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En 1968, en étudiant la classification des algèbres de Lie gra­

duées simples, Victor Kac a introduit une nouvelle classe d'algèbres 

de Lie ( qui, simultanemment apparurent aussi dans un article de 

R.Moody). Ces nouveaux objets, appelés désormais algèbres de Kac-

Moody, sont des généralisations en dimension infinie des algèbres de 

Lie semi-simples. 

Le but de cet article est d'étendre certains des résultats clas­

siques pour les algèbres semi-simples aux algèbres de Kac-Moody, et 

en particulier les deux théorèmes suivants: 

1) les formules de caractères de Demazure et de Weyl, 

2) les théorèmes de Borel, Weil, Bott et Kempf. 

Le point central des démonstrations consiste à interpréter les 

formules de caractères comme des caractéristiques d1Euler-Poincaré 

et de les combiner à des théorèmes d'annulation de la cohomologie 

des fibres en droites semi-amples sur les variétés de Schubert. Ces 

résultats sont obtenus par passage en caractéristique finie au moyen 

de scindage de morphismes de Frobenius ( une technique due à Metha, 

Ramanan et Ramanathan). 
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INTRODUCTION 

En 1968, étudiant la classification des algèbres de Lie graduée simples 

V.Kac a introduit une nouvelle classe d'algèbre de Lie [32]. Pour toute 

matrice de Cartan, Chevalley, Harish-Chandra et Serre avaient associé une 

algèbre de Lie semi-simple déployée, définie par générateurs et relations. 

Pour une classe de matrices plus large - pour les matrices dites de Cartan 

généralisée - la même présentation fournit les algèbres de Lie précédentes. 

Cette dernière construction est apparue simultanemment dans un article de R. 

Moody, et c'est pourquoi ces nouveaux objets sont désormais appelés algèbres 

de Kac-Moody. 

Le but de cette article est d'étendre certains des résultats classiques 

pour les algèbres de Lie semi-simples aux algèbres de Kac-Moody, et en 

particulier les 2 théorèmes suivants : 

1) les formules de caractères de Weyl et du dénominateur 

2) les théorèmes de Borel-Weyl-Bott et de Kempf. 

L'énoncé des formules de caractères est élémentaire, et fait l'objet du 

paragraphe de cette introduction. Les démonstrations reposent sur des énoncés 

cohomologiques relatifs aux variétés de Schubert. L'histoire de la 

démonstration de ces énoncés dans le cas des algèbres de Lie semi-simple 

nécessite les paragraphes 2, 3, et 4. Les paragraphes suivants expliquent les 

points essentiels de la démonstration de tels énoncés dans le cas d'algèbres 

de Kac-Moody, et leurs diverses applications. 

%1 Formules de Weyl et du dénominateur. 

Soient k un corps de caractéristique 0 , n un entier > 0, I 

l'ensemble { 1, .. ., n} et A= (a..). . , une matrice de Cartan généralisée 
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O. MATHIEU 

[33]. Soit £ l'algèbre de Kac-Moody associée à A. La définition choisie ici 

(cf. ch. I) correspond au choix maximal.De manière générale, la terminologie 

employée, usuelle en théorie des algèbre de Kac-Moody, est rappelée 

principalement au chapitre I. Soient A* l'ensemble des racines positives de 

g , relativement à la sous-algèbre de Cartan h , et W le groupe de Weyl. 

Soient A un poids dominant entier, et L(A) le U(jg)-module quotient 

integrable maximal du module de Verma V(A) . Pour tout U(h)-module M , et 

tout A € h* , on note M̂  l'espace associé au poids A , et on appelle 

caractère de M l'expression formelle suivante ( notée ch(M)) : 
2 dim ( MjeA . 

A€h* A 
Soit £ : W » {±1} (respectivement p ) le caractère de W (le 

poids) défini au chapitre I. Je vais montrer les formules suivantes : 
_ . x w(A-ho) 2 «(w) e v M/ 

(1) ch L(A) = (1) (Formule de Weyl) 
2 «(w) e* 

m 

(2) ïï(l - e"01) a = 2 €(w) e*10"10 (2) (Formule du dénominateur). 

Ces deux expressions ont un sens formel précisé au chapitre IX. La somme 

(le produit) est indexée par les éléments w € W , (respectivement a € d+), 
et l'entier m est défini par la formule : a 

3) m̂  = dim £^ (a € .d+) 

On rappelle que lorsque ¿ est de dimension finie, on a m̂  = 1 pour 

tout a € A+ , ce qui explique que la formule (2) est une généralisation de la 

formule du dénominateur. Ces formules ont été démontrées par V. Kac lorsque 

la matrice de Cartan est symétrisable (cf. [33]). La démonstration de Kac 

utilise un opérateur de Casimir, dont l'existence est équivalente à la 

symétrisabilité. La démonstration que je donne utilise des techniques de 

géométrie algébrique dont je vais parler dans les points suivants de cette 

introduction. 
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INTRODUCTION 

%2 Sur l'article de Demazure [71 : 
Soit b la sous-algèbre de lie de g : b - h © ® + g^ . On suppose que 

g est de dimension finie, de sorte que g est semi-simple. Soit G le 

groupe connexe simplement connexe associé. Soit A un poids dominant entier, 

e un vecteur non nul de ^(A)^ . Soit le sous-groupe parabolique 

stabilisateur de la droite ke . La représentation L(A) détermine une 

immersion fermée $ : G/BA • !PL(A) , donnée par la formule 

*(g BA) = g. (ke) . Pour chaque w € W , soit EW(A) = U(b).L(A)̂ A . Soit P 

le réseau des poids entiers de g . M. Demazure a défini des endomorphismes 

dW : Z[P] —-* Z[P] , et a prouvé les faits suivants ([7]). 

(A) Les variétés de Schubert (i. e. la fermeture d'une B-orbite dans G/Ba) 

sont normales, et # se restreint en une immersion projectivement normale de 

chaque variété de Schubert. 

(B) On a la formule ch(EW(A)) = <dWeA , pour tout w € W . 

(C) Les variétés de Schubert sont à singularités rationnelles. 

Enfin M. Demazure avait donné une nouvelle démonstration de la formule de 

Weyl [8]. 

G. Heckman a remarqué que l'on pouvait généraliser aux algèbres de 

Kac-Moody les sous-espaces ^(A) , les opérateurs de Demazure AW , ainsi que 

la formule ch(Ew(A)) = dWeA . Puis par un argument combinatoire (que j 'a i 

repris dans le SIX), il en déduit la formule de Weyl, dans un article en 

1983. V. Kac s'est alors aperçu que les démonstrations d'Heckman et de 

Demazure comportaient un trou. 

Néanmoins beaucoup des constructions d'Heckman et de Demazure restent 

valables. Après la remarque de Kac, l'article de Demazure contient encore le 

fait que l'assertion (A) implique les assertions (B) et (C) (plus de détails 

seront donnés dans la seconde partie de cet article), et de l'article 
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O. MATHIEU 

d'Heckman, on peut encore déduire les formules de Weyl et du dénominateur à 

partir des formules 

ch(Ew(A)) = <4WeA 

(que j'appellerai dans la suite formule de Demazure). Ce sont ces formules de 

Demazure que je démontre ici, pour toute algèbre de Kac-Moody. 

%3 La théorie des monômes standards et les travaux de Andersen et de Haboush : 

Je continue de supposer que g est de dimension finie. En 1978 et 1979 

V. Lakshmibai, C. Musili et C.S. Seshadri ont étudié intensivement les anneaux 

de fonctions homogènes des variétés de Schubert, et ont précisé les résultats 

de Demazure lorsque g est de type classique (i.e. somme d'algèbres de Lie 

simples des séries A, B, C ou D). Ces travaux s'appuient sur l'article de 

Demazure, mais selon C.V. Seshadri ([56]) peuvent être rendus indépendants, ce 

qui fournirait dans le cas des algèbres de Lie classique une démonstration des 

résultats de Demazure. 

Un cas particulier des résultats cherchés est le cas de la grosse variété 

de Schubert. Dans ce cas le résultat énoncé par Demazure est le théorème de 

Borel-Weil-Bott. Or en 1980, V.J. Haboush et H. Andersen ont trouvé 

indépendamment une nouvelle démonstration des théorèmes de Borel-Weil-Bott et 

de Kempf par l'utilisation du théorème de semi-continuité (passage des 

caractéristiques finies à la caractéristique 0), et par une utilisation 

miraculeuse des modules de Steinberg ([1], [9]). 

S4 Les travaux de Joseph et Seshadri, et la théorie de Metha et Ramanan et  

Ramanathan : 

Je suppose toujours g de dimension finie. Récemment et indépendamment, 

A. Joseph et CV. Seshadri ont comblé une partie du trou de la démonstration 

de Demazure en prouvant que les variétés de Schubert sont normales (et donc la 

formule (B) pour presque tout A ([31] et [57]). Plus précisément, on verra 
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INTRODUCTION 

dans la partie II de cet article que le résultat de Joseph et les résultats de 

l'article de Demazure impliquent la normalité des variétés de Schubert, et que 

les démonstrations de Joseph et de Seshadri sont similaires. 

Enfin Metha, Ramanan et Ramanathan (et indépendamment de Seshadri et de 

Joseph) ont réussi à compléter entièrement les démonstrations manquantes dans 

l'article de Demazure; Leur démonstration utilise l'opération de Cartier ainsi 

qu'une nouvelle notion de géométrie des variétés sur des corps de 

caractéristique / 0 : la notion de scindage (cf. [47], [50], [51] et SVII) 

(J.B. Bost m'a signalé que J. Illusie et P. Deligne ont récemment utilisé des 

techniques apparemment voisines pour montrer la dégénérescence de la suite 

spectrale de Hodge). Un autre intérêt des démonstrations de Metha, Ramanan et 

Ramanathan est de donner une interprétation satisfaisante à l'utilisation 

signalée précédemment des modules de Steinberg dans les démonstrations de 

Anderssen et Haboush du théorème de Kempf (cf. aussi H. Anderssen [2] qui a 

donné des démonstrations similaires de ces résultats). 

S5 Le cas des algèbres de Kac-Moody : 

Je considère à nouveau le cas d'une algèbre de Kac-Moody générale g. Soit 

J une partie de I . Je définis : 
P* = { A € P / A (h.) = o pour j € J et A (h.) > o pour j i J } J J J 
W = { w e W / w s . < w pour tout j € J } . 

(on se reportera au chapitre I pour la définition de l'ensemble des poids 

entiers P, au chapitre II pour celle de l'ordre de Bruhat <). 

Utilisant des réseaux de Chevalley, j'associe à la sous-algèbre de Borel b de 

g un groupe affine B (plus précisément un foncteur en groupe affine défini sur 

Spec Z ). Pour un couple w € Wj, A € P* je définis 

Ew (A) = % (b) L(A) 

S A = B. L(A) dans (P E (A). w,A wA w 
Ces variétés Sw avaient été considérées par D.Peterson et V.Kac [48] 
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J.Tits [58] [60] et P.Slodowy [57]. En revanche je définis ici les variétés de 
Schubert à l'aide d'une construction supplémentaire. Au chapitre v je prouve 

que la normalisée de S M ne dépend de A qu'au travers de l'ensemble J . WA 
Je note donc cette variété S T, et j'appelle variétés de Schubert ces 

w, I 
variétés SwT . Je prouve aussi que la normalisation u:S T • Sw,A est un 

homéomor phi sine, fait crucial en vertu du résultat général suivant (et à ma 

connaissance nouveau). 

Lemme clef (lemme 55) Soient X, Y deux variétés. i: Y > X une 

inclusion fermée, u: X » X et /u: Y • Y les morphismes de 

normalisation. On suppose que \A et u sont des homeomorphismes absolus. 

i) Il existe un unique morphisme j : Y » X rendant commutât if le 

diagramme: 

Y —̂—• x 

1 . iu 
Y —L_. X 

2) On suppose X projectif, et soient X un faisceau invertible ample 

de X, X - v*£. Pour tout entier n , soit 

Rn: M X, x*° ) . H°( Y, j*ï®n) 

le morphisme naturel. On suppose R. non surjectif. Alors il existe un entier 

n > 0, a € H (Y, X ) avec oo .-w ""On Im R̂  et a € Im R̂^ pour tout entier 

1 > z. 

Soient v, w € avec v < w .Le point 1 du lemme clef implique 

l'existence d'un morphisme naturel j : S . • S . . Suivant une idée de 

Demazure, on peut associer à toute décomposition réduite w de w une 

variété de Demazure D(w) désingularisation de S . définie sur Z . Je 

généralise aussi facilement le résultat de Metha, Ramanan et Ramanathan que 
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INTRODUCTION 

les variétés de Demazure sont compatiblement scindées en caractéristique non 

nulle. J'obtiens ainsi le résultat technique central suivant, combinaison du 

lemme clef et des techniques de scindages en caractéristique non nulle: 

Lemme technique central: Soient X un faisceau inversible engendré par ses 

sections globales sur l'une des variétés Sw.A . et IA: S T • Sw.A x le 
morphisme de normalisation et je pose X = n*X. Alors le morphisme 

H°(S j. 2) • U (S ï) 

est surjectif. 

Du lemme technique je déduis (chapitre IX ) les formules de Demazure, 

i.e. le caractère des modules E (A) , et de là les formules de Wevl et du 

dénominateur. 

Dans le cas d'algèbres de Lie semi-simples, les démonstrations de Metha, 

Ramanan et Ramanathan reposent sur les deux points techniques suivants: 

I ) une récurrence décroissante sur w <= W 

2) l'existence de fibres localement triviaux dont les fibres sont en 

espaces de drapeaux G/g • G/p où P est un sous-groupe parabolique de G 

II n'y a pas d'équivalent à cela pour les algèbres de Kac-Moody, car 

d'une part le groupe de Weyl ne possède pas en général de plus grand élément, 

d'autre part la matrice de Cartan A peut contenir des sous-matrices propres 

qui ne sont pas de type fini. 

La démonstration présentée ici se différencie principalement par les 

points suivants: 

1) j'utilise les variétés Sw.A A (au lieu des variétés Sw.A ) en 

combinaison avec le lemme clef. 

2) les démonstrations sont effectuées par une récurrence croissante sur 

w € W. 

Par ailleurs, le lemine clef est faux en caractéristique non nulle-
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Cependant je définis également des variétés de Schubert en toute 

caractéristique, et prouve le lemme clef dans le cas spécial de variétés de 

Schubert.(chapitre XIIX). Cela permet d'étendre en toutes caractéristiques les 

résultats obtenus en caractéristique 0 . J'ai laissé toutefois ce chapitre en 

fin d'article pour essayer d'expliquer le plus clairement possible où 

l'argument de caractéristique finie intervenait dans les démonstrations de 

résultats. 

3 6 Propriétés élémentaires des variétés de Schubert et applications. 

Du lemme technique central je déduis des résultats sur les variétés de 

Schubert, et des applications aux algèbres de Kac-Moody. Je discuterai dans ce 

paragraphe des résultats obtenus "élémentairement", i.e. sans technique 

cohomologlque. Les sections suivantes seront au contraire consacrées aux 

propriétés cohomologiques des variétés de Schubert, et à leur conséquences. 

Il y a 3 applications du lemme technique central: 

1) Combiné avec la formule de la limite inductive (lemme 43) je prouve 

successivement les formules de Demazure, la formule de Weyl et la formule du 

dénominateur (théorème I). 

2) Par construction les variétés de Schubert sont normales. La 

généralisation du théorème de normalité est la suivante : 

Théorème 2 (avec les notations précédentes). Pour tout entier n suffisament 

grand, le morphisme S T • iPE (n/\) est une immersion fermée 

Project iventent normale. En outre lorsque g est symmétrisable, on peut 

supposer simplement que l'on a n > i. 

Ceci prouve en particulier que pour n grand, Ŝ  est. lisse en 

codimension i. Ce corollaire avait été montré par Slodowy [58]. 

3) Je calcule aussi le groupe des fibres algébriques en droite sur 
S _ , fait a ma connaissance nouveau même dans le cas d'algèbre de Lie w,J 
semi-simples, (proposition 6). J'ai depuis trouvé une démonstration moins 

élémentaire mais plus courte [45J. 
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$7 Propriétés cohomologiques des variétés de Schubert et applications. 

Soient w,J comme précédemment, w une décomposition réduite de w et 

7T : D (w) • S T le morphisme de Demazure. Je prouve que la variété S T 
est triviale (au sens de Kempf) i.e. que l'on a: 

* \ °D(W) = ° P°Ur q > ° 
et j'en déduis, suivant une démonstration de Demazure que les variétés Ŝ  j 

sont à singularités rationnelles. Ainsi les variétés de Schubert sont 

triviales et Cohen-Macaulay, et chacune de ces deux propriétés ont des 

conséquences différentes, que je vais expliquer dans la suite. 

Pour simplifier, je vais supposer que l'on a J = 0 , et poser Ŝ  = Ŝ  ^ . 

7a) Applications de la trivialité. 

La trivialité des variétés de Schubert est ici très utile, car elle 

permet d'associer fonctoriellement à tout B-module M un faisceau quasi 

cohérent de O- modules localement libre, noté X (M). 

Cette construction est inutile en dimension finie (i.e. lorsque l'algèbre 

de Lie g est de dimension finie) car on dispose d'une variété BwB telle 

que l'on ai sw ~ BwB / B , ce qui permet la construction des faisceaux 

X (M). Dans le cas d'algëbres de Kac-Moody générales, la constructions des 

faisceaux ^W(M) implique au contraire la construction d'un schéma, que je 

note B(w). Lorsque g est de dimension finie, on a B(w) = BwB [41] . Dans 

le cas général B(w) est un BxB-schéma, et l'on a un isomorphisme canonique 

de schéma B(w)/B = Ŝ . On vérifie en outre que B(w) est affine, ce qui 

donne de nouveaux théorèmes d'annulation de cohomologie, par un théorème de 

Serre. On notera que lorsque g est de dimension infinie, on est conduit à 

utiliser la version non noethérienne du théorème de Serre, car B(w) n'est 

pas un schéma noetherien (cette version se trouve dans les E.G.A. de 

A.Grothendieck). Le chapitre XI explique aussi pourquoi j 'a i cherché au cours 

du chapitre IV a éviter toute hypothèse noethérienne, ce qui avait conduit à 

vérifier des énoncés particulièrement fastidieux. Le faisceau X(M) 
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s'identifie alors au faisceau des sections du fibre vectoriel 

B(w) x • S • 

Aux chapitres XIV et XVI j'obtiens quelques précisions sur les schémas 
B(w) et S . Je montre en effet que l'action à droite de B sur B(w) est w 
localement libre, ce qui indique que ce schéma B(w) est la bonne 

généralisation des schémas BwB lorsque g est de dimension finie. Soient K 

le corps de base, et G le groupe (discret) associé à £ (à quelques détails 

près, ce groupe est le groupe minimal au sens de Tits [59], [60], ou le groupe 

construit par V.Kac et D.Peterson [49]. Je pose K[G] = lim T (B(w), °̂ (Vf))} 

et soient kp[G] (respectivement kp[G]) l'anneau des fonctions faiblement 

régulières (respectivement fortement régulières) au sens [34] de D.Peterson et 

V.Kac. On a des inclusions naturelles (cf. ch.XVI). 

k [G] c k[G] c kf[G] 

et je prouve, lorsque £ est de dimension infinie, que ces deux inclusions 

sont strictes. Cela indique que l'on ne peut pas obtenir le schéma B(w) à 

partir des constructions de D.Peterson et de V.Kac (on a un problème analogue 

pour les faisceaux it^(M)). D'une certaine manière cela explique pourquoi la 

construction des variétés de Schubert Sw,J T et des morphismes 

Suj • j a été un point délicat de la première partie. 

En fait le point technique pour l'étude des objets associés à l'algèbre 

de Lie £ repose essentiellement sur l'étude des foncteurs et des 

5-foncteurs définis sur la catégorie <£(B) des B-modules, étude faite au 

chapitre XIII. Par exemple un ô-foncteur cohomologique qui commute aux 

limites inductives est dans un certain sens représentable par un module. Plus 

intéressants sont donc les Ô-foncteurs qui commutent aux limites inductives 

et qui ne sont pas nécessairement cohomologiques. On retrouve alors certains 

d'entre eux à l'aide d'une suite spectrale. Cela est l'argument principe) pour 

étudier par exemple le morphisme B(w) • S au chapitre XIV, par défaut 

d'un préfaisceau non abélien de B-torseurs sur S . 
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La principale application consiste en de nouvelles constructions pour les 

foncteurs de Joseph. J'obtiens, pour tout R-module M les formules 

suivantes, et toute écriture réduite w de w : 

D* M ~ H*CS , 5 (M)) 
W W W ~ H*(D(w), *~(M)) w 

- H*(B, K[B(w)J 9 M) 

Si w - uv . avec 1 (w) = l(u)f ! (v) ,• on trouve ainsi une suite 

spectrale fonctorielle E** , qui converge vers le fondeur D* et avec 
* " w EP-q = D°- DP 

7b) Application de la propriété de Cohen-Macaulav. 

La propriété de Cohen-Macaulay fournit une caractérisât ion des variétés 

de Schubert-Gorenstein. Comme les variétés de Demazure sont lisses, on dispose 

d'une dualité de Serre. Un problème est donc de déterminer si cela induit une 

dualité pour les fondeurs de .Joseph, exprimable uniquement on termes 

d'algèbre de Lie. Dans le cas général, cette dualité ne peut s'obtenir qu'au 

moyen d'une suite spectrale (chapitre XVII); en outre la détermination du 

groupe de Picard des variétés de Schubert au chapitre XIT prouve qu'on 

trouvera une dualité parfaite pour si et seulement si la variété de 

Schubert S est de Gorenstein. Je montre alors que la plupart des variétés 

de Schubert associées aux algèbres de Lie affines An(1) et Dn(1) sont 

Gorenstein. Par exemple, pour l'algèbre affine AP^ elles le sont toutes. 

Je montre également qu'une variété de Schubert associée à e* de 

dimension > 3 n'est pas lisse (tout cela donnant un grand nombre de réponses 

négatives à une question de A.Arabia et de M.Vergnes à savoir si l'on peut 

toujours plonger une variété de Schubert dans une variété de Schubert plus 

grosse et lisse. 
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à8 La généralisation du théorème de Borel-Weil-Bott. 

Je définis au chapitre XV un espace topologique annelé que je note G/B 

et appelle espace de drapeaux (ici G/B est une pure notation, ei ne fait 

aucune référence au groupe de Bore! B ou au groupe de Kac-Moody G). Cet espace 

est simplement la limite inductive des espaces topologiques annelés S 

Lorsque g est de dimension finie, G/B est l'usuelle variété algébrique 

des drapeaux associée au groupe algébrique G/B , mais lorsque g est de 

dimension infinie G/B n'est même pas un schéma. On peut définir pour tout 

B-module un faisceau de CL, /D-module #(M) . Au chapitre XV .ie donne une 

généralisation du théorème de Borel-Weil-Bott sous la forme suivante: 

i) Je prouve que les faisceaux z(À) sont localement libres de rang un, 

et que tout faisceau inversible de 0_ /Ti -module est isomorphe à l'un des 
Z (A). 

2) Je calcule les groupes de cohomologie H*(G/R,2(À) ) 

Puis je considère d'autres topologies sur G/B , ce qui permet d'autres 

généralisations de ce théorème (cf. [41]). 

Un théorème de B.Konstant calcule les groupes H*(n+,L(A)> , lorsque g 

est de dimension finie, et cette formule a été généralisée par H.Garland et 

J.Lepowsky [16] au cas où g est une algèbre de Kac-Moody symétrisable. Ces 

formules sont en fait équivalentes au calcul des groupes H*(B, L(A) ® M) 

pour tout B-module M de dimension un. Enfin on relie le théorème de 

Borel-Weil-Bott et la formule cohomologique de Kostant à l'aide d'une suite 

spectrale. Cette suite spectrale dégénère lorsque g est symmétrisable. 

à9) Je tiens à signaler que cet article doit beaucoup à ceux de 

M.Demazure, V.B.Mehta, S.Ramanan, A.Ramanathan déjà cités, et aux cours de 

V.G.Kac (à Paris, en 1983) et J.Tits (au collège de France, en 1982) sur les 

groupes de Kac-Moody. 

14 



INTRODUCTION 

J'utilise en plusieurs points des énoncés des E.G.A, et en particulier la 

version non noethérienne de théorème de Serre de nullité cohomologique des 

espaces affines. Ce Livre est la fusion des deux parties d'un preprint de 

l'université de Paris 7 [431. Les changements notables sont les suivants: la 

refonte de l'introduction, une clarification du chapitre XVIII, une complet ion 

de la preuve du lemme 14 (le referee a remarqué que j'avais oublié de vérifier 

la canonicité des isomornhismes construits, et a suggéré une preuve), la 

suppression d'une partie du chapitre XV (lequel contenait une preuve fausse, 

comme me l'ont indiqué F.Ducloux et le referee). 

Ces résultats ont été annoncés dans des conférences à Paris et Helsinki 

(mai-juin Í986) [42] dans une note [40] et ont été exposé dans un cours à Yale 

(automne !986), S.Kumar a donné une autre démonstration d'une partie des 

résultais de cet article, en caractéristique 0 ([39]). 

Je tiens à remercier A.Arabia, M.Andler, Y.Benoist, J.L.Brylinski, 

T.B.Bost, A.Bruguières, M.Demazure, A.Joseph, G.Rousseau, J.J.Sansuc, 

P.Slodowy, J.Tits et M.Ville pour diverses conversations sur ces sujets. 

Michel Duflo m'a fait bénéficier de nombreuses et bienveillantes critiques qui 

m'ont considérablement aidé. Qu'il en soit remercié. 

Cet article a été tapé avec un grand soin par M1"08 Chaunac, Delongeas, Ledray, 

Or i eux. 

Remarque: Dans cet article, variété signifiera schéma intègre de type fini sur 

un corps. 
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I. Algèbres de Kac-Moody et groupes associés. 

Dans tout cet article, je fixe N un entier > 0 , je pose 

I = {1,...,N} , et je fixe A = (a..)• . _ une matrice de Cartan généralisée 
1J 1,J€1 

(i. e. a.. = 2 , a. . est un entier négatif si i f j , et a. . f 0 si et H 1J 1J 
seulement si a., f 0 , pour tout i,j € I) . Soit r r le corang de A , Si V 

est un espace vectoriel, on note V son dual. Soit (h,7r,w) une réalisation 

de A , c'est-à-dire un triplet (h,ir,îr) où h est un espace vectoriel sur 

Q de dimension N r , n = {ou,i € 1} est une partie libre de h* , et où 

ÎT = {h^,i e 1} est une partie libre de h , tels que a (̂h )̂ = a^ pour tout 

i,j € I [33]. On pose % = Z 9.. .8 2 , et Q = Z ou S.. .© Z . Il 

existe des réalisations, et elles sont isomorphes (cf. [33]). 

J'appelle réalisation entière de A un réseau ¥ de h , tel que 

1) On ait ¥ 3 % , et est sans torsion. 

2) On ait Q ç Hon̂ Ĉ Z) . 

Il est également clair qu'il existe des réalisations entières. Dans la 

suite, on fixe des réalisations (h,w,7i) et ¥ P de A . On pose 

P = Hom̂ Ĉ Z) , de sorte que P est naturellement un réseau de h* . Ce 

réseau P est dit réseau des poids entiers, et Q est dit réseau des racines 

(bien que, lorsque l'on a det A = 0 , Q ne soit pas un réseau, et que P ne 

soit pas unique). 

Soit jg la Q-algèbre de Lie engendrée par l'espace vectoriel h , par 

des générateurs e ,̂ (i € I) , et soumise aux relations 

(I) [h,h] = 0 

(II) [h,e.] = ai(h)ei 

(III) [h,f.] = - a.(h)f. 

(IV) [eiffj] = 0 

(V) [e.,f.] = h. 

(VI) adDiJ(ei)(eJ) = 0 
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(VII) adnij(f.)(f.) = 0 

pour tout h € h , i,j € I , i r1 j , et où n. . = - oc.(h. ) + 1 . 

Soit Q+ = W ©...© Wô  , et soit P* = {A € P, A(hi) > 0 pour tout 

i € 1} . Dans la suite, on considère h comme une algèbre de Lie abélienne. 

Pour toute algèbre de lie k , je note U(k) son algèbre enveloppante, 

et U+(k) son idéal d'augmentation k.U(k) . Pour tout U(h)-module M et 

tout A € h *, je pose = {m € M|h.m = A(h)m , Vh € h} . L'application 

h • jg est un morphisme d'algèbres de Lie injectif, et jg est donc 

naturellement un U(h)-module. Soit A = {A € h* - {0}\ĝ  t {0}} . On a 

A ç Q . Soit A+ = A n Q+ , A = A n(- Q+) . 

On pose n+ - m + £^ , n = © _ £̂  . D'après [33], on a 
aeA OGA 

g = n+ © h 8 n , et n+ , h et n sont trois sous-algèbres de lie de g . 

On définit également les sous-algèbres de Lie b = n+ © h et pour chaque 

i e l , £ . = b*Qf. . £i - i 
L'algèbre de Lie g a été introduite en 1968 par Kac et Moody. Ces 

algèbres de Lie g sont des analogues, de dimension éventuellement infinie, 

des algèbres de Lie semi-simples déployées sur Q . La sous-algèbre b est 

analogue à une sous-algèbre de Borel, et les sous-algèbres P1 à des 

sous-algèbres paraboliques non boréliennes minimales. L'ensemble A est dit 

ensemble des racines, et d+ ensemble des racines positives. Si M est un 

U(h)-module, un élément A € h* tel que M. soit ^ {0} est dit poids du 

module M * Les racines sont les poids non nuls du module g , 

Dans cet article, je vais considérer deux types de groupes. Les groupes 

usuels (i. e. la donnée d'un ensemble muni d'une loi satisfaisant les axiomes 

bien connus) seront nommés ici groupes discrets, afin de les distinguer des 

groupes affines dont je vais rappeler la définition dans le paragraphe 

suivant. 

Soit R un anneau commutâtif. Soit F une R algèbre 
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commutât ive. Soient 7 : F • F ©„ F , w : F • F , e : F » R trois 

morphismes de R-algèbre. Je dis que F est une algèbre de groupe affine si 

(F,7,w,.s) est une algèbre de Hopf coassociative, de comultiplication 7 , 

avec une counité s et une inversion w [28]. 

Je dis que le couple (G, R[G]) est un R-groupe affine si R[G] est une 

R-algèbre de groupe affine, dont le spectre est l'espace topologique G . Plus 

brièvement, je dirai que G est un R-groupe affine. Lorsque R = 2 , je 

dirai que G est un groupe affine. 

Soit G un groupe affine, et soit Z[G] l'algèbre de groupe affine 

associée. A chaque anneau commutâtif R , je peux associer le R-groupe 

G(R) , qui est le spectre de l'anneau R[G] = R «2 Z[G] . Un R-point de G 

est un morphisme de R-algèbre R[G] • R . L'ensemble des R-points de G 

est un groupe discret. Lorsque R est intègre, un R-point s'identifie à un 

élément de G(R) . 

Soit \?{£) le sous-anneau de U(jj) engendré par les éléments f (m)i 

e. ̂  et C*1) ,où i € I , m € il et h € ¥ (cf. [6] pour les notations). 1 m 
Pour tout A € h* , je pose l?(£)^ = T t̂g) N U(iJ)̂  » où U(g) est considéré 

comme U(h)-module pour l'action adjointe. A quelques détails près, cet anneau 

a été construit par J. Tits dans son cours en 1981. 

L'anneau UZ(g) est dit réseau de Chevalley, en raison du lemme suivant, 

du (sous cette forme de généralité) à J. Tits [59, 62] (cf. aussi [6]). 

Lemme 1 : l?(£) est un réseau de U(jçf) . On a l̂ Gg) = © ^(£)x • 

Soit • : U(g) • U(g) O U(g) le morphisme de comutiplication. Par le 

lemme 1, l̂ Cg) ®z û Cg) est naturellement un réseau de U(£) ® U(jj) , et par 

construction, on a • (UZ(.g)) S ®2 ̂ (£) • (il suffit de vérifier que 

l'on a 0 x c \?(£) ® l̂ Cg) pour chacun des générateurs e(m ,̂ f(m̂  et (̂ ) 
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de Ï/GS) ; cf. [3] [25] [27]). . 

Soit m une sous-algèbre de Lie de g . Je pose ûCm) = l?(£) n U(m) . 

Soit #j la condition. 

H1 : On a [h,m] ç m . 

Si m satisfait la condition h1, je définis un Q-groupe affine M(Q) 

asssocié à m de la façon suivante. Soit h' = h n m . On note ad l'action 

adjointe de h sur U(m) , g (respectivement d) l'action à gauche 

(respectivement à droite) de m sur U(m) . Soit Q6[M] (respectivement 

Q̂ (M)) l'ensemble des combinaisons linéaires d'éléments T e U(m)* 

satisfaisant aux conditions suivantes 

(a) Il existe A e h* tel que ad(h)(TP) = A(h)TP pour tout h e h (et en 

particulier on a À € Q lorsque Y f 0). 

(b) Y est g(U(m)) fini (respectivement d(U(m))-fini). 

(c) Il existe y. € P tel que g(h)OP) = i*(h)f (respectivement 

d(h)(*>) = Ai(h)TP pour tout h e h' . 

Lemme 2 : On a QG[M] = Qd[M] . 

Démonstration : Montrons par exemple que l'on a Q [M] ç Q [M] . Soient 

(r\A,fi) € U(m)* x h* x P un triplet satisfaisant aux conditions (a), (b), 

(c). Soit J = {u e U(m) , g(u)lP = 0} . Par la condition (b), J est un idéal 

à gauche de U(m) de codimension finie. Donc J contient un idéal bilatère 

J' de codimension finie. Ceci implique que d(w(J'))TP = 0 (où u> désigne 

l'antiautomorphisme principal de U(m)) et donc T est d(U(m))-fini. On peut 

supposer que l'on a V f 0 .On a d(h)lP = g(h)Tr"-ad(h)r\ et A e Q. Donc pour 

h € h' on a d(h)f = (/u-A)(h)P et comme /i-A e P la condition (C) est 

satisfaite. 

Ceci montre le lemme 2. 

Je peux donc poser Q[M] = Q̂ [M] = Q̂ [M] . Je pose 
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m = m n n , m = m n n ,de sorte que l'on a m = m © h' e m . Soit X(m) 

l'ensemble des idéaux à gauche J de U(m) qui satisfont aux trois 

conditions suivantes 

(1) J est de codimension finie dans U(m) , 

(2) J est stable par l'action adjointe de h , 

(3) Il existe une partie finie # c h'* formée de restrictions de 

formes linéaires de P , telle que ïï (h - /i(h)) appartienne à J pour tout 

h € h' . 

Lemme 3 : Soit ? € U(m)* . Les conditions suivantes sont équivalentes 

(a) appartient à q[M] , 

(b) Il existe J € X(m) un idéal bilatère tel que r*(J) = 0 . 

Ce lemme est évident. On en déduit iinmédiatement que q[M] est une 

sous-algèbre de l'algèbre commutative U(m)* . La multiplication de U(m) 

induit par dualité une application v : U(m)* • [U(m) 0 U(m)]* . On a un 

diagramme naturel 

q[M] q[M] 9 q[M] 

j j 
U(m)* 1 • [U(m) 9 U(m)]* 

On déduit du lemme 3 que l'on a 7 (q[M] ) c q[M] 9 q[M] . Soit 

w : U(m) • U(m) l'antiautomorphisme principal. Par dualité w définit une 

application linéaire w : U(m)* » U(m)* . Il est clair que l'on a 

w(q[M]) c q[M] . L'application naturelle e : Q » U(m) donne par dualité 

une application € : Q[M] • 0 . Je note fi la multiplication 

ix : q[M] 9 q[M] —. q[M] . 
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Le lemme suivant est évident. 

Lemme 4 : L'algèbre q[M] est une algèbre de groupe affine, avec 

multiplication y. , comultiplication f d'augmentation e et d'inversion w 

J'ai ainsi construit un groupe associé à m . Je note ce groupe M(Ç) . 

Dans la suite, j'adopte les conventions suivantes : Je note d'une minuscule 

gothique les sous-algèbres de Lie de g . Lorsque cette sous-algèbre satisfait 

»̂  , je note d'une majuscule latine le groupe correspondant. 

A présent je cherche à définir des formes entières de M(Q) . Je pose 

Z[M] = {*>€ D[M]|?(^(m)) c z} . 

Il est naturel de poser la définition suivante : 

Définition : Soit m une algèbre de Lie dans g , satisfait #j . Je dis que 

le groupe associé M(Q) possède une forme entière si et seulement si les 

conditions suivantes sont réalisées 

(1) €(Z[M]) c Z 

(2) »(Z[M]) c Z[M] 

(3) |i(Z[M] Z[M]) c Z[M] 

(4) 7(Z[M]) s Z[M] ®Z Z[M] 

(5) q[M] = q «2 z[M] . 

La condition 5 implique que Z[M] est un réseau de Q[M] , ce qui explique la 

terminologie. 

Dans la suite je vais étudier ces cinq conditions. Je pose 

U+,Z(m) = U+(m) n l̂ Cm) . Il est clair que l'on a ^(m) = Z 8 U+'Z(m) . La 

condition (1) est automatiquement vérifiée. La condition (2) est également 

automatiquement satisfaite. 

J'étudie la condition (3). Pour que la condition (3) soit satisfaite, il 

suffit que la condition suivante soit satisfaite 

•K9 : On a Û l̂ Cm) c lF(m) 9 l?(m) . 
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Je ne sais pas si cette condition est toujours vérifiée. On considère la 

condition suivante 

»3 : Soit J e X(m) , et J2 = J n \?(m) . Alors ^(mJ/J2 est un 

Z-module de type fini. 

Je ne sais pas si la condition «g est toujours vérifiée. On a : 

Lemme 5 : On suppose la condition #g satisfaite. Alors les conditions (4) et 

(5) sont satisfaites. 

Démonstration : Soit ? € Z[M] . Il existe un idéal bilatère J € X(m) tel 

que r*(J) = 0 . Par la condition #g , l?(m)/j* est un Z-module de type 

fini, et par construction il est sans torsion; c'est donc un Z-module libre. 

On a Hom l̂̂ Cmyj2 , Z) ç z[M] . On a 

Hornet)2(2)0(̂ (01) / JZ0UZ(m)+UZ(m)0jZ , Z) 

= Hom î/Qn) / J2 , Z) 0 Hon̂ CÛm) / J2 , Z) 

et on a donc 7(Z[M]) c z[M] 0 Z[M] , ce qui vérifie la condition (4) . 

Soit 1° e q[M] . Il existe un idéal J e X(m) tel que Y»(J) =0 . Comme 

Uz (m)/ Jz est un Z-module de type fini, il existe un entier d € Z-{0} , tel 

que ¥(\!F(m)) ç . On a donc df e Z[M] . Ceci montre la condition (5). 

Soit Y(m) l'ensemble des U(m + h)-modules de dimension finie, 

h - semi-simples à poids dans P . 

Lemme 6 : (1) La condition #g est équivalente à la condition suivante : pour 

tout E € Y (m) , et pour tout e € E , le Z-module l?"(m),e est de type 

fini. 

(2) Si m + h satisfait *3 , m satisfait #3 . 

(3) Soit q = m+ e h . Alors £ et m+ satisfont ft^ . 

(4) On suppose que l'on a œ s h . On suppose que l'on a 

IT (m) = if (m ) ® IT(a) Alors m satisfait #g . 
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Démonstration : Soit E € Y (m) . L'ensemble des éléments e € E tels que 

\î*(m).e soit un Z-module de type fini est un U(m + h)-sous-module de E . 

Le point (1) en résulte clairement. On a l̂ Qn) c \P(m + h) . Donc le point 

(1) implique le point (2). Pour montrer le point (3), il suffit donc de 

montrer que £ satisfait #g . Soit donc E € Y(,g) , et e e E . Je peux 

supposer que e est un vecteur de poids. Par le lemme 3 du ch. VIII %12 n° 5 

de [3], on a l̂ Cb) = l^(n+) ©2 li^h) . Pour chaque 0 € Q , on a 

uZ(S+)/8 = U(m+)̂  n \^(n+)^ . Comme \^(n+)^ est un Z-module de type fini, il 

vient que ^(m*)^ est un facteur direct de U(n+)̂  . Donc lj*(m+) est un 

facteur direct de n ) . On en déduit que l'on a aussi 

IT(S) = IT (m ) * if (h). 3r on a X?(h).e = Ze . On a donc 

l^foj.e = U*(a+).e . Il existe une partie finie # c Q+ telle que 

U(m+).e = e U(m+) .e . i 
<xe# a 

)n a donc IT (a), e = © u (m+) .e , donc IT (5). e 

est un Z-module de type fini. 

Reste à montrer le point (4) du lemme. Soit E € Y(m) . Par le point (3) 

du lemme 6 , pour tout e € E les Z-modules lî*(m )e et ^(qje sont 

des Z-modules de type fini. Si l'on a ti2(m) = 112(m ) 0 l̂ Gg) ceci implique 

le point 4 du lemme. 

Remarque : Par la proposition 3 du ch. VIII %12 n° 6 de [6] on a 

^(g) = ̂ (n*) ® ^(h) 0 l̂ Cn ) et tf*(n+) est engendrée par les éléments 

ei (n) i € I , n € M , l̂ Ch) par les éléments (jj) h € ¥ , n € w , et Uz(n) 

par les éléments f̂ n̂  j € I , n € W (cf. aussi [59]). 

Soit i € I . On introduit les sous-algèbres de Lie suivantes dans g : 

e. = Çe. , f. = qf. , 
-i i - i i a. = h © e. © f. , u. = © , b. = h © e. , bî = h © f. , -i - -i -i -i .+ ' -i - -i ' -i - -i ' 

a/ou 
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= h © f ̂  © û  . Pour construire les groupes associés aux différentes 

sous-algèbres de Lie vues jusqu'à présent, je vais construire quelques 

modules. 

Soit A € P . je note Y (A) le U(b)-sous-module de Coind£(q̂ ) formé 

des vecteurs U(h)-semi-simples. Ici q. désigne le U(h)-module de dimension 
un de poids A . Comme U(b)-module, on a V(A) = V(0) 0 q. . Donc les 

U(b)-modules V(A) sont isomorphes entre eux comme U(n+)-module. Soit V le 

U(n+)-module (̂A) pour un certain A . 

Lorsque A(ĥ ) > 0 , soit t^(A) le U(â )-module simple de plus haut 

poids A . Le U(â )-module €̂ (A) est de dimension A(ĥ ) + 1 , car â  est 

une algèbre reductive de partie simple isomorphe à st(2) . Soit ^(^) I e 

sous-module de Coind t.(A) des vecteurs U(h)-semi-simpies. Je pose 
—i 

Y. = V.(0) considé comme U(u.)-module. 1 1 ~i 
Dans le tableau suivant, je donne la liste des sous-algèbres remarquables 

étudiées. Elles satisfont toutes »̂  . Je donne dans le tableau le nom du 

q-groupe affine associé. 

TABLEAU DES SOUS-ALGEBRES DE LIE REMARQUABLES 

ALGÈBRE DE LIE 

b 

£ i 

n 

e. - i 

f. -1 

GROUPE ALGÈBRE DE LIE GROUPE 

в») 

Pi») 

N(4) 

Е.(Ч) 

F,(4) 

u. —1 

b. —î 

b! -î 

c. —î 

a. 

U.(U) 

B.(q) 

B!(U) 

A.(q) 
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h H(q) 

Dans le lemme suivant, j'indique à quoi sont isomorphes les différentes 

algèbres des groupes considérés ici. 

Lemme 7 : 1) On a q[H] = q[P] où q[P] désigne l'algèbre du groupe discret 
P . Plus précisément comme U(h) x U(h)-module, on a q[H] = 9 q.e q* . 

À€P A A 

2) Soit i e I . Soit ?i = {A e P , Aih^) > 0} . On a comme 

UXâ ) x U(ai)-module 

Q[A.] = AeP. 1e (A) • t. (A)* . 

3) On a q[N] = Y comme U(n)-module à gauche. 

4) On a q[B] = 0 V(A ) comme U(b)-module à gauche. 

5) Soit m , m' deux algèbres de Lie du tableau. Si m ç m' , il existe 

un morphisme naturel M(q) » M' (q) , qui est une immersion fermée (i. e. 

q[M'] »D[N] est surjective). 

6) On a, pour chaque i € I des isomorphismes naturels 

P.(q) = A.(q) x U.(q) , B(q) = B.(q) x U.(q) , c.(q) = Bî̂ (q) x u.(q) . On a 

B(q) = H(q) x u(q) . 

7) Comme U(P.)-module à droite, on a q[P.] = e [V.(A)] 
i 

A(h. )+l 

Démonstration : Ce lemme est facile. Je n'indique que brièvement les 

démonstrations. Le point 2 est une formule à la Peter-Weyl. Les assertions 

1,3,5 sont faciles. Le point 5 résulte du point 6, qui est aisé. Enfin le 

point 7 résulte des points 6 et 2. 

Lemme 8 : 1) Les algèbres de Lie du tableau satisfont aux conditions #2 et 
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*3 • 
2) On pose Y2 = Z[N] . Le Z-module V2 est un réseau de Y . Plus 

précisément, V est un U(h)-module pour l'action adjointe. On a 

V = © , Yx . On pose V? = V2 n V. . On, a V2 = © Vf , et chaque 
À€-Q+ A * A A€-Q+ * 

V2 est un réseau de l'espace vectoriel de dimension finie Y. . A A 
3) On a Z[H] = z[P] . 

4) On pose, pour chaque A € P ^(L) = V(A) n Z[B] . On a 

Z[B] = © V*(A) . 
A€P 

5) On a des isomorphismes, pour chaque i € I 
P. = A. x U. , B = B. x U. , C. = Bî x U. . On a B = H x U . i i i i i l i i 

6) Si m c m' sont deux algèbres du tableau, le morphisme naturel 

M • M' est une immersion fermée. 

7) Soit i e I . Les morphismes naturels x B • P̂  et 

E. x C. • P. sont des immersions ouvertes. 

Démonstration : Le seul point délicat est de montrer le point 6 . Plus 

précisément, de montrer que B > P̂  est une immersion fermée. En utilisant 

les isomorphismes de groupes P. = A. x U. et B = B. x U. , on se ramène à 

montrer que B̂  » Â  est une immersion fermée, ce qui se fait par un calcul 

direct. On montre par le même argument le point 7 . 

Soit m une sous-algèbre de Lie de g , et R un anneau commutatif. Je 

peux définir la R-forme de l'algèbre enveloppante de m , en posant 

Û (m) = R ®2 tf^Cm) . Si R est un corps de caractéristique 0 , je pose 

m = R ©g m . 

On suppose que m satisfait , ^ » *g • ^ peut alors définir le 

foncteur R • M(R) , où M(R) est le spectre de R[M] = R ©z Z[M] • On 

remarque que cette notation est compatible à la notation G [M] déjà définie. 

Lorsque l'anneau de base R sera convenu, on notera M le groupe M(R) • 
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L'algèbre de Lie g elle-même satisfait aux conditions h1, 

#2 t #g • Lorsque dim g < o© , la construction précédente permet d'obtenir le 

groupe de Chevalley simplement connexe. En revanche lorsque g est de 

dimension infinie, le groupe obtenu est extrêmement petit. On suppose par 

exemple que l'on a dim g - «> et que A est indécomposable . Soit r le 

corang de A . L'anneau de groupe obtenu est un anneau de polynôme de Laurent 

à r-indéterminées. Soient m c m' deux sous-algèbres de Lie de g , 

satisfaisant aux conditions , ft^ , #3 . L'exemple précédent montre qu'en 

général le morphisme naturel M • M' n'est pas en général une immersion 

fermée (même sur C) . 

Soit k un corps de caractéristique 0 , V un espace vectoriel, et W 

un sous-espace vectoriel de V* . On dit que W est dense dans V si pour 

toute partie finie indépendante {a1 ... aR} de V , et tout n-uplet de 

scalaires (ĉ  •••cn) il existe £ <= W tel que S(a )̂ = ĉ  . Soit m une 

sous-algebre de g satisfaisant tt^ » *2 ' *3 * En gênerai, *1 n'est Pas 

vrai que k[M] est dense dans m) . Néanmoins ce fait est vrai pour les 

sous-algèbres de Lie remarquables du tableau. 

Quoique le fait suivant ne sera pas utile avant le paragraphe XI , 

j'énonce un lemme qui permet de comprendre un peu quel est le spectre des 
groupes affines associés aux algèbres de Lie remarquables. Soit n ) le 

k + 
complété de U (n ) formé des expressions formelles x = 2 , x où 

Œ€Q+ a 
x € U (n ) . Soit n la fermeture de n dans n ) , i. e, l'ensemble 

+ k 
des expressions formelles 2 , x , où x € n ' . Soit exp : 

a*=Q 
A+ k Ak + 
n ' • tJ (n ) l'application exponentielle, donnée par l'expression formelle 
exp(x) = 2 — . Je pose ô+'̂  = exp n+'̂  . Chaque élément n 6 ô+'̂  

n̂N nî 
définit une forme linéaire : k[N+] • k , par la dualité 

+ k + 

k[N ] x U (n ) • k qui se prolonge par continuité en 

k[N+] x 6k( n ) • k . La forme linéaire V est. un morphisme de k-algèbres, 

d'où une application ft+,k • Spec (k[N+J) . 
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d'où une application ft+'^ » Spec (k[N+]) . 

Lemmme 9 : On suppose que k est algébriquement clos. Alors 

ô+,k • Spec (k[#+J) est bijective. 

Ce lemme est évident, et permet de construire les spectres maximaux des 

groupes affines (sur un corps de caractéristique zéro) associés aux 

sous-algèbres de Lie remarquables (un fait analogue est montré dans [40], et 

aussi [59], [60], [62]). 

Dans la fin de ce paragraphe, je fixe k un corps de caractéristique 
k * 0 . Pour alléger les notations, je pose £ = £ . Soit A e h . Dans la 

suite, je noterai k̂  , ou parfois A , le U(b)-module de dimension un de 

poids A . Soit V(A) = UQj) ®u(D) Â ' *e mo<̂ûe ê Verma associé. Je fixe 

p € P un poids tel que P(h )̂ = 1 > pour tout i € I . Soit i € I , et 

A e h* tel que Aih^) € IN . Soit W le groupe de Weyl de [33] . Le 

groupe (discret) W est engendré par des réflexions élémentaires , 

j € I . Il existe un morphisme de U(g)-module non trivial 

V(s.(A + p)- p) > V(A) . 

Soit P+ = {fit € P , A*(hj) e IN pour tout j e 1} . Soit A e P+ . Je note 

L(A) le conoyau du morphisme naturel © V(s. (A + p) - p) • V(A) . Le 
i€l 1 

U(g)-module L(A) est dit integrable, car il est un U(au)-module localement 
fini pour tout i € I . Comme U(n )-module L(A) est isomorphe à 

A(h.)+1 
U(n )/2 U(n )f. 1 

Le module L(A) s'intègre en un P̂ -module comme suit. L'action de 

%(l>-) SUr L̂Â  donne 1111 morphisme L(A) • Hom(%̂  ^,L(A)). Comme l'action 

est localement fini, ce morphisme factorise à travers 

L(A) • L(A) © ^(p.)* 9 et par constructi°n de [̂P ]̂ en un morphisme 

L(A) • L(A) © k[P.] . 
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Remarque : J'ai rappelé dans ce chapitre les définitions des algèbres de 

Kac-Moody g , et des modules standards L(A) , car ceci implique un certain 

choix. Ici on a fait en quelque sorte des choix maximaux. Il me semble qu'en 

dehors du cas où la matrice A est symétrisable, les questions suivantes sont 

encore ouvertes. 

Question 1) L'algèbre de Lie g est-elle simple (au sens du théorème de 

Gabber et Kac [15] ? 

2) Le module L(A) est-il simple [33] ? 

Des réponses positives à ces questions impliquent que les diverses 

constructions des algèbres de Kac-Moody, et des modules L(A) , donnent les 

mêmes résultats. 

Remarque : La construction des réseaux l̂ Gg), ^(b), UZn l/^n ^ est dû à 

J. Tits. Cette construction est la généralisation directe de l'exposé de 

Bourbaki [6]. La seule différence que j 'a i introduite ici est dans le choix de 

h , et dans un choix maximal (et non plus minimal) pour g . La notion de 

réalisation est due à V. Kac. 
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II Groupe de Weyl. 

Soit (X,<) un ensemble ordonné. L'ensemble X est dit filtrant s'il 

satisfait à la condition : 

Va, ,6 e X, 37 € X : a < 7 et /3 < 7 . 

Un sous- ensemble Y d'un ensemble inductif est dit cofinal s'il 

satisfait à la condition : 

Va € X, 3fi € Y, a < fi . 

Soit (X,<) un ensemble filtrant, A une catégorie abélienne. Par 

système inductif d'objets de A (respectivement : système projectif d'objets 

de A) on entendra une famille l̂ ala€x d'objets de A , et une famille 

{?a9fi de morphismes ¥a,/J A : E • E- indexée par les couples 

(a,fi) e X tels que a < fi , (respectivement a > fi) et vérifiant la 

propriété de commutâtivi té usuelle. 

Le lemme suivant est élémentaire.. 

Lemme 10 : Soit (X,<) un ensemble filtrant, A une catégorie abélienne, 

{E ,r* -} un système inductif a a, fi 
(1) On suppose que A est la catégorie des groupes abéliens. Soit 

E = —r—a lim E la limite inductive de {E } . 

Les conditions suivantes sont équivalentes. 

(a) Pour tout a € X , l'application Ê  • E est injective. 

(b) Pour tout a , / 5 e X , a < / 3 , ] P Aatfi est injective. 

(2) On suppose que {E } possède une limite inductive E . Soit Y un 

sous-ensemble cofinal. Alors {Ê , a € Y} possède une limite inductive, et le 

morphisme naturel lim E • E est un isomorphisms 

Soit W l'ensemble des décompositions réduites des éléments du groupe de 

Weyl. A chaque élément w de W ou de W on peut associer sa longueur 
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e(w) . On pose e(W) = (-l)e^[33]. Soit < l'ordre de W défini comme 

suit : soient u , v deux éléments de W de longueurs respectives p et q . 

On pose 

u = s . . . . s . i. 1 1 P 

V = S • . . . s . 

On dit que l'on a u < v s'il existe une application strictement 

croissante Y* : {l,...,p} • {1 q) , telle que pour tout k e {l,...,p} 

on ait î  = Jy>(k) • Moins formellement, ceci signifie que la décomposition 

réduite u peut être obtenue en supprimant certaines réflexions élémentaires 

dans la décomposition réduite v ; L'ordre < est dit ordre de Bruhat de W . 

On définit l'ordre de Bruhat de W en posant, pour tout couple d'éléments 

u , v € W : u < v dés qu'il existe des décompositions u et v de u et v 

(respectivement) telle que l'on ait u < v . L'ordre de Bruhat de W est un 

ordre (cf. par exemple [12], où les démonstrations restent également valables 

dans le cas Kac-Moody). On note u < v lorsque l'on a u < v et u v . 

Soit J une partie de I . On pose 

WT = {w € W , ws . > w pour tout j € J} . 

Jw - {w € W , S.W < W pour tout j € J} . 

Lorsque J est réduit à un élément {j} , on pose W = Ŵ jj e* 

JW {J)W 

Lemme 11 : 1) L'ensemble W est filtrant. 

(2) Pour tout i € I , i^ est cofinal dans W . 

(3) Soit w e W. Il existe une suite ŵ , , . . . dans W 

(respectivement WG,...,w^) (suite finie lorsque W est fini, infinie lorsque 

W est infini) telle que = Wq = w , wQ < < .. . , et telle que 
w ti = w s. (respectivement w' = s., w ) pour certains i , i' € I , et n+1 n i * n+1 i' ny * n ' n ' n n 
telle que l'ensemble {wn , n € w} (respectivement) {ŵ  , n € w} soit 
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cofinal. 

(4) En particulier, si W est infini, W contient un sous-ensemble 

cofinal isomorphe à IN (comme ensemble ordonné). 

(5) Soit u , v € W , u < v . Soit n = e(v) - £(u) . 
Il existe une suite wn , w* , . . . ,w de n éléments de W tels que 0 1 n ^ 

u = w~ , v = w et w. < w0 <...<w 0 ' n 1 2 n 

Démonstration : Je vais montrer le point 3 . Pour simplifier, je suppose W 

infini, le cas où W est fini se traitant de manière identique. L'ensemble 

des éléments w € W de longueur donnée est finie. Donc il existe une 

bijection TP : M » W telle que pour tout couple d'entiers n , m e w avec 

n < m on ait e(f(n)) < t(V(m)) . 

Pour montrer le point 3 , je vais construire la suite WQ, ... 

inductivement de la manière suivante. Soit new , et je suppose construire 

w», ... w . Je pose r(n) : inf {m / (̂mj/w } . on a nécessairement U 1 n n 
f(0) =1 , et on a donc r(n) > 0 .11 existe u € W , i € I , tel que l'on ait 

r*(r(n)) = uŝ  , et uŝ  > u . On a donc u = f(m) , avec m < r(n) . On a donc 

u < w et us. /( w .On déduit facilement de [12] , 7.7.4 que l'on a - n i r n 
w < w s. et us. < w s. . Je pose w , = w s. . On a donc n ~ n i i - n i n+1 n i 
r(n + 1) > T (n) , ce qui prouve que la suite {wn> est pleine. On construit 

de même la suite (ce point du lemme a été prouvé indépendamment par 

A. Arabia). 

Les points 1 et 4 en résultent. Le point 2 est évident. Le point 5 

résulte de [12] 7.7.5. 
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III Les foncteurs de Joseph. 

Soit k un corps de caractéristique 0 . On reprend les notations du 

chapitre I. 

Soit i € I. Soit C(B) (respectivement C(P )̂) la catégorie des 

U(b) (respectivement U(i>))-modules localement finis, U(h) semi-simples à 

poids entiers, i.e. des modules M tels que M = 9 ML .La catégorie C(B) 

(respectivement des P̂ -modules) au sens algébrique. 

Soient i € I , et Me C(B) . Soit N = Coinô  M . Je définis Dg M 

comme le sous-module des vecteurs U(p )̂-localement finis, U(h)-semi-simples 

de N. Il est clair que les poids de D M sont entiers, et l'on a donc 

DĝM € C(P̂ ) . Soit M* un autre élément de C(B), et M —• M* un morphisme 

de u(b)-module. Je pose N' = Coind̂  M* . Le morphisme naturel M • M' 

induit un morphisme de U(j>. )-modules D M • D M* . La remarque 

précédente prouve que D définit un foncteur covariant de C(B) dans C(P.) . 

Soit M € C(B) de dimension finie. Il est connu que N = U(.p̂ ) 9 M 

est un U(p̂ )-module de longueur finie. Soit Z le sous-module de N de 

codimension finie, et minimal pour cette propriété. Je pose D M = N/Z . On 

a encore D XM € C(Pi>. 

Dans les notations précédentes, ŝ  désigne la réflexion simple de W . 

Soit s = keakh^k^ , et soit fi - kĥ ekê  .L'algèbre de Lie s est 

isomorphe à s]_(z) , et fi est une sous-algèbre de Borel. Soient S le 

groupe algébrique simplement connexe associé à S (isomorphe à SL(Z)) et L 

le sous-groupe de Borel associé à fi ;Je peux considérer s comme une 

sous-algèbre parabolique de l'algèbre de Kac-Moody s . Soit s l'élément non 

trivial du groupe de Weyl de s , On a ainsi un foncteur D : C(L) • C(S) . 
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Par restriction, tout élément de C(B) (respectivement C(P )̂) défini un 

élément de C(L) (respectivement C(S) ). Je note donc 

Res: C(B) • C(L) et Res: C(Pi) • C(S) les foncteurs d'oubli 

correspondants. 

Je vais utiliser le lemme évident suivant pour comparer les foncteurs D S 

et D . 

Lemme 12 : 1) Le foncteur D commute a la limite mductive. s 
1 

2) Il existe un morphisme naturel de foncteurs Cf.: D • Id. 
i 

3) Le foncteur D possède la propriété universelle des foncteurs de 
i 

coinduction. Plus précisément, soit MeC(B) , et N € C(P̂ ) . Pour tout 

morphisme de U(b)-module N » M il existe un unique morphisme fonctoriel 

de U(p_̂ )-module N D M rendant commutâtif le diagramme 
i 

N 

D M s. i 

M 

Corollairement D est un foncteur covariant exact à gauche, et il 
i 

commute aux limites filtrantes. Je compare les foncteurs D et D . On a 
i un diagramme naturel 

C(B) C(L) 
D 
s 

D 
s 

C(Pi) C(S) 

Utilisant la propriété 3 du lemme précédent, on obtient un diagramme 

commutâtif 
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ИНН Res C(L) 
D s. i D 

s 

Soit M € C(B) . Je veux prouver que le morphisme naturel D M • D M s. s i 
est un isomorphisme. Utilisant les commutations aux limites inductives, on se 

ramène au cas où M est de dimension finie. On a un 

isomorphisme canonique Coind̂  M • Coin<Ç M . Soit N ce module. Il est 

alors facile de prouver que D M et D M sont égaux au sous-module de N s. s i 
des vecteurs semi-simples sous l'action de , et nilpotents sous l'action 

de e. . Ainsi D M —» D M est un isomorphisme. i s. s i 
Il est facile de montrer que C(B) contient suffisament d'injectifs: les 

injectifs de C(B) sont les sommes directes (finies ou infinies) de modules 
v 
V(A) (A € P) . Je peux donc considérer les dérivés DSi du foncteur D 

Les modules V(A) et leur sommes directes restent injectifs dans C(L) . On a 

donc un isomorphisme D* Z D* de foncteurs à valeurs dans C(S) . 
i 

Enfin on remarque que C(L) est de dimension homologique un. Ceci est 
clair, car les modules injectifs M € C(L) sont caractérisés par le fait que 

M = êM . On a donc Dg =0 pour k > 2 . Un calcul direct prouve que 
i 

M € C(L) est de dimension finie, Dsi M et D* M sont de dimension finie. 

0 * S * 
Si M est de dimension finie, on a un isomorphisme naturel (D M*) a: D XM , 

с (P. ) Res C(S) 

i k * 
et je peux donc poser Dk M = (Dg M ) pour tout entier k 

i s. 
Soit A : Z[P] —• Z[P] l'opérateur de Demazure défini par la formule 

(cf. [4], [12]) 
s. x A S i ^ ) - P . i A e - e J . , . * , , d e = , pour tout A € P 

1 - e 
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Soit T : Z[P] >Z[P] l'opérateur d'inversion T(eA) = e A , et 
s. 

éd l'opérateur dual de Demazure A - r o A or. 
i i 

Si M est un U (h)-module diagonalisable tel que dim(M̂ ) < <» pour tout 
A « h* » je pose ch(M) = 2 dim(M. )eA , l'expression définissant ch(M) 

A€h* A 
étant prise dans un sens formel dans Z [[P]] . 

Le lemme suivant est du à A. Joseph [31]. 

s. 
Lemme 13 : Soit M e C(B) , M de dimension finie. Pour que M = 0 , il 

. 
suffit que M • D M soit injective. 
On a chíDg1 M) - chCDj1 M) = Л 1 ch(M) . 
On a ch(D° M) - chfD1 M) = Л ch(M) . 

i i i 

Démonstration : On rappelle brièvement la démonstration de Joseph, par exemple 
pour le foncteur D . Tout module M € C(L) est somme directe de modules 

i 
ficelles 6̂ (A) 9 (où A,/i e h*) . On vérifie alors que l'on a 

D (e.(A) • k ) = e.(A) • D k , et A ch(£.(A) 0 k ) = s. iv ' IV ' s. ià ' s. v iv i i i 
ch(e.(A)) 9 ch(A k ) , On peut donc n'examiner que le cas où l'on a M = k. i s. u A i 
On peut supposer également que l'on a g = s|(2) , ce qui permet d'utiliser 

les notations du chapitre I. On a une résolution 

0 • M • V(A) • V(A - ou) • 0 . 
Enfin on a: D V(A) = © £.(A + na.) lorsque A(h.) > 0 s. n> O 1 1 1 1 
et D V(s.A) = D V(A ) pour tout A . 

i i 
Ceci donne les formules 

si A 1 1 si A(h.) < 0 

Ds.<V =° i 
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D (k ) = 0 
Si A si A(h.) > 0 

D1 fk.) = e.CA - a.) s. A 1 î 1 
D* k = 0 si A Ch.) = 1 , s. A î î 

d'où les formules cherchées. C.Q.F.D. 

Soient M , M' €C(B) . Il existe un morphisme naturel 
D M ® D M' > D (M® M') . En particulier si M' appartient à C(P.) , s. s. s. i i l î 
on a un isomorphisme D (M ® M') (D M) ® M' , et un isomorphisme s. s. 

I 1 
D M' M'(car D k = k) . Ceci prouve aussi que l'on a 
Si i 

s. 
D o D = D ) . On remarque aussi que l'on a D k_ = 0 , ce qui prouve 
si Si Si * P 

que la condition suffisante du lemme précédent n'est pas nécessaire (remarque 

due à A. Joseph). 

Soit w € W , w = s. ... s. .Pour chaque M € C(B) on peut considérer 
II n D M comme un élément de C(B) . On peut donc définir D = D ... D et s. w s. s. 

xi s. s. 1, 1 w 1 n 
D = D ... D . Si M est de dimension finie , on a des isomorphismes 

* naturels (D M ) D M , D M et DM étant de dimension finie. Il w w 
n'est pas clair pour le moment que les foncteurs dérivés D* M sont de 

dimension finie, ni que D_̂  est de dimension homologique finie. Dans la 

seconde partie, je montrerai que tel est le cas (L'étude des Joncteurs dérivés 

rendra plus naturelle les notations employées ici, qui sont différentes de 

[311). 

Avant d'expliquer les propriétés des foncteurs D_̂_ , je vais d'abord 

considérer un cas particulier technique. Je suppose que g est de dimension 

finie. Soit donc G le groupe simplement connexe d'algèbre de Lie G . Pour 
tout M € C(B) , soit i€(M) le faisceau des sections du fibre B Gx M . Je note 
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aussi K[G]jj l'anneau des fonctions régulières sur G , avec action à droite 

de B . 

Lemme 14: On suppose que w est la décomposition réduite de WQ 

l'élément maximal de W . On a alors un isomorphisme canonique, pour tout 

M € C(B), H°(G/B,2(M)) ^1. DwM . 

Corollairement on a 

1) Si w' est une autre décomposition de Wq , on a un isomorphisme canonique 

de foncteur D a D , . 

2) Pour tout M <= C(B) , on a D̂M = HH°(b, k[G]R® M) . 

Démonstration: On trouvera des détails sur les constructions utilisées 

dans la démonstration dans [7] et dans la suite de cet article. Soient D(w) 

la variété de Demazure associée à w , et xr : D(w) • G/B le morphisme 

associé. Pour chaque M <= C(B) on peut associer un faisceau #W(M) sur D(W) 

, et on a Ŵ(M) = Jï*it(M) . On a un isomorphisme canonique (cf. chapitre V) 

DwM* H°(D(w), aw(M)) . 

Le morphisme it est propre et birat ionnel, et G/B est normal (puisque G/B 

est lisse). On a donc 

5 (M) = ff^w(M) et 

H°(G/B,2(M)) = H°(D(w),Xw(M)). 

ce qui prouve le lemme. 

Le corollaire I du lemme 14 a été prouvé par A.Joseph de manière purement 

algébrique [32]. On revient à la situation générale. 

Je vais établir quelques propriétés des foncteurs D̂  • Ces propriétés 

résulteront aussi de manière triviale de la proposition 3. Cependant la 

proposition 3 exige la construction des faisceaux i(M) sur les variétés de 

Schubert, i.e. du fait que les variétés de Schubert sont à singularités 

rationnelles. Aussi j'ai préféré indiquer des démonstrations élémentaires de 

ce fait. Egalement on peut vérifier que le seul point utile concernant les 
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foncteurs de Schubert (pour la preuve des résultats jusqu'à la proposition 3) 

est le lemme 13. La formule de caractère du lemme 13 peut aussi être obtenue 

comme conséquence du théorème de Riemann-Roch pour IP1 , et la première 

assertion du fait suivant 

Lemme 14: Soient ? un faisceau cohérent localement libre sur IP*, et 

ir^P • !P* le morphisme correspondant. Alors si le morphisme 

H^Op1, y) • H°(P, i*9) 

est surjectif,on a H f̂P',̂ ) = 0 . 

Démonstration: D'après [21] , 9E est somme direct de faisceaux inversibles 
cr (n) . Il suffit donc de vérifier cette assertion pour ces faisceaux 
IP 

inversibles, ce qui est trivial. 

Propriétés élémentaires des foncteurs D̂  : 

1) Soient w € W, M, M' € C(B) . On construit par récurrence un morphisme 

fonctoriel 
D M ® D M' • D CM ® M' ) . Le foncteur associé sera appelé la 
w w w 

multiplication. 
2) Soient w, v € W, n € IN avec e(w) = n, v < w . Je pose w = a. ...s4 . Il 

existe donc € = (€^...€^) € {0,1}n tels que l'on ait 
e. e 1 n v = s. . . .sT 
1 n 

n 
Z e. = e(v) 
i=i1 

avec la convention s. = 1 ou s. suivant que C, = 0 ou 1 . Ceci définit un 

morphisme de foncteurs o : D̂  • Dy , donné par la formule 

?1 ?n _ 
0 = CR — CF„ , où C. est définit par C+C = 1 pour i = 1 à n . 

C O . O. X 1 1 
Je vais prouver que le morphisme de foncteurs ^ç1^ • Dv ne dépend 

pas de t . Par récurrence, on se ramène à la situation suivante: 
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w = Ŝ  u Ŝ  pour un certain i e I, u e W avec 6(u) = e(w) - 2 . 
v = S, . i 

et la donnée des séquences € = (1, 0...0) et t ' = (0,...0, 1) pour 

lesquelles on veut prouver que l'on a 0^ = O^, . 

Je pose G + Id tfg 0....0tfg 0Id . On obtient ainsi un diagramme 

commutâtif 
X2 n-1 

D • w 

ac a acv 

Ds.° Ds. 
1 1 

Ds. 
1 

Ds1 AS ID id 
I 

DSI 1 

Les morphismes o*g cId, Id0ffg : Dg 0Dg » Dg sont des isomorphismes, 

ce qui fournit 1 ' isomorphisme o t - cr€* cherché. Enfin il est clair que les 

morphismes de foncteurs considérés commutent à la multiplication. 

3) Je vais prouver que les foncteurs Djj ne dépendent que de l'image de w 

dans W . Plus précisément, étant donné deux décompositions réduites w, w' 

d'un même élément de W , je vais construire un isomorphisme canonique de 

foncteurs D~ ~ EK, . 

Cette construction se fait en deux étapes: premièrement je construis un 

isomorphisme de Dw dans D̂ , , puis je vérifie sa canonicité ( dans le preprint 

de cet article j'avais oublié la seconde étape, ainsi que me l'a fait 

remarquer le refereej. 

Soient w e W , et T l'ensemble des décompositions réduites de w . 

Pour tout sous-ensemble J c I , je note w(J) le sous-groupe de W engendré 

par les réflections S., j € J . Suivant [61], on muni T d'une structure J 
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de graphe par le procédé suivant. Si w, w' sont deux éléments de T , ils 

sont les sommets d'une arête commune si la condition suivante est réalisé: 

Il existe J c I tel que W(J) soit fini et le cardinal de J soit 2, 

il existe u, v € W tel que l'on ait 

w = u w v 

w' = u »' v 

où w,w' sont les deux décompositions réduites de l'élément maximal de 

W(J),et où l'on a 

e(w) = e(u) + l(v) . 

(Cette dernière condition implique aussi que l'on a 

e(w') = £(u) + e(w') + e(v)) . 

Soient à présent w, w' les deux sommets d'une arrête commune de T , 

comme précédemment. Comme le groupe de Weyl W(J) est fini, la sous-algèbre 

de Kac-Moody de rang deux et de matrice de Cartan (a. .). 1J 1,J € J T est de 

dimension finie. Par le lemme 14, on a donc un isomorphisme canonique 

Dw —» D ,̂ , ce qui induit un isomorphisme D~ —» D~, . 

D'après [61] , le graphe f est connexe. Donc à tous w, w' € f , et 

toute classe y d'homotopie de chemin de source w et de but w' est associé 

un isomorphisme r : D- » D~, . 

Prouver la canonicité de 1'isomorphisme ainsi défini revient à prouver 

que pour tout V € T , l'action du groupe fondamental n^(rtV) sur Dw est 

triviale. 

Pour toute partie J c I telle que W(J) soit fini et J soit de 

cardinal 3, on considère le graphe Tj des décompositions réduites de 

l'élément maximal de W(J) . Soient X € _T_ , et (Xrt...X ) une suite 

d'éléments de Tj telle que 

a) X = Xn = X 
0 m 

b) Pour tout entier i, l < i < m , X . _ 1 e t X . sont les deux sommets 
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d'une arrête commune de Fj . 

Soient u, v <= W tels que u x v soit une décomposition réduite de w 

avec (e(u) + e(x) + e(v) = e(w)).La suite d'éléments (u xn v , . . . , u x v) 

définit un lacet de T , de base u x v . Dans la suite j'appelerai 

élémentaires les lacets de T que l'on peut obtenir par cette construction. 

Soient w <= T et ¥ un lacet élémentaire de base w . Par le lemme 14, 

on obtient par la même démonstration que précédemment que 1'isomorphisme 

r : D » D est l'identité. D'après [61] , le groupe fondamental de T 

en un point donné est engendré par les conjugués (dans le groupoïde 

fondamental) des lacets élémentaires. Ainsi les isomorphismes cherchés sont 

canoniques. 

4) Pour tout élément w de W , on peut donc définir le foncteur D̂  comme 

n'importe lequel des foncteurs Djj , ou w est une décomposition réduite de 

w. 

Pour tout couple (w, v) d'éléments de W avec w > u on définit ainsi un 

morphisme de foncteurs Cf : D • D .Ces morphismes commutent à la 
multiplication, et l'on a ou,w x,y° - ax,y° - o pour tout triplets d'éléments 

(x, y, z) de W avec x < y < z . 

Remarque: Pour une algèbre de Lie semi-simple de dimension finie, A.Joseph a 

les foncteurs notés ici DW [31] . Dans cet article sont également définis des 

dérivés par un moyen homologique non généralisable ici. Néanmoins, il 

résultera de théorèmes d'annulation cohomologique que ces définitions 

coïncident pour le cas des algèbres semi-simple. Ces foncteurs s'apparentent 

aux foncteurs de Zuckerman. 
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Soit S un schéma. Dans ce paragraphe, les schémas considérés seront 

tous donnés sur la base S , sans mentions supplémentaires. Si X et Y sont 

deux schémas, .j'appellerai donc morphisme entre les schémas X et Y des 

morphismes sur S , et je noterai X x Y le produit X XG Y . 

Soit G un groupe. Dans la suite, je supposerai que tous les groupes 

considérés seront affines, i. e. que le morphisme TT : G • S est affine. Je 

noterai y : G x G » G la multiplication, e : S » G le morphisme unité, 

et w : G • G le morphisme d'inversion. 

Soit X un schéma. Je dis que X est un G-schéma à gauche, si l'on 

s'est donné une action de G à gauche, i. e. un morphisme : G x X • X 

satisfaisant aux conditions de compatibilités usuelles, à savoir : 

ox o(IdQ x ox) = ax o(ju x Id )̂ 

ax o(e x Idx) = Idx 

Soient X , Y deux G-schémas, et TP : X —• Y un morphisme. Je dis que 

f est. un G-morphisme, si l'action de G commute à f* , i. e. si l'on a 

<_xv o(Ià^ x r*) = ¥ o <?x . Le produit X x Y est naturellement un 

G x G-schéma. Via l'application diagonale ô :G • G x G , X x Y est 

naturellement un G-schéma. 

On a une notation analogue de G-schéma à droite. L'inversion w permet 

de transformer naturellement tout G-schéma à gauche en un G-schéma à droite, 

et réciproquement. Ainsi toute définition concernant les G-schémas à gauche 

se transporte aux schémas à droite. 

Soit X un G-schéma. On a une notion évidente d'ouverts et de fermés 

G-invariants, et plus généralement de parties localement fermées 

G-invariantes. Dans la suite on considérera G comme un G-schéma pour la 

multiplication à gauche. 

Lemme 15 : Soit TT : G • S un groupe. Les ouverts G-invariants de G sont 

exactement les ouverts du type n *(V) , où V est un ouvert de S . 
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Démonstration : Comme on a supposé G affine, le morphisme e : S • G est 

une immersion fermée. Soit U un ouvert G-invariant de G . En confondant S 

à son image par e , il est clair que l'on a U = n *(U n S) . 

Soit X un G-schéma. Je dis que l'action de G sur X est libre (en 

m'écartant de la terminologie usuelle [48]), s'il existe un schéma Y avec 

action triviale de G sur Y , tel que l'on ait un isomorphisme X ~ G x Y 

de G-schéma. Je dis que l'action de G sur X est localement libre, s 'il 

existe un recouvrement de X par des ouverts G-invariants U sur lequel 

l'action de G est libre. 

Soit X, Y deux G-schémas, et 7r : X • Y un G-morphisme. Je dis que 

Y est le quotient de X par l'action de G si les deux conditions suivantes 

sont satisfaites 

(a) G agit trivialement sur Y. 

(b) Pour tout schéma Z sur lequel G agit trivialement, tout. 

G-morphisme u : X > Z factorise de manière unique à travers Y , i. e. il 

existe un unique morphisme Y • Z rendant commutatif le diagramme 

X v г 
7Т 

Y 

Etant solution d'un problème universel, le quotient de X par l'action 

est unique, dès qu'il existe. Je note le quotient, lorsqu'il existe, G \ X . 

Lemme 16 : Soit X un schéma avec une action localement libre de G , Le 

quotient G\X existe, et le morphisme X • G\X est affine. Si en outre le 

morphisme TT : G • S est plat, le morphisme X • G\X est plat. Soit U 

un ouvert G-invariant de X . L'action de G sur U est localement libre, 

et le morphisme naturel G\U *• G\X est une immersion ouverte. 
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Démonstration, Le lemme est évident lorsque G agit librement sur X , et se 

démontre dans le cas général par recollement. 

Soit X un G-schéma. Soit ^rjv ê schéma X sur lequel G-opère 

trivialement. Soient a : G x X • X le morphisme donnant l'action de G 

sur X , et 6 : G » G x G le morphisme diagonal. Je note 

X̂  : G x X • G x X le morphisme donné par la formule 
Xx = (1^ x o) o (6 x Id )̂ . En termes naïfs, on a Xx(g,x) = (g,gx) . Il est 

G 
clair que X̂  est un isomorphisme de G-schéma 

Xv : Gx X, . — . G x X . X tnv 
Lemme 17 : Soient X , Y deux G-schémas. Si l'action de G sur X est 

libre (respectivement localement libre), G agit librement (respectivement 

localement librement) sur X x Y . 

Soient X un schéma sur lequel G opère à droite, et Y un schéma sur 

lequel G opère à gauche. Lorsque le quotient de X x Y par l'action de G 

existe, on note ce quotient X x Y . 

Soient X un G-schéma, o : G x X » X le morphisme donnant l'action de 

G , p : G x X • X la projection sur le second facteur, P : G x G x X • G 

x X la projection sur les deux derniers facteurs. Soit X un ^-module. 

Suivant Mumford, ([48], définition 1.6, page 30), on dit que £ est un 

ff^-module G-équivarant si l'on s'est donné un isomorphisme * : a* X * p*X 

, satisfaisant la condition suivante : le diagramme naturel 

(IdQ x o) V * 

(H x Idx)V* 

Oc x Ic^)** 

(H x Idx)*p** 

(IdQ x o)*# 
(IdQ x o)*p*2 

PV* 

P*# 

= P*p*S 
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est commutatif. Cette condition est dite condition de cocycle. 

Soient X , Y deux G-schémas, ? : X » Y un morphisme de G-schémas. 

et it un 0̂ -module G-̂ équi variant. De manière naturelle fx est un 

ff^-module G-équivariant. 

Soit X un G-schéma. On a une notion évidente de morphisme équivariant 

de O ̂ -module équivariant. Soit X un O ̂ -module équivariant. Soit X-^riv *e 
Ùv -module .5e sur X. . , avec action triviale de G . X. . triv • tnv 

Les morphismes p et a peuvent être considérés comme des G-morphismes 

p : G x X, triv. • Xtriv. . 

a : G x X.triv . • X . 

Par la constuction précédente les o*G x X^^-modules P**triv ê  °** 

sont donc naturellement équivariants. Le diagramme : 

(Id x o)*# 
(IdQ x o)V* > (IdQ x o*p*X 

(M x Id) V * P*a*X 

est le diagramme qui fournit 1'isomorphisme 

o** : (fi x!d)*o*X • P*o*JC , donnant la structure d'èqui variance au 

module a*X . L* isomorphisme naturel (iâ x Id )̂*p*£ ——» P*p*£ donne la 

structure d* èqui variance au module P**t-riv * wonc â condition de cocycle, 

i. e. de commutâtivité du diagramme : 

o # 
Oi x Idx)*o*2 - • P*o*X 

Oi x Idx)*P^triy = • P*p\riv 
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peut s'exprimer en disant que #• est un G-isomorphisme entre les modules 

équivariants a*% et p*^r^v. 
On peut considérer S comme un G-schéma, avec action triviale de G . 

Ainsi les morphismes IÏ : G » S et e : S • ̂ triv son*- ^es morphismes de 

G-schémas. 

Lemme 18 : Soit X un Cf -module équivariant. Il existe un isomorphisme 

canonique de G-modules X • Ti*e*X . 

Démonstration : Soit p : G x G • G la projection sur le second facteur. 
Soit # : ix*X • p*X 1 ' isomorphisme donnant la structure d'équivariance sur 

X . On a vu que # est un isomorphisme de G-modules # : fA*X • P* t̂riv ' 

sur le G-schéma G x Gj-r̂ v • Soit 17 = Id̂  x e . On a ainsi un isomorphisme 

de G-modules 17** : /7*/.i*.£ • /7*P*̂ rj[v • Or on a fx o /7 = Ict̂  et 

poi7=£ o ÏÏ . On a ainsi un isomorphisme de Cf -modules équivariants 

X • n*e*X.triv . . 

Afin d'étudier les images directes des faisceaux quasi-cohérents de 

modules, on rappelle deux résultats de Grothendieck : 

Théorème A : Soit f : X • Y un morphisme séparé quasi-compact de schémas. 

Soit y un faisceau quasi cohérent sur X . Pour tout entier q > 0 , R̂ f̂  5e 

est quasi-cohérent 

Soit : X • Y 

X' • Y' 

un diagramme commutâtif de schémas. On dit que ce diagramme est cartésien si 

le morphisme naturel X • X' xy, Y est un isomorphisme. 

47 



O. MATHIEU 

Théorème B Soit : X - -> Y 

g f 

x' V 
un diagramme commutâtif cartésien de schémas. On suppose f quasi-compact 

séparé, et v plat. Soit y un o*y-module quasi cohérent. Pour tout entier 

q > 0 le morphisme naturel v* Rq f̂ y » Rqĝ  u*y est un isomorphisme. 

Les références de ces théorèmes sont les suivantes : [23] EGA III, 

proposition 1.4.10 (page 91) pour le théorème A, proposition 1.4.15 (page 

92) pour le théorème B. Il faut noter la différence de terminologie (un 

préschéma dans EGA est actuellement un schéma), et que dans le théorème B 

l'hypothèse que f est de type fini est inutile (cf. [23, page 89, (Err III, 

25)). Seule l'hypothèse de quasi compacité est nécessaire. 

Dans la suite de ce paragraphe, tous les groupes considérés seront 

supposés plat sur S . 

Lemme 19 : Soient X , Y deux G-schémas, et r* : X • Y un G-morphisme 

quasi-compact et séparé. Soit y un ff^-module quasi cohérent 

G-équivariant. Alors pour tout entier q > 0 , R*^* est naturellement 

G^équivariant. 

Démonstration : Le diagramme commutâtif 
PX 

G x X - • X 

IdG X * I * 
V PY y 

G x Y - - • Y 
est cartésien, et Pv est plat. Comme les factorisations naturelles \^ et 

Xv sont des isomorphismes de diagramme commutâtif 
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G x X 
*x 

G x X 

IdGX * IdGX * 

G x Y 
Xx 

G x Y 
est cartésien, et x.y est plat. Donc le diagramme commutât if 

G x X 
qx X 

IdGxf TP 

G x Y 
°Y 

Y 
est cartésien, et oy est plat. Soit # : o^v -—• p̂ y 1 ' isomorphisme donnant 

la structure d'équivariance de ? . Pour tout entier q > 0 , on a donc un 

isomorphisme naturel Rq(IdQ x TP)# # : Rq(IdQ x r*)# cfy • Rq(IdQ x O^P^ . 

Le théorème B fournit donc un isomorphisme o* R^P^ • p* iPt jf . On 

vérifie la condition de cocycle de la même façon. Ainsi RY F est 

naturellement équivariant. 

Soit X un schéma, sur lequel l'action de G est triviale. Soit X un 

O ̂ -module équivariant. Soit # a*X • p*X 1 ' isomorphisme donnant la 

structure de G-module. Soit U un ouvert de X . Les morphismes naturels 

*(U) • p"1«(p"1(U)) > P*ie(p_1(U)), *(U) • cT^U)) • o V V ) ) et 

l'égalité o *(U) = p *(U) induisent un diagramme 

p'JKp^u) 

Y (U) o 
q (*) 

X P**(p % 
Je note X(U) l'ensemble des éléments de X(U) pour lesquels le diagramme 

(*) est commutatif. Le préfaisceau U • X(U) est en fait un faisceau, que 
G G je note X . Il est clair que X est même un sous-cr̂ -module de X . Soit Y 

un G-schéma, U : Y —• X un G morphisme quasi-compact et séparé. Soit ? 

un faisceau quasi cohérent de Oy-module, G-équivariant. Je pose 

vjF = (v y)G . 
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Lemme 20 : Soit y un (̂ -module quasi-cohérent équivariant. On a un 

isomorphisme naturel £*y ——• it+? . 

Démonstration : Par le lemme 18, on a un isomorphisme de G-modules 
y 2s 7r*e*y. . , d'où un isomorphisme TTvF a n Tr*£*y. . , d'où un G-morphisme tnv X * tnv ' ^ 
naturel de ffg-modules équivariants €*sr̂ riv * n** * L,act̂ on de sur *e 

tfg-module £ ^^riv es^ triviale. On obtient donc un morphisme naturel 

£*y • n+y . Les ouverts affines de S formant une base de la topologie de 

S , il suffit de vérifier que pour tout ouvert affine U l'application 

£*y(U) • n,y(U) est un isomorphisme. Je pose R = r(U,crc) , R[G] = r(V,Crn) 

où V = if ^U) . 

Je noterai £# , /4# , p# les applications (entre divers groupes de 

sections globales) induites par les morphismes £ , /i et p . Je vais d'abord 

prouver l'injectivité de l'application £*y(U) • 7T+y(U) . Pour cela il 

suffit de prouver que £*y(U) » ir̂ y(U) est injective. Je pose M = £*y(U) . 

L'application £*y(U) • n y(U) est l'application M • R[G]®DM . Or il est 

clair que comme R-module, on a R[G] = R © Ker £ . Donc l'application 

M • R[G] ®RM est injective et par la suite £*y(U) • 7r+?U) est 

injective. 

Le groupe w,y(U) est l'ensemble des éléments u de R[G] ®D M rendant 

commutâtif le diagramme 

R[G] ®R R[G] 0R M 
xz 

R[G] ®R M O 

p R[G] ® R[G] ® M 

Soit u = 2TP ®m(lP € R[G] , m € M) un élément de R[G] QjA . Alors u a a a a a 
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appartient à 7T+y(U) si et seulement si on a l'égalité suivante dans 
R[G] ®R R[G] ®R M : 2 *(?a) ® n»a = 2 1 ® *a ® ma . On a /i 0(10̂  x e) = Id̂  . 

a a 
Pour tout u e iT+y(U) l'identité : (Idç x e) fi (u) = u implique : 

u = 2(Id„ x £ ) W ) ® m G a a a 
= 2(Id„ x £)* 1 ® î° ® m v G 7 a a a 
= 21® £*V ® m a a a 

et on a donc u € M = 6*?(U) . 

Ainsi le morphisme naturel £*y • 7i+y est un isomorphisme. 

Soit X un schéma. On note Q coh (X) la catégorie des faisceaux 

quasi-cohérent sur X . Si X est un G-schéma, on note Q coĥ ÇX) la 

catégorie des faisceaux quasi-cohérents et èquivariants .Comme G est supposé 

plat sur S , la catégorie Q coĥ ÇX) est abélienne. 

Lemme 21 : Soit X un schéma sur lequel le groupe G agit localement 

librement. Soit v : X • G \ X le morphisme de passage au quotient. Soit 

y e Q coh,-,(X) . Alors v t¥ est quasi-cohérent. En outre si 9 est plat sur 

X (respectivement localement de type fini) alors y est plat sur G\X 

(respectivement localement de type fini). 

Le foncteur v, : Qcoĥ (X) » Q coh(G\X) est covariant et exact, et 

est une équivalence de catégorie dont l'inverse est . 

Démonstration : Les assertions que l'on cherche à montrer sont locales sur 

G\X . Quitte à changer de base, on peut donc supposer que l'on a X = G , de 

sorte que l'on a G\X = S , et v = ti . 

Le foncteur £* conserve la quasi-cohérence, la platitude et la 

finitude, et est exact à droite. Par le lemme précédent on a ît+ = £* . Comme 
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par construction ÎT est exact à gauche. On a aussi TÏ ,7r* = icL Q coh(s)x , 

ÎT*TT+ = idg c o h (Q) » c e <ïuî achève la preuve du lemme. 

Lemme 22 : Soient X , Y deux schémas sur lesquels G agit localement 

librement. Soit f : X > Y un G-morphisme. On a ainsi un diagramme 

commutâtif 
f 

X - , Y 
U V 

G \ X 2 • G \ Y 

(a) Soit y e Qcoh~(Y) . On a un isomorphisme naturel 

ju+f*sr ~ g*y+y . 

(b) On suppose f quasi-compact et séparé. Soit <S e Q coĥ (X) . Alors pour 
tout entier q > 0 on a un isomorphisme naturel 

v Rqf S * Rqg /i y . 

Démonstration : Les assertions (a) et (b) sont locales sur G \ Y . Donc on 

peut supposer que l'action de G sur Y est libre. On choisit un 

isomorphisme de G-schémas Y G x (G\Y) . On a ainsi construit une section 

TP du morphisme v . On pose X' = f *(r*(G\Y)) . Il est clair que l'on a 

X = G x X' comme G-schéma. En particulier \x induit un isomorphisme : 

X' • G\X . Ainsi la section TP détermine canoniquement une section 

X : G\X —• X du morphisme ix . 

On va montrer d'abord le point (a); Par le lemme 20, on a des 

isomorphismes v ~ TP*y , et fÂ+f*¥ ^ x*f*y .On a f o \ = f o g , on 

obtient ainsi un isomorphisme /i+f y s: g v^ . Il est clair que cet 

isomorphisme ne dépend pas en fait du choix de la section TP . Ainsi le point 

(a) est montré. 

On va montrer le point (b). D'après ce qui précède, il est clair que le 

52 



VARIÉTÉS DE DEMAZURE 

diagramme 
X • Y 

I V 
G \ X • G \ Y 

est cartésien. Comme le morphisme tï : G • S est supposé plat et affine le 

morphisme v : Y • G\Y est plat et quasi-compact. Comme u est scindé, v 

est donc en outre fidèlement plat. Donc le morphisme g est quasi-compact 

([8], EGA IV, page 28, corollaire 2.6.4) et séparé (ibid, page 29), 

proposition 2.7.1). Par le théorème B , on a donc un isomorphisme 

TP*Rqf# S —-—• Rqg x** pour tout entier q > 0 . On obtient ainsi un 

isomorphisme v+ R F.s Rqg u+ . Il est clair que cet isomorphisme ne 

dépend pas du choix de la section TP . Ceci montre le point (b) . 

Soit X un schéma sur lequel G agit à droite localement librement. 
Soit Y un G-schéma (à gauche). Par le lemme 16, le quotient X x Y existe. 

Soit v : X x Y • X x Y le morphisme de quotient, et p : X x Y % Y la 

projection sur le second facteur. Soit y € Q coĥ (X) . On a donc 

p*y € Q cohgÇX x Y) . J e pose SD̂y = u+ p*y , de sorte que l'on a ainsi défini 

un foncteur Sfv ; Q_çoh„(Y) • Q coh(X x Y) . 
A VA 

Lemme 23 : Soient X , X' deux schémas à droite sur lesquels G agit 

localement librement, Y , Y' deux G-schémas à gauche. 

1) Le foncteur SDV : Qçoh-(Y) • Q coh(X x Y) est covariant exact à 

droite. Soit y € Q_cohg(Y) . Si y est plat sur Y (respectivement 

localement de type fini), îD̂y est plat sur X x Y (respectivement 

localement de type fini). En outre si X est plat sur S , »̂  est exact. 

2) Soient f : X —> X' un G-morphisme et TP : X xG Y —• X' xG Y le 

morphisme induit. Pour tout y € Q coĥ (Y) , on a un isomorphisme naturel 

DX S = Pdx , f 
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3) Soient g : Y • Y' un G-morphisme, et * : X xG Y • X xG Y* le 

morphisme induit. On suppose g quasi-compact et séparé, et X plat sur S . 

Soit <S e Qcoh-(Y) . Pour tout entier q > 0 , on a un isomorphisme naturel 
— • u 2>v Rqg <S - rS» 2>v <$ . X * * X 

Démonstration : Le point 1 résulte du lemme 21, les points 2 et 3 résultent 

(respectivement) des points 1 et 2 du lemme précédent. 

Remarque : Soient X , Y deux schémas sur lesquels G opère localement 

librement. Soit f : X • Y un G-morphisme. On a vu au cours de la 

démonstration du lemme, que le diagramme commutâtif 

X f Y 

u и 

G \ X s G \ Y 

est cartésien, et que le morphisme Y » G \ Y est affine (donc quasi 

compact) et fidèlement plat. Il en résulte donc ([8] EGA IV, *2, p. 28 et 29) 

que si f est une immersion fermée (respectivement universellement fermée, 

séparée...) il en est de même pour Y* . Par construction, on a également 

°G \ X - °X • 

Dans la suite, je vais construire les variétés de Demazure, qui seront en 

fait des schémas sur Spec(Z) . Je pose donc S = Spec(Z) . 

Soit i € I . Soit U=F.xB et V = E.s. x B . Par le lemme 8 , U et 
V s'identifient à deux ouverts de P. . Soit T = Un V . Les ouverts U , V 

et T sont invariants par l'action à droite de B , et B agit librement sur 

chacun des ces ouverts . Comme B-schémas, on a des isomorphismes 

U * Spec(Z[t]) x B 

V - Spec(Z[tJ) x B 

T s Spec(Z[t,t_1]) x B 
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où t désigne une indéterminée. Soit w € W , n = £(w) . On pose 
w = s. . . . s. .On peut donc définir les schémas i. 1 1 n 

E(w) = P. xB ... xB P. , E(l) = B i- î 1 n 
D(w) = P. xB xB P. /B , D(l) = B/B = Spec(Z) 

de sorte que l'on a E(w)/B = D(w) . En fait ces définitions n'ont de sens que 

lorsque l'on a vérifié que les schémas obtenus ne dépendent pas de l'ordre 

dans lequel on a effectué les opérations de quotients, ce qui est évident car 

P. x .. . x P. est un schéma sur lequel Bn agit de manière localement libre 

(B agissant n-1 fois "entre" deux facteurs consécutifs, et une fois à 

droite). 

Ces schémas sont reliés entre eux par deux types de morphismes : 
1) Soit w = s. . . . s. un élément de W . Soit k un entier, 0 < k < n . 

n 1 
Soit ? : {l,...,k} • {l,...,n} une application strictement croissante. On 

suppose que v = sV(k). . Vcd.. s.V(k) est réduit. Alors î° détermine des 

immersions fermées canoniques : E(v) —• E(w) et î , : D(v) • D(w) , 

qui commutent à l'action de B , construites de la manière suivante. On peut 

supposer n > 1 . Soit u = s. xn-l .. . s. . L'immersion fermée B —• P. 

B B déterminent des immersions fermées B x D(u) • P. x D(u) et 

B xBE(u) » P. xB E(u) , i. e. des immersions fermées D(u) » D(w) et 

E(u) • E(w) . Lorsque k = 0 , ou T(k) f n , on peut supposer par 

récurrence sur e(w) avoir défini les immersions fermées : E(v) • E(u) 

et : D(v) • D(u) ce qui fournit les immersions cherchées. Si 

î°(k) = n , on pose v' = s.V(k-l)... s. , et soit 

r" : {l,...,k-l} —• {l,...,n-l} la restriction de TP . On suppose de même 

construire les immersions fermées j ^ , et iy, . Ceci détermine des 

immersions fermées 
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: Pt xB D(v') > P. xB D(u) 
n n 

jf t P. xB E(v') —• P. xB E(u) 
n n 

On notera que ces immersions dépendent de ? . Dans le cas particulier où 

l'on choisit v e W , v < w et £(v) = e(w) - 1 , il existe une unique 

application T comme précédemment, telle que l'on ait v = s. . Ainsi il 

existe une immersion canonique D(v) • D(w) et E(v) • E(w) . 

2) Soit w = s. ... s. un élément de W . Soit k un entier, 1 < k < n . i l . -n 1 

On pose u = s. . . . s . v = s. . . . s . de sorte que l on a w = uv 
n n-k n-k-1 1 

Le morphisme naturel D(v) » Spec(z) détermine un morphisme 
B B B B P. x .. . x P. x D(v) » P. x ... x P. /B i. e. un morphisme î i , i i / n n-k n n-k 

D(w) • D(u) . Soit f : {l,...,n-k} • {l,...,n} l'addition par k . Il 

est clair que D(w) • D(u) est un fibre localement trivial de fibre 

D(v) . En outre î  = D(v) • D(w) est une section de ce fibre. Les deux cas 

particuliers utilisés seront les suivants : 

a) u = s.Xn... s.Xn , de sorte que le fibre D(v) • D(u) est un fibre 

localement trivial de fibre P. /B isomorphe à la droite projective IP* . 

b) u = s. , de sorte que le fibre D(w) » D(s. ) est fibre localement 

trivial de base P. /B isomorphe à la droite projective IP 

Par récurrence, on voit que les schémas de Demazure D(w) sont obtenus 

par des fibrations successives en droite . On obtient ainsi : 

Lemme 24 : Soit w € W . Le schèma de Demazure D(w) est propre et plat sur 

Z . Pour tout corps F , D(w)(F) = D(w) x Spec(F) est une variété complète 

lisse (irréductible) de dimension £(w) . 

Les constructions de ce paragraphe s'applique au groupe G = B . Pour 
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chaque w e W , E(w) est un B-schéma à droite. On a ainsi un foncteur 

*E(w) que notera P*118 simplement . 

On appelle B-module un élément de Q_çohg(Spec Z) , catégorie que je 

noterai plus brièvement Mod(B). Tout élément A € P détermine un élément de 

Mod(B) (qui est un Z-module de rang un) que je note encore A . En termes 

naïfs, le sous-groupe distingué N de B agit de manière triviale, et l'action 

est déterminée par l'isomorphe H = Hom(P, Gm) . 

Soit w € W . Soit Y un B-schéma. L'isomorphisme naturel 

B x (E(w) x Y) a (B x E(w)) x Y montre que E(w) x Y est naturellement un 

B-schéma, et que le morphisme E(w) x Y • E(w) x Y est un B-morphisme. 

Soient o : B x(E(w) x Y) • E(w) x Y , a' : B x(E(w) xB Y) • E(w) xB Y 

les morphismes donnant l'action, p : B x (E(w) x Y) • E(w) x Y , 

p' : B x(E(w) x Y) > E(w) x Y , et w : E(w) x Y • Y les projections 

sur le second facteur. On a ainsi un diagramme commutâtif 
°>P t w 

B x E(w) x Y ! E(w) x Y - • Y . 

Ai v 

b °'>pt B 
B x E(w) x Y ! E(w) xD Y 

Soit X e Q_cohg(Y) . L'isomorphisme rr o o = TÏ O p donne un 

isomorphisme o * 2 . p*(TI*£) , ce qui muni TÎ*£ d'une (seconde) structure 

d'équivariance, relative à l'action à gauche de B . Par le lemme 22, on a 

des isomorphismes naturels : 

K+ 0*(ir*«) fi: O'* 

UL+ p*(Tt*X) * p'* v^**X) 

d'où un isomorphisme naturel o'* 3)^ X ^ p'* 3)^ X . On vérifie de même que cet 

isomorphisme satisfait la condition de cocyle. Ainsi X est naturellement 

B-équivariant. En particulier, si w = s. ... s. , on en tire un 
n 1 
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isomorphisme de foncteur 2 0 . . . 0 & ~ 2> 
s. s. w 

Lorsque M € Mod(B) et Y = spec Z , on posera *W(M) = ®W(M) le faisceau 

sur D(w) obtenu. On pose aussi Cf = ùn, v. x ' ^ w D(w) 

Lemme 25 : Soit M € Mod(B) . On suppose que M est un Z-module libre de 

rang fini r . Alors #W(M) est localement libre de rang r . En outre si 

v € W , v < w et e(v) + 1 = £(w) , la restriction de X (M) a D(v) est 

*V(M) . 

Démonstration : Par le lemme 23, *W(M) est un O -̂module quasi-cohérent, 

plat, localement de type fini. Donc ^(M) es* localement libre. Soit 

i : E(l) » E(w) l'immersion fermée canonique, et i ' : Spec(z) —•+ D(w) 

l'immersion fermée correspondante. Comme D(w) est irréductible, *w(m) est 

de rang constant. Or par le lemme, on a un isomorphisme canonique 

iDjM =- i'* 2&W(M) . Comme on a 3>^ M = M , le rang du faisceau localement libre 

£̂ (M) est r . Le second point du lemme est aussi une application du lemme 

23. 

Remarque II est nécessaire de construire les schémas de Demazure sur Z pour 

pouvoir appliquer un résultat de semi-continuité. Plus précisément, on 

utilisera le fait suivant. Soit R un anneau de Dedekind. Pour tout couple de 

R-modules M , N , on pose M * N = Tor̂ (M,N) . 

Lemme 26 : Soit X • Spec(R) un schéma quasi-compact et séparé sur le 

spectre d'un anneau de Dedekind R . Soit y un faisceau quasi-cohérent sur 

X , plat sur R . Soient F une R-algèbre, Y = Spec(F) xSpec(R) x » et 

j : Y ^ X le morphisme canonique. On a pour tout entier q > 0 des suites 

exactes naturelles 
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0 » F 9 Hq(X,y) > Hq(Y, A ) • F * Hq+1(X,y) • 0 . 

Ce lemme est bien connu. Comme ce lemme est un cas particulier de 

théorèmes difficiles de Grothendieck, j'en indique une démonstration (cf. [23] 

EGA III, %6). 

Soit U un recouvrement affine fini de X . Soit U' = j *(U) • Alors 

U' est un recouvrement affine de Y . Comme X et Y sont séparés on a 

H*(x,y) * h*0e-(u,y)) 

H*(Y,j*y) * h*(<e-(u',j*y)) 

où <C*( , ) désigne le complexe de Cech. On a ^(U'jj**) = F ® C* (U,y) , et 

le complexe C"(U,y) est plat sur R . Le lemme 26 résulte donc de la formule 

de Kunneth. 

Ce lemme est un résultat de semi-continuité pour la raison suivante. 

Soient X » Spec(R) un schéma propre sur un anneau de Dedekind, y un 

faisceau cohérent sur X , plat sur R . Soit K le corps des fractions de 

R . Pour toute R-algèbre F , on note 9e(F) la restriction de y à 

X(F) = X xgpeĉ R̂ Spec(F) . On a alors 

1) Pour tout idéal maximal m de R les caractéristiques 

d'Euler-Poincaré x(y(R/m)) et x(y(K)) sont égales. 

2) Pour presque tout idéal maximal, le morphisme naturel 

R/m 9 H*(X,y) • H*(X(R/m) , y(R/m)) est un isomorphisme. 

Ceci résulte du lemme précédent, et du fait que H*(X,y) est un 

R-module de type fini ([8] EGA III, %3). 

Soit S un schéma. Pour tout w € W , on peut définir le schema de 

Demazure D(w)^ par la formule u(w)(g) = ̂  XSpec(Z)*̂ Ŵ  * ̂ 6S CaS que ,̂Qn 
considérera dans la suite correspondent aux cas où S est le spectre d'un 

corps, où d'un anneau d'entiers Soit M € Mod(B) . Soit j : D(w)/0. » D(w) 
* B 

le morphisme naturel. On pose X^(M)^ = j #W(M) . On a D(W)(S) = E(w) x S , 
donc par le lemme 23 on a aussi X^(M)^ = 2>w(TT*M) , OÙ ÎI : S • Spec(Z) est 
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le morphisme naturel. Afin d'éviter d'alourdir les notations, je poserai 
Ĥ (D(w) , «w(M)) = h*(d(w)(s) , aw(M)g) . 

Lorsque S sera le spectre d'un anneau R , je noterai aussi D(w)(R) , 

Lw<M)(R) , IÇ(D(w) , * (M)) les objets considérés. Dans les chapitres où le 

schéma S sera convenu, j'oublierai d'indiquer S , et je noterai par exemple 

D(w) le schéma D(w)(S) . En revanche, dans les chapitres où des confusions 

sont possibles, je noterai D(w)(z) , X^(M) (Z) , r£(D(w) , L̂ (M)) les objets 

absolus. 

Je vais établir un premier lien entre les variétés de Demazure et le 

fonct.eur de Joseph. 

Lemme 27: Soit K un corps de caractéristique 0 . Soit M «= *(b) . On a un 

morphisme naturel H°(D(w) , X (M) ) ~ D M . 

Démonstration: Je vais prouver le lemme par récurrence sur fc(w) . On peut 

supposer 6(w) > 1 . On peut poser w = ŝ v pour un certain i € I . Soit 

7i : D(w) • P̂ /B le morphisme naturel construit plus haut. On a 

*W(M) = 3>p «V(M) . On a h£(D(w) , «W(M) = ^(Pj/B , ir^p Xy(M) . Par le lemme 

23, on a rc^p Xy(M) = 3)p TT̂ai (M) . Le morphisme ÎT envoie D(v) sur 
i i 

Spec(K) . On a njt^CM) = fl£(D(v) , X (M)) . On a donc 

l£<D(w) , Xw(M» = iÇ^/B , a>p (h£(D(v) , *v(M)))) . 

Il est clair que pour tout N € <e(b) , on a H°(Pi/B , 2>p N) = Dg N . Ceci 

montre le lemme. En particulier, ceci montre que H°(P̂ /B , X^(M)) ne dépend 

en fait que de la valeur de w dans W . Ce fait est lié au fait que l'on va 

construire une variété normale (de Schubert) Ŝ  , ne dépendant que de la 

valeur de w dans W , un morphisme TÏ : D(w) • S propre et birationnel, 

un foncteur #W : <E(b) Q̂cohfŜ Ì tel que pour tout M e <E(b) , £ (M) soit 

localement libre, et n 2 (M) = x (M) . On généralisera le lemme précédent aux 
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foncteurs dérivés (chapitre XI, proposition 3; cf. aussi [411), en démontrant 

que les variétés de Schubert sont à singularités rationnelles. 

Je fixe J une partie (non vide) de {1,...,N> de sorte que la 

sous-matrice de Cartan AT = (a.1,J i .) soit de type fini (cf. [131). Dans 

la suite je serai plus particulièrement intéressé par le cas où J est de 

cardinal 2 ou 3. Soit W(J) le sous-groupe de W engendré par les réflexions 

sj , j « J . Le groupe W(J) est le groupe de Weyl d'une algèbre semi-simple 

et il est fini. 

On suppose donnés 6 éléments u, v,w^,VJ^.«^ dans W tels que l'on ait: 

a) w1 = u w1 v 

b) w2 = u w2 v 

c) «pj , sont deux décompositions réduites de l'élément de longueur 

maximale de W(J) . 

Soit aj la sous-algèbre de Lie de ^ engendrée par l'espace vectoriel h 

et les éléments , f. , j € J . La sous-algèbre de Lie â  est de 

dimension finie et réductive. On pose Pj = aj + b . Soit Pj le groupe 

associé à l'algèbre de Lie ^ (cf. % I ; il est trivial que ^ satisfait 

#j , »2 » ^3) • Comme dans le cas où J est réduit à un élément, B opère 

localement librement sur Pj et par réduction à l'étude de aj , il vient que 

Pjy/ est propre sur Z et recouvert par des ouverts isomorphes à 

(où t - 1/2 dim(aj^)) . 

Je définis des schémas E et D sur Spec Z par les formules suivantes 

(qui ont clairement un sens): 

E = E(u) xB Pj XB E(v) 

D = E(u) xB Pj XB E(v)^ . 

On a des morphismes naturels E(p^) —• Pj , pour i - 1,2 , ce qui induit 

des morphismes naturels 

fAt : E(wi) —. E 
7T. : D(w. ) —• D Ci = 1,2) • 1 1 
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Soit S un schéma. Comme précédemment, je note Dg et Es les schémas 

obtenus par l'extension de la base S —• SpecfZ) . Il est clair que E est 

propre et plat sur Z . 

Lemme 28: 

1) Soit M <= Qcoh (S) . Alors on a des isomorphismes naturels, pour B 
i = 1,2 : 

(TT. ) « (JH) » {.*) . 

2) On suppose S noethérien séparé et normal. Soit M <= Qcohg(S) , tel 

que m soit réunion de ses sous-modules B-équivariants localement 

libres et de type fini. Alors les morphismes 

(ir.) * (M) <*) 

sont des isomorphismes, pour i = 1,2 . 

Démonstration: 

1 ) Je montre d'abord le point 1. Par définition, on a X = 3>„, x . Par w. E(w. ) i i 
le lemme 23.2, on a un isomorphisme naturel 

(I) x (M) ~ n* a>^(m) 

Par adjonction, on obtient un morphisme naturel DE (M) —• (it^)^X (il) , pour 
i 

i = 1,2 . 

2) Je montre le point 2. Comme S est noethérien, ceci implique que les 

espaces topologiques D(ŵ ) , E(ŵ ) , E et D sont quasi-compacts. Donc les 
foncteurs (TT.) , 3)„ et X commutent aux limites inductives. i * E w. i 

Pour montrer 2, je peux donc supposer ¿1 localement libre de type fini. 

Par le lemme 13.1, 2Dg(Jll) est plat et localement de type fini. Comme E est 

noethérien, 3>^(M) est localement libre de type fini. Utilisant la formule 
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(I) et la formule de la projection, on a 

v î'* w. sqd 1 * D(w.) v i' s E 

Il s'agit de prouver que l'on a 

(II) (Mi) <*i>.aD<w.) °J) • 

Il est clair que les schémas D(ŵ ) et ^ possèdent un recouvrement par les 

ouverts de la forme Ag (pour e = €(w )̂ = e(w )̂) . Ceci implique que 

D(ŵ )g et Dg sont des schémas normaux ([58], proposition 17.B). Comme TT̂  

(pour i = 1,2) est clairement birationnelle, ceci prouve (II), ce qui achève 

la preuve du lemme. 

Remarque: Ce chapitre ne contient aucun point original. J'ai indiqué toutes 

les constructions principalement parce que beaucoup des schémas que je vais 

utiliser ne sont pas noethériens. 

Dans son cours en 1982 [59], J.Tits avait construit les variétés de 

Demazure sur C par un moyen différent (suivant une idée de P.Deligne). Il a 

donné un système explicite de cartes, chacune de ces cartes étant isomorphe à 

un espace vectoriel. Pour une algèbre de Lie g semi-simple, la construction 

de Demazure est une généralisation d'une construction de Bott et Samelson. 
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V Variétés de Schubert (en caractéristique 0). 

Dans ce paragraphe, je fixe K un corps de caractéristique 0. 
Soit J une partie de I . Je pose 

PJ = {A(h.) f 0 si j ? J et À(h.) =0 si j <=• J) . Soit A e P+T . Pour 

chaque w <= . L(A)WA est de dimension 1. et les poids WA(W «= Wj) sont 

tous deux distincts (cf. pour les notations les chapitres I et II). Soit 

i «= I . L'action de l'algèbre de lie s. = ke. (B kh. kf. s'intègre en une 
action de SL(2) sur L(A) . On identifie L(A) à un SL(2)-module en 

identifiant exp e. (respectivement exp f.) à l'action de la matrice t) 

(respectivement (j ^)) . Soit HK l'une des deux matrices (_? Q) OU 
0-1 (, ~) . Pour tout poids u on a m. L(A) = L(A) 10 i v fu 's .fi i 

Soit ê  une base choisie une fois pour toute de L(A) .Soit w € Ŵ. . 

et soit s. ... s. une décomposition réduite de w . Je pose 

e . = m. . . . m. e. • L'élément e - est défini à un signe près, et est une Wf\ l< i. A W\ -1 k 
base de L(A) .On pose 'wA 

E (A) = U(b)e . 

Il est clair que E (A) est un U(b)-module de dimension finie dans L(A) . 

et l'on a L(A) = U E (A) . Soient F (A) le dual de E (A) . L(A)* le dual 
weW w w w 

de L(A) . Par dualité on a donc un morphisme surjectif de U(b)-module 

HA)* • Fw(A> . 

Soient v,w e Wj . On rappelle que les assertions suivantes sont équivalentes 

[491 [58] 

(a) Ey(A) ç Ew(A) 

(b) v < w . 

Donc lorsque l'on a v < w , on a un morphisme naturel ^(A) » Fv(A), 

et on a L(A)* = lim Fw(A) . 

On note S m = B ke M la fermeture de l'orbite du point ke M dans le w,A W\ wA 
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pro.jectif PEW(A) . Soit 2w ̂  le cone fermé correspondant dans Ŵ(A) I i*e* 

2 4 = B ke A dans E (A) . Je pose 2° A = 2 - {0} . w,A w,A wv - w,A w,A J 

Lemme 29: Soient J une partie de I , w € Wj . et w une décomposition 

réduite de w . Il existe des morphismes R-équivariants 

¿7- A : ECw) • 2° A , et i>~ : D(w) • S _ 
w,A w,A w,A 7 w,A rendant commutâtif le diagramme 

E(W) 

D(W) 

7_ 
w,A 

v 
w,A 

w,A 

S 
w,A 

Le morphisme E(w) • 2 m ne dépend que du choix de l'élément non nul 
ê  dans L(A) . Le morphisme Va est canonique, birationnel et propre. 

La variété S , est irréductible de dimension eCw) . On a w,A 
S = U B ke _ (dans PE(A)) et w,A , v,A v<w 

V€WT 
2 = U B ke (dans E <A)) w.A . v,A wwy ' v<w ' 

V€WT 

Démonstration: On montre le lemme par récurrence sur £(w) . Lorsque w = 1 , 
on a E (1 )=B ,Z° ,= k*ell . Le morphisme . est le morphisme donné par w,A A 1 ,A - * 
la formule naive : /?„ (b) = be. , pour b € B . Enfin on a S. a = Spec k , 

et v est le morphisme identifié-
w,A 
On suppose maintenant que l'on a w f 1 . Soit w une décomposition 

réduite de w . Je pose w = s.u , pour un certain i e I et u € w . 

Soit u la valeur de u dans W . Il est clair que l'on a kê  € Sri .On 
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a donc S . => P.ke , , on a donc S . = P.ke . . Comme on a P.ke . , on a w,A - 1 wA 7 w,A 1 wA 1 uA 

aussi S . = P.S (A) . Donc S . (respectivement 1° ) contient S 
w,A i u w;A w,A u,A 

(Z° .) et est P.-invariant. Par hypothèse de récurrence, on a des morphismes u,/\ i 
B-équi variants v : D(u) • S m et : E(u) • 2° , .On en ~ X U,A ~ U,A U,A U,A 
déduit des morphismes P. x D(u) • S . et P. x E(u) • 2° . , qui par 

* i w,A i v u,A 
construction des quotients factorisent en des morphismes P^-équivariants 

: P. xBD(u) > S et : P. *BE(u) • Z° A . ~ i w,A ~ i x w,A 

Les morphismes W,Aet W,A sont en particulier B-équivariants, et 

rendent commutât if le diagramme du lemme. Il est clair que v est 

birationnel donc S W,A . est irréductible de dimension £(w) . Comme D(w) est 

propre, v est également propre, donc surjective. En particulier, on a 
w,A 

S . = P.S m . Par la décomposition de Bruhat P. = B m. B U B , et w;A i u,A " i l 
l'hypothèse de récurrence, on a 

S = U P.B ke w,A i vA v<u 
v€WT 

= U (B ke U B ke A) vA s. vA v<u i 

= U (B ke A) vA 
v<w 

et le lemme en résulte. 

Soit X un espace topologique, F un fermé de X . On dit que F est 

disconnexe (ou non connexe) s'il existe deux fermés non vides disjoints F1 , 

F̂  tels que F = F, U . On dit sinon que F est connexe. On dit que X 

satisfait à la propriété (P) si tout fermé F de X est l'adhérence de ses 

points fermés. La propriété P est locale : l'espace topologique X 

satisfait (P) si et seulement si il existe un recouvrement ouvert UA °̂e 
X . chaque ouvert U satisfaisant (P) . Donc les variétés (et les schémas a x 
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de type fini) sur k satisferont (P) (par le Nullstellensatz d'Hilbert). 

Soient f : X » Y une application continue entre deux espaces 

topologiques X et Y . Je dis que f est connexe si et seulement si l'image 

réciproque de tout fermé connexe est connexe. 

Lemme 30 : Soient X , Y deux espaces topologiques, f : X • Y une 

application continue surjective et (topologiquement) fermée. On suppose que Y 

satisfait (P) . 

Alors les assertions suivantes sont équivalentes 

(a) f est connexe, 

(b) Pour tout point fermé P de Y , f 1(P) est connexe. 

Démonstration : Il est clair que l'assertion (a) implique l'assertion (b). On 

suppose à présent l'assertion (b). Soit Z un fermé de Y , connexe. On 

suppose par l'absurde que f *(Z) est disconnexe. Il existe deux fermés non 

vides disjoints X̂ , dans X tels que f *(Z) = X̂  U . Soient 

Y1 = f(Xj) , Y2 = f(X2) . Comme f est surjective on a Z = Yj U Y^ . 

Comme f est fermée, Ŷ  et Y^ sont fermés. Comme Z est connexe, on a 

Y1 n Y„ ̂  0 . Comme Y satisfait (P) , il existe un point fermé P 

appartenant à Yx n Yg . On a f 1 (P) = (f A{P) n Xj) U (f A(P) n Xg) , d'où 

une contradiction. C.Q.F.D. 

Soient X , Y deux schémas sur k . Soit f : X » Y un morphisme de 

schémas. Soient k la cloture algébrique de k et soient j : X > X et 

j : Y • Y l'extension à k . Soit f : X • Y la restriction de f à 

X et Y . On a ainsi un diagramme commutâtif 
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X Jx 
X 

f f 

Y 
Jy 

Y 

On dit que f est absolument connexe, si f est connexe. On notera que 

si f est absolument connexe, et si X et Y "sont noethériens de type fini, 

alors f est connexe. En effet soit F un fermé connexe de Y , soit F' 
-1 —1 une composante connexe de jy*(F) . Alors F" = f *(F') est connexe, et comme 

JY et Jv sont entiers, il est clair que l'on a f *(F) = jY(F") . 

Lemme 31 : 1) Soient X , Y deux B-schémas de type fini, f : X • Y un 
B-morphisme propre, surjectif absolument connexe. Alors le morphisme 

B B P. x X » P. x Y est absolument connexe, î î 
2) Soit X un P ̂ -schéma de type fini, propre. Alors le morphisme 

g 
naturel u : P. x X * X est absolument connexe. 

î 

Démonstration : Je démontre le point I. Je peux supposer k algébriquement 

clos. L'application naturelle £ : Spec(k) • P̂  détermine un diagramme 

naturel 

P. xBX 1? , X 
î 

f 

P. xBY 4 Y 

et î  , iy sont des immersions fermées. Soit P un point de P.. x Y . Il 
est clair que l'on peut supposer P € Y . On a alors f (P) = f (P) , donc 
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? (P) est connexe. Par le lemme précédent, ceci montre le lemme, car ? est 
propre et surjective. 

Je montre le point 2. Je peut supposer k algébriquement clos. Soient 
o , p : pi x X • X les morphismes d'actions et de projection sur le second 
facteur. x„ : P. x X » P. x X la factorisation canonique, 

X 1 1 g 7T : P̂  x X • P̂  x X le morphisme naturel. On a ainsi un diagramme 
commutâtif naturel 

P. x X 
TT P. xBX 

*X о и 
p P. x X X 

Le morphisme M est propre et surjectif. Il suffit donc de prouver que 
y. *(P) est connexe pour tout point fermé P € X . Comme X est de type fini, 

le corps résiduel en P est isomorphe à k . Donc p A(P) est irréductible, 

isomorphe à P̂  . Comme x̂  est un isomorphisme. donc o *(P) est 

irréductible. Comme TÏ est clairement surjective, on a ß (̂P) - w o * (P) . 

Donc il o *(P) est un fermé irréductible, donc connexe. Ceci prouve le point 

2. C.Q.F.D. 

Soient J une partie de I , w € Wj , A € Pj . Soit w une 

décomposition réduite de w . Soit S . le normalisé de S . . 
w,A w.A 

Lemme 32 : 1) le morphisme : D(w) • Ŝ  est absolument connexe. 
w,A ' 

2) Le morphisme de normalisation S M : S » S est un 
"w.A w.A w,A 

homéomorphisme. 

Démonstration : On peut supposer, pour montrer le point 1, que l'on a w ^ 1 . 
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On choisit i <= I , u e W tels que w = s., u . Soit u la valeur de u dans 

W . On va montrer le point 1 par récurrence sur e(w) . On peut donc supposer 

que le point i est montré pour le morphisme : D(u) • S A . 
u,A 
g 

Je vais montrer que le morphisme v : P. x S M • S m est absolument 
connexe. Je peux supposer k algébriquement clos. Soit Y = U S la 

reunion portant sur les v € tels que v < u , et ŝ  v < u . De manière 

naturelle, Y est un sous-schéma fermé de S et un sous-espace P. 

invariant de S M . Soient U=S , - Y , V = S - Y , On a ainsi un w,A u,A w,A 
diagramme 

P. xBY > P. xBS _ « P. xBU 
l i u,A l 

Y • S _ < V 
w, A 

Soit P un point fermé de S w, A , . Il est clair que TT, est bijective. Donc 
si P € V , rr1"(P) est réduit à un point et est connexe. Par le lemme, TT0 

est connexe. Donc si P€Y,i> (P)=TT2(P) est également connexe. Donc v 

est connexe, puisque u est propre et sur.jective. 
B **» B Par le lemme 31, le morphisme naturel u. : P. x D(u) • P. x Sw, A . est 

connexe, puisque par hypothèse de récurrence D(u) • Ŝ  ^ est connexe. Or 

on a v w,A - v 0 yw,A. . Donc v est connexe. Ceci montre le point 1. 

Le schéma D(w) est lisse, donc normal. Comme l'application 

v : D(w) » Ŝ  est birationnelle, il existe un unique morphisme 
w,A '' 

U~ : D('") » \ , A TEL QUE JW,A 
w,A w,A w,A 

Le morphisme n est propre et birationnel. Il est donc surjectif. 
w,A 

Donc pour tout fermé F £ Ŝ  on a 

jw1A(F) = "~ (F)) • 
' w,A w,A 
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Donc le morphisme j m est connexe. Comme j A est un morphisme de w,A w,A 
normalisation, .i est fini. Donc j M est bijectif, donc j est un ~w,A w,A w,A 
homéomorphisme. 

Lemme 33 : Soient J une partie de I , w <= Wj , A et M deux poids de 
pt • Il existe un isomorphisme canonique de B-variétés # : S • S , 
J * w,A w,M 

tel que pour toute décomposition réduite w de w , le diagramme 

S 
w,A 

D(w) W,A 
a 

u 
w,A 

Sw,M 

soit commutâtif. 

Démonstration : On va montrer le lemme par récurrence sur £(w) . On peut 
supposer que l'on a w f i . On suppose le lemme montré pour tous les 

u «= W_ , avec £(u) < £(w) . Les variétés S et S étant isomorphes, J v u,A u,M 
on peut noter ces variétés S T . 

On va d'abord construire un homéomorphisme naturel $ : S ^ • S . 

On fixe i € I , u € W tels que w=s^u et u < w . Soient pour tout poids 

A <= pt Y(A) = U S . . Ainsi Y(A) est un sous-schéma fermé de S . , J , v,A w,A ' v<u ' 
v>s. v 

stable par P. , et contenu dans S . . Topologiquement, les espaces S . 
1 U,A U,A 

et Y(A) ainsi que l'application continue Y(A) » S U, A . U, A sont indépendants. 
On pose Y(A) = j_1A(Y(A)) , U(A) = j_14(U(A)) . Comme j M9A _ est un 

homéomorphisme, le sous-schéma fermé Y(A) et le sous-schéma ouvert ÏÏ(A) de 

Ŝ j ne dépendent pas de A . On note ce sous-schéma Y . On a un diagramme 
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commutâtif : 

P. x ̂ (A) P. xBS . 
1 U, A 

Y(A) s . w,A 

Il est clair que comme espace topologique, S . est le coproduit de 
W, A Y(.A) et P. x S v suivant P. x Y(.À) . Les morphismes naturels i u,A i ' * 

P. x6? 
1 

P. x*Y(Â) , Y Y(À) et P. хЧ5 T y i u,I P. x S . étant des î u,A 
homéomorphismes, comme espace topologique ^ est donc le coproduit du 

système d'espace topologique 

P. x8? î P. x8? . î u,A 

Y (•) 

Le système (*) ne dépend pas de A . Donc les espaces topologiques 

S , , pour divers A € P* sont tous homeomorphes. Comme S . est 
homéomorphe à S 4 , on en déduit que les divers schémas SW, /* x sont tous 

naturellement homeomorphes. Par construction le diagramme d'espaces 

topologiques 

s A 
w,A 

w,A 
D(w) Ф 

Dwm s M 
w,M 

est commutâtif. Comme les morphismes et sont des morphismes 
w,A w,M 
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birationnels propres entre variétés normales, on a aussi 

S 'w,A*D<W> w,A 

o - {v ) o 

Donc il existe un isomorphisme naturel v- » 4> v ce qui 
S M * S w,M w,A 

prouve que # se prolonge en un isomorphisme de variétés (car un isomorphisme 

d'espace annelés entre schémas est un isomorphisme de schémas) C.Q.F.D. . 

Remarque et définition : Soient J une partie de I , w € Wj . 

Par le lemme 33, les variétés Ŝ  ̂  (A décrit P* ) sont toutes isomorphes 

entre elles. J'appelle donc variété de Schubert cette classe de variétés 

isomorphes, et je la noterai Ŝ  j . 

Soit y»(w) = { i € l / s ^ < w } , soit g0 la sous algèbre de Kac-Moody de 
g associé à la matrice de Cartan (a. .). . ,A, x , et soit J. = J n y(w] •° IJ i,j€y(w) 0 

Par construction il est clair que S w,J T et S T w, JQ sont isomorphes. 

Réciproquement, il est aisé de prouver que si J' est une autre partie 

de I telle que w appartienne à W_, , les variétés S et S T, sont 

isomorphes si et seulement si on a J n y(w) = J' n y(w) . 

On considère k' un sur-corps arbitraire de k • Pour toute partie J ç I , 

pour tout w e WT , et A € P* , je note S A(k') , S T(k') les variétés J J w,A w,J 
S . S _ construites sur k' . Par construction on a w,A w,J 

S A(k') = Spec(k') xe , S w,A V \ / Spec(k) w,A 
Soit w une décomposition réduite de w . On a un diagramme naturel : 
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D(w)(k\) 1 • D(w) 

w w 

SPEC<K'> *Spec kS~ T ' S~ . 

Ce diagramme naturel est cartésien. Comme l'extension de k • k' est 

plate, T est un monomorphisme plat. Donc par le théorème B (% IV), on a 

(#' ) o- = t*o . Comme D(w)(k') est normale, le faisceau 
w * D(wHh') S T w,J 

d'anneau (/Lt' ) o est un faisceau d'anneaux intégralement clos. Donc 
w * D('w)(k') 

Spec(k') x 0 (, sS est normale, donc on a bpecvKj j 

S T(k') = Spec(k') x a,S , ce qui prouve que s T est absolument w, J Spec (Ky^j W,J 

normale. En particulier S W j est naturellement définie sur Ç et pour tout 

A € le morphisme j » S est un homéomorphisme absolu. On 
J W,A W,A 

montrera plus loin que Sw j est naturellement définie sur Z (cf. ch. XIIX). 

Lemme 34 : Soient X , Y deux schémas de type fini sur k , et X , Y leur 

normalisation (respectivement). Soit f : X » Y un morphisme de variétés. 

On suppose que le morphisme de normalisation Y » Y est un homéomorphisme 

absolu, et que X est réduit. 

Alors il existe un unique morphisme f : X • Y rendant commutâtif le 

diagramme : 

f ~ X : • Y 

i , i 
X • Y 
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Démonstration : Cette assertion est locale relativement à X et à Y . Je 

peux donc supposer X et Y affines, ce qui implique que X et Y sont 

affines. Soient donc A , A , B , B les algèbres telles que l'on ait 

X = Spec(B) , X = Spec(B) 

Y = Spec(A) , Y = Spec(A) . 

La variété X est la réunion disjointe des normalisés des composantes 

irréductibles de X . Je peux donc supposer X irréductible, i.e. B intègre. 

On a ainsi un diagramme 

A > В 
j 

A Ф В 

rendant le diagramme suivant commutâtif : 

А 1 • В 

<1 I 
Ф 

А • В 

Soit p le noyau de £ . Comme B est intègre, l'idéal p est premier. 

Soit q =Vj(p)A . Comme j est fini et birationnel on a j *(q) = p . Comme 

Spec(A) • Spec(A) est un homéomorphisme q est premier. Par hypothèse, 

pour tout sur-corps k' et k , le morphisme 

Spec(Â/q ® k') • Spec(A/p ® k') est un homéomorphisme. Soit k , la 

clôture algébrique de k . Il vient donc que l'extension A/p 9 k • Â/q 9 K 

est "birationnelle" (au sens que cette extension fournit un isomorphisme sur 

l'anneau des fractions), puisque k est de caractéristique 0 . Comme le 

morphisme A/p • A/q est également finie, on obtient ainsi un morphisme 
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A/q • B , d'où il existe une application 4> : A » B rendant commutatif 

le diagramme (*). En outre i est l'unique morphisme rendant commutatif le 

diagramme (*), et factorisant à travers A/q . 

Comme il est clair qu'un morphisme ï : A • B rendant commutatif (*) 

factorise à travers A/q , ce morphisme est nécessairement unique. 

Remarque : Le lemme précédent est faux en caractéristique non nulle. Soit p 

un nombre premier, F un corps de caractéristique p . Soit A la 

sous-algèbre de F[X,Y] : A = r[XP] © Y F[X,Y] . Soit B = IF[XP] . Comme 

I = YF[X,Y] est un idéal de A , on a un morphisme surjectif naturel 

A • B . On a A = F[X,Y] . Il est clair que Spec(A) • Spec(A) est un 

homéomorphisme absolu. L'idéal I est premier dans A , et l'on a 

A/I = F[X] , ce qui interdit l'existence d'un morphisme * . 

Lemme 35 : Soient J une partie de I , w , W € Wj , avec v < w . Il existe 

un morphisme naturel unique i : j • Sw j de B-schémas, tel que pour 

tout A € , le diagramme 

S _ > s T 
v,J w,J 

S л - - > S л 
v,A w,A soit commutatif. 

Démonstration : Soit A e P̂  . On a précédemment remarqué que le morphisme 
j : S T • S est un homéomorphisme absolu. Donc par le lemme 33, il 
existe un morphisme i : S T • S T rendant commutatif le diagramme : 

A v?J w,J 
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(•) 
*V,J 

IA S 
w, J 

J V?V JWA 

S JA 
S WM 

En fait par construction, W,J est même l'unique morphisme d'espace 

annelé rendant commutâtif le diagramme (*). Reste à montrer que î  ne dépend 

pas en fait de A . 

Soient w une décomposition réduite de w , v une décomposition réduite 

de v , avec v < w . Soit j : D(v) * D(w) l'une des immersions fermées 

construites au % IV. Comme les morphismes j *v,A „ : S*v,A _ • S , et 
jw,A . : Sw,A T 1 Sw,A . sont des isomorphismes, en tant qu'application continue 

iA ne dépend pas de A . On a ainsi un diagramme commutatif d'applications 

continues 

D(v) j D(w) 

v w 

S T V,J i Sw,4 

Le morphisme naturel de faisceaux d'anneaux o(D(w)) • j^e(D(v)) , 
d'où un morphisme de faisceaux d'anneaux (y^) ̂ v-(D (w) ) » (¿0 J^CKv)) 

On obtient ainsi un morphisme de faisceaux d'anneaux v s T W,J » i oV,J 
W,J W,J 

Ainsi l'application continue i se prolonge en un morphisme d'espaces 

annelés. Comme pour tout A € P* , par construction le diagramme d'espace 

annelé 

77 



O. MATHIEU 

s т 
v, J 

i S T 

vfÂ w,A 
est commutâtif, on a ï = 1 .En particulier ï est un morphisme de schémas, 

et i ne dépend pas de A (en particulier cette construction est 

indépendante des choix faits : w , v , j ). 

Remarque : Pour l'instant, je n'ai pas encore prouvé que le morphisme 
S v,J , • S v,J , est une immersion fermée. Ce fait sera un des points du 

théorème 2 du chapitre XI (cf. [41]). Néanmoins l'application SV j •SV j 

est un homéomorphisme sur son image. 

Je fixe J une partie de I , w <= Wj , A € Pj . L' immersion fermée 

(définissant S . ) s . » PE (A) détermine un faisceau inversible 
wA wA w ' 

canonique o. (1) . Je noterai ce faisceau X (-A) . Soit i c i un élément b . w wA 

tel que ŝ w < w . Alors it^(-À) est naturellement P^-équivariant, et 

inversible. Soit j . S T > S . le morphisme de normalisation. Je pose 
"wA w,J wA r 

«W(-A) = JwA Ŵ(-A) . Soit w une décomposition réduite de w . Soit 
v w,A : D(w) » S . et \i : D(w) » S _ les morphismes naturels. Soit 

u € Wj , u < w . Soit u une décomposition réduite de u , u < w . Soit 

T : S . • S , le morphisme canonique, ï : S _ ». S _ le morphisme 
uA wA ~ u,J w,J 

construit au lemme 35, soit j : D(u) • D(w) l'une des immersions fermées 
construites au S IV. On a ainsi un diagramme commutatif 
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D(u) D(w) 

u.J u 
w, J 

S u, J S 
W, J 

uj ŵA 
uA wA 

Lemme 36 : (1) On a i X (-A) = X (-A) . w u 
(2) °n a \ X (-A = *-<-*> • 

' w 
(3) Ona (/i ) Ä (-A) = 2 (-A) . *- _ * ~ w w, J w 

Démonstration : 1) Je montre le point 1. Par construction on a 
i*(X (-A)) = X (~A) . Par ailleurs, on a i o j = i o j . . On a donc 

W u UA WA 
r2w(-A) = r J|rt*xw(-A) 

= J x 1 JL (~A) wA w 
- j (-A) wA u 
= S (-A) . u ' 

2) Pour montrer le point 2, on va d'abord pour chaque w «= W construire un 
morphisme naturel v *X (-A) • X f-A) . Soit 2°% =2 . - (o) . Soit ~ x w ~ wA wA w,A w 
®wA * ̂ wA * ŵA morPhisme naturel. Par le lemme 28, on a un diagramme 
commutâtif naturel : 
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D(w) 
TT 
w E(w) 

V 
W,A 

n 
w,A 

wA 
0 i 
wA wA 

Soit le caractère du groupe B correspondant au poids A . Z^ 

est naturellement une B-variété à droite, cette structure est donnée par la 

"formule" a.b = x^(b)a , pour chaque o € Z° , b € B . Cette formule à un 

sens puisque MWA est un cone. Pour cette structure, l'application naturelle 
n est un B x B-morphisme. On muni D(w) et S , de structure de (w wA 
B-variété à droite, pour l'action triviale. Le morphisme naturel 

i » (/7 ) o est B x B-équivariant, et détermine un morphisme 
2° w,A * E(w) 

B x B-équivariant. (9 k) o > (6 J (ff ) o . = ) (w ) o . 
WA * »»0 W/t * »*¥-I/""\ \ * ™ * n / \ 

Pour éviter des manipulations trop abstraites, je vais décrire les divers 

faisceaux en termes de fonctions. Cependant on peut décrire les fonctions 

propres sous l'action de B en termes (plus corrects) de coproduit comme au 

% IV. 
Le faisceau (9 x) o est un faisceau de o„ -algèbre graduée, et son wA * _o S . Z . wA wA 

terme de degré 1 est le faisceau £ (-À) . Compte tenu de la formule 

o.b = x.(b)o (pour chaque b € B , o e 2° ) pour tout ouvert U de S . 
A ViA UA on a 

ев J о wA * 
wA 

(U) = {f € i> 
wA 

WA * »»0 W/t * »*¥-I/" BLSZ 

pour tout о € 9 ^ (U) , b € B} . 
Comme le morphisme Ф : (®мд) ' 2° 

wA 
(v) 

w,A 
(TT ) o 

w e(v) sz 

B x B-équivariant #(#w(-A)) est inclus dans le sous-faisceau ? de 
(v^ ) (71̂ ) i> ^ défini par 

w,A w E(w) 

est 
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y(U) = fr fe » (V)/r(,ob) = r(/>)*. (b) , pour tout p <= V et b € B) 
E(w) 

où l'on a posé V = TI^ (U) . Par construction on a 9" = (v )^x (-A) . 
w w,A w.A w 

Ainsi on a construit un morphisme # : X (-A) • (u^ )^X^(-A) . Par 
w, A w 

adjonction on a donc un morphisme naturel rV : (v^ )*X (-A) » X^(-A) . 
w,A w,A w 

Lorsqu'on voudra faire des changements du corps de base on notera Y (k) ce 

morphisme. 

3) Soit u un élément de Wj , u < w et u une décomposition réduite de 

u . Soit j une des immersions fermées j : D(u) » D(w) construites au 

S IV. On a ainsi un diagramme commutâtif 

D(u) j D(w) 

ZS 
u,A 

SZS 
w, A 

S ил 
i wA 

On a o j = i o ̂  . Donc j"V_ est un morphisme 
w,A u,A w,A 

J*Y : (y )* X (-A) » ^(-A) . En reprenant la construction de Y , 
w,A u,A u u,A 

il vient que l'on a j*F = 
w,A u,A 

4) Soit k' un sur-corps de k . Je note $ : D(w)(k') • D(w)(k) et 
V ' ^(k') • Ŝ  ^(k) les morphismes naturels. Ces morphismes sont les 
morphismes du changement de base Spec(k') » Spec(k) . Ainsi le morphisme 
naturel ç ï* (k) est un morphisme 

w, A 

t*Y^ (k) : (iv_ )*« (~A)(k') •^(--A)(k') . En reprenant la construction 
w,A w,A w 

de !^ , il vient que l'on a Ç*Y^ (k) = ^ (k') . 
w,A w,A w,A 

Le morphisme ï est fidèlement plat. Donc si k désigne la clôture 
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algébrique de k , il suffit de montrer que ?w,A w,A (k ) est un isomorphisme. 

Ainsi on peut supposer k algébriquement clos. 

5) Soit X une variété. Pour chaque point fermé P de X soit 

i : P • X l'inclusion correspondante. Soit : X • M un morphisme 

de ^-module cohérent. D'après le lemme de Nakayama, pour que # soit un 

isomorphisme, il suffit de prouver que pour chaque point fermé P € X , 

l'application sur la fibre i* £ est un isomorphisme. 

Je vais montrer que ¥ est un isomorphisme, par récurrence sur 
w,A 

e(w) . Il est clair que je peux supposer que l'on a w f 1 . Je choisis 

i € I , u € W tel que w = s.u . Je peux donc supposer que ¥ u, A est un 

isomorphisme. Soit j : D(u) • D(w) l'immersion fermée naturelle. 

Par construction, il est clair que f est un P.-morphismes de 
w, A 

o -modules P.-équivariants. Soit P un point fermé de D(w) . Comme on a 
D(w) 1 

D(w) = P̂  x D(u) , pour vérifier que ipw,A est un isomorphisme, il suffit 

de le vérifier lorsque P e D(u) . En effet soit TT : x D(u) • P /̂B le 

morphisme naturel qui envoie D(u) sur un unique point noté <» . Comme k 

est algébriquement clos, le groupe discret des points fermés de P̂  opère de 

manière transitive sur les points fermés de P̂ /B (car P̂ /B est isomorphe à 
1 -\ ^ IP , et P̂  agit comme le groupe PSL(2)). On a TT (<») = D(u) . Donc on 

peut supposer P € D(u) . 

On a alors I* = i* j * 0̂  . Par le point 3, on a j*f̂  = ?̂  
w,A w,A w,A u,A 

* * 
Donc on a ip ^ = ip , ce qui prouve que est un isomorphisme. 

w,A u,A w,A 
6) On a X (-A) = (u )*X (-A) , d'où X (-A) = ju )*£ (-A) , ce qui prouve 

w w,A w w,J 
le point 2 du lemme. On a (u ) o - o- , d'où par la formule de 

w,J * D(w) S 
projection (fÂ ) X (-A) = X (-A) . Ceci montre le point 3 du lemme. C.Q.F.D. 

w,J * w 
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Comme corollaire on obtient les deux lemmes suivants. 

Lemme 37 : On a H°(S T , 2 (-A)) = D (k_J . 

Ce lemme résulte en effet du point 3 du lemme précédent et du lemme. On 

conserve toujours les mêmes notations. Soit Pj = {A € P/A(ĥ ) = 0 V j € J) . 

Il est clair que le groupe Pj est engendré par le semi-groupe Pj . Je note 

2w l'application de P* dans Pic(Sw )̂ groupe des fibres inversibles de 

ŵA ' ^terminée Par A * ~A) 

Lemme 38 : L'application X^ se prolonge en un morphisme de groupes de Pj 
dans Pic(S J . 

w,A 

Démonstration : Pour montrer le lemme, il suffit donc de montrer que 

si A , fi € Pj , on a 2w(- h - ia) - * *J~v) . 

On a 2w(-A - n) = ) ^ )*2W(- A - /i) 
W,J W,J 

= )^(£j-A) ® Xj-fi)) 
w, J w w 

= >.G*LH0 • >„<2w<-*0> . 
W,J w W,J 

D'où par la formule de projection 

2w<- A - n) = ( (^ )<2W("A)) ® 2w()/i) w, J 
2 (-a) « 2 (-/u) . 

Ce fait sera utilisé dans le paragraphe consacré aux groupes de Picard 

des variétés de Schubert (cf. chapitre XII). 

Soient E un espace vectoriel de dimension finie, X une sous-variété 

fermée (donc supposée irréductible) de (PE , et x = o (1) le faisceau tordu 

de Serre. Je note S(X) l'anneau des fonctions homogènes de X , et pour tout 

entier n sa composante de degré n est notée Sn(Xj . Le morphisme 

83 



O. MATHIEU 

k[E] • S(X) est un morphisme surjectif d'algèbres graduées. Soient 

j : X » X la normalisation de X , et £ = j*# . Soit S(X) la cloture 

intégrale de S(X) . L'algèbre S(X) est naturellement graduée. 

Soient S+ l'idéal de 

S(X) : S+ = ®n>QSn(X) , et S°(X) = {x € S(X) , an , (S+)n.x c S(X)} . Alors 

S°(X) est une algèbre graduée, et l'on a S(X) ç S°<X) c S(X) . On notera que 

S(X) est de codimension finie dans S°(X) (d'après le théorème de Serre sur 

les faisceaux amples). On note S°(X) et Sn(X) les composantes homogènes de 

S°(X) et de S(X) . 

On rappelle le lemme usuel suivant 

Lemme 39 : 1) Pour tout entier n > 0 , on a des isomorphismes naturels 

Ĥ X , *®n) = S°(X) et H°(X , 20n) = S (X) . 

2) X est un faisceau ample. 

Démonstration : Pour le point 1 du lemme, on peut se reporter au chapitre II % 

5 de [27] (et en particulier exercice 5.14). Le second point résulte du fait 

qu'un morphisme fini conserve l'amplitude ([26]). 

En conclusion, on remarque qu'à tout triplet (A,J,w) avec J £ I , 

w € Wj , A € Pj , on peut associer trois anneaux 

1) L'anneau kfl j . 

2) L'anneau ®n>0̂ °(̂ w »̂̂ (~A)*n) * QUE Par définition je note A(w,A) . 

3) L'anneau n>o © w,Av H°(S .,2(-A)®n) , que par définition je note ACw,A) . 

On a des morphismes birationnels finis k[̂ w ^] >• A(w,A) • A(w,A) 

d'anneaux gradués. En outre par le lemme 39, A(w,A) est intégralement clos. 

Par construction, on a kfl . "L = F (À) . Soit à présent v € WT , v < w . Il 

existe des morphismes naturels k[2 .1 • k\I .] (ce morphisme étant 
1 w.À" - v,A N 

surjectif) et A(w,A) > A(v,A) . Il existe deux méthodes pour construire un 
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morphisme d'anneaux A(w,A) • A(v,A) rendant commutatif le diagramme 

A(w,A) • A(v,À) 

A(w,A) • A(v,A) 

La première consiste à identifier A(w.À) à © x D (k Â(v.A) QZZZ. , et AZ a 
€* D (k . ) et utiliser le morphisme naturel de foncteurs D • D 
n>o v -nA w v 

La seconde consiste à utiliser le morphisme S v,A 4 • S v,A , et le point i du 
lemme 36. 

On remarque que ces différents morphismes commutent à l'action de B . Je 

note I . le spectre de A(w,A) , i.e. le normalisé de I . . w,A w.A 
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VI. La formule de la limite inductive. 

On pose zsqrt = IR ®2 ASE = IR . On a une inclusion naturelle 

P • hr . Un sous-ensemble C de P est dit convexe, si C est 

l'intersection de P est d'un convexe de . Tout sous-ensemble C de P 

est contenu dans un convexe minimal, que je note E(C) , et que j'appelle 

l'enveloppe convexe de C . 

Soit M € ^(g) . Je pose 

P(M) = {A € P, MA fi {0}}. 

Lemme 40 : Soit M e <t(Q) , M de dimension finie. 

Soit i e I . On a alors 
s. 

P(D 1M) c E(P(M) U s.P(M)) . 

s. 
Démonstration : Le vpi -module D M est quotient de ^(JK) •«^^M ' **oit 

fj. e P(D M) . Alors il existe n e w , tel que \x + ncu € P(M) . Comme 

P(D M) est stable par ŝ  , il existe de même n' € IN tel que ŝ /i 

+ n'eu e P(M) . Le 1 enraie en résulte. 

Soit A € P+ . Je note C(A) l'enveloppe convexe de l'ensemble {wA , 
W € W} . 

Lemme 41 : Soient A e P+ , et w € W . 

1) On a P(DW(A)) ç C(A) . 

2) L'espace vectoriel DW(A) 4 est de dimension un. 
wA 

3) On a DW(A) = U(b).f A où f A est une base de DW(A) _ 
— WA WA WA 

Démonstration : Le point 1 résulte du lemme 40 et d'une récurrence triviale. 

Je démontre les points 2 et 3 par récurrence sur fc(w) . Lorsque w = 1 , 
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il n'y a rien à montrer. Je peux donc supposer e(w) > 1 . Soient i e I , 

v < w tels que w = ŝ v . 

Par récurrence les points 2 et 3 du lemme sont supposés vérifiés par 

v . Soit TÏ : DV(A) • DW(A) le morphisme naturel. Comme DW(A) est un 

quotient de u î)®U(b) °V(A) » on a : 

DV(A) = U(B.) ir(DV(A)) 

= U(p.) ir(U(b).DV(A)vA) 

= U(£.) îr(DV(A)vA) 

= U(2i) D>)yA . 

Comme D (A) est un UQ^)-module de dimension finie, on a aussitôt 

DW(A) = UCE^ DW(A) . Or il est clair que l'on a wA - ou i C(A) . Donc on a 

DW(A) = U(b).(DW(A)wA . 
Il reste à montrer que l'espace vectoriel DW(A)ŵ  est de dimension un. 

On a 
DV(A) = k f A © X v ' VA 

ou X = © D (A) . On a D (A) = U(b)f A , donc X est un 
/i/*vA 

U(b)-sous-module de DV(A) . Comme on a vA + ou ^ C(A) , k f^ est un 

U(JK)-sous-module de DV(A) . Donc DV(A) est somme directe des deux 

U(b.)-modules X et kf A . — i vA 
s . s. 

On a donc D (A) = D (kfyA) © D X comme U(a. )-modules. On a 
P(X) n {vA + Zou} = 0 , donc on a par le lemme 40, P(D XX) n {vA + Zou} = 0 

s. s. 
D'où on a DW(A) A = D x(k f A) A . Il est clair que D X(k f A) A est de wA vA'wA VA WA 
dimension un, ce qui prouve le lemme. 

Du lemme précédent résulte le lemme suivant. 

Lemme 4g : Pour chaque w € W , il existe une application naturelle c : 
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Dw(A) • L(A) . On a Im cw = E Í̂A) . En outre pour v < w le diagramme 

naturel 

DV(A) > DW(A) 

L(A) • L(A) est commutât if. 

Démonstration : L'espace vectoriel L(A), est un U(b)-sous-module de 

dimension un dans L(A) . On a donc un morphisme naturel non nul ĉ  : 

KA • L(A) • Comme le module L(A) est integrable, on obtient par récurrence 

sur é(w) pour chaque w € W un morphisme naturel DW(A) • L(A) 

construit comme suit. Soit w € W . On choisit i € I , v € W tels que 

w = ŝ v • On suppose construit un morphisme DV(A) • L(A) . On en déduit un 

morphisme naturel D D (A) • L(A) . Comme précédemment il est clair que le 

morphisme DW(A) • L(A) ne dépend pas des choix faits. On notera que ce 

morphisme est non nul, car il est aisé de montrer par récurrence que sur £(w) 

que c (f ) i 0 . On a donc c (kf ) = ke . Comme par le lemme, on a 

D (A) = U(b)e v,A Wr , on en déduit que l'on a tw\ Wr Im c (A) = E (A) . 

Soit g l'algèbre de Lie engendrée par l'espace vectoriel h et les 

générateurs {ê } , {f̂ } (i € I) et définie par les relations (I), (II), 

(III), (IV) et (V) . Il est clair que g est la somme amalgamée des algebres 

de Lie Pj suivant leur sous-algèbre de Lie commune b . les U(b)-modules 

DW(A) forment un système inductif. Soit E(A) = lim DW(A) . Il est clair que 

E(A) appartient à ^(b) . 

Lemme 43 : Le U(b)-module Е(Л) est naturellement un U(£)-module. 

Démonstration : Soit i c i . Par le lemme 11 .W est un sous-ensemble cofinal î 
dans W . On a donc E(A) = lim DW(A) . Donc E(A) un naturellement un 

î 
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U(jx)-module localement fini. Par construction de g , E(A) est donc 

naturellement un U(jj)-module. Il reste à vérifier que E(A) est en fait un 

U<*) -module, i. e. que pour tout couple i, j « I , i / j , on a 

ad(f ) 
-a.(h ) + 1 

(f J.B(A) = {0} . 

Soit X. . = 9 •1.-1 
n>-tx.(h.)+l 

k adn(f.)(f.) . Il est clair que X. . est un 

1l(a.)-sous-module de g , et que l'on a X. . = ad(e.)(X. .) . Or e. agit de i i,j i i,j i 
manière localement nilpotente sur Е(Л) . Soit Y. . = X. ..Е(Л) . Donc on a 

!» J 11 J Y. . = e. Y. . . Or Е(Л) est un U(a.)-module localement fini, donc Y. . i,J i i,j -i ij 
est également un U(a.)-module localement fini, et donc Y. . = {0} , et donc i i, J 

-a.(h.)+l 
ad(f.) J 1 (f )B(A) = {0} . 

Les applications naturelles cw déterminent un morphisme naturel 
с : Е(Л) • L(A) . 

Lemme 44 : Le morphisme naturel с est un isomorphisme. 

Démonstration : Le morphisme с est un morphisme de U(b)-modules. Comme 
Е(Л) et L(A) sont des U(â )-modules localement finis, pour tout i € I , с 
est un morphisme de U(p )̂-modules. Ainsi с est un morphisme de 
U(g)-modules. 

Pour chaque w € W , je note encore f̂  l'image de f̂  dans Е(Л) . 
On a с (kf ) = ke , donc on a c(kf ) = ke . Ceci prouve en particulier 

W WA WA WA WA 
que l'on a с Ф 0 . Par le lemme 41, on a DW(A) = U(b)f , , On a donc 
E(A) = U U(b)fwA . On pose E' = U(b~)fA . Comme par le lemme 41 les poids de 
E(A) sont contenus dans С(A) , on a n+ fж = {0} . Par le théorème de 

Poincaré-Birkhoff-Witt, E' est donc un U(̂ )-sous-module de E(A) . 

On va montrer par récurrence sur e(w) que l'on a wA f . e E' . Soit 

w € W . On peut supposer w ^ 1 . Soit i € I , v € W tels que w = ŝ v , 
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VAC^) 
v < w . Il est clair que l'on a kf wa = f\ **vA * Donc s* Par hypothèse de 
récurrence on a f A € E' , on a f € E' . On a donc E(A) = E' , et donc vA wA 
E(A) = U(b )fA . Donc E(A) est un quotient intégrable de V(A) , et s'envoie 

surjectivement (par c) sur L(A) . Comme L(A) est le quotient maximal parmi 

les quotients intégrable de V(A) , le morphisme c est un isomorphisme. 

Lemme 45 : Soient J une partie de I , A e P* . Les deux assertions 

suivantes sont équivalentes 

(1) Pour tout w € W l'application d : F (A) • D (- A) est 
w w w 

surjective. 

(2) Pour tout w , v € Wj avec w > v et fc(w) = e(v) + 1 , le 

morphisme D (- A) • v̂̂ ~ ^ es^ surJeĉ -̂̂ '• 

Démonstration : Je vais d'abord prouver que l'assertion (1) implique 

l'assertion (2) . Par le lemme l'application cw : DW(A) • EW(A) est 

surjective. Comme cette application est la transposée de d̂  , l'assertion (1) 

implique que l'application ĉ  est un isomorphisme. L'injectivité de 

l'application Ev(A) • ŵ̂Â  implique donc la surjectivité des applications 

nw(- A) • D(- A) pour tout couple v, w avec v < w . En particulier 

l'assertion (2) est satisfaite. 

A présent je suppose l'assertion (2) . Tout élément x € W s'écrit de 

manière unique x = x' x" , où x' € Wj et où x" appartient au sous-groupe 

engendré par les réflexions sj(«j € J) «En outre si y € W , y < x on a 

y' < x' . Donc l'assertion (2) implique en fait que pour tout couple v , w 

d'éléments de W avec v < w l'application D (- A) » v̂̂ ~ ^ est 

surjective. Donc les applications DV(A) • DW(A) sont injective, donc 

DW(A) s'injecte dans L(A) = lim DV(A) (par le lemme 42). Donc l'application 

c : DW(A) • E (A) est injective, ce qui prouve que dtj est surjective. 
w w w 

C.Q.F.D. 

90 



VII Scindage - Calcul de ww 

Il Soit X une variété, n un entier, X un ff^-module. L'opération de 

puissance n ième donne une application (en général non linéaire) de faisceaux 

Z : x x*n . 

On suppose que le corps de base est de caractéristique p . Selon 

Metha-Ramanan et Ramanathan [17-19-20] , on dit que la variété X est 

scindable, en notant F le morphisme de Frobenius, le morphisme naturel de 

O y-module zqaa : Cf^ » «̂̂ X eŜ  scin(*able, i*e* s'il existe un morphisme de 
O ̂ -module aw : F̂ tf̂  • as tel que ô o = id^ .S i f : X » Y est un 

morphisme de variétés, les variétés X et Y sont dites compatiblement 

scindables si et seulement s'il existe des scindages et oy de X et de 

Y respectivement, qui rendent commutatif le diagramme suivant : 

ffY °Y Fa y 

fa xy 
f.°x f F <TV * * X 

Soit X une variété scindable. Soit un scmdage de X , et £ un 

faisceau inversible sur X . D'après [47-50-51] , le scindage définit 

une application linéaire : H°(X,.£0p) • H°(X,£) telle que o~x o 2p = 

idl . En outre si f : X —• Y est un morphisme de variétés, si X et 
IH°(X,S) 

Y sont compatiblement scindables par des scindages et oy , et si X 

est un faisceau inversible de Y le diagramme suivant est commutatif 
H°(Y,a8p) °Y 

H°(Y,*) 

H°(X,f**8p) °x 
H (x,f a) 

Soit G un groupe algébrique déployé, B un sous-groupe de Borel, Y 

une variété de Schubert de G/B . Ramanan et Ramanathan ont prouvé que Y et 

G/B sont compatiblement scindés, à l'aide du critère suivant (cf. par exemple 

[50]). 
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Théorème : Soit X une variété absolument lisse complète sur un corps k , de 

dimension n . Soit P un k point fermé. Soit Z^,...,Z n sous-variétés 

irréductibles, de codimension un, lisses , et telles que 

TpZ1 n...n ZpZn = {0} (dans TpZ) . 

Soit wx le faisceau des formes différentielles de degré maximal. Soit 

Z le diviseur Z = [Ẑ ] +...+[Zr] . On suppose que l'on a 

(Wx)1_P = *((p - 1) Z + D) 

où D est un diviseur effectif tel que P £ D . 

Alors la variété X est scindable, compatiblement à chacune des n 

immersions Z. » X . 
i 

Dans la suite j'appellerai ce résultat théorème de 

Metha-Ramanan-Ramanathan. On pourra se reportera [47], [50] et [51] pour 

trouver les démonstrations. J'ai cependant modifié très légèrement l'énoncé 

pour simplifier l'utilisation du théorème de semi-continuité. Remplacer un 

corps algébriquement clos par un corps parfait est inofffensif dès que l'on 

choisit pour P un point rationnel. La condition TpZj n ... n TpZR = {0} 

n'est que la traduction du fait que localement les équations définissant les 

hypersurfaces Ẑ  forment un système de paramètres. 

%2 Dans cette section je fixe k un corps de caractéristique arbitraire, X 

une variété complète et lisse sur k , et TT : Y » X un fibre localement 

trivial de fibre IP* , Je suppose que ce fibre possède une section, i. e. 

qu'il existe a : X » Y un morphisme tel que tï o O = id^ . Par hypothèse 

Y est une variété lisse et complète. Je note C1(X) et Cl(Y) les groupes 

de classes de diviseurs de X et de Y respectivement. Comme les variétés X 

et Y sont lisses, ces groupes C1(X) et C1(Y) s'identifient naturellement 

aux groupes de Picard Pic(X) et Pic(Y) . Aussi le morphisme n induit un 
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morphisme de groupes 7i* : C1(X) » Cl(Y) . L'image du morphisme o est une 

sous-variété de codimension un dans Y , et cette variété définit un diviseur 

que je note D . J'ai ainsi défini une application naturelle 

Z D x C1(X) • C1(Y) . 

Lemme 46 : L'application natuelle Z D x C1(X) » C1(Y) est un isomorphisme. 

Démonstration : Ce lemme est facile et bien connu. Je vais juste indiquer 

comment construire 1'isomorphisme inverse CI(Y) » CI(X) ® Z D . 

Soit £ le point générique de X . Je pose PA = • f*ar construction, 

on a donc un isomorphisme JI ($) a PA . J e note 

i: £ » X et j : PA » Y les morphismes correspondants. 

L'isomorphisme canonique CI(PA) * Z D , et le morphisme 

j * : Cl (Y) • CI(PA) détermine un morphisme Cl (Y) • Z D que l'on 

appelle le degré et que je noterai deg . On a ainsi un morphisme 

(o*,deg): CI(Y) » CI(X) ® Z D , qui est 1 ' isomorphisme inverse 

cherché. J'utiliserai ces notations dans les lemmes suivants. 

Lemme 47 : Soit X un fibre inversible sur Y . Les assertions suivantes sont 

équivalentes 

(1) X provient de X , i. e. il existe un fibre inversible X1 sur X tel 

que X = it*X* 

(2) deg X = 0 

Lorsque l'une de ces conditions équivalentes sont réalisées, alors 

X = 71 o X . 

Démonstration : Le lemme résulte de la suite exacte 

0 ¥ C1(X) — ¥ C1(Y) -Ë2L> Z ¥ 0 , et du fait que les variétés sont 

lisses. 
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Soit à présent ï le faisceau d'idéaux déterminé par l'image de o . On 
a donc * ~ #(~D) . Je pose D' = o*(D) . Si on considère >/>^ comme un 

fibre inversible sur X , on a donc s/ss OC x(- D') . Soit E = ÎI D' . 

Lemme 48 : Soit X un fibre inversible sur Y , soit d son degré. On a 

X = X(dD) 9 X(- dE) 9 Jl*a*X . 

Démonstration : Le fibre inversible X 9 X(- dD) est de degré 0 . On a donc 

X 9 X(- dD) = Ti*a*(X 9 X(- dD)) 

= TÏ*O*X 9 X(~ dE) 

d'où le lemme. 

Lemme 49 : On a flV|X = X(E - 2D) . 

Démonstration : Je considère la seconde suite exacte (proposition 8-12[27]) : 

v>2 — QY,X » oom —. aaW )x —. o . 

Comme le morphisme xr : o(X) » X est un isomorphisme, on a 

fi /«M» = 0 . Je peux considérer $>/$> et C ,vS comme des faisceaux du 

support a(X) . La seconde suite exacte donne donc un morphisme surjectif 

*> : */*2 , o* fiVjX > 0 . 

Il est clair (en examinant le point générique) que ce morphisme est non 

nul. Commessss et o 8y|x son*- inversible, le morphisme TP est un 

isomorphisme. (Remarque : Plus simplement comme TX est lisse, ¥ est 

injective). 

Il est clair que ftyjx* est ê degré - 2 . J'applique le lemme précédent. 

On a donc 
12 , = 2(2E - 2D) 9 ir*o* ay ex 

Or on a 
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* * * 2 7i o fiV|X = 7i 

= 7T*2(- D') 

= E) . 

D'où on a flV|X = 2(E - 2D) 

§3 Dans cette troisième section je vais calculer le faisceau w des formes 

de degré maximal sur la variété de Demazure D(w) , pour chaque w € W . 

Je fixe w € W , w f 1 . Soit u € W , et i € I tels que w = uŝ  . 

Soient 

7T : D(w) • D(u) 

a : D(u) > D(w) 

les morphismes construits au paragraphe IV. Je rappelle que 7r est une 

fibration localement triviale de fibre P* , et o est une section de i\ . 

Plus généralement, soit M un B schéma à droite, de sorte que l'action 

de B soit localement libre, et que le quotient soit une variété lisse. Soit 

M' = M x P̂  . La projection naturelle P̂ /B » Spec(k) induit une fibration 

localement triviale de fibre P^B tr : M'/B • M/B . 

De même la section spec(k) » B/B » P̂ /B induit une section 

a : M/B > M'/B . 

Soit h € P . Le poids A définit un B-module de dimension un, que je 

note encore A . Je pose 

*(A) = 2>M(A) 

2'(A) = 2>M,(A) 

Comme M/B et M'/B sont supposées être des variétés, les faisceaux 

X(A) et #'(A) sont inversibles, par le lemme 23. 

Par la section précédente de ce paragraphe, il existe un morphisme deg : 

C1(M'/B) > z . 

Lemme 50: Soit A € P+ . 
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(1) o* *'(A) = *(A) . 

(2) deg(*'(A)) = - A(h.) 

Démonstrat ion : Le point 1 résulte du lemme 23. Pour le point 2 , on se 

ramène au cas où M/B est un point. Mais alors M'/B = P̂ /B et I e lemme est 

clair. 

À présent je vais définir des sous-variétés ZW,...,Z^w^ de codimension 

1 dans 3f(w) , par récurrence sur 6(w) . Je suppose définies les 

sous-variétés Ẑ  . . . Zu l(u) par hypothèse de récurrence. Je pose 

ZW = ÏT^z") pour 1 < i< e(u) 

ZW, v = D(u) où D(u) est considéré comme 

une sous-variété de D(w) par a . 

Pour alléger les notations, je pose n = £(w) . 

Soit ZW = [Zp + ... + [Z*J l'élément de Cl(D(w)) correspondant. 
w w Soit P l'intersection Z. n ... n Z (intersection est considérée ici w l n 

ensemblistement). Comme a est une section de n , on a (ensemblistement), 

pour tout entier 1 < i < n-1 
ZW n D(u) = ZU . i i 

Je suppose u f 1 . On obtient alors Pw = P u . Lorsque w est de 

longueur 1 , P̂  est réduit à un point. Ainsi, pour tout w € W , P̂  est 

réduit à un point. Ce point correspond à l'application naturelle construite 

par récurrence D(l) » D(w) . 

Lemme 51 : Soit w € W , n = t(yt) . Les sous-variétés Ẑ  (1 < i < n) sont 

lisses de codimension 1 dans D(w) . Leur intersection est ensemblistement 

(et d'ailleurs schématiquement) réduit au point rationnel fermé P . On a dans 

l'espace vectoriel de dimensions n : Tp D(w) 

TpZj'n ••• n T

P

Z n = W • 
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Démonstration : La démonstration se fait par récurrence. On fixe u , i € I 

comme précédemment. Dans un voisinage de P , le fibre D(w) > D(u) est 

trivial. Soit donc V un voisinage de P dans D(u) , et une trivialisation 

de l'ouvert U = iT^V) en U as pĵ  x V . 

Soit A la droite tangente à P* en P . 
Comme n est localement trivial, et à fibres lisses, le fait que zV 

est lisse implique que Ẑ  est aussi lisse, pour 1 < i < n-1 . De même comme 
ZW = D(u) , ZW est lisse, n v ' ' n 

On a dans la trivialisation choisie 

T„ Z* = Tn z" e A pour 1 < i < n-1 P i P i -
Tp Z* = Tp D(u) . 

Donc il vient que pour tout entier 1 < i < n-1 

(T Z?) n (T ZW) = TD Z? , et il vient donc p i p n P i 
(Tp zp n ... n (Tp zj[) = {0} . 

Remarque : 1) Le fait que P = ZW n ... n schématiquement résulte du fait 

que ces variétés se coupent transversalement. 

2) Soit v € W , tel que l'on ait v < w et e(v) = £(w) -1 . Alors la 

sous-variété D(v) de D(w) est l'une des variétés zwi . 

Proposition 1 : On a 

Ww = *w(p) 8 *("ZW) • 

Démonstration : J'effectue la démonstration par récurrence. 

Dans le cas où w est de longueur 1, i.e. w = s. , on a D(w) = P^B . 

Les faisceaux inversibles 
s. 

wg et *s (p) 0 <£(-Z 1) 
i i 
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ont le même degré : - 2 , et sont donc isomorphes. 

Je peux donc supposer é(w) > 1 , et la proposition vraie pour u . De la 

suite exacte 

0 ' n* Vu) |k * n D(w) |k ¥ fîD(w) |D(u) ' ° 
et du fait que les faisceaux de la suite exacte précédente sont localement 

libres, et que D(w)|D(u) xlrk/ x est inversible, il vient que naturellement on a un 

isomorphisme 

Ww = n* wu • Vw) |D(u) • 
Je pose D le diviseur correspondant à la sous-variété D(u) et 

E = ÎI*O*D . par le lemme 49 on a 

tons Mn/ \ = *(E - 2 D) . D(w) D(u) v ' 

Par hypothèse de récurrence on a 
w = X (p) 0 X(- ZU) u u 

Par construction on a 
u* ZU = Zw - D . 

Par le lemme 50 #W(P) est de degré - 1 . On a donc par le lemme 48 

*w(p) = «(E - D) 0 7rV*w(p) . 

Or par le lemme 41 o* ^w(p) = *UÙ°) • ^ vient donc 

ir* au(p) = *w(p) 9 *(D - E) 

On a donc 

7T*(u>u) = <ew(p) 0 <C(D - E) 0 *(- ir* ZU) . 

D'où on a 

W = 7T* (W ) 0 ft-, x x 
w v u' D(w)|D(u) = X (p) 0 «(D - E) 0 ir* ZU) 0 X(E - 2 D) w 

= *w(p) 0 D) 0 « ( - TI* ZU) 

= 2w(p) 0 *(- ZW) 

ce qui montre le lemme. 

Remarque : Le fibre inversible u> est naturellement un B-fibré inversible, 
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et de même pour ^W(P) • Comme Z est un diviseur B-invariant de 

Div(D(w)) , X(- ZW) est également un B-fibré inversible. Néanmoins 

1 *isomorphisme de la proposition ne commute à l'action de B que modulo un 

caractère non trivial de B . 

Lorsque £ est de dimension finie, cette formule est montrée dans [47] 

pour les variétés de Demazure de dimension maximale, et est implicitement 

donnée pour toutes les variétés de Demazure. 

%4 - Scindage des variétés de Demazure. 

Soit w € W * 

Lemme 52 : Il existe un ouvert non vide c Spec(Z) , tel que pour tout 

nombre premier p € , pour tout corps k de caractéristique p , pour tout 

élément u € W avec u < w et e(u) = 6(w) - 1 , les variétés de Demazure 

D(w) et D(u) sont scindées, compatiblement avec l'immersion fermée 

naturelle D(u) > D(w) (définie au «IV). 

Démonstration : Il est clair qu'il suffit de prouver que l'énoncé vaut pour 

presque tout nombre premier p , et pour le corps fini W 

Je note P2 le sous-schéma fermé D(1)(Z) dans D(w)(Z) . Il est clair 

que la spécialisation de ce sous-schéma à un corps est le point Pw défini 

plus haut. 

Je considère d'abord les différents objets sur le corps k = Q . Comme 

par construction X (- p) est sans points bases (car X (- p) est très w w 
ample) , £ (~ p) ne possède pas PW comme point base. Donc, par 

semi-continuité, pour presque tout nombre premier p , PW(F̂ ) n'est pas un 

point base de X^(- p)^ . Soit Y^ l'ouvert de Spec(Z) correspondant. 
P W 

Soit p € Y . Puisque P n'est pas un point base de X (- p) , il 
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existe un diviseur effectif D sur D(w) , avec P ̂  Supp(D) , tel que l'on 

ait un isomorphisme de faisceaux inversibles #w(~ p) = 2(D) . 

On a donc 
W«d-P) = x((p _ 1)zw + (p _ 1)D) m 

Or par la seconde remarque postérieure au lemme 51, la sous-variété D(u) 

est l'une des variétés Zj . Le lemme résulte donc du théorème de 

Metha-Ramanan et Ramanathan cité plus haut. 

Au chapitre XIIX, on verra que ce lemme est vrai pour tout nombre premier 

p . Ce fait sera lié à la construction de variétés de Schubert en toute 

caractéristique. 
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VIII Schémas h-normaux. 

Soit k un corps. Soit X un schéma noethérien localement de type fini 

sur k . Je dis que X est h-normal si le morphisme de normalisation 

j : X • X est un homéomorphisme. Soit ïï la clôture intégrale de k . Je 

dis que X est absolument h-normal si et seulement si j est homéomorphisme 

absolu, i. e. si j ' : Spec(Te)xSpeĉ  X —• Spec("k")xSpeĉ X est un 

homéomorphisme. On notera que si X est absolument h-normale, X est 

h-normale. 

Une k-algèbre A de type fini est dite h-normale si et seulement si le 

schéma affine associé est h-normal. On définit de même les algèbres 

absolument h-normales. 

Dans la suite de ce paragraphe, je suppose le corps k de 

caractéristique zéro. Le lemme suivant est faux en caractéristique non nulle 

comme le prouve l'exemple considéré au % V. 

Lemme 53 : Soit A une algèbre de type fini, graduée sur Z et intègre (je 

ne suppose pas nécessairement les composantes homogènes de A de dimension 

finie). Soient K le corps de fraction de A , et 35 une sous-algèbre 

graduée de K telle que 55 5 A . On suppose le morphisme j : A • 55 fini. 

Les assertions suivantes sont équivalentes 

(1) j induit un homéomorphisme absolu de Spec(S5) dans Spec(x) . 

(2) Pour tout couple d'algèbres graduées A1 , A" avec 

A £ A9 £ A" ç 55 , il existe un élément homogène o € A" tel que o £ A* et 

oB € A9 pour tout entier n > 2 . 

(3) Il existe un entier n > 0 , des éléments homogènes a.,... ,o\T € 55 , 

des algèbres AQJ ...,A^ tels que 

(a) A = A cA^ , . . cA^ = 55 , 

(b) pour tout entier 1 < i < N , A^ = A^[a^] , 
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(c) a. € A. 1 î i-1 pour tout m > 2 , et 1 < i < N 

Démonstration : Je vais d'abord montrer que l'assertion (1) implique 

l'assertion (2) . Soient A9 , A" deux algèbres graduées avec 

A s A* J ç 35 . Comme les morphismes A » A* , A9 » Au , Au • 3& sont 

finis, les morphismes Spec(sô) » Spec(vt") , Spec l̂") • Spec(̂ i') et 

Spec(x') • Spec(A) sont propres et dominants donc surjectifs. Donc 

Spec(x") » Spec(x') est un homéomorphisme absolu. Soit M = A"/A9 . Soit ?» 

un élément premier associé au .4.'-module M . Comme M est un '̂-module 

gradué, ?» est un idéal gradué. Il existe donc un élément homogène r € A"\A9 

tel que ?>r c A* . Il est clair que l'on peut supposer que l'on a A11 - A* [r] 

. Soit <6 le conducteur de l'extension Af » Au , i. e, : 

* = {a € A9 , a Au c a9 } . 

Comme A1 est noethérien, X" est un ,4.'-module noethérien. Il existe 

donc un entier N > 1 , tel que l'on ait 
N 

A" = I A'.T1 . 
i=0 

N On a donc ?» c <e c ?> . 

On suppose d'abord que l'on a t f ?" . Alors il existe un élément 

homogène $ € a" tel que J i ' . Donc il existe un élément homogène 

7T € ?» tel que ÏÏ X' . On a C«TC)M = 7TM$M € A9 pour M > N . Donc il 

existe un entier q < 1 tel que (îr£)q £ A9 et (7i£)M € X' pour M > q . 

L'élément a = (ïr£)q satisfait donc à l'assertion 2 . 

On suppose à présent que l'on a ?» = <t . Ceci implique que ?» est 

également un idéal de A" . Je vais prouver que ?» n'est pas un idéal réduit 

dans A" . En effet, on suppose ?» réduit dans Au . Comme le morphisme 

Spec(x"/?») • SpecOl'/?») est un homéomorphisme absolu, et que k est de 

caractéristique 0 , ceci implique A9 /? » A"/?» est birationnel. Soit »' 

le conducteur de l'extension A'/?» • A"/9* et <t9 l'image réciproque de »' 
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dans A* . On a donc %* A" c AF + s* , et on a donc c s* , ce qui implique 

que l'on a A>* = {0} . Comme l'extension A' /9* • A"/? est finie et non 

triviale, ceci est impossible. 

Ainsi l'idéal V* n'est pas réduit dans A" . Comme 5*» est un idéal 

gradué, il existe un élément homogène o tel que a £ 5* et om € s* pour 

m > 2 . Comme S* est réduit dans A9 , on a également a £ A' , ce qui prouve 

l'assertion (2) . 

Je vais prouver que l'assertion (2) implique l'assertion (3) . Utilisant 

l'assertion (2) , on peut construire une suite d'éléments homogènes ai*a2 ••• 

de 55 telle que si l'on pose A = A , A^ = X[OJ ,.. . ,0^ ] pour i > 0 on ait 
a. é A. . et a™ e A. i pour m > 2 . On a ainsi A £ X. « A0 ... Comme X 1 î-l 1 î-l - 0 * 1 * 2 
est un anneau noethérien, que 55 est un -̂module de type fini, et que 

chacune des algèbres A , A* ... sont des A-modules, la suite A. est 6 o 1 ' 1 
stationnaire et l'on a A^ = 55 pour un certain entier N > 0 . 

Je vais prouver que l'assertion (3) implique l'assertion (1) . On 

suppose donc qu'il existe des sous-algèbres graduées AQ $ $ 

satisfaisant à la condition (2) . Comme le morphisme Spec(S5) » Spec(A) est 

la composante des morphismes Spec(^) • Spec(̂ î _j) il suffit de montrer que 

chacun des morphismes Spec(A )̂ » Spec(A^_^) est un homémorphisme absolu. 

Je peux donc supposer qu'il existe un élément homogène o € 55 tel que 

A[o] - 56 et tel que o™ e A pour tout m > 2 . Je peux aussi supposer que k 

est algébriquement clos. Pour montrer que 6 : Spec(S5) » Spec(,A) est un 

homéomorphisme, il suffit de montrer que 0 est injectif sur les points 

fermés, car 6 étant fini et dominant, il est propre et surjectif. Il suffit 

donc de prouver qu'un morphisme d'algèbres v : A • k se prolonge d'au plus 
~ 2 une manière en un morphisme v : 55 » k . S i v ( o ) = 0 , o n a nécessairement 

~ ~ 2 
v(o) =0 , ce qui détermine de manière unique v . Si v(o ) / 0 , on a ~ 3 2 ~ nécessairement v(o) = v(o )/v(a ) , ce qui détermine de manière unique v . 
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Soit X une variété projective, et X un fibre inversible. Je note 

1̂ (2) le schéma affine spectre de l'anneau Q^J* (X,£9n) . Soit 0 le point 

fermé de ĝOO correspondant à l'idéal "irre levant" ©n>or(X,:t ) . Je pose 
Zv(#) = ^v(^) ~ * Lorsque £ est ample Zv(#) est une variété. 

Lemme 54 : Soit X une variété projective, et X un fibre inversible très 

ample. Alors si X est absolument h-normale, 2 (̂2) est absolument 

h-normale. 

Démonstration : Soient X le normalisé de X , et j : X • X le morphisme 
de normalisation. Par le lemme 39, le normalisé de Ẑ Oe) est le schéma 

X(w) (j u) 
Je vais d'abord montrer que le morphisme naturel r(X,Cf ) • r(Xt& ) 

est un isomorphisme. 

Soient k' = r(X,Crx) , et ïï la clôture algébrique de k . On a 

dim̂ k* < <» , donc k' est un sur-corps de k de dimension finie. Comme k 

est de caractéristique zéro, l'algèbre Te es^ réduite, et isomorphe à 

(dim^k') copies de Te . Donc dim^T(Xtù^) est le nombre de composantes 

connexes du schéma X = sPec0 )̂xgpec(k) x • 
On montre de même que dimlT(X,Or ) est le nombre de composantes connexes 

de X = Spec(Tc)Xgpeĉ X . Comme le morphisme X • X est un homéomorphisme 

absolu, ces deux nombres sont égaux. Donc r(XtCfy) » r(X,Cr ) est un 
X X 

isomorphisme. 
Donc les points "irrelevants" 0 et 0 de Z (tf) et de Z (j*tf) ont 

X X 
même corps résiduel. Donc pour que le morphisme Z • Zv(.£) soit un 

X X 
homéomorphisme absolu, il suffit que le morphisme Z°(j*.£) • zZ(£) soit un 

X X 
homéomorphisme absolu. Soit ir : Z^(£) • X le morphisme naturel. On a 

104 



SCHÉMAS h-NORMAUX 

2°(j*£) = X xy 2y*(2) • Je pose A* = Spec k[T,T ] . Le morphisme ir est une 

fibration localement triviale de fibre A* . Comme la propriété 

d'homéomorphisme absolue est locale, et que le morphisme de normalisation j 

est affine, on est ramené à prouver le fait suivant : 

Soit A une k-algèbre intégre de type fini. Si A est absolument 

h-normale, <A[T,T est absolument h-normale. 
Soit A le normalisé de A . Alors A[T,T ] est le normalisé de 

X[T,T . Il s'agit de prouver que le morphisme 

f : (ïï 0 X)[T,T_1] • (ÏÏ0X)[T,T_1] induit un homéomorphisme Y sur le 

spectre. Pour cela il suffit de montrer que Y* est injective sur les points 

fermés car F* est propre et surjective (puisque ? est finie et 

birationnelle). Comme A et A sont des algèbres de type fini, le corps 

résiduel d'un point fermé du spectre de (Tt 0 X)[T,T est Te . Soit 

v : (F 0 A)[T,T » ïï" un morphisme d'algèbre. On a v(F 0 jl) = k" . Comme 

A est absolument h-normale, v se prolonge d'au plus une manière en un 

morphisme v : (Tt 0 A) » Tt , et donc d'au plus une manière en un morphisme 

v : (le 0 X)[T,T » 1? . Ceci montre le lemme. 

On considère la situation suivante. Soient X une variété, Y une 

sous-variété. Soient X et Y les normalisées de X et Y , et jx : 

X ¥ X , jv : Y ¥ Y les morphismes de normalisation , i : Y ¥ X le 

morphisme d'inclusion. 

On suppose X absolument h-normale. Alors par le lemme, il existe un 

unique morphisme j : Y • X rendant commutâtif le diagramme : 

Y J X 
jy jx 

Y i X 

Le lemme suivant est le lemme-clef de cet article : 
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Lemme 55 : Soient X une variété projective, Y une sous-variété. On suppose 
X et Y absolument h-normale. Soit : 

X Y j 
Jy Jx 

В i x 
le diagramme commutatif associé comme précédemment. Soit X un fibre 

inversible très ample sur X . Soit 2 = ĵ se . Alors si le morphisme naturel 

f(X,2) > T(Y, n'est pas surjectif, il existe un entier n > 0 , 

O € f(Y,j*ï0n) tels que 

(1) a n'appartient pas à l'image du morphisme T(XtX ) » -T(Y,j X ) . 

(2) Pour tout entier m > 2 , am appartient à l'image du morphisme 

r(x,28nm) rtY.j*/1™) . 

Remarque; La condition (2) est évidemment équivalente à la condition (3) 

suivante: 

(3) Pour m = 2 ou 3, om appartient à l'image du morphisme 
r(x , 2°nm) • r(Y , j.2®nni) . 

Démonstrat ion : Par la commutativité du diagramme précédent, on a 

j* i*X ~ j*ĵ se . On a donc un diagramme commutatif d'algèbres graduées 

•п>оГ<Х'* > 
J © ч г 

п>о 
ÍY..lSr ) 

. # 
© v HX,/*1) —A • © x r(Y,i*xm) . 

Je pose A* = Im i* , A = Im j* , »' = © v r(Y,iV*n) , 

56 = ©n>or(Y, j*20n) . Par le lemme 39, 36 est la clôture intégrale de 

l'algèbre 56' . Par un théorème de Serre ([10] III S5) A* est une 

sous-algèbre de codimension fini dans 56' . Donc le morphisme A9 • 56' est 

birationnel et fini. Donc 56 est la clôture intégrale de A*. Par le lemme, 

56' est absolument h-normale. Donc par le point 3 du lemme 53, Af est 

absolument h-normale. Comme on a V c X c 56 , 56 est également la clôture 
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intégrale de A , et par le point 2 du lemme 53 A est absolument h-normale. 

Donc par le point 2 du lemme 53 si X / 9 , il existe un élément homogène 

o € 3&\A , tel que am e A pour tout m > 2 . Soit n le degré de o . Ainsi 

on a prouvé que si r(XtX) » r(Y, j*X) n'est pas surjective, il existe 

a € T(Y,j*£^n) , tel que o satisfasse aux conditions (1) et (2) recherchées. 

Ceci montre le lemme. 

Lemme 56 : Soient J une partie de I , A € P* , w , v € Wj . On suppose 

w > v , et e(w) = e(v) + 1 . On suppose que l'application 

D (~ A) —• ny(~ A) n'est pas surjective. Soient w , v des décompositions 

réduites de w et v avec w > v . 

Alors il existe un entier n > 0 , un élément o € H (̂D(V),£̂ (-nA)) tels 

que : 

(1) yo n'appartient pas à l'image du morphisme naturel 

H°,(D(w),̂ (-nA)) • H°(D(v),̂ (-nA)) , pour tout entier non nul y . 

(2) Pour tout entier m > 2 , om appartient à l'image du morphisme naturel 

Î (D(w),̂ (-nmA)) —• H£(D(v),*J-nmA)) . 
W V 

Démonstration : On suppose que le morphisme A) • uv(- A) n'est pas 

surjectif. Je peux donc supposer que l'on a k = Q . Je vais appliquer le 

lemme précédent aux données suivantes 

X = Swa 

Y = Swa 

X = X (- A) . 

Par le lemme, les variétés X et Y sont absolument h-normale, et par 

construction X est très ample. Par le lemme 37, on a 

D (- A) = f(S JtX (- A)) pour tout u € WT . L'hypothèse implique donc que 

le morphisme H°(S T,2(- A)) • H°(S T,2 (- A)) n'est pas surjectif. Donc 
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par le lemme précédent, il existe un entier n > o , et o e H°(Sv j,2v(-nA)) 

tel que 

(1) o n'appartient pas à l'image du morphisme 

H ^ W . J ' V - 1 * » H°(SVjJ(2v(-^)) . 

(2) Pour tout m > 2 , am appartient à l'image du morphisme 

H°(SwJ,2w(-nnA)) • H°(Sv>J,2v(-nm\)) . 

On a des isomorphismes naturels, pour tout u € Wj , toute décomposition 

réduite u de u , tout entier m 
H°(Sn .,2n(-mA) Jl» H0(D(S),̂ (-mA)) 

« ®z H£(D(u),*J-mA)) - 1 . H°(D(S),̂ (-mA)) . 

En outre l'application fi£(D(u) ,^(-mA)) —• H°(D(u) ,^(-mA)) est 

injective et identifie ĤCDCu) ,#̂ (-mA) ) à un réseau de H (D(u),£ (-mA)) . 

Donc quitte à multiplier o par un entier non nul, on peut supposer que l'on 

a en outre 

(3) o € H°(D(v),̂ (-nA)) . 

(4) o est dans l'image du morphisme naturel 

H (̂D(w),̂ (-neA)) > H^(D(v),̂ (-neA) , pour t = 2 ou 3. 

La condition (1) implique en particulier que ya n'appartient pas à 

l'image du morphisme ĥ (D(w) ,2 (̂-nA) ) • Ĥ (D(v) ,^(-nA) ) , pour tout entier 

non nul y . 

Comme tout nombre entier m > 2 est somme de 2 et de 3 , am est dans 

l'image du morphisme naturel H°(D(w) ,̂ (-nmA)) • Ĥ (D(v) ,̂ (-nmA)) pour 

tout m > 2 . C.Q.F.D. 
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Dans tout ce paragraphe, k désigne un corps de caractéristique 0. 

Lemme 57 : Soit A a P+. Alors pour tout w € W, pour toute décomposition 

réduite w de W, les morphismes 

Fw(A) —- ^(~A) 

DW(A) —. EW(A) 

sont des isomorphismes. 

Démonstration : Les deux applications sont transposées l'une de l'autre. Il 

suffit donc de prouver que l'application ^(A) • D~(-A) est un isomorphisme. 

Comme il résulte du S VI que cette application est injective, il suffit de 

prouver la surjectivité. 

Soit J = { i / A(ĥ ) = 0} par le lemme 45, il suffit de prouver que pour 

tout couple v,w d'éléments de W. avec v < w , £(v) + 1 = £(w) , et toute 

décomposition réduite v, w de v et w avec v < w, l'application 

D~(-A) • D~(-A) est surjective. On suppose par l'absurde que cette 

application n'est pas surjective. Alors par le lemme 56, il existe un entier 

n > 0, et o € H (̂D(v),£-(-nA)) tels que 

(1) yo n'est pas dans l'image de l'application 

R1 : H (̂D(w),£~(-nA)) • H (̂D(v),£-(-nA)), pour tout entier y î 0 

(2) Pour tout ent ier m y 2 , o est dans l'image de l'application 

Rm : H£(D(w),*J-nmA)) > l£(D(v),<£j-nmA)). 

Les schémas D(w)(Z) et D(v)(Z) sont propres sur Z , et les faisceaux 

£̂ (xA) et iê (xA) sont cohérents et plats sur Z , pour tout entier x. Donc 

les groupes de cohomologie H*,(D(w) ,£ (̂xA)) et H*,(D(v) ,£̂ (xA) ) sont des 

Z-modules de type fini. 

109 



O. MATHIEU 

Je note Fp le corps à p éléments, pour tout nombre premier p. On a donc 
(a) Pour presque tout nombre premier p, a n'appartient pas à 

Im R1 + p H (̂D(v),«£j-nA)) (par la condition 1). 
v 

(b) Pour presque tout nombre premier p , on a F * Ĥ Dfw) ,£ (̂-nA) ) = 0 

(c) Pour presque tout nombre premier, D(v)(F )̂ et D(w)(F̂ ) sont 

compatiblement scindables (par le lemme 52). 

Je choisis p un nombre premier qui satisfasse aux conditions énoncées 

(a), (b), (c). Je note r un élément de Ĥ Dfw) ,£^(-pn A)) tel que 
w 

R (T) = Op . Pour tout entier x , et tout u £ W, , on a des isomorphismes P J 
naturels 

0 • F ®z l£ (D(u),^(xA)) • ï£ (D(u),2jxA)) • 
u p u 

• F * (D(u),^(xA)) • 0 (lemme 26). 
P u 
On peut donc définir les images T et ô dans les groupes 

(respectivement) ïÇ (D(w) ,5Ĉ (-np A) ) et (D(v) ,.£ (̂-npA). Pour tout entier 
p w P v 

m , soit E" l'application naturelle m 
ÏT : l£ (D(w),*J-nmA)) > l£ (D(v) ,*J-nmA) ). 

p w P v 
Soient OJJ et des scindages compatibles de D(w)(F̂ ) et D(v)(F )̂ 

relatif à l'immersion canonique D(v)(F )̂ • n(w)(F^). De tels scindages 

existent par la condition (c) .Ces scindages induisent un diagramme 

commutatif : 

h£ (D(w),tfJ-np A)) 
D W 

ïï 
P 

l£ (D(v),*J-np A)) 
P v 

aw Mp V N I 
P 

l£ (D(w),*J-nA)) 
n w 

*1 l£ (D(v),*J-nA)) 
p V 

Par l'assertion (b) , on a 
h£ (D(w),^(-nA)) = F ®z H (̂D(w),̂ (-nA)) 

p w w 
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Donc par l'assertion (c) , on a a £ Im . Par ailleurs, on a 
o - o~ ° 2 (a) v P 

= a~ ° "ïï (r) v p 
= ïïj ° o (̂7) € Im ïïj 

w 
ce qui implique une contradiction. 

Soit w € W . Soit s.. ... s. une décomposition réduite de w. On note 
n 

A^ l'opérateur Z-linéaire A^ : Z[A] • Z[A] défini par A^ = 
A ...A s. s. 

1 n 
En utilisant le lemme de Matsumoto [61], il est clair que cet opérateur est 
défini, indépendamment de la décomposition réduite choisie. Ce fait résultera 

aussi du théorème 3. On définit aussi l'opérateur 

A^ ~ A 1... A 1 . Ces opérateurs A^ et A sont appelés opérateurs de 

Demazure. 

Proposition 2 : Soit A € P+, et w € W. On a ch(Ew(A)) = dW eA et 

ch(F (A)ï = A eA . w w 

Démonstration : On effectue la démonstration par récurrence sur £(w).Je vais 

montrer par exemple la première assertion. Si w = 1, il n'y a rien à 

montrer.Aussi je peux supposer que l'on a w f 1 . Soit i € I, v € W tels 

w - s. v et e(w) > e(v) . Par le lemme 57 on a 
i 

s. 
E (A) = D 1 E (A). v 

s. 
Comme l'application naturelle Ev(A) » D 1 Ev(A) est injective, on a par le 
lemme 

s. 
ch E (A) = A 1 ch E (A) w v ' 

D'où par hypothèse de récurrence 
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s. eh E (A) = A 1 dV(e ) w ŵ, Av = A (e ) 

Lemme 58 : Soit M € ^(b), M de dimension finie. On suppose l'application 
s. 

M » D M injective. On a alors pour tout A e P : 
s. s. 

dim M. - dim M ,. , x = dim (D ). - dim (DM) ,. , N 
A st(A+p)-p 'A /si(A+p)-p 

Démonstration : Le lemme n'est juste qu'une application de la formule 
s. s. ch(D *M) = A 1 ch(M). 

Lemme 59 : Soit A € P+, et soit fi € P+ . Alors l'ensemble 
{w e W / w(/i + p) - p € C(A)} est fini. 

Démonstration : Soit Q le réseau des racines, et Q+ l'ensemble des poids 
de U(n+). Soit < la relation d'ordre sur Q induite par Q+. Si a, fi € Q+, 
on pose a < fi dés que fi - a € Q+. 

Soit C = {fieQ*/fi + fi<A}. L'ensemble C est fini. Pour chaque 
w & W, p - wp appartient à Q+ , Il est connu et facile [12,33], que 
l'application naturelle w » p - wp est injective. 

Soit C = {w € W , p-w *p e C} . Il vient donc que l'ensemble C est 
fini. Or on a 

{w € W , W(/LC + p) - p € C(A)} = {weW, /K+p - w_1p € C(A)} Ç C' . 
Donc l'ensemble {w € W , wQu + p) - p € C(A)} est fini. 
Soit v e P . je pose F(v) = {t € P , -y < v) . Je note q[[P]] 

l'ensemble des fonctions Y : A • P dont le support est contenu dans une 
réunion finie d'ensemble F(i>) . Sur Q[[P]] il existe une topologie 
naturelle, pour laquelle une suite (f^) € Q[[P]] tend vers zéro si et 
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seulement si pour tout и e л , il existe un entier nQ tel que 
Supp(fn) П u+Q с ?(u) 

pour tout n > nQ . 
Il est clair que la structure d'anneau de Q[P] se prolonge par 

continuité à D[[P]] . 

Lemme 60: 1) On a ch L(A) e q[[P]] , pour tout A e P+ . 

2) Soit A € P+ . Il existe une unique fonction 1° : P+ » Z , telle que 

ch(L(A)) = fiéP 
*00 

Z 
Vf 

e (w) e w(A*+p) 

2 
w £ (w) e wp 

Démonstration : Les poids de L(A) sont de multiplicité finie et contenus 

dans F(A) . On a donc ch L(A) € Q[[P]] . On a pour tout w e W , wp e F(p) . 

Donc l'expression formelle Z £ (w) eŴ  converge dans Q[[P]] et est 
w 

inversible. Soit Q = (2 £ (w) e °̂) ch L(A) .On a Q £ q[[P]], et (JTEP Q = Z Q(JI) 

e .̂ On notera que W agit naturellement sur q[[P]], et l'on a pour tout w € 

W : w Q = f(w) Q. Donc le support de Q est W-invariant, et l'on a Supp Q ç 

F(A+p). Ceci implique que pour tout poids fÀ € Supp Q, il existe w £ W tel 

que w/i soit maximal dans l'ensemble W#. On a donc w/i £ P+. On note aussi 

que pour tout et tout i c i , on a Q(IÀ) = - Q(s^). Ceci implique que si 

IÀ e P+n Supp(TP), on a /i(h )̂ fi 0 pour tout i c i , donc on a y. - p e P+. On 

note donc Y la fonction de P+ dans Z définie par PO) = Q(/*+p). Il est 

alors clair que l'on a 

( Z £(w)eWp) ch L(A) = Z V(n) Z £(w)ew(Âi+p) d'où la formule cherchée. 
weW ne? w 

A présent je reprends une méthode d'Heckman tirée de son travail cité en 

introduction, pour déduire la formule de Weyl des formules de Demazure. 
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Lemme 61 Soit A € P . Alors pour tout fi e P , on a 

Z e(w) dim(L(A) , , . = 6a 

Démonstration On note d'abord que par le lemme 59 la somme considérée est 

finie. Soit ii € P+. Par le lemme il existe un élément v € W tel que pour 

tout w e W l'application : (E (A)) , , N • L(A) / , x soit un 

isomorphisme. Or en appliquant le lemme 58 de manière récurrente, il est 

facile de prouver que pour tout v € W on a 

Z €(w) dim(E (A)) / , \ vv w(/*+p)-p = SAA,/i 
w 

En effet pour v = 1 cette formule est évidente. Ainsi le lemme est 

montré. 

Théorème 1 1) Soit A e P . On a 
Z e (vi) ew(A+p) 

ch L(A) - L £W 6 . 
Z £(w) eWp 

2) On a en outre la formule du dénominateur 
dimg 

ZT (l-e ) = I £(w) e 
aed 

s'agit de prouver que l'application f : P+ • Z telle que : 
Démonstration Je démontre d'abord le point 1. En utilisant le lemme 60, il 

eh L(A) = I 
P (u) 

P (u) 2 Ê(W) e w(M+p) 

I e ( w ) < wp 
est l'application de Dirac ó .̂ 
Soit u s P+. On a r*(p) = 2 £(w) dim(L(A)) . £t+p~wp weW 

Par invariance de A caractère de L(A) SOUS l'action de W, on a 

r-(M) 2 E(W) dim(L(A)) w(/i+p)-p 
D'où p(/i) =6 

A ,/i par le lemme 61, d ou le point 1. 

Je démontre le point 2 du théorème. Si t sont deux élément de 
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Q[[P]]> je dis que ? est inférieure à * (ce que je note r* < si l'on a 

1»G0 < *G0 pour tout Ai € P. 
Par le théorème de Poincaré - Birkhoff - Witt on a ( ïï +(aedl-e~a)dim£a) 1 

= ch U(n) Je choisis A un élément de P+ tel que A(ĥ ) > 0 pour tout i 

€ I. Pour tout entier n > 0, on a une suite exacte 

ei€l V(s.(nA+p)-p) • V(nA) • L(nA) • 0 . 

On a donc 

ch V(nA) > ch L(nA) > ch (V(nA)i£l) - 2 ch V(Si(nA+p)-p). 

Pour tout /i € P, on a ch (V(A0) = ê ch U(n ) 

On a donc 
ch (U(n~)) > e_nA ch(L(nA) > (ici1 - 2 e"(nA(h.)+l)a.} ^tj^-)). 

Donc la suite e ch(nA) converge lorsque n tend vers -H» 

et l'on a ch (U(n )) = lim en »00 ch(L(nA)). Or il est clair 

que 2 e (w) et(n^+P) (nA+p) |-en(j vers zéro quand n tend vers l'infini. On a 
weW 
w/1 

donc ch U(n ) = î , d'où le point 2 du théorème. 
2 .(w) e**-* 
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X.- Normalité de certaines images des variétés de Schubert. 

Pour tout poids A € P+ , je pose J(A) = {i /A(h.. ) =0} . Si J est une 
partie de {1, . . . ,N} , je pose P* = {A eP+/ J(A) = J > . 

Soit g l'algèbre de Kac-Moody considérée. Je dis que g satisfait la 
condition X , si pour tout A € P+ , le <U,(g)-module L(A) est simple. Un 
théorème de V. Kac [33] s'exprime en disant qu'une algèbre de Kac-Moody symétri-
sable satisfait la condition X . A part ceci, je ne connais aucun exemple d'al­
gèbre de Kac-Moody g , et de poids A , pour lesquels on sache déterminer si le 
module L(A) est simple ou non simple (excepté les exemples déduits directement 
du théorème de Kac). 

Je vais énoncer le théorème suivant sous l'hypothèse générale, puis sous 
l'hypothèse où g satisfait I : le résultat obtenu est alors la généralisation 
exacte du théorème de normalité des variétés de Schubert (pour les groupes semi-
simples) démontré par A. Joseph [3J ] et C.S. Seshadri [51]. 

Théorème 2 : 
Soient J une partie de {1, . . . ,N} , w € Wj , et A € P* . Alors pour 

tout entier n suffisamment grand (la borne inférieure dépendant des données) 
le morphisme naturel s" T -> PE (nA) est une immersion fermée projectivement 
normale. En particulier on a : 

(a) Pour n suffisamment grand, Ŝ  n̂  est normale. 
(b) Pour tout u G WT , u < w , le morphisme naturel SU ,J W, J S» T est 

une immersion fermée. 

Théorème 2.1 : 
Je suppose que g satisfait I . Soient J une partie de {1,...,N} , 

w € ]fij et A £ Pj . Alors le morphisme naturel j -> F Ew(A) est une 
immersion fermée projectivement normale. En particulier la variété Sw ^ est 
normale. 

Démonstration : 
1) Je vais commencer par démontrer le théorème 2. Par définition, le faisceau 

inversible oë̂ (-A) est un faisceau très ample de Ŝ  ^ , et en particulier 
ample. Comme le morphisme j , , : ? T -> S . est une normalisation, il est fini. r - w w,j w,A r^j 
Donc £26J le faisceau inversible j * 5glf(-A) = ^,("A) est ample. 
Donc par le lemme 3?, pour n suffisamment grand, le faisceau inversible <S6 (-nA) 
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est très ample. Par les lemmes 27 et 57 le morphisme naturel 

Fw(nA)-*H°(\,J'£w(-nA)) 

est un isomorphisme pour tout n . Donc pour n suffisamment grand, le morphisme 
?w j -> FEw(nA) est une immersion fermée projectivement normale. En particulier 
on obtient 

a) Pour n suffisamment grand, le morphisme ? j -» Sw nA est un isomor­
phisme, donc Sw nA est normale. 

b) Pour n suffisamment grand, et u 6 Wj tel u < w , les flèches verti­
cales du diagramme commutatif 

S > s 

c >Í ¥ c l 
u,nA w,nA 

sont des isomorphismes. Donc le morphisme naturel ? T -* ? T est 
une immersion fermée. 

2) Je passe à la démonstration du théorème 2.1 . Je vais montrer que l'anneau 
k [l,f J est intégralement clos. La clôture intégrale de cet anneau, k [r , J 
est égale par le lemme 39 à 0 H°(? * ,S£(-nA)) . Donc par les lemmes 26 et 5£, 

n>o W,J ^ 
on a k [EW,A .]N^Q = © Flf(nA) . Comme on a k [rW,A W .] z> F..(A) , pour montrer que 
k [Zy A] est intégralement clos, il suffit de montrer que k [Zw ̂ ] est engendré, 
comme anneau, par le sous-espace F (A) . Il suffit donc de montrer que pour tout 
entier n > 0 , le morphisme naturel Sn FW(A) -* Fw(nA) est surjectif. Comme le 
module L(nA) est simple, le sous-espace vectoriel (Ew(nA))- est de dimension 
1, et a pour base un vecteur vn de poids nA . Soit v* un vecteur non nul de 
Fw(nA) de poids -nA . On a donc un isomorphisme k v*^ ^w^ /̂n"1" F (nA) ' 
Comme n agit de manière nilpotente sur Fw(nA) , le U(n )-module Fw(nA) est 
cyclique, engendré par v* . 

Comme le morphisme naturel Sn Fw(A) -> Fw(nA) est un morphisme de U(n+)-module 
et que Ton a k(v*)n = k v* , ce morphisme est surjectif. Donc k [lw ^] est 
intégralement clos, et le morphisme ?w ^ q F E (A) est une immersion fermée 
projectivement normale. En particulier, Sw A est normale, ce qui finit la preuve 
du théorème 2. 

117 



O. MATHIEU 

Comme cas particulier du théorème 2, on obtient que lorsque g est symétri-
sable (ou plus particulièrement satisfait £) les variétés de Schubert ne 
dépendent pas de la représentation L(A) choisie pour les définir (plus 
précisément, une variété de Schubert ne dépend de la représentation L(A) qu'à 
travers la partie J(A)). Ce fait avait déjà été prouvé par J. Tits ( [59] cf. 
aussi [58] ). 

On suppose Q de dimension finie. Le théorème de Joseph auquel j'ai fait 
allusion s'énonce ainsi: Soient A€P+ , et w£ W . Si est suffisamment loin 
des murs, le morphisme naturel DW(A)-- Ê (A) est un isomorphisme. Par la 
démonstration précédente il est clair que ce résultat est équivalent à la 
normalité des variétés de Schubert. En effet il suffit de montrer la normalité 
des variétés de Schubert dans G/B , puisque une variété de Schubert générale 
n'est qu'un fibre localement trivial de fibre une variété lisse au-dessus d'une 
variété de Schubert sur G/B . Un facile argument sur le fait que G/B est 
homogène implique que pour tout A €. , le morphisme naturel G/B TPL(A) est 
une immersion fermée. Donc toutes les variétés S w, A (AS Pti ) pour un w£ W 
fixé sont isomorphes à la variété de Schubert correspondant dans G/B . Par 
l'argument utilisé dans la démonstration du théorème 2, le théorème de 
Joseph est équivalet à la normalité de S . pour A suffisamment loin des murs. 
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Le lemme suivant, qui compare les dérivés des foncteurs de Joseph D$ à 

la cohomologie des faisceaux iê sera généralisé plus loin au cas des foncteurs 

Dw . Néanmoins, il ne m'a pas été possible de traiter le cas général immédiatement 
et d'éviter la répétition des mêmes démonstrations. 

Lemme 62 : 
Soient i € I et M € &(b) . Alors on a un isomorphisme canonique, pour 

chaque entier n: d"# M Hn(P.j/B.<£s.(M)) . 

Démonstration : 
Exceptionnellement, je vais m'écarter de la notation de § I et poser 

a. = k e. © k h. e k f̂  , b. = k h.. ®ke. . Soient A. et B. les groupes 
associés à a., et b. , de sorte que A., est isomorphe à SL(2) , et B.. à 
son sous-groupe de Borel. Pour éviter toute confusion, je note D$ : ê ^ ) - * &(&̂ ) 

le foncteur de Joseph sur &(8 )̂ • D'après le § III, on a un isomorphisme de 
a..-modules D* M ^ D* M , et on a un isomorphisme naturel Â /B pyB . 

Donc pour montrer le lemme, on peut ne considérer que le cas où l'on a 
g = ai , b = b. . On pose alors G = , B = Bi , D$ = D$ , ig = <£$ . Pour 

tout module M € è(b) , on a un isomorphisme naturel D$ H°(G/g,JÊ(M)) . 
Comme le foncteur iê est exact, on obtient un morphisme naturel 
D* M -+ H*(G/B,Sê(M)) . Pour montrer que ce morphisme est un isomorphisme, il 
suffit de montrer qu'étant donné un injectif I de ê*(b) , on a 
Hp(G/B,Sê(I)) ={0} pour p ï 0 . Soit a l'unique racine de g et soit 
p = l/? a . Tout injectif de ê(B) est une somme directe (éventuellement infinie) 
de modules V(np) , pour divers n e 71 . Par ailleurs, on a k [B] =n€ZZ © V(np) . 

Donc tout injectif est un facteur direct d'une somme, éventuellement infinie, 
de copies du module k [B] . Or il est clair que ië commute à la limite induc-
tive, et comme G/B est un espace noethérien, la cohomologie des faisceaux sur 
G/B commute également à la limite inductive. On veut donc montrer 

HP(G/B,&(k [B]) = {0} pour p * 0 . 

Soit n : G -> G/B le morphisme de projection. Il est clair que l'on a 
TT* = S6 (k [B]) . Comme le fibre n est localement trivial, de fibre B et 
que la fibre est affine, on a Rq G~ = {0} pour q ^ 0 . Donc la suite spec-
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traie de Leray 

EP'q = HP(G/B,i4e>G) HP^CG,̂ ) 

dégénère et on a des isomorphismes 

H*(G,Og) * H*(G/B,TT̂ Og) . 

Comme G est affine, par le théorème de Serre il vient H f̂G,̂ ) = {0} 
pour p ^ 0 . On en déduit donc que Ton a H^G/g, &(k [B]))= 0 pour p / 0 , 
ce que 1'on cherchait à montrer. 

Soit X un B-schéma sur Spec(k) . Soit i € {1,...,N} . On note v et n 
les morphismes naturels du diagramme commutatif suivant : 

P. xB X < X 

PyB < Spec k 

Dans le lemme suivant, on suppose que X est séparé sur Spec(k) . 

Lemme 63 : 
Soit iê G QcohB(X) . Alors pour tout couple d'entier p,q on a des isomor­

phismes naturels 

Hp(Pi/B,Rq•Fi Dpi ¡6) - dp Hq(x,Sê) . 

Démonstration : 
Par hypothèse, v est séparé. Donc par le lemme 23.3 on a un isomorphisme 

naturel 

Rq TT,cDD £ = » DR RQ V; L . 

On a donc 

Rq TI, ©D & = £> h*(x,îg) . 

Enfin par le lemme 62, on a un isomorphisme naturel 

hP(pì/b9£)p. Rq(x'£)) "Ds. »q(x»£) • 

120 



RATIONALITÉ DES SINGULARITÉS 

On obtient ainsi 1 1 isomorphisme Hp(P./B,Rq .© % ) « Dp Hq(X,&) 
cherché. 

Lemme 64 : 
Pour tout w € W et tout A € P+ , on a Hq(D(w),5? (-A)) = 0 , pour tout 

q > 0 . 

Démonstration : 
On montre le lemme par récurrence sur la longueur &(w) de 1'élément 

Pour w = 1 , il n'y a rien à montrer. On suppose donc que Ton a £(w) > 1 . 
Soient v € W , i € {1,.. . ,N} tels que w = s- v . Le morphisme naturel 
D(v) -* Spec(k) induit comme précédemment un morphisme TT : D(w) -» P^B . La 
suite spectrale de Leray associée au morphisme TT a pour second terme 
Ep'q = Hp(Pi/B,Rq TT* iêw(-A)) . Par le lemme 63, on a donc Ep,q = 
Dp Hq(D(v),2v(-A)) . Par hypothèse de récurrence cette suite spectrale dégénère 
si 

et Ton a 

Hq(D(w),i§w(-A)) = Dq̂  H°(D(v),iêv(-A)) pour tout entier q . 
Par les lemmes 27 et 57 on a : 1 

H°(D(v),Êv(-A)) = Fv(A) 

H°(D(w),5gw(-A)) = FW(A) . 

Ceci implique que l'application naturelle DSi H° (D(v) (-A) )-> 

H°(D(v) ,iÊv(-A)) est surjective. Par le lemme 13, il vient que Ton a 
&s. H°(D(V)>£V(-A))=0> P°ur q>0 • Ceci montre que Ton a Hq(D(w) ,Jgw(-A) ) = 0 

pour tout entier q > 0 . C.Q.F.D. 

Soit v : Z X un morphisme birationnel entre variétés propres. On suppose 
que la variété Z est lisse. Suivant G. Kempf, on dit que v est une résolution 
rationnelle des singularités de X si les trois conditions suivantes sont 
satisfaites [7} [36]: 

(a) v,(^=e>x 

(b) Rq = 0 pour q t 0 

(c) Rq Kz = 0 pour q + 0 , 

où Ky est le faisceau canonique de Z . Cette définition a un sens sur des corps 

121 



O. MATHIEU 

de caractéristique arbitraire. En caractéristique 0 , un théorème transcendant 
de Grauert-Riemannschneider exprime que la condition (c) résulte des conditions 
(a) et (b) ( [7 ] , [36])5 des versions plus récentes du théorème de Kodaira [J4 1 
C37J prouvent la condition (c) sous des hypothèses très faibles. 

Je vais prouver que les variétés de Demazure (ou plus précisément les mor­
phismes canoniques du type D(w) -» Sw j ) sont des résolutions rationnelles des 
singularités des variétés de Schubert. Ici je vais montrer les conditions (a) 
et (b) précédentes et déduire la condition (c) par le théorème de Grauert-
Riemannschneider (suivant la démonstration de Demazure en dimension finie). Dans 
le cas spécial des variétés de Schubert, il existe une autre démonstration (due 
à Ramanathan) pour déduire le point (c) des points (a) et (b). J'indiquerai cette 
démonstration plus loin, lors de la construction des variétés de Schubert sur 
une base arbitraire. 

Il est connu que les conditions (a), (b) et (c) impliquent que X est 
Cohen-Macaulay. Ce fait sera essentiel pour comparer les topologies sur les espaces 
de drapeaux. 

Théorème 3 : 
Soient J une partie de {1, . . . ,N} , w € W et w une décomposition 

réduite de w . 

(a) Le morphisme yw:D(w) -> Sw ^ est une résolution rationnelle des sin­
gularités de 

(b) Soit A e P+ tel que A(h-) = 0 pour j e j . Alors 
Hq( 5L..T .£w(-A)) = 0 pour q ^ 0 et on a H° 5L..T .£w(-A)) = FW (A) 

Démonstration : 
Je fixe d'abord A un élément de P* . Pour alléger les notations, je 

pose u = yw . Par construction, le faisceau Jfew(-A) est un faisceau inversible 
très ample de S . . Donc comme précédemment, i&..(-A) est un faisceau ample de 

SW+1 . Les faisceaux Rq sont cohérents, et au plus (£(w)+l) d'entre eux 
sont non nuls. Donc pour tout entier n suffisamment grand, les conditions sui­
vantes sont simultanément satisfaites : 

(1) R' u*ow l ® «SS(-nA) est engendrée par ses sections globales pour tout 
entier p , 

(2) Hq(Sw ,RP u*0~® iêw(-nA)) = 0 , pour tout couple d'entiers p,q , 
avec q ^ 0 . 
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Les groupes E£'q =HRS S j ,RP y*i8~(-nA)) forment le second terme d'une 
suite spectrale de Leray qui converge vers H*(D(w),iê~(-nA)) . Par le lemme 36, 
on a J£~(-nA) = u* SSw(-nA)et donc la formule de la projection donne 

Rqu*£~(-nA)=Rq U.O al £w(-nA) . 

La condition (2) implique la dégénérescence de la suite spectrale considérée 
et l'on a donc pour tout entier n suffisamment grand : 

HP(D(w),£~(-nA)) = №(3^ ,RP y*e>~®£w(-nA)) . 

La condition (1) et le lemme 64 impliquent que pour n suffisamment grand, 
on a Rp y* C?~ ® iSw(-nA) = 0 , pour p ^ 0 . Or S?w(-nA) est inversible, donc 
ceci prouve que l'on a Rpu*0~ pour p f 0 . On notera que l'on a aussi 
^*^w sw,J car Par construction ? T est normale et y est un morphisme 

propre et birationnel. 
On a ainsi montré les conditions (a) et (b) de la définition d'une résolution 

rationnelle des singularités. Le corps de base étant supposé de caractéristique 
0 , ces conditions impliquent la condition (c). Ceci montre le point (a) du 
théorème. 

Soit A € Pj . Par le lemme 36, on a Jè~(A) = y* <ÊW(A) et par la formule 
de projection, on a Rq y *Jg -(A) = Rq y*#~® <$?W(A) . Donc par le point (1) du 
lemme, on obtient que pour tout q / 0 , on a Rq y5|c<è̂ (A) = 0 . La dégénéres­
cence de la suite spectrale de Leray associée à y implique donc un isomorphisme 

H*&. T sw,J qsw,J H*(D(w),£~(A)) . 

En particulier, dans le cas où 1'on a À = -A , pour un certain A € Pj n P+ , 
alors il vient oar les lemmes 27 et 57 

HP(D(w),£~(-n A ) ) 

et par le lemme 6Z,, on a pour tout q / 0 

RP y*e>~®£w(-nA)) 

Ceci finit la preuve du théorème 3. 
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Remarque : 
(1) Un théorème analogue a été prouvé par M. Demazure pour les algèbres de 

Lie semi-simples de dimension finie. Cependant la démonstration de [ 7] comporte 
un trou. Si l'on tient compte de cette erreur, le résultat de Demazure peut être 
énoncé sous la forme suivante. Si G est un groupe semi-simple, B un sous-groupe 
de Borel, si toutes les variétés de Schubert de G/g sont normales, alors elles 
sont à singularités rationnelles (la caractéristique du corps de base étant sup­
posée être zéro). 

(2) L'intégralité du théorème 3 a été prouvée par Metha, Ramanan et 
Ramanathan en caractéristique 0 et par Ramanathan en toute caractéristique 
([521). On notera que l'utilisation des foncteurs de Joseph évite le recours au 
subtil lemme de Kempf que l'on trouve dans [7 ] et [36]. Ici le lemme de Kempf 
est utilisé implicitement au cours de la démonstration du théorème 3 sous une 
forme complètement triviale. 

(3) L'idée de montrer les conditions (a) et (b), puis d'utiliser le théorème 
de Grauert-Riemannschneider dans ce type de problème est dû à M. Demazure [ 7 ] . 

Dans la suite, on s'intéresse au cas où 1'on a j = 0 . On pose alors 
SW = J * pour tout w G W " Dans Ĝ cas °̂  ^'algèbre de Kac-Moody est de dimen­

sion finie, on dispose pour tout w d'une variété B w B tel le^ que ?w = B w Bŷ  . 
Donc à tout module M € &(b) , on peut associer le faisceau i£w(M) des sections 
du fibre B w B x M . Lorsque M est de dimension finie, i£w(M) est un faisceau 
localement libre de rang la dimension de M . Ici on va procéder de manière inverse. 
Le théorème 3 va permettre pour tout M € £(b) de définir un faisceau Ê̂W(M) 
sur ? (ce faisceau étant localement libre de rang la dimension de M dès que 
celle-ci est finie). On pourra alors construire un certain schéma B(w) au-dessus 
de ^ 9 tel que S>w = B(w)/B (en dimension finie ce schéma est B wB) . Puis on 
montrera que B(w) est affine. 

Cette construction sera utile pour identifier les dérivées des foncteurs de 
Joseph à la cohomologie de certains faisceaux. 

Soit w € W et soit w une décomposition réduite de w . Je note y le 
morphisme naturel y : D(w) S . Soit M € . Je note 5?W(M) le faisceau 
sur Sw : JÊW(M) = y* &~(M) . On note que lorsque M est un module de ë(8) 
isomorphe à un certain module unidimensionnel A , où A € P , cette notation est 
compatible avec celle donnée au § V. 

Le faisceau j£w(M) est bien défini, i. e. ne dépend pas du choix de la 
décomposition réduite w . Ce fait a déjà été prouvé pour un module M unidimen-
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sionnel M = A . 

Lemme 65: 

Soient w € W , w1 t w2 deux décompositions réduites de w , 

: D(ŵ ) » Ŝ  , v2 ; D(Wg) ' sw *es morPhismes naturels. Alors pour 

tout M € ^(b) , on a un isomorphisme canonique {v+)Jt (M) (iO j£ (M) . 

Démonstrat ion: 

Par le lemme de Matsumoto ([3]; ch.IV Ç1.5), il suffit de montrer le 

lemme dans le cas où w1 et w2 sont de la forme: 

Wl = U *1 V 
w2 = u »2 V 

ou u,v € W et où v1 «g sont deux décompositions réduites d'un plus grand 

élément m- d'un sous-groupe de Weyl fini de rang deux, i.e. la situation 

étudiée précédemment. Reprenant les notations du lemme 28, il existe un 

morphisme naturel j : D » sw rendant commutâtif le diagr amme 

D(wJ D(w2) 
TT О 1Ь 

V1 V2 

S w 

Le lemme 72.2 donne un isomorphisme naturel 
<*.),* W oc (í2),« (M) . 

On a donc un isomorphisme naturel «>,),« (M) » <„2),*s (M) = W . s <M) , i.e. 

un isomorphisme naturel «>,),« (M) » <„2),* (M) On vérifie comme au 

chapitre 3 que les isomorphismes trouvés sont canoniques (i.e. en utilisant 
les sous-matrices de Cartan de rang 3 dans A). 
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Lemme 66; 
Le foncteur X^ : *€(b) • Qcoh(Sw) est un foncteur covariant, exact et 

il commute aux limites inductives. Si M € , M de dimension finie, alors 

X (M) est localement libre de rang la dimension de M. Soit u un élément de 

W , u < w , et soit o : Su » Sw l'immersion fermée correspondante. Alors 

on a un isomorphisme de foncteurs a*X - XL . 

Démonstration: 

Je vais d'abord montrer que pour tout module M € ^(b) , M de dimension 

finie, *WC*0 est localement libre de rang la dimension de M , et que 

Rq fiJ£~(M) = 0 pour q > 0 , par récurrence sur la dimension de M . 

Par le théorème 3 et la formule de la projection, ces deux assertions 

sont vérifiées lorsque M est de dimension un. Je choisis donc M € £(b) , 

dim M > 2 et je suppose ces assertions montrées pour tout module E € tf(b) 

avec dim E < dim M . Comme l'action de b est résoluble, il existe une suite 

exacte 

0 —» E • M • F —• 0 où aucun des deux modules E ou F 

n'est égal à {0} . Par le lemme 23.1; le foncteur est exact. On obtient 

donc une suite exacte 

0 —> *~(E) —> «JJ(M) —> a~(F) —• 0 . 

Par image directe, on obtient une longue suite exacte 

0 • X (E) • X (M) > X (F) > R1 UL #-(E) • . . . 

Comme par hypothèse de récurrence on a pour q f 0 Rq nJ£^(R) =0 et 

Rq fii^iF) = 0 , on obtient Rq vJi^(M) = 0 pour q / 0 , De la suite exacte 

0 —. 2W(E) _ . 2w(M) 2w(F) 0 

et de l'hypothèse de recurrence, on déduit également que Ŵ(M) est 

localement libre de rang la dimension de M . 

Comme l'espace topologique D(W) est noethérien, le foncteur p 
commute aux limites inductives. Comme Jg~ commute également aux limites 

w 
inductives, 2 commute aux limites inductives. 
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On va prouver maintenant l'exactitude de £^ . 

Soit 0 > E • M • F • 0 une suite exacte de <e(b) . Soit {M̂} la 

famille des sous-modules de dimension finie de M . Pour chaque indice a , 

soit E = E n M et F T image de M dans F . Il est clair que l'on a a a a ~ a 
E = lim E , M = lim M et facile de montrer que l'on a F = lim F . Les t a f a • a 

suites exactes 

О > E • M • F • 0 
a a a induisent des suites exactes 

o —• 2 (E ) —> 2 (M ) —• 2 (F ) —> o 
wy <k' wv a wv or car on a u #~(E ) = 0 . Comme £~ commute à la limite inductive, la suite * w or w 

o —+ 2W(E) _ . 2w(M) _ > 2W(F) o 

est exacte. 

Il reste à prouver l'assertion sur la restriction. Soit u une 

décomposition réduite de u , avec u < w . Soit r : D(u) • D(w) l'une des 

immersions fermées rendant commutâtif le diagramme 

D(u) r •D(w) 

v v 
S 
u 

a S w 

(une telle immersion r est construite g IV et v désigne le morphisme 

D(u) • Sy naturel). 

Soit M e *£(b) . Par le lemme 23.2, on a £~(M) = T*̂ JJ(M) . Le morphisme 

canonique de foncteur a* * fi r* induit un morphisme naturel 
a*2 (M) —» 2 (M) . 

Je vais montrer par récurrence sur la dimension de M que ce morphisme 

naturel est un isomorphisme. Lorsque M est de dimension un. on peut écrire 

M = A - A' où A,A* sont deux poids de P̂  . Par le lemme 35, on a 

o*2w(A) =2u(A) , a*2w(A') =2U(A') , 
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d'où, par le lemme 37 

a* ^(M) = a* Зул-Л') 
= a*(£w(A)®#w(A') -1) 
= £U(A) 9&и{\')~1 
= £„(л-л') . 

On suppose donnée à présent une suite exacte 0->E->M->F->0 de é*(b) , 
où M est de dimension finie et on suppose 1'assertion prouvée pour E et pour 
F . Comme ^£w(0 est localement libre, on obtient le diagramme commutatif 
suivant où les lignes sont exactes 

0 ^ * ! w ( E ) , a * ^ ( M ) - a * £W(F) - 0 

0-» êu(E) - «U(M) - ^U(F) - 0 

Le lemme du serpent implique que le morphisme a* £W(M) -> -£U(M) est un 
isomorphisme. Ainsi ceci permet de conclure par récurrence lorsque la dimension 
de M est finie. Puis un passage à la limite sur les sous-modules de dimension 
finie de M montre que a* iëw(M) -* £U(M) est un isomorphisme pour un module 
M quelconque dans &(b) . Ceci achève la démonstration du lemme. 

Soit (X,< )̂ un schéma séparé et un faisceau quasi cohérent de 
^-algèbre commutative. Il existe un schéma 0 : Y -> X affine sur X , unique­
ment déterminé par un isomorphisme et = e* ^ . 

La construction de Y est la suivante : Soit {Ua> un recouvrement affine 
ouvert de X . On utilise les notations usuelles UG >p = U 0 ( n U , U c x , p , y 

Ua n U n U pour tout triplet d'indice a,3>Y • Soient Va (respectivement 
V n , V n ) le schéma affine associé à l'anneau ct(U ) (respectivement 
cfc(V OC, A) » êT(U 0(, p ,Y )) . Le système d'immersions ouvertes 

V n 1 V n 1V a,3>Y «>3 ex 

satisfait la condition de cocycle. Soit donc Y le schéma obtenu par recollement 
des ouverts V suivant le système d'ouverts V ft . Les différents morphismes 
0a : Va ~* Uoc induisent un morphisme affine 0 : Y -> X ([27], exercice II.2.12, 
exercice II.5.17 et [23]). 
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Le foncteur 0* induit une équivalence entre la catégorie des faisceaux 
quasi-cohérents de Y , et les faisceaux quasi-cohérents de X , qui sont des 
faisceaux de et -modules (avec compatibilité de ces deux structures). En parti­
culier si TT : Z -> X est un morphisme de schéma, il y a équivalence entre la 
donnée d'un morphisme de faisceau d'algèbre TT* AZ , rendant commutatif le 
diagramme 

Ox 

X TT*6 

et la donnée d'un morphisme Z -> Y rendant commutatif le diagramme 

Z Y 

TT 0 
X 

Je vais appliquer cette construction pour construire le schéma B(w) . La 
structure d'algèbre sur k [B] induit un morphisme de H(b)-module 
k [B] ® k [B] -> k [B] . Soit w G W . On obtient ainsi un morphisme 
£w(k CB]) ® Ĥ k [B]) -» TYK [B]) , et donc <£w(k [B]) est naturellement une 
é>£ -algèbre quasi-cohérente. Il existe donc un schéma 0W : B(w) -> ? affine 

relativement à ?w , tel que 9w +EB^ = Z (K [B]) . 
Soit w une décomposition réduite de w . Il est clair que l'on a 

2~i w (k [B]) = (k [B]) = où TT~ désigne le morphisme E(w) -» D(w) . Par la 
construction précédente, il existe un morphisme naturel E(w) -> B(w) et le 
diagramme 

E(w) B(w) 

ttW 0w 

D(w) VW SW 

est commutatif. 

On fixe u un élément de W avec u < w . Soit u une décomposition 
réduite de u , avec u < w . Soient a : ^ -> 3^ l'immersion naturelle 
T : D(ïï) -» D(w) l'une des immersions fermées construites au paragraphe 4 et 
T' : E(ïï) -> E(w) le morphisme qui est associé â T . Il est clair que l'on obtient 
un cube commutatif 
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E(u) B(u) 

T' 

E(w) B(w) 

D(u) SW 
T a 

D(w) w 

Par le lemme 64, on a a* 3?w(k [B]) = *6u(k [B]) . Donc le morphisme 
naturel B(u) -» B(w) est une immersion fermée. 

Avant de prouver que les schémas B(w) sont affines, j ' a i besoin de rappel 
quelques constructions sur les groupes de Kac-Moody. Je note C(w) le spectre 
de r(B(w),£B(w)) . On note que Ton a r(B(w) ,*B(w)) = r ^ . & ^ k [B])) et on 
a donc r(B(w) > (̂w) ) = Dw k [B] • Soit le groupe de Kac-Moody associé à g 
(je note ce groupe et les groupes suivants avec un soulignement pour rappeler 
qu'il s'agit de groupes discrets). 

Ce groupe a été construit par Kac et Peterson [49] et Tits [59]. Je vais en 
indiquer la construction, car ces groupes présentent des différences minimes 
suivant la construction. Je suis ici la construction du groupe minimal de Tits, 
à la différence du choix du réseau près (la seule différence entre le groupe que 
je construis ici et celui de Kac et Peterson tient à la taille du sous-groupe 
de Cartan H) . 

Je pose H_ = Hom(P,k*) . Soit U(n ) le complété de 1'algèbre enveloppante 
de l'algèbre de Lie n+ (confère le § I). Soit A* l'ensemble des racines 

A/j\ A + 'E _I_A + 
réelles positives de g . Soit Uv ' = {x e U(n ) ,x = l modulo n U(n )} . Soit 
N le sous-groupe (noté X dans [25]) de Û̂ 1̂  engendré par les "sous-groupes 
à un paramètre" exp(n ) , où a € A . Soient i € {1,...,N} , U(u.) la fer-

"A A + Afnre A A/ 1\ " ' 
meture de U(ŷ ) dans U(n ) , V\ 1 = U(û ) n Uv ; et £. le groupe à un 

A/ 1 \ 
paramètre exp(kel-) . On pose U. = N_ n U\ 1 . Soit A., les k-points du groupe 
algébrique A.. . Comme groupe algébrique, Â  est le quotient d'un produit d'un 
groupe SL(2) et d'un tore déployé par un groupe fini. Un point délicat de la 
construction est de montrer que 1'on a U = E_i « IK (cf. [59], [62]). L'action 
de _E. sur IL se prolonge en une action de A., et on note P̂ . = Â  * û  . 
Le groupe H_ agit naturellement sur JJ (de manière compatible à 1 'action de A 
sur U..) et on note B = H * U , de sorte que B_ s'identifie à un sous-groupe 
de P̂ . et que P../g s'identifie aux points rationnels de PyB (qui est iso-
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morphe à la droite projective). Il existe une extension abélienne naturelle 

1 - H - (JP(H) - W - 1 

et pour chaque indice i on note c .̂(H) la sous-extension 

1 -> H ĉ .(H) {l,s.} -> 1 

et ^-(H) s'identifie au normalisateur de H dans P.. . Par définition le 
groupe de Tits minimal G associé à g est le produit amalgamé des groupes 
P. et (X(H) suivant leurs sous-groupes B et oĴ (H) ([59], [62]), Comme 
usuellement, on note d'une même lettre un élément w € W et un représentant w 
de cet élément dans • Pour chaque w G W , on pose JB(w) = U u<w BuB . 
Dans [631 , il est montré que (G,B,«df°(H)) est un système de Tits. Soient w € W 
et i e I . Je pose B.(w) = U B(u) .Si w € W , i € {1,.. . ,N} sont tels 

u<w 
s. u<u 

que s. w < w , on a P.. J3(w) c ]3(w) . 

Lemme 67 : 
Soient w € W , v € W , i e {1,...,N} tels que w = v et w > v . On a 

un diagramme commutatif d'ensemble 
Pn. x^ B(v) < P. x- B.(v) 

B(w) < B.(v) 

et B(w) est le coproduit de P̂  x-B(v) et de ^.(v) suivant P^x-B^v) 
(dans la catégorie des ensembles). 

Démonstration : 
Ce lemme résulte directement de l'axiome des systèmes de Tits, et du fait 

que G est un groupe avec système de Tits. 

Je note, pour chaque i € {1,...,N} , F\. le groupe discret à un paramètre 
exp kf̂  . 

Lemme 68 : 
Soient M € g^g) , i E {1,...,N} et v : D M -> M le morphisme naturel. 

si 
Soit cp un élément non nul de D M . Il existe un entier n tel que 
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v(f".cp) / 0 et il existe g € F., tel que v(g.tp) fi 0 . 

Démonstration : 
Je vais d'abord prouver la première assertion. Le HCp-)-module D M 

est naturellement un sous-module de Coind̂  M et par le théorème de Poincaré-

Birkhoff-Witt, on a un isomorphisme naturel d'espace vectoriel 

t : Coindb M Hom(U(kf\),M) . Soit n un entier tel que Tcp(fV) fi 0 . Alors on 

a u( f".cp)̂  0 . Comme on a f9.cp = 0 pour q suffisamment grand, il existe 
une famille de scalaires a ,t telle que Ton ait f!?.cp = I aa(exp tQf.j)ip . 
Donc il existe un indice a tel que Ton ait v(exp(t f̂ )cp) fi 0 . 

Ceci montre le lemme. 

Pour tout w € W , je note Ck(w) l'ensemble des k-points de C(w) et 
(̂Bjw)) l'ensemble des fonctions de J3(w) -> k . 

Lemme 69 : 
Pour tout w € W , il existe une application naturelle o<w : B̂(w) -* Cjjw) . 

Ces diverses applications sont compatibles entre elles, et pour tout w € W , 
l'application cfî : r(C(w) »̂ c(w) ^ "* ^(â(w)) ai'nsi déterminée est injective. 

Démonstration : 
Je vais construire c*w et montrer l'assertion correspondante par récurrence 

sur £(w) . Je considère d'abord le cas où Ton a w = 1 . L'application naturelle 

(construite au § I) NA+k -» N se restreint en une application naturelle N-> N . 
Il est clair que l'image de A+k N A+k est dense et que la fermeture de l'image de N 

contient N . Donc l'image de N_ dans N est dense. Soit h G H . Par défini­
tion, k [H] est égal à l'algèbre du groupe k [P] . L'élément général 
ip € k [H] s'écrit donc (p = I a,À€P A . L'application cp-> I a, a (h) est un 
morphisme d'algèbre et donc h détermine un k-point de H . On a ainsi une 
application de H dans les k-points de H . Le produit des deux applications " précédentes détermine une application naturelle ax : -» 0 (̂1) et cr[ est 
clairement injective. 

Soit w € W , £(w) > 1 . Je pose w = s. v pour un certain i £ {1fifi,...,N} , 
v € W , v < w . Je suppose construit par récurrence a et je suppose or; 
injective. Le groupe P. opère sur C.(w) et l'application a;; commute à Tac-
tion de JB . On obtient ainsi une application naturelle P. x-B (̂v) -> C, (w) . 
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Soit à présent u e W , tel que 1'on ait u < w et s. u < u . Le morphisme 
C(u) -* C(w) commute à l'action de P. , donc l'application Ck(u) -» C^(vi) 
commute à l'action de P_. . Donc le diagramme naturel 

P. x- B(v) < P. x-B(u) 

C(w) < B(u) 

est commutatif, ce qui prouve que l'application £. x- B_(v)-> C(w) factorise 
en une application B(w) -» C(v/) . 

Il reste à montrer que â j est injective. Soit 
v : r(C(w) »̂ c(wj) ~* r(c(v)»^c(v)) "l'application naturelle. On a 

r(C(w)'e?C(w)) = Ds. r(c(v)»fib(v)) • Soit * € r(C(w)̂ C(w)) • <P * 0 . Par le 
lemme 68, il existe g € F. tel que v(gtp) i 0 . Par hypothèse de récurrence, 
on a AV v(gcp) ^ 0 . Or le diagramme naturel 

r(C(w),6c( .) v r(c(v).%v)) 

AWh avdz 

®I(w)) S B(v) 

est commutatif et orj commute à l'action de £. . Donc oÇ (cp) ^ 0 , ce qui 
montre le lemme. 

Lemme 70 : 
Pour tout w G W , le schéma B(w) est affine. 

Démonstration : 
Je choisis A G P̂  et pour simplifier, je suppose A choisi suffisamment 

grand, de sorte que le morphisme 5̂  -> F EW(A) S0lt une immersion fermée 
(ce qui est possible d'après le théorème 2). 

Soit Y yGr } une base de F (A) . Pour tout indice y , soient H le 

noyau de ç et U l'ouvert de S défini par la formule 
U = 
Y 

S, D (PE(A)NPH ) . Ainsi {U } 
YGr 

est un recouvrement ouvert affine de 

Sw , de sorte que 1'ensemble des ouverts V̂  = 6~ (Û ) est un recouvrement ouvert 
affine de B(w) . 
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v On a k [B] = e V(y) , de sorte que Ton a dim Homh(-A,k [B]) = 1 . On 
y€P 5 

fixe une injection j du Ĥ KbJ-module -A dans k [B] (ici comme précédemment 
on confond -A et Tunique <U,(b)-module unidimensionnel ayant -A pour poids). 
Ceci donne une injection Sw(-A) >̂°f>w(k • Prenant les sections globales de 
ces faisceaux, on obtient une injection jlf : F,,(A) A , où A désigne 
l'anneau r(B(w) ,iê>w(k [B])) . Je note Xy l'image de EV dans Aw , pour 
chaque y E T (on notera qu'en fait n'est défini qu'à un scalaire multipli­
catif près). Il est clair que U est le domaine de définition de la section £V 
et que VX est le domaine de définition de la fonction EV. 

D'après un critère d'affinité ([10], ch. II, ex. 2.17), il suffit de montrer 
que la famille X engendre l'idéal unité de A . 

Soit cw : FW(A) -» ê(B(w)) l'application composée oÇ0 Jw . Soit v* un 
élément non nul de F.,(A) . . On a c(v*)(l) fi 0 , de sorte que Ton peut choisir 
c (v*)(l) = 1 . Soit v Tunique élément de EW(A)A tel que (v*|v) = 1 . Si 
£ £ F,,(A) , 3 e B(w) , on a la formule 

cw(C)(P) = (?|B-v) . 

On a dim Homh(L(A),A) = 1 , de sorte que Ton a dimb(L(A) ,V(A)) = 1 . Un 
générateur de cet espace vectoriel engendre donc un morphisme j ' : L(A) -» k [B] . 
Comme on a D$ L(A) = L(A) pour tous les indices i , on obtient une application 

naturelle j ^ : L(A) -+ Aw , transformée de j sous le foncteur de Joseph Dw . 
Soit ĉ  : L(A) -» fe(B^(w)) l'application composée AWJW . Je vais décrire 
cette nouvelle application, qui n'est, elle aussi, définie qu'à une constante 
multiplicative près. Soit L*(A) le dual restreint de L(A) , i. e. le sous-
espace du dual L(A)* de L(A) formé des vecteurs ^(h)-semi-simples. Je note 
encore v* Télément de L*(A)_A tel que (v*|v) = 1 . On note que L*(A) est 
naturellement un G-module. Si m € L(A) , 3 € ]3(w) , on a la formule 

c;(m)(3) = (3-v*|m) . 

Soit {m } la base de E (A) duale de la base {£ } . Pour chaque 
Y y€£ _ 

Y € r , je pose m = j ' (m ) , et cp = Z m £ . Pour tout 3 £ B(w) , on a 
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agcp)(3) = ^ oJtmy)(3) а^у)(3) 

= I c;(m )(3) cw(r )(3) y£r w y w y 
= I (3v*|m )(P |3v) 

у€Г Y Y 
= (ßv*| z (E |3v)m ) 

уЕГ Y Y 
= (3v*|3v) 
= 1 . 

Or par le lemme 6?, cÇ est injective, on a donc cp = 1 . Ainsi la famille 
Xy engendre Tidéal unité de Aw , ce qui montre le lemme. 

Dans les lemmes suivants, on va utiliser le fait que k [B] est un injectif 
cogénérateur de &(6) . Ceci signifie que tout injectif de ê(B) est un facteur 
direct d'une somme directe (finie ou infinie) de copies de k [B] . En fait il 
est facile de montrer que les injectifs de &(6) sont les sommes directes (finies 

ou infinies) de copies de divers modules V(X) , X e P . 

Lemme 71 : Soient I un injectif de é(P>) , u , w deux éléments de W avec u < w . 
Alors l'application naturelle D I -> Du I est surjective. 

Démonstration : 
Les foncteurs Dw et Dy commutent aux limites inductives, donc il suffit 

de montrer le lemme pour le module I = k [B] . 

On a Du k [B] = r(B(u),0B(u)) , Dw k [B] = r(B(w) ,e>B(w)) et le morphisme 
naturel Dw k [B] -» Du k [B] est le morphisme de restriction. Or le morphisme 
B(u) -> B(w) est une immersion fermée. Comme par le lemme70, B(u) et B(w) sont 
affines, il vient donc que Dw k [B] -> Du k [B] est surjective. 

Lemme 72 : 
Soient v,w e W , i e {1,...,N} tels que l'on ait w = ŝ  v et s., v > v . 

Alors pour tout entier k ^ 1 et tout M € fe(b) , on a une suite exacte fonc-
torielle 

0 Ds. Dv"1 M " Dw M ~* Ds. Dv M 0 • 
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Démonstration : 
Par le lemme7l , pour tout injectif I G &(g) , l'application 

D D I -> D I est surjective. Par le lemme 13, ceci implique que Ton a si v 
D I , pour tout entier q > 1 .On peut donc former la suite spectrale du 

si v 
foncteur composé Dw = D$ Dv . Cette suite spectrale a pour second terme 

£P>q = pP D̂  et converge vers D̂+c* . Or le foncteur D$ est de dimension 

homo!ogique un. Cette suite spectrale dégénère donc au terme E2 , d'où, pour tout 
entier k , une suite exacte 

0 ~* Ds. Dv~1 M ~* Dw M ~* Ds. Dv M ~* 0 ' 

Lemme 73 : 
Soient u,v E W et I un injectif de è(3) . Alors pour tout entier q > 1 , 

on a 

D[j Dv I = 0 . 

Démonstration : 
Je vais prouver le lemme par récurrence sur £(u) . Lorsque Ton a u = 1 , 

on convient que Du est le foncteur identité et dans ce cas, le lemme est trivial. 
Je suppose que Ton a u fi 1 . Il existe un i € {1,...,N} et u1 G W tel 

que Ton ait u = ŝ  u' et u' < u . 

Par le lemme 72, on a pour tout entier q > 1 une suite exacte 

°-> K. D2Tl DV l- °u Dv ^ % °u< Dv • 

Par hypothèse de récurrence, on a D̂ j. Dy I = 0 pour tout entier q ^ 1 . 
On en déduit donc que Ton a : 

Du Dv I = 0 pour q > 2 

Du Dv 1 = Ds. V Dv 1 pour q = 1 • 

Il est clair qu'il existe un élément w tel que Ton ait un isomorphisme 
de foncteur D , D ^ D . Par le lemme 71 , l'application D D I -> D I est 

U V W o • w w 
1 1 

surjective, donc par le lemme 13 on a D$ D I = 0 . 
Ceci achève la démonstration du lemme] 
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Proposition 3 : 
Soient M e ê(^) » w € W et w une décomposition réduite de w . Alors 

on a des isomorphismes naturels 

Dw M ~ H * ^ » ^ ) ) " H*(D(w),Xw(M)) . 

Démonstration : 
Le second isomorphisme résulte du théorème 3. Je vais montrer le premier 

isomorphisme. J_e foncteur M-> H*(?w,ifw(M)) est un ô-foncteur, et l'on^a 
D̂  M * H°(SW,2W(M)) . Il existe donc un morphisme naturel D* M ->H*(3W,#W(M)) 
et pour montrer que ce morphisme est un isomorphisme, il suffit de montrer que 
l'on a Hq(?,Jê (I)) = 0 , pour tout entier q > 1 et tout injectif I € ê(b).Com-w w, 
me le foncteur LW commute aux limites inductives (lemme 64) et que l'espace 
?w est noethérien, les foncteurs M -* nV? ,i? (M)) commutent aux limites 
inductives. Comme le module k [B] est cogénérateur, il suffit de montrer que 
Ton a Hq(?'w,iew(kCB3)) = 0, pour tout q>0. Or on a 

£w(k [B]) = (ew)^B(w) . 

Le morphisme 0 est affine, donc pour tout entier q , le morphisme 
H (^(»^,,(k [B])) -> Hq(B(w),6D, .) est un isomorphisme. Or B(w) est affine par 

le lemme 10. Donc par le théorème d'annulation de Serre (C70] ), on a 
Hq('?w,̂ w(k [B])) = 0 pour tout q > 1 . Ceci montre le lemme. 

Proposition 4 : 
Soit w € W . 
1) Le foncteur Dw est de dimension homologique £(w) . 
2) Soit M € £^b) , M de dimension finie. Pour tout entier q , Dq M est 

de dimension finie et Ton a 

X (-l)q ch(Dq M) = Aw ch(M) . 

3) Pour tout ç tel que -£ € P+ , on a 

к ? = FWK) 

Dq Ç = 0 pour q > 0 . 
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Démonstration : 
Le point 1 résulte de la proposition 3. Le fait que Dq M est de dimension 

finie résulte de la proposition 3 (car ? est une variété projective et iSw(M) 
est cohérent). La formule de caractère est déduite des lemmes 13 et 71 par 
récurrence sur l̂ w) . 
Enfin, le point 3 provient des lemmes 57 et 64 et de la proposition 3. 

Remarque : 
A. Joseph a défini les dérivés des foncteurs Dw par une voie différente, 

lorsque n, est de dimension finie. Il utilisait des résolutions à l'aide de 
modules du type L(A) ® k_M , où A,M € P+ . Pour tout w , on a 
D* L(A) ® k_|Y| = L(A) ® D* -M , donc les résolutions utilisées par Joseph sont 
plates pour le foncteur Dw . Ainsi les dérivés des foncteurs sont les mêmes que 
ceux que j 'utilise. 

Une fois cette identification faite, il convient de noter que la proposition 
4 était connue en dimension finie. En effet, elle a été montrée par A. Joseph 
dans 3 | ], à l'exception du point 3 qui n'était connu de A. Joseph que pour les 
poids £ suffisamment petits. Néanmoins l'argument de Joseph s'étend à tous les 
poids antidominants entiers dès que l'on connaît les résultats de Metha-Ramanan-
Ramanathan. 

La proposition 3 est nouvelle. 

Proposition 5 : 
Soient u , v , w G W avec uv = w et £(u)+£(v) = &(w) . Soit M G ê(b) . 

Alors il existe une suite spectrale dont le terme E2 vaut 

Ep>q = DP M 

et qui converge vers D* M . 

Démonstration : 
On a DW = DM Dw . Par le lemme 73, on peut construire la suite spectrale 

du foncteur composé D̂  = Du Dv . Cette suite spectrale converge vers D* M 

et son second terme est Ê ,q = Df Dq M . 

Remarque : 
On peut choisir des décompositions réduites ïï,v',w de u ,v et de w 

(respectivement) de sorte que 1'on ait w = u"v . La suite spectrale de la proposi­
tion 5 s'identifie à la suite spectrale de Leray associée au morphisme D(w) -* D(ïï) . 
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Soit CNn la suite centrale décroissante de l'algèbre 

de Lie n , qui est définie par récurrence sur l'entier positif n 

par les formules ([6 ]) 

C° n = n 

C° n = [ n , Cn n ] 

Il est clair que les idéaux de la suite centrale décroissante 

sont de codimension finie dans n . Comme ils sont stables par _h , on 

peut leur associer des groupes, que je note ^ n N . Par le théorème 

de Poincaré-Birkoff-Witt, l'action de ^ n N sur N est libre, donc 

on peut considérer le groupe quotient 

N" = N/g.n N . 

Pour chaque entier n , le groupe quotient est affine, et 

l'on a k[N ] = k[N] — , i.e. k[N ] s'identifie aux vecteurs ^ n -

invariants de k[N ] (et ceci sans ambiguité car les invariants pour 

les actions à gauche et à droite sont les mêmes). 

Soit X une B-variété. Je dis que l'action de B sur X 

est bonne, si les deux conditions suivantes sont réalisées : 

(a) Il existe un entier n pour lequel l'action de ^ n N sur 

X est triviale 

(b) Il existe un point rationnel P€X , H-stable tel que 

X = NTP" . 
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Soit X une variété avec une bonne action de B . Pour 

simplifier, je vais supposer que X est normale. Soit P le point de 

la définition précédente. Le groupe N agit sur X comme le groupe 

nilpotent Nn , pour un certain entier n . Il est clair que lforbite 

(au sens schématique) du point P, soit U , est un ouvert stable par 

B , et que U est l1unique orbite ouverte. Pour cette raison, on dira 

que U est la grosse orbite. Soit M le stabilisateur dans N*1 du 

point P . Il est clair que l'on a un isomorphisme naturel Nn/M -> U 

(ce qui résulte du théorème principal de Zariski, ou d'une propriété 

d'homogénéité). Par ailleurs la variété Nn/M est isomorphe à la 

variété sous-jacente à un espace vectoriel sur k . 

Lemme 74 : On reprend les notations précédentes 

1) Soient Zj,...,Zm les composantes irréductibles du complémentaire 

Z de U dans X . Chacune de ces composantes Zj est de codimension 

1 dans X et définit donc un diviseur [Zj] . Le morphisme naturel 

2 [zj e ... e z [z ] C£ x 

est un isomorphisme. 

2) Tout faisceau inversible £ sur X possède une B-linéarisation 

naturelle £ ^ . Toute B-linéarisation de £ est obtenue en tordant nat 
la linéarisation £ . par un caractère de B . nat 

Démonstration : 1) L'ouvert U est isomorphe à un espace vectoriel. 

Donc par un théorème de Serre ([26] proposition III.5.10) chacune des 

composantes Zj est de codimension 1. Utilisant [27] (ch. II § 6) 

on obtient une suite exacte : 
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o (X(x) -* ^(u) -> z [z. ] e ... e z [z ] C£ x -> c£ u -> o 
X X I m 

Or on a el (U) = k (donc le morphisme OX (x) - O X (u) est un iso­

morphisme) et Ci U = {0} . Ceci prouve le point 1 du lemme. 

2) Soit £ un fibre inversible sur X . Par le point précédent, il 

existe des entiers (aj) uniquement déterminés tels que l'on ait 

m 
div(X) = Z a.[Z.] 

J-l 2 3 

Or les diviseurs [Z..] sont stables par B . Donc ceci 
détermine une B-linéarisâtion naturelle £ nat . de £ . Il est clair 

que toute B-linéarisation est uniquement déterminée par sa restriction 

à U , et ceci prouve le dernier point du lemme. 

Soit J une partie de {1...N} , et soit w € Wj . Suivant 

[2^], je pose 

$ = {a € A+ , w la € A } w 

n = № n a 

L'ensemble $ est constitué de &(w) racines réelles, et le sous w 
espace vectoriel n_w est une sous-algèbre de Lie de n , de dimension 

£(w) , et stable sous l'action adjointe de h . Soit A € Pj • Je note 

^w ̂  l'image réciproque du point k e^ par l'application ŵ j "* - SWA 

de sorte que e est un point de S , (e ne dépend pas de A ). 

Soit NW le groupe associé à l'algèbre de Lie n^ . On pose 
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U = B.e 
w w 

L'orbite U est un ouvert de S . , et l'on a U = N . e w w,J w w w 

L'application Nw -* Uw que l'on en déduit est un isomorphisme. Soit 

i € {1,...N> tel que l'on ait ŝ w >w . Soit TÏ le morphisme 

naturel T T : P . X S T -* S T. Il induit clairement un isomorphisme 1 w,J s. w,J ' 1 ' 
TT ̂  (U ) -» U . Aussi je note encore U et e les images s.w s.w J s.w s.w & 1 1 i l 

réciproques de U et de e par TT . Enfin on pose 
Si i 

Sj(w) = {j € {1,...,N}/J | w > Sj} 

0j(w) - (u E W I u < w et A(u) = A(w) - 1} 

et on note j l'immersion fermée S -> P. X S 
w i w 

Soit X une bonne variété, 7* € Q coh_(X) et X € P . 

On obtient une nouvelle B-linéarisation de F en tordant la B-linéari­

sation de F par le caractère exp y de B défini par X . Je note 

^ ® jk1 le faisceau F muni de sa nouvelle B-linéarisation. 

L'action de B sur des variétés telles que les variétés de 

Schubert, les variétés de Demazure est bonne. Pour certains X € P , 

et certaines des variétés précédentes on a construit un faisceau in­

versible «C(X) B-é qui variant. En général, cette linéarisation n'est 

pas la linéarisation naturelle du lemme 74. 
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Soit X une variété lisse en codimension 1 , et Y une 

sous-variété de codimension 1. Alors je note [Y] le diviseur Weil de X 

défini par Y . Je note aussi div l'application naturelle 

div : Pic(X) -* CH X . 

Lemme 75 : On conserve les notations précédentes. 

(1) La variété P. X S T est normale . 
(2) On a des isomorphismes 

C£ s T = e TL [s T] 
u€#j(w) ' 

CÄ(P. xB s T) - TL [s J e e z [s T] 1 W,J W,J Q / \ u.J u€^j(w) * 

(3) Il existe une application naturelle \ : C£(P. X S* _) -* C£(s' T) rr * î w,J v w,J7 

rendant commutatif le diagramme. 

Cl (Pi ^ ^ j ) - 1 — * C ^ w . J > 

div div 

Pic (P. XB ï ) —J » PÌC(STT _) 
1 W,J w,J 

(4) On a i [S T] = 0 , et w, J 

i*[Pi XB ?UJJ] = [SU>J] , pour tout u€ ĵ(w) 

Démonstration : 1) On pose U = F. . S T et V = E. s. sf T ,de i w,J i i w,J ' 
B ~ sorte que U et V sont deux ouverts de P. X S T , ces deux ouverts i w, J 

s'identifiant à A1 x SW j . Donc d'après [4ô] J27̂  ; 
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U et V sont deux ouverts normaux, donc P. X S T est normale. 

On peut donc définir son groupe des classes. 

2) Les composantes irréductibles du complémentaire de dans 

SW,J , sont les sous-variétés S T (où u€ #,(w)), comme il résulte 

clairement de la décomposition de Bruhat. Le lemme 74 montre donc la 

première assertion du point 2. On déduit également du fait précédent 

que les composantes irréductibles du complémentaire de Ug w dans 

P. XB S T sont les variétés S* T et P. XB S* T (où u€ #T(w)). i w,J w,J i u,J J 

Une nouvelle application du lemme 74 achève la démonstration du point 2. 

3) On choisit un isomorphisme de A^ et de F̂  qui identifie 

le point 0 de A* à l'élément neutre 1 de F̂  . Ceci fournit un 

isomorphisme de A* x Sw,J sur U 

4) Soient X,Y deux variétés. On suppose X et Y lisses en 

codimension un, et on suppose donné un morphisme j : Y -• X . Soit 

Sing X le lieu singulier de X . On suppose que j *(Sing X) est 

de codimension > 2 dans Y . Alors on va prolonger le morphisme 

naturel j : Pic(X) -* Pic (Y) en un morphisme j : C£(X) -> C£(Y) . 

Soit Q - Reg X le lieu régulier de X , on pose OD = j ^0, PI Reg Y , 

où Reg Y est le lieu régulier de Y . Soit j ' : le morphisme 

naturel. Alors on a un diagramme naturel commutatif : 

Pic(X)—^ >Pic(Y) 

•Î* 
Pic(ft)—! » Pic(aj) 
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Comme Œ et a) sont lisses, et que les complémentaires 

de Q dans X , et de u) dans Y sont de codimension > 2 , on 

a : 

Pic(ft) ^ ci fi ~ Cl X 

Pic(oû) CZ u> Cl Y 

et ces isomorphismes sont par construction compatibles aux morphismes 

div. Ceci donne donc un diagramme commutatif naturel 

Pic(X)—^ v Pic(Y) 

div div 

d X » Cl Y 

ce qui définit le morphisme j : Cl X -> C& Y cherché. 

On notera aussi qu'étant donné un ouvert 9 de X qui 

contient l'image de Y , et en notant l : Y -> 6 le morphisme déduit, 

la même construction s'applique au couple (Y,G). Le diagramme 

C£(X) J C£(Y) 

Res L* 

est clairement commutatif. 

5) On applique la construction au cas Y = S* T , X = P. X 'S T, 
W,J 1 W,J 

et e = U . Soit S le lieu singulier de 's w, J . On note que S est 

B-invariant. Par la description explicite de U et de V , le lieu 

C£ 0 
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B ^ B singulier de P. X S T est P. X S = T . En particulier on a & 1 w,J 1 r 

T PI s' T = S , donc T PI S , est de codimension > 2 dans S T . w,J w,J w,J 
.* B ~ ~ Ainsi on dispose dfun morphisme naturel j : Cl(P. X S T) -> S T . r r J 1 W,J W,J 

6) Pour montrer le lemme, il reste à montrer les formules du 
point 4. Soit l : S , -* U le morphisme d'inclusion. On veut montrer w, J 
. * ~ i [S ,] 0 . D'après ce qui précède, il suffit de monter que l'on w, J 

a Res [S* T] = 0 . Dans l'identification A1 x s ^ U , [S* T] 

correspond au diviseur [S , x {0}] . Ce diviseur est principal, on 

a donc Res [S T] = 0 , et donc i [S J = l Res [S T] = 0 . De 
W, J W, J W, J 

même dans l'identification A x s , ^ U , les diviseurs Res[P. X S T] 

s'identifie à [A x s T] . On a clairement l [ A x s T] = [S T] , 

ce qui montre les formules du point 4. 

Soient J une partie de {1,...,N} , et w un élément de Wj . 

On a un morphisme naturel 

PJ "Pic<Sw,J> 

donné par la formule : X -> £ (X) . On pose P° T = {X E PT , X(h.) = 0 
w w, J j i 

pour tout i€Sj(w)}. Il est clair que si X,y sont deux éléments de 
P T , avec u 6 P° T , on a £ (y + X) = £ (X) © k . Donc le morphisme J ' K w,J w w y r 

précédent se factorise en un morphisme 

y _ : P° _ \ PT —» Pic(S _) 
W,J W,J J W,J 
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Lemme 76 : )) Soient A € P , j€{l,...,N} . Alors le faisceau inver­
sible ? (A) sur P./B est libre si et seulement si A(h.) = 0 . 

2) Soient J une partie de {1,...,N} , wGWj w1 € Wj , et i€{l,...,N} 

tels que w* = ŝ  w , wf > w i t Sj(w) et i t J . Soit ÏÏ le morphisme 
B ~ ~ * ~ naturel TT :P .X S T-»SÎT. Alors le diviseur de TT (JE ,(p.)) i w, J wf ,J w1 i 

est équivalent à -[S T] . 

Démonstration : 1) La variété Pj/B est isomorphe à ]P* , et il 

est clair ( par exemple en utilisant le théorème de Riemann-Roch) que 

le degré de £ (A) est -A(h.) . Ceci montre le point 1 du lemme. 

2) On a un diagramme commutatif naturel 

P. XB s T* s _ 
1 W,J W,J 

т1 T 

PI/B 4 Spec(k) = B/B 

Par hypothèse, on a i t J et i t S,(w) . Donc on a 3f (p.) = ̂  ®k , 
J W 1 S T 

w, J 
et on a donc ^w(p̂ ) = T* k . On a clairement ot) ^(p^) - T* £ f (p^). 
Donc par le lemme on a TT jCwt (p̂ ) = (T1) £q (p̂ ) 

= (T') O P/BN ("[B/B]) 

- & (-[sw ]) 
p. xB s _ W'J 
1 W. J 

ce qui montre le lemme. 
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Proposition 6 : Soient J une partie de {1,...,N}, w€Wj . Alors 

le morphisme Y T : P° T \ P_ -> Pic (S T) est isomorphisme. r 'w,J w,J J w,J r 

Démonstration : 1) Je vais d'abord prouver 1'injectivité. Soit 
X € PT . Je suppose que l'on a X £ P° .11 existe donc un indice J w, J 

i€J , tel que i € ST(w) et X(h.) t o . Soit a : S T -> S _ 

l'immersion naturelle. On a o £ (X) = £ (X) . Donc par le lemme 

76, <£g (X) n'est pas libre. Donc LW (Y)n'est pas libre, et on a 

donc y _(X) ï 0 . w, J 

2) Je vais prouver la surjectivité par récurrence sur la longueur 

de w . Je suppose donnés w'€Wj , w€Wj et i € {1,...,N} tels que 

w' = si w et £(w') > £(w) . 

Par récurrence, je suppose y T bijective, et je veux montrer que 

Y . T l'est aussi, 'w' ,J 

Je donne £ un faisceau inversible sur SwT,J , , . Soit j : SwT,J T -* S . T 

l'immersion canonique. Le faisceau j £ est isomorphe (comme faisceau 

de module) à un certain £ (X) , où X € P , par hypothèse de récurrence. 
w J 

On a 

j*(JC ®Xr ,(-X)) - 0 -
S _ w, J 

. * 
et je peux donc supposer que j £ est trivial. 
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On a un diagramme commutatif 

P. xB s . 
1 W, J 

TT о 

S , т w , J 
j 

S _ w, J 

Par le lemme 75-2 il existe des entiers a et a bien déterminés 
u par la relation 

div(Tr* JE) = a[S _] + l a [P. XB S J . w,J c « , N u î u,J u€ ĵ(w) 

.* * . ~ On a a o TT = j . Donc j TT £ est un faisceau libre sur S T . En J J w, J 

appliquant les formules du lemme 75-4, on a donc : 

â  = 0 , pour tout u€ ĵ(w) 

A présent je considère deux cas : 

3) On suppose d'abord que l'on a i£jUSj(w). Soit M l'unique point 

B-invariant de sw j • Je Pose S = P̂  .M , de sorte que l'on a 

£ S =M si i € J 

j S = S T si i G ST(w) . si,J J 

L'immersion T : P -> S T détermine un morphisme naturel w, J 
B B T' : P . /B^P. X P -> P. X S T . On a ainsi un diagramme commu-1 1 i w,J 

tatif 
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P. xD s т < i w, J T Pi/B 

TT e 
S T 4? S^J * 

e 
s 

Par hypothèse, on a S c: s w, J 
. On a donc 0 £ = 0^ , 

* don 6f 0 £ est un fibre inversible libre de P̂ /B . 

Par ailleurs on a 

S _ n P./B = B/B . w, J 1 

Donc (T1) TT £ est le fibre inversible de degré a . Donc on a 
* 

a=0 , donc TT £ est trivial, donc £ est trivial. 

4) On suppose que l'on a i £ J U Sj(w) . Donc par le lemme 76-2 , 

on a TT* £ = TT* 2* (-ap.). Donc TT*(JC @ £ (an.)) est libre, et donc S . W l S.W^l 1 1 
on a £ = £ (-ap.). Ceci montre donc que l'on a [£1 = Y T(—an•), s.w ^i 'w,J Ki 

et ceci prouve la surjectivité de Yw j • Ceci montre la proposition. 

Remarques : On conserve les notations de la proposition 6. 

1) La proposition 6 classifie les faisceaux inversibles amples et 

les faisceaux engendrés par leurs sections globales sur la variété 

de Schubert. Soit £ un faisceau inversible sur Sw, J* T . Alors on a : 

£ est engendré par ses sections globales (respectivement 

amples) si et seulement si il existe \ £ PTf| P (respectivement 

X e P"t) avec £ = JC(À) . J w 
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2) On peut ainsi réénoncer la plupart des résultats de manière 

plus intrinsèque. Par exemple, 

a Soit S une variété de Schubert associée à une matrice de 

Cartan symmétrisable (ou plus faiblement satisfaisant Z). Soit £ 

un faisceau inversible ample. Alors £ est très ample. 

(b) Soit £ un faisceau inversible engendré par ses sections 

globales sur une variété de Schubert S . Alors Ĥ (S , £) = 0 pour 

q # 0. 

3) Il résulte de 1'injectivité de YW J (ce qui est le point facile 

de la démonstration) que l'on a l'inégalité suivante. Soient J une 

partie de {1,...,N} , w € Wj . Alors on a 

# (̂w) > # Sj(w) . 

En effet ces nombres sont (respectivement) le rang du groupe 

des classes de S T , et le rang de groupe de Picard de S _ . 
w,J w,J 

151 



O. MATHIEU 

XIII - REPRESENTATION DES FONCTEURS DE JOSEPH 

Le but de ce paragraphe est de représenter les foncteurs 

induits par les foncteurs •£ , i.e. la cohomologie de -£ sur 

divers ouverts de Sw 

On étudie donc les ô-foncteurs T = T ,T définis 

sur ^(b) , à valeur dans la catégorie des groupes abéliens. On 

suppose que ces foncteurs commutent aux limites inductives. 

On obtient une suite spectrale pour une large classe de 

ô-foncteurs, qui permet en principe de retrouver T à partir des 

groupes T k[B] . Dans cette suite spectrale les termes Ej , Ê  , 

et la différentielle dj ne dépendent que du foncteur T . Je ne 

comprends pas si les différentielles d'ordre supérieur dr (r^2) 

dépendent ou non de la réalisation choisie pour T 

L'application aux stricts foncteurs de Joseph ne réclame 

en fait que l'étude de ô-foncteurs cohomologiques. Néanmoins j'indique 

ici ces techniques, qui seront employées aux chapitres XIV et XVI. 

Remarque : Un ô-foncteur T sur une catégorie abélienne A 

sera ici une collection T°,T^,... de foncteurs covariants, tels 

que à toute suite exacte 0->M->E-»N->0 soit fonctoriellement 

associée une longue suite exacte 0 -> T°M -» T°E -> T°N -» T'M ... 

Un ô-foncteur T est dit cohomologique si pour tout objet 
MCjft, et tout entier £>0 , il existe un surobjet N2M tel que 

l'application T M —> T̂ N soit nulle. Cela implique que les 
foncteurs dérivés R T existent, et que le morphisme R T —* T 
est un isomorphisme. 

152 



FONCTEURS DE JOSEPH 

Soient ç[_ une algèbre de Lie, s. une sous-algèbre de Lie. 
Soient M(<L) et M̂ Cgj (respectivement) la catégorie des CL-modules 
et la catégorie des ÇL modules M qui satisferont l'assertion suivante 

pour tout m€.M , dim _q_.m < «*>. 
Soit M£.M(q.) , J.L. Kozsul a défini une structure de complexe sur 
l'espace vectoriel gradué 

C*(4>iL,M) =©H0(s , Hom(An a/fi , M)). 
On note H (CL,S,M) la cohomologie correspondante. Soit M M (̂q). On 
note Hom̂ (An a/s,M) les éléments de rang fini, pour chaque entier n . 
La formule de Kozsul définit une structure de complexe sur l'espace 
vectoriel 

C*(_q.,s,M) =aH0(s , Hom(An 4/A .M)). 
Soit Ĥ (g_,s,M) la cohomologie correspondante. Il est naturel d'appeler 
H (̂£.,s,M) la cohomologie relative de Kozsul à support fini (on pose 
H*(ÇL,M) = H (̂£,s,M) lorsque s = £ 0j ). 

Les deux foncteurs précédents sont des <f -foncteurs. Il ne 
semble pas connu si ces foncteurs sont homologiques, i.e. s'ils sont 
isomorphes aux dérivés du foncteur H dans une catégorie convenable, 
mais ceci est bien connu lorsque _s est réductive. 

Si ¿5 est une sous-catégorie de M(&.) ayant suffisamment 
d'injectif, on note H (q, ) les dérivées du foncteur H (q, ) dans 
la catégorie £ . 
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Soit Ab la catégorie des groupes abéliens. Le lemme suivant 

donne les propriétés évidentes de la catégorie ^(b) • 

Lemme 77 : Soit ME g(b) 

1) Le module M possède une résolution M -*(ë°(M) -> feî (M) -> .. . qui 

est injective et minimale dans ^(b). Le complexe H°(n, j£?(M)) a 

une différentielle nulle. 

2) Cette résolution n'est pas canonique. Pour tout entier n , on a 

un isomorphisme non canonique 

g!1 (M) ~ V(0) ® H*(n,M) 

où H n̂.M) est muni de sa structure naturelle de b-module (l'action 

de n étant d'ailleurs triviale). 

3) En particulier, la dimension cohomologique de M dans *ô(h) est 

le plus grand entier (éventuellement +») pour lequel Ĥ (n,M) £ 0 . 

4) Les morphismes naturels de foncteurs 

Hg(b)^» > - Hf(b,h, ) -» H"(h, Hf(n, ) 

Hg(b) > Hf (n) > 

sont des isomorphismes. 

Démonstration : Le point 1 se montre comme le théorème des Zyzigie 

d'Hilbert. On suppose avoir construit pour un entier n une résolution 

minimale injective M ->fe°(M) -> .. . -**Ê,n(M) , telle que le complexe 
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H°(n, fe°(M)) -» .. . ^ H°(n,^(M)) ait une différentielle nulle. 

Soit Cn le conoyau du morphisme K£U * (M) -> )£n(M) si n> 1 , du 

morphisme M -*]£?(M) si n = 0 , et du morphisme 0 -> M si n= -1 . 

Le module *gn+1(M) = V(0) ® H°(n, <£n) est injectif. Donc 

le morphisme natuel H°(n, Ĵ1) -+ n̂+ (̂M) possède un prolongement 

Cn -»fen+̂ (M). Par construction le noyau Z de ce morphisme satisfait 

H°(n,Z) = 0. Donc on a Z= 0 , ce qui implique que M -* E°(M) -* . .. ->£?+1 (M) 

est une résolution de M . 

Par minimalité pour n^ l , ou par un calcul direct si n^O , 

ce complexe est minimal, et la différentielle du comp lexe Hu(n, g (M)) 

est nulle. Ceci prouve le point 1. Les autres points en résultent tri­

vialement C.Q.F.D. . 

Soit M un 1L(b) - module. Soient $ et $ les endomorphismes 

de l'espace vectoriel End( UL(b) ,M) définis par les formules suivantes : 

$ ¥(u) = Z u Kv ) 
ot 

ï" y(u) = 2 a)(u ) iKv ) a r a a 

pour tout y € Hom(tLÇb) ,M) , et tout u € tl(b) tel que Au = E UQ ® . 

Ici a) désigne l'antiautomorphisme principal de tl(b). La représenta­

tion gauche sur 'UlCb) , la représentation droite sur 1JL(b) , et l'action 

de b_ sur M induisent trois actions sur Hom(lLL0>) ,M). Je note res­

pectivement L , R et 0 ces trois actions. Pour tout g€b , je 

note L , R et 0 les trois opérateurs correspondants. 
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Lemme 78 : On conserve les notations précédentes. 

1) Les morphismes $ et $ sont inverses l'un de l'autre, i.e. on 

a $0$ = (I>o<Ï>=:id. 

2) Pour tout g € b , on a les formules 

(L + 0)o<Ï> = <Ï>oL 8 g g 

R o$ = $o(R + 6 ) g g g 

3) Si M €^(b) , le sous-espace vectoriel k[B] ® M de Hom(tUb) ,M) 

est laissé stable par $ , $ , et par les actions L , R et 6 . 

Le lemme 78 (bien connu) résulte de manipulations formelles 

sur les axiomes des algèbres de Hopf. C'est pourquoi je le laisse 

sans démonstration. 

Dans la suite, je considérerai un foncteur T défini sur 

la catégorie *ë(b) » à valeur dans une certaine catégorie c&. Soit 

M un espace vectoriel. Si M est muni de diverses structures S , 

S' . . . de %LW " module, je noterai Mg l'espace vectoriel M 

muni de la structure de tLÇy - module S . Si Mg € Jf(b) , je poserai 

alors Tg(M) = T(MS) . 

Lemme 79 : Soit T : <£(b) - Ab un foncteur covariant additif. 

1) Soient E , F € *£(b) deux modules tels que l'action de ]b sur 

E soit triviale. Alors on a un morphisme naturel E ® T(F) -> T(E © F). 
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Ce morphisme est un isomorphisme dans les deux cas suivants : 

(i) E est de dimension finie 

(ii) T commute aux limites inductives 

2) Soient M un tl/b) - bimodule, et R et S les deux structures 

correspondantes. On suppose que MR appartient à *H(b) . Alors TR(M) 

est naturellement un 'LlXb) ~ module. On note S cette structure. 

On suppose en outre que Mg appartient à ^£(b). Alors 

T (M) appartient à ^(b) dans les deux cas suivants : 
K o — 

(i) M est de dimension finie 

(ii) T commute aux limites inductives . 

3) Soit M € *6(b) . On note 9 sa structure de t£(b) -module. On a 

un morphisme naturel 

M ® TL(k[B])e+R - Te+L(M®k[B])R . 

Ce morphisme est un isomorphisme dans les deux cas suivants : 

(i) M est de dimension finie 

(ii) T commute aux limites inductives. 

4) Soient M un /LL(b) - bimodule, R et S les deux structures de 

1Ji(b) - modules. On suppose que MR appartient à JfCb) • Alors on 

a un morphisme naturel 

TR H°(b,M) - H°(b , TR M) . 

157 



O. MATHIEU 

Ce morphisme est un isomorphisme dans les deux cas suivants : 

(i) T est exact à gauche, et M est de dimension finie. 

(ii) T est exact à gauche, commute aux limites inductives 

et Mg est un U(b) - module localement fini. 

Démonstration : 1) Je vais montrer le point 1. Tout élément e€E 

induit un morphisme naturel \i& : F -» E ® F donné par la formule 

ye(f) = e ® f , pour tout f€ F . Si e , e1 sont éléments de E , 

À 6 k , on a y , = y + y , , y. = X y . On a donc une application 
G • ô G 6 À 6 G 

bilinéaire M : E x T(F) -> T(E ® F) donnée par la formule 

M(e,t) = T(ye)(t), pour tout e€E , t € T(E) . Cette application induit 

le morphisme naturel cherché E ® T(F) -> T(E ® F) . Par additivité, 

ce morphisme est un isomorphisme lorsque E est de dimension finie, 

ce qui prouve le point 1(i). Le point 1(ii) en résulte aussitôt. 

2) Je vais prouver le point 2. Pour tout u € ll(b) le morphisme 

S(u) de MRinduit une application TR(S(u)) : TR(M) -* TR(M) qui fournit 

la structure de tL(b) - module cherchée. 

On suppose en outre que Mg appartient à ^£(b), et est 

de dimension finie. Il existe un idéal bilatère Je tt(n) de codimen-

sion finie tel que S(J).M = 0 . On a donc S(J).TR(M))= 0 , ce qui prouve 

que T_.(M) est ^(n) - localement fini. Il existe un ensemble fini © K — 

dans P , tel que pour tout h€h , on ait : 

S( TT (h- X(h))).M = 0 . 
xee 
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On a donc aussi 

S( П h - A(h)) . T_(M) = 0 
лее R 

et ceci prouve que T (M) appartient à *€(b) . Les points (i) et (ii) к — 
sont donc montrés. 

3) Je vais prouver le point 3. On applique le point 1. On a donc un 
morphisme naturel M <2> T (̂k[B]) -* T̂(M ® k[B]). Par naturalité ce mor­
phisme induit des morphismes 

M Q TL(k[B])e—*TL(M ® k[B])0 

M @ TL(k[B])R—>TL(M © k[B])R 

et les actions R et 0 dans les précédents espaces vectoriels 
commutent. On obtient donc un morphisme naturel 

(a) M®TL(k[B])e+R-̂ TL(M0k[B])e+R . 

On applique le lemme 78. Le morphisme $ est un isomorphisme 

* : (M0k[B])e+R5L-^(M®k[B])R)9+L 

Donc $ induit un isomorphisme $ 

•* : TL(M®k[B])e+R-^Te+L(M®k[B]) R 

En composant le morphisme naturel (a) et $ on obtient le morphisme 
cherché. Pour que ce dernier morphisme soit un isomorphisme il suffit 
que le morphisme (a) le soit. Donc les assertions (i) et (ii) résulte 
du point 1. 
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4) Je vais prouver le point 4. Le morphisme naturel (b) : Hg(lp_,M) -*M 

induit donc un morphisme TR H°0b,M) -» TR(M) . Comme le morphisme (b) 

commute aux structures R et S , le morphisme naturel T-, H°(b,M) -> T (M) 
K b — K 

est un morphisme de module pour la structure S , et l'on a 

S(b) T H"(b,M) = 0 . 

On obtient donc un morphisme naturel (c) : T_ H (b,M) -* Hc(.b , T_(M)). 
K o — o — K 

On suppose maintenant que M est de dimension finie. Il existe donc 

un entier n , et des éléments Xj,...,x dans ID , tel que le com­

plexe 
0 S(x.) 

0 H°(b,M) -» M —̂• M11 
soit exact. Si T est exact à gauche, le complexe 

0 S(x.) 
0 -> TR H°(b,M) -+ TR(M) i-*TR(M)n 

est exact, ce qui prouve que le morphisme (c) est un isomorphisme. Les 

points (i) et (ii) en résultent aussitôt. 

Remarque : Dans la suite immédiate, je ne vais pas utiliser le point 4. 

On se place dans les hypothèses 4(ii). Ceci implique aussitôt que l'on 

a, pour tout entier n , et tout M € £(]?_) 

Rn T M = Hn̂ (b)(b , k[B] ® M) . 

En fait ce résultat n'est pas spécifique à la catégorie *£(b). 

Soit G un groupe affine sur un corps k . Soit ^[G] la catégorie 

des G-modules, au sens algébrique. Soit T : £[G] -> Ab un foncteur 

covariant exact à gauche, qui commute aux limites inductives. 
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On a alors pour tout entier n , et tout M € *£(G) 

Rn T = H (̂G)(G , T(k[G]) © M) . 

Ce qui prouve que l'on a une équivalence de catégorie entre les fonc-

teurs covariants exacts à gauche, et qui commutent aux limites inductives 

et la catégorie des G-modules. Cette équivalence est la suivante. A un 

tel foncteur T , on associe le module T(k[G]). Et réciproquement un 

module X donne le foncteur M -» H°(G , X © M) . 

J'ai indiqué le point 4 pour la raison suivante. Le point 4 

suggère que pour une large classe de ô-foncteurs T° , T*,T2 ... : *é[G] -> 

on pourrait trouver une suite spectrale fonctorielle E , telle que pour 

tout module M 6^[G] , on ait 

EP,q(M) = HP (G , Tq(k[G]) © M) 
2 E[G] 

(cette expression a un sens lorsque chacun des foncteurs Tq commute 

aux limites inductives), et qui converge vers Tp+q(M) . 

Tel sera le cas lorsque le 6-foncteur T°,T*,... sera 

obtenu de la façon suivante. Soient éh une catégorie abélienne, stable 

par limite inductive, l : C [G] A un foncteur exact, qui commute 

aux limites inductives, et T : Jt -> Ab un foncteur covariant additif, 

qui possède des dérivés Rn T . On suppose que pour tout n€ ]N , on 

ait Tn = Rn To£ , et que T commute aux limites inductives. 

Il est alors aisé de construire une suite spectrale pour 

un tel ô-foncteur T°,T*,T2 ... , et elle converge vers Tn . Je ne 
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sais pas si un 6-foncteur qui commute aux limites inductives peut 

toujours être obtenu de la façon précédente, ni même montrer que 

les suites spectrales obtenues ne dépendent pas des choix faits 

(«£ , cfo , T) . Enfin pour un ô-foncteur arbitraire (mais qui commute 

aux limites inductives) je ne suis pas parvenu à construire une suite 

spectrale. 

On va énoncer le lemme suivant dans un cas particulièrement 

simple. Premièrement on va considérer le groupe B (au lieu d'un groupe 

général G) pour lequel la précence d'un complexe de Kozsul calculant 

l'homologie apporte une simplification. Deuxièmement, on va considérer 

pour A une catégorie abélienne possédant suffisamment d'injectifs. 

Lemme 79 : Soit c/tf une catégorie abélienne possédant suffisamment 

d'injectifs, et stable par limite inductive. Soit £ : (b) -» ĉ?P 

un foncteur covariant exact et commutant aux limites inductives. Soit 

T : <7o -* Ab un foncteur covariant exact à gauche, tel que pour tout 

entier n , Rn r0£ commute aux limites inductives. Pour chaque entier 
Tl _n „ p 

n , on pose T = R T o -t • 

Alors il existe une suite spectrale fonctorielle E(M) qui 

converge vers T (M) , et dont le second terme E2(M) vaut 

Ê q(M) = Ĥ (b , h , TP(k[B]) ®M) 

pour tout M G *é(b), et tous entiers p,q . 
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Démonstration : Soit M € *€ (b) . Je note N le complexe 

N# = C*Cb,h, k[B] ® M) . La démonstration du lemme consiste à examiner 

les deux suites spectrales calculant le groupe d'hypercohomologie 

R r £(N#) . 

(T) La première suite spectrale [11] pour calculer le groupe 

d'hypercohomologie a un second terme E2 égal à 

• • • 
E2 = R T h X(N ) 

Comme £ est supposé exact, on a h «£ (N ) = «£ (h N ) . 

Par le lemme 78, k[B] ®M est injectif dans £?(b). 

Donc par le lemme 77 on a hq(N ) = 0 pour q fi 0 , et 

par le lemme 78 on a h°(N ) = H°Cb , k[B] ® M) = M . Aussi la première 

suite spectrale dégénère, et l'on a RT<£(N)=TM. 

(2) Soient p,q € IN . Par hypothèse le foncteur TP : 6(b) -> Ab 

est additif et commute aux limites inductives. Donc par le lemme 78-3, 

on a TP(Nq) = Cq(b, h, TP(k[B]) ® M). 

La seconde suite spectrale calculant lfnomologie a donc pour 

terme Ej(M) = Cf(b, h, T (k[B]) S> M) . Par naturalité la différentielle 

dj est la différentielle de Kozsul. On a donc 

EP,q(M) = Hq(b , h , TP(k[B]) ©M) . C.Q.F.D. 

Remarque : On notera que dans la seconde suite spectrale E(M) , la 

différentielle d. ne dépend que du foncteur T , et non du choix 
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de la catégorie (Ш et des foncteurs Г et ^ . Je ne sais pas si les 
différentielles d'ordre supérieur dr , r>2 possèdent la même propriété. 

Le lemme suivant résulte des propriétés générales des suites 

spectrales [17]. On conserve les mêmes notations. 

Lemme 80 : Soient M € 1£(8) , et n 6 I . On suppose que l'on a 

Tx(k[B]) pour tout entier 0 < i < n . 

Alors les morphismes naturels ("edge morphism") 

H*(b , h , T°k[B] © M) -* T1 M 

sont des isomorphismes pour 0 < i < n , et on a une suite exacte (la 

suite exacte d'Hoschssild-Serre) 

0 -> H^+1(b,h, T°k[B] © M) - Tn+1 M -* H°(b , Tn+1 k[B] © M) 

H*+2(b , h , T° k[B] © M) - тп+2 M . 

On en déduit le lemme suivant 

Lemme 81 : Soient 0 < l < n deux entiers. On suppose que l'on a 
T k[B] = 0 pour tout entier 0 < i < n , T ^0 et T = 0 . Alors 
le /LL(b)-module T°(k[B]) est de dimension cohomologique dans t (8) 
exactement l . 

Démonstration : Il existe un module M tel que T M soit non nul. 
Il résulte du lemme précédent que l'on a Hf(b , h, Т°к[в] © M) ^0 . 
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Donc T°k[B] est de dimension cohomologique >l . Soit M - © k . 

X€P A 

Par le lemme précédent, on a HÄ+1(b , h , T° k[B] ® M) =0. Par le 

lemme 77-4, on a donc Ĥ +̂ (n , T° k[B]) = 0 , et par le lemme 77-2 
il vient que T° k[B] est de dimension cohomologique <£ . C.Q.F.D. 

Soient X un schéma, w€w , i : X Ŝ  un morphisme de 

schéma, Y = X x B(w) . On a ainsi un diagramme cartésien 
S 
w 

Y 
j 

B(w) 

u u 

X 
i 

S 
w 

Soit £x le foncteur £x : B(6) ^ Qcoh(X) défini par 

la formule £V(M) = i 2* (M). 

Lemme 82 : On suppose l'espace topologique X noethérien. Soit 

M € £(b) . Il existe une suite spectrale E(M) fonctorielle en M 

qui converge vers H (X,£y(M)) et dont le terme E9(M) vaut 

E2(M) = Hf(b,h, Hq(Y, ĈY) ®M 

Démonstration : Le foncteur <£ est exact et à valeur des Ö w ç 

modules plats. Donc £v est exact. Comme <£ commute à la limite 

inductive, JĈ  aussi. Enfin comme l'espace topologique X est 

noethérien, la cohomologie des faisceaux commute à la limite inductive. 
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Enfin comme TT est affine, on a y* Oy = £x(k[B]). On 

a donc aussi comme y est affine H (Y, C2V) = H (X , ̂ x(k[B]) ) . 

Donc le lemme 82 résulte du lemme 79. 

La proposition suivante est le but de ce paragraphe, à 

savoir représenter les foncteurs de Joseph. 

Proposition 7 : Soit w€w . 

(T) Le VUH) - module à gauche (respectivement à droite) 

k[B(w)] est de dimension cohomologique exactement £(w) • 

© Pour tout M € *ô(b) , on a 

* * 
D M = H£(b , h , k[B(w)] ® M) . w r — — 

Démonstration : Par le lemme, on a Hq(B(w) , (9^, >.) = 0 pour 

q^O , car B(w) est affine. La suite spectrale du lemme 82 dégénère, 

et on a donc 

Dw M = Hf(b , h , k[B(w)] ® M) , 

ce qui prouve la seconde assertion. 

Par la proposition 3> > uw est de dimension homologique 

exactement &(w) . Donc il résulte du lemme 81 appliqué à l - £(w) , 

et n un entier arbitraire n > % tel que k[B(w)] est un ^(b) -

module à droite de dimension cohomologique £(w). En outre le module 

à gauche k[B(w)] est isomorphe au module à droite k[B(w S] . 

Ceci prouve la proposition. 
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Je vais donner une seconde application de la suite spectrale. 

Lemme 83 : 1) Soit Y un fermé de "ŝ  . Alors pour tout entier 

p,q , q ^ 0 , on a 

HQ(Î ,#P(£w(k[B])) = 0 

2) Soit U = S* \ Y . Soit r la codimension de Y . Soit M & (b) . 
w — 

Alors pour tout entier n C r-2 , le morphisme Hn(S ,Z (M)) -> Kn(V,Z (M)) 
est un isomorphisme. 

Démonstration : On pose V = ^_1(U) , Z = Tf_1(Y) . On notera que 

comme IT est affine, le morphisme V —» B(w) est quasicompact. Donc 

par une proposition de Grothendieck (proposition 2.1 de 22 ) 

^Z^^B(w)^ est Ç^si'^hérent. Commet est affine, la dégénérescence 

de la suite spectrale de Leray prouve que l'on a: 

Tî^Z{^B(w)) -ft?<#w<*lB] )> ^ RQIR^6?(w) = 0 pour q>0 . 

On A donc Hq(SW/K^(K[B])) = Hq(B(W) . K J ^ ( W ) > " 0 CAR ^ 

est affine. Ceci prouve le point 1 . 

Le point 2 résulte du fait que Ŝ  est Cohen-Mc Caulay ( 22 ) . 

Enfin je vais indiquer comment la proposition 7 permet de retrouver 

la suite spectrale de Leray. 

Soient w£W , M et M' deux Ub - modules dans Zj (b) . Je note 

L , R , 0 , 8 ' les actions de b à gauche sur kl B(w)I , à droite w w — *- -J 

sur k [ B(w)J , sur M et sur M1 respectivement. On concerve les 

notations. 

Lemme 84 : Il existe deux suites spectrales 'E et "E qui convergent 

vers Hf £I+L R ^(bxb , hxh , M' (g) k[B(w)J ©M) telles que l'on ait 
' w' w ~~ 
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»EP,q = Hq(b,h , M' (x) DP M) 

"EP,q = HP(b,h , Jp^ M' (X) M) 

Démonstration : Ces deux suites spectrales sont obtenues en considérant 

successivement chacun des facteurs de b x b comme un idéal. Ceci 

montre le lemme. 

Soient u»v,w W tels que uv = w et l (u) +I(v) = IM . 

On examine les deux suites spectrales qui convergent vers 

H*(bxb , hxh , k[B(u)l © k[B(v)] (x) M) .La première de ces suites 

spectrales 'E a pour termes 'E^ 

'E?,<1 = Dq DP M 

Compte-tenu des égalités Duk[B(v)] = k|fi(w)J et Dq(k[B(v)j ) = 0 

pour q # 0 , le terme "Ê  de la suite spectrale dégénère, et l'on a 

"EP,q =0 si p fi 0 

"E°'q = Dq M . 

Ceci redonne la suite spectrale de Leray. 

* 
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ANNEXE : Une condition pour qu'un ô - foncteur de ^(8) soit 

homologique. 

Soit F : *£(8) -* Ab un f oncteur additif covariant. Soient 

X € 1^(8) > et Y un espace vectoriel. Je définis les foncteurs Fx 
Y 

et F par les relations 

FX(M) = F(X ® M) 

FY(M) - Y ® F (M) 

pour tout M € ^(B) . 

Lemme 85 : Soient F , X , Y comme ci-dessus. On suppose que F 

commute aux limites inductives. Soit R un sous-ensemble de P . On 

suppose 

(a) Pour tout À G R , on a H°(b , X © kx) ^ 0 

(b) Pour tout M € 'ê(B) de dimension finie, il existe X€ R 

tel que F(M ® k̂ ) =0 

(c) Il existe un morphisme injectif de foncteur 0 : Fx -* F 

Alors F(I) = 0 pour tout objet injectif I € {Q (g) . 

Démonstration : Comme F commute à la limite inductive, il s'agit 

de montrer que pour tout -sous-module E de I de dimension finie, 

l'application F(E) -> F(I) est nulle. Soit donc À € R tel que 

F(E ® k̂ ) = 0. Comme H°(b , X ® k̂ ) fi 0 , on peut fixer une injection 

e du module trivial dans X ® k . On a donc un diagramme commutatif. 
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a 

F(E) 

F (E©k ) 

F (E ® к ) 

F(I) 

FY(I®k.) 

FY(I <g> к ) 

3 

Par hypothèse l'application a est nulle. Comme I est 
injectif, l'injection id_ x £ : I -> I ® X ® k est scindée. En 

particulier l'application F(I) -» FX(I ® k )̂ est injective. Comme 

par hypothèse 0 est injectif on en déduit que 3 est injectif. 

Donc l'application F(E) -> F(I) est nulle. C.Q.F.D 

Un point délicat du chapitre XI était de montrer que B(w) 

est affine. Je vais montrer comment ce lemme permet de montrer des 

conséquences de ce fait sans utiliser le fait que B(w) est affine. 

On choisit pour ensemble R = -P+ , pour module X = © L(A), 
A€P+ 

et Y = X comme ensemble. 

Soient w,u € W avec u<w . 

(T) On choisit pour foncteur F le conoyau du morphisme D̂  -» D̂  . 
Comme D et D sont les sections globales de £ et de £ res-w u & w u 

pectivement, le théorème de Serre implique que F satisfait la condition 

(b). Les conditions (a) et (b) étant triviales, on en déduit que 

D I -* D I est surjective pour tout injectif I € £(b) (lemme 71 ) . w u — 
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(Y) Soit q un entier > 0 . On choisit pour F le foncteur 

F : M »—> Hq̂ w » ŵ La condition (b) résulte du théorème de 

Serre, les conditions (a) et (c) sont triviales. On obtient : 

H (S » <£w(I)) = 0 , pour tout injectif I (ce fait est utilisé 

dans la proposition 3). 

(3) Enfin on peut en déduire le lemme 83-1, par le même type de 

démonstration, passée aux faisceaux. 

Remarque : La démonstration du lemme 84 est inspirée par l'article 

de Beilinson-Bernstein [A ]. L'énoncé du point 4 du lemme 79 présente 

des analogies avec un théorème de représentation de P. Gabriel en 

algèbre commutative [22]. En fait ces résultats sont très différents 

le théorème de Gabriel utilise la commutâtivite de l'anneau, ici on 

utilise la structure de cogèbre. 

* 
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XIV. Etude du morphisme B(w) • . 

Soit w e W . On note 71 : B(w) • le morphisme correspondant. On 

veut montrer que B agit localement librement sur B(w) . On en déduira que 

B(w) est intégralement clos. 

Soit U un ouvert de SW . L'application P • Pic(Sw) induit donc une 

application P • Pic(U) . On veut montrer la proposition suivante (on 

conserve les notations précédentes) : 

Proposition 8 : On suppose 

(a) L'application P • Pic(U) est nulle. 

(b) On a H1 (11,0̂ ) = 0 . 

Alors on a 

(1) Pour tout M <= <e(b) , ^(Mjjy est un faisceau libre. 

(2) B agit librement à droite sur 71 *(U) , i.e. 71 *(U) est isomorphe à 

U x B . 

On remarquera que cela implique que B agit localement librement à 

droite (et donc aussi à gauche) sur B(w) . En effet comme P est de type 

fini, la condition (a) est satisfaite pour tout ouvert U suffisamment petit. 

La condition (b) est satisfaite par exemple sur tout ouvert affine. Donc B 

agit librement au-dessus de tout ouvert affine suffisaimnent petit. 

Démonstration du point 1. Je vais d'abord prouver ce point lorsque M est de 

dimension finie, par récurrence sur la dimension. 

Lorsque M est de dimension 1, £ (M)!TT est libre par la condition (a). 

On suppose M de dimension > 1 .On peut trouver une suite exacte de 

1Kb)-module 0 . E • M > F • 0 , où E et F sont non nuls. Par 
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hypothèse de récurrence on a des isomorphismes 

2(E) !„ * <£ 

2(E) !„ * <£ 

où p et q sont les dimensions de E et F . Par la condition (b), 
l'extension 0 • 2 (E) jTT • ï (M)iTT • ï (F)1TT • 0 est donc scindée. 

Ainsi ïw(M)Jy est libre. 

Enfin le cas où M est de dimension infinie en résulte facilement. 

Je vais maintenant donner la démonstration de la proposition 8 lorsque g 

est de dimension finie. Ceci donnera aussi une indication sur la démonstration 

du cas général. 

Les ensembles de cohomologie non abélienne considérés plus bas seront 

relatifs à la topologie Zarisky. 

Pour simplifier on supposera que l'on a w > ŝ  , pour tout i (on peut 

facilement se ramener à ce cas). 

Pour chaque ouvert V , soit JI^ la restriction de n à TT *(V) . 

L'action de B sur le groupe G associé à G est localement libre. Donc 

l'action de B sur B(w) est aussi localement libre. Donc pour tout ouvert 

V de S TT„ détermine un élément, que je note ÏTT..) de H (V,B) . On a un 

diagramme commutatif 

H*(S ,B) i-+ H1(S ,H) 

l J ! 

H!(U,N) . H^U.B) L_. HX(U,H) 

Comme H est un tore, il est clair que l'on a H*(S ,H) = P ô Pic(S ) , 

donc H*(S,H) est isomorphe à EncL̂ P) . Il est clair que J([TT]) est 

l'élément identité de End^P) . Donc une condition nécessaire et suffisante 

pour que l'on ait que j^{[it^]) = 0 est la condition (a). Comme N est 

nilpotent, un dévissage trivial indique que pour que Ĥ (U.N) soit réduit à un 

point, il suffit que l'on ait H^U.O )̂ = 0 , i.e. la condition (b). 
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Ainsi si les conditions (a) et (b) sont satisfaites, [n ]̂ est l'élément 

trivial, ce qui prouve la proposition. 

Soit m = © m. une algèbre de Lie positivement graduée, telle que 

dim ITK < oo pout tout i .Je note m' (respectivement k[M]) les combinaisons 

linéaires d'éléments homogènes dans m* (respectivement dans U(m)*) . Soit R 

l'action de m à droite sur m' et sur k[M] . Soit E(m) l'extension 

canonique de m-modules gradués 

0 > k • E(m) • m' > 0 

le module trivial k étant gradué en degré 0 . Je note encore R l'action 

de m sur E(m) . Tout élément de E(m) est donc un couple (A,v), 

À € K, v m', et on a la formule 

R(g)(A.v) = (<v|g>, R(g)v) 

pour tout g € m . 

Si 2 est une algèbre de polynôme (à un nombre fini ou infini 

d'indéterminées) j'appelle système de générateurs (respectivement 

quasi-système de générateur) un sous—espace vectoriel V de 2 tel que 

l'application SV > I soit un isomorphisme d'algèbre (respectivement tel 

que V = V' 9 kl , où V est un système de générateur). Lorsque 2 est 

graduée, on a une notion évidente de système de (quasi)-générateurs gradués. 

On notera que k[M] est une sous-algèbre de U(m)* . 

On conserve les notations précédentes. 

Lemme 86 : L'algèbre k[M] est une algèbre de polynôme. Il y a une bijection 

entre les systèmes de quasi-générateurs gradués de k[M] stable sous l'action 

droite de m , et les U(b)-morphismes E(m') • k[M] qui prolonge le 

morphisme naturel k » k[M] . 

Démonstration : Soit ^(m) la catégorie des U(m)-modules gradués, 

U(m)-localement finis. Il est clair que k[M] est un injectif de ^«(jï) . Il 
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existe donc un morphisme de U(m)-module à droite respectant la graduation. 

y» : Efm) ——» k[M] , qui prolonge le morphisme naturel k • k([M] . 

Pour tout espace vectoriel gradué X = © , je note ch(X) 

l'expression formelle ch(X) = I dim(X )tn . Soit V = © E(mK . L'application 

f détermine donc un morphisme d'algèbre 1* : SV • k[M] . Je veux prouver 

que i> est un isomorphisme. On a 

ch(k[M])(t) = ch(U(m))(l/t) 

donc on a ch(k[M]) = ch(Sm') = ch(SV) . Comme les dimensions des composantes 

homogènes de SV et de k[M] sont finies, il suffit donc de prouver que f 

est in.ieetive. Soit (Ei) iEn une base d'éléments homogènes de V (et donc de 

m'), telle que pour tout i € IN on ait deg ç̂ +1 < deg . On suppose par 

l'absurde non injective. Il existe donc un élément P homogène et de 

degré maximal, tel que f*(P) = 0 . Il existe des entiers n et m tels que 
Ton ait P - I t1 a. , où a. «= k(FE î J et a f 0 . Soit {*. } v . n ri i i s- o n-i - m m> i>0 
la base duale de la base de m' déterminée par la base (1)• ®n notera que 

pour tout entier i, j on a R(g.)(Ç )̂ = 0 pour j > i et R(g )̂(£ )̂ = 1 . 

On a donc R(g )m . P = m! a . Donc on a ^(a ) = 0 , ce qui contredit la n m m 
maximalité du degré de P. 

Ainsi k[Mj est une algèbre de polynômes, et l'image de tout morphisme 

gradué Y : E(m) • k[M] qui prolonge le morphisme k • k[M] est un 

système de quasi-générateurs gradués R(m)-stable. 

Réciproquement, soit E un système de quasi-générateurs gradués stable 

sous R(m) . On a nécessairement H°(m,E) = k = E . Soit v : E • k 

1'applicaction d'espace vectoriel qui à tout élément e € E associe sa 

composante homogène v(e) de degré 0 . L'application v induit un morphisme 

de uYm)-module gradue u : E • m' , par la formule 

<M(e)|g> = f(R(*)e) 
pour tout g € m , e € E , 
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et ceci implique que les U(m)-modules E et E(m) sont isomorphes, ce qui 

achève la démonstration du lemme. 

Démonstration du point 2 de la proposition 1) .Soient X le U(b)-module 

X = *. n k. , et A l'algèbre A = J"(U,2 (X)) . Par l'assertion (a) les À€P A - x w 
faisceaux i (A)|tI et f?TT sont (non naturellement) isomorphes. On a donc un w IV U 
isomorphisme d'algèbre 

x = k[Pj • r(U,Crn) • A 

tel que pour tout A t P, x(e^) € r(U,2 (A)) . 

2) Soit T* : €(b) • Ab le 6-foncteur donné par la formule 

T*M = H*(U,2w(M)) pour M € t(b) . Par les hypothèse (a) et (b), on a 
T k. = 0 , pour tout A e P . Comme Tx commute à la limite inductive le A 

lemme si implique que le U(b)-module 5& = T°k[B] est in.jectif (appliqué au 

cas n = t = 1) . 

On notera que E(n) est naturellement un b-module, avec action adjointe 

de h . Comme «& est injectif, il existe une application de b-module à 

droite : E(n) —» & , qui prolonge le morphisme k • e& . Donc ? 

détermine par le lemme 86 un morphisme de U(b)~algèbres i* : k[N] > (où 

n agit à droite sur k[N], et h agit par action adjointe). 

3) Pour chaque A «= P , l'application naturelle H°(U, 2w(A)) > se 

factorise à travers Ĥ Vb, 5& ® k .) . Donc \ induit un morphisme de 

U(b)-algèbre T : k[P] > (où n agit trivialement sur k[P] , et h par 

l'action à droite). 

4) L'isomorphisme de schémas B = H x N induit un isomorphisme de 

U(b)-algèbre k[Bl ^ k[P] 8 k[N] . Donc T ® \ est un morphisme de 

U(b)-algèbre k[B] • "H . Comme on a Hp(b,k[B]) = k , ce morphisme est 
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injectif. Soit fÀ la multiplication de & . Par le lemme 79-4, on a 

H°(b,fc) = H°(b,T°k[B]) 

= T° H°(b,k[B]) 

= T° k 
= nu,^) . 

Il est clair que la multiplication y. induit un isomorphisme de 

U(b)-algèbres 56r = k[B] 8 r(U,Oy) • Ceci implique que l'action de B sur 

iT^U) est libre C.Q.F.D.. 

Soient A un anneau commutatif intègre, K son corps des factions. On 

rappelle que l'on définit la clôture intégrale A de A comme l'ensemble des 

x € K , tel qu'il existe a € a- {0} avec axn e A pour tout entier n > 0 . 

On dit aussi que A est intégralement clos (ou que Spec A est intégralement 

clos) si l'on a A = A . On notera que a n'est pas supposée noethérienne 

[46]. 

Proposition 9 : Pour tout w «= W , B(w) est intégralement clos. 

Démonstration : Il est clair qu'il suffit de montrer qu'il existe un 

recouvrement de B{w) par des ouverts affines (V ) , tels que chacun des V ' 
soit intégralement clos. Soit {U > un recouvrement ouvert affine de S , 

tel que chacun des U satisfasse la condition (a) de la proposition 9. Soit 

V = TÏ CU ) . Comme S est normale et irréductible, U est intégralement 

clos. Comme B agit librement sur V , on a un isomorphisme non canonique 

Va = Ua x B . On a donc r(V ery) ss r(V ,0^ ) • k[B] . Comme K[B] est produit 

d'une algèbre de polynômes de Laurent par une algèbre de polynôme un classique 

théorème d'Hilbert prouve que f(V ta.. ) est intégralement clos. a V a 

Remarque : On peut espérer une démonstration plus simple de la démonstration 
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XV. Le foncteur D , et le théorème de Borel-Weil-Bott. 

Le but de ce paragraphe est de montrer une généralisation du théorème de 

Borel-Weil-Bott. 

%1. Un lemme à la Demazure ([9]) 

Lemme 87 : Soient V un injectif de <e(b) , i € {1,...,N} , et 
0 • D V • V ¥ V. ¥ ... une resolution mjective de D V dans s. o 1 " s . i i 
t(b) . Alors le complexe de U(p.)-modules 0 • D V • D V • D V, 1 S, S . O S.x 

est exact et scinde. 

En outre D V est de dimension cohomologique < 1 . 
i 

Démonstration : 1) Soit A € P . On veut d'abord prouver que l'on a 
D Y(A) = © Y.(A + na.) , si A(h.) > 0 s. y n>o 1 iJ i' -1 
D Y(A) = © Y.(s.A + na.) , si A(h.) < 0 s. y nTo 1 1 iy iy -i 

suivant les notations du chapitre I de la première partie. Lorsque m , m' 

sont deux sous-algèbres de jf, h £ m c m' , et si M un U(m)-module 

h-semi-simpie, soit *t Coincr̂  M le sous-module de Coind— M formé des 
. 

vecteurs U(h)-semi-simples. Soit ĵ(A) = Coind̂  (A) . On a donc 

V b -i 
(A) = <e Coind̂  <e Coind̂  A . Soit K. (A) le module 

-i — K. (A) = © e.(A + na.) si A(h.) > 0 iv n>o i \A i -
K.(A) = © t.(s. A + na.) si A(h.) < 0 . i ' n>o 1 1 i i ' -

Il est clair que l'on a K. (A) = D i*(A) . Comme K. (A) est réalisé i s. i i 
a. 

comme un U(a.)-sous-module de Coind, kv (et exactement comme le sous-module i h, A 
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DES VECTEURS H-SEMI-SIMPIES, A^-FINIS). ON A UNE APPLICATION NATURELLE 

* COIND *K. ( A ) • «C COIND, îk.) • <E COINDFV(L) , QUI IDENTIFIE LES VECTEURS 
â  1 h A b 

U(jç>. )-finis. Cette identification laisse la formule D s. 
i 

V(A) = V.(0) 0 K.(A) , 

ce que je cherchais a prouver. 

2) Maintenant je vais prouver que pour tout A € P , A(ĥ ) > 0 , il existe une 
résolution injective 0 » V.CA) • I • I. • 0 de V.CA) « telle que 

î o 1 1 ^ le complexe de U(p. )-modules 0 • tf. (A) > D I • D I. • 0 soit ^i î s. o s. 1 î î 
exact et scindé. 

En effet on a une résolution injective : 

0 • Y. (A) • V(A) • V(s. (A+p)-p) > 0 , qui induit, le complexe exact et 

scindé (comme U(tO-complexe) 

0 • ^. (A) • D0 V(A) • D tf(s. CA+p)-p) • 0 , car ce complexe est 
î S. s. • î î î 

naturellement isomorphe au complexe 
0 > V.(0) ® t. (A) • V.(0) ® k.(A) • V.(0) ® k.(A-kx.) • 0 .. 

3) On veut prouver le lemme. Comme toutes les résolutions injectives sont 
homotopes, il suffit de prouver le lemme pour une résolution injective de 

D V . Comme le foncteur D commute aux limites inductives, comme V est s. s . î î 
somme directe de modules (̂¿0 la formule prouvée au point 1 prouve que 

D V est somme directe de U(p.)-modules V.(A) , où A € P et A(h.) > 0 S. ^1 1 v iy -
1 

On peut donc écrire D V = ® ;na , où chacun des Jlta est un UCp. )-module s. a *i i 
isomorphe à ^(A) , pour un certain A . On choisit alors la résolution 

injective trouvée au point 2 

о — л" —. ro — / j 0 
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telle que pour chaque indice a le complexe de U(JK)-module 
0 • jfia > D /a • D /? • 0 s. o s. 1 3 1 

soit exact et scindé. 
Il vient alors que 0 • D V • e >a • © • 0 est une ^ s. a *o a ^1 î 

résolution injective de D V , ce qui prouve que la dimension cohomologique s. 1 
de D V est < 1 . En outre le complexe s. î 

0 • D V > D ©>a • D © > 0 s . s . a 'o s. * 1 i l î 
est exact et scindé, ce qui prouve le lemme. 

Soit * : <e(b) • A un foncteur covariant exact à gauche à valeur dans 
une catégorie abélienne A . Le morphisme de foncteur D • Id induit un 

morphisme de foncteurs t o D • ? . 
i 

Lemme 88 : On suppose que le morphisme de foncteurs f* o D • Y est un 
isomorphisme. Alors il existe une longue suite exacte de foncteurs 

1 1 1 2 2 0 • * o D • ? • * o D • r o D • t • .. . s. s. s. 1 1 1 

Démonstration : Soit V un injectif de <e(b) . Je vais d'abord prouver que 
l'on a f»q D V = 0 , pour tout q > 0 . s. i 

Par le lemme 87, on peut trouver une résolution injective 
0 • D V • I • I, • 0 . s. o 1 i 

Comme le complexe 0 • D V » D I • D I. • 0 est exact et s. s. o s. 1 i l i 
scindé, on obtient donc une suite exacte 

0 • f o D V > f o D I • f o D I, • 0 s. s. o s. 1 1 1 1 

180 



LE FONCTEUR D 

et on obtient donc un diagramme commutatif à lignes exactes 
0 > f o D V • i> o D I • f o D I, • 0 

si si ° Si 
I l I I \L 0 • * o D V • * o I • t o i . • r o D V • 0 s. o 1 s. 

Comme t o D » i* est un isomorphisme, ceci implique que l'on a 
i 

f»* o D V = 0 , et on a donc lfq D V = 0 pour tout entier q > 0 par le 

lemme 87 . 

Ainsi on peut former la suite spectrale du foncteur composé 

t o Dg . Cette suite spectrale a pour terme : E '̂̂  = ^9 o , et 

converge vers ^*(puisque Y* = Y» o D ) . Comme D est de dimension 1 , la 

suite spectrale dégénère et donne lieu à la longue suite du lemme. 

Lemme 89 : Soient TP : (C(b) » Ab un foncteur covariant exact à gauche, et 
i € {1,...N} tel que D o * » 1> soit un isomorphisme. Soit A € P , tel 

que A(ĥ ) soit > 0 . 

Alors pour tout entier k , il existe un isomorphisme (naturellement 

défini à un signe près) 

y k+1k A-kx. i 
* *k k 

s 
;.A i 

En outre si A(h.) = 1 , on a **k. = 0 . 

Démonstration : On a D k.̂  = 0 , et D̂  'k4l = t.(A) . s. A+a. s. A+a. i i l i l 
La longue suite exacte du lemme 88 appliquée au module k.̂  donne donc un 

isomorphisme 

(a) *e+1,w * ** ei<A) • 
i 

On a aussi D k = e.(A) , et D^k = 0 . La même longue suite s .s .A i s. s.A 
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exacte, appliquée au module kg ^ donne donc un isomorphisme 
i (b) *ek x ~ t>1 t. (A) . x s..A 1 1 

Composant les deux isomorphismes précédents, on obtient 1'isomorphisme 

cherché. En fait les isomorphismes (a) et (b) ne sont pas canoniques, et 

dépendent du choix de vecteurs de plus haut poids et de plus bas poids dans 

£̂ (A) , donc 1'isomorphisme cherché est bien défini au signe près. 

Remarque : Le lemme 89 n'est en fait qu'une formalisation de deux lemmes bien 

connus. Le premier de ces lemmes, du à Demazure, s'énonce ainsi. On suppose 

que g est semi-simple, soit G le groupe algébrique (simplement connexe) 

associe. Si Wq est l'élément maximal du groupe de Weyl on note X(A) le 

faisceau de a„ . -modules X (A) . Soit 7i : G/B • G/P. le morphisme 
G/B w i 

naturel. 

Lemme (M. Demazure) : Soit A e P , A(ĥ ) > 0 . Alors on a un isomorphisme 
¿+1 €» * R 7i X(A+<x.) ^ R X(s.A) . En outre on a R 7i X(A) - 0 lorsque A(h. ) = 1 . 

Le second de ces lemmes m'a été appris par M. Duflo. On suppose à nouveau que 

g est une algèbre de Kac-Moody générale. 

Lemme : Soit M un U(p̂ )-module localement fini, U(h)-semi-simple à poids 

entier. Soit A € 0 , A(hu) > 0 . Alors on a 

He+1(b,h,M® klA ) = I#(b,h,M © k J . En outre si A(h.) = 1 , on a 
p — — A+OĈ  p — — ŜA 1 

H*(b,h,M ® k. ) = 0 . 2 A 

%2 Limites pro.iectives 

Soient X un ensemble ordonné, et A une catégorie. Je note Pro(X,x) 
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la catégorie des systèmes projectifs indexés par X et A-valués. Les objets 
de Pro(X,4) sont donc les paires (y ,d ) , où (? ) Y est une collection 

d'objets de A , (d̂  ) est une collection, indexée par les couples 
2 

(x,v) € X avec x > y , de morphismes de A d x,yx : y > ? tels que l'on 
ait la condition de transitivité d x,y d x,y = d x,y pour tous x,v,z e X avec 

x > Y 1 z • Un morphisme entre deux objets C*̂»** ) > ̂ x'^x^ eS* <*onc 11116 

collection (Y ) de morphismes de A , f : y » * , satisfaisant la règle 

de commutâtivité évidente. 

Les lemmes 90, 91, 92 qui suivent sont bien connus (cf. A. Grothendieck 

[23], J.E. Roos [53], J.L. Verdier [64]). 

Dans la suite, on choisira comme ensemble ordonné W avec l'ordre de 

Bruhat. Si l'on suppose en outre que A est abélienne Pro(W,4,) est 

abélienne. 

On supposera en outre que la limite projective d'éléments de Pro(W,X) 

existe. Cette limite projective définit un foncteur covariant exact à gauche, 

que je note A Lim . Dans le cas spécial où la catégorie A est la catégorie 

des groupes abéliens Ab (respectivement des faisceaux de groupes abéliens sur 

un certain espace topologique U) on note Lim (respectivement Xim) la 

limite projective. 

Dans la suite on supposera que A possède suffisamment d'injectifs. On 

va montrer simultanément les deux lemmes suivants : 

Lemme 90 : La catégorie Pro(W,A) possède suffisamment d'injectifs. En outre 

si / est un injectifs de Pro(W,A) , alors A Lim / est un injectfif de 

A . 
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Corol lai rement, on peut définir les dérivés des fondeurs A Lim . Un 

foncteur covariant T : A > Ab induit un foncteur, que je note encore T , 

Pro{W,.4) • Pro(W,Ab) , ainsi qu'un morphisme de foncteurs 

8 : T o A Lim » Lim o T . On dit alors que F commute aux limites 

Projectives si 6 est un isomorphisme. 

Lemme 91 : Soit T : A » Ab un foncteur additif covariant, exact à gauche 

et qui commute aux limites projectives. Soit donc P le foncteur compose 

P = lim o T = r o A Lim . 

Il existe deux suites spectrales *E et**E (les suites spectrales des 

foncteurs composés) qui convergent vers P* . La première de ces suites 

spectrales dégénère en des suites exactes courtes 

0 > lim1 o T6"1 > Pe • lira o re > 0 . 

La seconde suite spectrale a pour terme "̂ E9 : 
II E2 PQ = rq o A Linf . 

Démonstrat ion : 1) Je vais décrire les injectifs de Pro(W,A) . Soit (Ç̂ ) un 

objet de Pro(W,A) . Je note vw(̂ ') » pour chaque w € W , l'objet suivant de 

A . Pour chaque triplet v,v',u d'éléments de W avec 

u < v,v' < w 
e(w) = e(v) + 1 = e(v') + 1 = e(u) + 2 

je note e(u,v,v') l'application naturelle e(u,v,v')M^(C) » Ç (où 

M (e) = 9 î ) telle que les restrictions c(u,v.v') : t » t 
W e(x) = e(w)-l X x u 

x<w 
soient nulles pour tout x avec t(x) + 1= e(w) et x f v, v' , et telle que 

la restriction de €(u,v,v') a % (respectivement % ) soit égale à d 

(respectivement -d ) . Je définis enfin V (t) comme le sous-objet de 
v' ,u 

Mw(£) noyau du morphisme © e(u,v,v') . Dans une description ensembliste 
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"naïve", Vw($) est simplement, l'ensemble des uplets Cny)f(y)=* (w)-l ' te^s 
v<w 

que pour tout triplet u,v,w' comme ci-dessus on ait d rj - d rj 

L'application naturelle $w —» MW(S) est en fait à image dans VW(C) . 

Une condition nécessaire et suffisante pour que ($ ) soit injectif est 

la suivante. Pour chaque w e W , le morphisme $ » ^ est : sur Jeĉ ^̂ » 

et le noyau de ce morphisme est injectif dans A . Egalement tout objet de 

Pro(W,̂ i) est un sous-objet d'un injectif. La preuve de ces assertions vient 

immédiatement d'une récurrence croissante "sur e(w)" . je vais montrer par 

exemple la dernière assertion. Soit (£) un objet de Pro(WM) . On note 

W(n) = {w € W/e(w) < n} pour tout n € IN . On suppose avoir construit un 

objet (J) € Pro(W(n)tA) tel que pour tout w € W(n) l'application 

kw » Vw(£) est surjective à noyau injectif, et une inclusion 

e :W(n s » J où £ W(n x désigne la restriction de £ à W(n) . On 

choisit pour tout w € W de longueur n + 1 un injectif ^ qui contienne 

C , et l'on définit l'objet J' € Pro(W(n+l) , A) par 

J' = J si e(w) < n 

J' = V (J) ® <S w w w 
de sorte que l'on a une inclusion naturelle $ L.,|W(n+l) ,.x • J' . Poursuivant 

indéfiniment la construction on obtient l'assertion cherchée. 

2) Soit C « Pro (W,C) . D'après [23], on définit les conditions de 

Mittag-Leff1er pour £ comme suit: 

Pour tout couple u , w d'élément de W avec u > w , soit w,uv (s) 

l'image du morphisme naturel SU » EW . Je dis que $ satisfait les 
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conditions de Mittag-Leff1er si et seulement si pour tout w e W , les 

sous-objets vw u(£) forment une suite stationnaire dans $w . 

Comme iN est cofinal dans W , il est aisé de vérifier que si 

(t) <= Pro(W,A) satisfait les conditions de Mittag-Leff1er, alors on a 

lim q̂̂  £ = 0 , pour q i 0. 

3) Si (t) est injectif dans Pro(W,A) , alors pour tout couple w , u avec 

u > w , le morphisme $u » $w est surjectif, et le noyau est injectif. Ce 

fait implique les points 4, 5 et 6 suivants. 

4) Soit y € Pro(W,x) . On construit une suite exacte 

0 > y • <S • W > 0 , où <$ est injective. 

Par le point 3, les applications *u » *w sont surjectives, donc par 

le lemme du serpent il est de même pour les morphismes #u • #w (pour 

u > w) . Donc M satisfait aussi les conditions de Mittag-Laff1er. 

Dans le cas spécial où A est la catégorie Ab, le point 2 implique 

alors que l'on a 

l im^ = 0 pour t > 2 . 

5) Soient T : A » Ab un foncteur covariant additif, un ($) un injectif 

de Pro (W,t). Comme pour tout couple (u.w) avec u > w l'application 

$u » $w est surjective et scindée (point 3) , ceci implique également que 

r(t ) • ^(i^) est surJective« Donc r(£) satisfait les conditions de 

Mittag-Leffler, et l'on a donc l im^ T(î) = 0 pour t f 0 . 

6) Soient ç un injectif de Pro(W,A) , et X = {vM une suite croissante 

d'éléments de W . Pour tout entier n , soit J le novau de $WW- • % 

On suppose X cofinal dans W . Comme la limite projective A Lim % 

s'identifie à la même limite projective calculée sur X , un système de choix 

de supplémentaire de J dans % induit un isomorphisme 
n 

A Lim % - U J 
* n*N " 

ce qui prouve que A Lim £ est injectif. 

186 



LE FONCTEUR D 

7) Je vais maintenant indiquer la démonstration des lemmes 90 et 91. Les deux 

assertions du lemme 90 sont prouvées aux points 1 et 6 respectivement. 

Pour obtenir les suites spectrales des foncteurs composés au lemme 91, il 

faut prouver que si £ est un injectif de Pro(W,A) on a 

(a) lim-€) r($) = 0 pour t i 0 . 

(b) ryU Lim e = 0 pour t f 0 . 

Ces assertions résultent des points 5 et 6. Le foncteur P s'écrit comme 

un foncteur composé P = lim o T . L'assertion (a) implique qu'il existe une 
suite spectrale E qui converge ver P , et telle que 

I_p.q _. q _p 
2 ~ ~ }im " ° * 

Par le point (a), on a limq = 0 pour q > 2 , ce qui montre que cette 

suite spectrale dégénère en des suites exactes courtes du lemme 91. 

Le foncteur P s'écrit aussi comme un foncteur composé P = T o A Lim . 

L'assertion(b) prouve qu'il existe une suite spectrale **E qui converge vers 

P* , et telle que 

ITlf'* = Tq o A lif 

ce qui achève la preuve du lemme 91 . 

On notera que pour tout espace topologique X , le foncteur de sections 

globales r commute aux limites projectives. Le comportement de la 

cohomologie vis à vis des limites projectives est étudié dans [23], [53], 

[64]. 

Lemme 92 Soient X un espace topologique ? «= Pro(W, Ab(X) ) , et 

Jo * Jl * *** une résolution injective de ^ dans Pro(W, Ab(X) ) . 

1) Xim* ? est la famille des faisceaux associés aux préfaisceaux 

U • R lim J (U) . 
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2) Pour tout ouvert U de X , on a une suite exacte 
0 • lim-^H^CU,*) > [R lim J (U)] • lim He(U,?0 > 0 . 

Démonstration : Pour chaque ouvert U on considère les groupes 4*hyper 

limites projectives R lim J (U) . On notera que l'association 

U » lim J (U) est un préfaisceau. En appliquant au foncteur r(U, ) le 

lemme 91 (ou plus simplement le point 5 de sa démonstration) on a 

lim(e)J (U) = 0 « P 
pour tout entier p , et tout t fi 0 . 

Donc la première suite spectrale pour calculer l'hyper limite projective 

dégénère, et l'on a 

(R lim)J (U) = h*(lim J (U)) 

ce qui prouve que #im* y est la famille des faisceaux associés aux 

préfaisceaux U t R lim J (U) , et ceci prouve le point 1 . 

On utilise alors la seconde suite spectrale pour l'hyperlimite 

projective. Cette seconde suite spectrale E a pour terme Eg 

E2(U) = lim*(h*J (U)) . 

Comme pour chaque w «= W, JQ(U)W est une résolution injective de * , 

on a donc E2(U) = lim* H*(U,sO . Comme on linr^ = 0 pour t > 2 , cette 

suite spectrale dégénère donc en les suites exactes du point 2 du 

lemme. C.Q.F.D.. 

Un élément ¥ «= ProÇW,Ab(X)) est donc dit calibré, s'il existe une base 

95r de la topologie de X , tel que He(U,yw) = 0 pour tout U e 9r , w e W et 

€fi 0 . On obtient alors comme corollaire au lemme 92. 

Lemme 93 : Soit y € Pro(W,Ab(X)) . Si y est calibré, alors pour tout entier 

t £im*'y est le faisceau associé au préfaisceau U > linf(U) . En 

particulier Xim ¥ - 0 pour t > 2 . 
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e3 Le joncteur D. 

Soit A , ïô deux catégories abéliennes, et {Aw} un système Project ifs 

de foncteurs covariants de A dans 9 , i.e. la donnée d'une collection de 

foncteurs Aw : A • ïô(w e W) et une collection de morphisme de foncteurs 

B w,u : Aw • Au pour tout w > U , avec les propriétés de commutâtivite 
usuelles. 

Alors {A } définit de manière naturelle un foncteur w 
A : A » Pro(W,ft) . Le foncteur A est additif (respectivement exact à 

tfauche) si et seulement tous les foncteurs A le sont. Et lorque A est 

additif, on a la formule évidente 
H*A = R*A . 

w 
On définit le foncteur D : *(b) • Ab par la formule DM = lim D M , 

pour tout M € <e(b) . Avec les notations précédentes, on a D = lim o D . 

Lemme 94 : Le foncteur D est covariant exact à gauche, et pour tout entier 

e on a une suite exacte de foncteurs : 
0 > lim(i) o De-Î > De • lim o D6 > 0 . 

4 W i W 

Démonstration : Soit I un inject if de *€(b) . Par le lemme 69, le système 

projectif D I satisfait les conditions de Mittag-Leff1er. On a donc w 
lim e(D)wi = 0 pour €f 0 . Donc on peut former la suite spectrale du 

foncteur composé D - lim o D . Comme on a lim =0 pour t > 2 , cette 

suite spectrale dégénère en la suite exacte du lemme. 

Lemme 95 : Soit t <= P . 

(1) Si il existe A € P+ , et v € W tels que - Ç = v(A+p) -p , on a 

DPkç = 0 pour p f €(v) 

^ \ = L(A) * 
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où L(A) est le dual ordinaire de L(A) . 
(2) Si i ne satisfait pas aux conditions précédentes, on a D*k̂  = 0 

Démonstration : On suppose d'abord que l'on a - £ <= P+ . Par le lemme 94, on 

a pour tout entier p une suite exacte 
0 • lim1 D ^ V > D̂ k, > lim D V > 0 . 

Les espaces vectoriels D k̂.(q «= IN) sont de dimension finie, donc le 

système projectif uŵ ç satisfait les conditions de Mittag-Leff1er. On a 

donc lim1 D̂ k. = 0 . Comme par ailleurs on a 

DPk =0 si p / 0 w Ç 
DV = F (-$) w i wv J 

on obtient dans ce cas 

DPk̂  = 0 si p f 0 

Dkt= L(-Ç)* . 

Ensuite on remarque que pour tout i € {i,...,N} on a D = D o D 
i 

Donc si on peut écrire 
- C = v(V+p) - p 

comme au point 1 du lemme, une récurrence évidente sur e(v) , et une 

application répétée du lemme 89 prouve que l'on a 

\ > \ = DP_e(v)k_A 

pour tout entier p (on convient que l'on a Dq = 0 pour un entier q < 0) . 

Enfin on fixe un poids £ comme au point 2. On veut prouver que l'on 

DPk̂  = o pour tout entier p. On construit par récurrence des entiers 

i^ . - . i € {1,...N} , et des poids $0>#**»$p € P définis par les relations 

de récurrence. 

e 0 = e 

4.ï = si .(*j-rp) + p 

tels que l'on ait £ .(h..) > - 1 , pour tout entier 1 > j > p . Le lemme 89 
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implique alors que l'on a 
DPk = X?kt = D°k = 0 

o p 
car - î n'est pas dominant. P 

34 Espace de drapeaux, et leur topologie. 

Soit E un ensemble ordonné inductif, et {X̂} un système inductif 

d'espaces topologiques. Il est connu et simple que la limite inductive existe 

dans la catégorie des espaces topologiques. On note alors lim X̂  la limite 

inductive. 

La limite inductive existe aussi dans la catégorie des espaces annelés, 

mais non dans la catégorie des schémas. On suppose que le système inductif 

{X̂ } est en fait un système inductif de schémas. On peut alors définir sur 

l'espace topologique lim X̂  la notion d'ouvert affine généralisé. 

On pose X - lim X̂  . Pour tout indice a «= E , on a une application 

continue j : X • X . Soit U un ouvert de X . Alors je dis que U est 

un affine généralisé, s'il existe un indice 0 € E tel que pour tout 
<x > /* , j *(U) est un ouvert affine de X a a 

Lorsqu'on se donne un système inductif {X̂ } de schémas analytique, on 

définit de même les ouverts de Stein généralisés dans la limite inductive. 

Je vais maintenant définir les espaces de drapeaux . Je pose 

G/B - lim S , la limite étant calculée dans la catégorie des espaces 

topologiques. 

Lorsque le corps de base est C , la variété algébrique S définit une 

variété analytique S a n . Les immersions fermées S • S définissent 
w , u w 

elles aussi des immersions fermées S • S . Je pose G/B la limite 
inductive des espaces topologiques San w. 

Le but de cette section est de prouver le lemme suivant. 
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Lemme 96 : 1) L'ensemble des ouverts affines généralisés forment une base de 

la topologie de G/B . 

2) Lorsque le corps de base est c , l'ensemble des ouverts de Stein 

généralisés forment une base de la topologie de G/B311 . 

Pour montrer ce lemme, j'aurai besoin de deux nouveaux lemmes. 

Lemme 97 : Soient {X̂} un système inductif de schémas affines, et X 

l'espace topologique X = lim X̂  (comme précédemment cette limite est calculée 

dans la catégorie des espaces topologiques). On suppose que pour tout couple 

u , w d'éléments de W , avec u > w . le morphisme X • X est une 

immersion fermée. 

Alors les ouverts affines généralisés forment une base de la topologie de 

X . 

Démonstration : Soient z e X et U un ouvert de X tel que z € U . Il 

s'agit de prouver qu'il existe un ouvert affine généralisé V avec z <= V et 

V c U . 

On notera que pour tout w «= W , l'application X̂  • X est une 

injection continue fermée. Il existe u e W , tel que l'on ait z e X̂  . Par 

le lemme II. il est possible de choisir une suite W w < w. > w0 ... 
d'éléments de W . avec u = w telle que l'ensemble {w } soit plein. Pour 

tout entier n , on pose 

X = X U = X n U . Z = X \U , A = f(X ,o ) . n w n n n n n n x n x n n 
Je vais construire une suite d'élément f . f, ... tels que l'on ait 

o 1 (a) f € A , s ' n n 
(b) f est nulle sur Z , v J n n 
(c) la restriction de f à U est une puissance de f , 

n m m 
(d) fQ(z) i 0 , 

pour tous entiers n , m avec m > n , et ce par récurrence sur n . 
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Pour n = 0 on choisit un élément f de l'idéal associé à Z , avec 
o o f (z) t 0 . On suppose construit f , ...f . Soient I = Jï , et Y le o o n n n 

fermé correspond à I . Soient Y' = Y U n̂+1 ? ê  1*idéal réduit de 
A ,, associé à Y' . Par construction, on a Y' n X = Y . On a donc n+1 n 
I = A I* . Donc il existe un entier e > 1 , et un élément f n+I,, € I* tel 

que la restriction de f ,n+1, à X soit égale à f . La suite ainsi 
n n 

construite satisfait les conditions (a) (b) (c) (d). Pour tout entier 
n > 0 , soient D(f ) l'ouvert de X où f f 0 , et V = lim D(f ) . Par 

construction, on a z e V , et VnX =DCf). Donc V est un ouvert affine 

généralisé, il satisfait z *= V , V ç U , ce qui prouve le lemme. 

Lemme 98 : Soit E un C-espace vectoriel, de dimension dénombrable, muni de 

la topologie limite inductive de la c-topologie de ses sous-espaces 

vectoriels de dimension finie. 

Alors les ouverts de Stein généralisé forment une base de la topologie. 

Démonstration : Il s'agit de montrer que si l'on fixe z e E , et Z un fermé 

de E , tels que z JÉ Z il existe un ouvert de Stein généralisé U tel que 

z € U et U n Z = 0 . 

Pour simplifier, on pourra supposer que l'on a z = 0 , et que E est de 

dimension infinie. 

On fixe une base e , e., e0 ... de E : et on pose 
o 1 ' <£ E =Ce ©.. .© Ce ,Z = ZnE . pour tout entier n > 0 . On va n o n n n 

construire une suite de réels < 0 a , a. , ... tels que 
o 1 

i=n 2 
(*) Posant q̂  la forme hermitienne positive de Ê  q̂  = I a^]x |̂ , 

i=o 
et B la boule ouverte unité de E qui lui correspond, on a B n Z = 0 . n n n n 

On construit ces entiers par récurrence sur n de manière triviale. On 

pose alors B=limB .On a B n E =B pour tout entier n , donc B est • n n n ' 
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un ouvert de Stein généralisé. En outre on a O e B , e t Z n B = 0 , ce qui 

prouve le lemme . C.Q.F.D.. 

On va maintenant prouver le lemme 96. Soient w € W , et M «= (̂B) • 

L'application naturelle Ŝ  • G/B (respectivement S3̂1 • G/B311 lorsque 

le corps de base est C) est un homéomorphisme sur son image. Lorsque le 

corps de base est C , je note X^tM) le faisceau analytique qui étend 

2w(M) à S311 . Donc le faisceau i^(M) (respectivement X^(M)) peut être 

considéré comme un faisceau sur G/B (respectivement sur G/B811) . Je pose 

donc 

2 (M) = Xim 2 (M) 

(respectivement S?811 (M) = Xim «̂ "(M)) . 

On fixe A un poids dominant régulier (par exemple A=p). 

1) Je vais montrer le point 1 du lemme. Pour chaque o € H°(G/B, Ï(-A)) , je 

note o sa restriction à Ŝ  , plus précisément son image par l'application 

H°(G/B, S(-A)) —. H°(G/B), 2W(-A)) = H°(Sw, 

pour tout w € W . Soit alors DW (o) de SW où oW fi 0 . et 

D(o) = lim nw(o) . Comme on a D(o) n Ŝ  = Dw(o) , D(o) est un ouvert de 

G/B . Pour tout w € W , Dw(°) est un ouvert affine de Ŝ  , et l'application 

Dw(a) • û̂ â  P°ur w < u est une immersion fermée. Par le lemme 97, les 

ouverts affines généralisés forment une base de la topologie de D(a) . 

On a H°(G/B, Ï(-A)) = lim H°(Sw, 2 (̂ M) (-A)) 

= L(A)* . 

Donc les applications H°(G/B, 2(-A)) » H°̂ W> ^W ~̂Â ) SONT TOUTES 

surjectives, donc l'ensemble des ouverts D(a) (o € L(A)*) forment un 

recouvrement ouvert de G/B . Ainsi les ouverts affines généralisés forment 

une base de topologie de G/B . 
2) Je vais prouver le point 2 du lemme 96. Soit o <= H (G/B , X (-A)) . Pour 
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tout, w € W , soient de même o la restriction de o à S30 , et D^fo) 

l'ouvert de sw où aw t 0 . On pose D^Co) = lim \F^{o) . Les différentes 

sections aw déterminent des applications continues 

?w : D^fo) • E (A) 

compatibles entre elles, ce qui donne une application continue f : 

D^fo) • L(A) . On pose pour w € W Z = r^D^o)) , et Z = U Z . 

Les morphismes Sw » ^ sont finies, donc les applications 

San • San sont topo logiquement propres (San est l'analytisé de S ) , W W,A W, A W, A 
donc les applications î°w sont des morphismes analytiques propres, donc Ẑ  

est un fermé analytique de ^(A) . 

On a en outre CE (A)) = D (O) , donc on a Z = E (A) n Z . Donc Z 

est un fermé analytique généralisé de L(A) . 

Par le lemme 98, les ouverts de Stein généralisés forment une base de la 

topologie de L(A) . Il en est donc de même pour Z . Enfin les morphismes lw 

sont finis. Donc l'image réciproque par î° d'un ouvert de Stein généralisé 

est également un ouvert de Stein généralisé. Donc il en est de même pour 

D(a) . 

Enfin on a H°(G.Ban, '^(-A)) = lim H 0 ^ , 'i^(-A)) et donc par le 

théorème GAGA de Serre [55] on a : H°(G/Ban, Ï^C-A)) = L(A)* , et le 

morphisme de restriction ^(G/B^, Ï^f-A)) • ^(S^11, ^ ( - A ) ) sont 

surjectifs. Donc les ouverts D(a) (o e L(A)*) forment un recouvrement ouvert 

de G/B3" . Ainsi les ouverts de Stein généralisés forment une base de la 

topologie de G/Ban . 

35. Les généralisations du théorème de Borel-Weil-Bott. 

Au paragraphe précédent, on a associé à tout M e ^(B). un faisceau 

£ (M) <= Ab(G/B) (et lorsque le corps de base est C , un faisceau 
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2 (M) e Àb(G/B )) . Il est clair que l'association M • *(M) est un 

foncteur (ibid, pour 28n(M)) et on a ainsi défini un foncteur 2 

(respectivement 2811) qui est covariant exact à gauche. 

Lemme 99 : Soit M € . Alors on a Xim ÏW(M) = 0 (respectivement 

Xi.m' 2â 1 (M) = 0) pour tout entier t > 1 . Corol lai rement le foncteur 

2 : <t(b) • Ab(G/B) (respectivement 2an : *(b) • Ab(G/Ban)) est exact. 

Démonstration : Soit ft l'ensemble des ouverts affines généralisés 

(respectivement de Stein généralisés). Soit M <= . Par le lemme 96 ft 

forme une base de la topologie de G/B (respectivement G/B811) . Comme les 

faisceaux 2̂ (M) (2™ (M)) sont quasi-cohérent, le système project if de 

faisceau 2̂ (M) (2̂ n(M)) est calibré relativement à ft . En outre pour tout 

ouvert U € ft , la restriction 2̂ (M)(U) > 2v(M)(U) 

(*T"(M)(U) >*r"(M)(U)) est surjective par un théorème de Serre (Cartan et 

Serre) . Donc le système de groupes abéliens X (M)(U) (X (M)U) satisfait aux 

conditions de Mittag-Leff1er. 

Par le lemme 93, on a donc Xim^ 2 (M) = 0 (Xim& 2an(M) = 0) , pour tout 

entier e > 1 , puisque un préfaisceau nul sur une base de topologie définit 

un faisceau nul. 

Enfin si 0 • M » E • N • 0 est une suite exacte de *(b) , la 

suite exacte 0 > 2(M) , 2(E) • 2(N) > aim1 2w(M) 

(0 • 28n(M) • 28n(E) > 2an(N) • Xim1 2 (M)) prouve que le foncteur 2 

(respectivement 2an) est exact. C.Q.F.D.. 

On en déduit que la suite de foncteur T* : 

M • H*(G/B, 2 (M)) 

(M > H*(G/B, 2(M))) 

est un 6-foncteur. On a donc un morphisme naturel de 5-foncteurs 

D • T . 
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Soient X un espace topologique, et a une. algèbre de Lie. Je note 
Ab (X) la catégorie des faisceaux de U(a)-modules. Soit ? <= Ab (X) . Alors a a 
la résolution canonique de Godement C"(y) est une résolution flasque de 9 

dans Ab&(X) . Donc les groupes de cohomologie H*(X,y) sont naturellement 

des U(a)-module. En outre si u € U(a) , u définit un élément, 

u' <= Hom t̂e,̂ ) , et l'action de u sur H*(X,?) est la même que celle 

induite par u' . 

Soit g l'algèbre de Lie produit amalgamé des algèbres 

(i €{1,...,N}) suivant & (définie au chapitre VI). Il est clair que pour 

tout M € ^(b) , 2 (M) (et 2 ^ (M) lorsque k = C) est fonctoriellement un 

faisceau de jg-modules. De même DM est fonctoriellement un -̂module, ce qui 

prouve que tous les goupes D*M sont en fait des jg-modules. On verra en 

annexe que l'action de g sur ces différents objets factorise à travers g . 

Lemme 100 : Soit M € <e(B) 

1) Les applications naturelles D*M • H*(G/B, 2(M)) sont des isomorphismes 

de -̂modules. 

2) Lorsque k = C , l'application naturelle D*M • H*(G/Ban, 2an(M)) est un 

isomorphisme de -̂modules. 

Démonstration : Je vais montrer le point 1 . Pour cela, il s'agit de montrer 

que l'on a 

H (̂G/B), 2(1)) = 0 , pour tout entier £ f 0 

pour tout injectif I <= <e(b) . Soit P : <e(b) • Ab le foncteur composé : 

PM = H°CG/B, tfim 2 (M)) = lim H°(G/B, 2 (M)) . Par le lemme 99, on a 

£im Ŵ(M) = 0 , pour tout M «= *(b) , et tout entier t f 0 . Donc la seconde 

suite spectrale du lemme 91 dégénère, et l'on a 

P*M = H*(G/B), 2(M) ) , pour tout M € <e(b) . 

Par le lemme 71 et la proposition 3, les applications 
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H°(G/B, 2 (I)) > H (G/B, 2u(I)) sont surjectives pour tout w , u e W avec 

w > u , et l'on a He(G/B? 2 (I)) =0 pour efi 0 . Donc le système projectif 

H°(G/B, 2^(1)) satisfait aux conditions de Mittag-Leff1er et l'on a 

limP Hq(G/B, 2w(I)) = 0 , 

pour tout couple d'entiers p, q avec p fi 0 ou q fi 0 . Donc la première 

suite spectrale du lemme 91 dégénère, et l'on a P̂ I = 0 pour t fi 0 . 

On a donc H (G/B, %(!)) =0 pour 6 fi 0 , et ceci prouve que le 

morphisme du point 1 est un isomorphisme. 

Lorsque k = C , la même démonstration vaut. Il suffit de remarquer par 

le théorème GAGA de Serre [61] l'application naturelle 

H*(Sw, ïW(M)) — H*(S^, ïM(M)) 

est un isomorphisme (pour tout w € W et M <= ^(b)), et donc 

H (G/B, X CM)) • H (G/Bart , *Ç (M)) est également un isomorphisme. 

On obtient les généralisations suivantes du théorème de Borel-Weil-Bott 

(cf. [42]). 

Théorème 4-AL. Soit $ «= P. 

1) Si il existe A € P+ , v € W tels que - t = v(A+p) - p , alors on a 

HP(G/B, 2($)) = 0 pour p fi e(v) 

He(v)(G/B, 2(Ç)) = L(A)* . 

2) Si £ ne satisfait pas aux conditions précédentes, on a 

H*(G/B, 2(£)) = 0 . 

Théorème 4-AN : Soit t <= P . On suppose que l'on a k = C . 

1) Si il existe A € P+ , v € W tels que - $ = v(A+p) - p , alors on a 

EP(G/B3nr 2an(Ç)) = 0 , pour p fi l(y) 

Herv)(G/Ban, 2an(*}> = L(A)* . 

2) Si t ne satisfait pas aux conditions précédentes, on a 

H*(G/B811, 2an(e)) = 0 . 
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Démonstrat ion : Ces théorèmes résultent des lemmes 95 et 100. 

Je vais indiquer une autre généralisation possible du théorème de 

Borel-Weil-Bott. Soit. U un ouvert de G/B , et Z son complémentaire. Pour 

tout w <= W , je pose c (U) = codim (Z ) , où Z = Z fi S . 
W ?r w w w o 

Je note 7 la topologie de la limite inductive sur G/B . Soient 7 et 

7 les deux topologies de G/B définies comme suit. Si U est une partie de m 
G/B, on a : 

1) U appartient à 7 si et seulement si U € 7 et il existe w € W tel 

que Z c S . 
- w 

2) U appartient à 7 si et seulement si U € 7 et w lim W-tfio c CU) = oo 
(lorsque W est fini cette dernière condition est vide). 

On a ainsi 7 c 7 c 7 , avec égalités si et seulement si g est de 

dimension finie. Soit 79 une topologie de G/B, avec 7 c 79 c 7 . Pour 

tout w , l'application naturelle Ŝ  —• (G/B, 7 ' ) est encore un 

homéomorphise sur son image. Pour tout M € <€(b) , w € W , je note Ĉ (M) la 

résolution canonique de Godement de #W(M) , de sorte que je peux considérer 

que CW(M) est un complexe de faisceaux sur (G/B, 79) [17] . Je note 

C*(M,79) le complexe de faisceaux sur (G/B,cr') : C'(M,79) = eim C7M) (la 

limite étant calculée dans la topolgoie T9). 

Lemme 101 : Soient 79 une topologie de G/B telle que 79 une topologie de 

G/B telle que 7^ c 79 c 7 , et j = (G/B,r) • (G/B,7*) l'inclusion 

correspondante. 

1) Pour tout entier t , le foncteur M • C (M,7*) est exact. 

2) Pour tout module M , on a un isomorphisme factoriel 

C*(M,7M - j#C*(M,7) . 
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3) Le complexe augmenté it(M) » C*(M,y) est une résolution de st(M) . 

4) Le morphisme naturel R*jJc(M) > h*C*(M,r') est un isomorphisme. On a en 

outre h*C*(M,y') = *im*j 2(H) . 

Démonstration : (1) Soient w , u e W , avec u < w . Comme le morphisme 

i CM) » i CM) est surjectif, il vient que pour tout ouvert U <= V . et tout 

t e IN , l'application C CM)CU) » C CM)CU) est surjective. En particulier 

on obtient que l'on a lim C (M)(U) = 0 , pour tout entier q fi 0 . 

2) Pour tout t € IN , et w e W , le faisceau ĈCM) est flasque, donc le 

système project if ĈCM) (w <= W) est calibré pour la base de topologie T9 

de (G/B, T9) . En particulier par le point 1 il vient que l'on a 

Xim C CM) = 0 pour tout entier q / o Climite calculée en topologie V9) , 

par le lemme 93. 

3) Soit 0 • M • E • N • 0 une suite exacte de <€(b) , et £ un 

entier. On a alors une suite exacte 

0 > Ce(M,r') • Ce(E,r') • Ce(N,r') > Xim c£(M) . 

Donc par le point 2 , le foncteur M » C (M,y') est exact. Ceci prouve le 

point 1. 

4) Soit U un ouvert affine généralisé de G/B. Pour tout w e W , tout 

M « ^(b) , le complexe Cw(M)(U) a pour cohomologie H*(U,#w(M)) . Comme on a 

He(U, 5w(M)) = 0 pour t fi 0 t le complexe augmenté 

0 • 2w(M)(U) > Ĉ (M)(U) est exact. Comme U est affine généralisé, pour 

tout u € W avec u < w l'application 2̂ (M) (U) > 2u(M)(U) est 

surjective. Donc on aussi limq #w(M)(U) = 0 , pour q / 0 . 

Donc par le point 1 et ce qui précède, le complexe augmenté 

0 • 2(M)(U) h C*(M,r)(U) est exact. Comme les ouverts affines généralisés 

forment une base de la topologie y par le lemme 96, le complexe augmenté 

0 » Ï(M) > C*(M,r) est exact, ce qui prouve le point 3. 

5) Le point 2 du lemme résulte des constructions faites les morphismes de 

bord. 
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Rĵ  C*(M,r) » h * C*(M,y') résultant fournissent par le point 4 de la 

démonstration des morphismes naturels 

R*^ 2(M) • h* C*(M,tr'). 

Les foncteurs gim o j et j o gim : Pro(W,G/B) • Ab(G/B,r') sont 

égaux. Soit ce foncteur. Par le lemme 90, on a 

R% = Rj o R*yim = R*£im o R*^ * On a donc d'autre part 

RV 2 (M) = R* j o R*.£im 2 (M) 

= R*j 2(M) , par le lemme 99. 

On a d'autre part 

RV 2w(M) = R* #im o R*^ 2 (M) 

Comme les morphismes Ŝ  • (G/B,y') sont des homéomorphismes sur leur 

image, on a pour tout w € W R #W(M) = 0 pour tout € f 0 . On a donc 

RV 2w(M) = 2im* 2w(M) . Or Ĉ (M) est une résolution du système project if 

2̂ (M) , et l'on a 5eimq Ĉ (M) = 0 pour tout entier t , et tout entier 

q f 0 , par le point 2 de la démonstration. Donc le complexe aiim Ĝ (M) a 

pour homologie £im* £^(M) . On a donc RV &w(M) = h*(C*(M,r')) . On obtient 

donc 1'isomorphisme cherché, ce qui achève la preuve du lemme. 

Pour tout espace topologique X , soit C(X) la catégorie des complexes 

de faisceaux en groupes abéliens 7 = (9rn)n̂ N (on n'autorise pas de degrés 

négatifs). Soit r* une topologie de G/B avec r <= r ' <=• r . Le foncteur de 

*(b) dans C(G/B,7') , qui à Me <e(b) associe C*(M,7') est exact par le 

lemme 101-1 . Donc la série de foncteurs T* : ^(b) • Ab donnés par la 

formule T*M = RT C"(M,r') est un ó-foncteur. L'augmentation naturelle 

j* £ (M) • C*(M,r') (pour tout M <= «(b)) défini donc un morphisme de 

foncteur D° ¥ T° , et par universalité de D un morphisme de ô-foncteurs 
D > T . 

Lemme 102 : Soient r ' une topologie de G/B avec £ r* £ r , et 

M € ^(b) . Alors les morphismes naturels D*M • RT C*(M,y') sont des 

isomorphismes. 
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Démonstration : Soit j : G/B • (G/B,r') l'application continue naturelle. 

Le second terme de la suite spectrale de Leray 

EP,q = Hq(G/B,r',RPĵ  2(M)) (permettant de calculer H*(G/B, 2(M)) et le 

second terme de la suite spectrale d'hypercohomologie 

EP,q = Hq(G/B,r',hP C*(M,r')) sont fonctoriellement égaux, par le lemme 

101-2, donc il en est de même de tous les termes suivants, ce qui prouve que 

l'on a H*(G/B, 2(M)) = RT C*(M,r') . 

Donc par le lemme 100, les morphismes naturels D*M • RT C*(M,y') sont 

des isomorphismes, ce qui montre le lemme. 

On obtient ainsi une amélioration au théorème que j ' a i montré dans [42], 

par le théorème suivant 

Théorème 4-HYP : Soient $ «= P , et r* une topologie de G/B avec 
y c y' c y . m - -

1) Si il existe A <= P+, v € W tels que - £ = v(A+p) - p , alors on a 

RT c-(k = [L(A)*][E(V)] . 

2) Si t ne satisfait pas aux conditions précédentes, on a 

RT C*fk ,̂y') = 0 . 

Le théorème 4-HYP résulte des lemmes 102 et 95. 

Je vais montrer un phénomène amusant qui se produit lorque g est de 

dimension infinie, hypothèse que je garderai dans la fin de ce chapitre 

(cf. [16]) . 

Proposition 10 Soient r ' une topologie de G/B avec £ r ' £ r , et 

M € *e(5) . Il existe une suite spectrale E , qui converge vers RT C*(M,y') , 

et dont le terme En vaut 
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EP?q = Hq(G/Bly,,hPu,(M,y»)) . 

1) On suppose que l'on a r ' = r . Alors on a Ê '*1 = 0 pour tout couple 

d'entiers p , q avec p f 0. 

2) On suppose que l'on a V c c y . Alors on a E?,q = 0 pour tout 
m ~ — <x> £ 

couple d'entiers p , q avec q f 0 . 

Démonstration : Le point 1 de la proposition résulte du lemme 101-3 , et 

n'utilise pas que g est de dimension infinie. 

Je vais prouver le point 2 . Soient p un entier, U un ouvert de y' , 

Z le complémentaire de U dans G/B , et pour tout w € W , soient 

Z = Z n S ,U = UnS . Par définition, il existe u e W , tel que pour w w w w . . . 
tout w > u , on ait codim Z > p + 2 . - ~ w -

Par le lemme 83-2, pour tout w > 2 , les morphismes 

H'(SW, XJM)) Ĥ (TJw, *w(M)) 

HP_1(S ,2 T(M)) —•HP~1(U , 2 (M)) 

sont des isomorphismes. Par le lemme 92, XinP^w(M) est un faisceau associé 

à une série de préfaisceaux *P tel que l'on ait une suite exacte 

0 > lim1^ (U,r', 2 (M)) > <<JP(U) • lim Hp(U,r,f 2 (M)) • 0 . 
4 W 4 w D'où on obtient en une suite exacte 

0 , lim1 if 2w(M)) „ <ÔP(U) > lim ff°(Ŝ  XjM)) • 0 . 

Donc le préfaisceau U » *i~ (U) est constant. Comme l'espace topologique 

(G/B,7') est connexe, ceci montre que yinfj^ #W(M) est un faisceau 

constant, et même flasque car (G/B,y') est clairement irréductible. Par le 

lemme 101-4, il vient donc que hp C*(M,r') est flasque. Ceci implique que 

l'on a Hq(G/B,r', hP C*(M,«r')) = 0 pour q i 0 , i.e. on a EP?q = 0 pour 

q f 0 , ce qui prouve la proposition 11. 

Remarque : On remarque que G/B n'est pas un schéma, excepté lorsque g est 
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de dimension finie. Je donnerai des énoncés plus précis au chapitre suivant. 

36 Annexe : structures de g-modules. 

Soit Wq l'ensemble ordonné W U {0} , avec pour ordre l'ordre de Bruhat 

et la relation 0 < w pour tout w <= WQ . 

Lemme 103 : Soit i <= {1,...,N} . On suppose W infini. Alors il existe une 
fonction croissante IP. : W » W telle que 

i o o 
(a) pour tout w e Wq , w > lF\(w), 
(b) r\(WQ) c {0} U XW , 

(c) wi5*i(w) = 00 ' 

(d) 0 = *. . i i i 

Démonstration : Par le lemme 1, il existe une suite infinie d'éléments 
w < w. < ... dans *W , tels que l'ensemble X = fw /n € Wl soit cofinal. Je o 1 n * " 
pose donc (w) = Max{x € X , x < w} , avec la convention Max(0) = 0 . Les 

conditions (a) (b) (c) (d) sont alors automatiquement satisfaites. 

Soit X un espace topologique; Je note Prô (X) la catégorie des 

systèmes projectifs (y ) de faisceaux abéliens sur X indexés par Wq , tels 

que ?o = 0 . Je note Pro(X) la catégorie des systèmes projectifs de 
b-faisceaux (9 ) € Pro (X) tels que l'on ait — w = o J 
Cl) Pour tout i <= {1....N} et w <= "Hf, y est muni d'une structure de 

jK-faisceau qui prolonge sa structure de b-faisceaux. 

(2) Pour tout couple u, w <= 1W le morphisme y *y commute aux structures de 

p.-modules. 

Dans la suite de ce paragraphe, les limites projectives seront calculées 

sur divers sous-ensembles pleins X de WQ, et seront alors notées «tòffly. On 
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notera que si (̂ W) € PFQQ(X), le morphisme naturel 

4 -WQ W 4 X W 

est un isomorphisme. Donc si (*w) € Pro(X), pour tout i «= {1,...,N,}, 

l'identification ittm., y4—-WQ » Xtm.. 9 induit une structure naturelle de 

b-faisceau. Ainsi 9 est naturellement un faisceau de ̂ -module. 

Je vais donner une régie plus pratique pour calculer l'action des 

opérateurs de # sur 7. Une séquence a de longueur n est la donnée d'une 

séquence a1, an d'éléments de {1,...,N>. Soit y l'ensemble des séquences de 

diverses longueur, et *:y x y l'opérateur d'assemblage des séquences . Si 

a = CLj.. .an et j8j...j5n sont deux éléments de 'S de longueur n et m, je pose 

7 = a*& où 7 est la séquence 7 = 7 . . . . 7 , de longueur n+m telle que 
1 n+m 

7 . = a. pour 1 < j < n J J 
7^ = £j_n pour n+1 < j_< n+m. 

Tout élément i e {1,...,N> défini une une séquence de longueur 1, notée 

encore i. 

Dans la suite je fixe pour tout i € f1,...,W> une fonction Y>.:W~—-*W 

satisfaisant aux conditions (a), (b), (c) du lemme 103. 

Je vais définir, par récurrence sur sa longueur pour tout a € y des 

fonctions Â:WQ >WQ, et un sous-espace g^ par les régies suivantes 
1) î?i = £i' P°ur tout * € U>.-->N} 

2) Si a = i*/* est un élément de longueur >2 de y, où i € {1,...,N} et 

/3 € y, je pose *a = +± *fi *ietga = Ad(U(£i) ) (ï). 

Par définition de g, on a g - U i^. Si oc € y, * est croissante, et l'on 

a lim ? (w) = oo (on remarquera qu'il existe des fonctions croissantes non 

bornées TP:WQ—»WQ qui n'ont pas de limite à l'infini, pour des groupes de Weyl 

suffisament gros). 

Soit ? € ProQ(WQ). et ?:WQ >WQ une fonction croissante telle que 

lim *(w) = ». Comme le sous-ensemble *(WQ) est cofinal dans WQ,le morphisme 
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naturel xij^ ŵ • i£L̂(W ) est 1111 ŝomorPn̂ sme• 

Lemme 104 Soit a <= f 
1) La fonction 1* est croissante, et l'on a lim iKw) = «> 

2) Soit (sO € Pro(X). Pour tout w € WQ, il existe un morphisme naturel de 

b-module g^ > Hom(yw,ŷ  ^ ) , toutes les compatibilités possibles étant 

satisfaites. 

3) Le morphisme induit par limite projective g^ » End(y), où y = ytm^ ŷ  

est. la restriction à ffa de l'action de g sur F. 

Démonstration Le point 1 du lemme résulte d'une récurrence immédiate sur la 

longueur de a, et du lemme 103. 

Lorsque a est de longueur 1, on pose a = i, le morphisme naturel 

p. • Hom(y ,y. , x) est obtenu comme suit. Soit r le morphisme de restriction 

y • y, , v. Comme on a f.M € *W U (01, y. , v est naturellement un 
w r\ (w) IV " i- ^ 

p^-faisceau, d'où un morphisme naturel p^ » End(ŷ  ŵ̂ )• Composant avec r, 

on obtient un morphisme naturel p. » Hom(y f9. , x). * *-i w TP. (w) 

On suppose que a est de longueur < 2, soit a = i*/? pour certains 

i <= {1,...,N}, /3 € y. Par récurrence, on a un morphisme naturel 

g > HOT(V(w),,f1^*.(w))# Utilisant la restriction ^ t (w) > *t (wJ °n 

obtient un morphisme naturel g * Hom(ŷ  (w)>ŷ  (w)̂ * ê terme ê droite 

étant un U(2 -̂module, on obtient un U(£̂ )-morphisme 

r: U(pi) 8U(b) H ^ V w V ^ C w ) ^ 

Soit T l'ensemble des éléments 7 € y tels que 

1) 7 = i*7' pour un certain 7' € y, ou 7 = i, 

2) = 7''*7 pour un certain 7" € y, ou £ = 7. 
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Par construction g^ est le quotient de U(p̂ ) 0. U(b) *ß gn par les relations 

triviales suivantes 
(a) f..u - ff.,ul, où u € ut 

(b) t±.ht où h e h et ou (h) = 0 

(c) fj.h 

(d) f..v - [fi?v] où V € U7€f gy 

Par naturalité des constructions, ces relations sont dans le noyau du 

morphisme r\ Composant une dernière fois avec la restriction ¥ 
w V(w)' on 

obtient le morphisme naturel g^ Нош (У 9ГЩ p (w) ) cherché. 

Cette même récurrence prouve le point 3. 

Dans la suite je noterai SQ la variété vide, et lorsque k = C je noterai 

S011 la variété analytique vide. Le faisceau structural de ces variétés est 

réduit à l'élément 0. 

Soit M € 'C(b). Je pose alors de même 2Q(M) = 0, DQM = 0,(et 2an(M) = 0 

lorsque k = C), de sorte que #W(M) est naturellement un élément de ProÇG/B) 

(respectivement 2̂ °(M) € Pro(G/Ban)). Le lemme 104 s'applique alors à un tel 

système projectif. 

Lemme 105: On suppose que l'on a k = C Soient a € y, y € g^f w € WQ. L'image 

de l'opérateur y dans Hom(er-san,O'zan), où v = f (w) , est continu (en topologie 0 0 oc W V 

de la convergence compacte). 

Démonstration 1) Soient u € W, u € W, i u {1 N} et x € JK, tels que 

ŝ u _< u, ŝ uj<u, où u est une décomposition réduite de u. Comme Ŝ  et D(ïï) sont 

des P^-variétés, x définit un opérateur 0(x) (respectivement 0'(x)) sur 

erg (respectivement sur ffgan. Comme 0'(x) est un champ de vecteur holomorphe 
u u 

sur la variété analytique lisse D(û), il est continu en topologie de la 

convergence compacte. Comme le morphisme 7i:D(u) »S est propre, et que l'on a 
u 
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ÏÏ (JnA, = o~ , 0(x) est également continu, 
u 

2) Si u, u* € WQ avec u2u', l'opérateur de restriction r € Hom(or~an,organ), est 

également continu. 

3) L'image 0(y) € Hom(â an,ôran) de l'élément y est obtenue par composition et 

combinaisons linéaires finies d'opérateurs étudiés au point 1 et 2. Donc 0(y) 

est également continu. 

Lemme 106 Soit M € <e(b). Alors l'action de g sur 5{M), D*M {et Si811 (M) lorsque 

k = c) factorise à travers g. 

Démonstration Soient i, j deux éléments distincts de {l..,.,N}, et 

v = adn(f.)(f.) une des relations de Serre, où n = -a.(h.)+l. et a = i*j. On a 

donc v € st . 
—a Soient w € W,.. u = i>. (w) et v = i> (w). de sorte que l'on a w>u>v. u, 

v € XW et v = * (u). 

1) Je vais d'abord prouver que pour tout N € ^(b), l'image 0 de y dans 

Hom(DuN,DvN) défini par le lemme 104 est nulle. 

Soient n un élément de D̂N, E = uïp^.n, F' = 0(E) et F = uïp^.F'. Comme 

D N et D N sont U(p.)-localement finis, E et F sont des U(p.)-modules de u v 1 1 
dimension finie, et par restriction 0 définit un morphisme 0':E >F. 

Dans le U(p̂ )-module Hom(E,F), on a e^0' = 0 et h^0' = m0', pour un 

certain entier m<0. Comme Hom(E,F) est de dimension finie, cela implique que 

l'on a 0' =0, donc on a 0.n = 0. Cette dernière relation étant vérifiée pour 

tout n e DUN, on a 0 = 0, ce qui prouve l'assertion 

Par construction, cela implique que l'image de y dans Hom(DwN,DvN) est 

aussi nulle. 

2) On fixe un poids dominant entier A tel que les faisceaux X^(-A), 

i^(-A) soient très amples. Soit N € <e(b) Je pose pour tout z € Wn 
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M(z,N) = ®n<jg, H (S2,#(N ® -̂n/î * Tout élément x € g^ agit comme une dérivation 
de Â(w,i4) dans Â(v,/1) et de &~ dans (Xg . Comme et Sv sont les espaces 

w v 
pro.jectifs associés aux anneaux gradués A(w,.4) et A(v,.4), et que y a une image 
non nulle dans Hom(A(w,/l), A(v,/1) ) par le point 1, y a une image non nulle dans 

Hom(erg jtfg ). Lorsque N est de dimension finie, 2̂ (N) et #V(N) sont les 
w v 

faisceaux cohérents associés aux A(w,A)-modules M(w,N) et M(v,N) 

respectivement. On remarque que l'image de y est à valeur dans 

Hom (X (N) ,X (N)). Donc par le point précédent, cet image est nulle. Par un erg w v 
w 

argument de limite , ce résultat vaut également lorsque N est de dimension 

infinie. 

3) On suppose que l'on a k = C, et l'on fixe N <= <€(b). Par densité, et la 

continuité montrée au lemme 105, l'image de y dans Hom(of7'an,aç-an) est nulle. 

Cela prouve que y est à image dans Hom (2an(N) ^^(N) ). Par le théorème 
ugsn W V 

GAGA de Serre, l'application naturelle [55] 

Hoin (x (N) ,2 (N)) >Hom tè^fN) /é^N)) 
tfg • wv ' vy J J tfgan ' w ' 7 ' vx 7 J 

est bijective. Donc l'image de y dans ce dernier groupe est également nulle. 

4) Comme les points 1, 2, 3 sont valables pour tout w € Ŵ, le lemme 104 

prouve que y agit de manière nulle sur 2(M) (et sur 2an(M) lorsque k = C). 

Enfin en utilisant le théorème 4-AL il vient que y agit de manière nulle sur 

D M (ceci résulte aussi du fait que D est le foncteur dérivé de D). 

5) Enfin comme le résultat précédent est vrai pour tout couple d'éléments 

i, j , cela prouve le lemme. 

Remarque: G. Segal a donné une autre version du théorème de Borel-Weil pour 

les groupes de lacets [54]. 
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XVI Le foncteur F 

Soit T* - T°,T1 ... un 6—foncteur covariant de C(b) dans Ab qui 

commute aux limites inductives. On appelle réalisation de T* la donnée d'un 

triplet (ri9£9r) , où rf> est une catégorie abélienne ayant suffisamment 

d'injectifs et stable par limite inductive, où £ : &(8) > à est un fonc­

teur exact qui commute aux limites inductives, et où r : • Ab est un 

foncteur covariant exact à gauche, tels que l'on ait un isomorphisme de 6-

foncteurs T* = T* o «C . 

Par le lemme 79, on peut retrouver alors T* à l'aide d'une suite spec­

trale, et des groupes T*k[B] . 

On notera d'abord que le foncteur D* commute à la limite inductive si 

et seulement si £ est de dimension finie. En effet, on suppose dim £ = 0 0 . 

Soit A un poids dominant et régulier. On constate aisément que le module 

V(A) n'a aucun poids antidominant. Par le lemme 95, on a donc DE = 0 , pour 

tout sous-module E cz V(A) de dimension finie. En revanche le lemme /1 îm-

plique que l'application naturelle DV(A) • V(A) est surjective. 

Donc D ne commute pas aux limites inductives lorsque £ est de dimen-

sion infinie. Il est aisé d'en déduire que les foncteurs £ et *6 introduits 

aux chapitres précédents ne commutent pas non plus aux limites inductives. 

C'est pourquoi, pour tout M 6 ?(b) , on pose 

F*M « lim D*E 

C#(M,€') » Xim C*(E,€') , 

les limites étant prises sur l'ensemble des sous-modules E cz M de dimension 

finie, et T?' étant une topologie de G/B avec € c: o' c tî. 

En l'absence de précision, G/B désigne l'espace topologique G/B avec 
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sa topologie îf . 

§ 1. Les foncteurs F et F 
Soit o%(b) la catégorie des tt(h)-modules, et #(tt) la sous-catëgorie 

des IL (H) -modules semi-simples à poids dans P . Soit : JÙ(M • Jù(h) 

le foncteur de Ducloux, qui à tout module M associe le sous-module T̂M 

des vecteurs U(h)-finis [13] ( est aussi le foncteur des sections à sup­

port fini, lorsqu'on considère M comme un faisceau sur h* [22]). 

Soit V̂ QO * {h € h , (u+A.)(h) + 0 pour tout U P} , pour u € h* . 

Soient M € c4((h) , et U h* . Je pose 

1C.CX) - 2 (h - A.(h)) . M . 
" h€h* 

On suppose d'abord k algébriquement clos. On note alors 3&(h) la caté­

gorie des 11 (h)-modules M qui satisfont aux propriétés suivantes, pour tout 

X € P . 

a) On a ThM € £(g) . 

b) On a K^À) - M si X t P . 

c) On a (A.(h) -tOK^A) - KM(X) pour tout h EVA. 

d) est le noyau de (h-A.(h)) , pour tout h € ty^ . 

Dans le cas général, soit k la clôture algébrique de k . Je note 3L00 

la catégorie des modules M tels que k ® M € 3t(k ® h) . 

Lemme 107 : La catégorie *û.(h) est une sous-catégorie abélienne de tA(h) , 

stable par limite inductive. La restriction du foncteur de Ducloux à 2t,(h) 

est exacte. 

Démonstration : On peut supposer que k est algébriquement clos. Je vais 

d'abord montrer que 31(h) est une sous-catégorie abélienne de cA5(h) . Soit 

V : E > E' un morphisme de Il (h)-modules entre deux modules E , E1 € 3i(h) . 
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Soient X et Y le noyau et le conoyau de V . Il s'agit de prouver que 

1 on a X € &(h) et Y € &(h) . 

On notera que, pour tout A. € h* , on a fi 0 . On suppose d'abord 

que l'on a X £ P , et soit h e v y • Le diagramme commutatif 

0 • X • E y Ef y Y y 0 

S S 

0 y X y E y E' y Y y 0 

où les flèches verticales sont les multiplications par (h-A.(h)) prouve 

que (h-X(h)) est un isomorphisme sur X et sur Y . On en déduit les as­

sertions (b)(c)(d) lorsque X £ P . 

Lorsque X € P , on déduit les assertions du fait que l'on peut écrire 

E et E' comme somme directe du noyau de (h-A(h)) et de son image, et 

que (h-X(h)) est bijectif sur KgW et KE,(X) , pour tout h € 

Il est clair que &(h) est stable par limite inductive. Enfin, pour 

tout h 6 ^ , et tout E € £k,(h) , le morphisme naturel Ê  • E/(h-X(h))E 

est un isomorphisme. Donc est exact sur 3L(h) . C.Q.F.D. 

Pour tout M íf(8) , je pose F*M - 0 F*M . Lorsque M est de dimen­

sion finie, on a aussi F*M « lim D M , limite calculée dans fé(ff) • Cette 
Y W 

formule implique aussitôt le lemme suivant : 

Lemme 108 : Pour tout M € g(B) , on a F*M G &(h) . Corollairement F* est 

un ô-foncteur. 

Soit 6. (g) (¡3. (g)) la catégorie des U(g)-modules integrables, int mt ^ 
U(h)-semi-simples à poids entiers, et UÇb) (respectivement U(b~)) loca­

lement finis. 
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Lemme 109 : La structure naturelle de UÇb)-module à droite sur D k[B] et 

F* k[B] se prolonge naturellement en une structure de tL(j>)-module. Comme 

U(g)- module à droite, on a F* k[B] € ̂ intQ|) • En outre> on a 

F* k[B] € ^£nt(ê) comme lL(g)-module à gauche. 

Démonstration : Pour tout w G W , on a D k[B] = k[B(w)] . Donc il existe w 
un isomorphisme naturel (sorte d'inversion) 

CÙ : D k[B] • D k[B] 

qui échange les structures de hj-modules à droite et à gauche. On obtient 

donc un isomorphisme naturel 

CÙ : D k[B] • D k[B] 

qui échange de même les structures gauches et droites. Par le lemme 106, 

D k[B] est naturellement un U(j|)-module à gauche. Ainsi D k[B] est na­

turellement un Zl(g)-module à droite. 

Soit M € ÍÍ(B) un £¿(b)-module de dimension finie. La proposition 5, 

passée à la limite projective, donne une longue suite exacte, pour tout 

i € {l , . . . , N} 

. . . > / M ^F^D1 M >/+1D M • F£+1 M • . . . 
s. s. 

Lorsque M décrit l'ensemble des ll(_b)-sous-module s de dimension finie 

de k[B] , le fait que Dg\ commute à la limite inductive implique que l'on a 

F* k[B] ex F* k[Pi] 

car on a Dĝ  k[B] « 0 . Or k[P.J est naturellement un 1Z(JK)-module inte­

grable à droite. Comme F* commute à la limite inductive, la structure natu­

relle de lt(b)-module à droite sur F* k[B] se prolonge en une structure de 

ti(£^)-module integrable. Par recollement et intêgrabilité, on obtient que 

F* k[B] est naturellement un ti(j|)-module integrable à droite. 
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Enfin, on a F* ^ ̂  ^nt^-Sj pour tout module M de dimension finie, 

donc également pour tout module. Donc F* k[Bj est un -̂module à gauche 

dans CD. Ag) . C.Q.F.D. 
me 

Soit G le groupe (discret) de Kac-Moody. Suivant la construction de 

Tits, on a par définition \p9] 

G = lim̂  B.(w) 

(suivant les définitions du chap. XI). Le groupe considéré ici est aussi le 

même que celui construit par Kac et Peterson[4°J , au sous-groupe de Cartan 

H près. Par exemple le groupe G construit ici n'opère que sur les modules 

integrables L(A) avec AiEP (puisque l'on a choisi ici un réseau des poids 

entiers). 

Suivant les notations usuelles, G contient un "groupe de Borel" .B , 

et un "groupe de Borel opposé" B_ (toutes ces notions étant prises au sens 

discret). 

Pour tout Í€^1,...,NJ- , on a un morphisme de groupe discret 

A (̂k) >G , où A (̂k) désigne le groupe des K-points de Â  . On notera 

que Â  est un groupe algébrique. Suivant Kac et Peterson, ^3ÀJ on définit 

l'ensemble k̂ jV) des fonctions faiblement régulières de G comme suit. 

Une fonction \p : G > k appartient à k̂ [Ĝ J si et seulement si pour toute 

famille i^,...,in finie d'éléments de £I, . . . ,NJ la fonction 

A. (k) x . . . x A. (k) » k 
1 n 

(a1,....an)-»ip(a1...an) 
est la restriction d'une fonction régulière de A. x . . . x A. (et ce, de 

1 n 
manière unique, car il est clair que A. (k) x .. . x A. (k) est dense dans 

11 1n 
Axi, x . . . x A. ) . 

On pose £ = (B,B) , U = ( B , B ) . L'anneau kffGj est un G x G-module. 
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Soit L et R les actions de G sur cet anneau. 

Suivant Kac et Peterson J34] , on appelle anneau des fonctions fortement régu­

lières le sous-anneau de k̂ [G] des fonctions cp € k̂ [G] tel qu'il existe 

un entier n tel que l'on ait 

L(u~) R(u) tp - cp 

pour tout u~ € #n U~ , u € U ('&* désigne la série centrale descendan­

te). On note cet anneau k_[G] . 

Lemme 110 : On a un isomorphisme naturel 

F k[B] « kp[G] . 

Démonstration : On a, pour tout w € W , D k[B] = T(B(w) , 6D/ N) . Par pas-

sage à la limite projective, on en déduit une application D k[B] • k̂ [G] , 

qui est injective par le lemme 6*J. 

Par restriction, on en déduit une application injective F k[B] • k̂ [G] , 

qui par le lemme 109 donne une application naturelle F k[B] —• k̂ tG] . Par 

construction, la restriction d'un élément i|» € k [G] à B détermine un élé-

ment de k[B] . Le diagramme obtenu 

F k[B] • kp[G] 

it 
k[B] 

est commutâtif. 

Par propriété universelle du foncteur D , on obtient un morphisme 

k_,[G] > D k[B] . Soient tp € k„[G] , et V = li(n") . tp . Par construction, 

on a dim V < » . Soit V = U(g) . tp . On a Tt(V') = Ti(U(b) . V) - U(b) Tt(V) , 

donc on a dim Tt(V') < <» . Donc le morphisme kp[G] • D(k[B]) factorise à 

travers F k[B] , et donc à travers F k[B] . 

Ainsi le morphisme F k[B] • k̂ lG] est un isomorphisme. C.Q.F.D. 
F 
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On verra dans le dernier paragraphe de ce chapitre que le morphisme 

D k[B] • k̂ [G] construit dans la démonstration nfest pas un isomorphisme. 

Lemme 111 : On suppose construite une réalisation de F . Soit M € &(6) . 

Alors la suite spectrale E(M) du lemme 79 dont le terme E2(M) est 

H*(b,h,F* k[B] ® M) , induit une suite de complexes Ê2(M),Ê3(M)... (chacun 

de ces complexes étant 1'nomologie du précédent) qui convergent vers une fil-

tration convenable de FM , et tels que Ê2 (M) = H*(b»h,F* k[B] ® M) . 

Démonstration : Les différentielles da , d3 .. . des complexes Ea(M),E3(M) .. . 

commutent aux actions de _b . On pose donc pour chaque entier r > 2 

E (M) = r, E (M) . r ' h r 
Par le lemme 108, on a E2(M) G &(h) . Donc par le lemme 107, on a 

Ê (M) € 3&(h) pour tout entier r > 2 , et le morphisme naturel 

h* E (M) • E . (M) 
r r+1 

est un isomorphisme. Ceci prouve le lemme. 

On va montrer comment l'existence d'une réalisation implique dans cer­

tains cas un résultat de nullité. On constatera que dans le cas où A est 

symétrisable, ceci conduit à une démonstration simple du résultat de nullité 

du §5 (la première réalisation de F étant purement formelle). 

Lemme 112 : On suppose construite une réalisation de F , et A symétrisable. 

Alors on a F k[B] = 0 , pour tout entier L > 0 . 

Démonstration : Soit A un poids dominant. Pour chaque entier Z , le théo­

rème de semi-simplicité de la catégorie ^nt(j*) (théorème de Deodhar, Gabber 

et Kac [II]) et le lemme 109 impliquent que F̂  k[B] est somme directe de mo­

dules L(A.) comme module à droite ( X dominant). La formule de Kostant (due 
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à H. Garland et J. Lepowsky [|6] dans le cas présent) implique donc que l'on 

Hq(b,h,F^ k[B] ®k_A) Œ 0 , 

pour tout entier q ï 0 • 

Ainsi la suite spectrale E(k_̂ ) dégénère et l'on a 

F*(k_A) = H°(b,F* k[B] ®k-A) . 

Par le lemme 95, on a F̂ (k_A) « 0 pour t £ 0 . Donc une nouvelle applica­

tion de l'intégrabilité du module à droite F̂  k[B] implique que l'on a 

j / k[B] = 0 pour l + 0 . 

§ 2. La réalisation de F 

Lemme 113 : L'espace topologique (G/B,<T ) est noethérien (i.e. tout ouvert m 
est quasi-compact). 

Le lemme 113 est évident. Soit X un espace topologique. On rappelle 

que C(X) (la catégorie des complexes de faisceaux indexés par U ) est une 

catégorie abélienne, ayant suffisamment d'injectifs. Si S**83 <Fo • *K| • .. 

est un élément de C(X) , on rappelle que RT(X,îK) n'est autre que la famili 

des foncteurs dérivés du foncteur covariant exact à gauche 

• [le noyau de #0(X) • JE, (X) ] . 

On généralise sans difficulté à 1'hypercohomologie le théorème 4.12.1 [40], 

à savoir : sur un espace noethérien, 1'hypercohomologie commute à la limite 

inductive. On obtient donc la proposition suivante. 

Proposition 11 : Le triplet (G(G/B,̂ f ) , C'( t«f) , R ) est une 

réalisation du <5"-foncteur F . 
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Proposition 12 : On suppose ^ symmétrisable. Alors pour tout M£^(b), 

on a des isomorphismes 

F* MCI©A€P+ L(A)* ® H*(£,h,L(A) (g) M) 

F* M = ©AeP^ L*(A)® H*(b,h,L(A) ® M) . 

Le morphisme naturel TT s F M M̂ est alors donné par la formule 

suivante : si •£ § j ® m j est un élément de H°(b,L(A) ® M) (où 5j£L(A), 

m̂ 6M pour tout indice j ) pour un certain A *5p+ , et si T)é£L(A) , on a 

T (n "•Zij ®m.) = 2 <-n I % .>mj . 

Démonstration : Soit T* le foncteur ¿ (̂b) > Ab défini par la formule 

T* M = © L(A)* ® H*(b,h,L(A) g>M) P°ur tout Me{f(b) . La formule de 
A£P 

la proposition définit un morphisme naturel de foncteur T° Id . 

Comme pour tout M£^b) , T° M est integrable, on en déduit par réccurence 

sur w un morphisme T° ^ D̂  , pour tout w W . On a donc un morphisme 

naturel T°—^ D , qui factorise clairement en un morphisme T° > F° . 

Il est clair que ce morphisme est un isomorphisme. 

Par le lemme 112, le foncteur F* est homologique, et par construction 

T* l'est aussi. 

On a donc : T* = F* . La formule de F* s'en déduit aussitôt. 

§3. Une version faible du théorème de Peter-Weyl : 

Dans ce paragraphe, on suppose que A est un produit de matrices de 

Cartan indécomposables, toutes de type infini. L'ensemble P+ est dénombrable, et 

l'on peut alors écrire P+ = (^fiA A A • • •} > tels que pour tout couple 
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d'entiers i , j on ait ^ =Ф i < j . En effet, dans ce cas, tout élé­
ment Л € P+ s'écrit 

Л = E x̂  CL + U 9 où Xj 6 Q , Xj < 0 et U(hj) - 0 pour tout j . 

Etant donné un module M €0. (G) , on construit sa filtration canoni-

que comme suit: pour tout entier n > 0 , on pose 

&n M = {m € M , H°(b-,U(b-) . m ® кд ) = 0 , pour tout i < n} , 
i 

de sorte que, pour tout n , 6n M est un К.(ф)-sous-module de M , et l'on 
a ên+i M c: &n M . En outre, pour tout couple d'entiers n £ m , on a une suite 

exacte 
(*) 0 > н°(£~^ M) > HO<B"»̂  M> > H°(B~»̂ n M/% M) > 0 • 

Lemme 1llp : Soit M € ^nt(^) • Pour tout entier j > 0 , je pose 
dj (M) = dim H°(b~,M® кд ) . On suppose d̂  (M) < oo pour tout entier j > 0 . 
Alors on a dim < «> pour tout X , et 

со 
ch(M) < 2 d.(M) ch L*(A.) . 

j=0 J J 
On a en outre égalité dès que ^» satisfait S . 

Démonstration : En utilisant la suite exacte (*), il vient que le seul poids 

de H°(n~,Én M/én+1 M) est - Лп , avec la multiplicité dn(M) (pour tout 
n € Ж ) . Donc &n M/6h+i M est un sous-module de dn(M) copie de L*(An) , 
avec égalité lorsque L*(An) est simple. On a donc 

со 
ch(M) = 2 ch(£n M/ffn+1 M) n=0 

со 
< 2 dn(M) ch L*(An) , n=0 
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avec égalité dès que satisfait E . En particulier dim < °o pour 

tout À . 

Proposition 13 : Les multiplicités du h x h-module k[G] sont finies, et 

l'on a 

ch k_[G] <> S ch(L*(A) ® L(A)) . 
F AGP4" 

Lorsque ĵ L satisfait E , on a égalité. 

Démonstration : On a H°(b,k[G] ®k 4) = L* (A.) • par le lemme 110, et on a -A 
donc 

H°(n- x n+ , kp[G]) = e (k_A ® kA) . 

La proposition 16 résulte alors du lemme 123, appliquée à l'algèbre de Lie 

jÇ.xĵ . avec pour sous-algèbre "nilpotente" n~ x n+ . 

§ 4« Remarque : Dans cette remarque, on suppose A arbitraire. 

1) Kac et Peterson ont montré que lorsque g est symétrisable, on a 

k_[G] = ©L*(A) ®L(A) [34]. Leur démonstration s'étend facilement au cas où 

g satisfait E (car le théorème de semi-simplicité de 0£nt^) vaut aussi 

dans ce cas). 

2) On dit que l'algèbre de Kac-Moody g est simple au sens de Gabber et 

Kac si l'on a H°(n+,(p fl n" = 0 [15]. Gabber et Kac ont montré que tel était 

le cas quand g est symétrisable. On a aussi 

Lemme 115 : Si g satisfait E , g est simple au sens de Gabber et Kac. 

Démonstration : Soit g G H°(n+,̂ ) fin" . On peut supposer £ homogène de 

poids - E n̂  CL . On choisit un poids dominant A avec A(tu) > n̂  , pour 

tout i . Soit v € L(A)A - {0} . On a n+ g . v « 0 , donc 
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N = ÏWj) g . v = U(b~) . gv satisfait • 0 . Comme L(A) est simple, on 

a donc g . v = 0 , i.e. g € 2 U(n") f^^hi) + 1 . Pour des raisons de poids, 

on a g « 0 . C.Q.F.D. 

3) Je profite de cette remarque pour donner une seconde démonstration 

simple du théorème de Gabber et Kac, démonstration que je n'ai jamais publiée 

[44], et qui a également été trouvée indépendamment par A. Fialovski. 

Soit m = ©m une algèbre de Lie positivement graduée, engendrée par 
~ n>0 ~ri 

le sous-espace vectoriel . Soit k l'algèbre de Lie libre engendrée par 

l'espace vectoriel m-i , et soit v_ le noyau du morphisme naturel k • m , 

On notera que £ et k sont naturellement des algèbres de Lie graduées. 

Lemme 1|6 : On a un isomorphisme naturel d'espace vectoriel gradué 

r / [k, r ] s* H2 (m) . 

Démonstration : On utilise la suite à 5 termes d'Hochschild - Serre [30] 

H2(k) • Ha (m) • Ho(m,Hn(r)) > H, (k) • H-, (m) • 0 . 

Par hypothèse, le morphisme H., (k) • (m) est un isomorphisme, et 

k étant libre, on a H2(k) = 0 . Enfin, un calcul simple prouve que l'on a 

HoCm^Cr)) c* r / [k,r] . 

On en déduit alors le lemme suivant. 

Lemme U7 : 1) Soit A £ P+ . On a Hi (n ,L(A)) - ®k /AJ_ N . Soit 

Lm (̂A) l'unique quotient simple de L(A) . Si ^min^) satisfait la même 

formule, on a L(A) - L . (A) . 
rm n 

2) On a H„(n") © k , pour £ « 0 , 1 ou 2 . Soit XL . 

l'algèbre de Kac-Moody minimale [33]. Si l'image n". de n dans fL_. 
—mm — "̂ niin 
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satisfait la même formule, on a ^ $min 

4) La même méthode s'applique à l'algèbre W-t [33], [44]. Cette algèbre 
a pour base {en , n > -1} avec pour crochet de Lie [e , e ] « (m - n)e . n+m 

Soit m la sous-algèbre de Wi : m = ® k en (pour n £ l ). Le groupe H2(m) 

a été calculé par L. Goncarova [|#], et l'on a 

Lemme lIS : L'algèbre de Lie m est l'algèbre de Lie engendrée par 2 éléments 

ei , e2 soumis aux relations 

ad3(ei)(e2) = -6 ad2(e2)(ei) 

ad5(ei)(e2) = -60 ad3(e2)(e1) . 

5) De l'existence de réalisation vient la suite spectrale 

H*(b,h,F* k[B] ® ) F* . 

Il est aisé de montrer que cette suite spectrale ne dépend pas de l'une des 

deux réalisations choisies (par le lemme 122). Lorsque A est produit de 

matrices indécomposables de type infini, on aimerait déduire la formule 

2(-l)£ ch ^ k[B] = S ch(L*(A) ® L(A)) . 
A£P+ 

Malheureusement, il n'est pas clair que le terme de gauche soit défini. 

§ 5 . Comparaison avec la construction de Kac et Peterson 

Dans ce paragraphe, je vais montrer que les constructions déduites de 

celles de Kac et Peterson sont strictement différentes de celles construites 

ici. Ceci indique que les constructions ensemblistes des faisceaux £ , repré­

sentant le faisceau des fonctions sur le groupe de Kac-Moody satisfaisant une 

certaine propriété d'invariance, ne coïncident avec la construction adoptée 

ici que dans le cas de données associées aux algèbres de dimension finie. 
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Soient w € W , et s. . . . s . une décomposition réduite de w . Pour 
L1 hi 

tout système d'indice a = (dj .. . a^) , je note l'espace topologique 

B (k) x . . . x B (k) (avec la topologie induite de la topologie Zarisky). 
al °4n 

Soit cp : ji(w) • k une fonction (respectivement U une partie de B>(w) ) . 

Je dis que cp est faiblement régulière (respectivement que U est ouvert) 

si, pour tout famille ao ... Qn de systèmes d'indice cp o j (respectivement 

j_1U ) est régulière (respectivement un ouvert) dans X , où 

X = B (k) x A. (k) x . . . x A. (k) x B (k) , et où j est l'application na-

turelle j : X • B(w) . L'anneau des fonctions faiblement régulières de 

JJ(w) est noté k^[B(w)] . On vérifie aisément qu'il ne dépend pas de la décom­

position choisie pour w . 

On a un morphisme naturel k̂ [G] > k^[B(w)] . On note kF[B(w),G] son 

image. On a un morphisme naturel k [G] * k[B(w)] . On note k_[B(w)] son 

image. On a donc les inclusions suivantes entre anneaux 

kF[B(w)] c k[B(w)] c kF[B(w),G] c kF[B(w)] . 

Je pose k[G] = D k[B] . On a aussi 

k [G] c k[G] c kf [G] . 

J'appellerai dans la suite k_[B(w)] (respectivement k_[B(w)] ) anneau 

des fonctions fortement régulières (respectivement faiblement régulières) au 

sens de Kac et Peterson. 

Proposition \k : On suppose ^ de dimension infinie. Alors, pour tout w € W, 

on a k_,[B(w)] + k[B(w)] et k[B(w)] + kR[B(w),G] . On a aussi kjG] 4 k[G] 

et k[G] * kf[G] . 

Démonstration : l) Je vais indiquer la démonstration du fait que l'on a 

kT,[B(w)] 4 k[B(w)] et k_[G] j k[G] , la démonstration des autres assertions 

étant montrées au point 2. 
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Soit A un poids dominant et régulier. Dans la suite de la démonstration, 
on ne considère que les structures de module à gauche. On a k [G] = 0 , car 

0^ est supposée de dimension infinie. On a donc kptjKw)]̂  - 0 . Par ailleurs, 

l'application k[B(w)] • k[B] est surjective. On a donc k[B(w)]̂  ^ 0 , 

Comme les différentes applications k[B(u)] • k[B(v)] sont surjectives, on 

a aussi k[G]̂  4 0 . Ainsi on a 

kF[G] t k[G] , 

kF[B(w)] 4 k[B(w)] . 

2) On fixe A un point dominant entier régulier (ou plus faiblement tel 

que L(A) soit de dimension infinie). On pose Y = ̂ j(k) x ... x A^k) , et 

pour tout entier m:X = Y x .. . x Y (m facteurs).Soit v un vecteur m 
non nul de L (A) z• 0n a une application naturelle j : X̂  • G . On montre 

facilement que, pour tout entier m> 0 , l'espace vectoriel EM c: L* (A) en­

gendré par j(X )̂ . v est de dimension finie. Il est clair que, pour tout 

entier m, on a E ^ E . .On peut donc choisir un élément E de L(A) , ' m m+1 r m 
qui soit h-propre, et tel que l'on ait 

<£ | E > = 0 m 1 m 

<E I E .> 4 0 , pour tout m £ 0 . m 1 m+1 

On a donc, pour tout g € G : <F̂  | gv> = 0 , pour m grand. 

La fonction O : G • k , définie par la formule 
oo 

O(g) = 2 <E | gv> 
m=0 m 

est bien définie, et elle est faiblement régulière. On a donc d € kf[G] . 

Soit r\ la restriction de d à B(l) . Il est clair que r) n'est pas 

U(b)-finie pour l'action à gauche. On a donc n € kf[B(l),G] v k[B] . Ceci 

prouve que l'on a O t k[G] . Ainsi on a 

k[G] 4 kf[G] 
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k[B(w)] * kf [B(W),G] . C.Q.F.D 

§6. Groupes de Picard de G/B 

Lemme 119 : On suppose G de dimension infinie. Alors tout ouvert non 

vide de G/B contient un ensemble discret infini. En particulier G/B 

n'est pas un schéma. 

Démonstration : Soit w0£.W tel que U S soit non vide. Par le lemme o n WQ 
11, il existe une suite infinie |wnj d'éléments de W avec w0<w <̂... . 

Je choisis pour tout entier n>0 un point P £(U S ) \ (U S ) . r r n n w n W -f i n n-1 
L'ensemble \P , n>0? est discret et infini. 

Donc U n'est pas quasi-compact, et en particulier n'est pas le spectre 

d'un anneau. Donc G/B n'est pas un schéma. 

Puisque G/B n'est pas un schéma, je dois préciser la définition de 

son groupe de Picard Pic G/B : c'est le groupe des classes d1isomorphies 

de É?ç̂ g-modules localement libre de rang un. Lorsque 0^ est de dimension 

finie, on a K(P) = 0 et il est connu que le morphisme P > Pic G/B est 

un isomorphisme. Je vais généraliser ce fait. 

Proposition 15 : Pour tout y E p L l(Y) est un module de C/, , -module ^ w B 
localement libre de rang un. De plus<*é(̂ ) est isomorphe à ^ç/g dès que 

A appartient à K(P) . Le morphisme P/K(P)—>T?CG/B ainsi déduit est un 

isomorphisme. 

Démonstration : 1) Je vais d'abord prouver que les faisceaux de ^^g-modules 

L(y) sont localement libres. Il est clair qu'il suffit de le prouver 

lorsque *\ est antidominant. Soit CT £ L(-£)* . Pour tout w£W , soient 

(T la restriction de Q à S , D (<f) l'ouvert de S où CT + 0 w w w w w 
et D(<T) = U D (CT*) . Par construction (f est un générateur du faisceau w€ w w 
inversible j** ĵ(̂ ) sur D (çf) , donc <f engendre le faisceau de w/\> w ~ 
Ĉ ç̂ g-moduleŝ CX) sur l'ouvert D«T) . En particulier^^C^) j Ds est 
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libre, l'assertion résulte du fait que les ouverts D<P*) L(-^)*-£oj ) 

formentun recouvrement de G/B . En outre, lorsque % £LK(P) et <$ fi 0 , 

on a D(&) — G/B . Donc est alors isomorphe à (^/B • 

2) Soit &ô un faisceau localement libre de rang un sur G/B . On 

fixe un élément de w£.W tel que l'on ait w >Si pour tout i£ jl,. . .Nj 

(par exemple on choisira l'élément de Coxeter w =js^...s \ ). Par la 

proposition 6, il existe tel que l'on ait j*^^52^^^) • Donc 

quitte à remplacer à& par ^(£)*(j(-X) , on peut supposer que l'on a 

2*^3= , Soit u£W , u • Par la proposition 6 l'application 

Pic (S ) àPic (S ) est un isomorphisme. Donc on aura aussi i**^ = 

Comme est localement libre de rang un, on a ^ — Lini_ j * donc on a 

T (G/B X ) = Urn I (Sv,j*«#) = k . Soit ^.^(G/B , a ) )-(0| . 

Il est clair que G* induit un isomorphisme ^ ç / g — e t ceci prouve la 

proposition. 
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XVII Dualité des foncteurs de Joseph et algèbres de Lie affines 

§ 1. Non lissité des variétés générales de Schubert 

Pour éviter des énoncés techniques, je n'étudierai que les variétés de 

Schubert "boréliennes" *S • Je simplifie ies notations du chapitre XII en 
w 

posant, pour tout w Wr 

S(w) • Ŝ (w) ( S(w) est dit support de w ) 

l̂ w) - l̂ (w) ( iy pour voisin) . 

Je dis que le groupe W est libre si l'on a 

aij aji ~ 4 * p0Ur t0US e ^ N * * 

Lorsque cette hypothèse est satisfaite, W est le groupe engendré par 

les éléments s. satisfaisant aux seules relations s? • 1 . Dans ce cas, î î ' 
un élément w € W est dit spécial s'il est de longueur ^ 1 , ou s'il satis­

fait la condition suivante, à une permutation des indices {1 , ... , N} près 

(a) Il existe un entier n > 2 tel que S(w) - {1,2 ... n} . 

(b) Il existe une fonction (p : {2 , ... n} • {1 . . . . . . N} telle que 

l'on ait 

(b.,) cp(i) < i pour 2 < i < n . 

(b2) cp(i) € {i - 1 ,cp(i- 1)} pour 3 < i < n . 

(b3) On a w = ... w2 où € W(i,cp(i)) pour 2 < i < n , 
n 

£(w) = S £(w.) et s« w. < w. , pour 2 < i < n - 1 , où £ - <p(i + 1) . j=2 J £ 1 1 
Dans la définition précédente W(i,(p(i)) désigne le sous-groupe de W 

engendré par s. et s ,.x . 
i cp(i) 

Lemme 120 : On suppose que W est libre. Soit w € W . Alors les deux asser­

tions suivantes sont équivalentes. 
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(a) On a # IXw) = #S(w) ; 

(b) w est produit d'éléments spéciaux à support disjoint, i.e. on peut 

écrire w - CÛJ . . . Cûm , où Û)J , .. . , G) sont spéciaux et S (cô ) 0 S(co.) = 0 
si i ^ j (et ceci implique que l'on a £(w) = 2 £(co. ) . 

i=l 1 

Démonstration : 1) On va d'abord montrer que l'assertion (b) implique l'asser­

tion (a). On fixe donc w satisfaisant (b). Il est clair que l'on a 

l̂ (w) - U 03. . . . 0). . 1?{CD. ) CO. . . . . G) . 
v i=l 1 i-l v i i+l m 

Comme on a # l̂ (v) ^ # S (v) pour tout v € W (remarque finale du chapi­

tre 12), il suffit de montrer que si w est spécial, on a # U(w) - # S (w) . 

On peut en outre supposer que l'on a £(w) ^ 2 . On peut donc écrire 

w = . . . W2 comme dans la définition précédente. Il existe aussi deux en­

tiers Z , V , et deux éléments u , v G W tels que l'on ait w « ŝ u = vs^, 

Je dis que l̂ (w) est constitué des éléments suivants : u , v , w . .. w j+1. . 

S<P(j + 0 Wj " * " W2 * Pour n - 1 > j > 2 . En effet pour tout j , w.. est un 

élément du type sa s£ sa • • • â ^ ^ {1,...N} . Donc lorsqu'on enlève une ré­

flexion élémentaire dans la décomposition réduite de w , cette réflexion 

étant à l'intérieur de l'un des , le nouveau mot obtenu n'est pas réduit. 

En outre, soit j avec n - 1 < j < 2 . On a alors 

wj= w o ••• 

V l = Scp(j + 1) Sj + 1 • 

Donc lorsqu'on enlève la réflexion sj+j dans la décomposition w 

(cette réflexion étant la réflexion la plus à droite dans wj+j )* -*-e nouveau 

mot obtenu n'est pas réduit. Donc les seules possibilités pour obtenir une dé­

composition réduite de longueur £(w) - 1 est de supprimer la première ré­

flexion de l'un des Wj , ou la dernière de w2. Ceci montre l'assertion, et 

prouve que l'on a # c*(w) <* n , ce qui prouve que (b) implique (a). 
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2) On va prouver la réciproque, par récurrence sur £(w) . On peut évi­

demment supposer que lTon a £(w) > 2 . Il existe deux entiers i , j tels 

que l'on ait w = ŝ ŝ w' , pour un certain w' € W , avec £(w) = -c(w') +2 . 

Je pose alors w - uv , où u et v sont les éléments de W uniquement dé­

terminés par les relations 

£(w) = l(u) + l(v) 

u € W(i,j) 

S.V > V , S.V > V . 
1 J 

On considère alors deux cas. On pose w" = s.w' . 

3) On suppose d'abord que l'on a £(u) > 3 . On a tf-(w) cz s/ïr(w") U {wM} . 

On a w' € 75-(w") , et par hypothèse on a ŝ w' ^ w' . Donc on a 

£(s^w') < £(w) - 1 . Par ailleurs, comme W est libre, on a ŝ x > x pour 

tout x € W ) , x fi w' . On a donc V(w) = s.^w") - {w'} ) U {w"} . Par 

hypothèse, on a i € S(w") . On a donc S(w") = S(w) , d'où on a 

#S(w") = # S(w) 

= # tt(w) 

= # V(w") . 

Par hypothèse de récurrence, w" satisfait (b). Comme £(u) est plus grand 

que 3 , on a aussi w" = s^s^u' , pour un certain u' € W , avec 

£(u') = £(w") - 2 . Il est alors clair que w = ŝ w" satisfait aussi l'asser­

tion (b) . 

4) On suppose que l'on a £(u) < 2 , i.e. £(u) s 2 , On a donc s ai > u , 

donc pour tout x G V(w") , on a ŝ x > x . On a donc 

7T(w) = s/Ww") U {w"} , 

et donc on a 
#tf(w") = #tf(w) - 1 

= #S(w) - 1 . 
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Par ailleurs, on a 

#S(w) - 1 < #S(w") < #0Xwn) . 

On a donc 

#S(w") = #S(w) - 1 . 

Donc par hypothèse de récurrence w" est produit d'éléments spéciaux de sup­

ports disjoints, soit w" = û). .. . com 9 , et on a w - s.co, . . . CÙ , et i n'ap-

partient à aucun des supports des éléments co. . Ceci démontre le lemme. 

Proposition 16 : On suppose que W est libre. Soit w € W . Alors pour que les 

groupes Pic(S ) et Cl(S ) aient même rang, il est nécessaire et suffisant w w 
que w soit produit d'éléments spéciaux de support disjoint, (cf. aussi [45]). 

Démonstration : Par le chapitre XII, # 17(w) et #S(w) sont respectivement 

les rangs du groupe de Picard et du groupe des classes. Donc la proposition 

résulte du lemme 120. On utilisera le lemme suivant, bien connu pour g de 

dimension finie. 

Lemme 121 : Soient w G W , w( une décomposition réduite de w . Alors le 

morphisme D(w) • Ŝ  est un isomorphisme si et seulement si on a 

IW - #S(w) . 

Démonstration : Les variétés D(w) , Ŝ  sont normales, et le morphisme 

D(w) —-* S est birationnel. Donc (en utilisant par exemple le théorème prin-w 
cipal de Zarisky), il suffit de montrer que D(w) • Ŝ  est bijectif si et 

seulement si l (w) 85 #S(w) . Si on a l (w) a #S(w) , la bijectivité est 

claire. Si on a £(w) > #S(w) , il existe des éléments v G W , v G W , 

i G {1 , . . . N) avec v < w , v < w , si v n'est pas réduit, et v est une 

décomposition réduite de v avec v > Ŝ  . Alors l'image réciproque de Sg< 
contient (au moins) une variété de dimension deux P̂  x P̂ /B , ce qui montre 
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le lemme. 

Remarque : A. Arabia et M. Vergne ont posé la question suivante. Etant donnée 

une variété de Schubert S , existe-t-il une variété de Schubert lisse S avec 

S c S ? (J'emploie ici une notation différente de ce qui précédait, parce que 

ici j'ai appelé variétés de Schubert des objets (a ptvlotû,) différents de ceux 

considérés usuellement. Ici, une variété de Schubert est la normalisation des 

variétés obtenues dans les représentations.) La proposition l6 fournit une 

quantité de contrexemples. On suppose par exemple W libre, et j | de rang 

> 3 . Soit w = s1s2s3s1 . Alors w n'est inférieur à aucun des éléments sa­

tisfaisant aux conclusions du lemme l6. Donc Ŝ  n'est jamais plongée dans 

une variété de Schubert lisse. On a ainsi un premier invariant e : W * ]N 

défini par e(w) = # V(w) - #S(w) , et l'on a : Ŝ  est non lisse dès que 

e(w) est non nul. 

Je vais définir un second invariant Vol comme suit. Soit w € W . On a 

une application div : Pic(S )̂ • Ĉ ŜŴ  * Le 8rouPe de torsion du conoyau 

Tor Coker div est fini. Je pose 

Vol(w) = # Tor Coker div . 

Donc l'application div est un isomorphisme si et seulement si on a 

e(w) =0 et Vol(w) = 0 . J'appelle affine factoriel tout schéma affine X 

dont l'anneau associé r(X,6 )̂ est factoriel. Je dis qu'un schéma Y est lo­

calement factoriel s'il possède un recouvrement affine factoriel (je m'écarte 

ici de la terminologie usuelle). Il est facile de montrer que pour tout 

w € W , on a Vol(w) =0 et e(w) = 0 , si et seulement si Sw est locale-

ment factorielle. Il est clair aussi que si Ŝ  est lisse, on a Vol(w) = 0 

et e(w) = 0 . 

Avant d'utiliser le second invariant Vol pour trouver des variétés de 

Schubert non lisses, je vais donner des exemples où cet invariant est nul. On 
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rappelle qu'étant donnée une variété X , je note Sing X son lieu singulier. 

Lemme 122. : Soient w € W , i € {1 , . . . , N) . Je suppose que l'on a s.w > w , 
et que Sing S fl S est de codimension > 2 dans S . Alors on a SjW w w 
Vol^w) < Vol(w) . 

Démonstration : Par hypothèse sur le lieu singulier de S , on peut (notant 
i : S • S l'inclusion naturelle) définir de manière naturelle une ap-

w sjw v 

plication i*:Cl(S ) • Cl(S ) rendant commutatif le diagramme 

Pic(S i* Pic (S) 

div div 

Cl (S s i w 

i* C1(S ) . 

On considère alors deux cas. 

(1) On suppose d'abord que l'on a i £ S(w) . Dans ce cas, l'application 

i* : Pic(Sg ^) • Pic(S^) est un isomorphisme. Comme les groupes des classes 

sont libres (chapitre XII), on en déduit que i* induit un morphisme injec-

tif sur les groupes de torsion des conoyaux des applications div . Donc on a 

Vol(SjW) divise Vol(w) 

et en particulier, on a Vol(ŝ w) < Vol(w) . 

(2) On considère ensuite le cas où l'on a i 4 S(w) . Il vient alors que 

le morphisme naturel P. x S • SSjWest un isomorphisme. En outre, par 

le lemme 76, on a div(i?s W(P^)) = [Sw] . On applique le lemme 75-4, et la 

proposition 6. On a donc des suites exactes 

0 7L Pic(S 
s;w 

i* Pic(S ) 0 

div div 

0 7L [SW] Cl (S 
s1w 

i* Cl (S ) 0 , 
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où l'application TL > Pic(S ) est donnée par la formule n • «Cs.w î (np.) , 
l'application 2Z »Z[Sgw] par la formule n • n[Ss>w] ' Par *e êmme û 

serpent, les conoyaux des morphismes div sont égaux. Dans ce cas, on a donc 

Vol(ŝ w) = Vol(w) , ce qui implique également l'assertion du lemme. 

Proposition 17 : Soit w € W . On suppose que l'une ou l'autre des assertions 

suivantes est satisfaite 

(a) On a a^a^ < 1 , pour tout couple d'entiers i fi j , 

(b) W est libre, w - s. . . . s. avec £(w) - n , et l'on a i. fi i. 0 , 

pour tout j avec 1 < j < n - 2 . 

Alors on a Vol(w) = 0 . 

Démonstration : 1) On pose w = ŝ v , avec £(w) - £(v) + 1 . On effectue la 

démonstration par récurrence sur £(w) . On note que si w satisfait (a) ou 

(b), il en est de même de v . Donc on peut supposer que l'on a Vol(v) = 0 , 

Par le lemme précédent, il suffit de prouver que Sing Sw fl est de codi-
mension 2 dans S , Or Sing S est stable par P. . Donc il suffit de v ô w ^ 1 
prouver que si l'on fixe u G W avec u < v , ŝ u < u , l'une des deux as­

sertions suivantes est réalisée 

(a') £(u) < £(v)-2 ; 

(b') Ŝ  n'est pas contenu dans SingCŜ ) . 

2) On se place dans le cas (a), et on suppose donné un tel u qui sa­

tisfasse £(u) - £(v) - 1 . On a s.u < u , ŝ v > v . Il existe donc 

j G {1 , ...N} tel que l'on ait v = s_.u . Je pose aussi x = ŝ u . On a ainsi 

w = s.s.s.x , et £(w) = £(x) +3 . i j i ' 
Soit G le groupe SL(3) . On notera que l'on a aussi w = ŝ ŝ ŝ x , car on 

a a..a.. = 1 . Donc les actions de P. et de P. sur SI donnent une ac-ij Ji i j w 
tion de G . La grosse orbite de su est incluse dans la G-orbite des points 
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de la grosse orbite de Sw. En particulier, Sing Sw ne contient pas Su , 

ce qui prouve l'assertion (b'). 

3) Dans le cas (b), alors l'assertion (a') est automatiquement réalisée 

pour tous les éléments u€W , u < v , s^u^u . Donc ceci achève la démons­

tration de la proposition. 

On va montrer comment la connaissance du groupe de Picard permet de cal­

culer des dimensions cohomologiques des représentations. 

Lemme 125 : On suppose W libre. Soit w € W , tel que l'on ait 

#"̂ (w) - # S(w) . Soient u , v 6 W tels que w - uv , £(w) - £(u) +£(v) . 

Alors S et S sont localement intersection ensembliste complète dans S 

Démonstration : Je vais montrer le lemme pour Ŝ  , la preuve pour Ŝ  étant 
identique. On pose w = sxl. . . . sxl. v , avec £(w) = n+£(v) . Pour tout entier 

j , on pose x. * s. . . . s . v (1 < j < n + 1) . Par la proposition 1 , on a 

aussi #13ÇXj) = # S(Xj) pour tout j . Donc ceci signifie que pour tout j , 

toute sous-variété de codimension un de S est localement ensemblistement 

intersection complète. En particulier S est localement ensemblistement 
Xj+1 . 

défini par une équation dans SXj . Donc par induction, S est localement 
intersection complète dans Ŝ  . 

Proposition iff : Soient W , w , u , v comme au lemme 123. Soit U le com­
plémentaire dans S de S ou de S , et soit r la codimension du com-

plémentaire de U . On suppose r > 2 . Alors on a Ĥ (U,JC (k[B])) = 0 , pour 
r— 1 ~ l ï 0 , r - 1 , et H (U,JC (k[B])) est un U(b)-modules à gauche de dimen-w — 

s ion cohomologique -c(w) - r . 

Démonstration : Soit Z le complémentaire de U dans Ŝ  . Par le lemme 123, 
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Z est localement ensemblistement intersection complète. On a donc, par la 
formule de Deligne, JĈ (30 = 0 pour Z > r , pour tout faisceau cohérent J** 

[ ]. Donc on a X„(X k[B]) = 0 pour Z fi r , et par le lemme 83, on a 
donc H„(S ,«£ k[B]) = 0 pour Z fi r . Donc utilisant la longue suite exacte, z w w 
on a Ĥ (U,£ (k[B])) = 0 pour ^ 0 , r -1 . w 

Soit G : fe(b) • Ab le ô-foncteur défini par la formule 

G*M = H*(U,£(M)) . La suite spectrale du lemme 79 dégénère. On a donc des 

suites exactes, pour tout entier Z , 

... > H (̂b,h,G°(k[B] ®M)) • G^ > H "̂"r+1(b,h, (Gr_1k[B]) ® 

Comme Z est de codimension > 2 , on a aussi G°k[B] - k[B(w)] . Comme U 

n'est pas complète, on a ĜŴ  = 0 . Par la proposition 7, on a aussi 

Hf+1 Çb,h,G°k[B] ® M) =0 , pour Z > ZM . On a donc 
H£(w)-r+l(^^Gr-lk|-B.| ® M) =0 , pour tout M€ g(b) . Donc le U(b)-module 

à droite G k[B] est de dimension cohomologique < £(w) - r . Par ailleurs, 
il existe M € £(b) tel que l'on ait H (̂w)(s t£ (M)) ^ 0 . On a donc 
H (̂b,h, (G°k[B]) ®M) ^ 0 , et de là H (̂w)"r(b,h,Gr_1k[B] ® M) fi 0 . Donc le 

UÇb)-module à droite G k[B] est de dimension homologique ZM - r dans 

&(b) . Changeant w , u , v en leurs inverses, on échange les structures à 

gauche et à droite. Donc le U(b)-module cr k̂[B] à gauche est de dimension 

cohomologique £(w) - r dans {s(b) . 

§ 2. Dualités des foncteurs de Joseph 

Soit w € W . Je dis que le foncteur D̂  est dualisable, s'il existe 

un poids G) € P , tel que dim ^ ^ k ^ = 1 , et tel que les applications 

D£(M* ® k ) ® D£(w; > D£(w)k 

soient des couplages parfaits pour tout Z G IN , et M € fë(b) de dimension 

finie. Je dis que Dït est faiblement dualisable s'il existe un poids CÙ E P , 
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une forme linéaire Res : D k > k , tels que pour tout A dominant w Cù 
entier régulier, le couplage naturel 

D (к A) ®tf w œ-Л \ w Л Res k 

soit un couplage parfait. 

Proposition l9 : Les assertions suivantes sont équivalentes : 

(a) Ŝ  est Gorenstein (i.e. le faisceau canonique kw est inversible) ; 
(b) Dw est dualisable ; 

(c) D w est faiblement dualisable. 

En outre, le poids 0) de l'une des définitions précédentes a pour image 

K dans Pic(S* ) , dès que ces conditions sont satisfaites. 

Démonstration : 1) La définition [22] de variétés de Gorenstein est la suivan­

te î une variété X est Gorenstein si X est Cohen - Macaulay et si le fais­

ceau canonique Kx est inversible. Par le théorème 3 les variétés sf sont 

Cohen - Macaulay. Ceci explique l'assertion (a). 

2) On va prouver que l'on a (a) implique (b). Par la proposition 6, il 

existe un poids GÙ € P , tel que l'on ait = ŵ(w) • Par le théorème 3, 

est Cohen - Macaulay. La dualité de Serre et la proposition 3 impliquent 

alors que l'on a, pour tout entier T 

D̂(M* ®кш) = fl^.j^OO"1 »£V<FÀ) 

= /(wb£(S ,2,(M))* 
W W 

= (D^W)-*M)* 
W 

pour tout module M de dimension finie. Ceci prouve le point (b). 

3) On a (b) implique (c) trivialement. 

4) On suppose (c). On notera que la forme Res de la définition est 

nécessairement non nulle. Or par la proposition 3, on a 
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H£(w)^ ^ (o))) = D^^k . Donc Res définit un élément non nul de w w w co 
Hom(«C (co) , K ) . Comme £ (co) est inversible, l'application ainsi déterminée w w w 
est injective, de sorte que l'on a une suite exacte 

0 > £ (co) > K • 4 > 0 
w w 0 

pour un certain faisceau Cj,. Pour tout A dominant entier régulier on a donc 

dim H°(S , «C (co-A)) =» dim D k . (proposition 3) w ' w w co-A *v v / 

= dim D*w>kA 
w A 

- dim tf^w* (S ,£ (A)) (proposition 3) 
w w 

- dim H°(S 9£ (-A) ® K ) (dualité de Serre). 
En outre, pour A suffisamment grand, on a Ĥ (S ,£ (co-A)) = 0 , donc on 

a H°(Ŝ  , JĈ (-A) 83 0 • Comme ceci vaut pour A grand, on a - 0 , ce 

qui implique que l'on a un isomorphisme • «Gwto) • 

Le lemme suivant est dû à A. Joseph (plus précisément l'énoncé dual) \3I ]. 

Lemme 12 A : Soit i € {1 , . . . ,N| .On a D^k = k , où k désigne le 

Z/(b)-module trivial. Pour tout module M € É?(b) de dimension finie, les cou­

plages D̂  (M* ® k̂  ) ® Ds.^ * k qui s'en déduisent sont parfaits. 

Démonstration : Le lemme n'est que la traduction en foncteur de Joseph de la 

dualité de Serre sur la droite projective. 

Lemme 125 : Soit w € W . On a 

D̂(W) = D(1) ...D(1) , si w - 8 . . . . s . avec n - «w) . 
W S< S« ' 1 1 , w 

Démonstration : On effectue la démonstration par récurrence sur £(w) . On 

peut supposer que l'on a £(w) > 1 . On pose alors w 53 s/v , pour un certain 

i € {1 , . . . , N} , et un certain v € W avec £(v) = £(w) - 1 . Par le lemme 72, 

on a une suite exacte de foncteur additif 
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О DUVW — dm (mw= —. Dl (w) —. 0 
S4 V V S • V 

et par la proposition 4, on a D̂ W^ = 0 . On obtient donc un isomorphisme 
D^D^V^ ^ D(lw) > ce Prouve Ie lemme par récurrence. 

Lemme 126 : Soient A € P et w € W . On suppose que l'on a D̂ W k̂, ^ 0 . 

Alors le U(b)-module D^^k^ est U(n+)-cyclique, et il est engendré comme 

l/(n )̂-module par un vecteur de poids w(X-p) +p . 

Démonstration : 1) Je vais d'abord prouver la première assertion. Soit w une 

décomposition réduite de w . Alors on a une dualité de U(n+)-module (donnée 

par la dualité de Serre sur D(w)) : 

D*(w)k, ~H°(D(w) ,£~(-X) ®GJu,)* 

Or D(w) contient une orbite ouverte sous l'action du groupe , et 

£~(-À) ®^~ est un faisceau inversible B-équivariant. On a donc (c^. chapi­

tre XII) 
dim H°(n+ , H°D(w), M-A.) ® oxS» < 1 

•C l W J X^. I W J avec égalité dès que D k-. est non nul. Ceci prouve que si D k, est W A W A 
non nul, ce module est U(n+)-cyclique. 

—w 
2) Soit i € {1 , . . . , N} , et soit M € S(b) de dimension finie. Par le 

lemme 125, on a D1 M - D° (M* ®k )* , d'où on a D1 M » DSl(M ®k ) . 

3) On va montrer la seconde assertion par récurrence sur £(w) . On sup­

pose donc que l'on a w = ŝ v , avec i € {1 , . . . , N] , v € W et 

£(w) = £(v) + 1 . Par le point 2, on a 

/(w)k, = DSi((/(v)k,) ®k ) 
W A O V A -Oi 

Donc par hypothèse de récurrence (D̂  k )̂ ® ^_Q^ est engendré par un vec­

teur x de poids v(A-p) +p-cti . En outre, les poids de ce module sont la 

somme du poids de x , et de combinaisons linéaires de racines de ,nw. On a 

donc e.x = 0 . Par conséquent D̂ W k̂, est un UXp. )-module cyclique engendré 
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par l'image x de x dans if ^ k , . Donc Dl (w) ̂ k .n( est un U(n+)-module 

cyclique engendré par ŝ x . Donc lorsque D̂ Ŵ k̂  est non nul, son plus bas 

poids est s^(v(X-p) + p-ou) = w(À-p) + p , ce qui prouve le lemme. 

Lemme 127 : Soit w € W . On suppose que est Gorenstein. Soient d, £ 

des poids tels que l'on ait K « JC (d) , ĤW* (S , JC (d)) - . Alors on 
W W W W g 

a g = w(d~p) +p . 

Démonstration : Le lemme résulte du lemme 126. 

Lemme l2ff : Soient w , v £ W , i £ {1 , ... N} avec w « ŝ v , et 

£(w) = £(v) + 1 . On suppose Sv Gorenstein. On fixe O et g deux poids 

tels que l'on ait Kv - £^&) , H£(v) (Sv , £y(d)) - k̂  . 

1) On suppose que l'on a g(h.) = 2 . Alors S est Gorenstein, et l'on 

a K = £ (d) , Ĥ (w)(S ,£ (d)) - k_ .En outre [S ] est un diviseur w w w w &~Q>i v 
localement principal de Ŝ  si et seulement si v n'est pas > ŝ  . 

2) On suppose que l'on a g(h )̂ > 3 , et v > ŝ  . Alors Ŝ  n'est pas 

Gorenstein. 

Démonstration : Je note j : • Ŝ  l'inclusion canonique. Soit M G f&Q) » 
de dimension finie. On a 

D«M)M = D1 D£(V)M 
W S£ V 

- D1 D (M* ®kj* ®k̂  

- DSlD (M* ®kj* ®k_ 

1) On suppose d'abord que l'on a g(b )̂ - 2 . On obtient alors 
D£(W)M = DW(M ®k J ®k-w ~~\J gr\Xi 

= D M* ® k j * ® 
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Comme cette identification est canonique, on en déduit que l'on a kw = 9 
et H^^(S ,«£ (d)) = K. . Donc S est Gorenstein. Soit 3 l'idéal dé-

w w S^i w 
finissant S dans S . On a K = Ext*((5~ , K ) .On suppose ~% inversi-v w v v Sv * w' vv 
ble. Utilisant la résolution projective 0 —> J —• 6~ —• 6~ —• 0 de 6~ , o o b w v V 
on obtient la formule bien connue 

K - Hom(3/D2 , K ) V w 

= i*Tl ® K . J w 

Par ailleurs, comme faisceaux inversibles, j*K et K sont isomorphes 
9 9 J w v v 

d'après ce qui précède. Donc on a 
^ir1 = Us v 

Comme 3 1 est non trivial, l'application j * Pic(S ) • Pic(S ) n'est pas 

injective. Par la proposition 6, ceci implique que l'on a S(v) fi S(w), i.e. 

que l'on a v ^ ŝ  . Réciproquement, si l'on a v ^ , on a Ŝ  = P̂  x sv, 

et [Sv] est un diviseur localement principal. 

2) Soit À un poids tel que soit dominant. On a alors 

D£(w) = DSi(E (x-O) ® kc ) . Comme g(h.) est >: 2 , l'application 
W À VV £-Ct4 1 » ff 

si E (X-ô) ® k_ • D (E (À-d) ® k_- ) est injective. Je pose vx g-ai vv ^"^i ^ i + N = D Ev(X-0) ® k^.^. • Je dis que le U(n )-module N n'est isomorphe à 
aucun des modules du type E (p.) , où ]± est dominant. En effet, N est en-

gendre par un vecteur x de poids s.v (où v = (A-d+g-ou)) et satisfait 

les relations suivantes 
m +1 m 

e . x = 0 et e . x ̂  0 a a 

pour tout a € O , où e est un vecteur non nul de n+ , et 

m - v(h.) pour a = a. 

ni - s.(X-d)(h ) pour a € ® - {a.} . 
CC 1 CL W 1 
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Si N est isomorphe à EW(U) > on a aussi 

m = u,(h ) , pour tout a € $ . 
CL CL W 

Comme on a v > s. , il est clair que h. est combinaison linéaire de h , î * H î a ' 
pour a € $ - {a.} , soit h. = S c h . On a alors m = S cm , d'où 

W 1 1 OC 0(> i 
V(h.)X= S cOL X s.(À-d)(h )XX - s.(À-d)(h.) , d'où XXg - a. (h.) = 0 , ce qui est 
contraire à l'hypothèse. 

On pose fc " SJJ SN-1 * " ' S 1 9 ̂ e sorte ûe t est un Pr°duit de N ré­

flexions élémentaires. Un élément de W égal à un tel élément t , à une 

permutation des indices {1 . . . N} près, est dit un élément de Coxeter. On 

note ô un élément de P qui satisfasse aux relations suivantes 

0(h.) = 2 a. (h.) , pour tout j avec 1 ̂  j < N . 
- l<i<j 1 2 

Pour tout entier j avec 0 < j < N , je pose aussi 

(3. = 2 a. , et p = p . 
l<i<j 3 w 

Lemme 123 : On a K - «£ (d) , et HN(S^ ,«C (d)) * . 

Démonstration : Pour chaque entier j avec 0 < j < N , je pose 

t. = s_j ŝ__j .. . Sj . Je vais prouver, par récurrence sur j , que l'on a 

K = JC (Ô) , et HJ(S_ ,2 (d)) = k« Q , pour tout j < N . On remarque 

d'abord que l'on a là {3Q = 0 , donc l'assertion est triviale pour j = 0 . 

On suppose cette assertion prouvée pour un certain entier j , j < N . 

On remarque que l'on a t . . = s.,, t. et £(t. .) =£(t.)+l . Par 
J + l J+l J J + l j 

ailleurs, on a : (d-&.)(h...) - 2 a . ( h . . ) - 2 a. (h. ) 
J J 1 l<i<j+l 1 J 1 l<i£j 1 J 1 

= a 4. , (h 4 i l ) 

= 2 , 
Ainsi, je viens de vérifier les hypothèses du lemme 128—1, pour le couple (w,v) 
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avec w = t. . , v ~ t. . On a donc Kt = «£t (d) et 
HJ (S JC C&)) = k = k 

tj + 1 ' tj + 1 *ô̂ 3j~OLj + 1 + 1 • Ceĉ  Prouve l'assertion par 
récurrence. En particulier, pour j - N , on obtient l'énoncé du lemme. 

Remarque : On utilise les notations précédentes. On suppose que l'on a 

3(hi) < - 1 , et on pose u • sit . Les lemmes \Z1 et 12̂  prouvent donc que 

sf̂  n'est pas Gorenstein. Par exemple, lorsque j* est de rang deux, la con­

dition précédente est équivalente à a2(h1) < -3 . Donc en général, la va­
riété de Schubert Ss1sas1 n'est pas Gorenstein. Dans G2 , l'une des va-

riétés de Schubert de dimension 3 n'est pas Gorenstein. 

Le fait qu'un grand nombre de variétés de Schubert soient Gorenstein est 

donc probablement un fait très spécial à certaines algèbres de Lie affines, 

comme le montre le paragraphe suivant (cf. aussi £45] ) . 

§ 3. Variétés de Schubert de certaines variétés affines 
Dans ce paragraphe, on conserve les notations du lemme 1 

Lemme 130 : Les conditions suivantes sont équivalentes 

(i) On a 3(hi) = 0 pour tout i € {1 , . . . , N} . 

(ii) L'algèbre de Lie £ est produit direct d'algèbre de Kac-Moody af­

fines isomorphes à An(1) et D(2)m , pour divers entiers n , m . 

Démonstration : Il est clair que l'on peut supposer que j ; est indécomposa­

ble. On rappelle que le graphe de Dynkin T associé à £ est le graphe dont 

les sommets sont les indices {1 , ... , N} , et dont les arêtes sont les paires 

{i , j} avec cu(hj) fi 0 . On suppose d'abord l'assertion (i) . Soit i un 

sommet de T . On a donc 

(*) S |a.(h.)| - 2 . 
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Donc le nombre d'arêtes de sommet i est 1 ou 2 . On en déduit fa­

cilement que le graphe T est l'un des deux suivants 

(a) 

(b) 

Dans le cas (a), on peut supposer les sommets indexés circulairement, 

i.e. tels que les arêtes soient les paires {i , i + 1} (1 £ i < N) et {1 , N} 

L'égalité (*) donne alors 

a. (h. .) = - 1 pour 1 £ i < N î i + l 

ai^hi-P * " 1 pOUr 1 < * < N 

a.(hN) = ĉ Ch.) = -1 , 

et g est donc isomorphe à AN-1 (1)• 

Dans le cas (b), on peut supposer les sommets indexés linéairement, i.e. 

tels que les arêtes soient les paires {i , i+l} , 1 ^ i < N - 1 . L'égalité 

(*) donne alors 

0Li(hi+l) " aî/hi-P = -1 pour 1 < 1 < N 

VhN-l> =a l (V = ~2 • 

Lorsque N - 2 , l'algèbre de Lie £ a pour diagramme de Dynkin n==Q , 

et est isomorphe à AJ*̂  . Lorsque l'on a N > 3 , l'algèbre de Lie £ a pour 
(2) 

diagramme de Dynkin 0<=£> . . . 0 0=̂ > , et est isomorphe à D̂ _j . 

Remarque : Lorsque dans la suite on considérera de telles algèbres de Lie af­

fines, on ne supposera pas nécessairement que les indices {1 , . . . , N} sont 

ordonnés comme dans la démonstration. 
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Soient j , m deux entiers > 0 avec 0 £ j < N • Je pose 

u(m, j) = Sj s . . . Sj tm . 

Lemme 151 : On suppose les conditions équivalentes du lemme 136 satisfaites. 

Alors : 

1) On a £(u(m , j)) = m N +j , 

2> toa Ku(m,j) "2u(m,j)<ô> • 

3) On a ^ ^ c j j . Ï ^ j ) © ) ) " = •Ku(m,j) "2u 

Démonstration : On montre le lemme par récurrence sur l'entier t • m N + j . 

Lorsque l'on a £ s 0 , il n'y a rien à montrer. On fixe donc un entier 

£ = m N +j > 0 , et l'on suppose les assertions vérifiées pour £-1 .On 

pose w = u(m , j) , et w - u(m , j - 1) si j 0 , w - u(m- 1 , N — 1) si 

j = 0 . On considère alors deux cas 

1) On suppose 0 < j < N - 1 . Par hypothèse de récurrence, on a 

K = £ (d) , et H^CS ,£(£») = k . On a alors w w w w o-mp p j _ j 

(0- m p - Pj_j) - ô - Pj.jftj) » 

= 2 , comme au lemme 12.9. 

En particulier, Ĥ" ̂ S , , £ f(0)) n'est pas un U(p. )-module. Donc on a w w 1 
Sjw' > w' , et ceci prouve que l'on a £(u(m , j)) a n N + j . Par le lemme 129, 

on a aussi K - £ (d) , et Ĥ (S , £ (d)) = k__ _ D = k<̂_ Q Q 
w wN ' 9 N w' wx ô-m^-Bj.j-aj O-m̂ -Pj . 

2) On suppose j • 0 . Par hypothèse de récurrence, on a 
V " V « » ET H£_1(V SW LW (0) • W d j h j h . , • 011 a alors 

(d- (m- 1)3-p^j) (hN) « (d~3N_j)(hN) = 2 , et on conclut de manière identi­

que, en notant que l'on a 

(d - (m - 1)3 - p ^ ) - - d -mp" - d - m|3 - pQ . 

C.Q.F.D. 
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Un élément w de W , qui à une permutation près des indices est l'un 

des éléments u(m , j) , est dit cyclique. La variété de Schubert associée est 

dite cyclique. 

Proposition 20 : Soit j> une algèbre de Kac-Moody produit direct d'algèbres 

affines du type A(1) et Dq̂  ' Pour divers entiers p , q . Alors toute va­

riété de Schubert cyclique associée à j | est Gorenstein (toute variété de 

Schubert est en outre une sous-variété d'une variété cyclique). 

Démonstration : La proposition résulte directement du lemme précédent (l'as­

sertion entre parenthèses résultant d'un calcul aisé sur W ). 

Proposition 2| : On suppose j | isomorphe à Aj^ . Les assertions suivantes 

sont équivalentes, pour tout w € W 

(i) On a Vol(w) = 0 ; 

(ii) On a £(w) < 2 ; 

(iii) S est lisse. 
w 

Démonstration : On suppose que l'on a £(w) > 3 . On pose alors w = ŝ v 

avec w > v . Par la proposition S et S sont Gorenstein. Par le lemme r w v 
135, [Sv] n'est pas un diviseur localement principal de Ŝ  . Un calcul ai­

sé prouve que l'on a # V(w) • 2 . Donc Pic (S* ) et Cl (S* ) sont des grou-

pes de même rang, et non égaux. On a donc Vol(w) fi 0 . Ceci prouve que (i) 

implique (ii). Comme l'assertion (iii) résulte de (ii) par le lemme 121, et 

que (i) est une conséquence bien connue de (iii), la proposition est prouvée. 
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XVIII Constructions en base arbitraire. 

Dans tout ce chapitre, je considérerai un anneau commutatif arbitraire 

R . Je rappelle que j'ai construit au chapitre I des algêbres l̂ (jg), 

U (b)...,et des schémas en groupes H, B, P .̂ Les R-formes des schémas et 

modules que l'on va considérer seront notés comme précédemment, avec un R en 

exposant ou en indice en plus. Lorsqu'aucune ambiguité ne sera possible, 

j'oublierai cet exposant ou cet indice. Pour tout A € P, je note R. le 

H-module (respectivement le U(h), B, U(h)-module) lui correspondant, et V (À) 

le module de Verma 

V(A) = U(£) ® U(b) R . 

Soit A un poids dominant entier. On fixe un vecteur non nul v̂  de L(A)^, 

et on pose L(A)Z= ^(gj.v , L(A)R = R ® L(A)Z . Pour tout w <= W , n € P ; 

On définit de même E (A)R, F (A)R, L(A)R,VA . 

w w > W 71 A 
Soient A <= P+, J = (i/A(hi) = 0}, w e Wj et W une décomposition 

réduite de w . Je note S A le sous-schéma B L(A) a dans IP E (A) 
wA wA w On a un morphisme naturel ir: D(w) • S M . L'espace annelé 

(S a , 7T 0~) ne dépend en fait que de J et de w . Je le note S T , et je v w,A * n w,J 
l'appelerai schéma de Schubert (il sera prouvé plus loin que Ŝ  j est un 

R 
schéma). Comme au chapitre V, on prouve que #~(-A) est le pull-back à 

D(w) du faisceau inversible tautologique de !P Ê (A) . On note alors 
X (-A) l'image inverse de ce faisceau à S T , de sorte que l'on a aussi 
*%,R R 
£ (-A) = 7r#tf~(-A) . Comme au chapitre V, ceci est suffisant pour définir un 

morphisme Pj • Pic (S^ j) (tr i • X^(ÎÏ)) . On remarque que pour 
u, v € WT avec u < v , on a un morphisme naturel i: S T * S T 

et un morphisme naturel X^(TÏ) > ije^(it) . On pose donc 

L (A)R = l i m •»> H°(SR , X (~A)R)* , pour tout A <= P+ n P de sorte que 

l'on a un morphisme naturel kj(A) > L(A) . Pour tout a € , je 
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choisis e (respectivement f̂ ) un générateur du z-module libre de rang un 

ĝ  (respectivement^^) et je dénote encore ê  et f̂  leurs images dans^? . 

3l Constructions en caractéristique arbitraire : 

Dans ce paragraphe, je suppose que R est un corps 

Lemme 132: Soient J une partie de I , w € Wj, w une décomposition réduite de 

w, A «= P+ n Pj . 

1) L'application continue D(w) • Ŝ  j est connexe. 
L'espace annelé S T est une variété. 

3) Les fermetures des B-orbites de Ŝ  j sont en bijection avec les images 

des morphismes SV, J T > SV, J T avec v <= WT , v < w (et SVif*) T ne contient 

qu'un nombre finit de B-orbite). 

4) Le morphisme kj(A) • I«(A) est surjectif. 

Démonstration: Le point I du lemme se démontre par récurrence sur w comme au 

chapitre V. Soient m € P* , K le corps de fractions de D(w) , et S la 

fermeture intégrale de S wm dans K . On a un diagramme naturel 

D(w) • S » SWA . Donc le morphisme SWA • S A . qui est fini, est un 

homéomorphisme. Donc l'espace annelé Sw j est isomorphe à la variété S . 

Les points 3 et 4 sont évidents. 

On note P++ l'ensemble des poids dominants entiers. 

Lemme 133: Soit A «= P++. 

1) Soit a € é+ . On a f .v /0. 

2) Soit w «= W. Le morphisme naturel S » S est birationnel 

(i.e.S est la normalisation de S . ) . w wA 
Démonstration : 1) Tout élément ot «= à+ s'écrit de manière unique 

a = Z m.a.y i € I 1 1 avec m. e fN . Je pose ht(ot) =i € I 1 Z m. . Le point 1 du lemme 

est clair lorsque a est une racine simple, i.e. lorsque l'on a ht (a) / 1. 

Je vais prouver l'assertion 1 par induction sur ht(a) . On peut supposer que 

l'on a ht(a) / 1 . Il existe donc i € l , £ e d + , n € i N avec 
re 

a = s±/S = fi + nai, et l'on a donc f = ± Ad(e£n))(fa) . On a alors 
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f*.vm = e:nV .vA (car l'on a efq\vA = 0 pour tout entier q > 0 ) 

Par hypothèse on a ffl.v. = 0 , on a donc f . v =0 . 

2) Pour toute variété X , je note R(X) son corps des fonctions rationnelles. 

Il est clair que l'ensemble (e^, a <= #w) engendre le RfS )̂-espace vectoriel 

Der„(R(S )) . On a aussi par le point i: e .v , / 0 pour tout a e # . Donc 

l'ensemble le , a <= # } forme un ensemble R(S .)-indépendant de dérivations 

de R(S m) , et l'extension R(S M) • R(S ) est donc séparable. Comme le 

morphisme Sw » SwA est un homéomorphisme absolu, le morphisme 

Sw • SwA A est birationnel Ci.e. Swa est la normalisation de S A ). 
C.Q.F.D. 

Soient A e P , w e W . Je pose A(w,A) = © H (S , it (~nA) ) , et je 

note 2 . le cone de E (A) associé a Sn > 0 . de sorte 

que R [̂wA3 s'identifie au sous-anneau de A(w,A) engendré par sa 

composante de degré 1 FW(A) . Le lemme clef est alors le suivant: 

Lemme 134: Soient ATA9 deux sous-algëbres graduées et B-invariantes de 

A(wA) avec R[I^] £ A £ A* . Alors il existe un élément homogène 

a € A9 de degré > 0 avec a 4 A et € A pour tout entier 1 > 2 . 

Démonstration : 1) Soient M - A9 /A et Ass M l'ensemble des idéaux premiers 

associés au ,4.'-module M Comme M est de type fini, et que B est connexe, 

Ass M est un ensemble fini d'idéaux premiers B-invariants et gradués. 

Soient V* € Ass M et A9 = {x € A9/9>x c A} . L'extension A • A9 

estfinie, donc d'après le "going-up" théorème on a TA9 n A = 7* . En 

particulier on a 9>A" = 9» , et 4̂." est une algèbre graduée B-invariante 

avec A f- A" . Par construction T est un idéal gradué de A" . 

2) Je suppose par l'absurde que ff est un idéal réduit de A91 . Par 

construction Sw » SwA M est un homéomorphisme absolu. Donc 

Spec A(wA) • 2 est aussi un homéomorphisme absolu, et 

Spec A19 • Spec A , Spec A • 2 , sont des homéomorphismes absolus. En 
wA 
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particulier y est un idéal premier de x" . On a A0 = A% = R . 

Donc 9* n'est pas l'idéal maximal gradué. Donc il existe v «= W, 

avec v < w tel que l'on ait des inclusions naturelles 

R ri 1 > A . • A" • A(vA). 
Soient K, K" les corps de fractions de A ^ et de A " ^ . Par construction, 

on a K n A"= XW,_ . Par le lemme 144, l'extension R[Z 1 * Â(vA) est 

birationnelle. Donc on a K = K", ^ ~A/j>> ~A ce qu*- es* absurde. 

3) Par conséquent 9> n'est pas un idéal réduit de A" . Donc il existe un 

élément homogène a € A" avec o fi A et o^€^ pour tout entier 1 > 2 . 

En particulier a est homogène de degré > 0, et on a : 

a € A9, o £ A et *= A pour tout entier 1 > Z. 

On suppose que R est un corps de caractéristique p f 0 . Soient 

X une variété sur R , D un diviseur de Cartier effectif, 

et F: X • X le morphisme de Frobenius absolu. On a ainsi des morphismes 

naturels de ^-modules: 2: Mx • F^x et jp: F̂ >x • F#(tfx[D]) . Suivant 

Metha, Ramanan et Ramanathan, on dit que X est D-scindable s ' i l existe un 

morphisme de ^-module r: F (̂#x[Dl) » tel que l'on ait 

r0jp02 = idp, . Soit Y » X un morphisme, tel que |D| ne contienne pas 

l'image de Y . On a ainsi une notion évidente de D-scindage compatible. 

Lemme 135̂  (R corps parfait de caractéristique p) Soit w «= W . 

1) Il existe une section globale de tf~(-p) sur D(w) dont le diviseur 

D vérifie: D(l) t |D|. 

2) Pour un tel diviseur D , D(w) est (p-1)-scindable compatiblement à 

chacunes de ses sous-variétés de Deraazure. 
Démonstration : Dans la suite je noterai er~ et UH* le faisceau structural et w w 
le faisceau canonique de D(w) . La première assertion résulte du fait 

que 2J~(-p) est sans point base, puisque correspondant au morphisme 

D(w) \ S . Comme au chapitre IV, on a 
wp ' 
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w~ * ^-(+p) e o~(-\x9~] + ... ) . L'assertion 2 résulte donc de f 1*1]. 

Lemme 136: Soient 8e un faisceau cohérent sur IP* , P un point rationnel 

de IP' et i: P • IP' le morphisme associé. On suppose que l'application 

H°ftp',y) • i*y est surjective. Alors on a H1^',?) = 0 . 

Démonstration: On peut évidemment supposer 9 sans torsion, et que R est 

algébriquement clos. Alors d'après un théorème de Grothendieck [2\] (valable, 

comme la décomposition de Birkkoff sur n'importe quel corps algébriquement 

clos) ^ est somme directe de faisceaux inversibles o^9(n) . Le lemme 

résulte alors d'un calcul direct. 

Lemme 137: Soient w.u <= W avec w > u, A € P+, et soit j : D(u) • D(w) 

l'un des morphismes naturels. 

1) Le morphisme H° (D(w) f$~(-A)) • H° (D(u) ,£~(-A) ) est surjectif. 

2) On a ch H°(D(w), *~(-A)) = dWe~A. 

3) On a Hq(D(w, i€W(-A) = 0 pour q > 0. 

Démonstration: Je peux supposer que R est un corps parfait de 

caractéristique p fi 0. 

1) Je vais d'abord montrer le point 1 dans le cas où l'on a A € P++ . 

Soient w, u € W les éléments dont w et u sont des décompositions réduites. 

Par le lemme 135. S et S sont compatiblements scindées. Donc le lemme clef w u 
134 implique que l'application H°(Sw, *W(_A) • H°(Su, ^ ( - A ) ) est 

surjective. Ceci prouve le lemme dans ce cas. 

2) On suppose maintenant A € P+. On choisit un ((p-l)D) scindage 

compatible de D(w) comme au lemme 135. On obtient un diagramme 
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H«(D(5), *~(-PA)) ^ • H«(D(ÏÏ), *~(-PA)) 
W J U J 

I H*(D(w), *~(-РЛ-(р-1)р)) — 
т 

• H«(D(u), АГ(-РЛ-(р-1)р) 
1 

H*(D(w), ^ ( - A ) ) — • Ho(D(u), »JJ(-A) 

Dans ce diagramme, on a r0j0I = id , et les applications de 
restrictions, notée Res, commutent aux flèches Z, j , T. La surjectivité de 

l'application H*(D(w), tf~(-pA-(p-l > H«(D(uu). S~(-pA-(p-l)p)) 

(d'après le point. 1) implique celle de 

H°(D('w), £~(-A)) • H°(D(ù), #~(-A)) . Les points 2 et 3 se montrent par 

récurrence sur w , en utilisant le lemme 135. 

Théorème 5: Soient J une partie de I , A € PT n Pj , w € Wj , w une 

décomposition réduite de w et ÎT: D(w) • Ŝ  j le morphisme naturel. 
1) On a H°(S T, X (-A)) = F (A) et ch F (A) = .4We~A. J w,J w " w w 
2) La variété Ŝ  j est à singularités rationnelles, i.e. on a 

7Ï o~ - 0*z , n '»» est le faisceau canonique de S T , et 

R TT O** = R% Ufa = 0 pour q > 0 . 

3) On a Hq(Sw J,2w(-A)) = 0 pour q > 0 . 

4) On a Lj(A) = L(A), et le morphisme EW(A) —> L( A ) est injectif. 

5) On suppose en outre que l'on a A € P* . Alors on a Hq(Sw j,X^(A)) - 0 

pour q ^ l(w). Pour n suffisament grand le morphisme Ŝ  j • &vm̂  est 

une immersion fermée projectivement normale. 

6) Soit u € WT avec u < w . Alors S T • S T est une immersion 
' J " u,J W,J 

fermée. 
Démonstration: On a F?(A) = R®_ F^(A) . Comme FJ,(A) est sans torsion, le 

caractère de F. (A) ne ̂ dépend pas de R . On a donc ch(FW(A)) = d e . Par 

le lemme 137 on a ch H°(D(w), tf~(-A)) : d e . Comme le morphisme naturel 

F^(-A) • H°(D(W), £~(-A)) est de plus injectif, ce morphisme est un 
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isomorphisme. Ceci prouve le point 1 (on notera que l'on a utilisé la 

connaissance de la formule de Demazure en caractéristique 0). Donc le 

caractère du module I«»(A) es^ donné par la formule de Weyl. Il en est de 

même du module L(A) . On en déduit donc le point 4 du lemme 132-4. Le seul 

point de l'assertion 2 dont la démonstration n'est pas similaire à celle en 

caractéristique 0 est celui ci: on a: 

RN m w = 0 pour q > 0 Bien qu'on ne dispose plus du théorème de 

Gravert-Riemanschneider la demonstration de Ramanathan [52] s applique ici mot 

à mot. 

L'assertion 5 est une amélioration relativement aux résultats obtenus 

précédemment (même en caractéristique 0). Par le point 2, j est 

Cohen-Macaulay. Donc pour n suffisament grand, on a 

HqCSw v ïw(-nA)) = 0 pour q f l(w) . Il suffit aussi de considérer le cas 

où R est parfait de caractéristique p f 0. Comme Sw j est scindée, les 

morphismes Hq(S T, 2 (-A)) • Hq(S , *(-pmA)) sont injectifs, pour tout 

entier m > 1 . Ceci prouve le point 5. 

Les points restants se montrent comme en caractéristique 0. 

Comme en caractéristique 0, on prouve 

Proposition 22: Soient J une partie de I , w <= Wj . Le morphisme naturel 

F>°W, «J /P • Pic (SW, J ) est un isomorphe. 

Ceci permet de généraliser la discussion du chapitre XVII sur les 

variétés de Schubert localement factorielles et Gorenstein, au cas de corps de 

caractéristique arbitraire. 

Remarque: Je n'ai eu connaissance de l'article de A.Ramanathan [52] qu'après 

mon exposé [42]. C'est pourquoi j 'y ai indiqué que je ne savais pas prouver la 

rationalité des variétés de Schubert en caractéristique p (alors que la 

démonstration de [52] se généralise sans problème, comme on l'a vu dans la 

démonstration du théorème 5). 
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a2) Construction en base arbitraire: 

Lemme 138: Soient J une partie de I , w e Wj , w une décomposition réduite 

de w et ÏI: D(w)Z » ^vf J ê morPnisme naturel. 

1) L'espace annelé Ŝ  j est un schéma. 

2) On a R^o*} = 0 pour q > 0. 

Démonstration: Soit K le corps de fraction de D(w) et S la fermeture 

intégrale de S^ dans K , pour un certain A € P* . D'après le lemme 143, 

le morphisme D(w)Z • S2, est connexe. Donc le morphisme S • S2 est 

un homéomorphisme, et l'espace annelé S2 j est isomorphe au schéma S . La 

seconde assertion résulte, par semi-continuité du théorème 5-2. 

On conserve les mêmes hypothèses sur w, w. J, et n: 

Proposition 23 : 

1) Pour tout anneau R , l'espace annelé S T est un schéma. On a 
S T = Spec R ® » _ . En outre, S T est normal dès que R est normal. 

-̂R R̂ 2) Soit u € WT avec u < w . Le morphisme naturel S _ • S _ est une 

immersion fermée. 

3) On a R TT Oft = R\ Kft - 0 pour q > 0. 

Proposition ?àz 

1) Soit A € P+ n PT. On a H°(S T, 2 (-A)) = F (A) et 

Hq(SwJ, 2W(-A)) = 0 pour q > 0. 

2) Soit A e Pj . On a Hq(§w y 2w(~A)) = 0 pour q f 1 (w) et 

Hl(w)̂ g - (-A)) est un R-module libre. w,J w " 
Proposition 25; 

Soit A € P+ n Pj . 

1) On a Lj(A) = L(A). 

2) Le R-sous-module E (A) est un facteur direct de L(A). 
w 3) On a L(A) - U(n )/( 2 2 fi(n)). 
i€l n>A(h.) 

Je note 'C(B) la catégorie des B-modules. 
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Démonst rat ion: Par le lemme 138 et le théorème de semi-continuité, on a 
TT &~ = R ® c£ et R%r &~ = 0 pour q > 0. On en déduit que l'espace 

annelé j est isomorphe au schéma Spec R 8 sF ^ . En utilisant le 

théorème de semi-continuité on prouve alors, par le théorème 5, les 

propositions 23-3, 24 et que pour tout x, y «= Wj avec x < y , le 

morphisme H° (S T, 2 (-A)J) • H° (S T, 2 (-A)) est surjectif. Les 

propositions 23-2 et 25 -1 en résultent. 

Comme en particulier on obtient que ^J(A) * EST surjectif * • ê 

point 2 de la proposition 25 est aussi démontré. Pour montrer le point restant 

(proposition 25 -3), on peut ne considérer que le cas où R est un corps. On 

note que le U(n)-module 1(A) = U(n ) / 2i€l 2 n>A(hi) 1 f. ^) est naturellement 

un 11(g)-module, et un P̂ -module pour chaque i € I . Soit v l'image de 1 

dans 1(A) , et pour tout x € W soit ex(A) = U(b) x.v et ^X(A) = eX(A)*. 

Pour chaque décomposition réduite x de x , on a un morphisme naturel 

D(x) • F e x ^ ' <*on* l'ima£e engendre linéairement P * 

Par ailleurs on a un morphisme naturel 1(A) • L(A) qui envoie EX(A) 

sur EX(A) • On en déduit des morphismes injectifs FX(A) r » * x ^ 

et fX(A) « » H°(D(x), Z-(-A)) . On a donc ex(A) i= EX(A) • 0n a aussi 

clairement 1(À) = lim e (A) , ce qui prouve les propositions, 
xitt X 

Lemme 139: -Soient w € W , w «= W une décomposition réduite de w , 

JI: D(w) • S le morphisme naturel, et M € *C(B) . Alors on a 

RSî -(M) = 0 pour q < 0 . 

Démonstration: 1) Soient S, S' deux anneaux commutât ifs, et S » S' un 

morphisme d'anneaux. On a un diagramme commutâtif 
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D(w) 
s 

j 
D(w)s> 

71 71' 

ss 
w 

i 
ss 
W Par le lemme 23-3, on a Ĵ ĈM) - X-jj(M) pour tout B (s')-module M . Comme 

les morphismes i et j sont affines, les assertion 

RSî -CM) = 0 pour q > 0 

Rqir̂ -(M) = 0 pour q > 0 

sont équivalentes. 

2) On se ramène donc au cas où R = Z . Comme Z est noethérien, on peut 

également supposer que M est de type fini. Alors M a une suite de 

composition par des modules Z. et (Z/pZ) , pour divers A, w € P et nombres 

premiers p . 

Dans chacun des cas on conclut par semi-continuité.C.Q.F.D. 

Avec les notations du lemme précédent, on pose iC^(M) = TIJÙ^(M) . Comme au 

chapitre III, on prouve que #W(M) ne dépend pas du choix de w . Le 

foncteur M » Ŵ(M) est exact, et il est aisé de prouver comme au lemme 

précédent que l'on a TT*TT^X~(M) ^ #W(M) • 

Pour tout w € W , je pose D M = H°(S , X (M)) , et je note D* les dérivés 

du foncteur D̂  (les dérivés sont donc calculés dans <e(B)). 

Soit w e W . Il est clair que 1C (R[Bl) est un faisceau d'algèbres 

cohérentes sur Ŝ  . Il existe donc un unique schéma B(w) , avec un morphisme 

affine t>: B(w) • S tel que l'on ait p X (kfBl) = ùn, x . 

Pour tout u € W , u < w on a une immersion fermée naturelle 

B(u) » B(w) . Pour toute décomposition réduite w de w , on a un diagramme 

commutatif (commutant aux restrictions) 
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E(w) • B(w) 

D(«) • sw 

Comme au chapitre XI on montre 

Proposition 26 : Soient w € W , w une décomposition réduite de w . 

1) Le schéma B(w) est affine. 

2) Le schéma B(w) est 1'affinisation du schéma E(W). 

Dans la suite je poserai R[B(w)] = H°(B(w), Cf B(w)). 

Proposition 27 . Soient w € W, w une décomposition réduite 

de w, M € <e(B). On a des isomorphismes fonctoriels 

D* M ~ H*(B , R[B(w)J 0 M) 

**<V 2W(M)) 

H*(D(w), S~(M)). 

Démonstration: Le premier isomorphisme résulte du fait que l'on a 

DwM a H°(B, R[B(w)] 0 M) de manière naturelle. 

Pour prouver le second morphisme, il suffit de prouver que pour tout injectif 

I € <e(B) , on a Hq(§w, 2W(I)) = 0 Pour q > 0. Soit j : §w •S2 le 

morphisme naturel. Il suffit donc de prouver que l'on a Hq(^, jjt^(l) = 0 

pour q > 0 . Par restriction, i est aussi un B(2)-module, et I est 

limite de B(Z)-module de type fini. Soit E un tel sous-module. Il existe un 

poids dominant A tel que l'on ait H° (S ,̂ ÏW(E 0 Z_A)) = 0 Pour q > 0. 

On a un morphisme naturel de B(Z)-modules Z » L (A) 0 Z_̂  , et ce 

morphisme est scindé à gauche comme Z-module. On a 

I 0 LZ(A) 0 Z M z: I 0 L(A) 0 R M , et comme I est injectif, le morphisme de —A —A 
B-modules I • I 0 L(A) 0 R_̂  est scindable à gauche. On a un diagramme 

commutâtif 
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HVS*, 2 CE)) - • HVS , 2 m ) 
w * w w w 

a с 
KQ-(&, 2 CE ® LZ(A) ® Z ) • HqCS , 2 Cl ® LCA) ® Z ) 

W W -A W W -A 

On suppose q ^ 0 . Par hypothèse, on a 
Hq(SZ, 2 (E * LZCA) ® Z A)) = Hq(SZ, 2 CE ® Z ) ) <8> LZfA) 

= 0 

Donc le morphisme a est nul. Par hypothèse le morphisme c est injectif. 

Donc le morphisme b est nul. Comme S est noethérien, la cohomologie 

commute à la limite inductive. On a donc HqCS , 2 Cl)) = à pour q > 0 . 

Enfin le troisième isomorphisme résulte du lemme 138. 

Lemme 140: Soient u, v, w «= W avec w = uv et lCw) = ICu) + l(v) . 

Pour tout M e *e(B) , il existe une suite spectrale E(M) , fonctorielle en 

M , avec E^^ = Dq D̂  M , et qui converge vers D* M . 

Démonstration: Soient u, v des décompositions réduites de u et de v , 

w = u v et TT: DCW) » DCu) le morphisme naturel associé. Par le lemme 

23-3 et la proposition 28, on a R% X~CM) = X~(Dq M) , pour tout entier q . 

Donc la suite spectrale de Leray ECM) associée à TT satisfait 

E2?q(M) = D̂  Dq M Cpar la proposition 28) et converge vers D* M . 

On peut aussi obtenir le résultat suivant, que je n'avais pas montré en 

caractéristique 0 . 

Lemme 141 : Soient J une part ie de I , w «= Wj et A € Pj . Alors on a 

H1 (S T, 2 CA)) = 0 pour 1 f lCw) , et H1(w)CS T, 2 CA)) est un R-module w, J w 
libre. 

Démonstration: Par semi-continuité, il suffit de prouver le résultat lorsque 

R est un corps parfait en caractéristique p ? 0 . Soit 1 ̂  lCw) . Par le 
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théorème 5, Ŝ  ^ est Cohen-Macaulay. Il existe donc un entier n > 0 , tel 

que l'on ait H (S^ j , #w(mA) = 0 pour m > n . 

Soit q une puissance de p , q i n . Comme Ŝ  j est scindable, le 

morphisme naturel H*(S T, 2 (A)) • H*(S T, 2 (oA)) est. injectif. On a 

donc H"̂(S 2 (A)) = 0 , ce qui prouve le lemme. 

$3: Généralisation du théorème de Kempf: 
Je définis (G/B, /Tt) comme l'espace annelé lim 

Soit M € t(B) . Pour tout w € W , ?w est un sous-espace fermé de G/B . Je 

peux donc considérer Ŵ(M) comme un faisceau à support dans Ŝ  . Je 

pose X(M) = Xim X (M) . 
*~wiW W 

Comme au chapitre XV, on prouve que le foncteur M » X(M) est exact. 

Pour tout M € <e(B) , je pose DM = H°(G/B, 2(M)) ,et je note D* les dérivés 

du foncteur D . Comme au chapitre XV, on prouve pour tout M € 'C(B) 

D*M =r H* (G/B, S (M)) 

DDuM - DM, pour tout U € W 

et que l'on a des suites exactes fonctorielles 

0 > lim14~wëWr W D1_1M v D^ • lim D1 M • 0 . 

Soit J une partie de I . Je pose 1(J) = «> si le groupe W(J) est 

fini, et je note 1(J) la longueur du plus grand élément de W(J) lorsque 

W(J) est fini. J'obtiens la généralisation suivante du théorème de 

Kempf [35]. 
Proposition 29: 1) Pour tout A € P , 2(A) est un O ĝ-module localement 

libre. 

2) (R corps) Le morphisme P/K(P) » Pic(G/B) ainsi déterminé est un 

isomorphisme. 
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Théorème 6: 1) Soit A un poids dominant. On a: 

H* (G/B, 2(-A)) = L(A)* et Hq(G/B, 2(-A))) = 0 pour q > 0 . 

2) Soit M € P , et soit J = {i/M(hi) > 0} . On a alors 

Hq(G/B, 5(M)) = 0 pour q < 1(J) . 

Démonstration: La proposition se démontre comme au chapitre XVI en utilisant 

la proposition 2Lf. Le point 1 du théorème résulte, comme au chapitre XV, du 

théorème 5-3. Pour montrer le point 2, je choisis un élément u e W(J) avec 

1(U) > q Soit X le sous-ensemble de W des éléments de la forme 
w = vu avec l(w) - l{v) + l(u) . Il est clair que X est cofinal. D'après 

ce qui précède, on a alors une suite exacte 

0 • lim1 DqlR,. > Hq(G/B, 2(M)) > lim Dq R.. • 0 . 
*~w€5T W W M 

Par le lemme 141, on a D1 R̂  = 0 pour 1 < l(u) . Par le lemme 140, on a 

donc D1 R̂j =0 pour 1 < l(u), w € X . 

Ceci montre le point 2 du théorème. 
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Tableau des notations  

1) Relatives à l'algèbre de Kac-Moody g : 

h. h, n, p., u., h., h'., e., f., a., c. : sous algèbres de Lie remarquables 

(cf. tableau ch. I). 

H. B. N, P., U., B., B'., E., F., A., C. : groupes associés (cf. tableau 

ch. I). 

n : sous-algèbre de Lie opposée à n . 

2) Relatives au groupe de Wevl W: 

€ : W • {±1} : caractère déterminant. 

t : W » IN : fonction longueur. 
W. : ={w<=W/ws.>w pour tout j <= J}. 

Ju» : =fw € W / S .W < W pour tout .1 € J} . 

W : ensemble des décompositions réduites des éléments de W . 

W(J') : sous-groupe engendré par ŝ  (j € J). 

y(w) : ={i € I / si < w}. 
r(w) : ={v € W / v < w et e(v) = e(w) - 1). 

3) Relatives à la réalisation entière P : 

P+ : {A <= P / A(h±) > 0 pour tout i € I}. 

P : {A € P / À(h.) = 0 pour tout * j € J}. 

Pj : {A € P+ n Pj , A(h.) t 0 pour tout j i J}. 
o P : {A € P / A(h.) = 0 pour tout i e y(w) où we W }. w » J J 1 J 

Q : réseau des racines. 

Q+ : combinaison linéaire à coefficients entiers > 0 de racines positives. 

A : ensemble de racines. 

td+ : ensemble des racines positives. 
A : ensemble des racines réelles, re 
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Note : La notation Pj est également utilisée à la fin du chapitre IV pour 

désigner un sous groupe parabolique. 

4) Relatives aux représentations: 

V(A) : module de Verma de plus haut poids A . 

L(A) : auotient integrable maximal de V(A) (A *= P+1> 

E (A) : = U(b) L(A)^ • 

Fw(A) : = VA) ' 
D : foncteur de Joseph. 

nw : dual du foncteur de Joseph. 

à : opérateur de Demazure. 

5) Objects géométriques: 
S : la sous-variété B.E (A) dans P E (A) w,A wv w,A wv 
J(A) : ={i / A(h. = 0}. 

S M : la normalisation de S (où J = J(A)) . 
W,A W,A 

D(w) : la variété de Demazure. 
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ABSTRACT 

In his 1968 paper about the classification of graded simple Lie 
algebras, Victor Kac introduced a new class of Lie algebras ( also 
simultaneously appeared in a paper of R.Moody). Now called Kac-Moody 
Lie algebras, these new mathematical objects are infinite dimensio­
nal generalizations of semi-simple Lie algebras. 

The goal of the paper is to extend some classical results of the 
theory of semi-simple Lie algebras to Kac-Moody Lie algebras. In 
particular, we will show the following two theorems: 

1) Weyl and Demazure' character formulas, 
2) Borel, Weil, Bott and Kempf' theorems. 
The key point of proofs is identifying the character formulas 

with some Euler-Poincare characteristic dimensions and showing vani­
shing theorems for the cohomology of semi-ample line bundle over 
Schubert varieties. We get the results by reducing to finite charac­
teristic and using Frobenius splittings ( following an idea due to 
Metha, Ramanan and Ramanathan). 
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