 1 of 
Chapter V. This is the set of points X such that the gDP-surface V(x) is either a 
Del Pezzo surface or a nodal Del Pezzo surface. 

m = 1. There is one orbit of G = PGL(3) in l£12=IP2. For every X€lP2, the blowing-up 
V(x) is a Del Pezzo surface of degree 8. It is isomorphic to the minimal ruled 
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surface Fv and its anti-canonical model is a nonsingular surface of degree 8 in 
IP8. The automorphism group of V(x) acts identically on N(V(x)). There is only one 
geometric marking of V(x), and one exceptional curve of the first Kind. 

m = 2. ift2 is the union of two G-orbits: A(2) and its complement. For every 
\s.P22\L(2), the blowing-up surface V(x) is a Del Pezzo surface of degree 7. Its 
anti-canonical model is a nonsingular surface of degree 7 in IP7. If xcA(2), V(x) is a 
nodal Del Pezzo surface, its anti-canonical model is a surface of degree 7 with 
one ordinary double point. Every Del Pezzo surface V(x) of degree 7 has exactly 
two geometric markings. They differ by an automorphism of V(x) that is induced 
by a projective transformation of P2. There are three exceptional curves of the 
first kind on V(x). In the nodal case V(x) has only one geometric marking, and two 
exceptional curves of the first kind. 

m = 3. Here 
(IP3)3 = (P%)s = 0, 
(P3)38 = b3(tf>3)3) = (P3)9en 

consists of non-collinear point sets with no coinciding points. We have 

pl = 2̂ = (point). 
The set of positive roots consists of four elements: 

®0~~®1~"®2~~®3' ®1"~®2' ®1~*®3' ®2~®3* 
This shows that 

(P|)m = 0P>3)SS. 
The set 

P3 \ (f>3)pg * 0 
consists of point sets of the form: 

(x\x2->x\x3->x1). 
Obviously, 

Ker(cr2#3) = W2/3 s I3xZ/2. 
The homomorphism Aut(V(x)) -» W2/3 is surjective. Its kernel is isomorphic to the 
torus £*2. 

Every Del Pezzo surface V(x), X€(f>f)un, has 6 exceptional curves of the first 
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Kind. If ip: H3 — N(V(x» Is a geometric marKing of V(x), then the classes of the 
exceptional curves are the images of the following vectors: 

®0~"®1~~®2' ®0~®2~®3' ®0~~®1"~®3' ®1'®2'®3* 
The number of geometric markings on a Del Pezzo surface of degree 6 is 

equal to the order of the Weyl group W2/3, which is 12. 
We leave to the reader the study of geometric markings on V(x) for 

x (̂lP>|)ss. 

m = 4. We have 
(P4)SS = <P4)S = (P4)9EN 

consisting of point sets with no coinciding points and no three points on a line, 
(£>4)ss = (£>4)s= b/1((P4)S), 

and 
P2 = P\= {point). 

There are 10 positive roots in RB. They are given by 
eQ-ej-ej-e^ 1 < i < j < k < 4, 
ej-ej, 1 s i<j s 4. 

This implies that 
<£>4)un = (£>4)ss. 

Thus for every X€(l£2)ss, 'ts blowing-up is a Del Pezzo surface of degree 5. Its 
anti-canonical model is isomorphic to a nonsingular surface of degree 5 in IP5, 
which is defined by five equations of degree 2. We have 

Aut(V(x» ai Ker(cr2/4) = W2/4 a I5. 
The number of geometric markings of a Del Pezzo surface of degree 5 is equal to 
the order of the Weyl group W2/4, which is 120. Any two geometric markings of 
V(x) differ by an automorphism of V(x). 

A Del Pezzo surface of degree 5 has 10 exceptional curves of the first Kind. 
Their classes are the images under ipx of the following vectors in H4: 

eQ-ej-ej, 1 < i < j < 4, ej, i = 1,...,4. 

A curious remark is that 

113 



I. DOLGACHEV, D. ORTLAND 

V(x) » p* for any X€(P4)SS. 
This can be seen in various ways. One of them is as follows. We Know from 
Chapter II that P5 is a nonsingular rational surface. The projection IPf-*IP4 
induces a map 

ll:P»- P« 
Its general fibre is isomorphic to Pv and its 3 degenerate fibres are composed of 
two irreducible components intersecting transversally. They lie over the 
boundary is c p} . One of the components lies over the orbit in IP4 of a point set in 
which two points coincide, the second one over the orbit of point sets in which 
the complementary pair of points coincide. The intersection point lies over the 
orbit of the point sets in which two complementary pairs of point coincide. There 
are four disjoint sections of TT. They are defined by the maps: 

(x\x2,x3,x4) (x\x2,x3,x4,x'). 
A standard argument shows that the images of these sections can be blown down 
to an unnodal point set from P4. Finally note that the action of I5 on V(x) 
corresponds to the action of I5 on P̂  via permutation of the factors of IP if. 

m = 5. We have 
(P*)88 = (P*)8 

consisting of point sets where no points coincide and at most three points are 
collinear. 

OP*)88 = (^2)8=b5-1((P^)8). 
By association 

p\ • ps • p?. 
and, by the previous remarK, is isomorphic to a Del Pezzo surface of degree 5. 

There are 20 positive roots in RB. They are given by 
eo-ej-ej-e^ 1 < i < j < K < 5, 
ej-ep 1 < i<j < 5. 

Thus 
(IP*)1*1 = (P^S\(UZUK), 

where 
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ZUK = Z(e0-erereK). 
The anti-canonical Del Pezzo surface is a complete intersection of two quadrics 
in IP4. If it is nonsingular, the corresponding quadrics can be given by diagonalized 
equations: 

5 0 5 
I Z: = Z ?I:Z| = 0, 1=1 ' ¡ = 1 ' ' 

where all flj are distinct. The group (Z/2)4 acts on V(x) by automorphisms 

<z0 z4) -> (±z0 ±z4). 

For every xcG f̂)8, its blowing-up is a Del Pezzo surface of degree 4. Under 
the homomorphism 

Ker(cr2,5> - Aut(VCx)), 

the subgroup (Z/2)4 c Aut(V(x)> corresponds to the subgroup H of W2/5 a W(D5) 
generated by the products of two reflections sa°Sp, where a = e0-ej-ej-eK, 
p = er-es/ {iĵ jncr̂ s} = 0. 

There is an isomorphism: 

W2,5/H = Ms 

as is predicted by the association isomorphism, and cr2/5 defines a faithful 
representation 

cr2^: r5 "* Bir(F )̂ 

that is induced by the permutation of factors of Pf . 
There are 16 exceptional curves of the first Kind on a Del Pezzo surface of 

degree 4. Their classes correspond to the following vectors in H5: 

e0-e-ey 1 s i<j s 5, 

e,, i = 1 5, 

2e0-e1-...-e5. 

The number of geometric marKings on a Del Pezzo surface of degree 4 is equal to 
the order of the Weyl group W2/5 which is 24»5! = 1920. 

All possible singularities of an anti-canonical nodal Del Pezzo surface are 
Known. For every nodal Del Pezzo surface V(x), the set of nodal roots defines a 
root basis Bn in Hm. Its DynKin diagram T(Bn) is a connected sum of DynKin 
diagrams isomorphic to subdiagrams of T(B). Its root lattice is isomorphic to a 
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sublattice of Q(B). Each connected component of r(Bn) Is equal to the intersection 
graph of irreducible components of the exceptional locus of one of the singular 
points of the anti-canonical model of V(x). This allows one to classify all possible 
configurations of singular points of an anti-canonical Del Pezzo surface. We 
refer to [DuV1l, [Til, [Url for the corresponding lists. 

3. Cubic surfaces (n = 2, m = 6). 
By the stability criterion from Chapter II, we have 

P2>ss = (x = (x1 x̂ cP* no 3 points coincide and no 5 
points are collinear}, 

(P2>s = (x = (x1/.../x6)cP2: no 2 points coincide and no 4 
points are collinear}. 

By Theorem 2 from Chapter IV, we have 
(P*)ss = (P$)s = {x = (x1 x6)€lP>*: X4A(6)3 and no 4 
points are collinear}. 

The variety P̂  is a normal rational variety of dimension 4 isomorphic to a 
hypersurface of degree 4 in the weighted projective space IP (1,1,1,1,1,2) (see its 
equation in Chapter I). The morphism 

B6: P% -
is a resolution of singularities. Its fiber over a nonsingular point of the singular 
locus «f9 of P6 is isomorphic to a nonsingular quadric. 

Note that 
(P*)88 c (p*)P9. 

For every X€(f>2>P9 the anti-canonical linear system maps V(x) onto a cubic 
surface V in P3 with at most rational double points. It is an anti-canonical Del 
Pezzo surface of degree 3. Those which have at most nodes as singularities 
correspond to point sets from (P*)88. The variety Pb2 is a natural compactification 
of the coarse moduli variety of nonsingular cubic surfaces with a geometric 
marKing. 

There are 36 positive roots in H6 with respect to a canonical root basis of 
type 2: 
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e0-erej-eK, 1 s i < j < K S 6, 
ej-ej, 1 s kj < 6, 
2e0-e1-...-e6. 

Each of them can be realized as a discriminant condition for V(x), X€(lP>2)s. Thus 
dp,6)un consjsts of point sets x<A(6), x does not lie on a conic, and no three points 
from x are collinear. The boundary 

P%\(P$)un 
consists of 36 irreducible hypersurfaces, each of which corresponds to one 
discrimimant condition. Note that the permutation group E6 acts biregularly on 
Pt (see RemarK 2 in Chapter IV). The quotient space 

P%\(P$) 
is a compactification of the moduli space of Del Pezzo surfaces of degree 3 
together with a contraction sheaf(cf. llshl). Unfortunately, the birational action 
of the whole group W2/6 s W(E6) does not extend to a biregular action on P2 . We 
believe that it can be biregularly extended to the variety £2 obtained from P2 by 
blowing up all intersections of discriminant hypersurfaces. If this is true, the 
quotient variety would be a natural compactification of the moduli space of 
nonsingular cubic surfaces. 

The Weyl group W2>6 as W(E6) is of order 51840. This is also the number of 
geometric marKings of a nonsingular cubic surface. The Weyl group is "almost" 
simple. The only non-trivial proper normal subgroup of W is the subgroup W' of 
index 2 generated by the products of pairs of simple reflections. 

We have 
Ker(cr2/6) = {1). 

In fact, the only other possibility is W' e Ker(cr2/6). In this case W' contains the 
alternating group A5 that acts by permutations of the first 5 points This implies 
Ker(cr2/5) =5 A5, which is impossible. 

Every nonsingular cubic surface V contains 27 lines, which are exceptional 
curves of the first Kind. Their classes are the images of the following vectors: 

eo"erej' 1 * l<i - 6' 
ej, i = 1 6, 
2e0-e1-...-e6+el, i = 1 6. 
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Each geometric marKing tp:H6 — N(V) defines a double-sixer of lines. This is a 
set of 12 lines the classes of which are given by 

hj = iptef), and hj' = tp(2e0-e1-...-e6+ej) , i = 1 6 . 

They are determined by the property: 

ni*nj = h^hj' = 0, hj»hj' = 1, 1 s i < j £ 6, 

hf.h,' = 0, i = 1 6 . 

Conversely, every double-sixer (1, 16;11' 16'} defines a pair (tpj,̂ ) of geometric 
marKings which satisfy: 

%(e}) = "¡1, H>2(ej) = [I,'!, 1 i = 1 6 . 
We will see a little later that, if <p1 = <px, q>2 = Wy f°r some x,y€lP2>, then x is 
associated to y. Also note that 

9i » <P2eSoc< 
where 

a := amax =2e0-e1-...-e6 ("the maximal root"). 
The Weyl group W acts transitively on the set of 27 lines and can be defined 

as the group of bijections of this set preserving incidence relations. It acts 
transitively on the set of double-sixers. The isotropy subgroup of a double-sixer 
is a subgroup I6x(sa). Thus the number of different double-sixers is 36, which is 
also the number of positive roots with respect to the root system of type E6. 

Finally, let us show that the association mao 

cu.: R; - PI 
restricted to the subset of point sets not lying on a conic coincides with 
cr2<6(samax>. This shows that the geometric marKings corresponding to the same 
double-sixer are associated. 

Let 
x = (x1 x6)€(P2*)SS \ Z(amax) c P6 \ A(6), 

and x7,x8,x9 be three non-collinear points that together with the first 6 points 
form the base set of a pencil of cubic curves. Replacing x by a projectively 
equivalent set, we may assume that 

x7 = (1,0,0), x8 = (0,1,0), x9 = (0,0,1). 

Let T0 be the standard Cremona transformation. Let us verify that 
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x' = (T0(x1),...,T0(x6)) is associated to x. 
Let X = (x(i)) be a coordinate matrix of x. We have to show that 

j 

w (1)v (2)v (3)Y (4)v (5)v (6) л0 л0 л0 л0 л0 О 
v <1)v <2)v (3>Y (4)v (5)v (6) 
v (1)v (2)v (3)v (4)v (5)v <6) 2 2 2 2 2 2 

v (Dv <D w (1)v (1) v <1)v (1) л1 л2 л0 л2 л0 л1 
v (2)v (2) v (2)v (2) v (2)v (2) 1 л2 л0 л2 л0 л1 

v <5)v (5) v <5)v (5) v <5)v <5> Л1 Л2 ЛО Л2 ЛО Л1 

V (6)v (6) v (6)v (6) v (6)v (6) 
л- л2 л0 л2 л0 л« 

= о 

for some A = diagC?̂  fl6), 7\-{ * 0. Expanding the product we obtain the following 
system of 7 linear equations in 6 unknowns \ . 

6 
I 
¡ = 0 

a v(I)v(I)v(i) 
п i л0 л 1 л2 

= о, 
6 I 

1 = 0 
ñ¡Xj Хк = 0 , 0 < j < К ^ 2, 

6 
I 
¡ = o 

flfXj хк = О , О < j < К í 2, 
Let 

I Or^t-XX^ - 0 
0<i<j<K<2 

be the equation of a generic cubic passing through the points x1 xv Obviously 
Q0OO = ai11 = Q222 = °-

and we observe that the coefficient matrix of our system of linear equations is 
equal to the transpose of the coefficient matrix of the system of 6 linear 
equations: 

I a.̂ x̂ Wx™» 0, 1 < n < 6, 
0<i<j<K<2 U* ' J K 

in 7 unknowns aijK, (ij,k) * (0,0,0), (1,1,1), (2,2,2). By the choice of x7,x8,x9, the 
space of solutions of this system is of dimension 2. Thus our original system has 
a non-trivial solution (n̂  7\b). If = 0 for some i, then the points x1 x',...,x9 lie 
on a net of cubics. It is easy to see that this is impossible. This proves that x is 
associated to x' = T0(x). 
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Let x = (x\...,x9) and 7 = V(x). The pencil of cubic curves passing through x 
defines the structure of a minimal elliptic surface on V. We have 

<Px °Sa = WX'. 
where x" = (x',x7,x8,x9), a = e0-e7-e8-e9. On the other hand, we have 

<Px = W. 
where p = 2e0-eA-...-e6cH9, and 

x" = cr~As„ )(x,x7,x8,x9). amax 
This shows that 

<PxM = tpx'0<sa*sB). 
Since a+p = K2/9, it follows from Theorem 7 of Chapter VI that 

sa-sB= <P5f1*g"*<Px 
for some gcAut(V) (inducing a translation on the generic fibre of the elliptic 
fibration of V). This implies that x' is projectively equivalent to x". Hence 

a2/6($(x)) = cr2>6(x) = *(x') . 

RemarK 1. The following group theoretical argument gives an indication why the 
previous result should be true. Let us identify W = W(E6) with a subgroup of 
Bir(P2) by means of the Cremona representation cr2r6. Then the association 
automorphism a:P2 -* P̂  defines an automorphism of W 

w a"1»wa. 
It is Known that every automorphism of W(E6) is inner. Thus 

a"1*wa = w0"1*w»w0 
for some w0cW. Since a preserves the subvariety of point sets lying on a conic, 
w0 must be equal to sQmax. Unfortunately it does not yet prove that acW. 

4. Del Pezzo surfaces of degree 2 . 
Assume n = 2 and m = 7. In this case 

(P7)ss = (P7)s 
consists of point sets such that at most two points coincide and at most 4 lie 
on a line. 
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By Theorem 2 of Chapter IV, 
(P72)ss = (P72)s= b/CCPJj3). 

The morphism 
B7: PI - P2 

is a birational morphism of nonsingular varieties of dimension 6. It is an 
isomorphism over <KU(7)S), its restriction over the subvariety of orbits of point 
sets with exactly two coinciding points is a P.,-bundle. 

For every xcĜ J)3 with at most 3 collinear points, the blowing-up surface 
V(x) is a (nodal) Del Pezzo surface of degree 2. The anti-canonical linear system 
defines a morphism of degree 2 

TT: V(x) — P2 
that factors through a birational morphism V(x) — V' onto a surface V' with at 
most double rational points as singularities and a double cover TT'V — IP2. If 
char(-fe) * 2 the branch curve B of TT' is of degree 4 (see [Del). Conversely, for 
every plane quartic curve B such that the double cover V' of IP2 branched along B 
has at most rational double points as singularities, a minimal resolution of 
singularities of V' is a Del Pezzo surface of degree 2. All possible configurations 
of singularities of V", and hence of B, are Known ([DuV 11, [Til, [UN). 

There are 63 positive roots in H7 given by: 
eQ-ef-ej-e,̂ , 1 < i < j < K S 7, 
ej-ej, 1 i i<j < 7, 
2e0-e1-...-e7+ef, i = 1 7. 

Each of them can be realized as a discriminant condition for V(x), X€0PJ,)S. A point 
set x is unnodal if and only if xc0(7) = U(7), no conies pass through 6 points from 
x, and no three points from x are collinear. Nonsingular plane quartics 
correspond to unnodal point sets. 

The Weyl group W2/7 a W(E7) is of order 2903040 = 210.34.5.7. This is also 
the number of geometric marKings of an unnodal Del Pezzo surface of degree 2. 
The Weyl group has a non-trivial center. It is generated by an element w0 of order 
2 that can be characterized as the "longest" element of W, that is, its length with 
respect to the set of Coxeter generators is maximal. The element w0 acts on the 
root lattice Q(B) as -1. If ip: H7 -» N(V) is a geometric marking of a Del Pezzo 
surface of degree 2, then 
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<P°vv<p"1 = g«, 
where g is the involution of V defined by the covering transformation of TT:V-»IP2. 
Indeed the L.H.S. preserves Kv = <f(-K2,7) and acts as -1 on the orthogonal 
complement L = (ZKV)N(V)±= <f(Q(B)). Since TT is given by l-Kvl, for every xcN(V) 

g*(x)+x = mKv€ZKv= TT*(Pic(P2)) 
for some mcZ. Intersecting both sides with Kv, we obtain 

(g*(x) + x)»Kv = g*(x)*g*(Kv) + x»Kv = 2x*Kv = mKv »KV = 2m. 
This implies that g* = tp°w0«»<p"1= -1 on the orthogonal complement of Kv. 

Let 
0(B) = 0(B)/2Q(B) s F .̂ 

We equip it with the symmetric bilinear form defined by 
(ajs) = o>p mod 2 

for every a = a+2Q(B), acRs- The vector 
f = a0+a4+a6 

spans the radical of this bilinear form, and 
0(B)' = Q(B)/(f) a F2 

has a structure of a symplectic space over F2. The Weyl group acts naturally on 
0(B) and Q(B), and we have an exact sequence: 

1 -> (w0) - W(E7) - Sp(6,F2) - 1. 
This shows that the Cremona representation cr2J factors through a 
homomorphism 

cr2/7: Sp(6,F2) Bir(P̂ ). 
The group Sp(6,F2) is simple. As in the case m = 6, this easily implies that cr27 is 
injective, and hence 

Ker(cr2/7) = (w0) a Z/2. 
It is easy to verify that 

w0(e0) = 8e0-3e,-...-3e7, 
w0(ej) = 3e0-e<-- ... -e7+ej, i =1 7. 

The Cremona transformation corresponding to w0 is the so-called Geiser  
involution. It is given by the linear system of plane curves of degree 8 with triple 

122 



EXAMPLES 

points at x1 x7 (see [S-R], ChapterVII, 8.1). 
A Del Pezzo surface of degree 2 has 56 exceptional curves of the first Kind. 

Their classes are equal to 
e0-erej, 1 < i<j < 7, 
ej, i = 1 7, 
2e0-e1-...-e7+ei, 1 < i<j < 7, 
3e0-e1-...-e7-eI, i = 1,...,7. 

Under the covering involution g they are divided into 28 pairs, each of which is 
mapped to a bi tangent of the branch quartic B. 

5. Del Pezzo surfaces of degree 1. 
This is very similar to the previous case. We have 

(Pj)ss = (P̂ )s 
consisting of point sets in which at most two points coincide and at most 5 lie 
on a line. 

By Theorem 2 of Chapter IV, 
(lP>5)ss = (£>*)* = b8"1((P*)s). 

The morphism 

6«: P\ - * 
is a birational morphism of nonsingular rational varieties of dimension 8. It is a 
IP ̂ bundle over the subvariety of the orbits of point sets with exactly two 
coinciding points. 

For every xcflP®)3 with at most 3 collinear points, the blowing-up surface 
V(x) is a (nodal)Del Pezzo surface of degree 1. The anti-bicanonical linear systerr 
l-2Kv(x)l defines a morphism of degree 2 

TT: V(x) — IP3 
that factors through a birational morphism V(x) — V" onto a surface V* with at 
most double rational points as singularities and a double cover TT'V -» C, where c 
is an irreducible singular quadric. If charOfe) * 2 the branch curve B of IT' belongs 
to I0c(3)l and does not pass through the singular point of C (see [Del). Conversely 
for every curve Bel0c(3)1 such that the double cover V' of C branched along B has 
at most rational double points as singularities, a minimal nonsingular model of v" 
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is a Del Pezzo surface of degree 1. All possible configurations of singularities of 
V", and hence of B, are Known ([DuV 1], [TM, [UrD. 

There are 120 positive roots in H8 given by: 
en-e^-e^, U i < j < K < 8, 
ej-ej, 1 < i < j < 8, 
2e0-e1-...-e7+ej,+ej ,1 < i < j < 8, 
3e0-e1-...-e8-el, i = 1,...,8. 

Each of them can be realized as a discriminant condition for V(x), xc(lP2)s. 
Note that a nonsingular B is a canonical model of a nonsingular curve of genus 4 
with a vanishing theta constant. All such curves correspond to unnodal point sets. 

The Weyl group W2,8 a W(E8) is of order 696729600 = 214.35.52*7. This is 
also the number of geometric mancings of a Del Pezzo surface of degree 1. The 
Weyl group has a non-trivial center. It is generated by an element w0 of order 2 
that can be characterized as the "longest" element of W, that is, its length with 
respect to the set of Coxeter generators is maximal. The element w0 acts on the 
root lattice Q(B) as -1. If <p: H8 N(V) is a geometric marKing of a Del Pezzo 
surface of degree 1, then 

9°w0°cj)~1 = g*, 
where g is the involution of V defined by the covering transformation of TT:V -> C. 
This can be proved in the same way as in the previous case. 

Let 
0(B) = Q(B)/2Q(B) - F28. 

We equip it with the symmetric bilinear form defined by 
(aJ) = o>£ mod 2 

for every a = a+2Q(B), acRs- This form is non-degenerate and is associated to 
the quadratic form q:0(B) F2 defined by 

q(x) = ix»x mod 2 
for any x = x+2Q(B)€0(B). This quadratic form is of Witt index 1 and its orthogonal 
group is denoted by 0+(8,F2). The Weyl group acts naturally on Q(B) preserving q 
and there is an exact sequence.-

1 - (w0) - W(E8) - 0+(8,F2) - 1. 
This shows that the Cremona representation cr2/8 factors through a 
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homomorphism 
cr2,8: 0+(8,F2) - Bir(P|). 

The group 0+(8,F2) contains a simple subgroup of index 2. As in the previous case 
this immediately implies that 

Ker(cr2/8) = (w0) a Z/2. 
It is easy to verify that 

w0(e0) = 17e0-6e1-...-6e8/ 
w0(ej) = beQ-2eA- ... -2e8-e}, i =1 8. 

The Cremona transformation corresponding to w0 is the so-called Bertini  
involution. It is given by the linear system of plane curves of degree 17 with 
sextuple points at x\...,x8 (see IS-R], ChapterVII, 8.2). 

A Del Pezzo surface of degree 1 has 240 exceptional curves of the first 
Kind. Their classes correspond to the following vectors in H8: 

ej, i = 1 8, 
e0-e,-ej, 1 < i < j < 8, 
2e0-e1-...-e8+ej+ej+eK/ 1 s i < j < K * 8, 
3e0-e1-...-e8-ei+ej, ij = 1 8, i * j , 
4e0-e1-...-e8-ei-ej-eK ,1 < i < j < K < 8, 
5e0-2e,-...-2e%+ex+ey 1 < i < j < 8, 
6e0-2e^ ...-2e8-eh i = 1 8. 

Under the covering involution g they are divided into 120 pairs, each of which is 
equal to the inverse image under TT of a tritangent plane to the branch curve B. 

The anti-canonical linear system l-Kv(X)l of a Del Pezzo surface V(x) of 
degree 1 is composed of a pencil and has one base point x9. Blowing it up, we obtain 
a gDP-surface V(x), where x = (x\...,x8,x9). The linear system l-Ky(x)l is base-
point-free and defines an elliptic fibration 

f:V = V(x) - Pr 
The exceptional curve of the first Kind blown-up from x9 can be taKen as the zero 
section of the group scheme V# = VMsingular points of fibres of f). The inversion 
automorphism of V# extends to an automorphism of V and defines a Cremona 
transformation of IP2. If V is unnodal (equivalently, V is unnodal), this is the 
Bertini involution defined above (see Theorem 7 of Chapter VI). 
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6. Point sets in P3. 
We start with m = 4, the first case where P̂  is defined, and leave the 

cases m < 3 to the reader. 
If m = 4, 

<P4)SS = (P3V, 
(f>4)ss = (f>4)s = b/1((P4)s), 
P% = p£ = {point}, 
Ker(cr3,4) = W3/4 » W(A3)xW(A1) a E4xZ/2. 

If m = 5, 
CP*)88 = (P|)s, 
{P%)ss = (f>|)s = b5-1((P̂ )s), 
P\ = P| = [point}, 
Ker(cr35) = WaB a W(AB) a EA. 

If m = 6, 
Of**)88 =(P̂ )SS = CxcP̂ \A(6): at most 3 points 
are col linear and at most 4 are coplanar), 
(lf>̂ )s = (P5)s= {X€P*\A(6): no 3 points are 
col linear and at most 4 are coplanar), 
|5* s P s P6 by association, 
Ker(cr3/6) s (Z/2)5 c W3/6 s W(D6) s (Z/2)5x«I6. 

The elements of Ker(cr3/6) can be described as follows. Let 
w1 = sa()osa5. 

Then cr3#6(w1) acts by the standard Cremona transformation T0 composed with 
the transposition (56). We may assume that x5 = (1,1,1,1), x6 = (a,b,c,d), a,b,c,d * 0. 
Let 

cr3/6(w1) = x' = (x1,x2,x3,x4,y5,y6), 
where y5 = (bcd,acd,abd,abc), y6 = x5. Let A be the projective transformation 

(t0/t1#t2,t3) - (at0,btvct2,dt3). 
Then 
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A(x') = x, 
hence 

w1cKer(cr3/6). 
We find that for every acl6 c w 

wa = aoŵ a'1 = sa(ao)osa(a5)€Ker(cr3/6). 
Since a0»a5 = 0, the simple reflections saQ and sas commute. Therefore, every 
wa is of order 2. Let us show that the elements wa commute. Note that 

a(a0) = 2e0-ea(1>- eoC2) - ea(3> -ea(5), 
a(a5) = ea(5) - ea(6). 

Let a,a'€l6, 0*0'. Then 
#a({5,6})na'({5,6}) = 0, 1, or 2. 

In the first case 
a(a0)«a,(a0) = 0, 
a(a5)«a'(a5) = 0, 

hence 
wa»wa- = wa« *w0. 

In the second case 
a(a0)«a'(a0) = -1, 
a(a5)«a'(a5) = ±1. 

One easily verifies that 
WA°WA' = WA' -WA = WQ", 

where 
{a"(5),a"(6))n{a(5),a(6)} = {o"(5),a,(6)}n{o,(5),a,(6)} * 
* {a(5),a(6)}D{a,(5),a'(6)}. 

In the third case 
wa = wa- . 

Thus all the wa's commute. They generate a subgroup H of W3,6 isomorphic to 
(Z/2)5. 

There is a distinguished element w0 in Ker(cr3#6). It defines a non-trivial 

127 



I. DOLGACHEV, D. ORTLAND 

pseudo-automorphism g0 of the gDP-variety V(x), X€(IP3)gen, equal to the covering 
transformation of the rational map of degree 2 

7T:V(x) ~> P3 
given by the linear system of quadrics passing through x1 x6. Note that tt blows 
down to points each of the proper inverse transforms of 15 lines joining pairs of 
points xhs. It also blows down the proper inverse transform of the unique rational 
normal curve passing through all of the xhs. The ramification surface 
X c: V(x) of TT is a minimal nonsingulor model of the Weddle surface, a quartic 
surface in IP3 with nodes at the xhs, defined as the locus of nodes of quadrics 
passing through the x̂ s. The branch surface Y c IP3 of TT is a Kummer surface, 
birationally isomorphic to the Weddle surface X. Its 16 nodes are the images of 
the 15 lines and the rational normal curve from above (see [S-RJ, Chapter VI11, 
2.3). 

Since Ker(cr3#6) is abelian, each of its elements commute with w0, and hence 
leaves the ramification locus of TT invariant. This shows that Ker(cr3>6) maps to 
the automorphism group of the Weddle surface with w0 mapped to the identity. 
The image is a subgroup of Aut(X) isomorphic to (Z/2)4. 

Let 9: H6 — N(V(x)) be a geometric marKing of V(x). Let us compute 
wo = W^9o*°V €W3,6 • 

We Know that 
9o*<Kv(x)> = Kv<x)-

For every i = 1,...,6, let Q| be the quadric passing through the points x1,...,x6 and 
having a node at the point x1, and let Ej be the exceptional divisor blown-up from it. 
Then 

El+Q,c l-iKVCx)l, 
and hence 

go-ciE,]) - la,], i = 1 6. 
Thus 

^•Qtf'VteO = 2e0-e1-...-e6-ei, i = 1 6. 
Similarly we observe that the union of the planes <x1,x2,x3> and <x4,x5,x6> belongs 
to l-iKv(x)'- Hence 

^•go^eo-e^e^-eg) = e0-e4-e5-e6. 

128 



EXAMPLES 

Together, this yields 
^•go""^^ = 760-46 .̂..-4e6. 

An easy calculation shows that 
W0 = WA»WA"WA", 

where 
a({5,6})na'({5,6}> = a(C5,6})na"((5,6}> = a'({5,6})na"({5,6}) = 0. 

Finally we note that the representation 
cr3i6: E6 - Bir(P*) 

through which cr3/6 factors is induced by permutations of the factors of IP3. 

Assume m = 7. Then 
(IP7)38 = (Pj)s- (lP7)88 = (lP>7)8 

consists of point sets x = (x\...x7)4A(7) with no more than 3 points lying in a 
line and no more than 5 points lying in a plane. By association, 

($7 s p7 3 p7 
and the Cremona representation 

cr3,7: w3,7 - W<E7> - Bir(P7) 
is isomorphic (twisted by an involution r of W3/7) to the Cremona representation 

Cr2,7: W2,7 S W<E7> — Bir(P7). 
In particular, we obtain 

Ker(cr3#7) = (w0) s Z/2. 
Let xcdP7)1̂  c (IP7)sand cp:H7 — N(V(x» be the corresponding strictly 
geometric marking. Then 

tppWoocp-1 = gQ* 
for some pseudo-automorphism g0 of V(x). The action of g0 is similar to the one of 
the Bertini involution. One easily checks that 

V(x) =Proj( © Ho(V(x),0V(x)(-irKv(x))>) r=o 
is isomorphic to the weighted projective space IP (1,1,1,2) (that is, the cone over 
the Veronese surface in IP5). The canonical map 
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TT:V(X) - V(x) 
is a rational map of degree 2. The pseudo-automorphism g0 is the covering 
birational transformation of TT. Its fixed locus is a proper transform of a certain 
sextic surface in P3 (the Cayley dianode surface [Cal). We will return to this 
surface later in Chapter 9. 

One finds 
w0(e0) = 15e0-4e1-...-4e7, 
w0(ei) = 8e0-2e1-...-2?e7-ej, i = 1,...,7. 

Thus g0 is given by the Cremona transformation defined by the linear system of 
surfaces of degree 15 passing through x1 x7 with multiplicity > 4. 

The linear system of quadrics through x1 x7 is two-dimensional. Adding to 
x its 8-th base point x8, we obtain a point set x = (x1,...,x8), the blow-up of which 
V = V(x) admits an elliptic fibration 

f: V - P2. 

It is defined by l-iKvl, the proper transform of the net of quadrics. The open 
subset V# = VMsingular points of fibres of f) has a structure of a group scheme 
over IP2, with the image of the zero section equal to the exceptional divisor blown 
up from the point x8. The inversion automorphism of v# extends to the pseudo-
automorphism g0 of V. 

Starting from m = 8, the Weyl group W3m becomes infinite. We do not Know 
whether cr3,m is injective. 

7. Point sets in PA. 
As in the previous section we start with m = 5, the first case where P4 is 

defined, and leave the cases m £ 4 to the reader. 
If m = 5, 

((f^ss s (p5)ss= (p5}gen 
(lP>*)s a (P4)ss = 0t 
^ 4 88 P4 = (point), 
Ker(cr4/5) = W4/5 a W(A4)xW(A1) s JI5xZ/2. 

If m = 6, 

(lF>4)ss a (P4)ss = (P$)s = (P$)s = (IP̂ )9en, 
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^4 S P4 = (Point), 
Ker(cr4<6) = W4/6 a W(A6) a E7. 

If m = 7, 
(P74)SS = (£>7)SS * (P7)SS = (P7)S = CP7)9en, 
P74 sf̂ 4 s p7 by association, 
Ker(cr4<7) s (Z/2)6 e W4/7 s W(D7) s (Z/2)6xXI7. 

The argument is similar to the case n = 3, m = 6. However in this case there are 
not any distinguished involutions in Ker(cr4/7). 

The last case when W4>m is finite is the case m = 8. Here 
(lP>5)ss = (l£*)ss (P4)ss = (P*)s 

and consists of point sets xcP̂ NAte) with no more than 3 collinear points 
and no more than 4 coplanar points. 

By association 
P» « R i PL, 
Ker(cr4/8) s Ker(cr2,8) = (w0) c W4/8 = W(E8). 

We do not Know any nice geometric description of the involution w0 considered as 
a Cremona transformation of P4 (cf. [DuV 41). 
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VIII. POINT SETS IN P, AND HYPERELLIPTIC CURVES. 

With this chapter we begin our discussion about the relationship between 
theta functions and point sets in PN. 

1. Theta functions. 
Let us recall some facts from the theory of theta functions which we will 

need in this and the next chapter (see UgU). We will use the following notations: 
%g = (T€Mg(C): 1T = T, ImOc) > 0}, the Siege! half space, 

Tg = Sp(2g,Z> = (M = [c o]cGL<2g,Z>: Vl.[|g Q9] -M =[|g ̂ j), the 
Siegel modular group, 

rg(n) = (McTg : hi • Ijg mod n), the level n congruence subgroup, 

AT = Com+n: m,n€Z9} c c9, z c 9fig, 

AT = C9/AT, an abelian variety of dimension g. 

The group Ax acts on C9xC by 
w: (z,t) — (z+w,eT(z/w)t), 

where w = T-m+ncÂ , and 
eT(z,w) = exp-T7i(tm«x»m + 2tm»z). 

The quotient space 
LT = C9xC/AT 

has a natural structure of a line bundle on AT. 
The pair (AT,LT) is a principally polarized abelian variety (ppav), i.e. a pair 
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consisting of an abelian variety A and an algebraic equivalence class of an ample 
line bundle L on it with dim H°(A,L) = 1. The latter is equivalent to the property 
that the map 

nL : A - Pic(A)° = A, a - ta*(L)®L"1 
is an isomorphism. 

The group Tg acts properly discontinuously and holomorphically on %g by 
the formula 

M : T —» Kj- := (AT+BXCT+D)"1. 

One easily checKs the commutativity of the following diagram: 
(m,n)-»Tm + n Z29 - C9 

t AB 
CD 

D -C 
- B A t(CC + D)Tl(M'C)C + A 

Z2g (m,n)—Mtm + n C9 

where M = AB 
C D eTa, and each pair of the vertical arrows consists of a map and 

its inverse. This diagram shows that the map 
£M : z mod Ax — t(C»x+D)"1z mod AMT 

defines an isomorphism of abelian varieties 
Ем-' Ар —* AMT 

and of invertible sheaves 
Mm* (LMt) - Lt 

In other words EM defines an isomorphism 
(AT,LT) s (AMT,LMT> 

of principally polarized abelian varieties. 
This allows us to define an isomorphism of complex varieties: 

*o/rg * V 
where the latter stands for the coarse moduli variety of isomorphism classes 
of ppav of dimension g. 

The factor space Mg/Tg is an algebraic variety. It is isomorphic to an open 
ZarisKi subset of 
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ag= ProjCMCTg)), 

where for every subgroup r of rg 

M(DK = {f€0(ttg): f(MT) = det(C.T+D)Kf(x) for-any McD 

МСГ) = OD 
ф 

к = о 

М(Г)К. 

is the space of Siegel modular forms of weight K with respect to r, and the 
graded algebra of Siegel modular forms with respect to r, respectively. The 
space Gig is called the SataKe compactification of Q.g 

For every integer n and an abelian group G we denote by [nl the 
homomorphism of multiplication by n. 

Let 
2AT = Kerl21 = iAT/AT. 

A natural homomorphism 

Z2G — 2At (m,n) — iz»m+in mod Â  

factors through an isomorphism 

Qt = F2g - 2At 

Both groups have a structure of a symplectic vector space over IF2. The first one 
is defined by the bilinear form 

e2: (x,y) — tx» °-'g 
.'9°. •y = tx1y2+tx2y1. 

where x = (x1,x2)/ y = (yvy2), x,,yf€Ff. The second one is the Weil pairing, defined 
by the formula: 

e2(x,y) = log(%y(x)), 

where 
Xy : 2A,; — U2 = {±1} 

is the homomorphism obtained via the identification of the point nL(y)z2Az with 
an element of 
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Ker(Â 
[21* Â) a Char(Ker(A 

[21 
A» = Hom(0AT,u0) 

and log:n2 -* IF2 is an isomorphism of groups. 
One verifies that 

Qt : F 2g 
2 

2A. 

is an isomorphism of symplectic spaces. 
The triple 

(AT,LT,ĉ T) 

is a ppav with a level 2 structure. 
The action of T„ on %Q changes the triple (A^L^,^) to the triple 

(Amt. Lmt, YMt). 

where 
Qmt = Em qt. M 

and 

M= M mod 2 c Sp(2g,F2) 
is an automorphism of the symplectic space IF2 . 

In particular, we see that Mcrg(2) defines an isomorphism 

êM: (AT,LT,cf)T) * (AM L̂MT'VMT) 

of principally polarized abelian varieties with level 2 structure. In this way one 
obtains an isomorphism 

%a/Ta(2) - aa(2), 
where &g(2) is the coarse moduli variety of isomorphism classes of principally 
polarized abelian varieties of dimension g with level 2 structure. 

Note that 

Sp(2g,F2) = Tq/rq(2) 

acts naturally on 0-g(2) with the quotient variety isomorphic to Q.g. A 
compactification of &q(2) is given by 

aa(2) = Proj(M(ra(2)). 
This is the Sataxe compactification of Q.g(2). 

Recall that, for every line bundle L on AT, its holomorphic sections can be 
viewed as holomorphic functions f(z) on C9 satisfying 

135 



I. DOLGACHEV, D. ORTLAND 

f(z+w) = eL(z,w)f(z) for any wcAT/ and any zeC9 , 
where eL is the automorphy factor defining L (i.e. 

L a C9 x C/Ax, 
where wcAT sends (z,t)cC9 x C to (z+w,eL(z,w)t). 

In our case LT has a unique, up to a scalar factor, section on AT. The 
corresponding holomorphic function can be given by the following infinite series: 

<fr(z;x) = I n exp7Ti(tm.T»m + 2tm»z). 

This is called the Riemann theta function of AT. The corresponding automorphy 
factor is eT(z,w) defined above. 

For every a = ixoc+iycC9 , x,yc!R9, the translation t-5: AT -» AZ by the element 
a = a mod AT defines a line bundle TA*(LT) algebraically equivalent to LT. One of its 
sections (defined uniquely up to a scalar factor) can be given by the series 

v 
X 
y 

(z;x) = I a expTTi(t(m + ix)»T.(m + îx) + 2t(m + ix)«(z + iy)) mcZy 
that relates to the function e(z,T) by 

tf(z+a;T) = -3 x 
y 

1 t t 1 (z;-c)exp-ni(7 x«x«x+ x«(z+7y)). 

The function v x 
y (Z;T) is called a theta function with characteristic x 

y 
We will be usina mostly theta functions with half integral characteristic 

v c 
e 

CZ;T) = 1 g m€Zy exDттi(t(m+ie)•т•(m 4̂e) + 2t(m+ie)•(z+ie,)) 

where c, c" have values in the set (0,1). 
Observe that 

v c 
e 

(-Z;T) = (-l^ce'j e 
c 

(Z;T). 

This easily implies that we have 
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29~1(29+1) even thêta functions -9 
e 
e (Z;T), and 

2G"1(29-1) odd thêta functions J 
e 
e' (Z;T). 

As a function of the parameter T€9fig, the theta function «3 x 
.y. (Z;T) satisfies 

the following functional equation: 

V x 
y 

(Z',T') = çexpTTiCz-CCu + D) •z)det(C.x + D)1/2<3 x 
.y. 

(Z;T). 

where 

(z,x) = ('(Ox+Dr̂ MT), M = AB 
CD 

eTG 

(x ,y ) = (Doc-C.y,-Bo<+A.y)+((0L D)0/(A. B)J, 

çcC depends on (x,y) and M only. 

and for every matrix X we denote by XP the vector of its diagonal elements. 

If 
x 
y is a half integral characteristic and Mcrg(2), the constant c satisfies 

C4 = 1, 

which implies that 

v 
x 
y (x)4 = x 

y. 
(0;x)4€M(rGC2))2. 

The values 3 x 
y 

(0;x) of theta functions with half integral characteristic at zero 

are called theta constants. 

2. Jacobian varieties and theta characteristics. 
Let C be a nonsingular projective algebraic curve over C of genus g > 0. 

Recall the definition of its Jacobian variety (see [G-HD. 
Let 

(Y1........Y2g) 
be a symplectic basis of the first homology group hUCZ), i.e. 
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VVj = 0, li-jl * g, ij = 1 2g, 
*i#*i+g = -VRVJ+g = t i = 1 g, 

with respect to the intersection form on H^CZ). 
There exists a basis 

(C01 GOg) 

of the space H°(C,Q̂ ) of holomorphic differentials on C satisfying: 

Y1 "i = O, i,j = 1 g, ¡ * j . 

Y1 «¡ = 1. ¡ = 1 g. 
The matrix 

T(C) = (f " j ^ ^ g 

belongs to 9£gand is called the period matrix of C. 
The Jacobian variety of C is defined as the abelian variety 

Jac(C) = AT(C) = Cg/AT(C). 

It can be identified with the component Pic°(C) of the Picard scheme Pic(C) of C 
parametrizing divisor classes of degree 0 . This is done by means of the Abel -
Jacobi map: 

aj: Pic°(C) — Jac(C), D — Jco = (Jw1#...,J"wg> mod At-

D D D 

The choice of a point c0cC allows us to define an isomorphism 

Picn(C) -> Pic°(C), D — D-nc0, 

whose composition with the Abel-Jacobi map defines an isomorphism 

ajC(): Picn(C) — Jac(C). 
Let C(N) be the n-th symmetric product of C parametrizing effective divisors of 
degree n on C. There is a canonical map 

UN:C<N) - PicN(C) 
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whose fibre over a divisor class DcPicn(C) is equal to the complete linear system 
IDI. The image of ^ is a closed subvariety w" of Picn(C). in the special case n = g-1 
that we need, Wg_1 is a hypersurface. The fundamental theorem of Riemann says 
that 

ajCo(Wg_1) + K(C0,T) = 8 := {zcC9 :tf(z,T> = 0}/Ax 
for some point K(C0,T) in Ax (the Riemann constant). Moreover, if 

Wĝ  = (DcWĝ: dim IDI i r}, 
then 

ajCo(Wgr1) + K(C0,T) = Single) = {zc9: mult2(6) > r+1}. 
The Riemann theorem asserts also that 

D(C0,T) = ajC (̂K(c0,T))€Th(C), 

where 
Th(C) = (DcPic(C): 2D = Kc) 

is the set of theta characteristics on C. Note that this set has a natural 
structure of an affine space over 2Pic(C) = 2Jac(C), and hence consists of 22g 
elements. 

For every DcTh(C), we have 

h°(D) = muitaJCo<D)+K(Co T)e = mult0(e+nD>, 

where 
nD = ajCo(D) + K(c0,x)€2Jac(C). 

Use T. to define a level 2 structure 
VX:F29 - 2Jac(C). 

Let 
VT(c,c) = nD* 

where we identify elements of F2g 2 with binary vectors. Then 

h°(D) = mult0(6+riD) =mult0̂ (z+riD̂ > = mult0tf 
e 
e' (z;x). 

This implies that 
h°(D) B tc»c' mod 2. 

139 



I. DOLGACHEV, D. ORTLAND 

A theta characteristic D is called even (odd) if h°(D) is even (odd). We see that 
there are 29~1(29+1) even and 29~1(29-1) odd theta characteristics on C. Thus a 
choice of the period matrix t of C and a point c0cC allows us to maKe a bijective 
correspondence between the set of theta characteristics and the set of theta 
functions with half integral characteristics in such a way that even theta 
characteristics correspond to even theta functions. 

Also observe that for every r\ = ct>T(a,a')€2Jac(C) 

h0(D+n)+h°(D) = mult̂  e+a 
e+a (z;x) + mul t0tf 

e 
X 

(Z;T> = 

s ì'(E+o:)•(E,+a:,) + ̂ 'c•E, s ta•E, + 1'E•o:, + ,'a•a, = 
9 E 

1 = 1 
â Ci'+oCî Ei+aiO::' mod 2. 

This shows that the function 
n - h°(D+n)+h°(D) mod 2 

2g 
is a quadratic form on 2Jac(C) a F2 . Under this correspondence, even and odd 
theta characteristics define even and odd quadratic forms 

qD: 2Jac(C) — F2, 
distinguished from one another by the property that 

*q-1(0) = 29"1(29+1) 
for even quadratic forms, while 

#q"1(0) = 29"1(29-1) 
for odd quadratic forms. The orthogonal group of an even (resp. odd) quadratic 
form is isomorphic to the orthogonal group 

0 + (2g,F2) (resp. 0"(2g,F2)) 

of the quadratic form 
g 
E . i = i ,xixi+g ( resp. E 

¡ = 1 
XjXj+g+Xg + X )̂ 

on F29 . Note that 
[Sp(2g,F2):0+(2g,F2)l = 29'1(29+1), 

[Sp(2g,F2):0""(2g,F2)l = 29""1(29-1). 
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The bilinear form associated to qD is equal to the Weil pairing 
eT: 2Jac(C)x2Jac(C> -» F2 

defined by the principal polarization Lx of Jac(C). Thus the map D -» qD is a 
bijection 

Th(C) - S2(2Jac(C))0 
between the set Th(C) of theta characteristics on C and the set of quadratic 
forms on 2Jac(C) with associated bilinear form equal to eT. 

3. Hyperelliptic curves. 
Let C be a hyperelliptic curve of genus g > 1 over C. By definition C has a 

unique linear system g12 of degree 2 and dimension 1 that defines a double cover 
TT: C —* P1 

ramified at 2g+2 points c1 c2g+2 of C. Let x\...,x2g+2 be their projections to IPV 
the branch points of TT. In this section we will show that an ordered set of branch 
points defines a level 2 structure on Jac(C), and in this way the variety (P29+2)un 
becomes isomorphic to an irreducible component of the moduli variety of 
hyperelliptic Jacobians with level 2 structure. 

We begin with a convenient notation for points of order 2 in Jac(C) (see 
[Mu 21). For every subset T c B = (1 2g+2) let 

eT = E Cj - #Tc2g+2 c Div(C). icT 
Then 

2eT = TT*(I x1 - *Tx2g+2) ~ 0, 
ieT 

where ~ denotes linear equivalence of divisors. Hence 
eT€2Pic(C). 

Note that 
Z c, ~ (2g+2)c2g+2, icB 

and for every integer a, we have 
I C; + ac2g+2-(*T + a)c2g+2 = I c, - #Tc2g+2. 
icT icT 
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This shows that 
eT ~eT 

where T = B\T, and 
eT ~ ej' 

for some T' with *T* = 0 mod 2. 
Let FB be the set of subsets of B (or functions B F2) equipped with the 

structure of a vector space over F2 with the addtition law: 
T+T' = TUT'NCTflT'). 

It carries also a symmetric bilinear form defined by 
(T,T'> - #TOT' mod 2. 

The restriction of this bilinear form to the subspace (F2)ev spanned by subsets 
of even cardinality is degenerate, the radical being equal to {0,B}. Let 

Eg cF^/{0,Bl 

denote the factor space of this subspace by the radical. Its elements are subsets 
of B of even cardinality modulo T ~ B\T. 

Note that the symmetric group I2g+2 QC^S naturally on Eg and preserves the 
symplectic form. This gives a natural inclusion: 

£2g+2 Sp(2g,F2) 
well Known to group theorists. 

Lemma 1. The map 
e: Eg -> 2Jac(C)/ T eT 

is an isomorphism of linear spaces. 
Proof. Easy (cf. IMU21). 

To define the period matrix of C we choose a special symplectic basis 
(y1 y2g} of HA(C,Z) . we view C as a two-sheeted cover of the Riemann 
sphere. Each class yi i < g, is represented by a path which goes from c2M to c2l 
along one sheet of C and returns from c2j to c2M along the other sheet. Each class 
yj i>g, is represented by a path which goes from c2j to c2g+1 along one sheet and 
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returns from c2g+1 to c2j along the other sheet. We call such a basis a branch point  
basis. 

Let {co1 cog) be a basis in №(0^) normalized in the usual way with 
respect to a branch point basis. The corresponding period matrix 

T(C) = ( WJ5U-I g 

yj 
will be called a branch point period matrix of C. 

Lemma 2. Let x(C) be a branch point period matrix of C, and 

Gt (c) : F 2g 
2 

2Jac(C) 

be the corresponding level 2 structure on Jac(C) = Cy/AX(C). There exists an 
isomorphism of symplectic spaces 

I: Eg -IF29 
such that the composition 

Vx(Oo|:Eg — 2Jac(c> 
is equal to the map e defined in Lemma 1. In particular e is an isomorphism of 
symplectic spaces. The map I is uniquely defined by the property: 

IUc2M,c2l}) = (e,,0>, i = 1 g, 
KCc2| c2g+1}) = (Cej), i = 1 g. 

Proof. It is immediately verified that the subsets 

form a symplectic basis in Eg. Thus we can define I by sending this basis to the 
standard symplectic basis of F2g 2 . The assertion will follow if we verify that under 
the Abel-Jacobi map 

aJ(eTj> = 9x(c)tei>< ' = 1 2g. 
Note that each wK reverses its sign when one switches the sheets of C Hence 

Tj - (c2î_1,c2|}/ Ti+g - {c2î c2g+1), i - 1,...̂ , 

1MGoij = 1/2 
yi 

GO: = 
C2i-1 

C2i 
wj = 

C2l-1 

c2g+2 
GO: -

C2i 

c2g+2 
GO ; = 
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C2i-1 

c2g+2 
Wj + 

C2i 

c2g*2 
C0j-2 

C2i 

c2g+2 
CO . 

Since 
2̂i -̂2i 

2( Jco, Jcog) = aj(2c2i-2c2g+2) = 0, 
c2g*2 c2g+2 

we obtain 

aj(eT.) = aj(c2j.1+c2r2c2g+1) = 
C2i-1 

c2g+2 
CO + 

C2i 

c2g+2 
co=ief mod AT(c>, 1 = 1 g. 

Similarly, we checK that 

aj(eT.) = iTj-ê g, i = g+1 2g 
and prove the lemma. 

Recall that by the Torelli theorem the map 
C — Jac(C) 

defines a closed embedding 
T: mg -.afl 

of the coarse moduli variety of nonsingular projective curves of genus g. We 
denote by 

ttypg c ag 
the image of the subvariety of mg parametrizing isomorphism classes of 
hyperelliptic curves. The inverse image of 9typg under the projection &g(2) -> &g 
is denoted by %ypg(2). It is a coarse moduli variety of Jacobians of hyperelliptic 
curves with level 2 structure. 

Theorem 1. Let (p2g+2)un = (P29+2\A)/PGL(2). There is a natural isomorphism 
(P2g+2)un * Hypg<2>\ 

where %ypg(2)° is an irreducible component of Mypg(2). This isomorphism 
associates to a point set x = (x\...,x2g+2) the isomorphism class of the Jacobian 
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variety of the hyperelliptic curve C(x) obtained as a double cover of IP1 branched 
over x1 x2g+2 equipped with the level 2 structure defined by the branch point 
period matrix of C(x). 
Proof. The map 

(P29+2)un\A - »ypg(2), x -> (Jac(C(x)),Vx<c(x))> 
factors through (P29+2)un and defines a map 

i: (P29+2)un - Kypg(2). 
Let C be a hyperelliptic curve of genus g. It defines, uniquely up to projective 
equivalence, the set of ramification points {c1,...,c2g+2} of its double cover onto IP.,. 
We have to show that its order is determined uniquely by the level 2 structure 

cp: F2g 2 -» 2Jac(C) defined by a branch point period matrix T(C). Let 
<ci c2g> 

be the image under cp of the standard symplectic basis in IF2g 2 . Let 

I: Eg -» IF2g 2 be the map defined in Lemma 2. Then the order of ramification points 
can be reconstructed by setting 

c2j = r^e^nrVe,̂ ). i = 1 g, 
c2i-i = r̂ cpMCa,}, i = 1,...,g, 

The projection of the ordered set of ramification points to IP1 defines the point 
set x such that i(x) = <Jac(C),cp). We have a natural isomorphism 

l:CP:9+2)Un/r2g-2*HyPg 
such that the diagram 

(p2g*2)tn ^ 9typg(2) 
Pi . Pi 

(Pr2)Un/I2g+a - KYPg 
is commutative. Since the projections p and p' are finite morphisms, the 
morphism i is finite. As we showed above its degree is 1. Therefore i is a closed 
embedding onto an irreducible component of %ypg(2). 

Corollary. The number of irreducible components of %ypg(2) is equal to 
*Sp(2g,IF2) 292(229-1)(229~2-1)...(22-1) 

#Z2g+2 " (2g + 2)! 
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In particular, 96ypg(2) is irreducible for g 5 2 and is isomorphic to (P1 2g+2)un 
Proof. The group Sp(2g,F2) of covering transformations of &ypg(2) -» ttypgacts 
transitively on the set of irreducible components of %ypg(2). The stabilizer of 
the component ttypg(2)° contains the subgroup E2g+2. It is Known that this 
subgroup is a maximal proper subgroup of Sp(2g,F2). Thus the stabilizer is equal 
to this subgroup. This proves the assertion. 

RemarK 1. We do not Know whether 3Gypg(2) is smooth, or equivalently, if 
ftypg(2)°is a connected component of 9typg(2). This would follow from the 
smoothness of the hyperelliptic locus in the Siegel half space %g. 

4. Theta characteristics on hypereHiptic curves. 
Following IMu 21 we give a very convenient notation for theta 

characteristics on hyperelliptic curves that is similar to the notation for points 
of order 2 on its Jacobians given in the previous section. We Keep the notation 
from that section. 

Let 
Qg CF /̂{0,B) 

be the subset represented by subsets S of B = {1,...,2g+2} with 
#S = g+1 mod 2 . 

It has a natural structure of an affine space over Eg with respect to the addition 
in F^. 

We have the following analog of Lemma 2 from the previous section: 

Lemma 3. Let C be a hyperelliptic curve with ramification points c1 c2g+2. For 
every subset S of B with #S » g+1 mod 2 define 

fs = I ci + (g-1-*S)c2g+2 
icS 

Then 
fs c Th(C), 
fs = fs- iff S = S' or S = B\S\ 
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and the map S f$ defines a bijection 
f:Qg — Th(C) 

such that the pair 
(f.e): (0g,Eg) - (Th(C), 2Jac(C» 

is an isomorphism of affine spaces. 
Proof. Left to the reader (cf. IMu21). 

Lemma 4. Let q0: (e,e') — te«e' be the standard quadratic form on IF2.9, b0 be 
its associated bilinear form, and 

l*(q0): Eg ->F2 , T - q0(l(T)>, 
be its pull-bacK to Eg. Then 

l*(q0)(T) = i(*(T+U)-g-1) mod 2 = 4#T+#THU mod 2, 
where U = {1,3,...,2g+1} is the subset of odd numbers in B. 

Moreover, for every quadratic form q on IF229 with associated bilinear form 
equal to b0 there exists a unique element ScQg such that 

l*(q)(T) = i#T+*OTlS) mod 2 = i(#(T+S)-#S) mod 2. 
Proof. We checK first that 

T — 4(*<T+U)-g-1) mod 2 
is a quadratic form on Eg with associated bilinear form equal to 

(T.T') - *TnT' mod 2. 
Then we verify that the values l*(q0)(T) and i(#(T+U)-g-1) mod 2 are equal for T 
belonging to a symplectic basis of Eg. We leave this to the reader. 

i 29 
Let S*(IF2 )0 be the set of quadratic forms associated to the bilinear form 

b0. To establish the second assertion we observe that every qcS2(F229)0 can be 
uniquely written in the form 

q = q0+i2-
2g 2g 2q where k(F2 )* is a linear function on F2 . Identifying 1 with an element n of IF2 by 

means of the standard symplectic form on IF2g 2 , we verify that 
l*(q)(T) = l*(q0XT)+*r1(n)riT » i#T+#(TDU)+#Tni"1(n) = 
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s #T+#(Tn(U+l"(n)» = i*T+#(TDS) = *(#(T+S)-#S) mod 2, 
where S = U+I'1(n>. 

We will identify Qg with S2(Eg)0 by viewing each element ScQg as the 
quadratic form 

T — iO(T+S)-*S) mod 2 
on Eg. 

The analog of lemma 2 is the following: 

Lemma 5. Let 
S2(Eg)0 = Qg - S2(F29)0 -> Th(C) = S2(2Jac(C)> 

be the sequence of the bijections obtained from the sequence 
Eg->F29-> 2Jac(C) 

by applying functors (I"V and (<t>T(c)~1>*. Then the composition 
Qg - Th(C) 

coincides with the map f. 
Proof. Easy verification (cf. IMu21). 

Our final observation is that each set Og/ S2(F29), and Th(C) contains some 
distinguished elements. They are 

U, 0 (g odd), {C2g+2} (g even) in Qg, 
Cfc in S2(F29), 
(g-1)c2g+2/ (д-1)с2д+2 + к(с2д+2лСС)) in Th(C) 

(note that the Riemann constant in Jac(C) is a point of order 2 if С is 
hyperelliptic). We leave to the reader to verify that 

(l'V(U) = ĉ , 

<g-1>c2g+2 = f0 if g odd, 
= f(c2g+2) if g even, 

fu = <g-Dc2g+2 + K(c2g+2/x(C)). 
In particular this explicitly computes the Riemann constant 
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K(c2g+2,T(C» = fj - f0 = eg, g odd, 
= fu * fCc2g+2) . 9 even. 

Under VTCC)"1 this corresponds to the characteristic 

e 
e' 

111... 11 
101...01 , g odd, 
1 1 1 ... 1 
010...1 g even 

(see [Mu2I, p.3.82 and p.3.99). 
Summarizing we get the following commutative diagram: 

e 

Eg 
i 

F 2g 
2 

+t(C) 
2 Jac(C) 

T̂ T+U cx-»cx2+q0 T*k(cn/-r(C))+n 
(lM)* (v T (C) -1* 

C4 S2(F̂ 9)0 Th(C) 

f 

where the dotted arrows can be considered only if C is hyperelliptic, r(C) is its 
branch point period matrix, and c0 = c2g+2. 

Lemma 6. For every E€Qg, #S i g+1. 
h°(fc) • i(g+1-*S> mod 2. 

In particular. 
fs is even iff #S • g+1 mod 4, 
fs is odd iff #S = g-1 mod 4. 

Proof. Since 

E 
icB 

c, - (2g+1)c,n+, = (y) 
for some rational function y on C, we have 
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fs = I q + (g-l-*S)c2g+2 ~ <g-i+*S)c2g+2-z: c,. ics * y i€S 
Recall that 

C(C) = C(x,y), x = n*(t), y2cC(x) 
for some rational function t on PR Since g-1+*S s 2g, and y has a pole at c2g+2 of 
order 2g+1, every rational function on C with only a pole at c2g+2 of order s 2g 
must be equal to TT*(p(t)) for some polynomial p(t) of degree s g. Thus 

H°(C,Oc(fs» » space of polynomials in t of degree <i(g+1+#T) 
with zeroes at all TT(C}), icS. 

The dimension of this space is equal to i(g+1-#S). 

The indexing of the set 2Jac(C) (resp.Th(O) by the set Eg(resp.Qg) can also 
be used for non-hyperelliptic curves C. We can set 

HT = 9x(C)̂ ,(T̂ €2Jac(C)' T€EQ' 

ns = (<t>T<c)~1>*«l"1>*><s> « Th(C), ScQg, 
for every curve C. This indexing depends only on the choice of the period matrix 
x(C). The same choice allows us to define a bijection 

DS — tfs(z;T):= <r[l(S+U)l(z;T:) 
between theta characteristics and theta functions with half integral 
characteristic. Note that for hyperelliptic curves C 

IT = ET- Ds = V 

Corollary 1. Let C be a nonsingular projective curve of genus g. Then 
h°(Ds) = i(g+1-*S) mod 2. 

in particular, 
Ds is even iff #S = g+1 mod 4, 
Ds is odd iff #S = g-1 mod 4. 

Proof. We Know that this is true for hyperelliptic curves. It remains to use that 
the parity of theta characteristics remains constant in a family (IMu41). 
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Corollary 2. Assume C is hyperelliptic. Then 
h°(Ds) > 0 iff #S = g-1 mod 4 (Ds is odd), or 

#S = g+1 mod 4 (Ds is even), and #S * g+1. 
(2g+2)i 

In particular, C has 2g~1(29+1) "2(g+1)j 2 vanishing theta constants 3s{0',tl) (i.e. 
^s(0;t) = 0 for so many even S's, namely when #S * g+1). 
RemarK 2. According to a theorem from [Mu 21 the last property characterizes 
hyperelliptic curves. That is, C is hyperelliptic iff $s(0;r(O) = 0 for all SeQg such 
that #S = g+1 mod 4, #S * g+1. 

Summarizing the above, we obtain for every ScOg: 
Ds is even <=> #S = g+1 mod 4, 
Ds is odd <=» #S = g-1 mod 4, 
h°(Ds) = mult0es(z;x(C)) , 
°iDs(riT> = 0 h0(Ds + nT) + h°(Ds) = 0 mod 2 i#T+#TDS = 0 mod 2, 
•tf S^T^C^ = 0 «=> i#T+#SDT • 1 mod 2 if DS is even and h°(Ds) = 0, 
ŝ̂ T'T^c^ = 0 i#T+*SDT 5 0 mod 2 if Ds is odd . 

Note that for a generic (in the sense of the moduli space) curve C no even theta 
characteristic is effective. If one of them is effective, a curve is called a curve  
with a vanishing theta constant. By the above this happens if and only if 

tfs(0;T(C)) = 0 for some ScQg with #S = g+1 mod 4. 

It never happens for g < 2 and happens for g = 3 if and only if C is hyperelliptic. 

Examples, g = 1: 
3 even "thetas": «?12 = ^ = ̂ [101 that vanishes at n12 = n34, 

1̂3 = 2̂4 = ^00] that vanishes at n13 = n24' 
1̂4 = 2̂3 = ̂ 1011 that vanishes at n14 = n23> 

1 odd theta: $0 = tf1234 = £[11] that vanishes at 0 = r\0. 
9 = 2: 
10 even thetas: 1̂23 - 4̂56 = * 

01 
10 that vanishes at n12,n23,n13,n45'n46'n56, 
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1̂24 = 3̂56 = * 
00 
10 that vanishes at n '̂fWWUs'fWW 

1̂25 = *y346 = * 
oo 
11 that vanishes at fli2.n25't1i5'tWn36'rW 

1̂26 = *345 ~ * 
11 
11 that vanishes at n12,n16'rl26',Wn35'n45' 

2̂34 = 1̂56 = * 
10 
01 that vanishes at n23'n35',125',1i4'n46't1i6' 

2̂35 = 1̂46 -
10 
00 that vanishes at ni2'n24'rli4'rl45'rU6'n56' 

2̂36 = 1̂45 - * 
01 
00 that vanishes at n23'rWtWrli4'n45'rli5' 

2̂45 = 1̂36 - * 
11 
oo that vanishes at n24'rl25'r113'rl45<t1i6<n36' 

2̂46 S 1̂35 " * 
00 
00 that vanishes at r\2ttr\2A'^3^3^Ab^s' 

*75h = 1̂34 - * 
00 
01 that vanishes at ^.^A^^A^^A^^ 

6 odd thetas: 1̂ - 2̂3456 = 9 01 
01 that vanishes at r\mtr\^2tr\^.r\^4.r\^tr\^bf 

*2 = 1̂3456 " ^ 
11 
01 that vanishes at r ^ n ^ ' ^ s ' ^ ' ^ s ' ^ ' 

3̂ = 1̂2456 " ̂  11 
10 that vanishes at r^A^'^'^A'^S'^b' 

*A = 1̂2356 = * 
10 
10 that vanishes at r\0A<iA>r\2A'r\3A'^A5>r\Ab' 

5̂ = 1̂2346 " * 
10 
11 that vanishes at r^nis'^s'^s'^s'^' 

6̂ = 1̂2345 = * 
01 
11 that vanishes at r\0fr\^bffr]2b,r\3b^4b^b 

a = 3. 
36 even thetas of type £0, £ijKi, 
28 odd thetas of type £u. 

q = 4. 
136 even thetas of type £j and J îm < 
120 odd thetas of type £ijlc. 
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5. Thomae s theorem. 
This theorem establishes a relationship between cross-ratio functions on 

P1 2g+2 and fourth powers of theta constants. 
First we observe that a hyperelliptic curve C has in general exactly i2g+2( g+1 > 

non-vanishing theta constants #s(0;T(O), #S = g+1. Each subset S = {il/.../ig+1) of 
{1,...,2g+2} of cardinality g+1 defines a tableau 

TE = 
¡1...Íg+1 
Ji-Jg+i. 

where {j1 jg+1} is the complementary subset, and hence the corresponding 
monomial 

Us - Ci1...ig+1)(j1..Jg+1)€ (R1 )r 

Let 
2g+2 2g+2 2g+2 

vg : Ki "* Kg 

be the map induced by the Veronese map Vg^ -» IPg. Note that its image lies in 
the variety Sg of self-associated point sets. 

A remancable result of Thomae [Thl asserts that under the embedding 

(P29+2)un - ttypg<2) ̂  agC2) 

established in Theorem 1, the pull-baac of the •ffs(0;T)4's (which are modular 
forms of weight 2 with respect to Tg(2)) are proportional to the pull-bacKs of 
the monomial \ia under the Veronese morphism vg2g+2 

This follows immediately from the following: 

Theorem 2 (R. Thomae). Let x1,...,x2g+2 be the branch points of a hyperelliptic 
curve C. Assume that they are (1,aj), i = 1 2g+2. Then 

ŜCO;T(C))4 = cn (OF-apil (aROJ) 
I<J,I,J€T + U I<J,I,j4T + U 

for some constant c independent of S. 

Proof. See [Fay]. 
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Corollary 1. There is a commutative diagram: 
(P29+Vn =t WyPgC2>' 

v 2Q+2 9 
P 2g+2 
E Pn C p ,2g+2 

g+1 /2 

where N = (g+1 )/(g+2), the right vertical arrow is given by {£s(°;'04}#s = g+i' and 
the lower horizontal arrow is given by (Us)#s=g+1-
Proof. We have only to justify the value of N. This follows immediately from the 
"hooK formula" 

dim(P 2g+2 
1 1 = ,2g+2, 

9*1 /(g+2). 

RemarK 3. We have already noticed in Chapter 1 that the space (R2g+21 ^ is an 
irreducible representation of the symmetric group E2g+2 corresponding to the 
partition (2,...,2) of 2g+2. The Thomae formulae show that this representation 
can be realized in the subspace of the space of modular forms M(rg(2))2 spanned 
by the fourth powers of theta constants £s(0;x)4, #S = g+1. 

RemarK 4. We get some linear relations between ^S^0:T)4 coming from the 
straightening algorithm for monomials. 

RemarK 5. We shall see in the next Chapter that even theta constants $S(0;T)4 
span an irreducible representation Tg c M(rg(2))2 of Sp(2g,IF2) of dimension 
3̂ 2g+1 )(29"1+3). Restricting the theta constants to the hyperelliptic locus 
%ypg(2), we obtain only (2g+*2)/(g+2) linearly independent functions. This shows 
that there are 

Ng = 3̂ 2g+1)(2g'1 + 3)-(2g9++12)/(g + 2) 

linearly independent even theta constants vanishing on the hyperelliptic locus. 
For example, N3 = 1, which agrees with the fact that the codimension of the 
hyperelliptic locus is 1 in case g = 3. For g = 4 we have N4 = 26, very far away 
from the codimension. See in this connection [Ac]. 
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6. Elliptic curves. 
We already Know from Chapters 1 and 2 that 

OL/2) s (P?)UN s PA{0,1,oo}. 
The three deleted points correspond to the orbits of point sets with coinciding 
points. The map a .,(2) -* IP1 c IP2 is given by three fourth powers of odd thetas <tf42 
^A, and #44 satisfying the relation 

v14 = v13 - v12 
This relation corresponds to the relation between monomials 

E 1 4 
2 3. 

= u 13 
2 4. 

- U 12 
3 4. 

coming from the straightening algorithm. 
The group Z4 acts on a/2) and P4 via its quotient group 

Sp(2,F2) = I3 = Z4/G, 
where G s Z/2eZ/2 is generated by the permutations (12X34) and (13X24). 
The boundary «0 = {0,1,»} c p4 forms an orbit under the action of I3 and there are 
natural isomorphisms of the quotient spaces 

0i1 = a1(2)/Sp(2,F2) at (P4)00/̂  a IP1\{oo}. 

The compactification at(2) (resp. dp of a/2) (resp. a.,) is identified with P4 = IP1 
(resp. P4/E4 s pt>. 

Let 
TT: a/2)1 -> at(2) 

be the universal elliptic curve. It parametrizes the isomorphism classes of 
elliptic curves with level 2 structure with a marKed point on the curve. The 
morphism TT defines the structure of an abelian scheme on a/2)1. Let 

x: Ot/2)1 - a1(2)1 
be the inversion involution x — -x, and 

Xum/2) = a1(2)1/(x) 
be the corresponding quotient space. 

The next result gives a modular interpretation of the space P̂  (isomorphic 
to a Del Pezzo surface of degree 5). 
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Theorem 3. There is a natural isomorphism 
fiXum/2) -> (P*)un. 

Moreover, f extends to an isomorphism of compactifications 

?:XiTm1(2) - P*. 

The projection pf -* P4 defines a morphism P5 P4 such that the diagram 
f . 

Xu m/2) 
1 1 

a ,<2> % P4 
is commutative. 
Proof. We leave this as an exercise. The reader is referred to Chapter 7 for 
the geometry of the map P̂  -» P4. 

7. Abelian surfaces. 
We Know from Chapters 1 and 2 that 

(P*)un a ttyp2(2) c a2(2). 
it is Known (see [Ig 3]) that the algebra of modular forms M(r2(2)) is generated 
by the fourth powers of theta constants ŝ(0,T:)4. Applying Thomae's theorem, we 
obtain an isomorphism of graded algebras 

RV̂ tg) * M(r2(2» 
and of their projective spectra 

a2(2) * S6 c f̂ . 
Under the Veronese morphism 

v£ - s6 
the hyperelliptic locus %yp2(2) is identified with the moduli space S6 of 
self-associated point sets in IP2. This immediately implies 

Theorem 4. There is a natural isomorphism 
<S6)un = S6n(F*2)un - ttyp2(2) 
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which extends to an isomorphism 
S6 - d2(2). 

Recall from Chapter 1 that the variety S6 is isomorphic to the level 2 
modular quartic 3-fold V4 c P4. 

Let 96yp2(2) denote the closure of Wyp2(2) in QL2(2). 

Theorem 5. Let <3L2(2) be identified with S6 and V4. Then 
(i) «0 = d2(2)\Q.2(2) = Sing(V4), and is equal to the union of 15 lines. 
(ii) d2(2)\i№y p2(2) is the union of 10 irreducible components, each of them is 
isomorphic to a nonsingular quadric. 
Proof, (i) Recall from Chapter 2 that the image J9 of semi-stable non-stable 
point sets in P̂  is contained in S6. We Know also that its complement in P̂  is 
nonsingular. Since P2 is isomorphic to the double cover of IP4 ramified along S6, 
this implies that S6\«(9 is nonsingular. On the other hand we have checKed in 
Chapter 2 that ¿9 consists of 15 double lines of V4. This shows that 

= Sing(d2(2)). 

It is Known that T2(2) does not have torsion elements and hence acts freely on the 
Siegel half space. This implies that a2(2) is nonsingular. Moreover, it is Known 
that the boundary d2(2)\a2(2) is equal to the set of singular points of d2(2). This 
implies that 

a2(2) = S6\J5. 
(ii) We Know from Chapter 2 that 

S6\(S6)un = d2(2)\ttyp2(2), 
and is equal to the union of hypersurfaces parametrizing the images in S6 of point 
sets with 3 collinear points. Each such hypersurface is given by the equation 

UT = °< 

for some tableau of the form 

t = 
i J K 

1 m n 

The number of such tableaux is 10. In the embedding S6 = V4 c* IP4 these 
hypersurfaces are hyperplane sections. We claim that each of these hyperplane 
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sections is a quadric taken with multiplicity 2. The group I6 acts on V4 and 
permutes these 10 hyperplane sections. Thus it is enough to verify this assertion 
for one of them. Note that the coordinate functions correspond to standard 
monomials. Using the equation of V4 given at the end of Chapter 1, we find that 

{T0 = oinv4 = {(-T2T3+T1T4)2 = 0}. 
This proves the assertion. 

RemarK 6. The irreducible components of a2(2)\9£yp2(2) are called Humbert  
surfaces. We refer to [vdGl for more information about these surfaces. Note 
also that the equation of their union in &2(2) is given by the product of the 
squares of 10 even theta constants. As follows from Thomae's theorem and 
Chapter 1, under the birational map v̂ .P* -~» S6 s d2(2) the inverse image of this 
product is equal (up to a constant factor) to the product 

TT (U)2 
1<i<j<6 

This function is Z6-invariant and coincides with the discriminant of a 
homogeneous binary form of degree 6. We refer to [Grl for another proof of this 
result which also gives the value of the multiplicative constant. 

Next we describe a resolution of singularities of V4 = Gi2(2). We leave to the 
reader the verification of the following: 

Theorem 6. Let V3 s P̂  c P4 be the Segre cubic primal, and TT: V3 V3 be the 
resolution of its 10 nodes obtained by blowing up the corresponding points in IP4. 
The rational map IP3 P4 given by the partials of the equation of V3 extends to a 
birational morphism 

f: V3 - V4 
which is a resolution of singularities of V4. The image under f of the exceptional 
locus of TT is equal to the complement of the hyperelliptic locus in V4. The 
exceptional locus of f is equal to the proper inverse transform under TT of the 
nodal locus P̂ \(P*)un. The latter consists of the union of 15 surfaces Ej 
isomorphic to P̂  s xTTm/2). The induced map f: Ej -> f(Ef) = ]i corresponds to the 
natural projection Xu m1(2)-̂  (5̂ 2) » PR 
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RemarK 7. The resolution of singularities of CL2(2) described in the previous 
theorem is a special case of Igusa's blowing-up of QLg(2) Ng 21 defined for every g 
> 2. 

RemarK 8. Note that there exists another "small" resolution of singularities of 
V3. It is given by the map 

<Pl-iKv(X)l - v3-
where X€(IP|)9en. In other terms it is obtained by the linear system of quadrics 
through a generic set of 5 points x1,...,x5 in P3 (see IS-R1). The exceptional locus 
of this resolution consists of proper transforms of the ten lines <x',xj>. The nodal 
locus «¿9 in V3 = P6 is equal to the image of the union of 5 planes blown up from the 
points x1 and the ten planes <xl/xj,xK>. 

RemarK 9. We refer the reader to [Co41, [SB1 for the beautiful geometry of the 
modular variety a2(3) parametrizing abelian surfaces with level 3 structure. 
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IX. CURVES OF GENUS 3. 

The relationship between point sets in P1 and moduli spaces of hyperelliptic 
curves can be extended a few steps further. In this chapter, by two different 
methods, we construct an isomorphism 

m3(2)\96yp3(2) -» (P^)un, 
(C,q>) geometrically marKed Del Pezzo surface of 

degree 1 which is a double cover of IP2 branched 
along C, 

where Tfl3(2) is the moduli space of curves of genus 3 with a level 2 structure on 
its Jacobian variety. We shall show that it extends to a birational morphism: 

m3(2) - P2. 

1. Level 2 structures on the Jacobian variety of a curve of genus 3. 
As in the case of hyperelliptic curves, it is possible to give a geometric 

interpretation of a level 2 structure on Jac(C), where C is a nonsingular 
projective curve of genus 3. 

Recall from Chapter VII that every C as above can be realized as the 
ramification curve of a finite cover of degree 2, TT: V -* IP2, where V is a uniquely 
defined (up to isomorphism) Del Pezzo surface V of degree 2, and TT is given by the 
linear system l-Kvl. It follows from the formula for the canonical class of a double 
cover that 

C€l-2KVI. 
Let 

Pic(V)0 = (ZKv)pic(V) - (Z[Cl)pic(v) 
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and 
R: PLC(V)0 — PJC(C) 

be the restriction map. 

Lemma 1. For every D€Pic(V)0 
r(2D) = 0. 

Proof. We Know from Lecture 7 that the covering transformation g0 of TT acts on 
Pic(V)0 as -1. Thus for every DcPic(V)0 we have 

r(D) = go(r(D)) = r(g*(D» = r(-D) = -r(D), 

that is, 
2r(D) = r(2D) = 0. 

Denote 
N(V)0 = Pic(V)0/2Pic(V)0 

and let 
r: N(V)0 - 2Pic(C) 

be the homomorphism induced by r. The intersection form on the lattice 
N(V) = Pic(V) defines by reduction mod 2 a symmetric bilinear form on N(V)0. If 

<f>: Hj — N(V) 
is a geometric mandng of V, then ip induces an isometry 

(p: QB = QB/2QB - N(V)0, 
where 0B is the root lattice of type 2 in H7. We easily find that the radical of QB 
spanned by the vector 

v0 = a0+a4+a6 mod 20B. 
Thus 

if': 0B' = QB /Rad — N(V)0' = N(V)0/Rad 
is an isomorphism of symplectic spaces of dimension 6 over IF2. 

Lemma 2. The homomorphism 
r: N(V)0 - 2Pic(C) 
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factors through an isomorphism 
r': N(V)0' - 2Pic(C) = 2Jac(C) 

of symplectic spaces. 
Proof. It is enough to show that r is compatible with the corresponding 
symmetric bilinear forms. Observe first that 

Pic(V)/2Pic(V) a H2(V,u2), 
2Pic(V) s H1(V,U2) 

as follows from the Kummer exact sequence, and 
N(V)0 s H2(V,U2)0 = Ker(1+g*:H2(V,U2) ->H2(V,u2)). 

Note that the symmetric bilinear form on Pic(V)/2Pic(V) induced by the 
intersection form (resp. the Weyl pairing on 2Pic(C) = 2Jac(C)) corresponds to the 
usual multiplication in the cohomology defined by the cup-product. Now we 
observe that the map r is equal to the map 

H2(V,u2)0 - H\C\i2) 
coming from the Smith exact sequence for the involution g0 (see [BrD. 

- H2(P2,C,u2> - H2(V,u2) I2 H2(C,u2)eH2(P2,TT(C)/n2) I2 H3(P2,TT(C),ii2). 
We use that the Kernel of the component 

H2(V,u2) - H2(C,u2) 
of $2 is equal to H2(V,IJL2)0, the component 

H2(C,u2) - H3(P2,TT(C),u2) 
of Y2 is equal to the coboundary homomorphism from the exact sequence of the 
pair (IP2/TT(C)), and the image of H2(V,n2)0 in H2(P2,-n(C)t[x2) under p2 is equal to 
H1(C,u2). The latter is identified with a subspace of H2(IP2,TT(C),h2) by means of the 
exact sequence of the pair (P2/TT(C)). It remains to use that the Smith exact 
sequence is compatible with the cup-product. 

RemarK 1. The fact that the radical [Oy^ of N(V)0 goes to zero under r can be 
seen without using that r is compatible with the bilinear forms. In fact, 

v0 = <f>(a0+a4+a6) = <f<e0-ere2-e3+e4-e5+e6-e7) = 
= 9(3e0-e1-...-e7)-<p(2e0-2e4-2e6) = -K* -2tp(e0-e4-e6). 

Note that by adjunction 
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coc = 0v(Kv+C)®CDc = Ov(-Kv)®Oc. 
On the other hand, TT(<p(e0-e4-e6)) is a bitangent to TT(C) S C and hence cuts out on 
C an odd theta characteristic. Thus v0 goes to zero under the restriction 
homomorphism Pic(V) — Pic(C). 

Corollary. Let <p:H7 — N(V) be a geometric marking of V, 0B = (ZK2#7)X be the root 
lattice of type 2, QB = QB/2QB be equipped with the symmetric bilinear form 
induced by the lattice structure on 0B, 0B' = QB/Rad, and 

<p : 0B' at F2 —» N(V)0' 

be the induced isomorphism. The composition of <p' with the isomorphism r' 
from the previous lemma defines a level 2 structure on the curve C. 

Lemma 3. Let L and M be two lattices isomorphic to the root lattice 0B of the 
root system of type E7, L and M be their reductions mod 2, C = L/Rad and 
R'=M/Rad be the corresponding symplectic spaces over IF2. Then the canonical 
map 

y:lsom(L,M) — isomCCM') 
between the corresponding sets of isometries is surjective and Y(OC) = tf(p) if and 
only if a = ±p. 
Proof. By fixing an isomorphism L ^ M we may assume that L = M. Then it suffices 
to show that the canonical map O(L) — 0(C) is bijective. But 

0(L) s W(E7), O(L') a Sp(6,F2), 
and we have already observed in Chapter VII that our map 0(L)-»0(L') 
corresponds to a surjection W(E7) -» Sp(6,F2) with Kernel {±1}. This proves the 
lemma. 

Let 
mg (resp. mg(2)) 

denote the subvariety of Q.g (resp. Qig(2)) parametrizing the Jacobian varieties of 
nonsingular projective curves of genus g (resp. with level 2 structure). Note that 
by the Torelli theorem the first of these varieties is isomorphic to the coarse 
moduli variety of nonsingular projective curves of genus g. 
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Theorem 1. There is a natural isomorphism of algebraic varieties: 
f:(P2)un* m3(2)\ttyp3(2). 

It maps a geometrically marKed unnodal Del Pezzo surface (V,tp) representing a 
point of (P̂)1*1 to the isomorphism class (Jac(C),a), where C is the ramification 
curve of the map V P2 given by l-Kvl and a = r'»tp\ 
Proof. We have already defined the morphism f. Let us define its inverse. Given a 
nonsingular nonhyperelliptic projective curve C of genus 3, we can construct a 
Del Pezzo surface V of degree 2 as the double cover of P2 branched along the 
canonical image of C. It remains to show that a level 2 structure ot: IF2 -» 2Jac(C) 
defines a geometric marKing of V. Composing a with the homomorphism r'"\ we 
obtain a symplectic isomorphism 

ip: F* - N(V)0*. 

By Lemma 3 this isomorphism induces an isomorphism of lattices 
<p: (ZK2,7)H\- (ZKV)N̂V) = Pic(V)0 

which is defined uniquely up to composing with ±1. We can extend ±<p to 
isomorphisms 

(±9,-D: (ZK2/7)Hx7e ZK2/7 - (ZKv)H7eZKv. 
Finally we can extend these isomorphisms to isomorphisms: 

tp*: Hj — Pic(V) 
satisfying 

«f±CK2/7) = -Kv. 
This follows easily from the fact that the canonical homomorphism 

(a€0(H7):a(K2,7) = K2/7) -> 0((ZK2/7)H7)= W(E7) 
is an isomorphism. Indeed, it is surjective because every simple reflection in 
W(E7) is in the image, and it is injective because (ZK2/7)H"7© ZK2/7 is of finite index 
in H7. Note that 

(p+ = ip-og0*, 
where g0 is the covering transformation of TT:V — IP2. We finish the proof by using 
Proposition 8 from Chapter V where it was shown that every H7-marKing of a Del 
Pezzo surface V that sends K2,7 to -Kv is geometric. 
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2. Aronhold sets of bitangents to a quartic plane curve. 
In this section, following [vGU, we explain another way to reconstruct a 

level 2 structure on the Jacobian of a curve of genus 3 from a point set in P2. 

Proposition 1. Let C be the curve of genus 3 associated to a Del Pezzo surface V 
of degree 2. Under the anti-canonical map TT: V — P2 the image of every 
exceptional curve of the first Kind on V is equal to a bitangent to C. For every 
bitangent to C its inverse transform under TT IS equal to the union of two 
exceptional curves which are conjugate under the covering involution g0 of TT. 
Proof. Let E be an exceptional curve of the first Kind on V. Then l-KV-EI consists 
of an exceptional curve of the first Kind E' equal to g0(E). This shows that the 
image of E (and E') is equal to a line 1(E) which intersects the branch curve C at 
two points. Therefore TT(E) is a bitangent. Conversely, the double cover TT splits 
over any bitangent to C. Its inverse image under TT is the union of two nonsingular 
rational curves E and E', each intersecting the ramification curve at two points. 
Since the ramification curve of TT belongs to l-2Kvl, we have E«KV = E'»KV = -1. Thus 
E and E' are exceptional curves of the first Kind. 

Let l be a bitangent to C, JfcDC = 2p+2q for some points p and q. The divisor 
DU) = p+q is a theta characteristic on C. Since h°(DU)) = 1, it is an odd theta 
characteristic. Conversely, each odd theta characteristic D is linearly equivalent 
to the divisor p+q for some points p and q such that 2p+2q is cut out by a line. This 
shows that the set of bitangents can be identified with the set of odd theta 
characteristics on C. Note that the equation of the bitangent corresponding to an 
odd theta characteristic can be given by the linear term of the Taylor expansion 
of the corresponding theta function at the origin (see IFrll). 

Corollary. There is a natural 2-to-1 map from the set of exceptional curves of 
the first Kind on V and the set of odd theta characteristics on the curve C. 

Another way to see the odd theta characteristics on a nonsingular curve C 
of genus 3 is furnished by the Steinerian embeddings of C. We recall what this 
means (see [Bel, ITyU). 

Let 71 c P(r(IP3,©p3(2))) denote a net of quadrics in IP3 whose base locus 
consists of 8 distinct points. The Hessian curve of Tl is the closed subset H(Tt) of 
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Tl parametrizing singular quadrics. It is isomorphic to a plane quartic curve E C U 
s IP2 given by the equation: 

det(t0A0+t1A1+t2A2) = 0, 
where X̂AQX = Ô xÂ  = 0/txA2x = 0) is a basis of Tl. The Steinerian curve of !R is 
a subset S(TU of IP3 parametrizing the set of singular points of quadrics from Tl. 
It has a structure of a closed subscheme of P3 given by the vanishing of the 3x3-
minors of the 4x3-matrix 

[A0x A.,x A2xl. 
The net Tl is called regular if HOI) is smooth. This implies that the base locus 
of Tl consists of 8 distinct points. In this case SOU is a smooth curve of degree 6, 
and the map t -» SingCQ(t)) is an isomorphism given by the linear system IKc+ei for 
some even theta characteristic e. The correspondence Tl (C,e) establishes a 
bijective map between the classes of regular nets of quadrics in IP3 modulo 
projective equivalence and the isomorphism classes of smooth curves of genus 3 
with a fixed even theta characteristic. 

Let x\...,x8 be the base points of a regular net of quadrics Tl. The pencil 
ijj c: 71 of quadrics from Tl passing through the line <xj,xj> contains exactly two 
singular quadrics with nodes at some points q and Cj which are the singular 
points of the base curve of the pencil. Thus the line <xi/xJ> is a chord of the 
Steinerian curve joining the two points Cj and Cj. In the plane Tl, the line 
intersects the Hessian curve C at two points. Hence it is a bitangent to C, and, 
under the isomorphism C — SOU, the two points Cj and Cj go to an odd theta 
characteristic 0ij defined by the bitangent lij Since there are 28 odd theta 
characteristics for C and 28 pairs of points x1, xK we can account for all odd 
theta characteristics in this way. Notice that the subscript notation eu agrees 
with the subscript notation for odd theta functions Xu(z;r) used in the previous 
Chapter. 

In what follows we shall assume that distinct letters represent distinct 
values for indices, unless it is mentioned otherwise. 

Lemma 4. For every i = l,...,8 
ei,jicr: = eij+eiK"eir ~ eij+eix+eir""Kc 

is an even theta characteristic on C. 
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Proof. Suppose that, to the contrary, 9 ,̂̂  is odd and equal to emn for some m and 
n. Since the chords of N(ft) that connect the points x1, xj, and xK lie in a plane, and 
since a plane cuts out the divisor Kc+e, we have the relation: 

0ij+eiK+ejK ~ e+Kc-
This implies that 

ejK+eir+0mn ~ e+KC' 
and hence, that the chords <xj,xK> and <xf,xr> lie in the same plane. The point of 
intersection of these chords must be a base point of two different pencils of 
quadrics in U, therefore a base point of the whole net Tl. Obviously this is absurd. 

RemarK 2. One can easily show that it is possible to suppress the isolation of an 
index in the previous notation 9}jKr for the even theta characteristic 9jj+9lK-9jr and 
write it simply by eijKr. Then we verify that 9ljKr= 9lmnp for complementary sets of 
indices. In this way 9ijKr and 9 account for all even theta characteristics. We again 
see the agreement of the notation for even theta characteristics 9, 9ijKr with the 
one given in Chapter VIII. 

The following result follows immediately from the previous discussion and 
results from Chapter III: 

Proposition 2. Let x1,...,x8 be an ordered point set in IP3 which consists of base 
points of a regular net Tl of quadrics (a regular Cayley octad). The projection of 
this set from the point x8 defines a point set y = (y1 y7) in IP2 which is associated 
to (x1 x7). The image of the Steinerian curve of U under this projection is a 
sextic with seven double points at y1 y7. The proper transform of this sextic in 
V(y) is the ramification curve C of the anti-canonical double cover TT: V(y) -» IP2 of 
the Del Pezzo surface of degree 2. The images of the exceptional curves E. E7 
blown up from the points y1 y7 are the seven bitangents to TT(C) corresponding 
to the seven odd theta characteristics 98i defined by the chords <x',xJ>. 

Definition. An Aronhold set is an ordered set of seven odd theta characteristics 
9j (1<i<7) such that 9j+9j-9K is an even theta characteristic for all triples (i,j,K) of 
different indices. 
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Proposition 3. Let C be a smooth projective curve of genus 3. There is a natural 
bijection between the set of symplectic isomorphisms 9: IF* — 2Jac(C) and the set 
of Aronhold sets. 
Proof. Let {ev...,e7} be an Aronhold set. Define y\{z21qq(C) BV 

Hj = 8r e1 , i = 2 7. 
Let e:2Jac(C)x2Jac(C) — F2 be the canonical symplectic form on 2Jac(C). As we 
saw in the previous Chapter, for every theta characteristic e, the function 

n — h°(n+e)+h°(e) mod 2 
is a quadratic form on 2Jac(C) with associated bilinear form equal to e. Thus 

eOvij) = h0(ni+e)+h0(nj+G)+h0(ni+nj+e)+h0(e) mod 2. 
Setting e = ev we obtain for i * j 

eOvrij) = h°(ei)+h0(ej)+h0(ei+ej-e1)+h°(e1) = 1 mod 2 
because 0;, Gj, and e1 are odd theta characteristics but Gj+Gj-e, is an even one. 
This implies that {r̂  n6) is a basis in 2Jac(C), since n = Eâ i = 0 implies that 
eCri/Hj) = 0 for all i = 1,...,6, contradicting eOî nj) = 1 for i * j . Now define a 
symplectic basis in 2Jac(C) by 

ci = Hv c2 = n2+n3' E3 = l̂ rfe, 
e4 = rii+.-.+ns, cs 88 n3+n4+n5+rl6' c6 = n5+n6-

To obtain an Aronhold set from a symplectic basis {c1 c6) we first reconstruct 
the points rii n6 from the above system of linear equations. Then we define a 
quadratic form q on 2Jac(C) by 

qCIâ i) = LAJOJ. 
It is immediately verified that the associated bilinear form of q is equal to e, and 
that q vanishes at 28 points of the form Ea,rii having exactly 1,2,5 or all 6 zero 
coefficients. Thus q defines an odd theta characteristic Gr Adding to this 
quadratic form the linear form e( ,ri|) we obtain 6 more odd theta characteristics 
Gj, i = 2 7. We leave it to the reader to verify that the seven odd theta 
characteristics (G1,62 G7) form an Aronhold set which defines the symplectic 
basis {e1 e6) we started with. 

Corollary. Let C be a smooth non-hyperelliptic projective curve of genus 3, and 
V be the Del Pezzo surface of degree 2 corresponding to C (the double cover of IP2 
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branched along the canonical model of C). There are natural bijections between 
the following sets of 36*8! = #Sp(6,F2) elements: 
(i) the set of Aronhold sets; 
(ii) the set of level 2 structures on Jac(C); 
(Mi) the set of isomorphism classes of geometric markings of V; 
(iv) the set of exceptional 7-configurations on V; 
(v) the set of projective equivalence classes of self-associated point sets from 
S8 such that the Hessian curve of the corresponding net of quadrics is isomorphic 
to C. 

This gives another proof of Theorem 1 from the previous section. 

We define the subvariety 
(S8)reg c PI 

of regular Cayley octads, i.e. ordered base-sets of regular nets of quadrics. 
Clearly 

(S8)re9c §„c P%. 
where §8 is the variety of all Cayley octads. The projection b8: P% — p| 
defines an open embedding: 

(S8)reg ^ S8. 

Lemma 5. $'1((S8)reg) consists of self-associated point sets x = (x1 x̂ elP8 
satisfying the following conditions: 
(i) all x1 are distinct; 
(ii) every 4 points in x span P3; 
(iii) x is not contained in a rational normal cubic curve. 
Proof. Let xc(S8)reg. We Know already that (i) is satisfied. If x contains 4 coplanar 
points, the net 71 (x) of quadrics through x cuts out a net of conies through these 4 
points, unless one of the quadrics contains the plane. In the former case, we find 
3 collinear points among the four coplanar points. Then the line joining them is 
contained in the base-set of 71 (x). This contradicts the regularity of 71 (x). In the 
latter case, 71 (x) contains a quadric of coranK 2. It is Known that, together with 
(i), this implies that the Hessian curve has a singular point. This contradicts the 
regularity of 71 (x). Thus (ii) is satisfied. If x is contained in a rational normal 
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curve, then this curve is contained in the base-locus of 71 (x). Again this is 
contradictory. Thus (iii) is satisfied. 

Conversely, assume (i) - (iii) are satisfied. First of all, 71 (x) does not 
contain reducible quadrics. Otherwise, one of the irreducible components of such 
a quadric contains at least 4 points from x. Let B be the base-scheme of the net 
71 (x). It follows from the previous remark that each irreducible component of B is 
of dimension < 1. Since two quadrics from 71 (x) intersect along a curve of degree 
4, each one-dimensional irreducible component of B is a curve of degree < 3. By 
(iii), the case of degree 3 is impossible. If B contains a conic, the plane containing 
this conic is contained in a pencil of quadrics from 71 (x). This is impossible by our 
first remark. Assume B contains a line I. By (ii), A contains at most 2 points from 
x. Let TT be the plane containing I and a point x1 from x not on i. Each quadric from 
71 (x) cuts out in TT the line I and a line z' passing through x1. Since the lines i' form 
at most a pencil, there exists a quadric in 71 (x) which contains the plane TT. AS we 
saw above this is impossible. Thus the base scheme B of 71 (x) is O-dimensional. 
Condition (i) tells us that it is smooth. Then the Hessian curve of 71 (x) is singular 
if and only if 71 (x) contains a reducible quadric. Since the latter is impossible, 
71 (x) is regular. 

Corollary 1. 
(̂(Sg)1" )̂ c (P|)S. 

Corollary 2. 
(S8)reg = S8n(P3)UN. 

Proof. A canonical root system in H8 of type 3 is isomorphic to an affine root 
system of type E7. As in the case of an affine root system of type E8 isomorphic 
to a canonical root system of type 2 in H9, this allows us to find the set of positive 
roots Rg (see Chapter V). We obtain that this set consists of vectors: 

a(i,j) = e}-ej, 1si<j*8, 
a(i,j;m) = ei-ej+m(2e0-e1-...-e8), m > 0 
a(U,k,l;m) = e0-ei-ej-elc-el+m(2e0-e1-...-e8), 1<i<j<k<l<8, m > 0. 

Conditions (i) and (ii) from Lemma 5 are equivalent to the non-effectiveness of 
cfx1(a(i,j;0)) and yxHa(\.},K.];0)). where if>x.H8 — N(V(x)) is the geometric marking 
corresponding to x. Let X€*"1((S8n(P3)UN). To show that x is a regular Cayley octad, 

170 



CURVES OF GENUS 3 

we have to verify condition (iii) of Lemma 5. By Theorem 3 of Chapter III, x is 
contained in the base-set B of a net % of quadrics. Assume x lies on a rational 
normal cubic curve C. Then C c B, and for every point x1 from x, each quadric from 
!R contains the tangent line to C at x1 in its tangent plane at x'. This implies that 
there exists a quadric 0 from ft with a singular point at x1. Let lO'l be the class of 
the proper transform of this quadric in V(x), and [E2l be the class of the 
exceptional divisor blown up from x2. Then 

tpx(a(2,1;D) = <px(2e0-2e1-e3-...-e8> = IQ'] + [E2I 
is effective, hence x is nodal. This contradiction proves that 

SgnCP®)1̂  c (S8)re9. 
To prove the reversed inclusion we have to show a regular Cayley octad is an 
unnodal point set. We already Know that the roots a(i,j) and a(i,j,K,l;1) are not 
nodal with respect to the geometric marKing <px. Suppose 

9x1<a(i,j;m» = IDl 
for some m > 1 and an effective divisor D on V(x). Let 

f: V(x) P2 
be a rational map given by the net H(x) of quadrics containing x. Since the base 
locus of 51 (x) consists only of the point set x, f is a morphism. Then its fibres are 
quartic curves representing the class (tpx)1(4e0-e1-...-e8). Since 

a(i,j;mM4e0-e1-...-e8) = 0, 
D = f'1(B) for some curve B. In particular, D intersects a general quadric from the 
net in K = deg(B) quartic curves with class ((fx)1(4e0-e1-...-e8). This implies that 
K = m, and one of the quartic curves must have a singular point at xj. Since every 
such curve is a base curve of a pencil of quadrics from the net, one of the 
quadrics from this pencil must have a singular point at xJ. This contradicts 
condition (i). Suppose now that 

tpx1(a(i,j,K,l,m» = [Dl 
for some m * 1 and an effective divisor D on V(x). A similar argument shows that 
D intersects a general quadric from TL(x) in m quartic curves and a conic passing 
through x',xj,xK, and x1. This implies that these points lie on a plane. This 
contradicts condition (ii) of Lemma 5. 

Let 
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f:(S8)reg - a3(2) 
be the morphism given by associating to a regular Cayley octad (x\...,x8) the 
Jacobian variety of the Hessian curve of the net 31 (x) of quadrics through x and 
the level 2 structure defined by the Aronhold set cut out on the Steinerian curve 
by the chords <xI/x8>. 

Theorem 2. The projection (x1 x8) — (y1,...,y7) from IP3 to IP2 with center at x8 
induces an isomorphism p: (S8)reg -» (P2)un. Composition of this morphism with the 
morphism (P7)1̂  — m 3(2)\Hyp3(2) c a3(2) from Theorem 1 is equal to f:(S8)reg — 
CL3(2). In particular f induces an isomorphism: 

(S8)reg s 7Tl3(2)\Hyp3(2). 

Finally, note the following curious fact. 

Proposition 4. Let S be the Steinerian curve of a regular net of quadrics 71 
with base points x1,...,x8, embedded into P3 by the linear system IKc+ei, where C is 
the Hessian curve of 71 and 9 is an even theta characteristic on C. Then the 
Steinerian curve of the net corresponding to C and the even theta characteristic 
9ijKr is obtained from S by the standard Cremona transformation with 
fundamental points at x,,xj,xK,xr or at the complementary set of points 
xm,xn,xp,xq. 
Proof. The standard Cremona transformation is given by mapping IP3 to itself via 
the linear system l3H-2xi-2xJ-2xK-2xrl of cubic surfaces with nodes at x',xJ/xK,xr 
Since the chords that connect these nodes belong to the base locus of this linear 
system, and since the hyperplane divisor H, when restricted to S, cuts out the 
linear system of the divisor, we have: 

3(Ks + e)-(9jj+9|K+9ir+9jr+9jK+9Kr) ~ 
~ 4Ks+e-(Ks+e+eir+ejr+eKr) ~ 3Ks-(eijKr+Ks) ~ Ks+eijKr. 

Since eijKr = 0mnpq, this proves the proposition. 

RemarK 3. The previous proposition gives another proof that the Cremona action 
of w3,s on ss factors through Sp(6,F2) (see Chapter VII). In fact, let AijKr€W38 be 
the reflection with respect to the root e0-erej-eK-er. It is Known that the Kernel 
G of the canonical surjection W3/8 — Sp(6,F2) is a minimal normal subgroup 
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containing the product A ^ ^ A ^ . It follows from the proposition that this 
product induces the identity transformation of S8. Hence G is contained in the 
Kernel of the Cremona representation of W3#8 in Bir(S8). 

3. The varieties S8 and m3(2). 
In this section we want to extend an isomorphism from Theorem 2 to taKe 

into account hyperelliptic curves of genus 3. For this we construct a morphism 
from 3R3(2) to S8 whose restriction to Tfl 3(2)\Wyp3(2) is the inverse of the 
isomorphism f:(S8)reg TTL3(2)\96yp3(2) constructed in Theorem 2. 

Let C be a nonsingular curve of genus 3 and ev.../e7 an Aronhold set of odd 
theta characteristics on C. Denote by e0 the even theta characteristic which is 
not equal to any of the 35 even theta characteristics ©1 jK = ej+0j-eK. Let 

eu = Vereo 
be the remaining odd theta characteristics, and 

fUK = eij+eKj+eiK€lKc+eo' 
for 1si<j<K*7. 

The linear system IKc+e0l maps C into P3 = IKc+e0l*. This map is an embedding 
if and only if h°(e0) = 0. If h°(e0) = 2, then C is hyperelliptic and its image is a 
rational normal cubic. We will identify the divisor fjj|f. with the corresponding 
plane FijK in P3. For every fixed pair of indices ij the planes FijK belong to the 
pencil 

iij = eu+"̂ j+eIlci = eu+ioj+e,! c iKc+e0i. 
This defines 21 lines in P3. All planes FfjK with the same index i belong to a 
two-dimensional linear system. Let x1 be the common intersection point of all 
such planes. This defines 7 ordered distinct points x\...,x7 in P3 such that each line 
lij passes through x1 and xj. If C is not hyperelliptic, we easily see that the net of 
quadrics through x1 x7 has the curve C as its Hessian curve and the image of C 
under the map given by IKc+e0l as its Steinerian curve. Let x8 be the eighth base 
point of this net. Then the map 

(c,(e1 e7))em3(2)\ftyp3(2) - (x1 x8)c(s8)reg 
is the inverse of the map f:(S8)reg — m3(2)\&yp3(2) from Theorem 2. 

Now let us see what happens if C is a hyperelliptic curve. Assume first that 
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,0o' = 912 on c- Tnen tne image of C by the linear system IKc+e0l is a rational normal 
curve C in IP3. The plane Fĵ  cuts this curve at 3 points. It follows from our 
description of odd theta characteristics on hyperelliptic curves that these three 
points are necessarily the branch points of C — C. Thus the points x1 x7 are 
branch points, and the lines ljj are the 21 chords joining them by pairs. Together 
with the eighth branch point x8 we obtain a well-defined (up to projective 
equivalence) self-associated point set (x1,...,x8). Since every odd theta 
characteristic eTj corresponds to a divisor Pj+Pj, where {pj,Pj} is a pair of 
ramification points of C C, we see that the only odd theta characteristics Pj+p8 
unaccounted for must correspond to the odd theta characteristics 9j from the 
Aronhold set. This gives an identification of an Aronhold set with 7 ordered 
branch points. Also we see that the level 2 structure defined by an Aronhold set in 
Proposition 3 coincides in this case with a branch-point level 2 structure on 
hyperelliptic curves defined in Chapter VIII. This extends the map 

m3(2)\ttyp3(2) - S8 
to the irreducible component of the hyperelliptic locus corresponding to branch-
-point level 2 structures. Note that a point set (x1,...,x8) lying on a rational normal 
curve is nodal, since for every point x1 there exists a cone with a node at x1. 

Assume now that h0(Go) = 0. We use our old notation for theta 
characteristics on hyperelliptic curves. In this notation 9j= ê  for some 
i,jc{1 8}, i * j , and e0 = ejjKr for some subset (i,j,K,r) of 4 elements from {1 8}. 
An example of an Aronhold set is a set 

(91,...,G7) = (Gi2'034'ei5'025'036'e37'038) 
with e0 = 01235. It contains 3 theta characteristics 912,915,e25 which define the 
even theta characteristic B12+e15-e25 with h°(e12+e15-e25) = 2. The remaining theta 
characteristics are defined by a choice of a number 3 different from 1,2,5 and 
taKiing e.̂  for all K different from 1,2,5 and 3. Permuting (1,2,3,5) and {4,6,7,8} 
separately and switching {1,2,3,5} with {4,6,7,8}, we obtain all Aronhold sets with 
90 = 01235. Permuting all the numbers {1 8} we obtain 35 sets of Aronhold sets 
with fixed e0. This shows that all Aronhold sets with 60=eij(cr are accounted for in 
this way. Thus, without loss of generality we may assume that an Aronhold set is 
given as above. 

Let pv...,p8 be the eight ramification points of the g12 on C. We observe that 
f«3 = fi24 = *234 = Pi+P2+P3+2p4+p5, 
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f125 = f156 = f167 = f126 = f127 = f156 = f157 = f167 = P4+2p5+p6+P7+P8. 
This implies that the points x\x3,x4 (resp. x2,x5,x6,x7) are on a line \< (resp. 12). We 
define the eighth point x8 as the unique point on lt such that the double ratio of 
x\x3,x4,x8 is equal to the double ratio of x2,xs,x6,x7. This gives us a well-defined 
self-associated point set x = (x\...,x8). Note that in this case x is not stable but 
semi-stable and belongs to one of the 35 two-dimensional boundary components 
of JS ns8 determined by admissible partitions d = (2,2) of n+1 = 4. Each such 
component is naturally birationally isomorphic to P^P^ and the self-associated 
point set x constructed above belongs to the diagonal of the boundary component. 

Summarizing, we have proven the following: 

Theorem 3. There is a morphism 
tp: m3(2) -> S8 

satisfying the following properties: 
(i) Its restriction to m3(2)\%yp3(2) defines a map to (S8)reg which is the inverse 
to the map f from Theorem 2. 
(ii) Its restriction to the irreducible component 9typ3(2)° of %yp3(2) 
corresponding to branch point level 2 structures is the composition of the map 
5№yp3(2)° (P8)un, which is the inverse of the isomorphism constructed in 
Chapter VIII, and the Veronese map v̂  : (P̂ )1̂  S8. 
(iii) It blows down the 35 remaining irreducible components of %yp3(2) to the 
diagonals of the 2-dimensional boundary components of S8. 

RemarK 4. it is Known that every point of the boundary eL3(2)\<3i3(2) of &3(2) 
represents an isomorphism class of an abelian variety of dimension 1 or 2 with a 
level 2 structure. By Mg21 the blow-up of the boundary is a nonsingular algebraic 
variety GL3(2) together with a projection d3(2) -» <2L3(2) the fibre of which, over a 
point representing an abelian variety of dimension 2, is isomorphic to the variety 
itself. It is quite natural to guess that the birational map 

<ff1: S8 -> m3(2) c a3(2) 
is "essentially" the Igusa blow-up. First, we have to replace S8 by its proper 
inverse transform S8' in P% (containing but not equal to the variety S8 of the 
orbits of Cayley octads) to include the case of point sets (x\...,x8) with x' = xJfor 
some i * j , and then blow up further the diagonals of the boundary components 
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parametrizing non-stable point sets in P% The so obtained variety should coincide 
with &3(2). Recall that we have 64 different discriminant hypersurfaces Z(a) in 
S8\ They correspond to 

28 = <£) components Z|j = Ztej-ep, 1<i<j<8 parametrizing 
point sets with xJ x1, 
35 = iC8,) components Zjjlcr = Z(e0-ej-ej-eK-er) parametrizing 

point sets with coplanar points xl,xj,xr,and xK, 1<i<j<K<r<8. 
1 component Z0 parametrizing point sets on a rational normal curve. 

Note that since we consider only self-associated point sets 
îjicr - Zmn0p 

for complementary sets of indices. Also note that the discriminant conditions 
au = 2e0-e1-e2-e3-e4-e5-e6-e7-e8-ej+ej 

ore reduced to one of the previous conditions or to the condition that x lies on a 
rational normal curve. It follows from the proof of Corollary 2 to Lemma 5 that 
all discriminant conditions are accounted for. 

For every discriminant hypersurface Z different from Z0 there is a natural 
birational map Z(a) -» 3112(2) whose fibre over a point [CI representing a curve of 
genus 2 with a level 2 structure is isomorphic to Jac(C). For example, let 
Z(a) = Z78 . Let x be a generic point set from Z78. Then the net U(x) of quadrics 
through x contains a singular quadric Q with a node at x7. The Hessian curve C of 
7l(x) is a plane quartic curve with a node z(O) representing 0. The lines <xK,x7>, 
K=1 6, define 6 bitangents lj of C passing through the node. They define an 
ordered set of ramification points of the ĝ  on the normalization £ of C. Thus the 
map x -> (Cd .̂..,̂ )) defines a birational map from Z78 to G.2(2). Note also that x 
defines canonically 2 points on £ corresponding to the branches of the node of C. 
Conversely, given a plane nodal quartic curve and its 6 bitangents from the node, 
we can reconstruct a unique net of quadrics which will define a point set x. Note 
that a nodal plane quartic C is the image of a hyperelliptic curve C of genus 2 
under a map given by the linear system IK̂+p+ql for some points p,qcC, 
corresponding to the branches of the node of C. This shows that the fibres of the 
birational map Z78 -» a2(2) are naturally isomorphic to the symmetric square C(2) 
of C, which in its turn is birationally isomorphic to Jac(£). If Z(a) * Z78, we define 
the map Z(a) -* CL2(2), as the composition Z78 -» a2(2) and the birational 
isomorphism Z(a) -» Z78 defined by the Cremona action of Sp(6,IF2) on S8\ 
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4. Theta structures. 
Here we recall some more definitions from the theory of theta functions. 

We refer to [Mu 3,Mu 51 for the details. 
Let (A,L) be a ppav of dimension g such that L satisfies: 

[-11*(D s L. 
For every r\€2A we have an isomorphism 

tn*(L2) « L2. 
The (level 2) theta group of L is the group 

G(L) = {(tl,tf>>l<f:tn*(L2) =i L2, nc2A} 
with multiplication law: 

(n,<p>°<nV) = (п+n̂ ц>otn,*(9,)). 
We have a natural central extension of groups: 

1 -> С* -» G(L) -> 2A -> 1, 

where C* is identified with the group AutCL ). 
The commutator [(ivpXGW)! of any two elements of G(L) belongs to the 

center, and induces (after composing it with log) the Weyl bilinear form 
eL: 2A x 2A IF2. 

Thus, as an abstract group, G(L) isomorphic to the set 
H(g) = C*xlF9xlF9 

with the group law 
(?l,e,e,)o(ft,,n,ii') = ((-DtG-rl, + trTe,7l?i,,c + n,c, + n'). 

The homomorphism (fl,e,e") -» (c,c') defines an extension of groups: 
1 - C* — H(g) - F 29 - 1 . 

An isomorphism 
a: H(g) ^ G(L) 

is called a ( level 2) theta structure on L. 
By projection to IF229, a defines a level 2 structure 

S: IF29 - 2A 
on A. Two theta structures a and a" defining the same level 2 structure differ by 
a character 
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X: F229 - ц2. 
that is, oc'°of1 is an isomorphism of H(g) given by 

(fl,e,e') — (x(c,c,)ft,c,c'). 
A choice of an isomorphism (A,L) — (AT,L1:) for some matrix -zz%g defines a theta 
structure. One verifies that it is independent of a choice of T modulo the action of 
the subgroup 

rg(2,4) = CM = 
AB 
CD crg(2): (AB)0 = (CD)0 = 0 mod 4}. 

in this way 
ag(2,4) = %g/rg(2,4) 

parametrizes the isomorphism classes of ppav with theta structure (A,L,a). 
Next we observe that G(L) has a natural linear representation in the space 

VA = H°(A,L2) = C29. 
It is given by the formula 

((x,<p)s)(a) = tpa(s(a + x)), 
where acA, ya: tx*(L2)a = (L2)a+X -> (L2)a . 

On the other hand, H(g) acts linearly in the space V(g) = Maps(F§,C) by the 
formula 

«*,e,e'>f)(v> = M-1)W + Wf(v+e), V€F|. 
This defines a linear representation of H(g). One checKs that it is an irreducible 
representation. It is Known that all irreducible representations of dimension > 1 
of the group H(g) are isomorphic. Hence, there exists an isomorphism of linear 
representations 

4V v<9> - VA 
which, by Schur's lemma, is defined uniquely up to a scalar multiplication. 

We denote by H2(g) the subgroup of H(g) of elements (fl,e,e') with fl2 = 1. It is 
a nontrivial central extension 

1 - U2 - H2(g) - F229 - 1. 
By restriction, V(g) is a linear representation of H2(g). 

For every veF2 let 
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ZvcV(g) 
be the characteristic function of the subset {v}. We have 

<a.e,e'>zv = *-i)t(c+v)-c'zv+c. 
After fixing an order in Ff, we obtain a canonical basis 

tZv}V{|F» 
of V(q). Under the isomorphism tprt this basis corresponds to the basis 

{£ E 
0 |<2Z;2T»CCF* 

of VAx. 
Let 

ThA: Aj- —* P ( VA ) 
be the map 

z - ( ... 
e 
0 (2Z;2T)...) 

given by the linear system IL2I and the basis M с 
О (2z;2T)}E€FG. Composing this 

map with the unique G(LT)-H(g)-equivariant isomorphism 
(^a) :P(VAt*) - IP(V(g)*), 

obtained from <pa by transposing and passing to the projectivization, we get a 
map 

TnAx,or AT -P(V(g)«). 
Note that the group 2AX = G(L)/C* acts by translations on AT and the group 
H2(g) = H(g)/C* = IF29 acts on IP(V(g)*) by the projectivization of the dual 
representation of H2(g) on V(g)*. These actions are compatible in the sense that 

ThAx a(x+r|) = a(r])ThAT a(x) for any r\c2Az, xcAx. 

TaKing the value of ThAx a at the origin allows us to define a map 
Tha): ag(2,4) - P(V(g)*) s P2g_v 
(AT,a) - ThA(0). 

Note that rg(2,4) is a normal subgroup of rg(2) with quotient 
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isomorphic to F 29 . Thus there is a natural action of this group on GLg(2,4) 
with quotient space isomorphic to G.g(2). The map Tha) is an equivariant map with 
respect to this action. Now there is more symmetry involved. Let 

rg/Tg(2,4) = Sp(2g,F2). 
Using an isomorphism rg/rg(2) ss Sp(2g,F2), we have an extension of groups 

1 - F229 -> 5p(2g,F2) - Sp(2g,F2) - 1. 
The group §p(2g,F2) acts naturally on ag(2,4) with quotient isomorphic to ag. 
Using an isomorphism 

Sp(2g,F2) * {a€Aut(H(g))l alCent(H(g)) = 1} 
under which F29 is mapped onto the subgroup of inner automorphisms, and 
applying Schur's lemma, we see that the same group acts on P(V(g)*). In this way 
we obtain a 5p(2g,F2)-equivariant map 

ThQ): CLg(2,4> - P(V(g)*). 
Note that the projective linear representation of Sp(2g,F2) on P(V(g)*) comes 
from a linear representation of a certain extension of Sp(2g,F2) described for 
example in IGri 21. 

Lemma 6. Let SymK(V(g)) be the K-th symmetric power of the linear 
representation V(g) of H2(g), and (SymK(V(g)))H2C9) denote the subspace of H2(g)-
invariant elements. Then 
(i) (SymK(V(g)))H2(9> = {0} for K i 4; 
(ii) Sym4(V(g)) = e(Sym4(V(g)))x, where %€X(H2(g» = Hom(H2(g),C*) 

(S4(V(g)))H2(9> has a basis consisting of 3l29+1)(29_1 + 1) 
polynomials 

P,= Eg ZVZV+V-ZV+V"ZV+V-+V- , I = {OWV+v"} c F92 
V€F2 

Proof. This can be easily verified (cf. [vG 21). 

We denote by 7(g) the space (Sym4(V(g)))H2<9). A choice of an order in the 
spanning set {P,} of tT(g) defines a H2(g)-equivariant map: 

P(V(g)»*) - P(tT(g)*). 
Its composition with the map 
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factors to a Sp(2g,F2)-equivariant map 
Th<4): ag(2) - P(IT<g)*). 

The following lemma explains our notation for the maps Th<2> and Th<4). 

Lemma 7. Let 

Xe(zrc> = £ 
e 
0 <2Z;2T), C€lFJ. 

Then 

e e (Z;T)2 Z 
aeF .9 

2 
(-1) Tje Xe+a(0;x)Xff(z;T). 

Proof. See [Ig 11, I V.1,Theorem.2. 

It follows from this formula that under the identification of the spaces V(g) 
and VAt the composition of Tha) with the Veronese map is given by the squares of 

even theta constsants 9 e 
e' (0;T)2 (considered as modular forms of 

weight 1 with respect to T(2,4)). Also the map Th(4> is given by the fourth powers 
of even theta constants (considered as modular forms of weight 2 with respect 
to T(2)). In fact, one can show that these forth powers span the space 7 (g) (see 
[vG 21 for details). 

Example. Assume g = 2. Then the map 
Tha): a2(2,4) - IP(V(2)*) s IP3 

is a birational isomorphism, and the map 
ThM): a2(2) - P(IT(2)*) = IP4 

is a birational isomorphism onto a quartic hypersurface isomorphic to a level 2 
modular quartic 3-fold V4. In particular, we see that 

V4 = IP(V(2)*)/H(2) 
is rational. By brute computation, it can be verified that IP(V(3)*)/H(3) is 
rational (D. Ortland). It is not Known whether the quotient IP(V(gf)/H(g) 
is rational for g > 4. The proof of the corresponding statement in IBogl is false. 
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Proposition 5. Assume g = 3. Then 
Th®: a3(2,4> - P(V(3)«) a p? 

is a birational map onto a hypersurface of degree 16, and 
Th(4): a3(2) - P(tT(3)*) a P14 

is a birational map onto its image. 
Proof. The first assertion is proven in [VG-vdG] (cf.[Co81, p.487). The second 
one easily follows from it. 

5. Kummer-Wirtinger varieties. 
The Kummer-Wirtinger variety of a ppav A of dimension g is defined as 

the quotient Kum(A) of A by the involution x -» -x. Fix a theta structure on A, and 
choose a basis {X(z,x» in the space H°(A,L2) corresponding to a basis (Zv) in the 
space V(g) as in the previous section. Assume that A is indecomposable i.e. is not 
equal to a product of abelian varieties of smaller dimension. Then the 
corresponding map 

A -> IP(H°(A,L2)*) s P(V(g)*) 
factors through Kum(A) and defines an embedding: 

i: Kum(A) c_. P(V(g)*) 
which is 2A-H2(g)-equivariant (the first group acts on A, and hence on Kum(A), by 
translations by points of order 2, and the second acts on IP(V(g)*) via its linear 
representation in V(g)). It is easy to compute the degree of KKum(A)) and get 

deg(i(Kum(A)) = i(29)g = 2g"1g!. 
Note also that Kum(A) has 22g singular points locally isomorphic to the vertex of 
the affine cone over the Veronese variety vg(Pg"1). 

Proposition 6. Assume g = 2. Then i(Kum(A)) is given by an equation: 

a0(Z0Vz0VZ4o+Z4p + 2a1(Z020Z120+Z021Ẑ  + 2a2(Z0VoVZ1V1V-
+ 2a3(Z020Z121+Z20Z021)+4a4Z00Z0lZ10Z11 = 0, 

where the coefficients a0,ava2ra3,a4 satisfy the equation: 
(*) aQ3-a0(a12+a22+a32-a42)+2a1a2a3 = 0. 
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Conversely, every quartic surface given by such an equation is isomorphic to a 
Kummer surface Kum(A), provided the coefficients a| satisfy (*) and also 
the following 15 inequalities: 

a0 * a{, a0 * ±aj±a4-aj-aK, i =1,2,3, j,Kc{l,2,3)\(i}, j*K. 
Proof. We Know that i(Kum(A)) is an fl2(2)-invariant quartic surface. This implies 
that its equation can be given by a quartic polynomial belonging to some 
eigensubspace Sym4(V(2)*)x with respect to the action of H2(2). By Lemma 1 this 
equation is as above if the eigenvalue % is equal to 1. If % * 1, it is easy to verify 
that the fixed line of some involution acR2(2) must lie on the surface. However, 
each such a line meets the surface in a set of 4 points y, the images of the points 
ycA such that 2y = x, t(y) = y, where xc2Jac(A) corresponds to a, and t is the 
translation of A corresponding to a (cf. [Co 11, p.103). 

Finally, the condition on the coefficients is necessary and sufficient for the 
quartic to have a node (and hence 16 of them since the quartic is H£2)-invariant) 
(see [Jesl, p.99). 

Now we observe that the cubic hypersurface in IP4 given by the equation 
a03-a0(a2 + a2+a3-a42)+2a1a2a3 = 0 

is isomorphic to the Segre cubic primal V3. In the notation of Lecture I, the 
projective transformation defining the isomorphism is given by the formulae: 

ao = to, cx, = t0-2t2, a2 = t0-2t1, a3 = -t0+2t3-2t4, 
a4 = -2t0+2t1+2t2-2t3-2t4. 

This shows that when (A,T) varies in a2(2,4), the coefficiens (â oĉ â â ô ) 
define a map: 

0t2(2,4) - IP(S4(V(2)*)H(2)) = PCT(2)*) c I0P(V(2))(4)I 
which factors through a map 

Th<4)*:Q,2(2) - IP(IT(2)*). 
Recall that earlier we defined a map: 

Th<4):a2(2) - IP(D-(2)) 
given by the invariant quartic polynomials corresponding to the coefficients 
a0,...,a4. The image of the first map is projectively isomorphic to the Segre cubic 
primal V3, and the image of the second map is isomorphic to its dual hypersurface 
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which is a level 2 quartic modular 3-fold V4. Thus the cubic equation satisfied by 
the coeffients of the equation of Kum(A) expresses the condition that Kum(A) is 
the inverse image of a tangent hyperplane of V4 under a map: 

f:P(V(2)) - POT(2)) a P4 
given by the linear system of H2(2)-invariant quartic polynomials. Note that the 
image of a Kummer surface Kum(A) under this map is isomorphic to the quotient 
space 

K = Kum(A)/H(2). 
The action of H2(2) on Kum(A) corresponds to the action of the group 2A on A by 
translations. The quotient A/2A is canonically isomorphic to the image of A under 
the isogeny x -» 2x, hence is isomorphic to A. This easily implies that 

K s Kum(A). 
Thus we obtain that 

Kum(A) = f"1(H) s V4HH 
for some hyperplane H in P4.The variety V4 has 15 double lines, hence Hnv4 has 
16 singular points if H is tangent to V4 at some nonsingular point acV4. This gives 
another explanation why H must be a tangent plane to V4, and hence the 
coefficients of the equation of a Kummer surface must satisfy a cubic equation. 

Now recall that the nonsingular points of V4 parametrize principally 
polarized abelian surfaces with level 2 structure. It is natural to asK whether the 
tangent hyperplane H to V4 at a nonsingular point acV4 cuts out the Kummer 
surface of the abelian surface from the isomorphism class defined by the point a. 
The answer is yes. We refer to [Co 11, p.141, and IvdGl for verification of this 
fact. 

Let us now see some analogs of the previous facts in the case g = 3. 

Proposition 7. Let A be a principally polarized abelian variety of dimension 3 
with a fixed theta structure. Then i(Kum(A)) is contained in the singular locus of a 
unique hypersurface C4 given by an H2(3)-invariant quartic polynomial L4 on V(3): 

C4 : L4 = Ia,P, = 0. 

Moreover, if A = Jac(X), where X is a nonsingular nonhyperelliptic curve of genus 
3, then i(A) = Sing(C4). 
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Proof. The embedding of Kum(A) into P7 = P(H(3)) is given by the subsystem of 
1261 corresponding to symmetric divisors, i.e. their corresponding theta 
functions on C3 are even. This easily implies that the restriction of the complete 
linear system of cubic hypersurfaces in P7 on K = i(Kum(A» cuts out on K a linear 
system of symmetric divisors from 1661. Its dimension is equal to 111. This 
immediately implies that there is a cubic hypersurface vanishing on K. In fact, 
since K is projectively normal in P7, there are 8 linearly independent cubic 
polynomials vanishing on K. Suppose that a cubic polynomial 

F = Z°\jKZV]ZVjZVK 
vanishes on K. Since K is H2(3)-invariant, and H2(3) contains projective 
transformations which change the sign of each coordinate Zv, it is easy to see 
that one such F defines another where the indices Vj,Vj,vK corresponding to a 
nonzero coefficient a[jK add up to some vclF2. This easily implies that we have 8 
cubic polynomials Fv vanishing on K, each corresponding to a vector vclF2. The 
group H2(3) permutes these polynomials. Further computations (see [Co 11, p.105) 
show that each Fv must be the Zv-partial of the H2(3)-invariant quartic 
polynomial 

L4 = IZVFV = Ia,Ph 
This proves the existence and uniqueness (up to a scalar factor) of a 
H2(3)-invariant quartic polynomial containing K in its singular locus. On the other 
hand, it is shown in [N-R], that the moduli space SUX(2) of semi-stable ranK 2 
vector bundles with trivial determinant on a nonsingular nonhyperelliptic curve X 
of genus 3 is naturally isomorphic to a quartic hypersurface in IP7 with singular 
locus equal to Kum(Jac(X)). Note that this isomorphism is H2(3)-equivariant, 
where H2(3) acts on SUX(2) via the action of 2Jac(X) defined by the tensor product 
E — Ln®E, where l_n is the line bundle associated to r\z2Jac(X). This shows that 
SUX(2) must be equal to our quartic C4 given by L4 = 0. 

We propose to call the quartic hypersurface corresponding to an 
indecomposable ppav of dimension 3 

C4: L4 = 0 
the Coble quartic of A. 

Its equation IOOKS like the equation of a Kummer surface: 
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oc 0 (Z40 +... + Z 7) + 2 a1 (Z2Z2 + z|Z2 + Z2 Z2 + Z24Z 2) +... + 2 oc7 (Z2 Z2 + Z2 Z24+ Z2Z2 + Z2Z2) + 

+4a8(Z00Z4Z2Z3+Z7Z1Z5Z6) + ...+4a14(Z0Z4Z5Z6+Z7Z1Z2Z3) = 0, 
where Z0= ZQQQ, Z1 = Z100, Z2 = Z010, Z3 = ZQ ,̂ Z4 = Z011/ Z5 = Z101/ Z6 = Z110, Z7 = Z111 . 

Proposition 8. Let ECHOVC^SF^ e*1. Then the set of fixed points of c in V(3) 
is the union of two disjoint linear subspaces He+ and Hc" of dimension 3. Let C4 be 
the Coble quartic of a ppav A. The intersections 

Ĉ nHe* 
are isomorphic to a Kummer surface K. Maxing the identification of c with the 
corresponding 2-torsion point of 2A, K is isomorphic to the Kummer surface of 
the Prym variety of (A,e). 
Proof. This together with the definition of the Prym variety can be found in 
[vG 31. 

Corollary. The coefficients aQ/...,a14 of the Coble quartic satisfy 63 cubic 
equat ions. 

Thus, as in the case of genus 2, the coefficients a0,...,a14 of the Coble 
quartic define a map 

Th(4)*:a3(2) - P(tT(3)> 
whose image lies in the intersection of 63 cubics. This map is injective on the 
complement of the hyperelliptic locus. 

RemarK 5. If A = JacCX), where X is a hyperelliptic curve, then the Coble quartic 
is equal to a double quadric (see IvG31). Compare this with the fact that in the 
case where A is a decomposable ppav of dimension 2 the map Kum(A) — IP3 is a 
double cover onto a quadric. Note that the cubic hypersurface defined by the 
equation (*) from Proposition 7 has 10 nodes: 

(a^a^a^aa.a^) = (1A A ,0),(1,1,1,-1,0),(1,1,-1,1,0,(1,-1,1,1,0), 
= (0,0,0,1,±1),(0,0,1,0,±1),<0,1,0,0,±1). 

The corresponding quartic surface is a double quadric. Recall that the nodes of 
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the Segre cubic primal correspond to the 10 Humbert surfaces in a2(2) 
parametrizing decomposable abelian surfaces. It seems plausible, though we have 
not checked this, that the image of each decomposable abelian surface in P3 is 
given by the corresponding quadric equation. 

6. Cayley dianode surfaces. 
We have already defined these surfaces in Chapter VII as the ramification 

divisor of the map V(x) -> IPO,1,1,2), where X€(P2)gen. Here we interrelate these 
surfaces with Kummer-Wirtinger 3-folds. 

Let K = iCKum(A)) c P2g_., where A is the Jacobian variety of a 
nonhyperelliptic curve C of genus g. For every cc2A let 6C = 6+e denote the 
translation of the Poincare divisor 6 of A. The image of ee under the map 
i:A — IPjQ-t given by I26I is a trope T(c) of K, i.e. a subvariety of K which is cut out 
by a hyperplane everywhere tangent to K. It follows from Chapter VIII that each of 
the 22g tropes passes through at least 2g"1(2g-1) singular points of K. 

Clearly each trope T(c) is isomorphic to the quotient 9/(x), where x is the 
involution x - -x of A. 

Assume now that g = 3. Let % be a net of quadrics through 8 points x1 x8 in 
IP3 such that C is equal to its Hessian curve. Denote by 

f: V - IP2 = mi* 
the elliptic fibration defined on the blowing-up V of x1,...,x8. Fix a section of f 
defined by the exceptional divisor E8 blown up from x8. Let A be the discriminant 
curve of f, i.e. the curve in P2 of points z such that the fibre f'1(z) is singular. It is 
easy to see that A is isomorphic to the dual curve of C. The open subset f"1(IP2\A) 
is an abelian scheme over IP2\A. Let D be the closure in X of the set of non-trivial 
points of order 2 in fibres of this scheme. The projection 

TT: D —* IP2 
is a 3-sheeted cover branched along A. 

Now we recall from the geometric proof of Torelli's theorem for curves 
(see [G-HD that the Gauss map from e to P2 factors through T = e/(T) and 
defines a 3-sheeted cover of IP2 ramified along the dual curve of C. This suggests 
that D and T are birationally isomorphic. 
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Theorem 4. Both of the varieties D and T are birationally isomorphic to a Cayley 
dianode surface R corresponding to the point set (x1,...,x7). 
Proof. Let us show first that D and R are isomorphic. Let X" be the blow-up of 
x\...,x7 and 

<p:X' - P6 
be the map given by the linear system I —Kx-1 represented by quartics through 
x1 x7. It is easy to see that each such quartic can be written in the form: 

F = flF4+ZajjQjQj = 0,. 
where 0^0,03=0,03=0 are the quadrics spanning the net T\. and F4=0 is a quartic 
not passing through x8 (called a dianode quartic, see ICal). The fibres of the 
elliptic fibration f: X -» P2 are the base curves of pencils of quadrics from U. Thus 
each quartic F = 0 cuts out a divisor of degree 2 on the fibres of f, and hence tp 
induces a map ip' of degree 2 from X to the image Y and blows down to a point the 
exceptional divisor E8. Obviously the ramification divisors of 9 and ip' are 
birationally isomorphic. The first divisor is a Cayley dianode surface, the second 
is the surface D. Note that <p(Y) is isomorphic to P (1,1,1,2) embedded naturally 
into IP6. The divisor E8 is blown down to the vertex of IPO, 1,1,2). The situation is 
quite similar to the case of the bi-anticanonical map of a Del Pezzo surface of 
degree 1. 

Now let us see that D is birationally isomorphic to T. Obviously 
T at W2/(x'), 

where W2 c Pic2(C) is the hypersurface of effective divisors of degree 2, and z 
is the involution of Pic2(C) given by d -> Kc-d. In the Steinerian embedding of C a 
canonical divisor can be represented by 4 nodes qv...,q4 of the singular quadrics 
Q< Q4 in some pencil £ of 71. Let EU) be the base curve of this pencil. We assume 
that l is such that EU) is nonsingular. Let us show that each of the three 
nontrivial points o^i) of order 2 naturally corresponds to a pair of opposite 
edges of tetrahedron formed by the points q1,...,q4. 

Let lj denote the line of the quadric Qj passing through the point x8 and let 
D.=x8+Pj denote the divisor of degree 2 that it cuts out on E(£). A hyperplane in IP3 
cuts out a divisor H of degree 4 on EU) such that 2DrH. Since we are assuming 
that EU) is nonsingular, the quadrics Q| do not contain a common line. Thus the 
divisors Dj are all distinct, and since they all contain the point x8, they must also 
lie in distinct divisor classes. Thus the divisors of degree zero ci = DrD4 for i = 
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1,2,3, and c4 = 0 are all distinct and of order 2. We also have that CF+CJ ~ CK+CR for 
distinct indices. 

Now consider the planes: 
Hu = <qi'qj'x8> = <W' 
HKr = <qK'qr<x8> = <W>' 

which contain opposite edges of the tetrahedron spanned by the qf, and consider 
the divisors that they cut out on E(£): 

HunE(£) = x̂ Pj+Pj+p, 
HKrHE(A) = X8+pK+pr+p". 

Since Dj+Dj = 2x8+Pj+Pj ~ H+Cj+Cj we find that 
p ~ H-X8-prPj - X8+C!+Cj. 

Similarly, 
p* ~ x8+eK+er, 

which shows that p and p* are the same points on EU). Moreover, we have that 
2p ~ 2x8, 

which shows that p is one of the points a,U) of order 2 on EU). This ends the 
proof of the theorem. 

RemarK 6. It is easy to see that the surface T is isomorphic to the branch divisor 
of X' -+ IP(1,1,1,2). It is a hypersurface of degree 6 in IP(1,1,1,2) isomorphic to a 
canonical model of a nonsingular regular surface of general type with pg = 3 and 
K2 = 3. It has 28 nodes, and the projection map R -» T is a resolution of singular 
points of T whose exceptional curves are the proper inverse transforms in R of 
the lines joining pairs of points from {x\...,x8}. The projection R of R in IP3 is a 
surface of degree 6 with 7 triple points at x1,...,x7. This is another birational 
model of the surfaces R, T, and D. Note that R may be obtained directly from the 
theta divisor 9 c Jac(C) by mapping it to IP3 via a subsystem of I49lel that depends 
on a choice of an Aronhold set on C. The seven singular points are ordered via the 
Aronhold set. This gives another way to reconstruct a point set (x1 x7)€P3 = P7 
without appealing to the fact that the Abelian variety is the Jacobian of some 
curve. We refer to [Sen 1] for the corresponding construction or to an account of 
his worK in [Co 11,S47. 
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7. Göpel functions. 
In this section we construct a Sp(6,F2)-equivariant map 

P2 - P(tT(3)) 
whose image is contained in the intersection of 63 cubic hypersurfaces, and is an 
analog of the Segre cubic primal in the case g = 3. It is asserted in (Coll that 
there is a commutative diagram: 

p2^ a3(2>\ttyp3<2) 
\ / 
P(tT(3)). 

However, we postpone the proof of this until we understand it better. 

Let 0 be the root lattice of type E7 isomorphic to the root lattice 0B of the 
canonical root basis of type 2 in H7. Recall that in section 1 we constructed a 
natural isomorphism of symplectic spaces: 

<p: F* - 0\ 
where 0' = (Q/20)/Radical. We denote by v the image of vcQ in Q\ 

Lemma 8. For every C€F2\{0}, there exists a unique positive root aeQ such that 
tp(e) = a. 

The correspondence c -» a is a bijection between the set F2\{0) and the set 
of positive roots in 0 which preserves the orthogonality relations. 
Proof. Note that both sets consist of 63 elements. Thus it is enough to verify that 

a = p <=> a = p 

for any two positive roots a,pcQ. Assume a = ¡1, then under the canonical map 

0(0) - Sp(6,F2) 

the images of the reflections sa and sB are the same. By Lemma 3 this implies 
that sa = s8, hence a = Suppose that a and $ correspond to orthogonal vectors c 
and c' respectively. Then o>p = 0 mod 2, and 

sa (p) = p+(a>p)a s ^ mod 20. 
This implies that the roots $ and sa (p) correspond to the same vector from IF2. 
By the previous argument this implies that 
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ß+(o>3)a = ß , or ß+(a»ß)a = -p. 
in the first case (a»ß) = 0, and we are done. In the second case, a = -i(o>ß)ß, 
which is absurd. 

Let L c F2 be a maximal isotropic subspace Ca Göpel subspace in old 
terminology). It contains 7 nonzero elements. Denote by R(L) (the Göpel subset) 
the subset of the corresponding 7 orthogonal positive roots in Q. We use the 
notations a(i,j),a(i,j,K),a(i) to denote the positive roots 

erej, 1<i<j<7; e0-erej-eK, 1<i<j<K<7, 2e0-e1-...-e7+ei, ¡ = 1 7 
respectively. 

There are 135 different Göpel subsets R(L), 
90 of type {a(1,2,3),a(1,4,5),a(2,4,6),a(3,5,6),a(1,6,7),a(2,6,7),a(3,5,7)} 
45 of type (a(1),a(1,2,3),a(1,4,5),a(1,6,7),a(2,3),a(4,5),a(6,7)}. 

For each Göpel set R(L) we define a Göpel function FLc (R2)3: 
90 of type FL = (123)(145)(246)(356)(167)(267)(357), 
45 of type FL = d1(123)(145)(167), 

where 
d. = (347)(567)(235)(246)-(357)(467)(234)(256) 

expresses the condition that the point set (x2 x7) lies on a conic (see Chapter 1). 

Proposition 9. The Göpel functions FL span a 15-dimensional subspace T in (R2)3, 
and the group Sp(6,IF2) acts linearly on T via its action on Göpel subspaces L. The 
representation T of Sp(6,IF2) is irreducible. For every ecF2\(0}, the set of all Göpel 
functions FL with ecL span a 5-dimensional subspace and satisfy a cubic relation. 

Proof. Let 1 c IF2 be an isotropic plane. It is easy to see that there are 
exactly 3 Göpel subspaces L which contain 1. Let FVF2 and F3 be the correponding 
Göpel functions. We prove that they satisfy a linear relation of the type: 

F, ± F2 ± F3 = 0. 
Since Sp(6,IF2) acts transitively on the set of isotropic subspaces of the same 
dimension, it suffices to checK it for one subspace 1. Choose 1 in such a way that 
its three nonzero vectors correspond to the positive roots: 

a(1) = 2e0-e2-...-e7, a(6,7) = e6-e7, a(1,6,7) = e0-e.,-e6-e7. 

Then the three Göpel functions Fj are given by: 
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F1 = 0\^b7){\2.3)(\45)t F2 = d1(167)(124)(135)/ F3 = d1(167)(125)(134) 
Factoring out d1(167), we have to verify that 

(123)(145)-(124)(135) + (125)(134) = 0. 
We consider the Göpel functions as functions on P2. Without loss of 
generality we may assume that the point x1 has coordinates (1,0,0). Then the 
functions (123)(145),(124),(135)/(125)(134) satisfy the same relations as the 
monomials (23)(45), (24)(35), (25)(34) from R4 This relation is the straightening 
relation: 

(25)(34) = (24)(35)-(23)(45). 
Let V1 s c315 be the permutation representation of Sp(6,IF2) arising f rom its 

action on the set of isotropic planes 1, and let V2 s c135 be the similar 
representation corresponding to Göpel spaces. It is clear that the space T 
spanned by the Göpel functions FL is a representation of Sp(6,IF2) isomorphic to a 
quotient of V2 by the subspace isomorphic to Vv the coKernel of the map 

Vi - V2, 1 - L1±L2±L3 
of the representations. Decomposing V1 and V2 into irreducible representations 
we find that V2 contains an irreducible representation of dimension 15 which is 
not isomorphic to an irreducible component of Vv On the other hand, T is, as easily 
seen, isomorphic to an irreducible representation of the Weyl group W(E7) given 
by a construction from [McD 21, cf. Remarx 7 below. This shows that T is an 
irreducible representation of dimension 15. 

6 
Let eeF2\(0), and a be a positive root in 0 corresponding to c. Without loss of 

generality we may assume that 
a = a(7) = 2e0-e1-...-e6. 

Then each Göpel function FL with ccL has the form: 
FL = d7(ij7)(Kl7)(mn7), 

where i<j,K<l,m<n, (1 6) = (i,j}ü(K,l)U{m,n}. Factoring out d7, we have to checK 
that the functions (ij7)(Kl7)(mn7) span a 5-dimensional subspace and satisfy a 
cubic relation. Following the same argument as above, we may assume that 
x7=(1,0,0). Then the functions (ij7)(Kl7)(mn7) satisfy the same relations as the 
functions from (R*)r It follows from Chapter 1 that they span a 5-dimensional 
space and define a map of onto a cubic 3-fold isomorphic to the Segre cubic 
primal. This proves the assertion. 
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Theorem 5. Let 
ip: P7 -> P(T*) = IP14 

be the Sp(6,F2)-equivariant rational map given by the linear system ITI. Then TP is 
defined outside the union of 35 subvarieties of dimension 3 representing point 
sets lying on two lines. Its image is isomorphic to a subvariety V defined by 63 
cubic equations. Each of them corresponds to a cubic relationship between Gopel 
functions FL with eeL, ecF2. The induced map <P': P2 —» V is birational. 
Proof. The assertion about the set of definition of IP is verified directly from the 
definition of Gopel functions. The only nontrivial assertion is the birationality of 
TP'. We have to show that a generic point set (x1 x7) can be reconstructed 
uniquely from a point of V. Assume that the first 4 points are normalized in the 
usual way. Let (t0,tvt2) be the coordinates of x5. Then we observe that 

ti 
t2 

(124)(135) 
(125X134) 

с!,(124)(135)(167) 
d1(125)(134)(167) 

t2 
to 

(125X234) 
(124)(135) 

d,(125X234X267) 
d,(124)(235)(267) 

to 
ti 

(134)(235) 
(135X234) 

d3(134)(235)(367) 
d,(135X234X367)' 

We verify that the relation 
ti 
t 2 

t 2 

to 
t 0 

ti = 1 

is equivalent to the cubic relation 
^ (124X135 )(167))(d2(125 )(234)(267))(d3(134X235X367))-

-(d1(125)(134)(167))(d2(124)(235)(267))(d3(135)(234)(367)) 
between the Gdpel functions. It turns out that this relation follows from the 
cubic relation between Gopel functions corresponding to the fixed root a(6,7). We 
refer to [Co 1], p. 195 for this verification and also for the completion of this 
proof. 

Note that the 15-dimensional irreducible representations T* and CT(3) of 
Sp(6,IF2) are isomorphic. Thus the image V of P2 under the map ip given by Gdpel 
functions and the image V' of d2(2) under the map f given by the coefficients of 
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the Coble quartics are birationally isomorphic Sp(6,F2)-invariant subvarieties of 
IP(T*) s IPCD'O)). Let ceF̂MO) and let Gc be the isotropy subgroup of Sp(6,F2) in its 
natural action on IF2. Then 

Gc s W(D6) = (Z/2)5>m6. 
The restriction of T* to Gc contains a unique irreducible subrepresentation L(c) 
of dimension 5 which factors through Z6. The projective subspace P(L(e)) 
intersects V and V' along a variety isomorphic to the Segre cubic primal. This is 
the image of a boundary component of <3L2(2) and of discriminant component of P2 
under f and cp respectively. Coble claims in [Co 11, p.197, that V is projectively 
isomorphic to V'. Unfortunately, in our opinion his proof is not complete. 

RemarK 7. The construction of the representation T of Sp(6,F2) is a special case 
of MacDonald's construction of some irreducible representations of Weyl groups 
(see [McD 21). In fact, let ft be a Cartan algebra of a simple Lie algebra of type E7. 
Consider every root a of W(E7) as a linear function on ft. For every subset S of the 
set of positive roots which form a root basis in the root lattice 0 denote 

Fs = ( n a)€Sym#s(ftK). 
0C€ S 

Let Vs be the subspace of Sym#s(ft*) spanned by the functions Fw(s)/ wcW(E7). 
Then Vs is an irreducible representation of W(E7). If S consists of seven 
orthogonal positive roots, we obtain a representation isomorphic to T. 

Let IP6 = IP (ft). There is a canonical W(E7)-equi variant birational morphism 
s: P6 - (P2)un 

which is obtained from the identification of P6 with the variety of projective 
equivalence classes of point sets (x1 x7) lying in the set of nonsingular points of 
a fixed cuspidal cubic (cf. [Pi]). As is easy to see the pull-bacx of Gopel functions 
to IP6 under the map s spans a subspace of the space of homogeneous polynomials 
of degree 7 which is isomorphic to the Macdonald representation Vs 
corresponding to a set S of seven orthogonal positive roots. Thus the map 

IP(ft) - IVsr = IP14 
given by the linear system IVSI c IOp6(7)l factors through the map 

(P7)̂  - IP14 
given by Gopel functions, and hence has the same image in P14. In particular we 
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see that the Macdonald functions from Vs satisfy 315 three-term linear relations 
and also 63 cubic relations. This of course can be verified directly without using 
Gdpel functions. 

Since every net of cubics through a generic set of 7 points in P2 contains 
exactly 21 cuspidal cubics, the map s is of degree 21. By the Chevalley theorem 
(IBol): 

IP6/W(E7) s IP6. 
This defines a rational map of degree 21: 

p6 - (P2)un/W(E7) s a3(2)/Sp(6,F2) s m3. 6 2 7 bir 3 2 bir 3 
This is a rational map from IP. to t3 of smallest degree Known so far. 

8. Final remarKs. 
The relations between point sets in Pn and moduli varieties of curves goes 

a little further. It is easy to extend some of the results from this chapter to the 
case of curves of genus 4 with a vanishing theta constant. We obtain that the 
moduli variety of such curves is isomorphic to (P̂ )un. One of the possible 
relationships between these varieties is seen via Del Pezzo surfaces of degree 1. 
(see [Co 11, Chapter V). There must also be some interesting connections between 
some special point sets in the sense of Chapter VI and certaion moduli varieties 
of curves. Some indications to this can be found in Chapter VI of Coble's booK. 
Further connections have still to be explored. The call of Coble (see the last page 
of [Co 11) to find curves of genus larger than 4 associated to some point sets is 
still unanswered. 

We refer to [C-D 31, [Cos], where some other interesting relations 
between Cayley decads and Enriques surfaces are discussed. 

In [KM, Ki21 F. Kirwan gives a method for computation of Betti numbers of 
the orbit spaces. This can be applied to our spaces P™ or P™. 

Many topics from Coble's booK have not been covered in these notes. One of 
the reasons for this is our failure to fully understand what is going on there. For 
example, Coble gives some formulas, due to SchottKy, which express the Gdpel 
functions in terms of theta constants (lCo1],S28). The derivation of these 
formulae IOOKS rather formal and is not very illuminating. Note also that Coble 
omits many other interesting developments closely related to the topic of his 
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booK. For example, he does not even mention Frobenius worx [Fr21 in which an 
equation of a canonical curve of genus 3 is given explicitly in terms of theta 
constants or in terms of the equations of an Aronhold set of bitangents. A modern 
exposition of a part of this worx is given in IvG-vdGl. We hope to return to all of 
this later. 
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RÉSUMÉ 

Dans ce volume sont traités les liens entre la géométrie algébrique classique et la théorie 
des invariants des ensembles finis ordonnés de points dans les espaces projectifs, des 
transformations de Cremona et des fonctions thêta. La majeure partie du contenu se trouve 
dans la littérature, notamment dans le livre de A. Coble intitulé "Algebraic geometry and thêta 
functions". Néanmoins nous traitons ici ce sujet d'un point de vue moderne. On y a inclus les 
discussions des constructions classiques de l'ensemble des 27 droites d'une surface cubique, 
de l'ensemble des 28 bitangentes à une courbe plane quartique, des surfaces de Kummer et de 
del Pozzo ainsi que de leurs analogues en dimensions supérieures, des réseaux de quadriques 
et des surfaces dianodes de Cayley associées, des involutions birationnelles de Bertini et 
Geyser. Tout ceci est relié à des sujets plus récents tels que les quotients géométriques, les 
tableaux standards, les systèmes de racines infinis et leur groupe de Weyl, les représentations 
de groupes, les groupes d'automorphismes des surfaces rationnelles, les espaces de modules 
des variétés abéliennes, etc. 
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ABSTRACT 

This volume is concerned with some topics in classical algebraic geometry 
concentrated around the theory of invariants of finite ordered point sets in 
projective spaces, Cremona transformations and theta functions. Most of the 
material can be found in classical literature, and especially, in a booK of A.Coble, 
however we treat this subject from a modern point of view. Among other things it 
discusses some famous classical constructions liKe the set of 27 lines on a cubic 
surface , the set of 28 bitangents to a plane quartic curve, Del Pezzo and Kummer 
surfaces and their higher-dimensional analogs, nets of quadrics and Cayley 
dianode surfaces associated to them, Bertini and Geiser birational involutions. 
This is interrelated with such modern topics as the geometric quotients, 
standard tableaux, infinite root systems and their Weyl groups, group 
representations, automorphism groups of rational surfaces, moduli spaces of 
abelian varieties and others. 
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