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En 1968, en étudiant la classification des algébres de Lie gra-
duées simples, Victor Kac a introduit une nouvelle classe d'algébres
de Lie ( qui, simultanemment apparurent aussi dans un article de
R.Moody). Ces nouveaux objets, appelés désormais algébres de Kac-
Moody, sont des généralisations en dimension infinie des algébres de
Lie semi-simples.

Le but de cet article est d'étendre certains des résultats clas-
siques pour les algébres semi-simples aux algebres de Kac-Moody, et
en particulier les deux théorémes suivants:

1) les formules de caracteres de Demazure et de Weyl,

2) les théorémes de Borel, Weil, Bott et Kempf.

Le point central des démonstrations consiste & interpréter les
formules de caractéres comme des caractéristiques d'Euler-Poincaré
et de les combiner a des théorémes d'annulation de la cohomologie
des fibrés en droites semi-amples sur les variétés de Schubert. Ces
résultats sont obtenus par passage en caractéristique finie au moyen
de scindage de morphismes de Frobenius ( une technique due a Metha,

Ramanan et Ramanathan).
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INTRODUCTION

En 1968, étudiant la classification des algébres de Lie graduee simples
V.Kac a introduit une nouvelle classe d’algébre de Lie [32]. Pour toute
matrice de Cartan, Chevalley, Harish—-Chandra et Serre avaient associé une
algébre de Lie semi—simple déployée, définie par générateurs et relations.
Pour une classe de matrices plus large — pour les matrices dites de Cartan
généralisée - la méme présentation fournit les algébres de Lie précédentes.
Cette derniére construction est apparue simultanemment dans un article de R.
Moody, et c’est pourquoi ces nouveaux objets sont désormais appelés algébres

de Kac—Moody.

Le but de cette article est d’étendre certains des résultats classiques
pour les algébres de Lie semi-simples aux algébres de Kac-Moody, et en
particulier les 2 théorémes suivants :

1) les formules de caractéres de Weyl et du dénominateur

2) les théorémes de Borel-Weyl-Bott et de Kempf.

L’énoncé des formules de caractéres est &€lémentaire, et fait 1’objet du
paragraphe de cette introduction. Les démonstrations reposent sur des énoncés
cohomologiques relatifs aux variétés de Schubert. L’histoire de la
démonstration de ces énoncés dans le cas des algébres de Lie semi—simple
nécessite les paragraphes 2, 3, et 4. Les paragraphes suivants expliquent les
points essentiels de la démonstration de tels énoncés dans le cas d’algébres

de Kac-Moody, et leurs diverses applications.

81 Formules de Weyl et du dénominateur.

Soient k un corps de caractéristique 0 , n un entier > 0, I

1’ensemble { 1,..., n} et A= (aij) une matrice de Cartan généralisée

i, Jjel
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[33]. Soit g 1’algébre de Kac-Moody associée & A. La définition choisie ici
(cf. ch. I) correspond au choix maximal.De maniére générale, la terminologie
employée, usuelle en théorie des algébre de Kac-Moody, est rappelée
principalement au chapitre I. Soient A+ 1’ensemble des racines positives de
£ , relativement a la sous—algébre de Cartan h , et W 1le groupe de Weyl.
Soient A un poids dominant entier, et L(A) le U(g)-module quotient
intégrable maximal du module de Verma V(A) . Pour tout U(h)-module M , et
tout A e L‘l* , on note MA 1’espace associé au poids A , et on appelle
caractére de M 1’expression formelle suivante ( notée ch(M)) :

z dim (M)e .

A€h

Soit € : W— {2 1} (respectivement p ) le caractére de W (le

poids) défini au chapitre I. Je vais montrer les formules suivantes :

Z e(w) e"(Mp)

(1) ch LA) = —————00— (1) (Formule de Weyl)
Z e(w) ¥

(2) (1 - e—a)ma =2 g(w) e (2) (Formule du dénominateur).

Ces deux expressions ont un sens formel précisé au chapitre IX. La somme
(le produit) est indexée par les éléments w e W , (respectivement « € 4+),
et 1’entier m est défini par la formule :

3) m = dimga (a € A+)

On rappelle que lorsque g est de dimension finie, on a m = 1 pour
tout o« € at , ce qui explique que la formule (2) est une généralisation de la
formule du dénominateur. Ces formules ont été démontrées par V. Kac lorsque
la matrice de Cartan est symétrisable (cf. [33]). La démonstration de Kac
utilise un opérateur de Casimir, dont 1’existence est équivalente a la
symétrisabilité. La démonstration que je donne utilise des techniques de

géométrie algébrique dont je vais parler dans les points suivants de cette

introduction.
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82 Sur 1’article de Demazure [7] :

Soit b la sous—algebre de lie de g : b =he e + gﬁ . On suppose que
aed

g est de dimension finie, de sorte que g est semi-simple. Soit G le
groupe connexe simplement connexe associé. Soit A un poids dominant entier,
e un vecteur non nul de L(A)A . Soit BA le sous—groupe parabolique
stabilisateur de la droite ke . La représentation L(A) détermine une
immersion fermée ¢ : G/BA —— PL(A) , donnée par la formule

(g QA) = g.(ke) . Pour chaque w € W , soit Ew(A) = U(Q).L(A)wA . Soit P
le réseau des poids entiers de g . M. Demazure a défini des endomorphismes

dw

: 2[P] — Z[P] , et a prouvé les faits suivants ([7]).

(A) Les variétés de Schubert (i. e. la fermeture d’une B-orbite dans G/BA)
sont normales, et & se restreint en une immersion projectivement normale de
chaque variété de Schubert.

(B) On a la formule ch(Ew(A)) = AweA , pour tout we W,

(C) Les variétés de Schubert sont a singularités rationnelles.

Enfin M. Demazure avait donné une nouvelle démonstration de la formule de
Weyl [8].

G. Heckman a remarqué que l’on pouvait généraliser aux algébres de
Kac-Moody les sous-—espaces Ew(A) , les opérateurs de Demazure av , ainsi que
la formule ch(Ew(A)) = dweA . Puis par un argument combinatoire (que j’ai
repris dans le 8IX), il en déduit la formule de Weyl, dans un article en
1983. V. Kac s’est alors apercu que les démonstrations d’Heckman et de
Demazure comportaient un trou.

Néanmoins beaucoup des constructions d’Heckman et de Demazure restent
valables. Aprés la remarque de Kac, 1’article de Demazure contient encore le
fait que 1’assertion (A) implique les assertions (B) et (C) (plus de détails

seront donnés dans la seconde partie de cet article), et de 1’article
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d’Heckman, on peut encore déduire les formules de Weyl et du dénominateur a
partir des formules

ch(E,(A)) = a"¢"
(que j’appellerai dans la suite formule de Demazure). Ce sont ces formules de

Demazure que je démontre ici, pour toute algébre de Kac—Moody.

33 La théorie des monomes standards et les travaux de Andersen et de Haboush :

Je continue de supposer que g est de dimension finie. En 1978 et 1979
V. Lakshmibai, C. Musili et C.S. Seshadri ont étudié intensivement les anneaux
de fonctions homogénes des variétés de Schubert, et ont précisé les résultats
de Demazure lorsque g est de type classique (i.e. somme d’algébres de Lie
simples des séries A, B, C ou D). Ces travaux s’appuient sur 1’article de
Demazure, mais selon C.V. Seshadri ([56]) peuvent étre rendus indépendants, ce
qui fournirait dans le cas des algébres de Lie classique une démonstration des
résultats de Demazure.

Un cas particulier des résultats cherchés est le cas de la grosse variété
de Schubert. Dans ce cas le résultat énoncé par Demazure est le théoréme de
Borel-Weil-Bott. Or en 1980, V.J. Haboush et H. Andersen ont trouvé
indépendamment une nouvelle démonstration des théorémes de Borel-Weil-Bott et
de Kempf par 1’utilisation du théoréme de semi—continuité (pasusage des
caractéristiques finies & la caractéristique 0), et par une utilisation

miraculeuse des modules de Steinberg ([1], [9]).

84 Les travaux de Joseph et Seshadri, et la théorie de Metha et Ramanan et

Ramanathan :

Je suppose toujours g de dimension finie. Récemment et indépendamment,
A. Joscph et C.V. Seshadri ont comblé une partie du trou de la démonstration
de Demazure en prouvant que les variétés de Schubert sont normales (et donc la

formule (B) pour presque tout A ([31] et [57]). Plus précisément, on verra
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dans la partie II de cet article que le résultat de Joseph et les résultats de
1’article de Demazure impliquent la normalité des variétés de Schubert, et que
les démonstrations de Joseph et de Seshadri sont similaires.

Enfin Metha, Ramanan et Ramanathan (et indépendamment de Seshadri et de
Joseph) ont réussi a compléter entiérement les démonstrations manquantes dans
1’article de Demazure; Leur démonstration utilise l’opération de Cartier ainsi
qu’une nouvelle notion de géométrie des variétés sur des corps de
caractéristique # 0 : la notion de scindage (cf. [47], [50], [51] et 8VII)
(J.B. Bost m’a signalé que J. Illusie et P. Deligne ont récemment utilisé des
techniques apparemment voisines pour montrer la degénérescence de la suite
spectrale de Hodge). Un autre intérét des démonstrations de Metha, Ramanan et
Ramanathan est de donner une interprétation satisfaisante a 1’utilisation
signalée précédemment des modules de Steinberg dans les démonstrations de
Anderssen et Haboush du théoréme de Kempf (cf. aussi H. Anderssen [2] qui a

donné des démonstrations similaires de ces résultats).

85 Le cas des algebres de Kac-Moody :

Je considére & nouveau le cas d’une algéebre de Kac-Moody générale g. Soit

J une partie de I . Je définis :

+
QJ ={AeP/A (hj) =0 pour j€J et A (hj) >o pour j g J}
WJ ={weW/w 8 ¢ w pour tout j e J} .

(on se reportera au chapitre I pour la définition de 1’ensemble des poids
entiers P, au chapitre II pour celle de 1’ordre de Bruhat ().
Utilisant des réseaux de Chevalley, j’associe a la sous-algébre de Borel b de
£ un groupe affine B (plus précisement un foncteur en groupe affine défini sur
Spec Z ). Pour un couple w € WJ, A € P; Jje définis

E, W) =2 (b) L),

sw,A = B. L(A)wA dans P Ew(A).

Ces variétés Sw A avaient été considérées par D.Peterson et V.Kac [48]
’
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J.Tits [58] [60] et P.Slodowy [57]. En revanche je définis ici les variétés de
Schubert a 1’aide d’une construction supplémentaire. Au chapitre v je prouve
que la normalisée de SwA ne dépend de A qu’au travers de 1’ensemble J .

Je note donc cette variete Ew T et j’appelle varietés de Schubert ces
,

variétés gwI . Je prouve aussi que la normalisation y:gw 37— Sw A est un
homéomorphisme, fait crucial en vertu du résultat général suivant (et a ma

connaissance nouveau).

Lemme clef (lemme 55) Soient X, Y deux variétés., i: Y — X une
inclusion fermée, u: ¥ — X et u: Y — Y les morphismes de
normalisation. On suppose que u et u sont des homéomorphismes absolus.

1) Il existe un unique morphisme j: ¥ — ¥ rendant commutatif le

diagramme:

4
(14

J
-,
1
—_

*
< —
> —-

c

2) On suppose X projectif, et soient & un faisceau invertible ample
de X, £ = v*x. Pour tout entier n , soit
v, % .8n
ol

R: H (X,
n

A4 ~ o~
) —— H (¥, 5T
le morphisme naturel. On suppose Hl non surjectif. Alors il existe un entier
O
n>0, 0€H (Y, 1@n) avec o ¢ Im Rn et ¢ € Im Rnl pour tout entier

1> z.

Soient v, w € wJ avec v { w . Le point 1 du lemme clef implique

1’existence d’un morphisme naturel j: $ —' S

J . . . Suivant une idee de
V.J W,J

Demazure, on peut associer a toute décomposition réduite W de w une
variété de Demazure D(;) désingularisation de S . définie sur 2z . Je

’

généralise aussi facilement le résultat de Metha, Ramanan et Ramanathan que
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les variétés de Demazure sont compatiblement scindées en caractéristique non
nulle. J’obtiens ainsi le résultat technique central suivant, combinaison du
lemme clef et des techniques de scindages en caracteristique non nulle:

Lemme technique central: Soient ¢ un faisceau inversible engendré par ses

sections globales sur 1’une des variétés S , et u: S — S le
WA w,.J w,A

morphisme de normalisation et je pose ¢ = u*x. Alors le morphisme

o . ~ o . ~
H (Sw,J’ %) — H (SV,J’ *)
est surjectif.

Du lemme technique je déduis (chapitre IX ) les formules de Demazure,
i.e. le caractére des modules Ew(A) , et de 12 les formules de Weyl et du
dénominateur.
Dans le cas d’algébres de Lie semi-simples, les démonstrations de Metha,
Ramanan et Ramanathan reposent sur les deux points techniques suivants:

1) une récurrence décroissante sur w € W

2) 1’existence de fibrés localement triviaux dont les fibres sont en
espaces de drapeaux G/B —_ G/P ot P est un sous—-groupe parabolique de G
. I1 n’y a pas d’équivalent a cela pour les algébres de Kac-Moody, car
d’une part le groupe de Weyl ne posséde pas en général de plus grand élément,
d’autre part la matrice de Cartan A peut contenir des sous—matrices propres
qui ne sont pas de type fini.

La démonstration présentée ici se différencie principalement par les
points suivants:

1) j’utilise les variétes §w.A (au lieu des variétés Sw,A ) en
combinaison avec le lemme clef.

2) les demonstrations sont effectuées par une récurrence croissante sur

w e W.

Par ailleurs, le lemme clef est faux en caractéristique non nulle.
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Cependant je definis egalement des varietés de Schubert en toute
caractéristique, et prouve le lemme clef dans le cas spécial de variétés de
Schubert. (chapitre XIIX). Cela permet d’¢tendre en toutes caractéristiques les
résultats obtenus en caractéristique O . J’ai laissé toutefois ce chapitre en
fin d’article pour essaver d’expliquer le plus clairement possible ou
1’argument de caractéristique finie intervenait dans les démonstrations de
résultats.

86 Propriétés élémentaires des variétés de Schubert et applications.

Du lemme technique central je déduis des resultats sur les variétés de
Schubert, et des applications aux algébres de Kac-Moody. Je discuterai dans ce
paragraphe des résultats obtenus "eélémentairement", i.e. sans technique
cohomologique. Les sections suivantes seront au contraire consacrées aux
propriétés cohomologiques des variétés de Schubert, et & leur conséquences.

Il v a R applications du lemme technique central:

1) Combiné avec la formule de la limite inductive (lemme 43) je prouve
successivement. les formules de Demazure, la formule de Weyl et la formule du
dénominateur (theoréme I).

2) Par construction les variétés de Schubert sont normales. La
généralisation du théoréme de normalite est la suivante :

Théoréme 2 (avec les notations précédentes). Pour tout entier n suffisament
grand, le morphisme. §W.J —— WEw(nA) est une immersion fermée
projectivement normale. En outre lorsque g est symmétrisable, on peut
supposer simplement que 1’on a n > 1.

Ceci prouve en particulier que pour n grand, Sw,nA est lisse en
codimension 1. Ce corollaire avait té montre par Slodowv [58].

3) Je calcule aussi le groupe des fibrés algébriques en droite sur

Q

Se.g fait a ma connaissance nouveau meme dans le cas d’algebre de Lie

semi-simples. (proposition 6). J’ai depuis trouvé une démonstration moins

elémentaire mais plus courte [45].

10
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47 Propriétés cohomologiques des variétés de Schubert et applications.

Soient w,J comme précédemment, w une décomposition réduite de w et

a D (W) —s §w 7 le morphisme de Demazure. Je prouve que la variéte §w 7
i ’

est triviale (au sens de Kempf) i.e. que 1’on a:

R% 0

« Opciny © 0 pour q >0

et j’en déduis, suivant une démonstration de Demazure que les variétés §w,J
sont & singularités rationnelles. Ainsi les variétés de Schubert sont
triviales et Cohen-Macaulay, et chacune de ces deux propriétés ont des
conséquences différentes, que je vais expliquer dans la suite.

Pour simplifier, je vais supposer que l’on a J = @ , et poser §w = §w g
?

7a) Applications de la trivialité.

La trivialite des varietes de Schubert est ici tres utile, car elle
permet d’associer fonctoriellement a tout B-module M un faisceau quasi
cohérent de ng modules localement libre, note QW(M).

Cette construction est inutile en dimension finie (i.e. lorsque 1’algébre
de Lie g est de dimension finie) car on dispose d’une variété BwB telle
que 1’on ai §w =BwB / B , ce qui permet la construction des faisceaux
QW(M). Dans le cas d’algébres de Kac-Moody genérales, la constructions des

faisceaux xw( implique au contraire la construction d’un schéma, que je

M)
note B(w). Lorsque g est de dimension finie, on a B(w) = BwB [41] . Dans
le cas général B(w) est un BxB-schéma, et 1’on a un isomorphisme canonique
de schema B(w)/B = §w’ On verifie en outre que B(w) est affine, ce qui
donne de nouveaux théorémes d’annulation de cohomologie, par un théoréme de
Serre. On notera que lorsque g est de dimension infinie, on est conduit a
utiliser la version non noethérienne du théoréme de Serre, car B(w) n’est
pas un schema noetherien (cette version se trouve dans les E.G.A. de
A.Grothendieck). Le chapitre XI explique aussi pourquei j’ai cherché au cours

du chapitre IV a eviter toute hvpothése noethérienne, ce qui avait conduit a

véerifier des énoncés particuliérement fastidieux. Le faisceau ¥£(M)

11
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s’identifie alors au faisceau des sections du fibré vectoriel
B(w) x BM —_— Sw'

Aux chapitres XIV et XVI j’obtiens quelques precisions sur les schemas
B(w) et Ew' Je montre en effet que l’action A droite de B sur B(w) est
localement libre, ce qui indique que ce schéma B(w) est la bonne
généralisation des schémas BwB lorsque g est de dimension finie. Soient K
le corps de base, et G le groupe (discret) associé a g (a quelques détails
prés, ce groupe est le groupe minimal au sens de Tits [59], [B0], ou le groupc
construit par V.Kac et D.Peterson [49]. Je pose KI[G] = liﬂ I (B(w), uB(w))’
et soient kf[G] (respectivement kF[G]) 1’anneau des fonctions faiblement
regulieres (respectivement fortement regulieres) au sens [34] de D.Peterson et
V.Kac. On a des inclusions naturelles (cf. ch.XVI).

kF[G] < k[G] < kf[G]

et je prouve, lorsque g est de dimension infinie, que ces deux inclusions
sont strictes. Cela indique que 1’on ne peut pas obtenir le schema B(w) a
partir des constructions de D.Peterson et de V.Kac (on a un probléme analogue
pour les faisceaux EW(M)). D’une certaine maniere cela explique pourquoi la

construction des variétés de Schubert §w ; et des morphismes

~ ~

S ; — Sw y @ été un point délicat de la premiere pariie.
y-

uJ
En fait le point technique pour 1’étude des objets associés a 1’algébre

de Lie g repose essentiellement sur 1’étude des foncteurs et des
5-foncteurs définis sur la catégorie ¢(B) des B-modules, étude faite au
chapitre XIII. Par exemple un &6-foncteur cohomologique qui commute aux
limites inductives est dans un certain sens représentable par un module. Plus
intéressants sont donc les &—foncteurs qui commutent aux limites inductives
et qui ne sont pas nécessairement cohomologiques. On retrouve alors certains
d’entre eux & 1’aide d’une suite spectrale. Cela est 1’argument principal pour
étudier par exemple le morphisme B(w) — §w au chapitre XIV, par défaut

d’un préfaisceau non abélien de B-torseurs sur SWA

12



INTRODUCTION

La principale application consiste en de nouvelles constructions pour les
foncteurs de Joseph. J’obtiens, pour tout B-module M les formules
suivantes, et toute écriture reduite w de w:

A

D" M= HY(S , ¥ (M)
w w w

R

.~
H (D(w), x;(M))

H*(B, K[B(w)] ® M)

14

Si w = uv , avec 1(w) = 1{u)+ 1(v) , on Lrouve ainsi une suite
N LR o £
spectrale fonctorielle E* . qui converge vers le foncteur Dw et avec
D, a . p
Eb'? = p? pf
2 u v

7b) Application de la propriete de Cohen-Macaulay.

La propriété de Cohen-Macaulay fournit une caractérisation des variétés
de Schubert—-Gorenstein. Comme les variétés de Demazure sont lisses, on dispose
d’une dualité de Serre. Un probléme est donc de diterminer si cela induit une
dualite pour les foncteurs de Joseph, exprimable uniquement en termes
d’algébre de Lie. Dans le cas général, cette dualité ne peut s’obtenir qu’au
moven d’une suite spectrale (chapitre XVII): en outre la determination du
groupe de Picard des variétés de Schubert au chapitre X11 prouve qu’on
trouvera une dualité parfaite pour Dw si et seulement si la variété de
Schubert '§w est de Gorenstein. Je montre alors que la plupart des variétés
D;Z)

de Schubert associces aux algébres de Lie affines Aél) et sont

Gorenstein. Par exemple, pour 1’algébre affine Agl) elles le sont toutes.
Je montre également qu’une variété de Schubert associée a A{l) et de

dimension » 3 n’est pas lisse (tout cela donnant un grand nombre de réponses
negatives a une question de A.Arabia et de M.Vergnes a savoir si 1’on peut
toujours plonger une variété de Schubert dans une variété de Schubert plus

grosse et lisse.
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8 La généralisation du théoréme de Borel-Weil-Bott.

Je définis au chapitre XV un espace topologique annelé que je note G/B
et appelle espace de drapeaux (ici G/B est une pure notation. et ne fait
aucune référence au groupe de Borel B ou au groupe de Kac-Moody G). Cel espace
est simplement la limite inductive des espaces topologiques anneles §w

Lorsque g est de dimension finie, G/B est 1’usuclle variété algébrique
des drapeaux associée au groupe algebrique G/B . mais lorsque g est de
dimension infinie G/B n’est meme pas un schéma. On peut définir pour tout
B-module un faisceau de OG/B—module (M) . Au chapitre XV je donne une
généralisation du théoréme de Borel-Weil-Bott sous la forme suivante:

i) Je prouve que les faisceaux ¥(A) sont localement libres de rang un,

et que tout faisceau inversible de OC -module est isomorphe & 1’un des
>

/B
2(A).

2) Je calcule les groupes de cohomologie H*(G/B,Q(A))

Puis je considére d’autres topologies sur G/B , ce qui permet d’autres
généralisations de ce théoréme (cf. [41]).

Un théoreme de B.Konstant calcule les groupes H*(g+,L(A)) , lorsque g
est de dimension finie, et cette formule a été généralisée par H.Garland et
J.Lepowsky [i6] au cas ou g est une algebre de Kac-Moody symétrisable. Ces
formules sont en fait équivalentes au calcul des groupes H‘(B, L(A) ® M)
pour tout B-module M de dimension un. Enfin on relie le theoreme de

Borel-Weil-Bott et la formule cohomologique de Kostant & 1’aide d’une suite

spectrale. Cette suite spectrale dégenere lorsque g est symmetrisable.

49) Je tiens a signaler que cet article doit beaucoup a ceux de
M.Demazure, V.B.Mehta, S.Ramanan, A.Ramanathan déja cités, et aux cours de
V.G.Kac (a Paris, en 1983) et J.Tits (au collége de France, en 1982) sur les

groupes de Kac-Moody.
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J’utilise en plusieurs points des enoncés des E.G.A, et en particulier la
version non noethérienne de théoréme de Serre de nullité cohomologique des
espaces affines. Ce livre est la fusion des deux parties d’un preprint de
1’université de Paris 7 [43]. Les changements notables sont les suivants: la
refonte de 1’introduction, une clarification du chapitre XVIII, une complétion
de la preuve du lemme 14 (le referee a remarqué que j’avais ouhlié de vérifier
la canonicité des isomorphismes construits, et a suggéré une preuve), la
suppression d’une partie du chapitre XV (lequel contenait une preuve fausse,
comme me 1’ont indiquée F.Ducloux et le referee).

Ces résultats ont été annoncés dans des couférences a Paris et Helsinki
(mai-juin i986) [42] dans une note [40] et ont ete expose dans un cours a Yale
(automne 1986). S.Kumar a donné une autre démonstration d’une partie des
résultals de cel article, en caracteristique 0 ([{39]).

Je tiens a remercier A.Arabia, M.Andler, Y.Benoist, J.IL.Brylinski,
J.B.Bosl, A.Bruguieres., M.Demazure, A.Joseph, G.Roussecau, J.J.Sansuc,
P.Slodowy, J.Tits et M.Ville pour diverses conversations sur ces sujets.
Michel Duflo m’a fait hénéficier de nombreuses et bienveillantes critiques qui
m’ont considérablement aidé. Qu’il en soit remercié.

Cet article a &té tapé avec un grand soin par mMres Chaunac, Delongeas, Ledray,
Orieux.
Remarque: Dans cet article, variété signifiera schéma intégre de type fini sur

un corps.
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I.Algebres deKac-Moody et groupes associés.

Dans tout cet article, je fixe N un entier > 0 , je pose

I={1,...,N} , et je fixe A = (a,.).

ij’i, jeI une matrice de Cartan généralisée

(i. e. 8, = 2, aij est un entier négatif si i # j , et aij #0 siet
seulement si aji #0, pour tout i,j € I) . Soit r le corang de A . Si V
est un espace vectoriel, on note v* son dual. Soit (g,«,%) une réalisation
de A, c’est-a-dire un triplet (h,n,x) oi h est un espace vectoriel sur
Q de dimension N+ r , w = {ai,i € I} est une partie libre de h* , et ou
X = {hi,i € I} est une partie libre de h , tels que ai(hj) = aji pour tout
i,j € I [33]. On pose & =2 h1 ®...02 hN ,et Q=2 a; ®...8 Z oy . I1
existe des réalisations, et elles sont isomorphes (cf. [33]).

J’appelle réalisation entiére de A un réseau ¥ de h , tel que

1) On ait ¥ > K , et ¥/E est sans torsion.

2) On ait Q¢ Hoqz(¥,z) .

Il est également clair qu’il existe des réalisations entiéres. Dans la
suite, on fixe des réalisations (g,n,¥) et ¥ de A . On pose
P = Hoqz(¥,z) , de sorte que P est naturellement un réseau de h‘ . Ce
réseau P est dit réseau des poids entiers, et Q est dit réseau des racines
(bien que, lorsque l’on a det A = 0 , Q ne soit pas un réseau, et que P ne
soit pas unique).

Soit g la Q-algébre de Lie engendrée par 1’espace vectoriel h , par

des générateurs e fi(i € I) , et soumise aux relations

(1) (b,h] =0

(1I1) [h,ei] = ai(h)ei
(III) [h’fi] = - ai(h)fi
(Iv) [ei’fj] =0

4)) [ei’fi] = h,

1

n..
(VI) ad 1-’(ei)(eJ.) =0
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n. .
1 =
(VII) ad (fi)(fi) =0

pour tout heh, i,jeI, i#j, et o nij=—aj(hi)+1.

Soit Q+ =Na, 8...8 NaN , et soit P+ = {A € P, A(hi) > 0 pour tout

1

i € I} . Dans la suite, on considére h comme une algébre de Lie abélienne.

Pour toute algébre de lie k , je note U(k) son algébre enveloppante,
et U+(k_) son idéal d’augmentation k.U(k) . Pour tout U(h)-module M et
tout A eh *, Jje pose MA = {m e M|h.m = A(h)m , vh € h} . L’application
h — g est un morphisme d’algébres de Lie injectif, et g est donc

naturellement un U(h)-module. Soit 4 = {A € n* - {0}[g,\ # {0}} . On a

4cQ. Soit at=4ana*, a7 =an-ah .

On pose g+ q:‘f"g“ , n = ® £ - D’aprés [33], on a

aed
£= g+ @ehen , et g+ ,h et n sont trois sous-algébres de lie de g .
On définit également les sous—algébres de Lie b = g+ ® h et pour chaque
ieI,2i=_benfi.

L’algebre de Lie g a été introduite en 1968 par Kac et Moody. Ces
algebres de Lie g sont des analogues, de dimension éventuellement infinie,
des algébres de Lie semi-simples déployées sur @ . La sous-—algébre b est
analogue & une sous—algébre de Borel, et les sous—algebres B, a des
sous—algébres paraboliques non boréliennes minimales. L’ensemble 4 est dit
ensemble des racines, et A+ ensemble des racines positives. Si M est un
U(h)-module, un €lément A e _l_l* tel que M)‘ soit # {0} est dit poids du
module M . Les racines sont les poids non nuls du module g .

Dans cet article, je vais considérer deux types de groupes. Les groupes
usuels (i. e. la donnée d’un ensemble muni d’une loi satisfaisant les axiomes
bien connus) seront nommés ici groupes discrets, afin de les distinguer des
groupes affines dont je vais rappeler la définition dans le paragraphe

suivant.

Soit R un anneau commutatif. Soit F une R algébre
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commutative. Soient « : F—»FQH F,w:F—sF,6: F— R trois
morphismes de R-algébre. Je dis que F est une algébre de groupe affine si
(F,7,w,e) est une algébre de Hopf coassociative, de comultiplication =« ,
avec une counité € et une inversion w [28].

Je dis que le couple (G, R[G]) est un R-groupe affine si R[G] est une
R-algebre de groupe affine, dont le spectre est 1’espace topologique G . Plus
briévement, je dirai que G est un R-groupe affine. Lorsque R =Z , je
dirai que G est un groupe affine.

Soit G un groupe affine, et soit 2Z[G] 1’algébre de groupe affine
associée. A chaque anneau commutatif R , je peux associer le R-groupe
G(R) , qui est le spectre de 1’anneau R[G] = R e, 2(G] . Un R-point de G
est un morphisme de R-algébre R[G] — R . L’ensemble des R-points de G
est un groupe discret. Lorsque R est intégre, un R-point s’identifie a un
élément de G(R) .

Soit Uz(g) le sous—anneau de U(g) engendré par les éléments f§m)

(m)

e; et (:) ,oi ie€eI,meN et he }‘ (cf. [6] pour les notations).

Pour tout A e Ln‘ , Je pose Uz(g)'\ = Uz(g) n U(g)A , oo U(g) est considéré
comme U(h)-module pour 1l’action adjointe. A quelques détails prés, cet anneau
a eté construit par J. Tits dans son cours en 1981.

L’ anneau Uz(g) est dit réseau de Chevalley, en raison du lemme suivant,

di (sous cette forme de géneralité) a J. Tits [59, 62] (cf. aussi [6]).

Lemme 1 : Uz(g) est un réseau de U(g) . On a LF(g) = @ UZ(S)A .
AeQ

Soit O : U(g) — U(g) ® U(g) 1le morphisme de comutiplication. Par le
lemme 1, Uz(g) Oz Uz(g) est naturellement un réseau de U(g) ® U(g) , et par
construction, on a l:l(Uz(g)) c Uz(_g) e, Uz(g) . (il suffit de vérifier que

1’on a O x ¢ Uz(g) ® 2 Uz(g) pour chacun des générateurs e(im), fgm) et (2)
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de U%(g) ; cf. [3) [25] [27])..
Soit m une sous—algebre de Lie de g . Je pose Uz(g) = l}(g) n U(m) .

Soit % la condition.

1

%, : Ona [bm cm.

Si m satisfait la condition * o, je définis un Q-groupe affine M(Q)
asssocié & m de la facon suivante. Soit h’ = hn m . On note ad 1’action
adjointe de h sur U(m) , g (respectivement d) 1’action a gauche
(respectivement & droite) de m sur U(m) . Soit Qg[M] (respectivement
Qd(M)) 1’ensemble des combinaisons linéaires d’éléments Y e U(g)*
satisfaisant aux conditions suivantes
(a) Il existe A € Ll* tel que ad(h)(P) = A(h)P pour tout h e h (et en
particulier on a A € Q lorsque? £ 0).

(b) P est g(U(m)) fini (respectivement d(U(m))-fini).
(c) Il existe u € P tel que g(h)(P) = u(h)? (respectivement

d(h)(?) = u(h)? pour tout h e h’
g _od
Lemme 2 : On a Q°[M] = @ [M] .

Démonstration : Montrons par exemple que 1’on a Qg[M] c Qd[M] . Soient
(P,A,u) € U(g)* X 1_1* X P un triplet satisfaisant aux conditions (a), (b),
(c). Soit J = {ue Um) , g(u?P = 0} . Par la condition (b), J est un idéal
a gauche de U(m) de codimension finie. Donc J contient un idéal bilatére
J’ de codimension finie. Ceci implique que d(w(J’))P = 0 (ci w désigne
1’antiautomorphisme principal de U(m)) et donc P est d(U(m))-fini. On peut
supposer que l’ona ¥ # 0 .0n a d(h)? = g(h)P-ad(h)P, et A € Q. Donc pour
heh” ona d(h)? = (u-A)(h)P et comme u-A € P la condition (C) est
satisfaite.

Ceci montre le lemme 2.

Je peux donc poser @Q[M] = Qg[M] = Qd[M] . Je pose
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g+=gng+,g—=gng_,desortequel'ona m=m @h’em . Soit X(m)

1’ensemble des idéaux & gauche J de U(m) qui satisfont aux trois
conditions suivantes

(1) J est de codimension finie dans U(m) ,

(2) J est stable par 1’action adjointe de h ,

(3) Il existe une partie finie ¢ ¢ Ll’* formée de restrictions de
formes linéaires de P , telle que I (h - u(h)) appartienne &8 J pour tout

ued
heh .

Lemme 3 : Soit P € U(g)* . Les conditions suivantes sont équivalentes
(a) P appartient & Q[M] ,

(b) Il existe J € X(m) un idéal bilatére tel que P(J) =0 .

Ce lemme est évident. On en déduit immédiatement que Q[M] est une
sous—algébre de 1’algébre commutative U(_lg)* . La multiplication de U(m)
induit par dualité une application =« : U(g)' — [U(m) ® U(g)]* . On a un

diagramme naturel

Q[M] q[M] o q[M]

! !

Um* —I— (U@ e Um)]*

On déduit du lemme 3 que 1’on a +(Q(M]) < Q[M] ® Q[M] . Soit
@ : Um) — U(m) 1’antiautomorphisme principal. Par dualité «w définit une
application linéaire w : U(g)* —_— U(_@)* . I1 est clair que 1l’on a
w(Q(M]) < (M] . L’application naturelle & : @ — U(m) donne par dualité
une application ¢ : Q(M] — § . Je note u la multiplication

u : Q(M] ® Q(M] — Q(M] .
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Le lemme suivant est évident.

Lemme 4 : L’algébre Q[M] est une algébre de groupe affine, avec

multiplication u , comultiplication <+ d’augmentation & et d’inversion w

J’ai ainsi construit un groupe associé & m . Je note ce groupe M(Q) .
Dans la suite, j’adopte les conventions suivantes : Je note d’une minuscule
gothique les sous—algébres de Lie de g . Lorsque cette sous—algébre satisfait
!!1 , je note d’une majuscule latine le groupe correspondant.

A présent je cherche a définir des formes entiéres de M(Q) . Je pose

z[M] = (re q[M] [P (@) < 2} .

I1 est naturel de poser la définition suivante :

Définition : Soit m une algébre de Lie dans g , satisfait ”1 . Je dis que
le groupe associé M(Q) posséde une forme entiére si et seulement si les
conditions suivantes sont réalisées

(1) ezM]) cz

(2) w(z[M]) c 2(M]

(3) uz[M] e, z[M]) c Z[M]

(4) ~(z[M]) c z[M] °, z(M]

(5) a[M] =qe,zM .

La condition 5 implique que 2Z[M] est un réseau de Q(M] , ce qui explique la
terminologie.

Dans la suite je vais étudier ces cinq conditions. Je pose
U+’z(!|) = U+(_|g) n Uz(!l) . Il est clair que 1’on a Uz(g) =Ze® U+’z(g) . La
condition (1) est automatiquement vérifiée. La condition (2) est également
automatiquement satisfaite.

J’étudie la condition (3). Pour que la condition (3) soit satisfaite, il
suffit que la condition suivante soit satisfaite

#, :0nal ¥m c F@m o Fm) .

2
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Je ne sais pas si cette condition est toujours vérifiée. On considére la
condition suivante

#g Soit J € X(m) , et Jz =JnNn Uz(g) . Alors Uz(g_n)/Jz est un
Z-module de type fini.

Je ne sais pas si la condition ﬂg est toujours verifiée. On a :

Lemme 5 : On suppose la condition ”3 satisfaite. Alors les conditions (4) et

(5) sont satisfaites.

Démonstration : Soit ¥ € Z[M] . Il existe un idéal bilatére J € X(m) tel
que ¥Y(J) = 0 . Par la condition ”3 , Uz(g_l)/Jz est un 2-module de type
fini, et par construction il est sans torsion; c’est donc un Z-module libre.
on a Hom, (F(m)/* ,2) c2zM . Ona

Hom, (¥ (met* () / ot (m)+1# (mes* , 2)

= Hom, (F () / 7, 2) & Hom, (F(m) / I, 2)

et on a donc v(2[M]) ¢ Z[M] ® Z[M] , ce qui vérifie la condition (4) .

Soit P € Q(M] . Il existe un idéal J € X(m) tel que ¥(J) = 0 . Comme
Uz(m)/Jz est un 2Z-module de type fini, il existe un entier d € 2-{0} , tel
que P(Uz(m)) c % 2 . 0On adonc d° € Z[M] . Ceci montre la condition (5).

Soit Y(m) 1’ensemble des U(m + h)-modules de dimension finie,

h - semi-simples a poids dans P .

Lemme 6 : (1) La condition ns est équivalente & la condition suivante : pour
tout E € Y(m) , et pour tout e € E, le 2Z-module Uz(g).e est de type
fini.

(2) Si m+ h satisfait # , m satisfait *, -

(3) Soit q = g+ ®h . Alors g et g+ satisfont ns .

(4) On suppose que 1l’on a m2 h . On suppose que 1’on a

Uz(g) = Uz(m—) L Uz(g) . Alors m satisfait Hy -
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Démonstration : Soit E € Y(m) . L’ensemble des éléments e € E tels que
Uz(g).e soit un 2Z-module de type fini est un U(m + h)-sous-module de E .
Le point (1) en résulte clairement. On a Uz(g) c Uz(y_u + h) . Donc le point
(1) implique le point (2). Pour montrer le point (3), il suffit donc de
montrer que g satisfait Jt3 . Soit donc E € Y(g) , et e € E . Je peux
supposer que e est un vecteur de poids. Par le lemme 3 du ch. VIII %12 n® §
de [3], on a Uz(g) = Uz(g+) oz UZ(Q) . Pour chaque 8 € Q , on a

Uz(_m_+)p = U(g+)p n Uz(g+)p . Comme Uz(g{'),3 est un 2Z-module de type fini, il
vient que L?z(g+)p est un facteur direct de U(g+)p . Donc Uz(_lg+) est un
facteur direct de Uz(_r_|+) . On en déduit que 1’on a aussi

Uz(_g) = Uz(g_l+) ® Uz(}_l). Or on a LF(_t_x).e = 2e . On a donc

Uz(g).e = Uz(g+).e . I1 existe une partie finie & ¢ Q+ telle que

U(yf).e = @ U(g+)a.e . On a donc Uz(_g).e = @ llz(g+)a.e , donc Uz(g).e
aed aed

est un 2Z-module de type fini.

Reste a montrer le point (4) du lemme. Soit E € Y(m) . Par le point (3)
du lemme 6 , pour tout e € E les 2Z-modules Uz(m_)e et lF(q)e sont
des 2Z-modules de type fini. Si 1’on a Uz(m) = Uz(g_) ® Uz(_g) ceci implique

le point 4 du lemme.

Remarque : Par la proposition 3 du ch. VIII 812 n® 6 de [6] on a
Uz(g) = Uz(n+) ® Uz(h) ® Uz(p_—) et Uz(n+) est engendrée par les éléments
ei(n) ielI,nen, Uz(h) par les éléments (:) h e }S , DeEN , et Uz(_g-)
par les éléments f‘(jn) je€I, neN (cf. aussi [59]).

Soit i€ I . On introduit les sous—algébres de Lie suivantes dans g :

_i_qe n_i‘-‘qf-;

§1=h$§i°£1"—1i= 9+a’.l?.i=.haeiph’=heiiv
aed
afa
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g = he 'fi ®u, . Pour construire les groupes associés aux différentes
sous—algébres de Lie vues jusqu’a présent, je vais construire quelques
modules.

Soit A € P . je note V(A) le U(b)-sous—-module de Coind%(QA) formé

des vecteurs U(h)-semi-simples. Ici Q, designe le U(h)-module de dimension

A
un de poids A . Comme U(b)-module, on a V(A) = V(O) ® IJ,\ . Donc les
U(b)-modules V(A) sont isomorphes entre eux comme U(g+)-m0du1e. Soit V le
U(g+)-modu1e V(A) pour un certain A .

Lorsque A(hi) > 0, soit &i(A) le U(_gi)—module simple de plus haut
poids A . Le U(gi)—module (,i(;\) est de dimension A(hi) +1 , car 8, est

une algébre réductive de partie simple isomorphe a se(2) . Soit Vi(A) le

P
sous—module de Coinda1 l,i(/\) des vecteurs U(h)-semi-simples. Je pose
=i
Vi = Vi(O) considé comme U(gi)—module.
Dans le tableau suivant, je donne la liste des sous—-algébres remarquables

étudiées. Elles satisfont toutes !ll . Je donne dans le tableau le nom du

Q-groupe affine associé.

TABLEAU DES SOUS-ALGEBRES DE LIE REMARQUABLES

ALGRBRE DE LIE GROUPE ALGEBRE DE LIE GROUPE
b B(Q) u, U, (@)
B, P, () b, B, (@)

’ ,

n N(Q) b} B (@)
g E; (@) < c;(@)
1, F, (@) a; A, (@)
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I

H(Q)

Dans le lemme suivant, j’indique a quoi sont isomorphes les différentes

algébres des groupes considerés ici.

Lemme 7 : 1) On a Q[H] = Q[P] ou Q[P] désigne 1l’algébre du groupe discret

P . Plus précisément comme U(h) x U(h)-module, on a Q[H] = @& Qe O; .
A€P

2) Soit i e I . Soit Fi = {AeP, A(h;) > 0} . On a comme
U(gi) x U(z_ai)—nodule

QlA.] = @ ¢ (A)ee (A,
1 Aeﬁi 1 1

3) On a Q[N] = Y comme U(n)-module & gauche.

® V(A) comme U(b)-module & gauche.
A€P

5) Soit m , m’ deux algébres de Lie du tableau. Si mc m’ , il existe

4) On a Q[B]

un morphisme naturel M(Q) — M’(Q) , qui est une immersion fermée (i. e.
Q[M’] — Q[M] est surjective).

6) On a, pour chaque i € I des isomorphismes naturels
P;(®) = A;(®) x U;(®) , B(®) = B,(8) x U;(®) , C;()) = B}(8) x U;()) . On a
B(Q) = H(Q) x U(Q) .
A(hi)+1

7) Comme U(Pi)—module a4 droite, on a Q[Pi] = @ [Vi(t\)]

AeP,
i
Démonstration : Ce lemme est facile. Je n’indique que briévement les
démonstrations. Le point 2 est une formule & la Peter-Weyl. Les assertions

1,3,5 sont faciles. Le point 5 résulte du point 6, qui est aisé. Enfin le

point 7 résulte des points 6 et 2.

Lemme 8 : 1) Les algébres de Lie du tableau satisfont aux conditions %

2et
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2) On pose VZ = Z[N] . Le 2Z-module VZ est un réseau de V . Plus

précisément, V est un U(h)-module pour 1’action adjointe. On a

V = e VA . On pose Vi = VZ n VA . On, a VZ = @ V} , et chaque
Ae—Q Ae—Q

V: est un réseau de 1’espace vectoriel de dimension finie VA .
3) On a 2[H] = z[P] .
4) On pose, pour chaque A € P VZ(L) = V(A) n2[B] . On a

z(B] = o ¥ .
A€P

5) On a des isomorphismes, pour chaque i € I
P. A, xU, ,B=B, xU, ,C, =B!xU, .Ona B=HxU.
i i i i i i i i
6) Si m<c m’ sont deux algebres du tableau, le morphisme naturel
M — M’ est une immersion fermee.

7) Soit 1 € I . Les morphismes naturels Fi X B —— Fi et

Ei x Ci —_— Pi sont des immersions ouvertes.

Démonstration : Le seul point délicat est de montrer le point 6 . Plus
précisément, de montrer que B — Pi est une immersion fermée. En utilisant
les isomorphismes de groupes Pi = Ai X Ui et B = Bi X Ui , on se ramene &
montrer que Bi —_— A.1 est une immersion fermée, ce qui se fait par un calcul
direct. On montre par le méme argument le point 7 .

Soit m une sous—-algébre de Lie de g , et R un anneau commutatif. Je
peux définir la R-forme de 1’algebre enveloppante de m , en posant
UR(Q) =R Gi Uz(g) . Si R est un corps de caractéristique 0 , je pose
QR =R oo m .

On suppose que m satisfait ﬂl s wz , “3 . On peut alors définir le
foncteur R — M(R) , o M(R) est le spectre de R[M] = R o, z(M] . On

remarque que cette notation est compatible a la notation Q[M] déja définie.

Lorsque 1’anneau de base R sera convenu, on notera M le groupe M(R) .
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L’algebre de Lie g elle-meme satisfait aux conditions * o
7!2 , 3'63 . Lorsque dim g < o , la construction précédente permet d’obtenir le
groupe de Chevalley simplement connexe. En revanche lorsque g est de
dimension infinie, le groupe obtenu est extrémement petit. On suppose par
exemple que 1l’on a dim g = «» et que A est indécomposable . Soit r le
corang de A . L’anneau de groupe obtenu est un anneau de polynome de Laurent
a r-indeterminées. Soient m < m’ deux sous—algebres de Lie de g ,
satisfaisant aux conditions ;Vll , 7!2 , 1(3 . L’exemple précédent montre qu’en
général le morphisme naturel M — M’ n’est pas en genéral une immersion
fermée (méme sur €) .

Soit k un corps de caracteristique 0 , V un espace vectoriel, et W
un sous—espace vectoriel de v* . on dit que W est dense dans V si pour
toute partie finie indépendante {a1 an} de V , et tout n-uplet de
scalaires (c1 ...cn) il existe £ € W tel que g(_ai) =c - Soit m une
sous—algebre de _go satisfaisant o, Ky, Ho o En géneral, il n’est pas
vrai que k[M] est dense dans U'k(_g_)' . Néanmoins ce fait est vrai pour les
sous—algebres de Lie remarquables du tableau.

Quoique le fait suivant ne sera pas utile avant le paragraphe XI ,
Jj’énonce un lemme qui permet de comprendre un peu quel est le spectre des

groupes affines associés aux algébres de Lie remarquables. Soit ﬁk(n+) le

complete de Uk(_g+) formeé des expressions formelles x = 2 + %y ou
aeQ
+
X, € Uk(g )c . Soit 41\+ la fermeture de g+ dans ﬁk(_n+) , i. e. 1’ensemble
des expressions formelles I X , 00 X € n+’k . Soit exp :

_ [3
aeQ

A+, k ﬁk + s . . . . , .

n — U'(n') 1’application exponentielle, donnée par 1’expression formelle

+ P
exp(x) = 2 X . Je pose ﬁ ko exp /x\1+’k . Chaque €lément n € Q+’k

neN n'!

definit une forme linéaire Vn : k[N+] — k , par la dualite
+ +
k(N ] x Uk(_g ) — k qui se prolonge par continuité en
k[N+] X ﬁk(n+) — k . La forme lineaire Vn est un morphisme de k-algebres,

d’oli une application 'N’k —_ Specmax(_k[N+])
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d’ou une application ﬁ+’k —_ Specmax(k[N+]) .

Lemmme 9 : On suppose que k est algébriquement clos. Alors

+,k + .
f N Specmax(k[N ]) est bijective.

Ce lemme est évident, et permet de construire les spectres maximaux des
groupes affines (sur un corps de caractéristique zéro) associés aux
sous—algébres de Lie remarquables (un fait analogue est montré dans [40], et
aussi [59], [60], [62]).

Dans la fin de ce paragraphe, je fixe k un corps de caractéristique
0 . Pour alléger les notations, je pose gk =g . Soit A € h* . Dans la
suite, je noterai kA , ou parfois A , le U(b)-module de dimension un de
poids A . Soit V(A) = U(g) QU(Q) kA , le module de Verma associé. Je fixe
p € P un poids tel que p(hi) =1, pour tout i€ I . Soit ie I, et
A e h' tel que A(hi) €N . Soit W 1le groupe de Weyl de gg [33] . Le
groupe (discret) W est engendré par des réflexions élémentaires Sj s
j € I . I1 existe un morphisme de U(g)-module non trivial
V(s; (A + p)-p) — V(A)

Soit ) {ueP, u(hJ) €N pour tout j € I} . Soit A € P . Je note
L(A) le conoyau du morphisme naturel 'GI V(si(A +p) - p) — V(A) . Le

ie
U(g)-module L(A) est dit intégrable, car il est un U(gi)-module localement

fini pour tout i € I . Comme U(g—)—module L(A) est isomorphe a
_ B A(hi)+l
U(n )/Z U(n )f;

Le module L(A) s’intégre en un Pi—module comme suit. L’action de

U sur L(A) donne un morphisme L(A) —— Hom(% ,L{(A)). Comme 1’action
(B;) (p;)
est localement fini, ce morphisme factorise a travers
L(A) —— L(A) ® %(p )* , et par construction de k[Pi] en un morphisme
i
L(A) — L(A) ® k[Pi] .
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Remarque : J’ai rappelé dans ce chapitre les définitions des algébres de
Kac-Moody g , et des modules standards L(A) , car ceci implique un certain
choix. Ici on a fait en quelque sorte des choix maximaux. Il me semble qu’en
dehors du cas ci la matrice A est symétrisable, les questions suivantes sont

encore ouvertes.

Question 1) L’algébre de Lie g est-elle simple (au sens du théoréme de
Gabber et Kac [15] ?

2) Le module L(A) est-il simple ([33] ?

Des réponses positives a ces questions impliquent que les diverses
constructions des algebres de Kac-Moody, et des modules L(A) , donnent les

mémes résultats.

Remarque : La construction des réseaux Uz(g), (F(l_:), Uz(g+), Uz(g-) est du a
J. Tits. Cette construction est la généralisation directe de 1’exposé de
Bourbaki [6]. La seule différence que j’ai introduite ici est dans le choix de
h , et dans un choix maximal (et non plus minimal) pour g . La notion de

réalisation est due a V. Kac.
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II Groupe de Weyl.

Soit (X,<) un ensemble ordonné. L’ensemble X est dit filtrant s’il

satisfait a la condition :
YVa, BeX, IveX:a<ry et <.

Un sous— ensemble Y d’un ensemble inductif est dit cofinal s’il

satisfait a la condition :
Ya € X, 3 e Y, a< B .

Soit (X,<) wun ensemble filtrant, 4 une catégorie abélienne. Par

systéme inductif d’objets de A (respectivement : systéme projectif d’objets

de 4) on entendra une famille d’objets de A4 , et une famille

IEq'an
{Yd’p} de morphismes Pa,p : Ea —_ Ep indexée par les couples
(a,B) € X2 tels que a ¢ B8, (respectivement a > B) et vérifiant la

propriété de commutativité usuelle.

Le lemme suivant est €lémentaire..

Lemme 10 : Soit (X,<¢) un ensemble filtrant, A une catégorie abélienne,
{Ea’ra,p} un systéme inductif
(1) On suppose que A est la catégorie des groupes abéliens. Soit

E = lim Ea la limite inductive de {Ea} .

Les conditions suivantes sont équivalentes.

(a) Pour tout a € X , 1’application Eu —+ E est injective.

(b) Pour tout o , BeX ,a¢< B, P
«,B

(2) On suppose que {Ea} posséde une limite inductive E . Soit Y wun

est injective.

sous—ensemble cofinal. Alors {Ea’ a € Y} posséde une limite inductive, et le

morphisme naturel lim Eq —— E est un isomorphisme.

Soit W 1’ensemble des décompositions réduites des €léments du groupe de

Weyl. A chaque élément w de W ou de W on peut associer sa longueur
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e(w) . On pose e(W) = (-1)¢(")[33]. Soit ¢ 1’ordre de W défini comme
suit : soient u , v deux éléments de W de longueurs respectives p et q .

On pose

On dit que 1’on a u ¢ v s’il existe une application strictement
croissante ¥ : {1,...,p} — {1,...,4} , telle que pour tout k € {1,...,p}
on ait ik = JP(k) . Moins formellement, ceci signifie que la décomposition
réduite u peut eétre obtenue en supprimant certaines réflexions élémentaires
dans la décomposition réduite v ; L’ordre < est dit ordre de Bruhat de Ww.
On définit 1’ordre de Bruhat de W en posant, pour tout couple d’éléments
u,veW: ug¢v dés qu'il existe des décompositions u et v de u et v
(respectivement) telle que 1l’on ait u < Vv . L’ordre de Bruhat de W est un
ordre (cf. par exemple [12], ou les démonstrations restent également valables
dans le cas Kac-Moody). On note u < v lorsque l’ona ug¢v et ufgv.

Soit J une partie de I . On pose
W, = {wewWw, ws‘j > w pour tout j e J} .

J

JW = {weW, Sjw { w pour tout j e J}

Lorsque J est réduit a un élément {j} , on pose Wj = W{j} et

Jy = Ly -

Lemme 11 : 1) L’ensemble W est filtrant.

(2) Pour tout i eI, iw est cofinal dans W .

(3) Soit w € W. Il existe une suite Wor Wys o eee dans W
(respectivement w’,...,w;) (suite finie lorsque W est fini, infinie lorsque
. . . i) — -
W est infini) telle que Wy T Wg T W W, < W

w = W_ S, respectivement w’
n+l n i ( P

1 < Wo coe s et telle que

= 8., W our certains i i’ el
n+1 1; n) P n’ "n » et

telle que 1’ensemble {wn , n € N} (respectivement) {w; , n € N} soit
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cofinal.

(4) En particulier, si W est infini, W contient un sous—ensemble
cofinal isomorphe & N (comme ensemble ordonné).

(5) Soit u, veW, u¢v. Soit n=e(v) - e(u) .

I1 existe une suite Wo 0 Wpree oWy de n éléments de W tels que
u = wo , V = wh et Wy < o <...<wh .

Démonstration : Je vais montrer le point 3 . Pour simplifier, je suppose W
infini, le cas ou W est fini se traitant de maniére identique. L’ensemble
des éléments w € W de longueur donnée est finie. Donc il existe une
bijection P : N — W telle que pour tout couple d’entiers n , m e N avec
n<m on ait e(P(n)) ¢ ¢(P(m)) .

Pour montrer le point 3 , je vais construire la suite Wor Wy oo
inductivement de la maniére suivante. Soit n € N , et je suppose construire
Wor Wy e W oo Je pose 7(n) : inf {m / ?(m)lwn} . on a nécessairement
P(0) =1, et onadonc 7(n) > 0 .Il existe ue W, i € I, tel que 1’on ait
P(r(n)) = us; et us; >u.Onadonc u=v(m , avec m < 7(n) . On a donc
ug¢w et us, £ LA On déduit facilement de [12] , 7.7.4 que 1’0n a

n
w (w 8. et us., (w_s. .Je pose w =w_s. . On a donc
n n i i n’'i n+l n°i
r(n+ 1) > 7 (n) , ce qui prouve que la suite {wn} est pleine. On construit
de méme la suite w; (ce point du lemme a é€té prouvé indépendamment par
A. Arabia).

Les points 1 et 4 en résultent. Le point 2 est évident. Le point §

résulte de [12] 7.7.5.
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III Les foncteurs de Joseph.

Soit k un corps de caractéristique 0 . On reprend les notations du
chapitre I.

Soit i € I. Soit C(B) (respectivement C(Pi)) la catégorie des
U(b) (respectivement U(p))-modules localement finis, U(h) semi-simples a

poids entiers, i.e. des modules M tels que M = @& MA .La catégorie C(B)
A€P

(respectivement des Pi—modules) au sens algebrique.

P.
Soient ie€ I, et Me C(B) . Soit N = Coindbl M . Je définis D M
2 i

comme le sous-module des vecteurs U(pi)—localement finis, U(h)-semi-simples
de N. Il est clair que les poids de Ds M sont entiers, et 1’on a donc
i

DsiM € C(Pi) . Soit M’ un autre élément de C(B), et M — M’ un morphisme

P.
de u(b)-module. Je pose N’ = Coindb1 M’ . Le morphisme naturel M — M’

induit un morphisme de U(p.)-modules D M — D M’ . La remarque
i s, s;

précédente prouve que Ds définit un foncteur covariant de C(B) dans C(Pi) .
i
Soit M € C(B) de dimension finie. Il est connu que N = U(pi) ® U(b) M

est un U(gi)~modu1e de longueur finie. Soit Z 1le sous—module de N de

s.
codimension finie, et minimal pour cette propriété. Je pose D M= N/Z . On

s,
a encore D 'Me C(Pi).

Dans les notations précédentes, 84 désigne la réflexion simple de W .

Soit s = kemkhiokfi , et soit B = khiokei .L'algébre de Lie s est
isomorphe a El(z) , et B est une sous—algébre de Borel. Soient S le
groupe algébrique simplement connexe associé & S (isomorphe a SL(Z)) et L
le sous-groupe de Borel associé & B ;Je peux considérer s comme une
sous—algébre parabolique de 1’algébre de Kac-Moody s . Soit s 1’élément non

trivial du groupe de Weyl de s . On a ainsi un foncteur Ds: C(L) —— C(S) .

33



O. MATHIEU

Par restriction, tout €lément de C(B) (respectivement C(Pi)) defini un
élément de C(L) (respectivement C(S) ). Je note donc
Res: C(B) —— C(L) et Res: C(Pi) — C(S) les foncteurs d’oubli
correspondants.
Je vais utiliser le lemme évident suivant pour comparer les foncteurs DS-
i
et Ds .

Lemme 12 : 1) Le foncteur Ds. commute & la limite inductive.
i
2) Il existe un morphisme naturel de foncteurs Ui: DS. — Id.
i
3) Le foncteur Ds. posséde la propriété universelle des foncteurs de
i

coinduction. Plus précisément, soit M e C(B) , et N € C(Pi) . Pour tout
morphisme de U(b)-module N — M il existe un unique morphisme fonctoriel

de U(p.)-module N — D M rendant commutatif le diagramme
i s;

[
DS_M/

1

Corollairement Ds est un foncteur covariant exact a gauche, et il
i
commute aux limites filtrantes. Je compare les foncteurs Ds et DS . On a
i
un diagramme naturel

c(B) —25 , (1)

|

C(Pi) C(8)

Utilisant la propriété 3 du lemme précédent, on obtient un diagramme

commutatif
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c(B) —Be5_, (L)

§ )

c(Pi)_.R_eS_.. c(s)

Soit M € C(B) . Je veux prouver que le morphisme naturel Ds M— Ds M
i
est un isomorphisme. Utilisant les commutations aux limites inductives, on se

raméne au cas ou M est de dimension finie. On a un

R, .
isomorphisme canonique Coindb1 M— Coind% M . Soit N ce module.Il est
alors facile de prouver que Ds M et Ds M sont égaux au sous-module de N
i
des vecteurs semi-simples sous l’action de hi , et nilpotents sous 1’action
de e, - Ainsi Ds M— Ds M est un isomorphisme.
i
I1 est facile de montrer que C(B) contient suffisament d’injectifs: les

injectifs de C(B) sont les sommes directes (finies ou infinies) de modules

v
V(A) (A € P) . Je peux donc considérer les dérivés D; du foncteur Ds
i i

v
Les modules V(A) et leur sommes directes restent injectifs dans C(L) . On a

donc un isomorphisme D; 3 D; de foncteurs a valeurs dans C(S) .
i

Enfin on remarque que C(L) est de dimension homologique un. Ceci est
clair, car les modules injectifs M e C(L) sont caractérisés par le fait que

M= eiM . On a donc Dg =0 pour k > 2 . Un calcul direct prouve que si
i

M € C(L) est de dimension finie, Dg M et Di M sont de dimension finie.
i i
s,

* 1

Si M est de dimension finie, on a un isomorphisme naturel (Dg M
i

)=D M,
‘*
M) pour tout entier k .
i

s.
et je peux donc poser Dk1 M= (D:

s,
Soit 4! : Z[P] — 2[P] 1’opérateur de Demazure défini par la formule

(cf. [4], [12])
A s; (Ap)-p
4a e = , pour tout A € P .
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Soit 7 : 2[P] — 2[P] 1’opérateur d’inversion ‘r(e)‘) = e_A , et
i
As 1’opérateur dual de Demazure As =1t0d or7T.
i i
Si M est un U(h)-module diagonalisable tel que dim(MA) < ® pour tout
A e 1_1lt , je pose ch(M) = 2 . dim(MA)eA , 1’expression définissant ch(M)

Aeh

étant prise dans un sens formel dans 2z [[P]] .

Le lemme suivant est di a A. Joseph [31].

s,
Lemme 13 : Soit M e C(B) , M de dimension finie. Pour que Dl1 M=0, il

s,
suffit que M — D 1M soit injective.

5
4 " ch(M) .

S. S.
On a ch(D01 M) - ch(nl1 M)

On a ch(Dg M) - ch(Dl M) =4, chM) .
i i i

Démonstration : On rappelle briévement la démonstration de Joseph, par exemple
pour le foncteur Ds . Tout module M € C(L) est somme directe de modules

i
ficelles ci(A) ® kl-l (o A,u € Q') . On vérifie alors que 1’on a

* _ * =
Dsi(ci(A) ® k”) = ci(A) ® Dsiku , et Asi ch(&i(A) ® k”) =

ch(ci(:\)) ® ch(ds ku) . On peut donc n’examiner que le cas oi l’ona M = kA .
i

On peut supposer également que l’on a g = _§|(2) , ce qui permet d’utiliser

les notations du chapitre I. On a une résolution

0 — M — Y(A) — V(A -a;) — 0.

Enfin on a: DsiV(A) =n?o ci(A 4+ nai) lorsque A(hi) >0

et Ds V(siA) = Ds V(A) pour tout A .
i i

Ceci donne les formules

D (k) = ¢.(s.A)
s; A 1 si A(h) <0

1}
o
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D, (k) =0
S84 si A(hy) 20
1 - _
D, (k) =€, (A - a,)
1
* _ . -
DS kA =0 si A (hi) 1,

d’ou les formules cherchées. C.Q.F.D.

Soient M , M’ € C(B) . Il existe un morphisme naturel

D Me DS M Ds (M® M’) . En particulier si M’ appartient a C(Pj) ,
S5 i i
on a un isomorphisme Ds (Me M) (DS M) ® M’ , et un isomorphisme

i i

DS M’ =, M’(car Ds k = k) . Ceci prouve aussi que 1’on a
i i

s,

D oD =D ) . On remarque aussi que 1’on a D*1

S. S. S .
1 1 1

kﬁo = 0, ce qui prouve
que la condition suffisante du lemme précédent n’est pas nécessaire (remarque

due a A. Joseph).

Soit we W » WES, .. sy .Pour chaque M e C(B) on peut considérer
1 n
Ds M comme un élément de C(B) . On peut donc définir Dw = DS ve Ds et
i i i
1 n
s. s,
W | In
D" =D D . Si M est de dimension finie , on a des isomorphismes

naturels (Dw M*) =DM , Dw M* et D' M é&tant de dimension finie. Il

n’est pas clair pour le moment que les foncteurs dérivés D; M sont de
dimension finie, ni que Dw est de dimension homologique finie. Dans la
seconde partie, je montrerai que tel est le cas (L’étude des toncteurs dérivés
rendra plus naturelle les notations employées ici, qui sont différentes de
[311).

Avant d’expliquer les propriétés des foncteurs Dw , Je vais d’abord
considérer un cas particulier technique. Je suppose que g est de dimension
finie. Soit donc G le groupe simplement connexe d’algébre de Lie G . Pour

tout M e C(B) , soit E(M) le faisceau des sections du fibré GxBM . Je note
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aussi K[G]B 1’anneau des fonctions réguliéres sur G , avec action a droite

de B .

Lemme 14: On suppose que w est la décomposition réduite de W,

1’elément maximal de W . On a alors un isomorphisme canonique, pour tout

Me C(B), H%(G/B,2(M)) = DM .

Corollairement on a

1) Si w’ est une autre décomposition de W, , onaun isomorphisme canonique
de foncteur Dw ~ Dw, .

2) Pour tout M e C(B) , ona DM = (b, k(Gl @ M) .

Demonstration: On trouvera des details sur les constructions utilisées
dans la démonstration dans [7] et dans la suite de cet article. Soient D(w)
la variété de Demazure associce a w , et o : D(w) — G/B le morphisme
associé. Pour chaque M e C(B) on peut associer un faisceau xw(M) sur D(W)
, et on a zw(M) = ntz(M) . On a un isomorphisme canonique (cf. chapitre V)

D M= H(D(w), 2 (M) .
Le morphisme = est propre et birationnel, et G/B est normal (puisque G/B
est lisse). On a donc

EM) =T (M) et

H° (G/B,€(M)) = H°(D(w),e (M)).
ce qui prouve le lemme.

Le corollaire I du lemme 14 a été prouvé par A.Joseph de maniére purement
algébrique [32]. On revient a la situation générale.

Je vais établir quelques propriétés des foncteurs Dw . Ces propriétés
résulteront aussi de maniere triviale de la proposition 3. Cependant la
proposition 3 exige la construction des faisceaux $£(M) sur les variétés de
Schubert, i.e. du fait que les variétés de Schubert sont a singularités
rationnelles. Aussi j’ai préféré indiquer des démonstrations élémentaires de

ce fait. Egalement on peut vérifier que le seul point utile concernant les
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foncteurs de Schubert (pour la preuve des résultats jusqu’a la proposition 3)
est le lemme 13. La formule de caractére du lemme 13 peut aussi €tre obtenue
comme conséquence du théoreme de Riemann—Roch pour Py, et la premiere
assertion du fait suivant

Lemme 14: Soient ¥ un faisceau cohérent localement libre sur Pl, et
i:ZP__—q Pl le morphisme correspondant. Alors si le morphisme

owl, 5) — B, i*%)

est surjectif,on a HI(P’,?) =0 .
Démonstration: D’apres [21] , ¥ est somme direct de faisceaux inversibles

o '(n) . I1 suffit donc de vérifier cette assertion pour ces faisceaux
P!

inversibles, ce qui est trivial.

Propriétés élémentaires des foncteurs D

1) Soient w e W, M, M’ € C(B) . On construit par récurrence un morphisme
fonctoriel

DwM ® DWM’ _ DW(M ® M’) . Le foncteur associé sera appelée la
multiplication.

2) Soient w, ve W, n € N avec ¢(w) =n, v<w. Je pose w = Sy +.e8; . I1

1 1

existe donc ¢ = (61...€n) € {0,1}n tels que 1’on ait

v = se1 sen

1 Tn

n

Z €. = ¢(v)

X i

i=1

|
avec la convention s;” = 1 ou s; suivant que Cl =0 oul . Ceci definit un
1 1

morphisme de foncteurs Ut Dw —_— Dv , donné par la formule

o, = US el O , ol Ei est définit par Ci+5i =1 pour i=1an.

Je vais prouver que le morphisme de foncteurs C’C:Dw —_ Dv ne dépend

pas de ¢ . Par récurrence, on se raméne a la situation suivante:
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w = Si u Si pour un certain i e€ I, ue W avec e(u) = e(w) - 2.
v==_S..
i
et la donnée des séquences ¢ = (1, 0...0) et €' = (0,...0, 1) pour
lesquelles on veut prouver que 1l’on a ¢ e = 4 Py
Je pose ¢ + Id Og ovceolg oId . On obtient ainsi un diagramme
i i
2 n-1
commutatif

Les morphismes og o1d, Ido"s : Dg oDg —— Dy sont des isomorphismes,
i i i Ui i

ce qui fournit 1’isomorphisme ¢, =~ ¢ cherché. Enfin il est clair que les

€ [
morphismes de foncteurs considérés commutent & la multiplication.
3) Je vais prouver que les foncteurs D;; ne dépendent que de 1’image de w
dans W . Plus précisement, étant donné deux décompositions réduites 71, w’
d’un méme élément de W , je vais construire un isomorphisme canonique de
foncteurs D‘; ~ D;, .

Cette construction se fait en deux étapes: premiérement je construis un
isomorphisme de Dw dans Dw’ , puis je vérifie sa canonicite (dans le preprint
de cet article j’avais oublié la seconde étape, ainsi que me 1l’a fait
remarquer le referee).

Soient we W, et I' 1’ensemble des décompositions réduites de w .

Pour tout sous-ensemble J < I , je note w(J) le sous—groupe de W engendré

par les réflections Sj' je€J . Suivant [61], on muni I d’une structure
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de graphe par le procédé suivant. Si w, w' sont deux éléments de I , ils
sont les sommets d’une aréte commune si la condition suivante est réalisé:
I1 existe J c I tel que W(J) soit fini et le cardinal de J soit 2,

il existe u, v e W tel que 1’on ait

b X

SFuwyv

' 2y W’

£

v
oi w,w’ sont les deux décompositions réduites de 1’élément maximal de
W(J),et ou 1’0n a
e(w) = e(u) +e(v) .
(Cette derniére condition implique aussi que 1’on a

e(W') = e(u) + e(w’) + e(v)) .

Soient a présent ;, W' les deux sommets d’une arréte commune de I ,
comme précédemment. Comme le groupe de Weyl W(J) est fini, la sous—algébre

de Kac-Moody de rang deux et de matrice de Cartan (a..). . est de
ij’i,jeJ

dimension finie. Par le lemme 14, on a donc un isomorphisme canonique

Du = Du’ , ce qui induit un isomorphisme D; - D;, .
D’aprés [61] , le graphe I est connexe. Donc & tous w, w’ € I' , et

' est associé

toute classe v d’homotopie de chemin de source w et de but w
un isomorphisme L D; —_— D;, .

Prouver la canonicité de 1’isomorphisme ainsi défini revient & prouver
que pour tout ¥ € I' , 1’action du groupe fondamental ul(r,v) sur Dw est
triviale.

Pour toute partie J c I telle que W(J) soit fini et J soit de
cardinal 3, on considére le graphe FJ des décompositions réduites de
1’élément maximal de W(J) . Soient X € TJ , et (Xo...Xm) une suite
d’éléments de FJ telle que

0~ xm

b) Pour tout entier i, 1 ¢ i ¢ m, Xi—l et Xi sont les deux sommets

a) X=X
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d’une arréte commune de ry.
Soient u, ve W tels que u x v soit une décomposition réduite de w

avec (e(u) + ¢(x) + ¢(v) = ¢(w)).La suite d’éléments (u Xy Vs eeey WX v)
définit un lacet de I' , de base u x v . Dans la suite j’appelerai
¢lémentaires les lacets de I que 1’on peut obtenir par cette construction.

Soient we Tl et ¥ un lacet élémentaire de base w . Par le lemme 14,

on obtient par la méme démonstration que precédemment que 1’isomorphisme

T, Dw —_— Dw est 1’identité. D’aprés [61] , le groupe fondamental de I
en un point donné 4 est engendré par les conjugues (dans le groupoide
fondamental) des lacets €lémentaires. Ainsi les isomorphismes cherchés sont
canoniques.

4) Pour tout é€lément w de W , on peut donc définir le foncteur Dw comme

n’ importe lequel des foncteurs D; , ou w est une décomposition réduite de

w .

Pour tout couple (w, v) d’¢léments de W avec w > u on definit ainsi un

morphisme de foncteurs Yt Dw N Du . Ces morphismes commutent a la
s
multiplication, et 1’on a o ] =0 pour tout triplets d’éléments
X,Vv° v,z X,2

(x, v, z) de W avec X <y ¢ z.
Remarque: Pour une algebre de Lie semi-simple de dimension finie, A.Joseph a
les foncteurs notés ici D" [31] . Dans cet article sont également définis des
dérives par un moyen homologique non généralisable ici. Néanmoins, il
résultera de théorémes d’annulation cohomologique que ces définitions
coincident pour le cas des algébres semi-simple. Ces foncteurs s’apparentent

aux foncteurs de Zuckerman.
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Soit S un schéma. Dans ce paragraphe, les schémas considérés seront
tous donnés sur la base S , sans mentions supplémentaires. Si X et Y sont
deux schémas, j’appellerai donc morphisme entre les schémas X et Y des
morphismes sur S , et je noterai X x Y le produit X Xg Y .

Soit G un groupe. Dans la suite, je supposerai que tous les groupes
considérés seront affines, i. e. que le morphisme w : G — S est affine. Je
noterai u : G x G — G 1la multiplication, ¢ : S — G le morphisme unite,
et w : G — G le morphisme d’inversion.

Soit X un schéma. Je dis que X est un G-schéema & gauche, si 1’on
s’est donné une action de G a gauche, i. e. un morphisme S Gx X — X
satisfaisant aux conditions de compatibilités usuelles, a savoir :

%y o(IdG x ox) = oy o(u x IdX)
oy ofe x Idx) = Idx

Soient X , Y deux G-schémas, et ¥ : X —» Y un morphisme. Je dis que
Y est un G-morphisme, si l’action de G commute a ¥ , i. e. si 1l’on a
Iy o(IdG xP) =¥ o I - Le produit X x Y est naturellement un
G x G-schema. Via 1’application diagonale 6 :G — G x G , X x Y est
naturellement un G-schéma.

On a une notation analogue de G-scheéma a droite. L’inversion w permet
de transformer naturellement tout G-schéma & gauche en un G-schéma a droite,
et réciproquement. Ainsi toute définition concernant les G-schémas a gauche
se transporte aux schémas a droite.

Soit X un G-schéma. On a une notion évidente d’ouverts et de fermés
G-invariants, et plus généralement de parties localement fermées
G-invariantes. Dans la suite on considérera G comme un G-schéma pour la

multiplication & gauche.

Lemme 15 : Soit w : G — S un groupe. Les ouverts G-invariants de G sont

exactement les ouverts du type n_l(V) , ou V est un ouvert de S .

43



O. MATHIEU

Démonstration : Comme on a supposé G affine, le morphisme € : S — G est
une immersion fermée. Soit U un ouvert G-invariant de G . En confondant S

a4 son image par € , il est clair que 1’on a U = u—l(U ns).

Soit X un G-schéma. Je dis que 1’action de G sur X est libre (en
m’écartant de la terminologie usuelle [48]), s’il existe un schéma Y , avec
action triviale de G sur Y , tel que 1’on ait un isomorphisme X ~ G x Y
de G-schéma. Je dis que 1’action de G sur X est localement libre, s’il
existe un recouvrement de X par des ouverts G-invariants qﬁ sur lequel
1’action de G est libre.

Soit X, Y deux G-schémas, et @ : X —» Y un G-morphisme. Je dis que
Y est le quotient de X par 1’action de G si les deux conditions suivantes
sont satisfaites

(a) G agit trivialement sur Y.

(b) Pour tout schéma Z sur lequel G agit trivialement, tout
G-morphisme v : X —4 Z factorise de maniére unique a travers Y , i. e. il

existe un unique morphisme Y —— Z rendant commutatif le diagramme

Etant solution d’un probléme universel, le quotient de X par 1’action

est unique, dés qu’il existe. Je note le quotient, lorsqu’il existe, G \ X .

Lemme 16 : Soit X un schéma avec une action localement libre de G . Le
quotient G\X existe, et le morphisme X — G\X est affine. Si en outre le
morphisme © : G — S est plat, le morphisme X — G\X est plat. Soit U
un ouvert G-invariant de X . L’action de G sur U est localement libre,

et le morphisme naturel G\U —— G\X est une immersion ouverte.
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Démonstration. Le lemme est évident lorsque G agit librement sur X , et se
démontre dans le cas général par recollement.

Soit X un G-schéma. Soit X le schéma X sur lequel G-opére

triv
trivialement. Soient o : G x X —— X 1le morphisme donnant 1’action de G
sur X, et 8§ : G—— G x G le morphisme diagonal. Je note

Xx : GX X—— G x X le morphisme donné par la formule

X, = (I, x0o) o (6 x Idx) . En termes naifs, on a X (g,x) = (g,8x) . Il est
X dG X
clair que Xx est un isomorphisme de G-schéma

X, ¢ Gx X

X triv — GxX.

Lemme 17 : Soient X , Y deux G-schémas. Si 1’action de G sur X est
libre (respectivement localement libre), G agit librement (respectivement
localement librement) sur X x Y .

Soient X un schéma sur lequel G opére a droite, et Y wun schéma sur
lequel G opére & gauche. Lorsque le quotient de X x Y par 1l’action de G
existe, on note ce quotient X xGY .

Soient X un G-schéma, 0 : G x X — X le morphisme donnant 1’action de

G, p:GxX— X la projection sur le second facteur, P : G x G x X —s G
x X la projection sur les deux derniers facteurs. Soit £ un Ox—module.
Suivant Mumford, ([48], définition 1.6, page 30), on dit que % est un
dx—module G-équivarant si 1’on s’est donné un isomorphisme ¢ : o e —, p'x

, satisfaisant la condition suivante : le diagramme naturel

(Id, x o)*¢
(IdG X o)'o*x dG (IdG X o)*p*z
| I
(u x Idx)‘a*£ P*o’e
(u x Idx)*'f P*s
(u x Idx)*p*z ~ P*p‘z
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est commutatif. Cette condition est dite condition de cocycle.

Soient X , Y deux G-schémas, P : X — Y un morphisme de G-schémas.
et £ un Ux—module G-équivariant. De maniére naturelle ¥*¢ est un
dx—module G-équivariant.

Soit X wun G-schéma. On a une notion évidente de morphisme équivariant
de dx—module équivariant. Soit £ un ax—module équivariant. Soit L riv

(-4 -module &£ sur X
X, .
triv

triv * avec action triviale de G .

le

Les morphismes p et o peuvent étre considérés comme des G-morphismes

P Gx xtriv . xtriv

o:Gx X, . —yX.
triv

Par la constuction précédente les 0, x X v—nodules p‘z et o'¢

G tri

sont donc naturellement équivariants. Le diagramme :

triv

*
. x (Idx o) ¢ . x
(Ideo)oz —_— (Ideop.‘e

!

(u x Id)*o‘z P'c*e

est le diagramme qui fournit 1’isomorphisme
s : (u xId)‘o*x —, P%"¢ , donnant la structure d’équivariance au
module o‘¢ . L’ isomorphisme naturel (u x Idx)'p‘z SN P‘ptz donne la

structure d’équivariance au module p'x . Donc la condition de cocycle,

triv

i. e. de commutativité du diagramme :

c ¢

(u x Idx)'o'z ., P'ote

l l

% % ~ x
(u x Idx) p xtriv P'p ztriv
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peut s’exprimer en disant que ¢ est un G-isomorphisme entre les modules

- . . x* *x
équivariants o £ et p ztriv'

On peut considérer S comme un G-schéma, avec action triviale de G .

Ainsi les morphismes w# : G— S et € : S —y Gtriv sont des morphismes de

G-schémas.

Lemme 18 : Soit £ wun ac—module équivariant. Il existe un isomorphisme

canonique de G-modules £ — wtete .

Démonstration : Soit p : G x G — G la projection sur le second facteur.
Soit @ : u‘x — p*x 1’isomorphisme donnant la structure d’équivariance sur

£ . 0n avuque ¢ est un isomorphisme de G-modules ¢ : u*x —_— p't ,

triv

sur le G-schéma G x Gtriv . Soit @ = IdG X € . On a ainsi un isomorphisme

de G-modules n‘é : n*u*x J— n*p*x .0Orona uon = IdG et

triv

pon=¢ omn . On a ainsi un isomorphisme de ¢ ,-modules équivariants

G

* Xk
2—01‘(5.‘Ctriv.
Afin d’étudier les images directes des faisceaux quasi—cohérents de

modules, on rappelle deux résultats de Grothendieck :

Théoréme A : Soit f : X —» Y un morphisme séparé quasi-compact de schémas.
Soit ¥ wun faisceau quasi cohérent sur X . Pour tout entier q ) 0, qu* ¥

est quasi—cohérent

Soit : X — Y

| |

X — Y’

un diagramme commutatif de schémas. On dit que ce diagramme est cartésien si

le morphisme naturel X —— X’ x,, Y est un isomorphisme.

Y’
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Théoréme B  Soit : X —mm Y

Js I

X’ ——l-—» Y’
un diagramme commutatif cartésien de schémas. On suppose f quasi—compact
séparé, et v plat. Soit ¥ un UY—module quasi cohérent. Pour tout entier

q > 0 le morphisme naturel v* rY f:g —_— ng. u*r est un isomorphisme.

Les références de ces théorémes sont les suivantes : [23] EGA III,
proposition 1.4.10 (page 91) pour le théoréme A, proposition 1.4.15 (page
92) pour le théoréme B. I1 faut noter la différence de terminologie (un
préschéma dans EGA est actuellement un schéma), et que dans le théoréme B
1’hypothése que f est de type fini est inutile (cf. [23, page 89, (Err III,
25)). Seule 1’hypothése de quasi compacité est nécessaire.

Dans la suite de ce paragraphe, tous les groupes considérés seront

supposés plat sur S .

Lemme 19 : Soient X , Y deux G-schémas, et ? : X — Y un G-morphisme
quasi-compact et séparé. Soit ¥ un ax—module quasi cohérent
G-équivariant. Alors pour tout entier q > 0, qu’.sf est naturellement

G-équivariant.

Démonstration : Le diagramme commutatif

GX X — X

IdeP l l?
P

GXY — Y

est cartésien, et PY est plat. Comme les factorisations naturelles Xy et

Xy sont des isomorphismes de diagramme commutatif
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Xx
Gx X —_— G x X

Id, x P l lIde?
Xy

GXxY —m— GxY

est cartésien, et Xy est plat. Donc le diagramme commutatif

9

GXX — X

IdG x ¥ l l b 4
[/

Y

GXY —m—— Y

est cartésien, et o, est plat. Soit ¢ : o;v —_ p:? 1’ isomorphisme donnant

Y
la structure d’équivariance de ¥ . Pour tout entier q > 0 , on a donc un
; : q . o * q *
isomorphisme naturel R (IdG X P)* ¢ : R (IdG X P)* oxx — R (IdG X Y)*pxs .
Le théoreme B fournit donc un isomorphisme o; Rthv —_ p; RqP‘v . On

vérifie la condition de cocycle de la méme fagon. Ainsi qu‘v est

naturellement équivariant.

Soit X un schéma, sur lequel 1’action de G est triviale. Soit £ un

¢ ,module équivariant. Soit ¢ o'e —, p*x 1’ isomorphisme donnant la

X
structure de G-module. Soit U wun ouvert de X . Les morphismes naturels
2(U) — p Le(p (1)) — p*e( L (W), (V) — o L (W) — Ste@ (W) et
1’égalité o_l(U) = p_l(U) induisent un diagramme

-1
p'e(p U)
@
ew 7 l ()
-1
\ p'e(p V)
Je note :e(U)G 1’ensemble des éléments de £(U) pour lesquels le diagramme
(x) est commutatif. Le préfaisceau U — :ﬁ(U)G est en fait un faisceau, que
Je note 2G . Il est clair que xG est méme un sous—ax—module de ¢ . Soit Y

un G-schéma, U: Y— X un G morphisme quasi-compact et séparé. Soit ¥

un faisceau quasi cohérent de ¢ _-module, G-équivariant. Je pose

Y

_ G
vr = (v'!) .
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Lemme 20 : Soit ¥ wun UG—module quasi-cohérent équivariant. On a un
: R * =
isomorphisme naturel ¢ ¥ — n.F .

Démonstration : Par le lemme 18, on a un isomorphisme de G-modules

x %

, s _ .
€ ytriv , d’c0d un G-morphisme

< . . * %
F>w , d’oi un isomorphisme #n Fxnmwme ¥, __.
X * triv

naturel de Us—modules équivariants e* — aEF . L’action de G sur le

gtriv

as~modu1e e* est triviale. On obtient donc un morphisme naturel

Ftriv
ety — nF . Les ouverts affines de S formant une base de la topologie de

S , il suffit de vérifier que pour tout ouvert affine U 1’application

¥y (U) — u+¥(U) est un isomorphisme. Je pose R = F(U,os) , R[G] = F(V,UG)
od V=al(u) .

Je noterai e#, u“, p“ les applications (entre divers groupes de
sections globales) induites par les morphismes € , u et p . Je vais d’abord
prouver 1’injectivité de 1’application e‘!(U) —_ u+¥(U) . Pour cela il
suffit de prouver que s‘!(U) N ntv(U) est injective. Je pose M = e‘r(U) .
L’application s*v(U) —_ ﬂty(U) est 1’application M — R[G]QRM . Or il est
clair que comme R-module, on a R[G] = R ® Ker e# . Donc 1’application
M — R[G] GRM est injective et par la suite s‘v(U) —_ n+¥U) est
injective.

Le groupe u+¥(U) est 1’ensemble des é€léments u de R[G] e M rendant

commutatif le diagramme

R(G] e R(G] e M

o

R(G] ®_ M 3

}\ R[G] ® R[G] e M

Soit u = i Pq ® md(fq € R[(G] , m € M) un élément de R[G] QRM . Alors u
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appartient a n+¥(U) si et seulement si on a 1’égalité suivante dans

R[G] e R[G] L M: i "#(Pa) ®m = i 10 Ya em . Ona u o(IdG X €) = IdG .

Pour tout u e ﬂ+$(U) 1’identite : (IdG X 5)#u#(u) = u implique :

_ # #
u = Z(IdG X e) U (Pa) ® m,
a
_ #
= i(IdG xe) 1@ Pa ®m,

=Z1ec® eom
a a
a
et onadonc ueM-= e‘v(U) .
Ainsi le morphisme naturel ety — n.% est un isomorphisme.
Soit X un schéma. On note Q coh (X) 1la catégorie des faisceaux
quasi-cohérent sur X . Si X est un G-schéma, on note Q cth(X) la

catégorie des faisceaux quasi-cohérents et équivariants .Comme G est supposé

plat sur S , la catégorie Q cth(X) est abélienne.

Lemme 21 : Soit X un schéma sur lequel le groupe G agit localement
librement. Soit v : X —» G \ X le morphisme de passage au quotient. Soit
¥ € g=gggc(x) . Alors V¥ est quasi-cohérent. En outre si # est plat sur
X (respectivement localement de type fini) alors ¥ est plat sur G\X
(respectivement localement de type fini).

Le foncteur v, Q coh . (X) —— g=§gg(G\X) est covariant et exact, et

=G

P _ . . *
est une équivalence de catégorie dont 1’inverse est o .

Démonstration : Les assertions que l’on cherche & montrer sont locales sur
G\X . Quitte a changer de base, on peut donc supposer que l’ona X = G, de

sorte que 1’ona G\X =S, et v =mu.

Le foncteur ¢* conserve la quasi-cohérence, la platitude et la

finitude, et est exact & droite. Par le lemme précédent on a = e* . Comme
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. -~ N * .
par construction = est exact a gauche. On a aussi =n@w = id

+ + Q coh(s) ’

x . L s
na, = 1dE co! (©)? ce qui achéve la preuve du lemme.

Lemme 22 : Soient X , Y deux schémas sur lesquels G agit localement

librement. Soit f : X —» Y un G-morphisme. On a ainsi un diagramme

commutatif
x —I L v
ul ul
G\x —& |, Ga\vY

(a) Soit ¥ € Q cth(Y) . On a un isomorphisme naturel
X x
u+f9'zgu+9' .
(b) On suppose f quasi-compact et séparé. Soit ¢ € Q cth(X) . Alors pour
tout entier q > 0 on a un isomorphisme naturel

q ~ pd
u+R f"s ~ R g M5 .

Démonstration : Les assertions (a) et (b) sont locales sur G \ Y . Donc on
peut supposer que l’action de G sur Y est libre. On choisit un
isomorphisme de G-schémas Y .~ G x (G\Y) . On a ainsi construit une section
Y du morphisme v . On pose X’ = f_l(?(G\Y)) . I1 est clair que 1’on a

X = Gx X’ comme G-schéma. En particulier u induit un isomorphisme :

X* = G\X . Ainsi la section P détermine canoniquement une section

X : G\X — X du morphisme u .

On va montrer d’abord le point (a); Par le lemme 20, on a des
isomorphismes v.F = Vars , et u+f*v ~ x‘f‘? .Ona fox =Yog. on
obtient ainsi un isomorphisme u+f*? ~ g*u+¥ . Il est clair que cet
isomorphisme ne dépend pas en fait du choix de la section ¥ . Ainsi le point
(a) est montré.

On va montrer le point (b). D’aprés ce qui précéde, il est clair que le
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diagramme

X —_— Y

l l

G\ X — G\Y

est cartésien. Comme le morphisme 7 : G — S est supposé plat et affine le
morphisme v : Y — G\Y est plat et quasi-compact. Comme v est scindé, v
est donc en outre fidélement plat. Donc le morphisme g est quasi—compact
([8], EGA IV, page 28, corollaire 2.6.4) et séparé (ibid, page 29),
proposition 2.7.1). Par le théoréme B , on a donc un isomorphisme

Y'qu* RN ng*x'Q pour tout entier q > 0 . On obtient ainsi un
isomorphisme v . qu"s = ngtn LR I1 est clair que cet isomorphisme ne

dépend pas du choix de la section P . Ceci montre le point (b) .

Soit X un schéma sur lequel G agit a droite localement librement.
Soit Y un G-schéma (& gauche). Par le lemme 16, le quotient X xG Y existe.
Soit v : XxY— X xG Y 1le morphisme de quotient, et p: X x Y — Y la
projection sur le second facteur. Soit ¥ € 9_=cth(X) . On a donc
p‘!f € Q_Lg_l_xc(x x Y) . Je pose :stf =v, p‘sf , de sorte que 1l’on a ainsi défini
un foncteur .‘Dx : _Q____cth(Y) JE— Q____coh(X xG Y) .

Lemme 23 : Soient X , X’ deux schémas & droite sur lesquels G agit
localement librement, Y , Y’ deux G-schémas a gauche.

1) Le foncteur :Dx : _Q__Lth(Y) —_ 9___9___911(x xG Y) est covariant exact a
droite. Soit ¥ e Q_&_*_lG(Y) . 8i ¥ est plat sur Y (respectivement
localement de type fini), :nx! est plat sur X xG Y (respectivement

localement de type fini). En outre si X est plat sur S , 9, est exact.

X

2) Soient f : X —» X’ un G-morphisme et P : X x ¥ — X’ x° Y 1le
morphisme induit. Pour tout % € Q cth(Y) , on a un isomorphisme naturel

*
zxy z?!bx,! .
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3) Soient g : Y— Y’ un G-morphisme, et ¥ : X xG Y — X xG Y’ le

morphisme induit. On suppose g quasi—-compact et séparé, et X plat sur S .
Soit ¢ € Q cth(Y) . Pour tout entier q > 0 , on a un isomorphisme naturel

2, Rlg ¢ =~ Rl a2, @ .
* *

X X

Démonstration : Le point 1 résulte du lemme 21, les points 2 et 3 résultent

(respectivement) des points 1 et 2 du lemme précédent.

Remarque : Soient X , Y deux schémas sur lesquels G opere localement
librement. Soit f : X —» Y un G-morphisme. On a vu au cours de la

démonstration du lemme, que le diagramme commutatif

X —1 ., ¥
P

G\ X —m— G\ Y

est cartésien, et que le morphisme Y —— G \ Y est affine (donc quasi
compact) et fidélement plat. Il en résulte donc ([8] EGA IV, 82, p. 28 et 29)
que si f est une immersion fermée (respectivement universellement fermée,
séparée...) il en est de méme pour ¥ . Par construction, on a également
%G\ x TH O -

Dans la suite, je vais construire les varietés de Demazure, qui seront en
fait des schémas sur Spec(Z) . Je pose donc S = Spec(Z) .

Soit 1€ I . Soit U = Fi x B et V= Eisi x B . Par le lemme 8 , U et
V s’identifient & deux ouverts de Pi . Soit T=UNV . Les ouverts U , V
et T sont invariants par 1’action a droite de B , et B agit librement sur

chacun des ces ouverts . Comme B-schémas, on a des isomorphismes

U ~ Spec(z[t]) x B
V ~ Spec(Z[t]) x B
T = Spec(2[t,t *]) x B
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oi t designe une indéterminée. Soit w e [} , n = e¢(w) . On pose

w=8S8. ...8. . On peut donc définir les schémas

1 n
Ew) =P, X ... &P, ,EQ1) =B
1 1
1 n
Dw) = P, x® ....x" P, /B, D(1) = B/B = Spec(2)
1 n

de sorte que 1’on a E(w)/B = D(w) . En fait ces définitions n’ont de sens que
lorsque 1’on a vérifié que les schémas obtenus ne dépendent pas de 1’ordre
dans lequel on a effectué les opérations de quotients, ce qui est évident car

Pi X eo0 X Pi est un schéma sur lequel B" agit de maniére localement libre
1 n

(B agissant n-1 fois "entre" deux facteurs consécutifs, et une fois a
droite).
Ces schémas sont reliés entre eux par deux types de morphismes :

1) Soit w = S; .- 8; un élément de W . Soit k un entier, 0 ¢ k ¢ n .
n 1

Soit v : {1,...,k} — {1,...,n} une application strictement croissante. On

i oo 8y est réduit. Alors ¥ détermine des
? (k) (1)

immersions fermées canoniques j? : E(v) — E(w) et i? ¢ D(v) — D(w) ,

suppose que V = 8

qui commutent & 1’action de B , construites de la maniére suivante. On peut

supposer n > 1 . Soit u = s; cee 8 . L’immersion fermée B — Pi
n—1 1
déterminent des immersions fermees B xB D(u) — Pi xB D(u) et

n

B xBE(u) —_— Pi xB

n

E(u) , i. e. des immersions fermées D(u) — D(w) et

E(u) — E(w) . Lorsque k = 0, ou ¥(k) # n , on peut supposer par
récurrence sur ¢(w) avoir défini les immersions fermées j? : E(v) — E(u)
et iP : D(v) — D(u) ce qui fournit les immersions cherchées. Si

Y(k) =n , on pose v’ = , et soit

S. eee S,
Yy (k-1) p(1)

v’ {1,...,k-1} — {1,...,n-1} 1la restriction de ¥ . On suppose de méme
construire les immersions fermées j?, et i?, . Ceci détermine des

immersions fermées
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iy Py xB D(v?) —s P, xB D(u)
n n

it P. X E(v') — P, xP E(u)

Jp i i

On notera que ces immersions dépendent de ¥ . Dans le cas particulier ou

1’on choisit v e W , vEw et €(v) =e(w) -1, il existe une unique

application ¥ comme précédemment, telle que 1’on ait v = S5 . Ainsi il
r(1)
existe une immersion canonique D(v) — D(w) et E(v) — E(w)
2) Soit w = ${ -+ 8; un élément de W . Soit k un entier, 1 <k<n.
n 1
On pose u=s, ...s, vV =8, oo S, de sorte que 1’on a w = uv .
i i i i
n n—-k n-k-1 1
Le morphisme naturel D(v) — Spec(Z) détermine un morphisme
P. xB .e. X P, xB D(v) — P. xB . xB P. /B i. e. un morphisme
i i i i
n n-k n n-k
D(w) — D(u) . Soit ¥ : {1,...,n-k} — {1,...,n} 1’addition par k . Il

est clair que D(w) — D(u) est un fibré localement trivial de fibre

D(v) . En outre i, = D(v) — D(w) est une section de ce fibré. Les deux cas

14

particuliers utilisés seront les suivants :

a) u = S; e 8 de sorte que le fibré D(v) — D(u) est un fibré
n 2
localement trivial de fibre Pi /B isomorphe a la droite projective Pl
1
b) u = s, de sorte que le fibré D(w) — D(si ) est fibré localement
n n

trivial de base Pi /B isomorphe & la droite projective Pl .
n

Par récurrence, on voit que les schémas de Demazure D(w) sont obtenus

par des fibrations successives en droite Pl . On obtient ainsi :

Lemme 24 : Soit w € W . Le schéma de Demazure D(w) est propre et plat sur
Z . Pour tout corps F , D(w)(F) = D(w) x Spec(F) est une variété compléte

lisse (irréductible) de dimension e(w) .

Les constructions de ce paragraphe s’applique au groupe G = B . Pour
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chaque w e W , E(w) est un B-schéma a droite. On a ainsi un foncteur
’E(w) que je noterai plus simplement mw .

On appelle B-module un élément de g=gggB(Spec Z) , catégorie que je
noterai plus briévement Mod(B). Tout élément A € P détermine un &lément de
Mod(B) (qui est un Z-module de rang un) que je note encore A . En termes
naifs, le sous—groupe distingué N de B agit de maniére triviale, et 1l’action
est déterminée par 1’isomorphe H = Hom(P, Gm) .

Soit we W . Soit Y un B-schéma. L’isomorphisme naturel
B x (E(w) xB Y) ~ (B x E(w)) xB Y montre que E(w) xB Y est naturellement un
B-schéma, et que le morphisme E(w) x Y — E(w) xB Y est un B-morphisme.
Soient o : B x(E(w) x Y) — E(w) x Y, 0’ : B x(E(w) xB Y) — E(w) xB Y
les morphismes donnant 1’action, p : B x (E(w) x Y) — E(w) x Y ,

p’ : B x(E(w) xB Y) — E(w) xB Y, et @: Ew) xY — Y les projections

sur le second facteur. On a ainsi un diagramme commutatif

O,p
Bx E(w) x Y /3 E(w)xY -7 ., y.
ol ,p,

B x E(w) xB Y /3 E(w) xB Y

Soit £ e g;gggB(Y) . L’isomorphisme # oo =@ o p donne un
isomorphisme o‘(n'z) ~ p*(ntz) , ce qui muni n*¢ d’une (seconde) structure
d’équivariance, relative a 1’action a gauche de B . Par le lemme 22, on a
des isomorphismes naturels :

* x
u, o (m &)

R

K *
o u+(n £)

p’* u+(n*2)

R

x x
u,p (ne)
d’oli un isomorphisme naturel o' 2, &= p’* 2. 2. On vérifie de méme que cet
isomorphisme satisfait la condition de cocyle. Ainsi mw ¢ est naturellement

B-équivariant. En particulier, si w = $; +«--S; ,onen tire un
n 1
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isomorphisme de foncteur zs 0...0 ’s ~ :ow .
i i
n 1
Lorsque M € Mod(B) et Y = spec Z , on posera zw(M) = .‘DW(M) le faisceau
sur D(w) obtenu. On pose aussi o, = aD(w)'
Lemme 25 : Soit M € Mod(B) . On suppose que M est un 2Z-module libre de
rang fini r . Alors icw(M) est localement libre de rang r . En outre si

veiW , VvEw et ¢e(v) +1 =¢(w) , la restriction de xw(M) a D(v) est

£V(M) .

Démonstration : Par le lemme 23, zw(M) est un aw—module quasi-cohérent,
plat, localement de type fini. Donc 2W(M) est localement libre. Soit

i : E(1) — E(w) 1’immersion fermée canonique, et i’ : Spec(Z) — D(w)
1’immersion fermée correspondante. Comme D(w) est irréductible, xw(m) est
de rang constant. Or par le lemme, on a un isomorphisme canonique

91M ~ i’* :DW(M) . Comme on a a)l M =M, le rang du faisceau localement libre
zw(M) est r . Le second point du lemme est aussi une application du lemme

23.

Remarque Il est nécessaire de construire les schémas de Demazure sur Z pour
pouvoir appliquer un résultat de semi—-continuité. Plus précisément, on
utilisera le fait suivant. Soit R un anneau de Dedekind. Pour tout couple de

R-modules M, N, on pose M x N = Torl:(M,N) .

Lemme 26 : Soit X —— Spec(R) un schéma quasi-compact et séparé sur le
spectre d’un anneau de Dedekind R . Soit ¥ un faisceau quasi-cohérent sur

X , plat sur R . Soient F une R-algébre, Y = Spec(F) x , et

Spec(R) X
J+ Y—s X le morphisme canonique. On a pour tout entier q > 0 des suites

exactes naturelles
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0 — F ® BY(X,¥) —» HY(Y, %) — F » B (x,9) — 0 .

Ce lemme est bien connu. Comme ce lemme est un cas particulier de
théorémes difficiles de Grothendieck, j’en indique une démonstration (cf. [23]
EGA III, %6).

1(U) . Alors

Soit U un recouvrement affine fini de X . Soit U’ = j—
U’ est un recouvrement affine de Y . Coome X et Y sont séparés on a
H'(X,¥) = h*(e (U,¥))
H* (Y, %) = h* (e (1", %))
oi ¢ (, ) désigne le complexe de Cech. On a %'(U’,j‘!) ~ Feo C (U,¥) , et
le complexe C°(U,¥) est plat sur R . Le lemme 26 résulte donc de la formule
de Kunneth.

Ce lemme est un résultat de semi—-continuité pour la raison suivante.
Soient X — Spec(R) un schéma propre sur un anneau de Dedekind, ¥ wun
faisceau cohérent sur X , plat sur R . Soit K le corps des fractions de
R . Pour toute R-algébre F , on note #(F) la restriction de ¥ a

X(F) = X Spec(F) . On a alors

*Spec(R)
1) Pour tout idéal maximal m de R les caractéristiques
d’Euler-Poincaré x(¥(R/m)) et x(¥(K)) sont égales.
2) Pour presque tout idéal maximal, le morphisme naturel
R/m ® H*(X,v) — H*(X(R/m) , ¥(R/m)) est un isomorphisme.
Ceci résulte du lemme précédent, et du fait que H*(X,y) est un
R-module de type fini ([8] EGA III, 83).
Soit S un schéma. Pour tout we W , on peut définir le schema de

Demazure D(w)(s) par la formule D(w)(s) =8 D(w) . Les cas que 1l’on

XSpec(Z)
considérera dans la suite correspondent aux cas o S est le spectre d’un
corps, ou d’un anneau d’entiers Soit M € Mod(B) . Soit j : D(w)(s) — D(w)

le morphisme naturel. On pose .‘tw(M)s = j‘xw(M) . Ona D(w)(s) = E(w) xB S,

donc par le lemme 23 on a aussi $w(M)S = ww(n*M) , ol W : S —y Spec(Z) est
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le morphisme naturel. Afin d’éviter d’alourdir les notations, je poserai
Hy(D(w) 5 £ (M) = B (D(W) gy » £, (M) .

Lorsque S sera le spectre d’un anneau R , je noterai aussi D(w)(R) ,
LW(M)(R) , H;(D(w) , xw(M)) les objets considérés. Dans les chapitres ou le
schéma S sera convenu, j’oublierai d’indiquer S , et je noterai par exemple
D(w) le schéma D(w)(S) . En revanche, dans les chapitres oi des confusions
sont possibles, je noterai D(w)(z) , xw(M)(z) , H;(D(w) , Lw(M)) les objets
absolus.

Je vais établir un premier lien entre les variétés de Demazure et le

foncteur de Joseph.

Lemme 27: Soit K un corps de caractéristique 0 . Soit M e €¢(b) . On a un

morphisme naturel H;(D(w) , zw(M)) ~ D“y .

Démonstration: Je vais prouver le lemme par récurrence sur ¢(w) . On peut
supposer &(w) > 1 . On peut poser w = s;v pour un certain i e€ I . Soit
w: D(W) —— Pi/B le morphisme naturel construit plus haut. On a

£ (M) =@
W

Piéev(_M) . On a H;(D(w) , xw(M) = H;(Pi/B s ﬂ'wpizv(M) . Par le lemme

23, on a Lt ZV(M) = mp H*ZV(M) . Le morphisme n envoie D(v) sur

1 1

P
Spec(K) . On a n*mv(M) = H%(D(v) , IV(M)) . On a donc

Hy(D(w) , 2,(M)) = Hy(P./B , wpi(u;w(v) 2 (1)) .

I1 est clair que pour tout N e €¢(b) , on a Ho(Pi/B , mp N) = DS N . Ceci
i i

montre le lemme. En particulier, ceci montre que Ho(Pi/B , xw(M)) ne dépend
en fait que de la valeur de w dans W . Ce fait est lié au fait que 1’on va
construire une variété normale (de Schubert) Ew , ne dépendant que de la

valeur de w dans W , un morphisme = : D(W) — Ew propre et birationnel,
un foncteur Ew ¢ 2(b) -—-qgggb(ﬁw) tel que pour tout M e ¢(b) , §w(M) soit

localement libre, et n*zw(M) = zw(M) . On généralisera le lemme précedent aux
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foncteurs dérivés (chapitre XI, proposition 3; cf. aussi [41]), en démontrant
que les variétés de Schubert sont & singularités rationnelles.
Je fixe J une partie (non vide) de {l1,...,N} de sorte que la

sous—matrice de Cartan AJ = (_ai j) soit de type fini (cf. [13]). Dans
Yo, jged

la suite je serai plus particuliérement intéressé par le cas o J est de
cardinal 2 ou 3. Soit W(J) 1le sous-groupe de W engendre par les reflexions
Sj , J€J . Le groupe W(J) est le groupe de Weyl d’une algébre semi-simple

et il est fini.

On suppose donnés 6 ¢€léments U, V, W) W 8,0, dans W tels que 1’on ait:

a) W ue v

I
=
&

b) vy

c) v, e, sont deux décompositions réduites de 1’élément de longueur
maximale de W(J) .

Soit a

7 la sous—algébre de Lie de % engendrée par 1’espace vectoriel h

et les éléments e’j , fj , J € J . La sous—algébre de Lie ay est de

dimension finie et réductive. On pose Ry = ay + b . Soit PJ le groupe

c2 = 19 - . Lo - R .
associé a l’algebre de Lie B (cf. 3 I ; il est trivial que Ry satisfait

* o.%, ns) . Comme dans le cas oi J est réduit & un élément, B opére

localement librement sur PJ et par réduction & 1’étude de a. , il vient que
PJ/B est propre sur Z et recouvert par des ouverts isomorphes a A;
(od ¢ =1/2 d1m(§J/£))

Je définis des schéemas E et D sur Spec Z par les formules suivantes

(qui ont clairement un sens):

E(u) xB PJ >(B E(v)

E(u) P P, «B E(V) 45 -

E

D

On a des morphismes naturels E(wi) — P_, pour i=1,2, ce qui induit

J

des morphismes naturels

My E(wi) — E
n, ! D(w.) — D (i =1,2) .
i i
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Soit S un schéma. Comme précédemment, je note DS et Eq les schémas
obtenus par 1’extension de la base S — Spec(Z) . Il est clair que E est

propre et plat sur 2

Lemme 28:
1) Soit M e QcohR(S) . Alors on a des isomorphismes naturels, pour
i=1,2:

(‘ni)* sewi(m) — mE(.m)

2) On suppose S noethérien séparé et normal. Soit M € QcohB(S) , tel
que M soit reunion de ses sous—modules B-équivariants localement
libres et de type fini. Alors les morphismes

(ni)* zwi(m) +_:DE(m)

sont des isomorphismes, pour i = 1,2 .

Démonstration:
1) Je montre d’abord le point 1. Par définition, on a mw = wE(w y - Par

le lemme 23.2, on a un isomorphisme naturel

(1) e M) ~u a_ (M)
wi i"E

Par adjonction, on obtient un morphisme naturel wE(m) — (ni)*xw (m) , pour
i
i=1,2
2) Je montre le point 2. Comme S est noethérien, ceci implique que les

espaces topologiques D(wi) , E(wi) , E et D sont quasi-compacts. Donc les

foncteurs (ni)* , wE et xw commutent aux limites inductives.
i

Pour montrer 2, je peux donc supposer M localement libre de type fini.
Par le lemme 13.1, QE(M) est plat et localement de type fini. Comme E est

noethérien, QE(M) est localement libre de type fini. Utilisant la formule
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(I) et la formule de la projection, on a
(ﬂi)* éew.(m) = (ﬂi): GD(w.) ® QE(M)
i i’s
Il s’agit de prouver que 1l’on a

(1D @)y %pgw,y T O
i‘s s

Il est clair que les schémas D(wi)S et D possédent un recouvrement par les

ouverts de la forme mg (pour ¢ = e(wl) = c(wz)) . Ceci implique que

D(wi)s et DS sont des schémas normaux ([58], proposition 17.B). Comme L

(pour i =1,2) est clairement birationnelle, ceci prouve (II), ce qui acheve

la preuve du lemme.

Remarque: Ce chapitre ne contient aucun point original. J’ai indiqué toutes
les constructions principalement parce que beaucoup des schémas que je vais
utiliser ne sont pas noethériens.

Dans son cours en 1982 [59], J.Tits avait construit les variétés de
Demazure sur € par un moyen différent (suivant une idée de P.Deligne). Il a
donné un systéme explicite de cartes, chacune de ces cartes étant isomorphe 3
un espace vectoriel. Pour une algébre de Lie g semi—simple, la construction

de Demazure est une généralisation d’une construction de Bott et Samelson.
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V Varietés de Schubert (en caractéristique 0).

Dans ce paragraphe, je fixe K un corps de caracteristique 0.

Soit J une partie de I . Je pose

J

chaque w € WI . L(A)WA est de dimension 1, et les poids wA(w € W]) sont

p}:{;\(_hj);!o si j7#J et Ah) =0 si jelJ) . Soit A e Pt . Pour

tous deux distincts (cf. pour les notations les chapitres I et II). Soit
i eI . Laction de 1’algébre de lie R kr—:i ;) khi B kfi s’intégre en une

action de SL{(2) sur L(A) . On identifie L(A) a un SL(2)-module en

[«
P

identifiant exp e (respectivement exp fi) a 1’action de la matrice (

01,

-1 0 Y

(respectivement (i ?)) . Soit m, 1’une des deux matrices (

0-1 . _
(_1 0) . Pour tout poids u on a m, L(A)u = L(A)S-ll .
Soit e, une base choisie une fois pour toute de L{(A) . Soit w € W] .
et soit S; -ee 8y une decomposition reduite de w . Je pose
1 k
e.=m ...m e . Lé€lément e est défini & un signe prés, et est une
WA 1, lk A WA

base de L(A)w/\ . On pose
Ew('\) = U(b)em .
Il est clair que Ew(/\) est un U(b)-module de dimension finie dans L(A) ,

et 1’ona L(A) =U Ew(/\) . Soient Fw(/\) le dual de Ew(/\) . L(/\)* le dual
wew

de L(A) . Par dualite on a donc un morphisme surjectif de U(b)-module
L(A)* — E (A .

Soient v,w € W_ . On rappelle que les assertions suivantes sont equivalentes

J
[49] [58]
(a) E (A) € E (A)
(b) v ¢ w.

Donc lorsque 1’ona v ¢ w, on a un morphisme naturel Fw(/\) — Fv(A),

et ona L(A)* = lim Fw(/\) .

On note Sw = ﬁui{em la fermeture de 1’orbite du point ke dans le

A wA
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projectif PEw(A) . Soit Za le cone fermé correspondant dans Ew(A) , i.e.
5

P =B kew

o - -—
WA dans Ew(A) . Je pose Zw = Zw,A {0} .

A oA

Lemme 29: Soient J une partiede I , we WJ . et W une décomposition
réduite de w . Il existe des morphismes B—€quivariants

-~ o . ~
";,A : B(w) —— zw,A . et u;’A : D(wW) —— sw,A

rendant commutatif le diagramme

a,
~ w,A o
E(W) ———, Z
(W) “w,A
urv
~ WA
D(W) SW,A

Le morphisme E(W) — Z: . ne dépend que du choix de 1’élément non nul
I7AS

e\ dans L(A)A . Le morphisme v_ est canonique, birationnel et propre.
W,A
La variété Sw A est irréductible de dimension ¢(w) . On a
Sw,A = U B kev,A (dans PE(A)) et
viw
veWJ
Zw,A = U B kev,A (dans EW(A))
viw
vewJ

Démonstration: On montre le lemme par récurrence sur ¢(w) . Lorsque w =1 ,

_ o _ ., x . . .
ona E(1) =B, zw,A k e, - Le morphisme nl,A est le morphisme donné par
la formule naive : n]’A(b) = beA , pour beB . Enfin on a SI.A = Spec k ,
et v est le morphisme identifié.

WA
. . ~ - . N
On suppose maintenant que 1’on a w # 1 . Soit w une décomposition

. ~ ~ . . ~ o~
reduite de w . Je pose w = s;u . pour un certain ie€e I et uew.

Soit u la valeur de u dans W . Il est clair que 1’on a keu A€ Sw A On
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a donc SW,A > Pikew/\ , on a donc Sw,/\ = Pikew/\ . Comme on a Pikeu/\ , on a

. = . <0 .
aussi Sw,A PiSu(/\) . Donc Sw,/\ (respectivement "w,/\) contient Su,l\
(23 /‘\) et est Pi-—invariant. Par hypothése de récurrence, on a des morphismes
B—équivariants v : D(u) —— S et : E(W) — s° . On en
~ u,A ~ u,A
u,A u,A

déduit des morphismes Pi x D(W) — 8 et l".1 x E(1) — z°

WA qui par
b

w,A

construction des quotients factorisent en des morphismes Pi—équivariants

v : P. xPD(0) — S et : P. x’B(W) — 2° .

~ i WA ~ i w,A

WA w,A

Les morphismes v_ et - sont en particulier B-équivariants, et
w,A w,A

rendent commutatif le diagramme du lemme. Il est clair que v _ est

w,A

birationnel donc Sw A est irreductible de dimension ¢(w) . Comme D(w) est
’

propre, v _ est également propre, donc surjective. En particulier, on a
WA
S = P.S . Par la dtcomposition de Bruhat P, =B m, BUB , et
w,A i“u,A i i

1’hypothése de récurrence, on a

Sw,/\ = U PiB kew\
v<u

vew;

= U (B kev_/\ U B kesiv/\)

= U (B kev,/\)
vEW
vew.‘T
et le lemme en résulte.

Soit X un espace topologique, F un fermé de X . On dit que F est

disconnexe (ou non connexe) s’il existe deux fermés non vides disjoints F1 ,

F tels que F = F‘i UF On dit sinon que F est connexe. On dit que X

2 2"
satisfait a la propriété (P) si tout fermé F de X est 1’adhérence de ses
points fermés. La propriété P est locale : 1’espace topologique X

satisfait (P) si et seulement si il existe un recouvrement ouvert {U“} de

X ., chaaque ouvert Uu satisfaisant (P) . Donc les variétés (et les schémas
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de type fini) sur k satisferont (P) (par le Nullstellensatz d’Hilbert).
Soient f : X —— Y une application continue entre deux espaces
topologiques X et Y . Je dis que f est connexe si et seulement si 1’image

réciproque de tout ferm® connexe est connexe.

Lemme 30 : Soient X , Y deux espaces topologiques, f : X — Y une
application continue surjective et (topologiquement) fermée. On suppose que Y
satisfait (P) .
Alors les assertions suivantes sont eéquivalentes

(a) f est connexe,

(b) Pour tout point ferme P de Y, f—l(P) est connexe.

Démonstration : Il est clair que 1’assertion {a) implique 1’assertion (b). On
suppose A présent l’assertion (b). Soit Z un fermé de Y , connexe. On
suppose par 1’absurde que f~1(Z) est disconnexe. I1 existe deux fermés non

vides disjoints Xl, X2 dans X tels que f—l(Z) = X1 u Xz . Soient

Y1 = f(Xl) ’ Y2 = f(XZ) . Comme f est surjective ona Z = Y1 U Y2 .

Comme f est fermée, Yl et Y2 sont fermés. Comme Z est connexe, on a

YIIT Y2 #P . Coome Y satisfait (P) , il existe un point fermé P
appartenant & Y, N Y, . Ona £ (P) = (£ (BN X) U (£ (BN Ky , d’ob

une contradiction. C.Q.F.D.

Soient X , Y deux schémas sur k . Soit f : X —— Y un morphisme de
schémas. Soient k la cloture algébrique de k et soient jx X —a X et
Jy ! Y ——aY 1’extension a k . Soit f : X —— ¥ 1la restriction de f a

et Y . On a ainsi un diagramme commutatif
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i
< ¢ el
)
+—

On dit que f est absolument connexe, si f est connexe. On notera que
si f est absolument connexe, et si X et Y ‘sont noethériens de type fini,
alors f est connexe. En effet soit F un fermé connexe de Y , soit F’
une composante connexe de j;l(F) . Alors F" = ?_I(F’) est connexe, et comme
et

J jY sont entiers, il est clair que l’on a f_l(F) = jX(F")

X
Lemme 31 : 1) Soient X , Y deux B-schémas de type fini, f : X ——~ Y wun
B-morphisme propre, surjectif absolument connexe. Alors le morphisme

Pi XBX —_— Pi xBY est absolument connexe.

2) Soit X wun Pi—schéma de type fini, propre. Alors le morphisme

naturel u @ P.1 XBX —+ X est absolument connexe.

Démonstration : Je démontre le point 1. Je peux supposer k algébriquement
clos. L’application naturelle ¢ : Spec(k) — Pi détermine un diagramme

naturel

et ix . iY sont des immersions fermées. Soit P un point de Pi xBY . I1

est clair que 1’on peut supposer P € Y . On a alors ?_1(F) = f_l(P) , donc
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?-I(P) est connexe. Par le lemme preécédent, ceci montre le lemme, car T est
propre et surjective.

Je montre le point 2. Je peut supposer k algébriquement clos. Soient
o, Dp: Pi ¥ X —— X les morphismes d’actions et de projection sur le second

facteur, x, : Pi x X —— Pi x X la factorisation canonique,

X

kS Pi X X — Pi xBX le morphisme naturel. On a ainsi un diagramme

commutatif naturel

Le morphisme M est propre et surjectif. I1 suffit donc de prouver que
u_l(P) est connexe pour tout point fermé P e€ X . Comme X est de type fini,
le corps résiduel en P est isomorphe & k . Donc p—l(P) est irréductible,
isomorphe a Pi . Comme Xy est un isomorphisme, donc o—l(P) est

irréductible. Coome o est clairement surjective, on a u—l(P) =m 0_1

(P)
Donc = o~1(P) est un fermé irréductible, donc connexe. Ceci prouve le point

2. C.Q.F.D.

+
J

le normalisé de Sw

Soient J wune partiede I, we W_, A€ P, . Soit W une

J

décomposition réduite de w . Soit §w

WA AT

Lemme 32 : 1) Ie morphisme v_ : D(W) — Sw A est absolument connexe.
WA ’

2) Le morphisme de normalisation Jw’A : Sw,A _— Sw,A est un

homéomorphisme.

Démonstration : On peut supposer, pour montrer le point 1, que 1’on a w # 1
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On choisit ie I, UeW tels que w = s, U . Soit u la valeur de U dans

W . On va montrer le point 1 par récurrence sur ¢&(w) . On peut donc supposer

que le point 1 est montré pour le morphisme v _ : D(Q) ——s Su A
u,A *
Je vais montrer que le morphisme v : P, xBS — S est absolument
1 u,A W,y
connexe. .Je peux supposer k algébriquement clos. Soit Y = U Sv A la
b

réunion portant sur les v € WI tels que v ¢ u, et s; v < u . De maniére

naturelle, Y est un sous-schéma fermé de Su et un sous—espace Pi

A

invariant de S . Soient U =S -Y, V=S8 - Y . On a ainsi un
w,A u,A wyA

diagramme

P. xBY ~—— P. xBS — P. x°U

1 1 u, A 1

"21 v ™
w,A

Soit P un point fermé de Sw A I1 est clair que L7} est bijective. Donc
?
-1 . . .
si PeV, w, (P) est réduit a un point et est connexe. Par le lemme, m,
est connexe. Donc si Pe Y, u_l(P) = n;l(P) est également connexe. Donc v

est connexe, puisque v est propre et surjective.

Par le lemme 31, le morphisme naturel u : Pi xBD('fl) —_— Pi xBSu A est
’
connexe, puisque par hypothése de récurrence D(Tl) JE—— Su A est connexe. Or
2
ona v, =V 4 4 . Donc v est connexe. Ceci montre le point 1.
W,A w,A

Le schéma D(w) est lisse, donc normal. Comme 1’application

v D(wW) —s Sw A est birationnelle, il existe un unique morphisme
WA o
u : D(W) —— § tel que j o M = v .
w,A wiA wsA w,A w,A
Le morphisme pu_ est propre et birationnel. Il est donc surjectif.
WA
Donc pour tout fermé Fc § on a
w,A
1 -1
Je AlF) = (v " (F)) .
! WA W,A
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Donc le morphisme ,jw est connexe. Comme jw A est un morphisme de
s LA

A

normalisation, ‘iw,/\ est fini. Donc 'jw,/\ est bijectif, donc ‘jw,/\ est un

homeomorphisme.

Lemme 33 : Soient J wune partiede I , we WT . A et M deux poids de

+ . . . . so s s 5
F’J . Il existe un isomorphisme canonique de B-variétés & : Sw,/\ —_— Sw,M ,

tel que pour toute décomposition réduite w de w, le diagramme

soit commutatif.

Démonstration : On va montrer le lemme par récurrence sur ¢£(w) . On peut

supposer que 1l’on a w # 1 . On suppose le lemme montré pour tous les

3 e . Le jetés § S & i
u e WJ . avec 2(u) < &(w) Les variétes Su,/\ et Su_.M étant isomorphes,
on peut noter ces variétes Eu I
b
On va d’abord construire un homéomorphisme naturel ¢ : §w A §w M
b s

On fixe i€l , ueW tels que w = s, u et u ¢ w . Soient pour tout poids

A e P; Y(A) = S . Ainsi Y(A) est un sous-schéma fermé de S
v{u ViA w

v2s 1Y
vew
J

2A

stable par Pi , et contenu dans S . Topologiquement, les espaces S

u,A u,A

et Y(A) ainsi que 1’application continue Y(A) — Su sont indépendants.

A

’
| ~ -l .

On pose Y(A) = Ju,A(Y(_I\)) , U(A) = Ju,/\(U(A)) . Comme Ju,,\ est un

homéomorphisme, le sous-schéma fermé Y(A) et le sous—schéma ouvert U(A) de

§uI ne dépendent pas de A . On note ce sous-schéma ¥.0naun diagramme

7
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commutatif :
. B,
P, x"¥(A) P, x"s, ,
Y(A) ——— Sw,A
Il est clair que comme espace topologique, Sw A est le coproduit de
)
Y(A) et P.1 xBSu A suivant Pi xBY(A) . Les morphismes naturels
bl

P, x¥ —— P, xPY(A) , ¥ — Y(A) et P, x%§ . —u P, x5 étant des

i i i u,I i u,A

homéomorphismes, comme espace topologique Sw est donc le coproduit du

. A

systéme d’espace topologique

J
Y

Le systéme (x) ne dépend pas de A . Donc les espaces topologiques
S , pour divers A € P+ sont tous homeomorphes. Comme s est
w,A J w,A
homéomorphe a Sw )+ onen déduit que les divers schémas §w A sont tous
? ,

naturellement homeomorphes. Par construction le diagramme d’espaces

topologiques
s
VQ,A w,A
D(w) l )
V.M ~
w,M
est commutatif. Comme les morphismes u_ et v_ sont des morphismes
W,A w,M

72



VARIETES DE SCHUBERT

birationnels propres entre variétés normales, on a aussi

0"8- = (U;; \)*GD(;)
W,A i
o = (v_ 8
Sw,M w,M * D(w)
Donc il existe un isomorphisme naturel o - ¢*q~ ce qui
[ S
w,M w,A

prouve que ¢ se prolonge en un isomorphisme de variétés (car un isomorphisme

d’espace annelés entre schémas est un isomorphisme de schémas) C.Q.F.D. .

Remarque et définition : Soient J une partiede I , wewW

7
Par le lemme 33, les variétés §w A ( A décrit P} ) sont toutes isomorphes
?

entre elles. J’appelle donc variété de Schubert cette classe de variétés

isomorphes, et je la noterai S

w,J
Soit ¢(w) = {i €I / S5 < w} , soit g, la sous algébre de Kac-Moody de
£ associé a la matrice de Cartan (aij)i,je?(w) , et soit JO =Jn 2w .
Par construction il est clair que 3 et S sont isomorphes.
w,J w,J0

Réciproquement, il est aisé de prouver que si J’ est une autre partie

de I telle que w appartienne a WJ, , les varietes Sw,J et Sw,J’ sont

isomorphes si et seulement si ona JnN #(w) =J’ N 2£(w) .

On considere k’ un sur-corps arbitraire de k . Pour toute partie Jc I,

pour tout we W, , et Ae P; , Je note S (k’) , Sw J(k’) les variétés
’

J w,A
S s s construites sur k’ . Par construction on a
w,A w,J
i - ’
Sw,A(k ) = Spec(k’) xSpec(k) Sw,A .

Soit W une décomposition reduite de w . On a un diagramme naturel :
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D(W) (k*) i - D(W)
H. H
w w
Spec(k’) Xgpec kS~ - r . §~
p W,J W’J

Ce diagramme naturel est cartésien. Comme 1’extension de k —— k* est

plate, 7 est un monomorphisme plat. Donc par le théoréme B (% IV), on a

(u’~ «® . = ;"*a~ . Comme D(w)(k’) est normale, le faisceau
w D(w)(h’) S
w,J
d’ anneau (u’.._)*o o est un faisceau d’anneaux intégralement clos. Donc
w  D(w)(k’)
Spec(k’) x est normale, donc on a

S
Spec(k) w3
?

§w J(k’) = Spec(k’) x , ce qui prouve que s est absolument
,

S
Spec(k) w7 w,J
normale. En particulier §w 3 est naturellement définie sur @ et pour tout

’

+ . .
A€EP le morphisme JW,A —_— Sw

3 est un homeomorphisme absolu. On

WA

montrera plus loin que §w 3 est naturellement définie sur 2 (cf. ch. XIIX).

Lemme 34 : Soient X , Y deux schémas de type fini sur k , et X, ¥ leur
normalisation (respectivement). Soit f : X —— Y un morphisme de varietés.
On suppose que le morphisme de normalisation ¥—— Y est un homé omorphisme
absolu, et que X est réduit.

Alors il existe un unique morphisme F: ¥ —— Y rendant commutatif le

diagramme :

< — <2

.
—
f
—

> g >
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Démonstration : Cette assertion est locale relativement a X eta Y . Je
peux donc supposer X et Y affines, ce qui implique que % et ¥ sont

affines. Soient donc A, A, B, B les algébres telles que 1’on ait

X = Spec(B) , ¥ = Spec(B)

"
"

Y = Spec(A) , Y = Spec(R) .
La variété ¥ est la réunion disjointe des normalisés des composantes
irréductibles de X . Je peux donc supposer X irréductible, i.e. B integre.

On a ainsi un diagramme

e
> — i

i

o —— o

rendant le diagramme suivant commutatif :

I - -1

[
B — >l
|'9- "0-3

Soit p le noyau de ¢ . Comme B est intégre, 1’idéal p est premier.

Soit q =,/§(p)§ . Coome j est fini et birationnel on a jnl(Q) = p . Comme
Spec(x) ——+ Spec(A) est un homéomorphisme gq est premier. Par hypothése,

pour tout sur-corps k’ et k , le morphisme
Spec(A/q ® k’) ——, Spec(A/p ® k’) est un homéomorphisme. Soit k , la

cloture algébrique de k . Il vient donc que 1’extension A/p ® k —— X/q ® K
est "birationnelle" (au sens que cette extension fournit un isomorphisme sur
1’anneau des fractions), puisque k est de caractéristique 0 . Comme le

morphisme A/p —— X/q est egalement finie, on obtient ainsi un morphisme
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~

A/q — B, d’ou il existe une application $: A —- B rendant commutatif
le diagramme (x). En outre # est 1’unique morphisme rendant commutatif le
diagramme (x), et factorisant a travers Z/q .

Comme il est clair qu’un morphisme $: A —. B rendant commutatif (%)

- ~ n - . I3
factorise & travers A/q , ce morphisme est necessairement unique.

Remarque : Le lemme précedent est faux en caractéristique non nulle. Soit p
un nombre premier, F un corps de caractéristique p . Soit A la
sous—algebre de F[X,Y] : A = F[XP] ® Y F[X,Y] . Soit B = F[Xp] . Comme

I =YF[X,Y] est un idéal de A , on a un morphisme surjectif naturel
A—sB.Ona A= F(X,Y] . I1 est clair que Spec(x) —— Spec(A) est un
homéomorphisme absolu. L’idéal I est premier dans A, et I’on a

A/I = F[X] , ce qui interdit 1’existence d’un morphisme 3.

Lemme 35 : Soient J une partiede I , w , We WJ , avec Vv ¢ w . Il existe

un morphisme naturel unique 1. Ev 3 — §w 3 de B-schémas, tel que pour
tout A € P; , le diagramme
~ H ~
Sv,J Sw,J
1 Tu,A 1 Y, A
i
Sv,/\ Sw,A

soit commutatif.

. . . + L p .
Démonstration : Soit A € P] . On a precédemment remarqué que le morphisme
Jw’A : Sw,J —_— Sw’A est un homéomorphisme absolu. Donc par le lemme 33, il
existe un morphisme i 3 —' S rendant commutatif le diagramme :

A V,J W,J
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~ A ~
v,J Sw,J
(x) .
1 JV,/\ JJW,I‘\
sv,A e A

. ~ -~ . .
En fait par construction, i est méme 1’unique morphisme d’espace

annelé rendant commutatif le diagramme (x). Reste & montrer que IA ne dépend

pas en fait de A .
Soient w une décomposition réduite de w , v une décomposition réduite
~ -~ . -~ ~ . . -
de v, avec v ¢ w . Soit j: D(v) —— D(w) 1’une des immersions fermées

S et

construites au &8 IV. Comme les morphismes j : 8 ——
v,A v,J v,A

~

: S —_— S sont des isomorphismes, en tant qu’application continue
w,A w,J w.A

;A ne dépend pas de A . On a ainsi un diagramme commutatif d’applications

continues

D —L DWW
I

N 3 A

sv,] I SW,J

Le morphisme naturel de faisceaux d’anneaux o(D(Q)) —_— j*a(D(;)) ,
d’ou un morphisme de faisceaux d’anneaux (y~)‘u(D(;)) — (u~)*j*o(D(V)) .
w w
On obtient ainsi un morphisme de faisceaux d’anneaux ¢_ —_— 1 0
Sw,J SV,J
Ainsi 1’application continue 1 se prolonge en un morphisme d’espaces

. +
annelés. Comme pour tout A € PJ , par construction le diagramme d’espace

annelé
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N 7
Se,0 — S,.;

[

{7214

—

v,A Sw,/\

est commutatif, on a i-= Ni/\ . En particulier 1 est un morphisme de schémas,
et ?/\ ne depend pas de A (en particulier cette construction est
indépendante des choix faits : W, v L dD).

Remarque : Pour 1’instant, je n’ai pas encore prouvé que le morphisme

~ ~ . . . R
Sv y — SW 7 est une immersion fermee. Ce fait sera un des points du
) ,

~

—_— S

théoréme 2 du chapitre XI (cf. [41]). Néanmoins 1’application §v 7 . J
’ b

est un homéomorphisme sur son image.

L’ immersion fermée

Je fixe J une partie de I,weWJ,AEP}.

(définissant Sy ) S — PEW(A) détermine un faisceau inversible

canonique og (1) . Je noterai ce faisceau ﬁcw(-—A) . Soit i € I un élément
wA

tel que SWew. Alors xw(—}\) est naturellement Pi—équivariant, et

inversible. Soit j K —_— S le morphisme de normalisation. Je pose
WA w,J WA

® (-A) = .j* ¢ (-A) . Soit W une décomposition réduite de w . Soit
w WA Tw

v : D(W) —— S et u : D(wW) —— S les morphismes naturels. Soit
~ wA o~ w,J

Wy A w,.J

u € WI s u< w. Soit W une décomposition réduite de u , u < w . Soit

v, : . v ., % % .

1 Su)‘ et Sw\ le morphisme canonique, 1 : Su,J —_— SW,J le morphisme

construit au lemme 35, soit j : D(tl) —_— D(;r) 1’une des immersions fermées

construites au $ IV. On a ainsi un diagramme commutatif
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J- .
u,J w,J
Su,J sw,J
l"]u:\ l"w}\
SuA -_— Swr\
Lemme 36 : (1) On a Y*Ew(—.x) = Eu(—.a) .
(2) On a u: T oA) = g (=
w,.]'cw( A) = 'c;( A)
(3) O0na (u ) £ (=A) =Z (-A) .
~ * ~ W
w,J w
Démonstration : 1) Je montre le point 1. Par construction on a
. a _ . . . - . .
i (:{’w(—!\)) = xu( A) . Par ailleurs, ona 1i o Jua 1oJg.a - On a donc :

TRZ Ly YKL K
i .ﬂw( A) LR .Lw( A)

.k
L

]
~
—~
4
~

2) Pour montrer le point 2, on va d’abord pour chaque w € W construire un

morphisme naturel v g (-A) —— ¢ (-A) . Soit 3° =3 . - {o} . Soit

~ W ~ ) WA

w,A w
e 2 2% s le morphisme naturel. Par le lemme 28, on a un diagramme
WA wA wA

commutatif naturel :
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ﬂ’v

D(W) — E(w)

v_ a_
W,A WA
¢]
wA o
SwA zwA
Soit X, le caractére du groupe B correspondant au poids A . Z:A

est naturellement uyne B-variété a droite, cette structure est donnee par la

(o]
7

)

"formule" o.b = xA(b)o , pour chaque o € b € B . Cette formule a un

sens puisque Z:A est un cone. Pour cette structure, 1’application naturelle
n, est un B x B-morphisme. On muni D(w) et SwA de structure de

B-variété a droite, pour 1’action triviale. Le morphisme naturel

., — (n, )e est B x B-€quivariant, et détermine un morphisme
z w,A % E(w)
wA
B x B-équivariant (OWA)‘O o — (Gw)‘)*(n~ )‘a L= v )‘(ﬂw)*o - e
wA WA E(w) Wy A w E(w)

Pour éviter des manipulations trop abstraites, je vais decrire les divers
faisceaux en termes de fonctions. Cependant on peut décrire les fonctions
propres sous l’action de B en termes (plus corrects) de coproduit comme au
3 IV.

@ ,) ¢ est un faisceau de ¢, -algebre graduée, et son
wA % 5© SwA
wA

Le faisceau

terme de degré 1 est le faisceau xw(—A) . Compte tenu de la formule

cg.b = xA(b)o (pour chaque b &€ B , ¢ € =° ) pour tout ouvert U de

“wA swA

on a

(00,6 o (O = P eo (8, (W)F@b) = x,(BIP() ,

[
ZWA wA
-1
pour tout o € GWA (U) , b eB} .
Comme le morphisme ¢ : (6 ,) ¢ —_ (v Y (m) e est
wA' % _o ~ * o~ x ~y
ZA WA W E(w)

B x B-équivariant é(rw(—A)) est inclus dans le sous-faisceau ¥ de

(v )*(u~)*o . défini par
WA w  E(w)
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#(U) = {reoe _ (V)/r(pb) = r(p)xA(b) , pour tout p « V et b € B}
E(w)

oi 1’on a posé V = n:l u:1 (U) . Par construction on a ¥ = (v _ )*gw(—A)
w

W WA W.A

Ainsi on a construit un morphisme ¢ : ww(—A) —_ (v )*z~(»A) . Par
w,A w

adjonction on a donc un morphisme naturel ¥_ : (u~ )'$W(~A) —_— $~(—A) .
w,A w,A w

Lorsqu’on voudra faire des changements du corps de base on notera f_ (k) ce
W,A

morphisme.

3) Soit u un élément de WJ ,u<w et U une décomposition réduite de

u . Soit j une des immersions fermées j : D(U) — D(;) construites au

8 IV. On a ainsi un diagramme commutatif

p(w) —J | pw
v_ v
u,/\ wiA
i
—————— b
SuA SwA
Ona v, oj=iowv_ . Donc j*P~ est un morphisme
w,A u,A w,A
j'?~ HNOCH )' Iu(—A) —_— 1~(—A) . En reprenant la construction de ¥ ,
w,A u,A u u,A
il vient que 1’on a j'?~ =¥
w,A u,A

4) Soit k’ un sur-corps de k . Je note § : D(;)(k’) — D(;)(k) et
£ Sw A(k’) —_— Sw A(k) les morphismes naturels. Ces morphismes sont les
’

morphismes du changement de base Spec(k’) — Spec(k) . Ainsi le morphisme

naturel E*?~ (k) est un morphisme

w,A
§*P~ (k) : (yv )*fw(~A)(k’) —_— w~(“A)(k’) . En reprenant la construction
WA W, A W
de L , il vient que 1’on a §*P~ (k) = ¥ (k)
W, A w, A w,A

Le morphisme ¢ est fidélement plat. Donc si k désigne la cloture
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algébrique de k , il suffit de montrer que ¥_ (k*) est un isomorphisme.
w,A

Ainsi on peut supposer k algébriquement clos.
5) Soit X wune variété. Pour chaque point ferme P de X soit

ip : P—— X 1’inclusion correspondante. Soit ¢ : & —— M un morphisme

de ax—module cohérent. D’aprés le lemme de Nakayama, pour que ¢ soit un
isomorphisme, il suffit de prouver que pour chaque point fermé P e X ,
1’application sur la fibre i; $ est un isomorphisme.
Je vais montrer que ¥ est un isomorphisme, par récurrence sur
w,A

e(w) . Il est clair que je peux supposer que 1’ona w# 1 . Je choisis

e

iel, ue W tel que w = siﬁ . Je peux donc supposer que Lo est un
u,A

isomorphisme. Soit j : D(E) —— D(w) 1’immersion fermée naturelle.

Par construction, il est clair que ¥ _ est un Pi-morphismes de
wW,A
¢ -modules Pi—équivariants. Soit P un point fermé de D(w) . Comme on a
D(w)
D(w) = Pi xB D(W) , pour vérifier que i; L est un isomorphisme, il suffit
WyA

de le vérifier lorsque P € D(u) . En effet soit = : Pi xB D(u) — Pi/B le
morphisme naturel qui envoie D(E) sur un unique point noté e . Comme k
est algébriquement clos, le groupe discret des points fermés de Pi opére de

maniere transitive sur les points fermés de Pi/B (car Pi/B est isomorphe a

Pl , et Pi agit comme le groupe PSL(2)). On a nnl(m) = D(u) . Donc on

peut supposer P € D(E) .

On a alors I’ P =i j. e . Par le point 3, on a j*P =¥ .
P~ P ~ ~ ~
’A W,A W,l\ u,A
Donc on a i; P = i; ¥ » ce qui prouve que ¥_ est un isomorphisme.
W_./\ Ll,)\ W,A

) Ona £ (-A) = (v )¢ (-A) , d’ot ¢ (-A) =u_ )' (-A) , ce qui prouve
w

W, A w w,J
le point 2 du lemme. On a (u~ ) e L T, , d’ou par la formule de
w,J x D(w) Sw 3
b

projection (u_ ) £ (-A) = Qw(—A) . Ceci montre le point 3 du lemme. C.Q.F.D.
w,J * w
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Comme corollaire on obtient les deux lemmes suivants.

0 % -~ _

Lemme 37 : On a H (sw,J , zw( A)) = Dw(k—A) .
Ce lemme résulte en effet du point 3 du lemme precédent et du lemme. On
conserve toujours les mémes notations. Soit PT = {A € P/A(hj) =0V jelJ}.
I1 est clair que le groupe PJ est engendré par le semi-groupe P; . Je note

§w 1’application de P; dans Pic(gwh) groupe des fibrés inversibles de

S , déterminée par A —— £ (-A)
WA w

Lemme 38 : L’application Ew se prolonge en un morphisme de groupes de PJ

dans PIC(SW’A) .

Démonstration : Pour montrer le lemme, il suffit donc de montrer que

+
J

On a !w(—A - u)

si A, u€P_., ona xw(— A-u = xw(—h) ® §w(—u) .

(., D, DZ (-2 -w

w,J w,J
=k, ), (2 () @2 (-u)
w,J w w

[}

W ), (A e ), G ()
w,J w w,J
D’ou par la formule de projection
Z-A-w = W, )E (D) 8 F Ow
w,J

£ (-A) ® ¢ (-u)

Ce fait sera utilisé dans le paragraphe consacré aux groupes de Picard
des varietés de Schubert (cf. chapitre XII).

Soient E un espace vectoriel de dimension finie, X une sous—variété
fermée (donc supposée irréductible) de [PE , et ¢ = ox(l) le faisceau tordu
de Serre. Je note S(X) 1’anneau des fonctions homogénes de X , et pour tout

entier n sa composante de degré n est notée Sn(X) . Le morphisme
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k[E] —— S(X) est un morphisme surjectif d’algebres graduées. Soient

J ¢ ¥ —— X 1la normalisation de X , et € = j‘x . Soit §(X) la cloture
intégrale de S(X) . L’algébre S(X) est naturellement graduée.

Soient s' 1'idéal de

+

s(x) :s"=e (X) , et s°X) = {x € 5(X) , an, (sH)™x < S(X)} . Alors

n>osn
s°(X) est une algébre graduée, et 1’on a S(X) ¢ SO(X) < §(X) . On notera que
S(X) est de codimension finie dans SO(X) (d’aprés le théoréme de Serre sur

les faisceaux amples). On note S:(X) et §n(x) les composantes homogénes de

S%X) et de S(X) .

On rappelle le lemme usuel suivant

Lemme 39 : 1) Pour tout entier n > 0 , on a des isomorphismes naturels
B(X , €% = s2(X) et HOX, ¥ =8 (1) .

2) ¢ est un faisceau ample.

Démonstration : Pour le point 1 du lemme, on peut se reporter au chapitre II @&
5 de [27] (et en particulier exercice 5.14). Le second point résulte du fait

qu’un morphisme fini conserve 1’amplitude ([261).

En conclusion, on remarque qu’a tout triplet (A,J,w) avec Jc I,
+ . .
W € WJ , A€ PJ , on peut associer trois anneaux

’
1) L’anneau k[zw,A] .

2) L’anneau e oI{O(Sw A’x(_A)On) , que par définition je note A(w,A) .
’

2

3) L’anneau & __ Ho(§ ,Q(-A)on) , que par définition je note Z(w,A)
nyo w,A
On a des morphismes birationnels finis k[Zw A] —_— AW, A) ——y K(w,A)
’
d’anneaux gradues. En outre par le lemme 39, Z(w,A) est integralement clos.

i s = Soit 3 ésent .
Par construction, on a k[“w,All Fw(A) . Soit a présent v e WJ , vew . I1

existe des morphismes naturels k[Zw \] —_— k[Zv (ce morphisme étant
Y

,A]

surjectif) et A(w,A) —— A(v,A) . Il existe deux méthodes pour construire un

84



VARIETES DE SCHUBERT

morphisme d’anneaux A(W,A) — K(V,A) rendant commutatif le diagramme

A(WyA) e A(V,A)

| 1

K(w,d) ————— K(v,A)

La premiére consiste a identifier K(W,A) a & D (k , et K(V,A) a
nyo w -nA
[ D (k ) et utiliser le morphisme naturel de foncteurs D —— D .
n)o v -nA w v
La seconde consiste & utiliser le morphisme §V A §w A et le point 1 du
lemme 36.

On remarque que ces différents morphismes commutent a 1’action de B . Je

note Ew le spectre de K(w,A) , i.e. le normalisé de Zw

s A WA

85



O. MATHIEU

VI. La formule de la limite inductive.

On pose h; =R oz l; =R oa h; . On a une inclusion naturelle
P — h': . Un sous—-ensemble C de P est dit convexe, si C est
1’intersection de P est d’un convexe de h; . Tout sous-ensemble C de P
est contenu dans un convexe minimal, que je note E(C) , et que j’appelle
1’enveloppe convexe de C .

Soit M e ¢(B) . Je pose

P(M) = {» e P, M, # {0}}.

Lemme 40 : Soit M e ¢(B) , M de dimension finie.

Soit i€ I . On a alors

S.
P(D M) ¢ E(P(M) U s;P(M)) .

s,
Démonstration : Le ‘M(Bi)—module DM est quotient de ‘E(Bi) "u(b)M . Soit

s,
u € P(D 1M) . Alors il existe n e N , tel que u + m, € P(M) . Comme

s,
P(D 1M) est stable par Si s il existe de meme n’ €e N tel que s
+ n’ai € P(M) . Le lemme en résulte.

Soit A € l:’+ . Je note C(A) 1’enveloppe convexe de 1’ensemble {wA ,

we W .

Lemme 41 : Soient AEP+, et wew.
1) ona P(D"(A)) € C(A) .
2) L’espace vectoriel DW(A)M est de dimension un.

3) On a Dw(/\) = U(b).f aw f est une base de Dw(l\)
WA WA

WA

Démonstration : Le point 1 résulte du lemme 40 et d’une récurrence triviale.

Je démontre les points 2 et 3 par récurrence sur &(w) . Lorsque w =1,
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il n’y a rien a montrer. Je peux donc supposer ¢&(w) > 1 . Soient ie I,
v (¢ w tels que W= sV .

Par récurrence les points 2 et 3 du lemme sont supposés vérifiés par
v . Soit w: Dv(/\) —_ Dw(/\) le morphisme naturel. Comme Dw(/\) est un
quotient de U(Ei)OU(g) Dv(l\) , ona:
U(p;) (0" (A))

U(e;) m(U(R)-DV(A) )

D' (A)

= U(p;) W(DV(A),,)

n

w
U(p;) DA, -
Comme Dw(/\) est un U(gi)—module de dimension finie, on a aussitot

p"(A)

w _ W
p(A) = U®). (DA, -
Il reste a montrer que 1’espace vectoriel Dw(/\)m est de dimension un.
On a
p’(A) =k f_, ® X
B vA

i X= @ DV(A) . 0Ona DV(A) = UM)f , , donc X est un
M vA
uEvA

U(b)—-sous—module de Dv(l\) . Comme on a VA + a, £ C(A) , k va est un
U(hi)—sous—module de Dv(/\) . Donc Dv(/\) est somme directe des deux

U(Qi)—modules X et kva .
w ! %i
On adonc D (A) =D (kva) ® D "X comme U(gi)—modules. On a

s,
P(X) n {vA + Zcxi} =@ , donc on a par le lemme 40, P(D 1X) n {vA + Zoti} =@ .

S. s.
y \] _ i : i
D’oii ona D (A)W\ =D “(k fv/\)w/\ . I1 est clair que D " (k fv/\)wl\ est de

dimension un, ce qui prouve le lemme.
Du lemme précédent résulte le lemme suivant.

Lemme 42 : Pour chaque w € W, il existe une application naturelle Sy
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Dw(A) — L(A) . Ona Im c, = Ew(/\) . En outre pour v < w le diagramme
naturel

pY(A) — d¥n)

| !

LA) —0 ¥ —— L(A) est commutatif.

Démonstration : L’espace vectoriel L(/\)A est un U(b)-sous-module de
dimension un dans L(A) . On a donc un morphisme naturel non nul ¢ ¢

k/\ —+ L(A) . Comme le module L(A) est intégrable, on obtient par récurrence
sur ¢€(w) pour chaque w € W un morphisme naturel Dw(A) — L(A)

construit comme suit. Soit we W . On choisit i€ I, ve W tels que

W= sV On suppose construit un morphisme DV(A) —— L(A) . On en déduit un

morphisme naturel DSiDv(A) — L(A) . Comme précédemment il est clair que le
morphisme Dw(/\) —— L(A) ne dépend pas des choix faits. On notera que ce
morphisme est non nul, car il est aisé de montrer par récurrence que sur ¢&(w)
que cw(fm) # O . On a donc Cw(kfw/\) = kem . Comme par le lemme, on a
Dw(/\) = U(Q)ewA , on en déduit que 1’on a Im cw(/\) = Ew(/\)

Soit E 1’algébre de Lie engendrée par 1’espace vectoriel h et les
générateurs {ei} , {fi} (i € I) et définie par les relations (I), (II),
(III), (IV) et (V) . Il est clair que E est la somme amalgamée des algébres
de Lie B suivant leur sous-algébre de Lie commune b . les U(b)-modules

Dw(l\) forment un systéme inductif. Soit E(A) = lim Dw(/\) . Il est clair que
we

E(A) appartient & <¢(b) .
Lemme 43 : Le U(b)-module E(A) est naturellement un U(g)-module.

Démonstration : Soit i € I . Par le lemme 11 iw est un sous—ensemble cofinal

dans W . On a donc E(A) = lim DW(A) . Donc E(A) un naturellement un
we . W
i
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U(gi)—module localement fini. Par construction de g , E(A) est donc
naturellement un U(E)—module. Il reste & vérifier que E(A) est en fait un

U(g)-module, i. e. que pour tout couple i, je I , i # j, on a

- .(h.) +1

ad(f) J1 (£)-E(A) = (0} .

Soit Xi .= @ k adn(fi)(f.) . I1 est clair que Xi . est un
»J n2-a;(hy)+1 J Y

— e % ? - 3
'll(g_i) sous—module de g , et que 1’on a Xi,j ad(ei)()(i’j) . Or e, agit de
maniére localement nilpotente sur E(A) . Soit Yi j = Xi J..E(I\) . Donc on a

’ ’
Y. .=e. Y. .. Or E(A) est un U(a.)-module localement fini, donc Y..
1,J 1 1, 1 1
est également un U(gi)—module localement fini, et donc Yi j = {0} , et donc
’

- .(hi)+1
ad(f,) J (£ DE(A) = {0} .

Les applications naturelles c, déterminent un morphisme naturel

c: E(A) — L(A) .
Lemme 44 : Le morphisme naturel c est un isomorphisme.

Démonstration : Le morphisme ¢ est un morphisme de U(b)-modules. Comme
E(A) et L(A) sont des U(gi)—modules localement finis, pour tout ie€e I, c
est un morphisme de U(pi)~modu1es. Ainsi c¢ est un morphisme de
U(g)-modules.

Pour chaque w € W, je note encore f WA 1’image de f dans E(A) .

WA
On a cw(kfw/\) = kewA , donc on a c(kfwA) = kewl\ . Ceci prouve en particulier
que 1’'ona c #0 . Par le lemme 41, on a Dw(/\) = U(_b)fwA . On a donc
E(A) = U U(Q)fw/\ . On pose E’ = U(b_—)fA . Comme par le lemme 41 les poids de
E(A) sont contenus dans C(A) , on a g+ f/\ = {0} . Par le théoréme de
Poincaré-Birkhoff-Witt, E’ est donc un U(g)-sous-module de E(A)
On va montrer par récurrence sur &(w) que l’on a fw/\ € E’ . Soit

w € W . On peut supposer w #1 . Soit i€ I, veW tels que w=s.v,
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vA(h. )
v¢<w. Il est clair que 1’0on a kfm = fi 1. f . Donc si par hypothése de

VA
récurrence on a va € E’ , on a fM € E’ . On a donc E(A) = E’ , et donc
E(A) = U(_tg—)fA . Donc E(A) est un quotient intégrable de V(A) , et s’envoie

surjectivement (par c) sur L(A) . Comme L(A) est le quotient maximal parmi

les quotients intégrable de V(A) , le morphisme ¢ est un isomorphisme.

Lemme 45 : Soient J wune partiede I, A € P; . Les deux assertions
suivantes sont équivalentes

(1) Pour tout w e W 1’application dw : Fw(l\) —_— Dw(— A) est
surjective.

(2) Pour tout w , v € WJ avec wY v et e(w) =e(v) +1 , le

morphisme Dw(_ A) — Dv(— A) est surjectif.

Démonstration : Je vais d’abord prouver que 1l’assertion (1) implique
1’assertion (2) . Par le lemme 1’application c, * Dw(l\) —_ Ew(A) est
surjective. Comme cette application est la transposée de dw , 1’assertion (1)
implique que l’application Sy est un isomorphisme. L’injectivité de
1’application Ev(/\) — EW(A) implique donc la surjectivité des applications
Dw(_ A) —— Dv(— A) pour tout couple v, w avec v ¢ w . En particulier
1’assertion (2) est satisfaite.

A présent je suppose l’assertion (2) . Tout élément x € W s’écrit de

’

maniére unique x = x’ x" , i x’ € WJ et ou x" appartient au sous-groupe

engendré par les réflexions sJ.(,j € J) . Enoutre si yeW, y < x ona

y’' < x* . Donc 1’assertion (2) implique en fait que pour tout couple v , w
d’éléments de W avec v ¢ w 1’application Dw(— A) —s Dv(— A) est
surjective. Donc les applications DV(A) —_— Dw(/\) sont injective, donc
Dw(/\) s’injecte dans L(A) = 1_'1_1.; DV(A) (par le lemme 42). Donc 1l’application
e, Dw(/\) —_— Ew(/\) est injective, ce qui prouve que dw est surjective.

C.Q.F.D.

90



VII Scindage — Calcul de W, -

81 Soit X une variété, n un entier, £ un ax—module. L’opération de

puissance n iéme donne une application (en général non linéaire) de faisceaux

e
n

On suppose que le corps de base est de caractéristique p . Selon
Metha-Ramanan et Ramanathan [17-19-20] , on dit que la variété X est
scindable, en notant F 1le morphisme de Frobenius, le morphisme naturel de

¢ ,~module Qx POy — F'a est scindable, i.e. s’il existe un morphisme de

X X

ax—module oy ¢ F*aX — ax tel que oyo éx = ldox .81 f: X—Y est un

morphisme de variétés, les variétés X et Y sont dites compatiblement

scindables si et seulement s’il existe des scindages 9y et 9y de X et de

Y respectivement, qui rendent commutatif le diagramme suivant :

%y
aY F*UY
J f'ox l
ftU x —— f' F‘O X

Soit X une variété scindable. Soit gy un scindage de X , et £ un

faisceau inversible sur X . D’aprés [47-50-51] , le scindage oy définit

: B, ¢®P) —, HO(X,2) telle que oy 02,

une application linéaire Oy

. En outre si f : X — Y est un morphisme de variétés, si X et

id|H°(x,z)

Y sont compatiblement scindables par des scindages oy et Oy » et si ¢
est un faisceau inversible de Y le diagramme suivant est commutatif

o ® °Y o
v« — T |, #v,e)

o * ® OX i *
HO(X, £*¢°P) HO(X,f*e)
Soit G un groupe algébrique déployé, B un sous—groupe de Borel, Y
une variété de Schubert de G/B . Ramanan et Ramanathan ont prouvé que Y et

G/B sont compatiblement scindés, a 1’aide du critére suivant (cf. par exemple

[50]).
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Théoréme : Soit X une variété absolument lisse compléte sur un corps k , de
dimension n . Soit P un k point fermé. Soit Zl,...,Zn n sous—-variétés
irréductibles, de codimension un, lisses , et telles que
TPZI N...N ZPZn = {0} (dans TPZ) .

Soit wy le faisceau des formes différentielles de degré maximal. Soit
Z le diviseur Z = [le +...+[Zn] . On suppose que 1l’on a

) P =e(®-1)2z+D)

oi D est un diviseur effectif tel que P ¢ D .

Alors la variété X est scindable, compatiblement a chacune des n

immersions Zi —_ X .

Dans la suite j’appellerai ce résultat théoréme de
Metha-Ramanan-Ramanathan. On pourra se reporter a [47], [50] et [51] pour
trouver les démonstrations. J’ai cependant modifié trés légérement 1’énoncé
pour simplifier 1’utilisation du théoréme de semi-continuité. Remplacer un
corps algébriquement clos par un corps parfait est inofffensif dés que 1’on
choisit pour P wun point rationnel. La condition Tle n...Nn TPZn = {0}

n’est que la traduction du fait que localement les équations définissant les

hypersurfaces Zi forment un systéme de paramétres.

82 Dans cette section je fixe k un corps de caractéristique arbitraire, X
une variété compléte et lisse sur k , et wn: Y — X un fibré localement
trivial de fibre Pl . Je suppose que ce fibré posséde une section, i. e.
qu’il existe o : X — Y un morphisme tel que W o0 = idx . Par hypothese
Y est une variété lisse et compléte. Je note Cl(X) et Cl(Y) les groupes
de classes de diviseurs de X et de Y respectivement. Comme les variétés X
et Y sont lisses, ces groupes Cl(X) et Cl(Y) s’identifient naturellement

aux groupes de Picard Pic(X) et Pic(Y) . Aussi le morphisme =@ induit un
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morphisme de groupes o Cl(X) — C1(Y) . L’image du morphisme o est une
sous—-variété de codimension un dans Y , et cette variété definit un diviseur
que je note D . J’ai ainsi défini une application naturelle

Z D x Cl(X) — CI(Y) .
Lemme 46 : L’application natuelle Z D x Cl1(X) — C1(Y) est un isomorphisme.

Démonstration : Ce lemme est facile et bien connu. Je vais juste indiquer
comment construire 1’isomorphisme inverse CI(Y) — CI(X) ® 2 D .
Soit ¢ le point générique de X . Je pose P; = P;(g) . Par construction,
on a donc un isomorphisme ﬂ—l(f) ~ P; . Je note
’

i: § —— X et j: Pe ——— Y les morphismes correspondants.

H]
L’isomorphisme canonique CI(P€) ~2 D , et le morphisme

* ’

J : CI(Y) —— CI(P détermine un morphisme CI(Y) —— Z D que 1’on

g)
appelle le degré et que je noterai deg . On a ainsi un morphisme
(o*,deg): CI(Y) —— CI(X) ®Z D , qui est 1’isomorphisme inverse

cherché. J’utiliserai ces notations dans les lemmes suivants.
Lemme 47 : Soit &£ un fibré inversible sur Y . Les assertions suivantes sont
équivalentes
(1) &£ provient de X , i. e. il existe un fibré inversible £’ sur X tel
que £ = n*e’
(2) deg £ =0

Lorsque 1’une de ces conditions équivalentes sont réalisées, alors

* %
=m0 ¥ .

Démonstration : Le lemme résulte de la suite exacte

*
0 — C1(X) LI c1(Y) —gsgq Z —— 0, et du fait que les variétés sont

lisses.
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Soit a présent ¢ le faisceau d’idéaux déterminé par 1’image de o . On
a donc ¢ =~ £(-D) . Je pose D’ = o*(D) . Si on considére !/!2 comme un

fibré inversible sur X , on a donc }/&2 ~ £(- D’) . Soit E = oD’ .

Lemme 48 : Soit £ un fibré inversible sur Y , soit d son degré. On a

¢ = 2(dD) @ (- dE) ® n'c’e .

Démonstration : Le fibré inversible £ ® £(- dD) est de degré 0 . On a donc

2 ® 2(-dD) = n'o* (e ® 2(- dD))

n'c’e @ £(- dE)
d’ou le lemme.

Lemme 43 : On a R X = £(E - 2D)

Y|
Démonstration : Je considére la seconde suite exacte (proposition 8-12[27]) :

2
/87 — QY'X (-] aO(X) — O(X)'X — 0 .

Comme le morphisme =#n : o(X) — X est un isomorphisme, on a
no(X)|X = 0 . Je peux considérer &/!2 et ”a(x) comme des faisceaux du
support o(X) . La seconde suite exacte donne donc un morphisme surjectif
P os/s? L o*a — 0.
Y|X
Il est clair (en examinant le point générique) que ce morphisme est non

nul. Comme !/&2 et o* @ sont inversible, le morphisme P est un

Y|X

isomorphisme. (Remarque : Plus simplement coome =#n est lisse, P est

injective).
I1 est clair que ﬂY'X est de degré - 2 . J’applique le lemme précédent.
On a donc
_ _ * x
ﬂv|x = £(2E - 2D) e o nY|X .
Or on a
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*x %k
wo nY[X

n* s/

= n*e(- D)

£(- E) .

' o - _
D’ci on a nYIX = ¢(E - 2D)

83 Dans cette troisiéme section je vais calculer le faisceau w, des formes
de degré maximal sur la variété de Demazure D(w) , pour chaque w € W .
Je fixe we W , wf 1l . Soit u e W , et ielI tels que w= us;
Soient
w ¢ D(w) — D(u)
o : D(u) — D(w)
les morphismes construits au paragraphe IV. Je rappelle que =# est une
fibration localement triviale de fibre Pl , et o est une section de w .
Plus généralement, soit M un B schéma a droite, de sorte que 1l’action
de B soit localement libre, et que le quotient soit une variété lisse. Soit
M’ = Mx Pi . La projection naturelle Pi/B —— Spec(k) induit une fibration
localement triviale de fibre Pi/B mm: M/B — M/B .
De méme la section spec(k) -, B/B —, Pi/B induit une section
o: M/B — M/B.
Soit A € P . Le poids A définit un B-module de dimension un, que je
note encore A . Je pose
£(A) = mM(A)
£'(A) = 3, (A)
Comme M/B et M’/B sont supposées étre des variétés, les faisceaux
£(A) et «£’(A) sont inversibles, par le lemme 23.
Par la section précédente de ce paragraphe, il existe un morphisme deg :

Cl(M’/B) — 2 .

Lemme 50: Soit A e Pt .
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(1) o® 2’(A) = 2(A) .

(2) deg(2’(A)) = - A(hy) .

Démonstration : Le point 1 résulte du lemme 23. Pour le point 2 , on se
raméne au cas ou M/B est un point. Mais alors M’/B = Pi/B et le lemme est

clair.

A présent je vais définir des sous-variétés ZY""’Z:(W) de codimension
1 dans 2(w) , par recurrence sur ¢&(w) . Je suppose définies les
sous-variétés Z° ... Z:(u) par hypothése de récurrence. Je pose
Z, = n_l(Z‘;) pour 1 ¢ i< e(u)
= D(u) ou D(u) est considéré comme
une sous—variété de D(w) par o .
Pour alléger les notations, je pose n = &(w)
soit z" = [ZY] + ...+ [Z:] 1’élément de C1(D(w)) correspondant.
Soit P; 1’intersection ZY n...nN Z: (intersection est considérée ici

ensemblistement). Comme o est une section de o , on a (ensemblistement),

pour tout entier 1 ¢ i ¢ n-1

u

w =
Zi N D(u) = Z1

Je suppose u # 1 . On obtient alors Pw = Pu . Lorsque w est de
longueur 1 , Pw est reduit a un point. Ainsi, pour tout w € [ , Pw est
réduit & un point. Ce point correspond a 1’application naturelle construite
par récurrence D(1) — D(w) .

Lemme 51 : Soit w € ] , n = ¢(w) . Les sous-variétés Z: (1 < i< n) sont
lisses de codimension 1 dans D(w) . Leur intersection est ensemblistement

(et d’ailleurs schématiquement) réduit au point rationnel fermé P . On a dans

1’espace vectoriel de dimensions n : TP D(w)

w

w—
TP Z1 n...n Tp Zn = {0} .
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Démonstration : La démonstration se fait par récurrence. On fixe u, i € I
comme précédemment. Dans un voisinage de P , le fibré D(w) — D(u) est
trivial. Soit donc V un voisinage de P dans D(u) , et une trivialisation
de 1’ouvert U = u_l(V) en U Pi x V.

Soit 4 1la droite tangente a Pl en P .

Comme =7 est localement trivial, et & fibres lisses, le fait que Z?
est lisse implique que ZY est aussi lisse, pour 1 ¢ i ¢ n-1 . De méme comme
Z: = D(u) , Z: est lisse.

On a dans la trivialisation choisie

TP Z

u .
TP Zi @4 pour 1 <¢i ¢ n-1

= TP D(u) .

HeE e

TP A

Donc il vient que pour tout entier 1 ¢ i ¢ n-1

P Z? , et il vient donc

w Wy _
(TP zl) n...nN ('I'P Zn) = {0} .

w Wy _
(Tp Zi) n (Tp Zn) =T

Remarque : 1) Le fait que P = ZY n...n Z: schématiquement résulte du fait

que ces variétés se coupent transversalement.
2) Soit ve W, tel que 1’on ait v<{w et &(v) = e(w) -1 . Alors la

sous-variété D(v) de D(w) est 1l’une des variétés Zg .

Proposition 1 : On a
w =2 (o) ® 2(-Z")
w wP :
Démonstration : J’effectue la démonstration par récurrence.
Dans le cas ou w est de longueur 1, i.e. w = s; »ona D(w) = Pi/B .

Les faisceaux inversibles

s,
i
wsi et zsi(p)eée( Z ")
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ont le méme degré : - 2 , et sont donc isomorphes.
Je peux donc supposer ¢(w) > 1 , et la proposition vraie pour u . De la
suite exacte
*
0 — ™ Tk = 2 pew) k — (e p(w) — °

et du fait que les faisceaux de la suite exacte précédente sont localement
libres, et que nD(w)lD(u) est inversible, il vient que naturellement on a un
isomorphisme

W =T w e

w u ﬂD(w)'D(u)
Je pose D le diviseur correspondant a la sous-variété D(u) et

E=xn"0'D. par le lemme 49 on a

2 =¢(E-2D) .

D(w) () = ¢ )

Par hypothése de récurrence on a

_ _ LU

wu-.‘eu(p) ®e(-2) .

Par construction on a

atzt=2"-p.
Par le lemme 50 zw(p) est de degré -1 . On a donc par le lemme 48

£,(p) = £(E - D) ® n*o*xw(p) .

Or par le lemme 41 o* 2w(p) xu(p) . Il vient donc

w 2.(0) =2 (o) ®2(D - E)
On a donc
n*(wu) = zw(p) ® £(D - E) ® £(- n* Zu) .
D’ci on a
x
Oy =T (wu) ® ﬂD(w)]D(u)

£ (o) ® 2(D - E) ® 2(- o z%) ® £(E - 2 D)

n

£ (p) ® 2(- D) ® 2(- n* zY)

1

£ (0) ® (- 2")

ce qui montre le lemme.

Remarque : Le fibré inversible w, est naturellement un B-fibré inversible,
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et de méme pour zw(p) . Comme Z* est un diviseur B-invariant de
Div(D(w)) , £(- Zw) est également un B-fibré inversible. Néanmoins
1’ isomorphisme de la proposition ne commute & l’action de B que modulo un
caractére non trivial de B .

Lorsque g est de dimension finie, cette formule est montrée dans [47]
pour les variétés de Demazure de dimension maximale, et est implicitement

donnée pour toutes les variétés de Demazure.

%4 - Scindage des variétés de Demazure.

.

Soit we W

Lemme 52 : Il existe un ouvert non vide Vw < Spec(Z) , tel que pour tout
nombre premier p € Yw , pour tout corps k de caractéristique p , pour tout
élément u e W avec u ¢ w et e(u) =e(w) -1, les variétés de Demazure
D(w) et D(u) sont scindées, compatiblement avec 1’immersion fermée

naturelle D(u) — D(w) (définie au 81IV).

Démonstration : Il est clair qu’il suffit de prouver que 1’énoncé vaut pour
presque tout nombre premier p , et pour le corps fini Fp .

Je note ﬂz le sous—schéma fermé D(1)(Z) dans D(w)(Z2) . Il est clair
que la spécialisation de ce sous-schéma & un corps est le point P" défini
plus haut.

Je considére d’abord les différents objets sur le corps k = Q . Comme
par construction E;(— p) est sans points bases (car E;(— p) est trés
ample) , xw(— p) ne possede pas P’ comme point base. Donc, par
semi—continuité, pour presque tout nombre premier p , Pw(Fp) n’est pas un

point base de 2w(— p)r . Soit Vw 1’ouvert de Spec(Zz) correspondant.
P

Soit p € LA Puisque P" n’est pas un point base de 2w(— p) , il
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existe un diviseur effectif D sur D(w) , avec P ¢ Supp(D) , tel que 1l’on
ait un isomorphisme de faisceaux inversibles 2w(— p) = £(D) .
On a donc
W) 2 e(p - )27 + (- D) .

Or par la seconde remarque postérieure au lemme 51, la sous-variété D(u)
est 1’une des variétés Zg . Le lemme résulte donc du théoréme de
Metha-Ramanan et Ramanathan cité plus haut.

Au chapitre XIIX, on verra que ce lemme est vrai pour tout nombre premier
p . Ce fait sera lié a la construction de variétés de Schubert en toute

caractéristique.
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VIII Schémas h—normaux.

Soit k un corps. Soit X un schéma noethérien localement de type fini
sur k . Je dis que X est h-normal si le morphisme de normalisation
J % —+ X est un homéomorphisme. Soit K la cloture intégrale de k . Je
dis que X est absolument h-normal si et seulement si j est homéomorphisme

N . PPN kY]
absolu, i. e. si j’ : Spec(k)x X — Spec(F)xSpeC(k)X est un

Spec(k)
homéomorphisme. On notera que si X est absolument h-normale, X est
h-normale.

Une k-algébre 4 de type fini est dite h-normale si et seulement si le
schéma affine associé est h-normal. On définit de méme les algébres
absolument h-normales.

Dans la suite de ce paragraphe, je suppose le corps k de

caractéristique zéro. Le lemme suivant est faux en caractéristique non nulle

comme le prouve 1’exemple considéré au & V.

Lemme 53 : Soit 4 une algébre de type fini, graduée sur Z et intégre (je
ne suppose pas nécessairement les composantes homogénes de 4 de dimension
finie). Soient K 1le corps de fraction de 4 , et % une sous—algebre
graduée de K telle que % 2 A4 . On suppose le morphisme j : 4 — % fini.
Les assertions suivantes sont équivalentes

(1) J induit un homéomorphisme absolu de Spec(®) dans Spec(4) .

(2) Pour tout couple d’algébres graduées A’ , A" avec
Ac A’ ¢ A" c®, il existe un élément homogéne o € 4" tel que o £ A’ et
]

0" € A’ pour tout entier n ) 2 .

(3) Il existe un entier n > 0 , des €léments homogénes Ops--s0y € %,

N

des algebres Ao,...,A tels que

N
(a) 4 = Ao cAl e cAN =% ,

(b) pour tout entier 1 ¢ i < N, 4,

$ i 7 Aol
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(c)o@eA. pour tout m > 2 , et 1 ¢i ¢ N.
i i-1

Démonstration : Je vais d’abord montrer que l’assertion (1) implique
1’assertion (2) . Soient A’ , A" deux algébres graduées avec
Ac A’ ¢ A" cm . Comme les morphismes 4 — A’ , A — A" , A" —3 B sont
finis, les morphismes Spec(®) — Spec(4") , Spec(4") — Spec(4’) et
Spec(A’) —— Spec(A) sont propres et dominants donc surjectifs. Donc
Spec(A") — Spec(4’) est un homéomorphisme absolu. Soit M = A"/4’ . Soit @
un élément premier associé au 4A’-module M . Comme M est un 4’-module
gradué, » est un idéal gradué. Il existe donc un élément homogéne 7 € A"\4’
tel que #7 ¢ 4’ . Il est clair que 1’on peut supposer que 1’on a A" = A’[7]
Soit ¢ le conducteur de 1’extension A’ — 4" , i. e. :
¢={aeA , aa"ca’'} .
Comme A’ est noethérien, A" est un A4’-module noethérien. Il existe

donc un entier N > 1 , tel que 1’on ait

2z

A" =z oat.rt.
i=0

On a donc .‘?Ng‘eg? .

On suppose d’abord que l’on a ¢ # 2 . Alors il existe un élément
homogéne § € A" tel que ®.{£ ¢ A’ . Donc il existe un élément homogéne
meP tel que wg§ £ A’ . On a (‘u{)M:‘aMgMeA’ pour M > N . Donc il
existe un entier q ¢ 1 tel que (‘ug)q g A et (1(€)M € A’ pour M> q .
L’élément o = (‘ug)q satisfait donc a 1’assertion 2 .

On suppose a présent que 1l’on a ® = ¢ . Ceci implique que % est
également un idéal de A" . Je vais prouver que % n’est pas un idéal réduit
dans A" . En effet, on suppose % réduit dans A" . Comme le morphisme
Spec(A"/?) — Spec(4A’/?) est un homéomorphisme absolu, et que k est de
caractéristique 0 , ceci implique 4’/? — A"/? est birationnel. Soit 2’

le conducteur de 1’extension A'/® — A"/ et ¢’ 1’image réciproque de 2’
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dans A’ . Ona donc ¢’ A" c A’ +2 , et on a donc ¢’ € # , ce qui implique
que 1’on a 2’ = {0} . Comme 1’extension 4A’/? — A"/ est finie et non
triviale, ceci est impossible.

Ainsi 1’idéal # n’est pas réduit dans A" . Comme % est un idéal
gradué, il existe un é€lément homogéne o tel que o £ 2 et Mer pour
m) 2 . Comme ® est réduit dans 4’ , on a également o ¢ A’ , ce qui prouve
1’assertion (2) .

Je vais prouver que 1’assertion (2) implique 1’assertion (3) . Utilisant
1’assertion (2) , on peut construire une suite d’éléments homogénes 01199 -+
de # telle que si 1’on pose Ay = A, A= A[ol,...,ot] pour i > 0 on ait
9, ¢ Ai-—l et OT € Ai—l pour m > 2 . On a ainsi Aog Al ¢ AZ ... Comme 4
est un anneau noethérien, que % est un 4-module de type fini, et que
chacune des algébres Ao , Al... sont des A-modules, la suite "'i est
stationnaire et 1’on a “N = % pour un certain entier N > 0 .

Je vais prouver que 1l’assertion (3) implique 1l’assertion (1) . On
suppose donc qu’il existe des sous—algébres graduées Ao ¢ Al . g "N
satisfaisant a la condition (2) . Comme le morphisme Spec(®) — Spec(4) est
la composante des morphismes Spec(Ai) — Spec(Ai_l) il suffit de montrer que
chacun des morphismes Spec(Ai) [ Spec(Ai_l) est un homémorphisme absolu.
Je peux donc supposer qu’il existe un élément homogéne o € % tel que
Alo] =3 et tel que o" € 4 pour tout m > 2 . Je peux aussi supposer que k
est algébriquement clos. Pour montrer que 6 : Spec(®) — Spec(4) est un
homéomorphisme, il suffit de montrer que 8 est injectif sur les points
fermés, car @ étant fini et dominant, il est propre et surjectif. Il suffit
donc de prouver qu’un morphisme d’algébres v : 4 — k se prolonge d’au plus
une maniére en un morphisme Vv : % — k . Si v(oz) = 0, on a nécessairement
'{'l(o) = 0 , ce qui détermine de maniére unique v.Ssi v(oz) £0, ona

nécessairement v(o) = v(aa)/v(oz) , ce qui détermine de maniére unique V .
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Soit X wune variété projective, et £ un fibré inversible. Je note
ix(.‘e) le schéma affine spectre de 1’anneau Qn>ol'(x,$°n) . Soit 0 le point
fermé de Zx(z) correspondant a 1’idéal "irrelevant" 0n>ol”(X,:e°n) . Je pose

i;(z) = Zx(z) - {0} . Lorsque &£ est ample zx(z) est une variéte.

Lemme 54 : Soit X une variété projective, et ¢ un fibré inversible trés
ample. Alors si X est absolument h-normale, Ex(x) est absolument

h-normale.

Démonstration : Soient X le normalisé de X , et j : X — X le morphisme
de normalisation. Par le lemme 39, le normalisé de Zx(ﬁe) est le schéma

z (J%e) .
X

Je vais d’abord montrer que le morphisme naturel I'(X,UX) — I'(i,(7~)
X

est un isomorphisme.

Soient k’ = I‘(X,Ux) , e¢ K 1la cloture algébrique de k . On a
dimkk’ ¢ @ , donc k’ est un sur-corps de k de dimension finie. Comme k
est de caractéristique zéro, 1’algébre k okk’ est réduite, et isomorphe a
(dimkk’) copies de k . Donc dimkl'(X,crx) est le nombre de composantes
connexes du schéma X = Spec('l?)xspec(k) X .

On montre de méme que dimkI' (T(,U~) est le nombre de composantes connexes
de X = Spec('l?)xspec(k))( . Comme le morphisme X —— X est un homeomorphisme
absolu, ces deux nombres sont égaux. Donc I'(X,Ux) —_— I'(T(,Uﬁ) est un

isomorphisme.

Donc les points "irrelevants" O et 0 de Zx(se) et de Z~(,j*.‘£) ont
X
méme corps résiduel. Donc pour que le morphisme Z~(j*2) —_ Zx(&:) soit un
X

homéomorphisme absolu, il suffit que le morphisme ZS(J"!) —_ z;’((ac) soit un
X

homéomorphisme absolu. Soit u : z°(£) — X le morphisme naturel. On a
X
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zf_’(j‘z) =X Xy Z;(z) . Je pose A* = Spec k[T,T_l] . Le morphisme = est une
X

fibration localement triviale de fibre A* . Comme la propriété
d’homéomorphisme absolue est locale, et que le morphisme de normalisation j
est affine, on est ramené a prouver le fait suivant :

Soit A4 une k-algébre intégre de type fini. Si A est absolument
h-normale, A[T,T_l] est absolument h-normale.

Soit 4 le normalisé de 4 . Alors Z[T,T_l] est le normalisé de
A[T,T—l] . I1 s’agit de prouver que le morphisme
?: (ko a) [T,T—l] — (Ko 4) [T,T—l] induit un homéomorphisme ¥ sur le
spectre. Pour cela il suffit de montrer que ¥ est injective sur les points
fermés car P* est propre et surjective (puisque ¥ est finie et
birationnelle). Comme 4 et 4 sont des algebres de type fini, le corps
résiduel d’un point fermé du spectre de (k ® 4) [T,T_l] est k . Soit
v: (ke 4)[T,T_1] — kK un morphisme d’algébre. On a v(k ® 4) = kK . Comme
A est absolument h-normale, v se prolonge d’au plus une maniére en un

morphisme Vv : (K® 2) — K, et donc d’au plus une maniére en un morphisme

v: el [T,T_I] — k . Ceci montre le lemme.

On considére la situation suivante. Soient X wune variété, Y une
sous-variété. Soient X et Y les normalisées de X et Y , et jx :
X — X s ‘jY Y — Y les morphismes de normalisation , i : Y — X le
morphisme d’inclusion.

On suppose X absolument h-normale. Alors par le lemme, il existe un

~

unique morphisme j : ¥ — ¥ rendant commutatif le diagramme :

Le lemme suivant est le lemme-clef de cet article :
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Lemme 55 : Soient X wune variété projective, Y une sous-variété. On suppose

X et Y absolument h-normale. Soit :

v Px
Y ——E--—¢ X

le diagramme commutatif associé comme précédemment. Soit £ un fibré
inversible trés ample sur X . Soit ¢ = j;z . Alors si le morphisme naturel

T(i,E) —_— F(?,j‘g) n’est pas surjectif, il existe un entier n > 0 ,

o€ F(?,j'isn) tels que

(1) o n’appartient pas &8 1’image du morphisme F(i,§cn) —_— r(?,j'z'“) .

(2) Pour tout entier m ) 2 , o™ appartient a 1’image du morphisme
r(i’Eonm) —_ F(?,jtwonm)

Remarque: La condition (2) est évidemment équivalente a la condition (3)
suivante:

(3) Pour m = 2 ou 3, a" appartient a 1’image du morphisme

~@nm

M (¥, ™y .

r,
Démonstration : Par la commutativité du diagramme précédent, on a

j; i*e j'J;x . On a donc un diagramme commutatif d’algébres graduées

#
% ~®n J ~ .x~®n
enzor(x,z ) —— aanZoI'(Y,J £)

I I

. #
®n 1 .x ®n
enZOF(X,x ) —— anor(Y,l € )

Je pose A’ = Im i# , A = Im J# , B’ = On>or(Y,i*£@n) ,

R = 0n>0r(Y,j*§@n) . Par le lemme 39, % est la cloture intégrale de
1’algébre %’ . Par un théoréme de Serre ([10] III 85) A’ est une
sous-algébre de codimension fini dans ®’ . Donc le morphisme A’ — %’ est
birationnel et fini. Donc % est la cldoture intégrale de A’. Par le lemme,

%’ est absolument h-normale. Donc par le point 3 du lemme 53, 4’ est

absolument h-normale. Comme on a A’ € A€ ® , 3 est également la cloture
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intégrale de A , et par le point 2 du lemme 53 4 est absolument h-normale.
Donc par le point 2 du lemme 53 si A4 #% , il existe un élément homogéne
o € B\4 , tel que ™ ea pour tout m > 2 . Soit n 1le degré de o . Ainsi
on a prouvé que si F(i,g) —_ r(?,j*i) n’est pas surjective, il existe

*~8®n

o er®,;'s ) , tel que o satisfasse aux conditions (1) et (2) recherchées.

Ceci montre le lemme.

Lemme 56 : Soient J une partiede I , A € P; , W, V€ WJ . On suppose
w>v, et e(w) =¢(v) +1 . On suppose que 1’application
Dw(— A) — Dv(— A) n’est pas surjective. Soient w , v des décompositions

réduites de w et v avec w2 v.

Alors il existe un entier n > O, un élément o € H:(D(V),EL(—nA)) tels
v

que :
(1) yo n’appartient pas &8 1’image du morphisme naturel

q:(D(;),2~(—nA)) —_ q:(D(;),$~(—nA)) , pour tout entier non nul y .
W v

(2) Pour tout entier m ) 2 , o™ appartient & 1’image du morphisme naturel

Hy(D(W),2¢_(-nmA)) —s Hy(D(V),2_(-nmA)) .
w v

Démonstration : On suppose que le morphisme Dw(— A) — Dv(— A) n’est pas
surjectif. Je peux donc supposer que 1l’on a k = Q . Je vais appliquer le
lemme précédent aux données suivantes

X=50A

Y =5,

e = Ew(- A) .

Par le lemme, les variétés X et Y sont absolument h-normale, et par

construction ¢ est trés ample. Par le lemme 37, on a
Du(- A) = r(gu,J’zu(_ A)) pour tout u e WJ . L’hypothése implique donc que

. 0~ ~ 0% ~ , . .
le morphisme H (Sw,J’gw( A)) — H (Sv,J’zv( A)) n’est pas surjectif. Donc
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par le lemme précédent, il existe un entier n » o, et o e H°(§v J,§v(—nA))
]

tel que

(1) o n’appartient pas & 1’image du morphisme

o~ ~ o~ ~
H (SW’J,SW( M)) — H (SV’J,zv( n)) .

(2) Pour tout m ) 2 , " appartient a 1’image du morphisme

o ~ ~ o~ ~
H (Sw,J’zw( nmA)) — H (SV’J,zv(—nmA)) .

On a des isomorphismes naturels, pour tout u € WJ , toute décomposition

réduite u de u , tout entier m

H°(§u'J,§u(—m) = B2 (0),e_(-mA))
u

~

Q 8, H)(D(W),¢_(-mr)) — HO(D(W),2_(-mA)) .
u u

En outre 1’application Hp(D(¥),% (-mA)) —s HO(D(W),2 (-mA)) est
u u

injective et identifie Hp(D(W),2 (-mA)) & un réseau de H°(D(W),¢ (-m))
u u

Donc quitte & multiplier o par un entier non nul, on peut supposer que 1’on
a en outre
(3) o e K(D(E),e (-m)) .

v

(2

(4) o est dans 1’image du morphisme naturel

o ~ o ~
(D(w),% (-neA)) — H_(D(v),£ (-neA) , pour & = 2 ou 3.
06,2 BO@.L,

La condition (1) implique en particulier que yo n’appartient pas a

1’ image du morphisme q:(D(;),$~(~nA)) — H;(D(V),$~(—nA)) , pour tout entier
w v

non nul y .
Comme tout nombre entier m > 2 est somme de 2 et de 3 , o" est dans

1’image du morphisme naturel H;(D(;),$~(—nmA)) —_— H;(D(;),$~(—nmA)) pour
w v

tout m» 2 . C.Q.F.D.
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Dans tout ce paragraphe, k désigne un corps de caractéristique O.

Lemme 57 : Soit A ¢ P+. Alors pour tout w € W, pour toute décomposition
réduite w de W, les morphismes

FW(A) —_— D;(—/\)

D;(/\) — E_(A)

sont des isomorphismes.

Démonstration : Les deux applications sont transposées 1’une de 1’autre. Il
suffit donc de prouver que l’application Fw(A) —_ D;(—A) est un isomorphisme.
Comme il résulte du & VI que cette application est injective, il suffit de
prouver la surjectiviteé.

Soit J = {1i/ A(hi) = 0} par le lemme 45, il suffit de prouver que pour
tout couple v,w d’éléments de WJ avec v <w, e(v) +1 =¢(w) , et toute
décomposition réduite v, w de v et w avec Vv < w, 1’application
D;(—A) —_ D;(—A) est surjective. On suppose par 1’absurde que cette
application n’est pas surjective. Alors par le lemme 56, il existe un entier
n>0, et o€ H;(D(;),xz(—nA)) tels que

(i) yo n’est pas dans 1’image de 1’application

Ry @ Hy(D(W),2x(-nA)) —s Ho(D(V),%(-A)), pour tout entier y # O

(2) Pour tout entier m > 2 , o™ est dans 1’image de 1’application
R, + Hy(D(W),2 (-nmA)) — Kp(D(V),2_(-nmA)).

w v
Les schémas D(w)(2) et D(;)(Z) sont propres sur 2 , et les faisceaux

$~(xA) et &N(xA) sont cohérents et plats sur Z , pour tout entier x. Donc
w v

les groupes de cohomologie q;(D(;),2~(xA)) et g;(D(;),2~(xA)) sont des
w v

2-modules de type fini.
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Je note le le corps a p e€léments, pour tout nombre premier p. On a donc
(a) Pour presque tout nombre premier p, ¢ n’appartient pas a

Im R +p PQ(D(?),&&(—M)) (par la condition 1).
v

(b) Pour presque tout nombre premier p , on a Fp * Hi(D(?v),ﬁeA’(—nl\)) =0
w

(c) Pour presque tout nombre premier, D(v) (le) et D(?v) (IFP) sont
compatiblement scindables (par le lemme 52).
Je choisis p un nombre premier qui satisfasse aux conditions énoncées

(a), (b), (c). Je note 7 un élément de l!;)(D(‘v"v),$~(—pn A)) tel que
w

Rp('r) = 6P . Pour tout entier x , et tout u e WJ , on a des isomorphismes

naturels

0—F e, K (D)2 () — H D@,z (xA) —
p u P u

—F n; (D(Tx),z_‘:(x/\)) —» 0 (lemme 26).

On peut donc définir les images 7 et o dans les groupes

(respectivement) H: (D(wW) »2_(-np A)) et H: (D(V) ,$~(—npl\). Pour tout entier
P w P v

m , soit H'm 1’application naturelle
B : H (D(W),¢ (-omr)) —s He (D(V),2 (-nmA)).
P w P v
Soient oy et oy des scindages compatibles de D(W) (Fp) et D(;)(Fp)
relatif & 1’immersion canonique D(V) (Fp) — D(w) (Fp). De tels scindages
existent par la condition (c¢) .Ces scindages induisent un diagramme

commutatif :

R
H (D(W),¢_(-np A)) -2+ Hp (D(V),2_(-np A))
P
o~
W

P v
b1 v 1%
(o} ~ Hl o ~
HO (DG),e (-nn)  — HY (D(3),e_(-nA))
w p v

P
Par 1’assertion (b) , on a

™M £

He (D(W),2_(-0n)) = F_ &) Kp(D(®),e_(-oA))
P w w
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Donc par l’assertion (c) , ona o ¢ Im R'l. Par ailleurs, on a

—_ o —_
o =oy Zp(o)

oy ° Hp(?)

Hl o o;("i") € Im T\’l

ce qui implique une contradiction.

Soit we W . Soit S; ee. 8y une décomposition réduite de w. On note
1 n

Aw 1’opérateur z-linéaire Aw : Z[A] — Z[A] défini par Aw =

a P | .
Si Si
1 n

En utilisant le lemme de Matsumoto [61], il est clair que cet opérateur est
défini, indépendamment de la décomposition réduite choisie. Ce fait résultera

aussi du théoréeme 3. On définit aussi 1’opérateur

S. S,

4 =d4M... 4 . Ces opérateurs Aw et 4% sont appelés opérateurs de

w

Demazure.

Proposition 2 : Soit A e P+, et weW. Ona ch(Ew(/\)) = 4" eA et

A
ch(Fw(/\)) = Awe .

Démonstration : On effectue la démonstration par récurrence sur ¢&(w).Je vais
montrer par exemple la premiére assertion. Si w = 1, il n’y a rien a
montrer.Aussi je peux supposer que l’ona w#1 . Soit ie€e I, veW tels

W=s. v et ¢(w) > ¢(v) . Par le lemme 57 on a
i
Ew(l\) =D Ev(/\).
53
Comme 1’application naturelle Ev(/\) —s D EV(I\) est injective, on a par le
lemme

S.
1

ch Ew(/\) =d " ch Ev(/\)

D’ou par hypothése de récurrence
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5i v, A
ch E (A) =4~ 4 ()

PN CH)

Lemme 58 : Soit M € ¢(b), M de dimension finie. On suppose 1’application

S.
M—D M injective. On a alors pour tout A € P :

S

S. .
dim M, - dim M = dim (D I)A - dim (D M)

A s, (Mp)-p s;(Mp)-p *

Démonstration : Le lemme n’est juste qu’une application de la formule

S.
L ch(M).

-
ch(dp M) =4
Lemme 59 : Soit A € P+, et soit u € P+ . Alors 1’ensemble

{weW/wu+p)-peC(A)} est fini.

Démonstration : Soit Q 1le réseau des racines, et Q+ 1’ensemble des poids
de U(ET). Soit ¢ 1la relation d’ordre sur Q induite par Q+. Si a, B € Q+,
onpose & B dés que B -« € Q+.

Soit C={ B € Q+ / u+ B <A} Lensemble C est fini. Pour chaque
wes W, p - wo appartient a Q" . 11 est connu et facile [12,33], que
1’application naturelle w — p — wo est injective.

Soit C’ = {weW, p~w—1p € C} . Il vient donc que 1’ensemble C’ est
fini. Or on a

{w€W,W(u+p)-peC(/\)}={w€W.u+p-w_1

pecCAN)}cC

Donc l’ensemble {w e€ W, w(u + p) — p € C(A)} est fini.

Soit v € P . je pose F(v) = {r € P, v ¢ v} . Je note Q[[P]]
1’ensemble des fonctions P : A — P dont le support est contenu dans une

réunion finie d’ensemble F(v) . Sur Q[[P]] il existe une topologie

naturelle, pour laquelle une suite (Pn) € Q[[P]] tend vers zéro si et
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seulement si pour tout v € A , il existe un entier n, tel que
Supp(?n) nv+Q ¢ F(v)
pour tout n ) n, .
I1 est clair que la structure d’anneau de Q[P] se prolonge par

continuité a Q[[P]] .

Lemme 60: 1) On a ch L(A) € Q[(P]] , pour tout A € Pt .

2) Soit A € P+ . Il existe une unique fonction ¥ : P+ — 2 , telle que

Z e(w) ew(u+p)

ch(L(A)) = Z _ P(u) =

uep Z e(w) "
w

Démonstration : Les poids de L(A) sont de multiplicité finie et contenus

dans F(A) . On a donc ch L(A) € Q[[P]] . On a pour tout we W, wo € F(p) .

Donc 1’expression formelle 3 e(w) e converge dans Q[[P]] et est
w
inversible. Soit Q = (2 &(w) ewo) ch L(A) .On a Qe Q[[P]], et Q=2 Q(u)
w ueP

e”. On notera que W agit naturellement sur Q[[P]], et 1’on a pour tout w €

W: wQ=¢e(w) Q. Donc le support de Q est W-invariant, et 1l’on a Supp Q <
F(A+p). Ceci implique que pour tout poids u € Supp Q, il existe w e W tel
que wu soit maximal dans 1’ensemble Wu. On a donc wu ¢ P+. On note aussi
que pour tout u, et tout i e I, ona Q(u) = - Q(siu). Ceci implique que si
u € P+n Supp(P), on a u(hi) # O pour tout i€ I, doncona u-pe€ P+. On
note donc ¥ la fonction de P+ dans 2z définie par P(u) = Q(u+p). Il est
alors clair que 1’on a

(z e(w)eww) ch L(A) = 2 +P(u) z e(w)ew("+p) d’oi la formule cherchée.
weW ueP w

A présent je reprends une méthode d’Heckman tirée de son travail cité en

introduction, pour déduire la formule de Weyl des formules de Demazure.
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. + +
Lemme 61 Soit A € P . Alors pour tout u € P, on a

Z e(w) dim(L(A)

=6 .
w w(utp)-p A1

Démonstration On note d’abord que par le lemme 539 la somme considérée est
finie. Soit u € P+. Par le lemme il existe un €lément v € W tel que pour
soit un

tout w e W 1’application : (EV(A)) — L(A)

w(utp)-p w(utp)-p
isomorphisme. Or en appliquant le lemme 58 de maniére récurrente, il est

facile de prouver que pour tout v € W on a

Z e(w) dim(EV(A))

=68 .
w w(utp)-p A u

En effet pour v =1 cette formule est évidente. Ainsi le lemme est

montreé.

Théoréeme 1 1) Soit A e P+. On a

w(A+p)
ch L(A) = Z e(w) ew
Z e(w) e o
2) On a en outre la formule du dénominateur
a dimga wo
b4 +(]-e ) =Z e(w) e o=P

aed

Démonstration Je démontre d’abord le point 1. En utilisant le lemme 60, il

. +
s’agit de prouver que 1’application ¥ : P —4 2 telle que :

w(utp)
ch L{/\) = 3 . P<u) z E(wy) e
ueP 5 elw) ewp

est 1’application de Dirac 5A.

Soit u e P+. Ona P(u) = Z e(w) dim(L(A))

- .
weW Kro~wo

Par invariance de A caractére de L(A) sous l’action de W, on a

P(u) = wfw e(w) dim(L(A))w(“+p)_p .

D'’ou p(u) = 5A u par le lemme 61, d’ou le point 1.

Je démontre le point 2 du théoréme. Si ¥, ¥ sont deux élément de
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Q[[P]], je dis que P est inférieure a P (ce que je note ¥ ¢ ¥) si 1’on a
P(u) < ¥(u) pour tout u e P.
Par le théoréme de Poincaré — Birkhoff — Witt ona (I +(1-eﬂ'°()dlm'gr.x)—1
aed

P + .
= ch U(n) Je choisis A un élément de P tel que A(hi) > 0 pour tout i
€ I. Pour tout entier n ) O, on a une suite exacte

(-] V(Si(n/\+p)—p) — V(DA) — L(DA) — O .
iel
On a donc

ch V(nA) » ch L(nA) 3 ch (v(mA)) - Z ch v(®i(nA+p)-p).
iel
Pour tout u € P, ona ch (v(u)) = e“ch U(n )

On a donc
ch (U )) » e ™ ch(L(mn) » (1 -3 e PABDHD 4 wmT)).
- iel -

Donc la suite e—nA ch(nA) converge lorsque n tend vers +w

et 1’on a ch (U(n )) = lim e—nA ch(L(nA)). Or il est clair
- Ny

que 2 &(w) ew(nA+p)—(nA+p)

weW
wil

tend vers zéro quand n tend vers 1’infini. On a

1

donc ch U(n ) = , d’oi le point 2 du théoréme.

Z e(w) PP
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X.- Normalité de certaines images des variétés de Schubert.

Pour tout poids X € Pt je pose J(A) = {i /A(hi) =0} . Si J est une
partie de {l,...,N} , je pose P} = (A€P'/ J(N)=J1 .

Soit g T1'algébre de Kac-Moody considérée. Je dis que g satisfait la
condition X , si pour tout A€ Pt L e U(g)-module L(A) est simple. Un
théoréme de V. Kac [33] s'exprime en disant qu'une algébre de Kac-Moody symétri-
sable satisfait la condition X . A part ceci, je ne connais aucun exemple d'al-
gébre de Kac-Moody 1 , et de poids A , pour lesquels on sache déterminer si le
module L(A) est simple ou non simple (excepté Tes exemples déduits directement
du théoréme de Kac).

Je vais énoncer le théoréme suivant sous 1'hypothése générale, puis sous
1'hypothése ol g satisfait X : le résultat obtenu est alors la généralisation
exacte du théoréme de normalité des variétés de Schubert (pour les groupes semi-
simples) démontré par A. Joseph [3)] et C.S. Seshadri [s57].

Théoréme 2 :

Soient J une partie de {1,...,N} , wE wJ ,et ANE Pj . Alors pour
tout entier n suffisamment grand (1a borne inférieure dépendant des données)
Te morphisme naturel §W’J
normale. En particulier on a :

- B’Ew(nA) est une immersion fermée projectivement

(a) Pour n suffisamment grand, § est normale.

w,ni -

(b) Pour tout u € W, s usw, le morphisme naturel Su,J - Sw,J est

une immersion fermée.

Théoréme 2.3 :

Je suppose que g satisfait = . Soient J une partie de {1,...,N} ,
wE NJ et AE P} . Alors le morphisme naturel §Q’J - H’EW(A) est une
immersion fermée projectivement normale. En particulier la variété Sw A est

s

normale.

Démonstration :

1) Je vais commencer par démontrer le théoréme 2. Par définition, le faisceau
inversible EE;(-A) est un faisceau trés ample de Sw,A , et en particulier
ample. Comme le morphisme jw : §w"] - Sw,A est ung_porma]isa}jon, il est fini.
Donc [26J , le faisceau inversible ‘j:/ é@w(-A) = é@w(-A) est a’rplp1e.

Donc par le lemme 3%, pour n suffisamment grand, Te faisceau inversible éew(-nA)

116



THEOREME DE NORMALITE

est trés ample. Par les lemmes 27 et 57 1e morphisme naturel
~ n
F(nh) = HO(S, 1.8, (-n))

est un isomorphisme pour tout n . Donc pour n suffisamment grand, le morphisme
§Q’J - B’Ew(nA) est une immersion fermée projectivement normale. En particulier
on obtient
a) Pour n suffisamment grand, le morphisme §Q,J - S
phisme, donc Sw,nA est normale.
b) Pour n suffisamment grand, et u € wJ tel u <w , les fléches verti-
cales du diagramme commutatif

gu oJ §W 3J

WA est un isomor-

sont des isomorphismes. Donc le morphisme naturel gh g~ §Q J est
b s

une immersion fermée,

2) Je passe a la démonstration du théoréme 2. . Je vais montrer que 1'anneau
k [Zw,A] est intégralement clos. La c]6tun§ intégrale de cet anneau, k [E@,A]
est égale par le lemme 39 a fo H°(§Q’ﬂ ,ﬂ;(-nA)) . Donc par les lemmes 26 et 5%,
ona k [EQ,A] = nfo Fw(nA) .nEomme ona k [zw,A] > F,(A) , pour montrer que
k [Zw,A] est intéaralement clos, i1 suffit de montrer que k [EQ,A] est engendré,
comme anneau, par le sous-espace FW(A) . IT suffit donc de montrer que pour tout
entier n > 0 , le morphisme naturel S" Fu(A) = F (nA) est surjectif. Comme e
module L(nA) est simple, le sous-espace vectoriel (Ew(nA))Q est de dimension
1, et a pour base un vecteur i de poids nA . Soit v; un vecteur non nul de

. _ . . * ~
Fw(nA) de poids -nA . On a donc un isomorphisme k Vo o Fw("A%/g+ Fw(nA) .

Comme g+ agit de maniére nilpotente sur Fw(nA) , le U(g+)-modu1e Fw(nA) est
cyclique, engendré par v: .

Comme le morphisme naturel S" FW(A) - Fw(nA) est un morphisme de U(Q+)-modu1e
w,A] est
intégralement clos, et le morphisme §W,A < E’EW(A) est une immersion fermée
projectivement normale. En particulier, sw,A est normale, ce qui finit la preuve

du théoréme 2.

et que 1'ona k(v)" = k v: , ce morphisme est surjectif. Donc k [=
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Comme cas particulier du théoréme 2, on obtient que lorsque §§ est symétri-
sable (ou plus particuliérement satisfait Z) les variétés de Schubert ne
dépendent pas de la représentation L(A) choisie pour les définir (plus
précisement, une variété de Schubert ne dépend de la représentation L(A) qu'a
travers la partie J(A)). Ce fait avait déja été prouvé par J. Tits ( [59] cf.
aussi [58] ).

On supposeg de dimension finie. Le théoréme de Joseph auquel j'ai fait
allusion s'énonce ainsi: Soient A€ P+ , et weg W. Si est suffisamment loin
des murs, le morphisme naturel DY(A)-- Ew(/\) est un isomorphisme. Par la
démonstration précédente il est clair que ce résultat est équivalent a la
normalité des variétés de Schubert. En effet il suffit de montrer la normalité
des variétés de Schubert dans G/B , puisque une variété de Schubert générale
n'est qu'un fibré localement trivial de fibre une variété lisse au-dessus d'une
variété de Schubert sur G/B . Un facile argument sur le fait que G/B est
homogéne implique que pour tout A€ Pé , le morphisme naturel G/B JPL(A) est
une immersion fermée. Donc toutes les variétés Sw,/\ (Ae P-& ) pour un w& W
fixé sont isomorphes & la variété de Schubert correspondant dans G/B . Par
l'argument utilisé dans la démonstration du théoréme 2, le théoréme de

Joseph est équivalet a la normalité de Sw A Pour A suffisamment loin des murs.
’
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Le lemme suivant, qui compare les dérivés des foncteurs de Joseph DS a
i

la cohomologie des faisceaux §BS sera généralisé plus loin au cas des foncteurs
.i
Dw . Néanmoins, i1 ne m'a pas été possible de traiter le cas général immédiatement

et d'éviter la répétition des mémes démonstrations.

Lemme 62 :
Soient i €1 et ME 8?(9) . Alors on a un isomorphisme canonique, pour

chaque entier n: Dgi M=~ Hn(Pt/B’é@si(M)) .
Démonstration :
Exceptionnellement, je vais m'écarter de la notation de § I et poser
a; = k e; 0 k hi ® k fi s 91 =k hi ® k e - Soient Ai et Bi les groupes
associés a a; et gi , de sorte que Ai est isomorphe & SL(2) , et Bi a
son sous-groupe de Borel. Pour éviter toute confusion, je note 551_ : {?(Bi) - &’(81-)

le foncteur de Joseph sur %%Bi) . D'aprés 1e § III, on a un isomorphisme de

=% * . .
a3 modules Dsi M e Dsi M , et on a un isomorphisme naturel At/Bi_ Pi/B .
Donc pour montrer le lemme, on peut ne considérer que le cas ol 1'on a

g=a; ,b=>b,.0Onposealors G=A; ,B=8 Dg = Dsi , £ = é@si . Pour

tout module M € &(b) , on a un isomorphisme naturel Ds MS H°(§/B,58(M)) .

Comme le foncteur £ est exact, on obtient un morphisme naturel

D; M- H*(Q/B,SQ(M)) . Pour montrer que ce morphisme est un isomorphisme, il

suffit de montrer qu'étant donné un injectif I de 8?(9) , 0N a

HP(Q/B,SQ(I)) ={0} pour p# 0 . Soit o 1'unique racine de g et soit

o= 1/2 a . Tout injectif de ©(B) est une somme directe (&ventuellement infinie)

de modules V(np) , pour divers n € Z . Par ailleurs, ona k [B] = @& V(np) .
neZ
Donc tout injectif est un facteur direct d'une somme, éventuellement infinie,

-i 9

de copies du module k [B] . Or il est clair que 8 commute 3 1a limite induc-
tive, et comme Q/B est un espace noethérien, la cohomologie des faisceaux sur
Q/B commute &galement a la limite inductive. On veut donc montrer

HP(G/B,.S@,(k [B]) = {0} pour p #0 .

Soit m: G- Q/B le morphisme de projection. I1 est clair que 1'on a
e @ = E(k [B]) . Comme le fibré m est Tocalement trivial, de fibre B et
que la fibre est affine, on a RY Ty @G = {0} pour q # 0 . Donc la suite spec-
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trale de Leray
+
EP-9 = Hp(G/B,R%*@G) - H"9(6,0,)
dégénére et on a des isomorphismes
H*(6,0;) = H*(G/B,n* o) -

Comme G est affine, par le théoréme de Serre il vient Hp(G,CE) = {0}
pour p # 0 . On en déduit donc que 1'on a Hp(ﬁ/B,ﬁg(k [B]))=0 pour p#0,
ce que 1'on cherchait a montrer.

Soit X un B-schéma sur Spec(k) . Soit i€ {1,...,N} . Onnote v et =
les morphismes naturels du diagramme commutatif suivant :

P_i xB X e—— X

[

P1./B «—— Spec k
Dans le lemme suivant, on suppose que X est séparé sur Spec(k) .

Lemme 63 :
Soit £ € QcohB(X) . Alors pour tout couple d'entier p,q on a des isomor-
phismes naturels

HP(Py/poR me Dy ) = 0 HI(,2) .

Démonstration :
Par hypothése, v est séparé. Donc par le lemme 23.3 on a un isomorphisme

naturel
q =D rY
R™ m, =DP1§£’> pi \)*2
On a donc
Rim, & 8 = O H(XB) .
P; P;

Enfin par le lemme 62, on a un isomorphisme naturel

P (ry/p:Dp, HILL)) = 05 (K B)
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On obtient ainsi 1'isomorphisme Hp(Pi’/B,Rq "*'EDD' L) ~ DE. Hq(X,Eg)
cherché. ! 1

Lemme 64 :
Pour tout w e W et tout A€P",ona Hq(D(w),QZw(-A)) = 0 , pour tout
q>0.

Démonstration :

On montre le Temme par récurrence sur la longueur #(w) de 1'E1ément w .
Pour w=1, il n'y a rien & montrer. On suppose donc que 1'on a 2(w) > 1 .
Soient veEW, i€ {l,...,N} tels que w = s; vV . Le morphisme naturel
D(v) » Spec(k) 1induit comme précédemment un morphisme w : D(w) - Pi/B . La
suite spectrale de Leray associée au morphisme w a pour second terme
gPe9 - Hp(Pi}/B,Rq T, Sgw(-A)) . Par le lemme 63, on a donc ED°% =

DE Hq(D(v),ﬁiv(-A)) . Par hypothése de récurrence cette suite spectrale dégénére
i

et 1'on a

HI(D(w), 8, (1))

Dg HO(D(v), &, (-A)) pour tout entier q .
Par les Temmes 27 et 57 on a : !

I
-n
—
-
~

HO(D(v), B, (1)) =
HO(D(w), &8, (-1)) =

I
-
=
P
-
~

Ceci implique que 1'application naturelle DS H°(D(v),_8v(-A)) -
i
H°(D(v),£&v(-A)) est surjective. Par le lemme 13, il vient que 1'on a

Dg. H°(D(v),ﬂ§v(—A))=(), pour q >0 . Ceci montre que 1'on a Hq(D(w),liw(-A)) =0
i
pour tout entier q >0 . C.Q.F.D.

Soit v : Z - X un morphisme birationnel entre variétés propres. On suppose
que la variété Z est Tisse. Suivant G. Kempf, on dit que v est une résolution
rationnelle des singularités de X si les trois conditions suivantes sont
satisfaites [7], [36 ]:

() -G
(b) rY v*Co

7 0 pour q #0

(c) RY vy Kz =0 pour q#0,

ol KZ est le faisceau canonique de Z . Cette définition a un sens sur des corps
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de caractéristique arbitraire. En caractéristique O , un théoréme transcendant
de Grauert-Riemannschneider exprime que la condition (c) résulte des conditions

(a) et (b) ([71, [38)); des versions plus récentes du théoréme de Kodaira Cig]
[37] prouvent la condition (c) sous des hypothéses trés faibles.

Je vais prouver que les variétés de Demazure (ou plus précisément les mor-
phismes canoniques du type D(W) - sw,J ) sont des résolutions rationnelles des
singularités des variétés de Schubert. Ici je vais montrer les conditions (a)
et (b) précédentes et déduire la condition (c) par le théoréme de Grauert-
Riemannschneider (suivant la démonstration de Demazure en dimension finie). Dans
le cas spécial des variétés de Schubert, il existe une autre démonstration (due
a Ramanathan) pour déduire le point (c) des points (a) et (b). J'indiquerai cette
démonstration plus loin, lors de 1a construction des variétés de Schubert sur
une base arbitraire.

I1 est connu que les conditions (a), (b) et (c) impliquent que X est
Cohen-Macaulay. Ce fait sera essentiel pour comparer les topologies sur les espaces
de drapeaux.

Théoréme 3 :
Soient J  une partie de {1,...,N} , wE€ wJ et W une décomposition

réduite de w .

(a) Le morphisme uw:D(W) - §Q*J est une résolution rationnelle des sin-

gularités de §Q
(b) Soit A e’g)" tel que A(h;) = 0 pour j € J . Alors

q _ - 0¥ _ -

HA(E, 28,(-1)) =0 pour q#0 etona H(S, | S8, (-1)) = F () .
Démonstration :

Je fixe d'abord A un &lément de PS . Pour alléger les notations, je

pose =y . Par construction, le faisceau l@w(-A) est un faisceau inversible
trés ample de S . Donc comme précédemment, QEW(-A) est un faisceau ample de

WA

3@ g o Les faisceaux RY “*(bW sont cohérents, et au plus (2(w)+1l) d'entre eux
s
sont non nuls. Donc pour tout entier n suffisamment grand, les conditions sui-

vantes sont simultanément satisfaites :

n
(1) RP “*<3W ® ZL(-n\) est engendrée par ses sections globales pour tout
entier p ,

~

q
(2) WG, ;5
avec q #0 .

RP M O ® iﬁw(-nA)) = 0 , pour tout couple d'entiers p,q ,
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Les groupes Ep a4 - Hq(§ J.,R p*SB W(—nA)) forment le second terme d'une
suite spectrale de Lgray qui converge vers H*(D(W),Sgcﬂ-nA)) . Par 1e Temme 36,
on a .ZW(-nA) = p* fgw(-n/\)et donc la formule de la projection donne

[\
R, & o(-nn) =R 1, o~ 8 8 (-nh)

La condition (2) implique Ta dégénérescence de la suite spectrale considérée
et 1'on a donc pour tout entier n suffisamment grand :

HP(O(W),B(-nh)) = HO(3,, 5 \RP u, O ®5€ A)) .

J )

La condition (1) et le Temme 64 impliquent que pour n suffisamment grand,
ona RP u*,@~f® 58 =0, pour p#0. Or S?w( nA) est inversible, donc
ceci prouve que 1'on a Rpu *@'\T\i pour p # 0 . On notera que 1'on a aussi

(’W -@~ car par construction §w j est normale et W est un morphisme
w,J ’
propre et birationnel.

On a ainsi montré les conditions (a) et (b) de la définition d'une résolution
rationnelle des singularités. Le corps de base étant supposé de caractéristique
0 , ces conditions impliquent Ta condition (c). Ceci montre le point (a) du

théoréme.
Soit X € PJ . Par le lemme 36, on a £€ = p* 3E (A et par la formule
de projection, on a RAu .‘8W(>\) RY u*(9~® $ . Donc par Te point (1) du

lemme, on obtient que pour tout q # 0 , on a Rq u*JE W(A) = 0 . La dégénéres-

cence de Ta suite spectrale de Leray associée & u implique donc un isomorphisme
o ~ * ~
HE (S, 1 » 8, (M) 5 KA L500)) -

En particulier, dans le cas ol 1'ona A = -A , pour un certain A € Py N pt ,
alors i1 vient par les lemmes 27 et 57

HO(S, . 5 sy, (-1) = F, (1)
et par le lemme 64, on a pour tout q # 0
~

HIE, 5%, (-0) =

Ceci finit la preuve du théoréme 3.

123



O. MATHIEU

Remarque :

(1) Un théoréme analogue a été prouvé par M. Demazure pour les algébres de
Lie semi-simples de dimension finie. Cependant la démonstration de [ 7] comporte
un trou. Si 1'on tient compte de cette erreur, le résultat de Demazure peut étre
énoncé sous la forme suivante. Si G est un groupe semi-simple, B un sous-groupe
de Borel, si toutes les variétés de Schubert de Q/B sont normales, alors elles
sont @ singularités rationnelles (la caractéristique du corps de base étant sup-
posée étre zéro).

(2) L'intégralité du théoréme 3 a été prouvée par Metha, Ramanan et
Ramanathan en caractéristique O et par Ramanathan en toute caractéristique
([521). On notera que 1'utilisation des foncteurs de Joseph évite Te recours au
subtil Temme de Kempf que 1'on trouve dans [7] et [36]. Ici Te Temme de Kempf
est utilisé implicitement au cours de la démonstration du théoréme 3 sous une
forme complétement triviale.

(3) L'idée de montrer les conditions (a) et (b), puis d'utiliser le théoréme
de Grauert-Riemannschneider dans ce type de probléme est da & M. Demazure [7].

Dans la suite, on s'intéresse au cas ot 1'ona J= ¢ . On pose alors

Sw = §@’\], pour tout w € W . Dans le cas ou 1'algébre de Kac-Moody est de dimen-
sion finie, on dispose pour tout w d'une variété BwB te]]g}que §w = 'TFE/B .
Donc & tout module M € E?(Q) , on peut associer le faiscqu 3gw(M) des sections
du fibré ETFB'XB M . Lorsque M est de dimension finie, SEW(M) est un faisceau
localement 1ibre de rang la dimension de M . Ici on va procéder de maniére inverse.
Le théoréme 3 va permettre pour tout M € @©(b) de définir un faisceau QEMAM)

sur 3@ (ce faisceau étant localement 1ibre de rang la dimension de M dés que
celle-ci est finie). On pourra alors construire un certain schéma B(w) au-dessus
de T, , tel que S, = B(w)/g (en dimension finie ce schéma est BwB) . Puis on
montrera que B(w) est affine.

Cette construction sera utile pour identifier les dérivées des foncteurs de
Joseph a la cohomologie de certains faisceaux.

Soit w € W et soit W une décomposition réduite de w ;vJe note u le
morphisme nsture] u o D(W) - '§w . Soit M€ (?(B) . Je note SEW(M) le faisceau
sur '§w : 2W(M) = Uy S%W(M) . On note que lorsque M est un module de &(B)
isomorphe a un certain module unidimensionnel XA , ol X € P , cette notation est
compatible avec celle donnée au § V.

Le faisceau §§W(M) est bien défini, i. e. ne dépend pas du choix de Ta
décomposition réduite W . Ce fait a déja été prouvé pour un module M unidimen-
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sionnel M = )\ .

Lemme 65:
Soient we W , W) s Wy deux décompositions réduites de w ,
vy D(wl) —_ Sw s Vgt D(wz) —_ Sw les morphismes naturels. Alors pour

tout M e ¢(b) , on a un isomorphisme canonique (ui)‘;cw (M) =~ (uz)mécw (M) .
1 2

Démonstration:
Par le lemme de Matsumoto ([3], ch.IV €1.5), il suffit de montrer le
lemme dans le cas oa W et Wy sont de la forme:
W Sue v
W, =ua, Vv
oi u,v € W et ou 0. 0, sont deux decompositions reduites d’un plus grand
élément # d’un sous—groupe de Weyl fini de rang deux, i.e. la situation

étudiée précédemment. Reprenant les notations du lemme 28, il existe un

morphisme naturel j : D — §w rendant commutatif le diagramme

D(wl) D(wz)
ok

\ Y
5
w

Le lemme 72.2 donne un isomorphisme naturel
(Ill)*:ew (M) = (112)*&:w (M) .
1 2
On a donc un isomorphisme naturel j‘(ﬂl)*zwl M) =~ ,j*(ﬂz)téewz(M) , i.e.
un isomorphisme naturel (ul)maew1 (M) = (UZ)ISWZ(M) . On vérifie comme au

chapitre 3 que les isomorphismes trouvés sont canoniques (i.e. en utilisant

les sous-matrices de Cartan de rang 3 dans A).
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Lemme 66:

Le foncteur Qw : €¢(b) —» Qcoh(gw) est un foncteur covariant, exact et

il commute aux limites inductives. Si M € ¢(b) ., M de dimension finie, alors
EW(M) est localement libre de rang la dimension de M. Soit u un élément de
W, ug¢w, et soit o : §u —_— §w 1’ immersion fermee correspondante. Alors
on a un isomorphisme de foncteurs a'§w = iu .
Démonstration:

Je vais d’abord montrer que pour tout module M € ¢(b) , M de dimension
finie, EW(M) est localement libre de rang la dimension de M , et que

r? .ut:t;(M) =0 pour gq > 0 , par récurrence sur la dimension de M .

Par le theoreme 3 et la formule de la projection, ces deux assertions
sont vérifiées lorsque M est de dimension un. Je choisis donc M e ¢(b) ,
dim M > 2 et je suppose ces assertions montrees pour tout module E € ¢(b)
avec dim E < dim M . Comme l’action de b est résoluble, il existe une suite
exacte

0 —~E— M— F—4 0 oi aucun des deux modules E ou F
n’est egal a {0} . Par le lemme 23.1; le foncteur L est exact. On obtient
donc une suite exacte

0 _..z-;’(E) _-.z-;(M) ._-.:e;(F) —s 0 .

Par image directe, on obtient une longue suite exacte

0 — ¥ (B) — % (M) — E (F) — B w2x(E) — ...

Comme par hypothése de récurrence on a pour q # 0 r? u*?t'w(E) =0 et

rY u*;éw(F) = 0 , on obtient rd u ¥ (M) =0 pour q # 0 . De la suite exacte

*
0 — ZW(E) —_— EW(M) —_— .‘tw(F) — 0
et de 1’hypothese de recurrence, on deduit egalement que EW(M) est

localement libre de rang la dimension de M .

Comme 1’espace topologique D(ﬁ) est noetherien, le foncteur 'R

commute aux limites inductives. Comme ﬁ; commute également aux limites

~ . . . .
inductives, 2w commute aux limites inductives.
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On va prouver maintenant 1’exactitude de ;éw .
Soit 0 — E— M — F —» 0 une suite exacte de <¢(b) . Soit {Ma} la
famille des sous—modules de dimension finie de M . Pour chaque indice a ,
soit E =ENM et F 1’image de M dans F . Il est clair que 1l’on a
o a a a
E=1imE , M= 1limM et facile de montrer que 1’on a F = lim F_ . Les
—— & — O —_—
suites exactes
O—oEq—oM_a—-;Fa—-'O
induisent des suites exactes
00— xW(Ed) —_— xw(Mq) — 2W(F(x) — 0
car on a Rl u'ée;(Ea) = 0 . Comme x; commute & la limite inductive, la suite
0 — :ew(E) — xw(M) — zw(F) — 0
est exacte.
Il reste a prouver l’assertion sur la restriction. Soit U une
décomposition réduite de u , avec U < W . Soit 7 : D(W) — D(W) 1’une des
immersions fermées rendant commutatif le diagramme

p(u) —I 5 D(w)

iu |

(une telle immersion 7 est construite § IV et v désigne le morphisme
D(u) — Eu naturel).
Soit M e ¥¢(b) . Par le lemme 23.2, on a :E'G(M) = T*iG;(M) . Le morphisme
canonique de foncteur o v, — U, 7% induit un morphisme naturel
a‘;’éw(u) — E ) .
Je vais montrer par récurrence sur la dimension de M que ce morphisme
naturel est un isomorphisme. Lorsque M est de dimension un, on peut écrire

M=A-A" ot A’ sont deux poids de P; . Par le lemme 35, on a

CE M =E N, W) =E (),
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d'oli, par le lemme 37

* & m

* & (an)

*(& ) e G 0 7H
.‘%'U(A) ® QU(A')"
£, o-1)

On suppose donnée & présent une suite exacte 0> E-> M- F-> 0 de &‘(lg) s
ol M est de dimension finie et on suppose 1'assertion prouvée pour E et pour
F . Comme .‘héw(F) est localement libre, on obtient le diagramme commutatif
suivant ol les lignes sont exactes

0- o*."éw(E) - o* §W(M) > o f W(F) =0

| b J
(F

0- ﬁu(g) - feu(M) N ) -0

Le Temme du serpent implique que le morphisme o* %w(M) - -‘fu(M) est un
isomorphisme. Ainsi ceci permet de conclure par récurrence lorsque la dimension
de M est finie. Puis un passage a 1a Timite sur les sous-modules de dimension
finie de M montre que o* .‘8 (M) .‘& (M) est un isomorphisme pour un module
M quelconque dans & (b) . Cec1 achéve la démonstration du lemme.

Soit (X,q() un schéma séparé et & un faisceau quasicohérent de
@X-algébre commutative. I1 existe un schéma © : Y > X affine sur X , unique-
ment déterminé par un isomorphisme & - Ok bY .

La construction de Y est la suivante : Soit {Ua} un recouvrement affine

ouvert de X . On utilise les notations usuelles a B = U n UB s UO(,B,Y =
Ua n UB n U pour tout triplet d'indice o,B,y . Soient V (respectivement
Va,B ,V ) le schéma affine associé a 1'anneau ot U ) (respectivement
't(Ua,B) s ﬁ,’(Ua 8, Y . Le systéme d'immersions ouvertes
-
v Sv. .3V

o8,y o,B o

satisfait la condition de cocycle. Soit donc Y 1le schéma obtenu par recollement
des ouverts Va suivant le systéme d'ouverts Va 6 Les différents morphismes
6. :V - U induisent un morphisme affine © : Y - X ([27], exercice 11.2.12,

o
exercice II 5.17 et [23_))
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Le foncteur ©, induit une équivalence entre la catégorie des faisceaux
quasi-cohérents de Y , et les faisceaux quasi-cohérents de X , qui sont des
faisceaux de & -modules (avec compatibilité de ces deux structures). En parti-
culier si mw: Z-> X est un morphisme de schéma, il y a équivalence entre la
donnée d'un morphisme de faisceau d'algébre Y Ty G& , rendant commutatif le
diagramme

N

& my O

Z
et Ta donnée d'un morphisme Z - Y rendant commutatif le diagramme

I —Y

m /@

Je vais appliquer cette construction pour construire Te schéma B(w) . La
structure d'algébre sur k [B] dinduit un morphisme de U(b)-module
k [B] ® k [BI» k [B] . So1t weEW. On obt1ent ainsi un morphisme
fgw(k [B]) “,Q’(k [B]) » %ﬂk [B]) , et donc .(8 (k [B]) est naturellement une
oy -algébre quasi-cohérente. I1 existe donc un schema 0, : B(w) - Sw affine

w
w
relativement & 3@ , tel que OW o) - iﬁ k [B])
Soit W une décomposition redu1te de w . Il est clair que 1'on a
58W(k [B]) = nW*OE(W), od m~ désigne le morphisme E(W) > D(w) . Par la
construction précédente, il existe un morphisme naturel E(w) - B(w) et le

diagramme

D(w) —— SW
est commutatif.

On fixe u un élément de W avec u <w . Soit U une décomposition
réduite de u , avec U < W . Soient o : §b - §w 1'immersion naturelle
T : D(U) » D(W) 1'une des immersions fermées construites au paragraphe 4 et
t' : E(U) » E(W) e morphisme qui est associé & T . I1 est clair que 1'on obtient

un cube commutatif
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T' I
E(w) ————-—?r————* (w)
D(U) —_ 'S'U
T /
D(W) S

Par le lemme 64, on a o* é’w(k [B]) = u‘gu(k [B]) . Donc le morphisme
naturel B(u) -» B(w) est une immersion fermée.

Avant de prouver que les schémas B(w) sont affines, j'ai besoin de rappeler
quelques constructions sur les groupes de Kac-Moody. Je note 'E(w) le spectre
de r(B(w),@B(w)) . On note que 1'on a r(B(w),@B(w)) = 1(3,,€,(k [B])) et on
a donc F(B(W)’eb(w)) = Dw k [B] . Soit G 1le groupe de Kac-Moody associé @ g
(je note ce groupe et les groupes suivants avec un soulignement pour rappeler
qu'il s'agit de groupes discrets).

Ce groupe a €té construit par Kac et Peterson [49] et Tits [59]. Je vais en
indiquer la construction, car ces groupes présentent des différences minimes
suivant 1a construction. Je suis ici la construction du groupe minimal de Tits,
d la différence du choix du réseau prés (la seule différence entre le groupe que
je construis ici et celui de Kac et Peterson tient a la taille du sous-groupe
de Cartan H) .

Je pose H = Hom(P,k*) . Soit ﬁ(g+) le complété de 1'algébre enveloppante
de 1'algébre de Lie g+ (confére le § I). Soit A:e 1'ensemble des racines
réelles positives de g . Soit ﬁ(l) = {x € 0(g+) ,x=1 modulo g+ G(g+)} . Soit
N le sous-groupe (noté X dans [25]) de G(l) engendré par les "sous-groupes
d un paramétre" exp(Q;)A, ol aAe A+e R SoientA i€ {1,...,N}, G(gi) la fer-
meture de U(!i) dans U(Q+) , Ugl) = U(ui) n U(l) et Ej le groupe & un

G 1

— 1

paramétre exp(kei) . On pose Ui =NnU; ) . Soit Aj les k-points du groupe

-,

algébrique Ai . Comme groupe algébrique, Ai est le quotient d'un produit d'un
groupe SL(2) et d'un tore déployé par un groupe fini. Un point délicat de Ta
construction est de montrer que 1'ona U = E; x U; (cf. [597, [62]). L'action
de E; sur U, se prolonge en une action de A, et on note P, = A, « U, .

Le groupe H agit naturellement sur U (de maniére compatible a 1'action de Ai
sur U;) etonnote B=Hw«U, desorteque B s'identifie a un sous-groupe
de P, et que Bi/B s'identifie aux points rationnels de Pi/B (qui est iso-
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morphe & la droite projective). I1 existe une extension abélienne naturelle

1> H-> PH) » W= 1

et pour chaque indice i on note cyz(H) la sous-extension
1> Ho di(H) > (1,53 - 1

et °X§(H) s'identifie au normalisateur de H dans P, . Par définition Te
groupe de Tits minimal G associé @ g est le produit amalgamé des aroupes

P, et dr(ﬂ) suivant leurs sous-groupes B et Oy}(ﬂ) (1591, [62]). Comme
usuellement, on note d'une méme lettre un é1ément w € W et un représentant w

de cet élément dans Gk?ﬂ) . Pour chaque w € W , on pose B(w) = U BuB.

usw
Dans [63] , i1 est montré que (g,g,oxﬁﬂ)) est un systéme de Tits. Soient w € W
et i€1 . Je pose §i(w) = U B(u) .Si weW,ie€{l,...,N} sont tels
usw
S usu

que s, wW<w,ona Bj B(w) = B(w) .

Lemme 67 :
Soient weW ,veEW,ie€e{l,...,N} telsque w=s.v et w>v.Ona
un diagramme commutatif d'ensemble

B B

Py x= B(v) e—— P, x=B.(v)

=i
Bw) e——  B.(v)

et B(w) est le coproduit de Ej xﬁ-g(v) et de gj(v) suivant Ej XE'Ei(V)
(dans Ta catégorie des ensembles).

Démonstration :
Ce lemme résulte directement de 1'axiome des systémes de Tits, et du fait

que G est un groupe avec systéme de Tits.

Je note, pour chaque 1 € {1,...,N} , F. Te groupe discret a un paramétre

i
exp kfi .

Lemme 68 :

Soient M€ @B) , i € {1,...,N} et v: D, M- M Te morphisme naturel.
.i
Soit ¢ un élément non nul de DS' M . I1 existe un entier n tel que
1
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v(f?.m) #0 et il existe geF; tel que v(g.0) #0 .

Démonstration :
Je vais d'abord prouver la premiére assertion. Le Ql(gj)-module DS M
i

P
est naturellement un sous-module de Coindb1 M et par le théoréme de Poincaré-

Birkhoff-Witt, on a un isomorphisme naturel d'espace vectoriel

T : Coind,' M = Hom(U(kf;),M) . Soit n un entier tel que T(p(f?) # 0 . Alors on
a u( f?.qﬂ# 0 . Comme on a f?.w = 0 pour q suffisamment grand, il existe
une famille de scalaires aa,tq telle que 1'on ait f?.m =X aa(exp tafi)m .
Donc i1 existe un indice o tel que 1'on ait v(exp(tafi)m) #0 .

Ceci montre le lemme.

Pour tout w € W , je note Ck(w) 1'ensemble des k-points de C(w) et
©(B(w)) 1'ensemble des fonctions de B(w)-> k .

Lemme 69 :
Pour tout w € W, il existe une application naturelle o : B(w) ~» Ck(w) .
Ces diverses applications sont compatibles entre elles, et pour tout we W,

1'application a#: F(C(w),@c(w)) - &(g(w)) ainsi déterminée est injective.

Démonstration :

Je vais construire oy et montrer 1'assertion correspondante par récurrence
sur 2(w) . Je considére d'abord le cas o 1'ona w =1 . L'application naturelle
(construite au § I) ﬁ+k - N se restreint en une application naturelle N- N .

IT est clair que 1'image de ﬁ+k est dense et que la fermeture de 1'image de N
contient N*K . Donc 1'image de N dans N est dense. Soit h € H . Par défini-
tion, k [H] est égal & 1'algébre du groupe k [P] . L'élément général

¢ € k [H] s'écrit donc o= X a, et . L'application - X axk (h) est un

AEP
morphisme d'algébre et donc h détermine un k-point de H . On a ainsi une

application de H dans les k-points de H . Le produit des deux applications
précédentes détermine une application naturelle o : B~ Ck(l) et oﬁé est
clairement injective.

Soit we€ W, 2(w)>1. Je pose w = S; v pour un certain i € {1,...,N} ,

veEW,v<w. Je suppose construit par récurrence o et je suppose a?

injective. Le groupe Ei opére sur Ck(w) et 1'application oy commute & 1'ac~
tion de B . On obtient ainsi une application naturelle Ei xg-B(v) - Ck(w) .
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Soit a présent u € W , tel que T'on ait u<sw et sjusu. Le morphisme
C(u) » C(w) commute & 1'action de Pi , donc 1'application Ck(u) - Ck(w)

commute & 1'action de P, . Donc Te diagramme naturel

P xEi B(v) e—— P xB B(u)

C(w) &—— B(u)

est commutatif, ce qui prouve que 1'application Ej xE-gjv) - C(w) factorise
en une application B(w) - C(w) .

IT reste a montrer que o est injective. Soit
Vo F(C(w),Ck(w)) - F(C(v),éh(v)) 1'application naturelle. On a

T'(C(w),6 r'(C(v),6 . Soit ¢ € TI'(C(w),0, ) s©# 0. Par le
C c C(w)

(w)) = D, (v))
lemme 68, i1 existe g € fj tel que v(gp) # 0 . Par hypothése de ré&currence,
on a av# v(gp) # 0 . Or le diagramme naturel

T(C(W) 50 (yy) — T(C(V)s6gy))
K I
&BW) —— BBV

est commutatif et af

montre le Temme.

commute & 1'action de Ei . Donc cxf (v) # 0 , ce qui

Lemme 70 :
Pour tout w € W , Te schéma B(w) est affine.

Démonstration :

Je choisis A € P; et pour simplifier, je suppose A choisi suffisamment
grand, de sorte que le morphisme §w - P EW(A) soit une immersion fermée
(ce qui est possible d'aprés le théoréme 2).

Soit {& } une base de F _(A) . Pour tout indice vy , soient H_ Te
Y yer Y Y
noyau de & et U_ 1'ouvert de 3@ défini par la formule
UY = §Q n (B’EW(A)\\H>HY) . Ainsi {Uy} est un recouvrement ouvert affine de

~ ver -
Sy » de sorte que 1'ensemble des ouverts V. =6 1(U ) est un recouvrement ouvert

Y w oy
affine de B(w) .
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\

Ona k [B] = ® V(u) , de sorte que 1'on a dim Homb(-A,k [B]) =1 . On
ueP -

fixe une injection j du U(b)-module -A dans k [B] (ici comme précédemment

on confond -A et 1'unique 4)(b)-module unidimensionnel ayant -A pour poids).
Ceci donne une injection ng(-A) c:,%qw(k [B]) . Prenant les sections globales de
ces faisceaux, on obtient une injection jw : FW(A) (=N Aw , ol Aw désigne
1'anneau F(B(w),ﬂgw(k [B])) . Je note 5& 1'image de EY dans Aw , pour
chaque vy € T (on notera qu'en fait E& n'est défini qu'a un scalaire multipli-
catif prés). IT est clair que UY est le domaine de définition de la section EY
et que VY est le domaine de définition de la fonction f‘l.

D'aprés un critére d'affinité ([10], ch. II, ex. 2.17), il suffit de montrer
que la famille E_ engendre 1'idéal unité de Aw .

Soit Cy * Fw(/\) - @(E(w)) 1'application composée cxfo - Soit v¥ un
é1ément non nul de Fw(/\)_A . Ona cw(v*)(l) # 0 , de sorte que 1'on peut choisir
cw(v*)(l) =1 . Soit v T1'unique élément de Ew(A)A tel que (v*|v) =1 . Si
£ € FW(A) » B €B(w) , ona la formule

c, (E)(B) = (E]B.V) .

v
On a dim Homh(L(A),A) =1, de sorte que 1'on a dimb(L(A),V(A)) =1. Un
générateur de cet espace vectoriel engendre donc un morphisme j' : L(A) > k [B] .

Comme on a DS L(A) = L(A) pour tous les indices i , on obtient une application
i

naturelle j& : L(p) > Aw , transformée de j sous le foncteur de Joseph Dw .

Soit ¢y : L(7) > ©(B(w)) 1'application composée afo

cette nouvelle application, qui n'est, elle aussi, définie qu'a une constante

j& . Je vais décrire

multiplicative prés. Soit L*(A) Tle dual restreint de L(A) , i. e. le sous-
espace du dual L(A)* de L(A) formé des vecteurs Us(h)-semi-simples. Je note
encore v* 1'élément de L*(A)_A tel que (v*|v) =1 . On note que L*(A) est
naturellement un G-module. Si m € L(A) , B € B(w) , on a Ta formule

c (m)(B) = (B.v¥|m) .

Soit {m_} la base de E (A) duale de 1a base {&_ } . Pour chaque
Y YET w Y

Yy € T, je pose m = JW(mY) s et =% m, gY . Pour tout B € B(w) , ona
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offte)(e) = = ofi(m )(B) oi(E,)(8)

YET
yér c,(m )(B) ¢, (& )(B)

yér (BV*ImY)(EYIBV)

(Bv*| = (g |BV)m )
yer Y Y

(Bv*|Bv)
1.
#

w
EY engendre 1'idéal unité de AW , ce qui montre le lemme.

Or par le Temme 69, o’ est injective, on a donc @ = 1 . Ainsi la famille

Dans les lemmes suivants, on va utiliser le fait que k [B] est un injectif
cogénérateur de %(6) . Ceci signifie que tout injectif de ®(R) est un facteur
direct d'une somme directe (finie ou infinie) de copies de k [B] . En fait il
est facile de montrer que les injectifs de ©(B) sont les sommes directes (finies
ou infinies) de copies de divers modules V(A) s LEP .

Lemme 71 :
Soient I un injectif de @’(5) s U, w deux &léments de W avec u<w.
Alors 1'application naturelle DW I->D, I estsurjective.

Démonstration :

Les foncteurs D et Du commutent aux limites inductives, donc i1 suffit
de montrer le lemme pour le module I = k [B] .

Ona D,k [B]= F(B(u),OB(u)) » D, k [B] = F(B(w),@B(w)) et 1e morphisme
naturel DW k [B] -» Du k [B] est Te morphisme de restriction. Or le morphisme
B(u) » B(w) est une immersion fermée. Comme par le lemme 70, B(u) et B(w) sont

affines, il vient donc que DW k [B] -» Du k [B] est surjective.

Lemme 72 :
Soient v,we€ W , i€ {1,...,N} tels que 1'on ait w = s; Vv et s; vV
Alors pour tout entier k > 1 et tout M€ @(b) , on a une suite exacte fonc-

torielle

1 pk-1 k k
0->DS.i Dv l"l—»DWM»DS.i DV

M-0.
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Démonstration :
Par 1e lemme7! , pour tout injectif I € 8%6) , 1'application

DS Dv I Dv I est surjective. Par le Temme 13, ceci implique que 1'on a
i
Dg Dv I , pour tout entier q > 1 . On peut donc former Ta suite spectrale du
i
foncteur composé Dw = DS Dv . Cette suite spectrale a pour second terme
i

Eg,q = Dg De et converge vers D5+q - Or Te foncteur D . est de dimension

homologique un. Cette suite spectrale dégénére donc au terme E, , d'od, pour tout
entier k , une suite exacte

k-1 k k

1 .
0- Dsi D, " M- Dw M- Dsi Dv M- 0.
Lemme 73 :
Soient u,v € W et I un injectif de f?&;) . Alors pour tout entier q=>1,
on a
q -
Dby I= 0.
Démonstration :

Je vais prouver le lemme par récurrence sur &(u) . Lorsque 1'ona u=1,
on convient que Du est le foncteur identité et dans ce cas, le lTemme est trivial.
Je suppose que 1'ona u# 1 . I1 existeun i€ {1,...,N} et u' €W tel

que 1'on ait u = S; u' et u'su.

Par 1e lemme 72, on a pour tout entier q > 1 une suite exacte

1 q-l -> q ->
0-0! olito 1010, 10

09,0 I-0.
1 1 u v

Par hypothése de récurrence, on a Dﬁ. D, I = 0 pour tout entier gq>1 .
On en déduit donc que 1'on a :

q
Du D, I

v 0 pour q > 2

1 1 =
Du Dv I Dsi Du' DV I pour q=1.

IT est clair qu'il existe un élément w tel que 1'on ait un isomorphisme
de foncteur Du' Dv o Dw . Par le Temme 7! , 1'application Ds. Dw I-> Dw I est

i
surjective, donc par le Temme 13 on a Di Dw 1=0.
Ceci achéve la démonstration du lemme!
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Proposition 3 :
Soient M€ @(b) ,weE W et W une décomposition réduite de w . Alors
on a des isomorphismes naturels

R

DX M = H¥(3, 8, (M) = H*(D(W), (M) -
Démonstration :

Le second isomorphisme résulte du théoréme 3. Je vais montrer le premier
isomorphisme.‘&e foncteur M- H*(§Q,EEW(M)) est un d-foncteur, et 1'on;3
Dy M = H°(§’w,$w(M)) . I1 existe donc un morphisme naturel D‘; M _>H*(§w,%’w(M))
et pour montrer que ce morphisme est un isomorphisme, i1 suffit de montrer que
T'on a HY( .(g (I) = 0, pour tout entier q > 1 et tout injectif I € B(b).com-
me le foncteur E& commute aux Timites inducﬁives (Temme 64) et que 1'espace
S, est noether1en, les foncteurs M- Hq(§w,§?w(M)) commutent aux limites
inductives. Comme le module k [B] est cogénérateur, il suffit de montrer que

n
1'on a Hq(Sw,gw(k[B])) =0, pour tout q>0. Or on a

£,k [B]) = (6,) &y -

Le morph1sme G est affine, donc pour tout entier q , le morphisme
HI(S, 2 (k [B1)) - Hq(B(w) 63())
le 1emme'?0 Donc par le théoréme d'annulation de Serre ([701), on a
Hq(gw,ggw(k [B])) = 0 pour tout q > 1 . Ceci montre Te Temme.

est un isomorphisme. Or B(w) est affine par

Proposition 4 :
Soit weEW.
1) Le foncteur Dw est de dimension homologique &(w) .
2) Soit Me€ &%Q) , M de dimension finie. Pour tout entier q , DE M est
de dimension finie et 1'on a

= (-1)% ch(d M) = A" ch(M) .
3) Pour tout &£ tel que -£ € pt , 0N a

Dy € = Fy(-£)

Da E=0 pour q>0.
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Démonstration :

Le point 1 résulte de la proposition 3. Le fait que Da M est de dimension
finie résulte de la proposition 3 (car g@ est une variété projective et £§W(M)
est cohérent), La formule de caractére est déduite des lemmes 13 et 71 par
récurrence sur 1(w) .

Enfin, le point 3 provient des lemmes 57 et 64 et de la proposition 3.

Remarque :

A. Joseph a défini les dérivés des foncteurs Dw par une voie différente,
lTorsque n est de dimension finie. I1 utilisait des résolutions a 1'aide de
modules du type L(A) ® k_M , 00 AME P* . Pour tout w , Ona
D; L(A) © k_M = L(A) ® D; -M , donc les résolutions utilisées par Joseph sont
plates pour le foncteur DW . Ainsi les dérivés des foncteurs sont les mémes que
ceux que j'utilise.

Une fois cette identification faite, il convient de noter que Ta proposition
4 était connue en dimension finie. En effet, elle a été montrée par A. Joseph
dans [3] 1, & 1'exception du point 3 qui n'était connu de A. Joseph que pour les
poids & suffisamment petits. Néanmoins 1'argument de Joseph s'étend a tous les
poids antidominants entiers dés que 1'on connait les résultats de Metha-Ramanan-
Ramanathan.

La proposition 3 est nouvelle.

Proposition 5 :
Soient u,v,w €W avec uv=w et 2&(u)+2(v) = 2(w) . Soit M€ &(b)
Alors i1 existe une suite spectrale dont Te terme E, vaut

P»q _ pP pd p
ep>9 = of o m

et qui converge vers D; M.

Démonstration :

On a Dw = Du Dv . Par le lTemme 73, on peut construire la suite spectrale

du foncteur composé DW = Du Dv . Cette suite spectrale converge vers D; M

et son second terme est Eg,q = DE 03 M.

Remarque :

On peut choisir des décompositions réduites U,V ,w de u,v et de w
(respectivement) de sorte que 1'on ait W =1UV . La suite spectrale de la proposi-
tion 5 s'identifie a la suite spectrale de Leray associée au morphisme D(W) - D(U) .
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. n . P 5
Soit ¥ n la suite centrale décroissante de 1'algébre
de Lie n , qui est définie par récurrence sur l'entier positif n

par les formules ([6])

€°n -

)

€n+1 n o, \en n]

I1 est clair que les idé€aux de la suite centrale décroissante
sont de codimension finie dans n . Comme ils sont stables par h , on
. . n PR
peut leur associer des groupes, que je note fz N . Par le théoréme
de Poincaré-Birkoff-witt, 1'action de %Zn N sur N est libre, donc

on peut considérer le groupe quotient

N = NErP N .
Pour chaque entier n , le groupe quotient est affine, et
n
1'on a k[N"] = k[N]<€Z 2 ie. k[Nn] s'identifie aux vecteurs " n -

invariants de k[N] (et ceci sans ambiguité car les invariants pour

les actions 3 gauche et 3 droite sont les mémes).

Soit X wune B-variété. Je dis que l'action de B sur X

est bonne, si les deux conditions suivantes sont réalisées :

(a) Il existe un entier n pour lequel 1'action de %?n N sur

X est triviale

(b) Il existe un point rationnel P€ X , H-stable tel que
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Soit X wune variété avec une bonne action de B . Pour
simplifier, je vais supposer que X est normale. Soit P 1le point de
la définition précédente. Le groupe N agit sur X comme le groupe
nilpotent N, pour un certain entier n . Il est clair que 1l'orbite
(au sens schématique) du point P, soit U , est un ouvert stable par
B, et que U est 1'unique orbite ouverte. Pour cette raison, on dira
que U est la grosse orbite. Soit M 1le stabilisateur dans N du
point P . Il est clair que 1l'on a un isomorphisme naturel N'/M S U
(ce qui résulte du théoréme principal de Zariski, ou d'une propriété
d'homogénéité). Par ailleurs la variété N"/M est isomorphe & la

variété sous—jacente 3 un espace vectoriel sur k .

Lemme 74 : On reprend les notations précédentes

1) Soient Zl""’zm les composantes irréductibles du complémentaire
Z de U dans X . Chacune de ces composantes Zj est de codimension

1 dans X et définit donc un diviseur [Zj] . Le morphisme naturel

Z[ZI]GB... @Z[Zm]ﬂCJLX
est un isomorphisme.
2) Tout faisceau inversible £ sur X posséde une B-linéarisation

naturelle £nat . Toute B-linéarisation de £ est obtenue en tordant

la linéarisation £nat par un caractére de B

Démonstration : 1) L'ouvert U est isomorphe d@ un espace vectoriel.
Donc par un théor&me de Serre ([26] proposition III.5.10) chacune des
composantes Zj est de codimension 1. Utilisant [27] (ch. II §6)

on obtient une suite exacte :
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O»O;(x)-»(S’;(U)-»z[zl]e...eaz[zm]-»czx»czuao

* * *
Or on a C}X(U) = k (donc le morphisme (S}X(X) - C}X(U) est un iso-

morphisme) et C2 U = {0} . Ceci prouve le point 1 du lemme.
2) Soit £ un fibré inversible sur X . Par le point précédent, il
existe des entiers (aj) uniquement déterminés tels que 1l'on ait

div(L) =
hj

" ~mg

a.[z.]

A R
Or les diviseurs [Zj] sont stables par B . Donc ceci

détermine une B-linéarisation naturelle rnat de £ . Il est clair

que toute B-linéarisation est uniquement déterminée par sa restriction

a U, et ceci prouve le dernier point du lemme.

Soit J wune partie de {1...N} , et soit w € WJ . Suivant

[24], je pose

+ -1 -
o, ={a€A ,w a€A}

L'ensemble ¢, est constitué de 2(w) racines réelles, et le sous
espace vectoriel n, est une sous—algébre de Lie de n , de dimension
2(w) , et stable sous l'action adjointe de h . Soit A€ PJ . Je note

e, 1'image réciproque du point k e par 1'application §; - S

wh ) Wy A

~

de sorte que e, est un point de Sw,J (eW ne dépend pas de A ).

Soit Nw le groupe associé @ 1'algébre de Lie n, - On pose

141



O. MATHIEU

L'orbite U  est un ouvert de § ,etl'ona U =N .e
w w,J w wow

L'application N, Uw que 1'on en déduit est un isomorphisme. Soit

i € {1,...N} tel que l'on ait s; W Zw . Soit 7 le morphisme

naturel w : P, XB S -3 . Il induit clairement un isomorphisme
1 w,J siw,J
-1 ~ o s .
™ (Us.w) - Us.w . Aussi je note encore Us.w et e w les images
i i i
réciproques de Us.w et de eSiw par m . Enfin on pose
S;(w) = {j € {1,...,N}/J | w=> sj}
19J(w) = {u € WJ | usSw et 2(u) = 2(w) - 1}
. ' . ~ ~ B ~
et on note j 1l'immersion fermée S - P. X S .
W i w

Soit X une bonne variété, ¥ e Q cohB(X) et XEP .
On obtient une nouvelle B-linéarisation de 3"/ en tordant la B-linéari-
sation de 3—/ par le caractdre exp A de B défini par A . Je note

oY . ' e o e .
S o k)\ le faisceau /9“/ muni de sa nouvelle B-linéarisation.

L'action de B sur des variétés telles que les variétés de
Schubert, les variétés de Demazure est bonne. Pour certains A € P ,
et certaines des variétés précédentes on a construit un faisceau in-
versible £(\) B-&quivariant. En général, cette lindarisation n'est

pas la linéarisation naturelle du lemme 74.
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Soit X une variété lisse en codimension 1 , et Y une
sous-variété de codimension 1. Alors je note [Y] 1le diviseur Weil de X
défini par Y . Je note aussi div 1'application naturelle
div : Pic(X) » CL X .

Lemme 75 : On conserve les notations précédentes.
PP B ~
(1) La variété P. X S est normale .
1 WyJ

(2) On a des isomorphismes

. . . ¥ B~ ~
(3) 1I1 existe une application naturelle j : CJL(Pi X Sw,J) - CIL(SW,J)

rendant commutatif le diagramme.
B i*
Ca(p; X sw,J)—J—> TG
div div
B *
Pic(P; X SW’J)——i———a Pic(¥,

,J)

(4) ona i'[s .1=0, et

w,J

¥ B e _
i [P, X gu,J] = [su,J] » pour tout u€ 9;(w)
Démonstration : 1) On pose U = F, . Sw,J et V=E s Sw,J , de
sorte que U et V sont deux ouverts de Pi XB §w j > ces deux ouverts
’
‘e ‘e R 1 o o
s'identifiant 3 A x Sy,g + Donmc d'apres B&] &7],
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B ~
U et V sont deux ouverts normaux, donc P.1 X Sw I est normale.
’

On peut donc définir son groupe des classes.

2) Les composantes irr&ductibles du complémentaire de Uw dans

~

~
S sont les sous-variétés S

w,J u,J (ot u€ ?](w)), comme il résulte

clairement de la décomposition de Bruhat. Le lemme 74 montre donc la

premidre assertion du point 2. On déduit &galement du fait précédent

que les composantes irréductibles du complémentaire de US w dans
i
P, X* ¥ _ sont les variétés 5. . et P, X° S _ (od u€ 9 (w)).
i wWyJ WyJ 1 u,J J

Une nouvelle application du lemme 74 ach&ve la démonstration du point 2.

3) On choisit un isomorphisme de AAI et de F, qui identifie

le point 0 de Al 3a 1'élément neutre 1 de Fi . Ceci fournit un

isomorphisme de A} x g; g sur U.
’

4) Soient X,Y deux variétés. On suppose X et Y 1lisses en
codimension un, et on suppose donné un morphisme j : Y -» X . Soit
Sing X 1le lieu singulier de X . On suppose que j_l(sing X) est
de codimension > 2 dans Y . Alors on va prolonger le morphisme
naturel j* : Pic(X) - Pic(Y) en un morphisme j* s CL(X) » Ca(Y) .
Soit @ = Reg X 1le lieu régulier de X , on pose w = j_IQ N Reg Y ,

'

oi Reg Y est le lieu régulier de Y . Soit j' : w-Q le morphisme

naturel. Alors on a un diagramme naturel commutatif :

Lk
Pic(X)—3—Pic(Y)

%
a
Pic(0)—— Pic(w)
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Comme £ et w sont lisses, et que les complémentaires
de 9 dans X , et de w dans Y sont de codimension = 2 , on

a

R

Pic(Q) CL @ =CL X

Pic(w) ~CL w=CL Y

et ces isomorphismes sont par construction compatibles aux morphismes

div. Ceci donne donc un diagramme commutatif naturel

‘*
Pic(X)—I— Pic(Y)

[div ldiv

CL X > CL Y

*
ce qui définit le morphisme j : C& X - CL Y cherché.

On notera aussi qu'é@tant donné un ouvert 6 de X qui

. . * . P
contient 1'image de Y , et en notant £ : Y » 6 le morphisme déduit,

la méme construction s'applique au couple (Y,8). Le diagramme

Uk
Co(X) —3 . ce(Y)

NS

est clairement commutatif.

5) On applique la construction au cas Y = §; 7 X = Pi XB T
’

w,J ?

et 9 =U. Soit S le lieu singulier de § . On note que S est

w,J

B-invariant. Par la description explicite de U et de V , le lieu
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singulier de Pi XB gw est Pi xB S = T . En particulier on a

sJ
TNnS =S ,donc TNS est de codimension > 2 dans § .
wyJ w,J w,J
Ainsi di a’ hi turel j :co®. X°F ) %
insi on dispose d'un morphisme naturel j : i w,J w,J

6) Pour montrer le lemme, il reste & montrer les formules du

point 4. Soit 2 : g’w 3> U 1le morphisme d'inclusion. On veut montrer
’
c* ~ . . .
i [Sw J] = 0 . D'aprés ce qui précé&de, il suffit de monter que 1'on
’

] =0 . Dans 1'identification Al xS ~U , s .1

a Res [Sw,J v, J v, J

correspond au diviseur [gw 3 {0}] . Ce diviseur est principal, on
’

* * ~
1=0, etdonc ilS_ .]=212 Res[Sw]=0.De

a donc Res [Sw w,J ,J

»J

n . . . 1 ~ . B~
méme dans 1'identification A x § ~ U , les diviseurs Res[P. X S ]
wyJ 1 u,J

* ~ ~
] . On a clairement JL[AIXS ]=[Su 1,

1~
' ces s
s'identifie 3 [A x Su,J u,J »J

ce qui montre les formules du point 4.

Soient J une partie de {l,...,N} , et w un &lément de WJ .

On a un morphisme naturel

1”J - P1c(Sw’J)

donné par la formule : XA - fw()\) . On pose P°

w,J= {)\EPJ , A(hi) =0

pour tout iESJ(w)}. I1 est clair que si A,u sont deux &léments de

o > ~ .
= (%) R
PJ , avec u € Pw,J , on a £w(u+ ) £w()\) ku Donc le morphisme

précédent se factorise en un morphisme

: P° _\ P_— Pic(S )
w w

K I g ,J

w,J
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Lemme 76: ’) Soient X € P, jE{1,...,N} . Alors le faisceau inver-

sible f; (A) sur Pj/B est libre si et seulement si A(hj) =0.
j

2) Soient J une partie de {1,...,N} ,wEWJ w'€wJ , et i€{l,...,N}

tels que w' = 8, W, w=>w i¢ SJ(w) et i € J . Soit 7 le morphisme
B ~ ~ 1 L. * 7
naturel T : Pi X Sw,J - Sw',J . Alors le diviseur de w ( w,(pi))

est €quivalent a —[sw,J] .

Démonstration : 1) La variété Pj/B est isomorphe 3 ][’l , et il

est clair ( par exemple en utilisant le théor&me de Riemann-Roch) que
le degré de E's (X)) est -A(hj) . Ceci montre le point 1 du lemme.
3

2) On a un diagramme commutatif naturel

Pi/B &———— Spec(k) = B/B

Par hypoth&se, ona 1 ¢ J et i ¢ SJ(w) . Donc on a z'w(pi) = &N @kp s
i
wWyJ

*

~
g

a clairement ‘@P- £w(pi) =

et on a donc fw(pi) = : .

:Elwv (pi) .

~ *
Donc par le lemme on a .Cw.(pi) = (") £s-1(pi)

(") g 1B/BD)
1

=© -5 D
P, X0 % w,!
i W,J

ce qui montre le lemme.
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Proposition 6 : Soient J une partie de {1,...,N}, WGiWJ . Alors

le morphisme Y. " p° J \ P
’

P' ~ . . .
w, - 1c(Sw’J) est isomorphisme

J

Démonstration : 1) Je vais d'abord prouver 1'injectivité. Soit

A€ PJ . Je suppose que 1l'on a A ¢ Pg 7 I1 existe donc un indice
’

i€J , tel que i € SJ(w) et A(hi) # 0 . Soit o : Ssi’J - Sw,J

*

1'immersion naturelle. On a © f;(l) = E; (A) . Donc par le lemme
i

=

76, (1) n'est pas libre. Donc f’w()\) n'est pas libre, et on a

S.
1

donc Yy J(A) £0.
k3

2) Je vais prouver la surjectivité par récurrence sur la longueur

de w . Je suppose donnés w'€wJ , WEWJ et i€ {1,...,N} tels que

w' =s. w et L(w') = 2(w)

Par récurrence, je suppose Y. J bijective, et je veux montrer que
’
1'est aussi.
wi ,J
Je donne £ wun faisceau inversible sur S , . Soit j : S - S ,
w',J w,J w ,J

*
1'immersion canonique. Le faisceau j £ est isomorphe (comme faisceau

~

de module) 3 un certain r'W(A) ,oi XE€E P‘J ,» par hypoth&se de récurrence.

On a

ieer =6,

SW,J

*
et je peux donc supposer que j £ est trivial.
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On a un diagramme commutatif

B ~
Pi X w,J
T

~

&——
Sw',J wyJ
hj

224

Par le lemme 75-2 il existe des entiers a et a bien déterminés
par la relation

. * ~ B
div(r £) = a[Sw ]+ T a [Pi X

AR
u€ 19J(w)

5 J

* % ~
Ona oom=3.Donc j m £ est un faisceau libre sur Se 7 * En
’

appliquant les formules du lemme 75-4, on a donc :

= D]
a, 0 , pour tout u€ J(w)

A présent je considére deux cas :
3) On suppose d'abord que 1'on a i€JU SJ(w). Soit M 1'unique point

B-invariant de E; 7 Je pose S = Pi M , de sorte que 1'on a
’

s =M si 1€J
S=S. si 1€SJ(W) .

~
L'immersion T : P - Sw

B

J détermine un morphisme naturel
s

B
LI ~ I . _
T : Pi/ B =~ Pi X" P -~ Pi X Sw I On a ainsi un diagramme commu

b

tatif
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w?

siw,J € §
]

~ *
Par hypothése, on a S c Sw g On a donc 6 £ = Cg .
’

* %
don 6' 6 L est un fibré inversible libre de Pi/B .

Par ailleurs on a

SW’J n P.l/B = B/B .

* K
Donc (t') 7 £ est le fibré inversible de degré a . Donc on a

*
a=0, donc 7 £ est trivial, donc £ est trivial.

4) On suppose que l'ona i ¢ J U SJ(w) . Donc par le lemme 76-2 ,

* * o * 3
ona 7w L =7 £s.w(_api)' Donc 7 (£ ® £siw(api)) est libre, et donc

~

= - : ' - -
ona £ = £Siw( ap;). Ceci montre donc que l'on a [£] Yw,J( api),

et ceci prouve la surjectivité de . Ceci montre la proposition.

Yw,J

Remarques : On conserve les notations de la proposition 6.

1) La proposition 6 classifie les faisceaux inversibles amples et
les faisceaux engendrés par leurs sections globales sur la variété

de Schubert. Soit £ wun faisceau inversible sur §Q I Alors on a :
’

L est engendré par ses sections globales (respectivement
amples) si et seulement si il existe ) € PJr]P (respectivement

+
A€ PJ) avec [ = £W(A) .
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2) On peut ainsi réénoncer 1la plupart des résultats de maniére
plus intrins&que. Par exemple,

~

(:) Soit S une variété de Schubert associée 3 une matrice de
Cartan symmétrisable (ou plus faiblement satisfaisant ). Soit £

un faisceau inversible ample. Alors £ est trés ample.

(:) Soit £ un faisceau inversible engendré par ses sections
globales sur une variété de Schubert S . Alors Hq(S ,£) = 0 pour

q#0 .

3) Il résulte de 1'injectivité de (ce qui est le point facile

Yw,J
de la démonstration) que 1l'on a 1'inégalité suivante. Soient J une
partie de {1,...,N} , w € Wy - Alors on a

# ﬂJ(w) = # SJ(w) .

En effet ces nombres sont (respectivement) le rang du groupe

des classes de Sw,J , et le rang de groupe de Picard de Sw,J
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XIII - REPRESENTATION DES FONCTEURS DE JOSEPH

Le but de ce paragraphe est de représenter les foncteurs
induits par les foncteurs fw , i.e. la cohomologie de f‘w sur

~
divers ouverts de Sw .

*
On étudie donc les &-foncteurs T = TO,TI,... définis
sur Yz(k) , 8 valeur dans la catégorie des groupes abéliens. On

suppose que ces foncteurs commutent aux limites inductives.

On obtient une suite spectrale pour une large classe de
§-foncteurs, qui permet en principe de retrouver T* 3 partir des
groupes T* k[B] . Dans cette suite spectrale les termes E1 ’EZ ,E00
et la différentielle d] ne dépendent que du foncteur T* . Je ne

comprends pas si les différentielles d'ordre supérieur d. (r=2)

= PP : . . *
dépendent ou non de la réalisation choisie pour T .

L'application aux stricts foncteurs de Joseph ne réclame
en fait que 1'étude de d&-foncteurs cohomologiques. Néanmoins j'indique

ici ces techniques, qul seront employées aux chapitres XIV et XVI.

*
Remarque : Un G&-foncteur T sur une catégorie abélienne ;7%;

. . . o .
sera ici une collection T ,T ,... de foncteurs covariants, tels
que 3 toute suite exacte 0 » M —>E > N> 0 soit fonctoriellement

. 0 o
associée une longue suite exacte 0 - ™M > T°E > T°N > T'M ...

Un d-foncteur T* est dit cohomologique si pour tout objet
Me%’, et tout entier £>0 , i1 existe un surobjet N2M tel que
1l'application Te M- TZ N soit nulle. Cela implique que les
foncteurs dérivés R*To existent, et que le morphisme R*Tu - T*

est un isomorphisme.
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Soient g une algébre de Lie, s une sous-algébre de Lie.
Soient M(g) et Mf(g) (respectivement) la catégorie des g-modules
et la catégorie des g modules M qui satisferont l'assertioh suivante

pour tout meM , dim g.m< .
Soit MeM(g) , J.L. Kozsul a défini une structure de complexe sur
1l'espace vectoriel gradué

¢"(g,5,M) =@ H,(s , Hom(A" g/s , M)).
On note H*(g,g,M) la cohomologie correspondante. Soit M Mf(q). On
note Homf(/\n g/s,M) les éléments de rang fini, pour chaque entier n .
La formule de Kozsul définit une structure de complexe sur l'espace
vectoriel

Cp(chsM) =@ Ho(s , Hom(A™ a/s , M)).
Soit H:(g,g,M) la cohomologie correspondante. Il est naturel d'appeler
H:(ng,M) la cohomologie relative de Kozsul & support fini (on pose
H;(Q,M) = H?(Q,E,M) lorsque s = {0} ).

Les deux foncteurs précédents sont des & -foncteurs. Il ne
semble pas connu si ces foncteurs sont homologiques, i.e. s'ils sont
isomorphes aux dérivés du foncteur H° dans une catégorie convenable,
mais ceci est bien connu lorsque s est réductive.

Si & est une sous-catégorie de M(g) ayant suffisamment
d'injectif, on note H*{g, ) les dérivées du foncteur HGQS, ) dans

la catégorie t?.
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Soit Ab 1la catégorie des groupes abéliens. Le lemme suivant
donne les propriétés &videntes de la catégorie ‘6(_!_)_).
Lemme 77 : Soit M€ €(b)

1) Le module M possé&de une résolution M —>‘€°(M) *BI(M) - ... qui
est injective et minimale dans f(_l_)_). Le complexe HO(E, &O(M)) a

une différentielle nulle.
2) Cette résolution n'est pas canonique. Pour tout entier n , on a

un isomorphisme non canonique

\%
£ = v(0) ® He(n,M)

oll Hrfl(_xl,M) est muni de sa structure naturelle de b-module (1'action

de n &tant d'ailleurs triviale).

3) En particulier, la dimension cohomologique de M dans ‘e(h) est

le plus grand entier (éventuellement + ) pour lequel H;l(_rl,M) #0 .
4) Les morphismes naturels de foncteurs
* * o *
HE(B) (b, ) - Hf(hyh, ) » H (h, Hf(g, )
* *
H‘G(E) (@, ) » H(m, )

sont des isomorphismes.

Démonstration : Le point ! se montre comme le théoréme des Zyzigie
d'Hilbert. On suppose avoir construit pour un entier n une résolution

minimale injective M -»80(M) > ... »‘en(M), telle que le complexe
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@, M) > ... -» Ho(g,%/n(M)) ait une différentielle nulle.

Soit C% 1le conoyau du morphisme ‘en—l(M)» Bn(M) si n=1, du

morphisme M —»BO(M) si n=0, et du morphisme 0 ->M si n=-1.

n+l

%
Le module @ M) = v(0) ®H°(B_, ‘en) est injectif. Donc

+1 -
le morphisme natuel HO(E, Bn) - e? (M) poss&de un prolongement

+ . . . .
Cn _’%n l(M). Par construction le noyau Z de ce morphisme satisfait

. . . 1
HO(E,Z) = 0. Doncon a Z=0 , ce qui implique que M —»EO(M)—-M..#E’/IH (M)

est une résolution de M .

Par minimalité pour n=>1, ou par un calcul direct si n<O ,
L]
o PR . o
ce complexe est minimal, et la différentielle du complexe H (n, g )
est nulle. Ceci prouve le point 1. Les autres points en résultent tri-

vialement C.Q.F.D. .

Soit M un UAb) - module. Soient @ et & les endomorphismes

de 1'espace vectoriel End(’u,(h),M) définis par les formules suivantes :

o ¥Y(u) z u, w(vu)

o

T Y(u) =2 wluy) vv)
o

pour tout ¥ € Hom(U(b),M), et tout u G’U,(E) tel que Au = I u, ® Vy -

Ici w désigne 1'antiautomorphisme principal de ’U.,(_tl). La représenta-
tion gauche sur ’u,(h), la représentation droite sur QL(E), et 1'action
de b sur M induisent trois actions sur Hom(’bL(P_),M). Je note res-
pectivement L , R et © ces trois actions. Pour tout g€b , je

note Lg , Rg et eg les trois opérateurs correspondants.
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Lemme 78 : On conserve les notations précédentes.

1) Les morphismes & et ¢ sont inverses 1'un de 1'autre, i.e. on

a 0,0 =090,0 = id.

2) Pour tout g€b , on a les formules

L +6 =0, L
Ly g)o g

R o00=0, (R +6)
g g g
3) Si M 6‘6(3) , le sous-espace vectoriel k[B] ® M de Hom(U,(B),M)

est laissé stable par & , ¢ , et par les actions L , R et 6 .

Le lemme 78 (bien connu) résulte de manipulations formelles
sur les axiomes des algébres de Hopf. C'est pourquoi je le laisse

sans démonstration.

Dans la suite, je considérerai un foncteur T défini sur
la catégorie ‘e(h) , 4 valeur dans une certaine catégorie cfb Soit
M un espace vectoriel. Si M est muni de diverses structures S ,

S' ... de 'u,(k) - module, je noterai M_, 1l'espace vectoriel M

S
muni de la structure de 'u/(_é) - module S . Si MS €g(_b_) , je poserai

alors TS(M) = T(MS) .

Lemme 79 : Soit T : (e(k) - Ab un foncteur covariant additif.

1) Soient E , F € <e(l:»_) deux modules tels que 1'action de b sur

E soit triviale. Alors on a un morphisme naturel E ® T(F) - T(E®F).

156



FONCTEURS DE JOSEPH

Ce morphisme est un isomorphisme dans les deux cas suivants :

(i) E est de dimension finie

(i1) T commute aux limites inductives

2) Soient M un 'u,(k) - bimodule, et R et S 1les deux structures
correspondantes. On suppose que MR appartient a <€(E) . Alors TR(M)

est naturellement un ’u,(_b_) - module. On note S cette structure.

On suppose en outre que MS appartient 2 (e(k). Alors

TR(M)s appartient a ‘e(la_) dans les deux cas suivants :

(1) M est de dimension finie

(ii) T commute aux limites inductives .

3) Soit M €(6(E) . On note 6 sa structure de u(h) - module. On a

un morphisme naturel
M® TL(k[B])e+R - Te+L(M ® k[B])R .

Ce morphisme est un isomorphisme dans les deux cas suivants :

(1) M est de dimension finie

(ii) T commute aux limites inductives.

4) Soient M un "u,(h)—bimodule, R et S 1les deux structures de

/u,(k) - modules. On suppose que M, appartient a f(y_) . Alors on

R

a un morphisme naturel

o o
Tp Ho(b,¥) ~ Ho(b , T, M) .
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Ce morphisme est un isomorphisme dans les deux cas suivants
(i) T est exact 3 gauche, et M est de dimension finie.

(ii) T est exact 3 gauche, commute aux limites inductives

et MS est un IU./(B) - module localement fini.

Démonstration : 1) Je vais montrer le point 1. Tout €lément e€E
induit un morphisme naturel u, ¢ F > E®F donné par la formule
ue(f) =e®f, pour tout f€EF . Si e, e' sont éléments de E ,
A€k, on a Hote! = Mo + Mgt 5> My = A b, - On a donc une application
bilinéaire M : EXxT(F) » T(E ® F) donnée par la formule

M(e,t) = T(ue) (t), pour tout e€E , t€T(E). Cette application induit
le morphisme naturel cherché E ® T(F) » T(E ® F) . Par additivité,

ce morphisme est un isomorphisme lorsque E est de dimension finie,

ce qui prouve le point 1(i). Le point 1(ii) en résulte aussitdt.

2) Je vais prouver le point 2. Pour tout u € ’u'(h) le morphisme
S(u) de MRinduit une application TR(S(u)) : TR(M) - TR(M) qui fournit

la structure de 'u,(h) - module cherchée.

On suppose en outre que MS appartient 3 B(R)’ et est
de dimension finie. Il existe un idéal bilatére Jc U(E) de codimen-
sion finie tel que S(J).M =0 . On a donc S(J).TR(M))= 0, ce qui prouve

que TR(M) est ’LL(E) - localement fini. Il existe un ensemble fini ©

dans P , tel que pour tout h€h , on ait :

S(m (h=-A(h))).M=0 .
A€
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On a donc aussi

SCT h - a(h)) .TR(M) =0
A€0

et ceci prouve que TR(M) appartient 3 L6(2_) . Les points (i) et (ii)

sont donc montrés.

3) Je vais prouver le point 3. On applique le point l. On a donc un
morphisme naturel M ® TL(k[B]) - TL(M ® k[B]). Par naturalité ce mor-

phisme induit des morphismes
M® TL(k[B])e——oTL(M [ k[B])e
M© T (k[B]);— T, M @k[B]),

et les actions R et 6 dans les précédents espaces vectoriels

commutent. On obtient donc un morphisme naturel

(a) M® T (k[B]) ,,—T (MOK[B] .

On applique le lemme 78. Le morphisme ¢ est un isomorphisme

o : (M®K[B]) — (M ® k[B])

0+R,L R,p+L
Donc ¢ induit un isomorphisme ¢#
o © T (M®K[B]) .. ——T . (M@ K[B])
L o+R o+L R

En composant le morphisme naturel (a) et ¢# on obtient le morphisme

cherché. Pour que ce dernier morphisme soit un isomorphisme il suffit
que le morphisme (a) le soit. Donc les assertions (i) et (ii) résulte

du point 1.
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4) Je vais prouver le point 4. Le morphisme naturel (b) : Hg(E}M)—éM

induit donc un morphisme TR Hg(R,M) - TR(M) . Comme le morphisme (b)

commute aux structures R et S , le morphisme naturel TR Hg(E,M) - TR(M)

est un morphisme de module pour la structure S , et 1'on a

o =
S(b) Ty Ho(b,¥) =0 .

On obtient donc un morphisme naturel (c) : TR Hg(E,M) - Hg(k_,TR(M)).

On suppose maintenant que M est de dimension finie. Il existe donc
un entier n , et des Eléments LIERRERE. N dans b , tel que le com-

plexe

o ® S(Xi)
0 > HY(b,M) » M———

soit exact. Si T est exact a gauche, le complexe
o ® S(xi) n
0 = Ty B(B,M) ~» T, () ——5 T, (M)
est exact, ce qui prouve que le morphisme (c) est un isomorphisme. Les

points (i) et (ii) en résultent aussitdt.

Remarque : Dans la suite immédiate, je ne vais pas utiliser le point 4.
On se place dans les hypothé&ses 4(ii). Ceci implique aussitdt que 1l'on

a, pour tout entier n , et tout M € €(b)

n

ROPTM , k[B] © M) .

n
= Hom©®

En fait ce résultat n'est pas spécifique & la catégorie ‘6(2).
Soit G un groupe affine sur un corps k . Soit ¥Y[G] 1la catégorie
des G-modules, au sens algébrique. Soit T : ¥YI[G] » Ab un foncteur

covariant exact 3 gauche, qui commute aux limites inductives.
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On a alors pour tout entier n , et tout M € ‘¥£(G)

R°T =8 y (G T(k[C]) © M) .

e

Ce qui prouve que 1l'on a une équivalence de catégorie entre les fonc-
teurs covariants exacts 3 gauche, et qui commutent aux limites inductives,
et la catégorie des G-modules. Cette &quivalence est la suivante. A un
tel foncteur T , on associe le module T(k[G]). Et réciproquement un

module X donne le foncteur M - HO(G , X ® M).

J'ai indiqué le point 4 pour la raison suivante. Le point 4
1
suggére que pour une large classe de &-foncteurs ™°,T ,T2 ... : ¢[6] > Ab,

on pourrait trouver une suite spectrale fonctorielle E , telle que pour

tout module M €‘€[G] , on ait

290 = w6, 1MkIch @ m
¥le]

(cette expression a un sens lorsque chacun des foncteurs ¢ commute

.. . . . +
aux limites inductives), et qui converge vers P (M)

Tel sera le cas lorsque le dJ-foncteur TO,TI,... sera
obtenu de la fagon suivante. Soient Cﬂf une catégorie abélienne, stable
par limite inductive, £ : €[c] » d% un foncteur exact, qui commute
aux limites inductives, et % :d > Ab un foncteur covariant additif,

qui posséde des dérivés R*T . on suppose que pour tout n€ N, on

~ *
. n n - . .
ait T =R To,L , et que T commute aux limites inductives.

I1 est alors aisé de construire une suite spectrale pour

1.2
un tel §-foncteur TO,T T ... , et elle converge vers Tn . Je ne
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sais pas si un 6-foncteur qui commute aux limites inductives peut
toujours &tre obtenu de la fagon précédente, ni méme montrer que

les suites spectrales obtenues ne dépendent pas des choix faits

« , E}% , "i?) . Enfin pour un S§-foncteur arbitraire (mais qui commute
aux limites inductives) je ne suis pas parvenu 3 construire une suite

spectrale.

On va énoncer le lemme suivant dans un cas particuliérement
simple. Premi&rement on va considérer le groupe B (au lieu d'un groupe
général G) pour lequel la précence d'un complexe de Kozsul calculant
1'homologie apporte une simplification. Deuxiémement, on va considérer

pour &% une catégorie abélienne possédant suffisamment d'injectifs.

Lemme 79 : Soit cﬂ:’ une catégorie abélienne possédant suffisamment
d'injectifs, et stable par limite inductive. Soit £ : € (b) - I

un foncteur covariant exact et commutant aux limites inductives. Soit
T : tﬂ')’ - Ab un foncteur covariant exact d gauche, tel que pour tout

. n o . . . .
entier n, R Tof commute aux limites inductives. Pour chaque entier

n
n , on pose Tn=R Tol .

Alors il existe une suite spectrale fonctorielle E(M) qui

*
converge vers T (M) , et dont le second terme EZ(M) vaut

Elz)’q(M) = H?f(-ll’ .13.’ Tp(k[B]) ® M)

pour tout M € %(_11), et tous entiers p,q .
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.
Démonstration : Soit M € ‘e(b). Je note N le complexe
.
N. = Cf(h,h, k[B] ® M). La démonstration du lemme consiste i examiner
les deux suites spectrales calculant le groupe d"hypercohomologie

RrT L) .

@ La premidre suite spectrale [I7] pour calculer le groupe
d'hypercohomologie a un second terme E, égal a
* * o
E, =RT hL(N)
* [ ) * o
Comme £ est supposé exact, ona hL(N) =L(h N).

Par le lemme 78, k[B] ® M est injectif dans (e(h).

°
Donc par le lemme 77 on a hiw) = o pour q # 0 , et
°
par le lemme 78 on a h°(N ) = HO(R » k[B] ® M) = M . Aussi la premiére
*

°
suite spectrale dégénére, et 1'ona RT L(N ) =T M.

@ Soient p,q € IN. Par hypothé&se le foncteur TP :‘e(h) - Ab
est additif et commute aux limites inductives. Donc par le lemme 78-3,

ona 1PN = clb, b, TPx[B]) @M.

La seconde suite spectrale calculant 1'homologie a donc pour
* *
terme EI(M) = Cf(la_,_ll, T (k[B]) ® M). Par naturalité la différentielle

dl est la différentielle de Kozsul. On a donc

By = mi(b, b, TP(k[B]) @ 1) . C.Q.F.D.

Remarque : On notera que dans la seconde suite spectrale E(M) , la

*
différentielle d, ne dépend que du foncteur T , et non du choix

1
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de la catégorie J%{ et des foncteurs T et £ . Je ne sais pas si les

différentielles d'ordre supérieur dr » T2 possédent la méme propriété.

Le lemme suivant résulte des propriétés générales des suites

spectrales [(7]. On conserve les mémes notations.

Lemme 80 : Soient MEY¥Y@®) , et n € N. On suppose que l'on a

Tl(k[B]) pour tout entier 0 < i<n .

Alors les morphismes naturels ("edge morphism')

He(b, h, T%[B] @ ) > T" M
sont des isomorphismes pour 0 < i <n , et on a une suite exacte (la
suite exacte d'Hoschssild-Serre)

1

0~ H ' (b,h, kBl @) » T Mo KO0, ™ kBl @ M)

H‘f“”z(h,g, ™ k[B] @ M) » T M .

On en déduit le lemme suivant

Lemme 81 : Soient 0 < & < n deux entiers. On suppose que l'on a

i . . L 2+1
T™ k[B] = 0 pour tout entier 0 <i<n , T #0 et T =0 . Alors
le QL(E)-module To(k[B]) est de dimension cohomologique dans ZZ(B)

exactement £ .

. . L .
Démonstration : Il existe un module M tel que T M soit non nul.

I1 résulte du lemme précédent que 1l'on a Hf(E_,E, T™°k[B] ® M) # 0.

164



FONCTEURS DE JOSEPH

Donc T°k[B] est de dimension cohomologique >2 . Soit M= @ LN
AEP

Par le lemme précédent, on a H“l(_ll,g, T° k[B] ® M) = 0. Par le

lemme 77-4, on a donc H:H(P_, T° k[B]) = 0, et par le lemme 77-2

il vient que T° k[B] est de dimension cohomologique <2 . C.Q.F.D.

Soient X un schéma, w€W , i : X » '§w un morphisme de

schéma, Y = X x  B(w) . On a ainsi un diagramme cartésien

S
w

Soit 'BX le foncteur £X : B(B) - Qcoh(X) défini par

£ i
la formule X(M) =1 W(M).

Lemme 82 : On suppose l'espace topologique X noethérien. Soit
M€ B(B) . Il existe une suite spectrale E(M) fonctorielle en M

*
qui converge vers H (X,£X(M)) et dont le terme EZ(M) vaut

*
- q
E,() =H(b,h, HI(Y, Op @N.

Démonstration : Le foncteur £w est exact et 3 valeur des ('DN -
S

W
modules plats. Donc °CX est exact. Comme fw commute 3 la limite

inductive, Ly aussi. Enfin comme 1'espace topologique X est

noethérien, la cohomologie des faisceaux commute 3 la limite inductive.
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Enfin comme 7 est affine, on a 1, ‘92 = £X(k[B]). On
i X * *
a donc aussi comme u est affine H (Y, (9Y) =H (X ,£X(k[B])).
Donc le lemme 82 résulte du lemme 79.
La proposition suivante est le but de ce paragraphe, a

savoir représenter les foncteurs de Joseph.
Proposition 7 : Soit wE€W .

CI) Le QL(E)-—module 3 gauche (respectivement 3 droite)

k[B(w)] est de dimension cohomologique exactement £(w) .

(:) Pour tout M € %2(2) , on a

* * ©
D, M=Hc(b,h,k[B(w)] ®M)

Démonstration : Par le lemme, on a Hq(B(w) . (9B(w)) = 0 pour

q#0 , car B(w) est affine. La suite spectrale du lemme 82 dégénére,

et on a donc

* *
D, M=H(®,h,k[B)] @M ,

ce qui prouve la seconde assertion.

Par la proposition 3 » D, est de dimension homologique

-

exactement 2(w) . Donc il résulte du lemme 81 appliqué 3 & = f(w) ,
et n un entier arbitraire n = & tel que k[B(w)] est un QL(E) -

module & droite de dimension cohomologique £(w). En outre le module
a gauche k[B(w)] est isomorphe au module 3 droite k[B(w_l)] .

Ceci prouve la proposition.
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Je vais donner une seconde application de la suite spectrale.
Lemme 83 : 1) Soit Y un fermé de '§; . Alors pour tout entier
Psq », q#¥0, ona
q.3 1791 -
B, WKL (k[B])) =0
2) Soit U ='§;\ Y . Soit r 1la codimension de Y . Soit M & (b) .
n ~ > n ~D
Alors pour tout entier n § r-2 , le morphisme H (Sw , ol w(M)) - H (U,«fw(M))

est un isomorphisme.

Démonstration : On pose V = qr-l(U) , Z = Wr-l(Y) . On notera que
comme M est affine, le morphisme V —> B(w) est quasicompact. Donc
par une proposition de Grothendieck (proposition 2.1 de 22 )
JCE(G?B(W)) est quasi-cohérent. Comme W est affine, la dégénérescence
de la suite spectrale de Leray prouve que l'on a:

‘IT,J{E((QB(W)) = HYP(og;(k[B] )) et qulf*‘]{g UB(W) = 0 pour @0 .

On a donc Hq(g‘w,‘]'cgﬂg;(k[B])) = HY(B(w) ’]{g(%(w)) =0 car B(w)
est affine. Ceci prouve le point 1 .

Le point 2 résulte du fait que Sw est Cohen-Mc Caulay ( 22 ) .

Enfin je vais indiquer comment la proposition 7 permet de retrouver
la suite spectrale de Leray.

Soient wW€EW , M et M' deux zl(b)-modules dans Zf(b) . Je note
Lw R Rw , 8 , 8' 1les actions de b a gauche sur k[rB(wi] , a droite

sur k[ B(w)] , sur M et sur M' respectivement. On concerve les

notations.

Lemme 84 : Il existe deux suites spectrales 'E et "E qui convergent

vers H (bxb , hxh , M! ®k[B(w)] ®M) telles que l'on ait

*
£,6'+L ,R +8
ww
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15P»4 q ' P
E5 He(b,h , M' @ D M)

"Ey*d = HX(b,h , DP_ M @ M) .
w

Démonstration : Ces deux suites spectrales sont obtenues en considérant
successivement chacun des facteurs de b x B comme un idéal. Ceci
montre le lemme.
Soient u,v,w W tels que uv = w etnl (u) +~€(v) =AZ(w) .
On examine les deux suites spectrales qui convergent vers
* ‘] 9
Hf(l)xlg ,» hxh , k[B(u) ® k[B(v)J ® M) . La premiére de ces suites
spectrales 'E a pour termes 'E2
lEp’q = Dq Dp M
2 u v
_ p s = q =
Compte-tenu des égalités Duk[B(v)] k[B(w)J et Du(k[B(v)] ) 0
pour q # 0 , le terme "E2 de la suite spectrale dégénére, et l'on a
"Elz”q =0 si p#0
vg2:d = pd M
2 w *

Ceci redonne la suite spectrale de Leray.
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ANNEXE : Une condition pour qu'un §- foncteur de €(B) soit

homologique.

Soit F : €(B) » Ab un foncteur additif covariant. Soient

X € (8(8) , et Y un espace vectoriel. Je définis les foncteurs Fy

et FY par les relations

F (M) = F(X @ M)

FL(M)

Y ® F(M)
pour tout M €'€(B).

Lemme 85 : Soient F,X,Y comme ci-dessus. On suppose que F
commute aux limites inductives. Soit R un sous—ensemble de P . On

suppose

(a) Pour tout A€ER, on a HO(P_ , X Qk)‘) #0

(b) Pour tout M € ¥Y(B) de dimension finie, il existe A€ R
tel que F(M ® k)\) =0

Y

(¢) Il existe un morphisme injectif de foncteur 6 : Fg = F

Alors F(I) = 0 pour tout objet injectif I € '@ (@) .

Démonstration : Comme F commute & la limite inductive, il s'agit
de montrer que pour tout sous-module E de I de dimension finie,
1'application F(E) - F(I) est nulle. Soit donc A€ER tel que

F(E ® k)‘) = 0. Comme HO(B, X ® k)\) # 0 , on peut fixer une injection

€ du module trivial dans X ® k)‘ . On a donc un diagramme commutatif.
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F(E) — F(D)

l |

o FX(EQk)\) —d FX(I [z k)\) 3

| |

FY(E®k)\) —_— FY(I ® k)\)

Par hypothése 1'application o est nulle. Comme I est

injectif, 1l'injection idI xeg: I>I10X® kk est scindée. En

particulier 1'application F(I) - FX(I ® k}‘) est injective. Comme
par hypoth&se 6 est injectif on en déduit que B est injectif.

Donc 1'application F(E) - F(I) est nulle. C.Q.F.D

Un point délicat du chapitre XI &tait de montrer que B(w)
est affine. Je vais montrer comment ce lemme permet de montrer des

conséquences de ce fait sans utiliser le fait que B(w) est affine.

On choisit pour ensemble R = —P+ , pour module X = @® L(4A),
Aep*

et Y =X comme ensemble.
Soient w,u € W avec us<w .

@ On choisit pour foncteur F 1le conoyau du morphisme D, =D, -

Comme Dw et Du sont les sections globales de fw et de fu res—

pectivement, le théoréme de Serre implique que F satisfait la condition
(b). Les conditions (a) et (b) &tant triviales, on en déduit que

DWI > DuI est surjective pour tout injectif I € @(b) (lemme 7).
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(:) Soit q un entier >0 . On choisit pour F 1le foncteur
F: Mw— Hq(g; . f;(M)). La condition (b) résulte du théoréme de
Serre, les conditions (a) et (c) sont triviales. On obtient :
Hq(g; . f;(l)) = 0 , pour tout injectif I (ce fait est utilisé

dans la proposition 3).

(:) Enfin on peut en déduire le lemme 83-1, par le méme type de

démonstration, passée aux faisceaux.

Remarque : La démonstration du lemme 84 est inspire par 1'article
de Beilinson-Bernstein [4 ]. L'énoncé du point 4 du lemme 79 présente
des analogies avec un théor&me de représentation de P. Gabriel en
algébre commutative [22]. En fait ces résultats sont trés différents
le théoréme de Gabriel utilise la commutativité de 1'anneau, ici on

utilise la structure de cogébre.
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XIV. Etude du morphisme B(w) —y Ew-'

Soit we W . On note nn : B(w) — §w le morphisme correspondant. On
veut montrer que B agit localement librement sur B(w) . On en déduira que
B(w) est intégralement clos.

Soit U un ouvert de §w . L’application P — Pic(gw) induit donc une
application P — Pic(U) . On veut montrer la proposition suivante (on

conserve les notations précédentes) :

Proposition 8 : On suppose
(a) L’application P —— Pic(U) est nulle.
(b) On a Hl(u,au) =0.
Alors on a
(1) Pour tout M e ¢(b) , xw(M)IU est un faisceau libre.
(2) B agit librement a droite sur n_l(U) , il.e. m 1(U) est isomorphe a

Ux B .

On remarquera que cela implique que B agit localement librement a
droite (et donc aussi a gauche) sur B(w) . En effet coome P est de type
fini, la condition (a) est satisfaite pour tout ouvert U suffisamment petit.
La condition (b) est satisfaite par exemple sur tout ouvert affine. Donc B

agit librement au—-dessus de tout ouvert affine suffisamment petit.

Démonstration du point 1. Je vais d’abord prouver ce point lorsque M est de

dimension finie, par récurrence sur la dimension.
Lorsque M est de dimension 1, §W(M) u est libre par la condition (a).
On suppose M de dimension > 1 . On peut trouver une suite exacte de

U(b)-module 0 — E— M — F — 0, o E et F sont non nuls. Par
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hypothése de récurrence on a des isomorphismes

p
il

I (F)'Uz o3

2

—

=2]

s
o)

14

U

ot p et q sont les dimensions de E et F . Par la condition (b),
1’extension 0 —s QW(E) v iw(M)lU N QW(F) u— 0 est donc scindée.
Ainsi §W(M) g est libre.

Enfin le cas ou M est de dimension infinie en résulte facilement.

Je vais maintenant donner la démonstration de la proposition 8 lorsque g
est de dimension finie. Ceci donnera aussi une indication sur la démonstration
du cas général.

Les ensembles de cohomologie non abélienne considérés plus bas seront
relatifs a la topologie Zarisky.

Pour simplifier on supposera que l’on a w s, . pour tout i (on peut
facilement se ramener a ce cas).

Pour chaque ouvert V , soit Ty la restriction de un a nﬁl(V)
L’action de B sur le groupe G associé & G est localement libre. Donc
1’action de B sur B(w) est aussi localement libre. Donc pour tout ouvert

o~

1
V de Sw : My détermine un é€lément, que je note {ﬂv] de H (V,B) . On a un
diagramme commutatif

2 .‘ 1 ~
B (3,,B) —2— H (§_,H)

Voo

J
wt,ny —— gl —9, wu,n)

Comme H est un tore, il est clair que 1’on a HI(EW,H) =P & Pic(§ ),

F4 W
donc H1(§,H) est isomorphe a Endz(P) . Il est clair que j([m]) est
1’élément identité de Ean(P) . Donc une condition nécessaire et suffisante
pour que 1l’on ait que jU([nU]) = 0 est la condition (a). Comme N est

nilpotent, un dévissage trivial indique que pour que HI(U,N) soit réduit a un

point, il suffit que 1’on ait Hl(U,ﬂU) =0, i.e. la condition (b).
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Ainsi si les conditions (a) et (b) sont satisfaites, [nu] est 1’élément
trivial, ce qui prouve la proposition.

Soit m= @ m, une algebre de Lie positivement graduée, telle que
i<0

dim m, < o pout tout i .Je note m’ (respectivement k[M]) les combinaisons
lindaires d’éléments homogénes dans m" (respectivement dans U(m)*) . Soit R
1’action de m & droite sur m> et sur k[M] . Soit E(m) 1’extension
canonique de m-modules gradués

0 —+ k — E(m) — 0’ — 0
le module trivial k étant gradué en degré 0 . Je note encore R 1’action
de m sur E(m) . Tout élément de E(m) est donc un couple (A,v),
Ae€eK, vem, et on a la formule

R(g)(A,v) = (<v]|g>, R(g)v)

pour tout g e m .

Si Z est une algébre de polynome (& un nombre fini ou infini
d’indéterminées) j’appelle systéme de générateurs (respectivement
quasi-systéme de générateur) un sous—espace vectoriel V de I tel que
1’application SV —— I soit un isomorphisme d’algébre (respectivement tel
que V=V’ @® kl , o V' est un systéme de générateur). Lorsque 2 est
graduée, on a une notion évidente de systéme de (quasi)-générateurs gradués.

On notera que k[M] est une sous—algebre de U(g)*

On conserve les notations précédentes.

Lemme 86 : L’algebre k[M] est une algébre de polynome. Il y a une bijection
entre les systemes de quasi-générateurs gradués de k[M] stable sous 1’action
droite de m , et les U(b)-morphismes E(m’) — k(M] qui prolonge le

morphisme naturel k — k[M] .

Demonstration : Soit VR(E) la categorie des U(m)-modules gradues,

I(m)-localement finis. Il est clair que k[M] est un injectif de %R(g) . I1
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existe donc un morphisme de U(m)-module a droite respectant la graduation,
¥ : E(m) —— k[M] ., qui prolonge le morphisme naturel k — k([M] .

Pour tout espace vectoriel gradue X =@ Xn . Je note ch(X)
1’expression formelle ch(X) = X dim(Xn)tn . Soit V=8 E(gl)i . L’application
¥ détermine donc un morphisme d’algébre ¥ : SV — k{M] . Je veux prouver
que P est un isomorphisme. On a

ch(k[M])(t) = ch(U(m))(1/t)

donc on a c¢h(k[(M]) = ch(Sm’) = ch(SV) . Comme les dimensions des composantes
homogenes de SV et de k[M] sont finies, il suffit donc de prouver que ¥

est injective. Soit (£, une base d’éléments homogénes de V (et donc de

1)iem
m’), telle que pour tout i € N on ait deg §i+1 < deg §i . On suppose par
1’absurde ¥ non injective. Il existe donc un élément P homogéne et de
degré maximal, tel que ¥(P) = 0 . Tl existe des entiers n et m tels que
l’onait P= % £ a ,oi a e€k([t ,...6 1 et a #£0 . Soit {g.}
X i i o n—-1 m i
myiy0

la base duale de la base de m’ déterminée par la base {ei} . On notera que
pour tout entier i, j on a H(gj)(gi) =0 pour j > i et H(gi)(§i) =1.
On a donc R(gn)m . P=m a - Donc on a ?(am) = 0 , ce qui contredit la
maximalité du degré de P,

Ainsi k[M] est une algébre de polyndmes, et 1’image de tout morphisme
gradue ¥ : E(m) — k[M] qui prolonge le morphisme k — k[M] est un
systéme de quasi-générateurs gradués R(m)-stable.

Réciproguement, soit E un systéeme de quasi-générateurs gradués stable
sous R(m) . On a nécessairement HO(Q,E) =k = E0 . Soit v : E— k
l’applicaction d’espace vectoriel qui a tout élément e € E associe sa
composante homogéne v(e) de degré 0 . L’application v induit un morphisme
de U(m)-module graduée u : E —s m’ , par la formule

u(e)|g> = v(R(g)e)

pour tout ge€em, e € E ,
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et ceci implique que les U(m)-modules E el E(m) sont isomorphes, ce qui

achéve la démonstration du lemme.

Démonstration du point 2 de la proposition 1) Soient X le U(b)-module
X =@ k, . et 4 1’algebre 4 = T(U,IW(X)) . Par 1’assertion (a) les

faisceaux §W(A) v et sont (non naturellement) isomorphes. On a donc un

U
isomorphisme d’algébre
x = k{P] ® I'(U,l‘-';) — A

tel que pour tout A € P, x(eA) € F(U,QW(A))
2) Soit T* : ©(b) — Ab le 5-foncteur donné par la formule
M = H*(U,QW(M)) pour M e ¢(b) . Par les hypothese (a) et (b), on a
T1 k, = 0, pour tout A € P . Comme T1 commute A la limite inductive le
lemme si implique que le U(b)-module % = Tok[B] est injectif (appliqué au
cas n=¢ =1)

On notera que E(n) est naturellement un b-module, avec action adjointe
de h . Comme % est injectif, il existe une application de b-module a
droite ¥ : E(n) — % , qui prolonge le morphisme k — % . Donc ¥
détermine par le lemme 86 un morphisme de U(b)-algébres ¥ : k[N] — & (o
n agit a droite sur k[N], et h agit par action adjointe).
3) Pour chaque A € P, 1’application naturelle HO(U, QW(A)) — B se
factorise a travers HO(Q, % ® k_A) . Donc x induit un morphisme de
U(b)-algébre 7 : k(P] — % (ou n agit trivialement sur k[P] , et h par
1’action a droite).
4) L’isomorphisme de schémas B = H x N induit un isomorphisme de

U(b)-algebre k[B] =~ k[P] ® k[N] . Donc 7 ® x est un morphisme de

U(b)-algéebre k[B] — % . Comme on a Hg(g,k[B]) = k , ce morphisme est
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injectif. Soit u la multiplication de % . Par le lemme 79-4, on a
H%(b,%) = H°(b,T%(B])
= 1° B%(b,k[B])

™ k

= F(U,UU) .

Il est clair que la multiplication u induit un isomorphisme de
U(b)-algebres % = k([B] ® F(U,UU) . Ceci implique que 1’action de B sur
7 1(U) est libre C.Q.F.D..

Soient 4 un anneau commutatif integre, K son corps des factions. On
rappelle que 1’on définit la cldture intégrale A de 4 comme 1’ensemble des
x € K, tel qu’il existe a € 4- {0} avec ax™ € 4 pour tout entier n > 0 .
On dit aussi que A est intégralement clos (ou que Spec A est intégralement

clos) si 1’ona A = A . On notera que 4 n’est pas supposee noethérienne

[46].
Proposition Q : Pour tout w e W , B(w) est intégralement clos.

Démonstration : Il est clair qu’il suffit de montrer qu’il existe un

recouvrement de B{(w) par des ouverts affines {Va} , tels que chacun des Va

soit intégralement clos. Soit {Ua} un recouvrement ouvert affine de §w y

tel que chacun des qﬁ satisfasse la condition (a) de la proposition 9. Soit

21 = ﬂ_l(Ua) . Comme §w est normale et irréductible, qa est intégralement

clos. Conme B agit librement sur Yﬁ . on a un isomorphisme non canonique

Va = Ua x B . On a donc F(Vaav) I~ r(Ua’UU ) ® k[B] . Comme K[B] est produit
a 3

d’une algébre de polyndmes de Laurent par une algébre de polyndme un classique

theoréme d’Hilbert prouve que F(Va,o est intégralement clos.

v)
a

Remarque : On peut espérer une démonstration plus simple de la démonstration
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XV. Le foncteur D , et le théoréme de Borel-Weil-Bott.

Le but de ce paragraphe est de montrer une généralisation du théoréme de

Borel-Weil-Bott.

81. Un lemme & la Demazure ([9])

Lemme 87 : Soient V wun injectif de <¢(b) , i e {1,...,N} , et
0 — Ds V— Vo —_ V1 —— ... une resolution injective de Ds V dans
i i
¢(b) . Alors le complexe de U(Ei)—modules 0 — DS V— DS Vo [ Ds V1 e
i i i
est exact et scinde.

En outre Ds V est de dimension cohomologique ¢ 1 .
i

Démonstration : 1) Soit A € P . On veut d’abord prouver que 1l’on a

D, Y

1

2, Vi(A +ma,) , si A(h) 2 0

"

ns‘i Y 2o ‘Gi(si/\ +0a;) , si A(h) <0
suivant les notations du chapitre I de la premiére partie. Lorsque m , m’
sont deux sous—-algébres de g, hcmecm’ , et si M un U(m)-module

h-semi-simple, soit ¢ Coindﬁ’M le sous—module de Coindﬁ M forme des
b.
vecteurs U(h)-semi-simples. Soit ol(A) = ¢ Coindhl(A) . On a donc
Y.(a) = ¢ Coind% € Coindﬁi}\ . Soit K.(A) le module
i b, h i

Ki(A) = n?o ci(A + nai) si A(hi) >0

"

Ki(A) n?o &i(si A+ nai) si A(hi) 0.

[ 7Y

I1 est clair que 1l’on a Ki(A) = DS 2(A) . Comme Ki(A) est réalisé
i

a.
comme un U(gi)—sous—module de CoindhlkA (et exactement comme le sous—module
=i
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des vecteurs h-semi-simples, gi—finis), on a une application naturelle

P. P Ev
¢ CoindalKi(A) pE—" CoindhtkA) — e Coindb (1) . qui identifie les vecteurs
_i - —

U(pi)—finis. Cette identification laisse la formule Ds V(A) = Vi(o) ® Ki(A) s
i

ce que je cherchais a prouver.

2) Maintenant je vais prouver que pour tout A € P , A(hi) > 0, il existe une
resolution injective 0 — Vi(h) . Io —_ I1 — 0 de Vi(A) , telle que

le complexe de U(pi)—modules 0 — Vi(A) —_— Ds I0 RN DS Il — 0 soit
i i
exact et scindé.
En effet on a une résolution injective :
0 — Vi(A) —_ V(A) —_ V(si(A+p)—p) — 0 , qui induit le complexe exact et

scindé (comme U(gi)»complexe)

0 — Vi(A) —_ DS V(A) —_ DS V!sj(A+p)—p) —— 0, car ce complexe est
i i

naturellement isomorphe au complexe

0 — Vi(o) ® e (A) — Vi(o,) ® k,(A) — Vi(O) ® k(M) — O ..

3) On veut prouver le lemme. Comme toutes les résolutions injectives sont

homotopes, il suffit de prouver le lemme pour une résolution injective de

DS V . Comme le foncteur Ds commute aux limites inductives, comme V est
i i

somme directe de modules %(u) la formule prouvée au point 1 prouve que

Ds V est somme directe de U(gi)~modules Vi(h) , o A eP et A(hi) > 0.
i

On peut donc ecrire DS vV = g P , ou chacun des 2> est un U(gi)—module

i

isomorphe a Vi(h) . pour un certain A . On choisit alors la résolution
injective trouvée au point 2

0 i s 5 = §] — 0
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telle que pour chaque indice a le complexe de U(pi)—module
a a a
O — —405j jo——.DSi}l——oO
soit exact et scindé.
I1 vient alors que O — D V-—.o;a—_.o;q—-.o est une
s a0 a1
résolution injective de DS V , ce qui prouve que la dimension cohomologique
i
de Ds V est <1 . En outre le complexe
i
a a
0O— D V—D D4 —s D D g —as 0
55 s;a’o s 1

est exact et scindé, ce qui prouve le lemme.
Soit ¥ : ¢(b) — 4 un foncteur covariant exact a gauche a& valeur dans
une catégorie abélienne 4 . Le morphisme de foncteur Ds —— Id induit un
i
morphisme de foncteurs ¥ o DS —_ P .
i

Lemme 88 : On suppose que le morphisme de foncteurs ¥ o Ds — ¥ est un
i
isomorphisme. Alors il existe une longue suite exacte de foncteurs
0-——01‘101)s —01’1—b?0D; —-.onDs ——o?’z—o...
i i i

Démonstration : Seit V wun injectif de <¢(b) . Je vais d’abord prouver que

1’on a ?qu V=0, pour tout q > 0 .
i

Par le lemme 87, on peut trouver une résolution injective
0O —sD VeI —I, — 0.
s; 0 1

Comme le complexe O — Ds V— Ds IO — Ds I1 —+ 0 est exact et
i i i

scinde, on obtient donc une suite exacte

0—*oD V—u?PobD I —*PobD I —mO
s; s; o s,

180



LE FONCTEUR D

et on obtient donc un diagramme commutatif & lignes exactes

O— Po0D V— ¥Po00D I —Po00D I. — 0
s s o s 1

yoo § bR
0O— Po Ds V— Yo Io — Yo Il —s P o Ds V—oO0
i i
Comme ¥ o Ds —— ¥ est un isomorphisme, ceci implique que 1’on a
¥ oD V=0, et on a donc 4 DS V = 0 pour tout entier q > O par le

S, .
1 1

lemme 87 .
Ainsi on peut former la suite spectrale du foncteur compose
Yo Ds . Cette suite spectrale a pour terme E2 : Eg’q =93, Dz , et
i i
converge vers ?*(puisque P=%o0 Ds ) . Comme Ds est de dimension 1 , la
i i

suite spectrale dégénére et donne lieu a la longue suite du lemme.

Lemme 89 : Soient ¥ : ¢(b) — Ab un foncteur covariant exact a gauche, et

ie {1,...N} tel que Ds 0¥ — ¥ soit un isomorphisme. Soit A € P, tel
i

que A(hi) soit > O .

Alors pour tout entier k , il existe un isomorphisme (naturellement

défini a un signe prés)

k+1 k
¥ kA+a. =¥ ks A
i
En outre si A(hi) =1, ona ?*kA =0 .
Démonstration : Ona D_ k =0, et D(l)k =¢.(A)
e — s. Ata T Ts. A, ime
i 1 i i
La longue suite exacte du lemme 88 appliquée au module kh+u donne donc un
i
isomorphisme
e+1 (2
(a) P kl\"’d. ~ P 61()\)
i
; - (1) - - .
On a aussi DSi ksiA = &i(A) , et DSi ksiA = 0 . La meme longue suite
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exacte, appliquée au module ks A donne donc un isomorphisme

(2 (2
(b) ¥ ks =~ ¥ &i(A) .

LA
i
Composant les deux isomorphismes précédents, on obtient 1’isomorphisme
cherché. En fait les isomorphismes (a) et (b) ne sont pas canoniques, et
dépendent du choix de vecteurs de plus haut poids et de plus bas poids dans

ei(A) . donc 1’isomorphisme cherché est bien défini au signe pres.

Remarque : Le lemme 89 n’est en fait qu’une formalisation de deux lemmes bien
connus. Le premier de ces lemmes, du & Demazure, s’énonce ainsi. On suppose
que g est semi—simple, soit G le groupe algébrique (simplement connexe)
associe. Si W, est 1’élément maximal du groupe de Weyl on note «£(A) le

faisceau de GG/B—modules Ew (A) . Soit @ : G/B —¢ G/Pi le morphisme
[)

naturel.

Lemme (M. Demazure) : Soit A € P, A(hi) 2 0 . Alors on a un isomorphisme

R6+1ﬂ'$(A+ai) =~ Ri!(sjA) . En outre on a R*n.z(A) = 0 lorsque A(hi) =1 .

Le second de ces lemmes m’a été appris par M. Duflo. On suppose & nouveau que

g est une algébre de Kac-Moody générale.

Lemme : Soit M un U(Bi)-module localement fini, U(h)-semi-simple a poids

entier. Soit A € 0, A(hi) > 0 . Alors on a

2+1 L . _
HE (b,h,M ® kA+al) = HE(Q,Q,M ® ksiA) . En outre si A(hi) =1, ona

x -
Hz(b,h,M ® k) =0.

32 Limites projectives

Soient X un ensemble ordonné, et 4 une catégorie. Je note Pro(X,4)
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la catégorie des systemes projectifs indexés par X et 4a-values. Les objets

) est une collection

de Pro(X,4) sont donc les paires (¥_,d ) ., o (¥ xeX

x’ "X,y Tx
d’objets de a , (dx y) est une collection, indexée par les couples

(x,v) € X2 avec X > y , de morphismes de A dx : ’x RN ¥y tels que 1’on

’

ait la condition de transitivite d d =d pour tous x,v,z € X avec
X, ¥y Vv.z X.2Z

X > v > z . Un morphisme entre deux objets (Vx,dx) . (‘9X,dx) est donc une

collection (Px) de morphismes de 4 , PX : yx — Y satisfaisant la regle

de commutativité évidente.

Les lemmes 90, 91, 92 qui suivent sont bien connus (cf. A. Grothendieck

[23], J.E. Roos [53], J.L. Verdier [64]).

Dans la suite, on choisira comme ensemble ordonne W avec 1l’ordre de
Bruhat. Si 1’on suppose en outre que A est abélienne ;gg(W,A) est
abélienne.

On supposera en outre que la limite projective d’éléments de ggg(w,A)
existe. Cette limite projective définit un foncteur covariant exact a gauche,
que je note ﬁ.&iﬂ . Dans le cas spécial ol la catégorie A est la catégorie
des groupes abeliens ég (respectivement des faisceaux de groupes abéliens sur
un certain espace topologique U) on note &iﬂ (respectivement %iﬂ) la
limite projective.

Dans la suite on supposera que A posséde suffisamment d’injectifs. On

va montrer simultanément les deux lemmes suivants :
Lemme 90 : La catégorie Pro(W,A) posséde suffisamment d’injectifs. En outre

si 4 est un injectifs de Pro(W,A) , alors A Lim ¢ est un injectfif de

A4 .
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Corollairement, on peut définir les dérives des foncteurs ﬁ.&iﬂ . Un
foncteur covariant I : 4 — Ab induit un foncteur, que je note encore I ,
g;g(w,ﬁ) —_— g;g(W,Ab) , ainsi qu’un morphisme de foncteurs
8 : T o t—EiE —_— EEE ol . On dit alors que I commute aux limites

projectives si 8 est un isomorphisme.

Lemme 91 : Soit I' : 4 —— Ab un foncteur additif covariant, exact a gauche
et qui commute aux limites projectives. Soit donc P le foncteur composé
P=1limoTl =T o A Lim .
— —
I1 existe deux suites spectrales IE etIIE (les suites spectrales des

- . * .~ N
foncteurs composés) qui convergent vers P . La premiere de ces suites

spectrales dégenere en des suites exactes courtes

0— tim' or®t LB L limor®_—o.
— —
La seconde suite spectrale a pour terme IIE2 :
TTgPed < 196 4 Lin .
—

Démonstration : 1) Je vais décrire les injectifs de ggg(w,A) . Soit (Ew) un
objet de ggg(W,A) . Je note VW(E) , pour chague w € W , 1’objet suivant de
4 . Pour chaque triplet v,v’,u d’éléments de W avec
ug¢ vv ¢w
e(w) = &(v) +1 =¢(v’) +1 =¢(u) +2
je note €(u,v,v’) 1’application naturelle e(u,v,v’)Mw(E) —_— gu (ou

Mw(e) = £ ) telle que les restrictions e(u,v,v’) : & — ¢

® X X ‘u
e(x) = ¢(w)-1
X{wW

soient nulles pour tout x avec ¢(x) + 1= ¢(w) et x # v, v’ , et telle que

la restriction de ¢(u,v,v’) a §v (respectivement § ) soit égale a d.v u
v’ bl

(respectivement -d ) . Je définis enfin Vw(ﬁ) comme le sous—objet de
v’,u

Mw(ﬁ) noyau du morphisme & e¢(u,v,v’) . Dans une description ensembliste
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" " " [} 9
naive", Vw(g) est simplement 1’ensemble des uplets ("v)e(v)=&(w)—1 , tels
v<w

que pour tout triplet u,v,w’ comme ci-dessus on ait dv uy = d i
’ V’,u V’

L’application naturelle §w —_— Mw(g) est en fait a image dans Vw(g) .

Une condition nécessaire et suffisante pour que (§w) soit injectif est
la suivante. Pour chaque w € W , le morphisme §w —_— vw(g) est surjectif,
et le noyau de ce morphisme est injectif dans 4 . Egalement tout objet de
g;g(w,&) est un sous-objet d’un injectif. La preuve de ces assertions vient
immédiatement d’une récurrence croissante "sur &(w)" . je vais montrer par
exemple la derniére assertion. Soit (§) un objet de ggg(w,d) . On note
W(n) = {w € W/e(w) < n} pour tout n € N . On suppose avoir construit un
objet (J) € Egg(W(n),A) tel que pour tout w € W(n) 1’application
Jw — Vw(§) est surjective a noyau injectif, et une inclusion
€, 3 W(n) —s J ou ¢ W(n) désigne la restriction de ¢ a W(n) . On
choisit pour tout w € W de longueur n + 1 un injectif 9 qui contienne

¢, et 1’on définit 1’objet J’ € Pro(W(n+l) , 4) par

w =
. .
I, =J, si e(w) < n
I =V (J) e
w w W

de sorte que 1’on a une inclusion naturelle gIW(n+l) —— J’ . Poursuivant
indéfiniment la construction on obtient 1’assertion cherchee.
2) Soit ¢ € ggg (W,¢) . D’aprés 23], on définit les conditions de
Mittag-Leffler pour § comme suit:

Pour tout couple u , w d’élément de W avec u ) w , soit Vw u(€)

)

1’ image du morphisme naturel §u —_— §w . Je dis que ¢§ satisfait les
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conditions de Mittag-Leffler si et seulement si pour tout w e W, les
sous—ob jets Vw’u(e) forment une suite stationnaire dans tw .

Comme IN est cofinal dans W , il est aisé de vérifier que si
() e ggg(w,A) satisfait les conditions de Mittag-Leffler, alors on a

iig(q) § =0, pour q # O.

3) Si (%) est injectif dans ggg(W,A) . alors pour tout couple w , u avec
u 2> w, le morphisme §u —_— Ew est surjectif, et le noyau est injectif. Ce
fait implique les points 4, 5 et 6 suivants.
4) Soit ¥ € Egg(w,ﬁ) . On construit une suite exacte
0 ¥ — 9§ —W—0, ot 9 est injective.

Par le point 3, les applications %u — gw sont surjectives, donc par
le lemme du serpent il est de méme pour les morphismes ﬂu —_— *w (pour
u 2> w) . Donc # satisfait aussi les conditions de Mittag-Laffler.

Dans le cas spécial oi A est la catégorie Ab, le point 2 implique
alors que 1’on a
lig‘c) =0 pour £ > 2.
5) Soient I' : A — Ab un foncteur covariant additif, un (§) wun injectif
de Pro (W,t). Comme pour tout couple (u,w) avec u > w 1’application

§u — €w est surjective et scindée (point 3) , ceci implique également que
r(eu) — r(gw) est surjective. Donc I'(f) satisfait les conditions de
Mittag-Leffler, et 1’on a donc lim(c) r(¢) =0 pour ¢ # O .

6) Soient € wun injectif de Pro(W,A) , et X = {wn} une suite croissante

d’éléements de W . Pour tout entier n , soit Jn le noyau de §w — §w
n n-1

On suppose X cofinal dans W . Comme la limite projective 4 Lim §
—
s'identifie 3 la méme limite projective calculée sur X , un systéme de choix

de supplémentaire de Jn dans €w induit un isomorphisme

neiN

ce qui prouve que A Lim § est injectif.
—
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7) Je vais maintenant indiquer la démonstration des lemmes 90 et 9i. Les deux
assertions du lemme 90 sont prouvées aux points 1 et 6 respectivement.

Pour obtenir les suites spectrales des foncteurs composés au lemme 91, il
faut prouver que si £ est un injectif de gég(w,A) on a

(@ 1im‘®) r(¢) =0 pour ¢ #o0 .
lim

) r‘4 Lim¢ =0 pour e £0 .
A Lim

Ces assertions résultent des points 5 et 6. Le foncteur P s’écrit comme

un foncteur composé P = lim o I' . L’assertion (a) implique qu’il existe une
—

suite spectrale IE qui converge ver p* , et telle que

I.p.q
Ey
q

Par le point (a), on a 1lim
—

= 1in%® o r?P .
—
=0 pour q 2 2, ce qui montre que cette
suite spectrale dégénére en des suites exactes courtes du lemme 91.
Le foncteur P s’écrit aussi comme un foncteur composé P =T o A Lim .
—_—
L’assertion(b) prouve qu’il existe une suite spectrale IIE qui converge vers

p* , et telle que

IIEg’q =r% % 4 Lid®

e

ce qui acheve la preuve du lemme 91 .

On notera que pour tout espace topologique X , le foncteur de sections
globales I commute aux limites projectives. Le comportement de la
cohomologie vis a vis des limites projectives est etudie dans (23], (53],

[64].

Lemme 92 Soient X un espace topologique ¥ & Pro(W.Ab(X)) , et
Jo —_— J1 — ... une résolution injective de ¥ dans Pro(W,Ab(X)) .

P . . .- - .
1) ¢im ¥ est la famille des faisceaux associés aux préfaisceaux

U— R lim J (U)
—_— .
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2) Pour tout ouvert U de X , on a une suite exacte

0 — 1in Vet (u,9) — [R 1im J ()], — lim BE(U,%) — O .
— . ¢ —

Démonstration : Pour chaque ouvert U on considére les groupes d’'hyper
limites projectives R lim J (U) . On notera que 1’association
U— lim J (U) est un préfaisceau. En appliquant au foncteur I (U, ) le
lemme 91 (ou plus simplement le point 5 de sa démonstration) on a
15 () = 0
— P
pour tout entier p , et tout ¢ # 0 .
Donc la premiére suite spectrale pour calculer 1’hyper limite projective
dégénére, et 1’on a
: o %
(R 11m)J'(U) = h (lim J.(U))
ce qui prouve que zim' ¥ est la famille des faisceaux associés aux
préfaisceaux U —— R lim J (U) , et ceci prouve le point 1
On utilise alors la seconde suite spectrale pour 1’hyperlimite
projective. Cette seconde suite spectrale E a pour terme E2
. % *
EZ(U) = lim (h J.(U)) .
Comme pour chaque w & W, JO(U)w est une résolution injective de ?w ,
* (e)
m

on a donc E2(U) = 1im* H*(U,¥) . Comme on 1li
 u—

=0 pour ¢ > 2, cette
us—

suite spectrale dégénére donc en les suites exactes du point 2 du
lemme. C.Q.F.D..

Un élément ¥ e g;g(w,Ab(X)) est donc dit calibré, s’il existe une base
% de la topologie de X , tel que HL(U,vw) =0 pour tout Ue®x , we W et

¢ # 0O . On obtient alors comme corollaire au lemme 92.

Lemme 93 : Soit ¥ € Pro(W,Ab(X)) . Si ¥ est calibré, alors pour tout entier

. e . ‘- P . .
¢ ¢£im¥ est le faisceau associé au préfaisceau U — llmev(U) . En
s, U

particulier ximc? =0 pour ¢ > 2.
—
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83 Le foncteur D.

Soit 4 , ®# deux catégories abéliennes, et {Aw} un systéme projectifs
de foncteurs covariants de 4 dans % , i.e. la donnfe d’une collection de
foncteurs Aw t A — %(w € W) et une collection de morphisme de foncteurs
Bw,u : Aw —_ Au pour tout w > U, avec les propriétés de commutativité
usuelles.

Alors {Aw} définit de maniére naturelle un foncteur
A:a— E;g(w,w) . Le foncteur A est additif (respectivement exact a
gauche) si et seulement tous les foncteurs Aw le sont. Et lorque A est
additif, on a la formule évidente

R"A = R*A
w

On définit le foncteur D : ¢(b) — Ab par la formule DM = iiﬂ DM,

pour tout M e €¢(b) . Avec les notations précédentes, ona D = limo D .
—

Lemme 94 : Le foncteur D est covariant exact & gauche, et pour tout entier
¢ on a une suite exacte de foncteurs :

0 — lim(l) 0o I)'""1

€ . €
—s D — limo D" —5 0 .
Py w L w

Démonstration : Soit I un injectif de <¢(b) . Par le lemme 69, le systéme

projectif DwI satisfait les conditions de Mittag-Leffler. On a donc

lim(b)DwI =0 pour & # O . Donc on peut former la suite spectrale du

- . ~ . €
foncteur composé D = lim o D . Comme on a lim = O pour ¢ » 2 , cette
oot —

suite spectrale dégénére en la suite exacte du lemme.

Lemme 95 : Soit ¢ € P .

. .. . + .
(1) 8i il existe A€ P , et veW tels que - ¢ = v(A+tp) -0 , on a

Dpk§ O pour p # &(v)

D(’(V)k€ = L(A)*
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oi L(A)* est le dual ordinaire de L(A) .

(2) Si ¢ ne satisfait pas aux conditions précédentes, on a D"k, = 0 .

§

Démonstration : On suppose d’abord que l’ona - ¢ € P+ . Par le lemme 94, on

a pour tout entier p une suite exacte

0 — lim* D 'k, —» D°k, — lim D°k, — O .
— w — W

£ € 3
Les espaces vectoriels ngg(q € IN) sont de dimension finie, donc le
systéme projectif Dwkg satisfait les conditions de Mittag-Leffler. On a
donc liﬂ} ngg = 0 . Comme par ailleurs on a
n§k§=o si p#o0
D3k€

on obtient dans ce cas

Fa(-%)

Dpkgzo si p#0
Dk, = L(-£)"
£
Ensuite on remarque que pour tout i € {i,...,N} ona D=Do Ds .
i
Donc si on peut ecrire
-t = vivip) - p

comme au point 1 du lemme, une récurrence eévidente sur ¢(v) , et une

application répétée du lemme 89 prouve que 1l’on a
- pP (V)
Dpkg =D k_,
pour tout entier p (on convient que 1l’on a =0 pour un entier q < 0) .
Enfin on fixe un poids £ comme au point 2. On veut prouver que 1l’on

pPk, = o pour tout entier p. On construit par récurrence des entiers

3
,...ip € {1,...N} , et des poids qo,...,gp € P definis par les relations

L

de récurrence.

£€ =¢

L d
1

= si'(tj_l-p) +p
J
tels que 1l’on ait gj(hij) > -1, pour tout entier 1 )} j > p . Le lemme 89

190



LE FONCTEUR D

implique alors que l’on a

- —.o -
Dpkg—Dpkg =%, =0

car - €p n’est pas dominant.

%4 Espace de drapeaux, et leur topologie.

Soit E un ensemble ordonné inductif, et {Xa} un systéme inductif
d’espaces topologiques. Il est connu et simple que la limite inductive existe
dans la catégorie des espaces topologiques. On note alors liﬂ Xa la limite
inductive.

La limite inductive existe aussi dans la catégorie des espaces annelés,
mais non dans la categorie des schémas. On suppose que le systéme inductif
{Xa} est en fait un systéme inductif de schémas. On peut alors définir sur
1’espace topologique liﬂ Xa la notion d’ouvert affine généralise.

On pose X = liﬂ Xa . Pour tout indice « € E , on a une application
continue ja : Xc —— X . Soit U un ouvert de X . Alors je dis que U est

un affine généralisé, s’il existe un indice B € E tel que pour tout
a B, j;l(U) est un ouvert affine de Xa .
Lorsqu’on se donne un systéme inductif {Xa} de schémas analytique, on
définit de méme les ouverts de Stein généralisés dans la limite inductive.
Je vais maintenant définir les espaces de drapeaux . Je pose
G/B = liﬂ §w , la limite étant calculée dans la catégorie des espaces
topologiques.

Lorsque le corps de base est € , la variété algébrique Ew définit une

P . ~an . . - ~ % PP
varieté analytique Sw . Les immersions fermées Sll J— Sw definissent
bl

elles aussi des immersions fermées Ein——a §:n Je pose G/Ban la limite
inductive des espaces topologiques §:n

Le but de cette section est de prouver le lemme suivant.
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Lemme 96 : 1) L’ensemble des ouverts affines généralisés forment une base de
la topologie de G/B .

2) Lorsque le corps de base est € , l’ensemble des ouverts de Stein
généralisés forment une base de la topologie de G/Ban .

Pour montrer ce lemme, j’auraibesoin de deux nouveaux lemmes.

Lemme 97 : Soient {Xw} un systeme inductif de schémas affines, et X
1’espace topologique X = lig Xw (comme précédemment cette limite est calculée
dans la catégorie des espaces topologiques). On suppose que pour tout couple
u, w d’éléments de W, avec u > w , le morphisme Xu N Xw est une
immersion fermée.

Alors les ouverts affines généralisés forment une base de la topologie de

Démonstration : Soient z € X et U un ouvert de X tel que z € U . Il
s’agit de prouver qu’il existe un ouvert affine généralisé V avec z € V et
VecU.

On notera que pour tout w e W , 1’application Xw —— X est une
injection continue fermee. Il existe u € W, tel que 1’on ait z e Xw . Par
le lemme II, il est possible de choisir une suite W LA A > Wg «o-
d’éléments de W , avec u = w, telle que 1’ensemble {wn} soit plein. Pour

tout entier n , on pose

X =X U =X nU,Z =X\U ,A =I(X .._)
n n n n' n n n X

n W,
n
Je vais construire une suite d’élément fo . fi ... tels que 1’0n ait
(a) fn [ An s

(b) f est nulle sur Z_,

n n
(c) la restriction de fh a Uﬁ est une puissance de fm ,
@ £ (2) # 0,

pour tous entiers n , m avec m ) n , et ce par récurrence sur n .
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Pour n = O on choisit un élément fo de 1’idéal associé a Zo , avec
fo(z) # O . On suppose construit fo,...fn . Soient I = JTn Kn .et Y le
fermeé correspond a I . Scient Y’ = Yu Zn+1 , et I' 1’ideal reduit de
Ah+l associé & Y’ . Par construction, ona Y’ N Xn =Y . On a donc
I= JKn T' . Donc il existe un entier ¢ > 1 , et un €lément fn+1 e I’ tel
que la restriction de f a X _ soit égale a f6 . La suite ainsi

n+l n n
construite satisfait les conditions (a) (b) (c¢) (d). Pour tout entier
n) 0, soient D(f) 1l'’ouvert de X oa f #0, et V= 1lim D(f ) . Par
n n n fuinary n

construction, ona z eV, et VN Xn = D(fn) . Donc V est un ouvert affine

généralisé, il satisfait z € V, Vc U, ce qui prouve le lemme.

Lemme 98 : Soit E un C-espace vectoriel, de dimension dénombrable, muni de
la topologie limite inductive de la cC-topologie de ses sous—espaces
vectoriels de dimension finie.

Alors les ouverts de Stein généralise forment une base de la topologie.

Démonstration : Il s’agit de montrer que si 1’on fixe z € E , et Z un ferme
de E, tels que z ¢ Z il existe un ouvert de Stein généralisé U tel que
ze€elU et UNZ=¢9.

Pour simplifier, on pourra supposer que 1’on a z = 0 , et que E est de
dimension infinie.

On fixe une base e, € €y .o de E : et on pose

E =Ce ®..88Ce_ ,Z =2ZnE_ , pour tout entier n » 0 . On va
n o n n n =

construire une suite de réels < O ays Aps ..o tels que
i=n 2
(x) Posant q la forme hermitienne positive de E. q = 2 a.|x.| ,
n n n i= il™i
et Bn la boule ouverte unité de En qui lui correspond, on a Bn n Zn =9 .

On construit ces entiers par récurrence sur n de maniére triviale. On

pose alors B =1im B . Ona BNE_=B_ pour tout entier n, donc B est
— N n n
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un ouvert de Stein généralisé. En outre ona O € B, et ZNnB =@, ce qui

prouve le lemme . C.Q.F.D..

On va maintenant prouver le lemme 96. Soient we W, et Me €¢(B) .
L’application naturelle §w —— G/B (respectivement §:n N G/Ban lorsque
le corps de base est €) est un homéomorphisme sur son image. Lorsque le
corps de base est € , je note QZH(M) le faisceau analytique qui etend
EW(M) a §:n . Donc le faisceau §w(M) (respectivement §:n(M)) peut étre
considéré comme un faisceau sur G/B (respectivement sur G/Ban) . Je pose
donc

¥(M) = gim %_(M)
—w
(respectivement Ean(M) = €im EGH(M)) .
—w
On fixe A un poids dominant régulier (par exemple A=p).

1) Je vais montrer le point 1 du lemme. Pour chaque o € HO(G/B, 5(—A)) , Je
note o, sa restriction a §w , plus precisément son image par 1’application
HO(G/B, ¥(-A)) — HO(G/B), ¥ (-A) = B8, € (-A))

pour tout w € W . Soit alors Dw(a) de §w ou o, #0, et
D(c) = 1im D (o) . Comme on a D(o) NS =D (o) , D(o) est un ouvert de
= W W w
G/B . Pour tout we W, Dw(o) est un ouvert affine de §w , et 1’application
Dw(o) SN Du(o) pour w { u est une immersion fermée. Par le lemme 97, les
ouverts affines généralisés forment une base de la topologie de D(o) .

on a H°(G/B, £(-A)) = lim H®(S , € (-A))
—— w w

LA)* .

Donc les applications HO(G/B, §(1A)) _ H°(§w, §w(—A)) sont toutes
surjectives, donc 1’ensemble des ouverts D(oc) (o € L(A)*) forment un
recouvrement ouvert de G/B . Ainsi les ouverts affines généralisés forment
une base de topologie de G/B .

2) Je vais prouver le point 2 du lemme 96. Soit o € HO(G/Ban, Ean(—A)) . Pour
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tout w € W, soient de méme o, la restriction de o a §:n , et D:n(o)
1’ouvert de § o o # 0 . On pose Dan(o) = lim Dan(a) . Les différentes
W w —_— W
sections o, déterminent des applications continues
an
?w : Dw (0) — EW(A)
compatibles entre elles, ce qui donne une application continue ¥ :
an — an -
D™ (o) — L(A) . On pose pour w & W Zw = P(Dw (0)) , et Z = u Zw .

Les morphismes Sw —s Sw A sont finies, donc les applications
’

~an an
S — S
w

M est 1’analytisé de S )
WA

. al
sont topologiquement propres (SW’A W, A

donc les applications Pw sont des morphismes analytiques propres, donc Zw
est un fermé analytique de Ew(A)

On a en outre ?—I(E (A)) =D (o) ,doncona Z =E (A)YNZ . Donc Z

w W w w
est un ferm® analytique généralisé de L(A) .

Par le lemme 98, les ouverts de Stein généraliseés forment une base de la
topologie de L(A) . Il en est donc de méme pour Z . Enfin les morphismes ?w
sont finis. Donc 1’image réciproque par ¥ d’un ouvert de Stein généralise
est également un ouvert de Stein généralisé. Donc il en est de méme pour
D(o) .

Enfin on a HO(G.Ban, §an(—A)) = lim Ho(gan’ §an(ﬁA)) et donc par le

— w w
théoréme GAGA de Serre [55] on a : HO(G/Ban, zan(—A)) = L(A)* , et le
morphisme de restriction HO(G/Ban, §an(~A)) —_ H°(§:n, §:n(—A)) sont
surjectifs. Donc les ouverts D(c) (o € L(A)*) forment un recouvrement ouvert
de G/Ban . Ainsi les ouverts de Stein généralisés forment une base de la

topologie de G_/Ban .

¥5. Les généralisations du theoreme de Borel-Weil-Bott.

Au paragraphe précédent, on a associe a tout M € €(B), un faisceau

E(M) € Ab(G/B) (et lorsque le corps de base est € , un faisceau
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zan(M) € Ab(G/Ban)) . I1 est clair que 1’association M —i £(M) est un
foncteur (ibid. pour §an(M)) et on a ainsi défini un foncteur ¥

(respectivement gan) qui est covariant exact a gauche.

Lemme 99 : Soit M € ¢(B) . Alors on a ximc EW(M) = 0 (respectivement
¢im® §:n(M) = 0) pour tout entier e > 1 . Corollairement le foncteur

¥ : ¢(b) —» Ab(G/B) (respectivement Pl ¢(b) — Ab(G/Ban)) est exact.

Démonstration : Soit % 1’ensemble des ouverts affines généralises
(respectivement de Stein généralisés). Soit M e €¢(B) . Par le lemme 96 %
forme une base de la topologie de G/B (respectivement G/Ban) . Comme les
faisceaux EW(M) (§:n (M)) sont quasi—-cohérent, le systéme projectif de
faisceau EW(M) (E:n(M)) est calibré relativement a % . En outre pour tout
ouvert U € % , la restriction §W(M)(U) —_ §V(M)(U)

(;:n(M)(U) —_ Qin(M)(U)) est surjective par un théoréme de Serre (Cartan et
Serre) . Donc le systéme de groupes abéliens §W(M)(U) (E:n(M)U) satisfait aux
conditions de Mittag-Leffler.

Par le lemme 93, on a donc fiﬂ% §w(M) =0 (%iﬂé E:n(M) = 0) , pour tout
entier ¢ > 1 , puisque un préfaisceau nul sur une base de topologie definit
un faisceau nul.

Enfin si 0 — M —4 E — N — O est une suite exacte de ¥(b) . la
suite exacte 0 —s £(M) —s £(E) —» E(N) —» gim' &, (M)

(0 — zan(M) — zan(E) —_— Ean(N) N %ig} QW(M)) prouve que le foncteur ¢
(respectivement §an) est exact. C.Q.F.D..
On en déduit que la suite de foncteur ™
M — H'(G/B, (M)
(M — H(G/B, £(M))

est un 5-foncteur. On a donc un morphisme naturel de &-foncteurs
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Soient X un espace topologique, et a une algebre de Lie. Je note
Aha(x) la catégorie des faisceaux de U(a)-modules. Soit ¥ Abg(x) . Alors
la resolution canonique de Godement C°(¥) est une résolution flasque de ¢
dans Aba(X) . Donc les groupes de cohomologie H‘(X,?) sont naturellement
des U(a)-module. En outre si u € U(a) , u definit un €lément
u’ e Homx(g,y) , et 1’action de u sur H‘(X,v) est la méme que celle
induite par u’

Soit g 1'algébre de Lie produit amalgemé des algébres B
(i €{1,,..,N}) suivant b (definie au chapitre VI). Il est clair que pour
tout M e ¢(b) , E(M) (et Ean(M) lorsque k =€) est fonctoriellement un
faisceau de g-modules. De méme DM est fonctoriellement un g-module, ce qui
prouve que touys les goupes D*M sont en fait des E-modules. On verra en

annexe que l’action de E sur ces différents objets factorise a travers g .

Lemme 100 : Soit M € ¢(B)

1) Les applications naturelles D*M —, H‘(G/B, §(M)) sont des isomorphismes
de g-modules.

2) Lorsque k =€ , 1’application naturelle D*M —, H‘(G/Ban, Ean(M)) est un

isomorphisme de E—modules.

Démonstration : Je vais montrer le point 1 . Pour cela, il s’agit de montrer
que 1’0on a

HL(G/B), ¥(I)) = 0, pour tout entier ¢ £ 0
pour tout injectif I € ¢(b) . Soit P : ¢(b) — Ab le foncteur composé :
PM = H(G/B, #im ¥ _(M)) = lim H%(G/B, ¥ (M)) . Par le lemme 99, on a

— W — w

%iE% EW(M) =0, pour tout M e €¢(b) , et tout entier 2 # O . Donc la seconde
suite spectrale du lemme 91 degénere, et 1’on a

P*M = H*(G/B), €(M)) , pour tout M & ¢(b)

Par le lemme 71 et la proposition 3, les applications
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HO(G/B, §W(I)) —_— HO(G/B, Qu(I)) sont surjectives pour tout w , u € W avec
w)u, et 1’on a HL(G/B, §W(I)) =0 pour ¢ # O . Donc le systéme projectif
HO(G/B, QN(I)) satisfait aux conditions de Mittag-Leffler et 1’on a
lin® B%a/B, (D) =0,

pour tout couple d’entiers p, qavec p# 0 ou q # O . Donc la premiére
suite spectrale du lemme 91 dégénére, et 1’on a PéI =0 pour 2 # 0 .

On a donc Hé(G/B, Q(I)) =0 pour ¢ # 0, et ceci prouve que le
morphisme du point 1 est un isomorphisme.

Lorsque k = € , la meme démonstration vaut. Il suffit de remarquer par
le théoréme GAGA de Serre [61] 1’application naturelle

H' S, £,M) — B @, FM)

est un isomorphisme (pour tout we W et M e €¢(b)), et donc
H*(G/B, Qw(M)) —_— H*(G/Ban , Q:n(M)) est également un isomorphisme.

On obtient les généralisations suivantes du théoréme de Borel-Weil-Bott

(ef. 142]).

Theoreme 4—AL. Soit & € P.

1) Si il existe A € P+ , VEW tels que - £ = v(A+p) — p , alors on a
HP(G/B, ¥(§)) = 0 pour p # €(v)
Y (a/m, E(6)) = LA* .

2) Si ¢ ne satisfait pas aux conditions précédentes, on a

H*(G/B, ¥(¢)) =0 .

Théoréme 4-AN : Soit ¢ € P . On suppose que l’ona k =¢C .

1) Si il existe A € pt , veW tels que - ¢ = v(A+tp) ~ p , alors on a

B (c/p", &2

He(v)

(¢)) =0, pour p # ¢(v)
(a/B%", ¥3(¢)) = L(M* .
2) Si ¢ ne satisfait pas aux conditions précédentes, on a

w*a/B%, ¢ =0 .
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Démonstration : Ces théorémes résultent des lemmes 95 et 100.

Je vais indiquer une autre généralisation possible du théoréme de
Borel-Weil-Bott. Soit U un ouvert de G/B , et Z son complémentaire. Pour

tout w € W, je pose cw(U) = codim_ (Zw) , ol ZW =ZnNn Sw .

w

Je note ¥ la topologie de la limite inductive sur G/B . Soient 7 et
Tm les deux topologies de G/B définies comme suit. Si U est une partie de
G/B, on a :

1) U appartient a :7’m si et seulement si U €9 et il existe w e W tel
que Z ¢ §w .

2) U appartient a 7, siet seulement si U ey et ‘1’_’1‘1,18 cw(U) = o
(lorsque W est fini cette derniére condition est vide).

On a ainsi 7m £y, ,c9 , avec égalités si et seulement si g est de
dimension finie. Soit 9’ wune topologie de G/B, avec fm c 9’ €7 . Pour
tout w , 1’application naturelle §w — (G/B, 7’) est encore un
homéomorphise sur son image. Pour tout M e ¢(b) , w € W, je note E‘;(M) la
résolution canonique de Godement de EW(M) ., de sorte que je peux considérer
que 'év'v(M) est un complexe de faisceaux sur (G/B, 7’) [17] . Je note
¢ (M,7?) le complexe de faisceaux sur (G/B,7’) : E’(M,v”) = f_iﬂE;;(M) (la

limite étant calculée dans la topolgoie %°).

Lemme 101 : Soient 9’ wune topologie de G/B telle que 9’ une topologie de
G/B telle que 7w cy9’<cy , et j = (G/B,y) — (G/B,7’) 1’inclusion
correspondante.

1) Pour tout entier ¢ , le foncteur M —y E('(,MJ’) est exact.

2) Pour tout module M , on a un isomorphisme factoriel

T (M, 7?) = j*E'(M,v) .

199



O. MATHIEU

3) Le complexe augmenté £(M) — C°(M,7) est une résolution de 2(M)
4) Le morphisme naturel R‘j‘§(M) —— h*@"(M,7’) est un isomorphisme. On a en

outre h*E'(M,?’) = xim*j z(M)
e X

Démonstration : (1) Soient w, ue W, avec u ¢ w . Comme le morphisme
§W(M) —_ §u(M) est surjectif, il vient que pour tout ouvert U e 7 , et tout
¢ €N, 1’application Ea(M)(U) —_ Ei(M)(U) est surjective. En particulier
on obtient que 1’on a liE? Ei(M)(U) = 0, pour tout entier q # O .
2) Pour tout ¢ eN , et w € W, le faisceau E&(M) est flasque, donc le
systéme projectif Ei(M) (w € W) est calibré pour la base de topologie 7’
de (G/B, 7’) . En particulier par le point 1 il vient que 1’on a
%iﬂs Eﬁ(M) = 0 pour tout entier q # o (limite calculée en topologie ') ,
par le lemme 93.
3) Soit 0 — M— E — N — O une suite exacte de <¢(b) , et 2 un
entier. On a alors une suite exacte

0 — BM,77) — E (R, — EN,77) — 2imd CE)

— w

Donc par le point 2 , le foncteur M —, EC(M,?’) est exact. Ceci prouve le
point 1.
4) Soit U un ouvert affine généralisé de G/B. Pour tout w € W , tout
M & ¢(b) , le complexe E&(M)(U) a pour cohomologie H*(U,EW(M)) . Comme on a
HC(U, QW(M)) =0 pour ¢ # 0, le complexe augmente
0 — EW(M)(U) —_— E&(M)(U) est exact. Conme U est affine généralisé, pour
tout ue W avec u ¢ w 1’application zw(M)(U) —_— Eu(M)(U) est
surjective. Donc on aussi EEE? EW(M)(U) =0, pour g #0 .
Donc par le point 1 et ce qui précede, le complexe augmenté
0 — §(M)(U) N E'(M,T)(U) est exact. Comme les ouverts affines généralisés
forment une base de la topologie 7 par le lemme 96, le complexe augmenté
0 — $(M) — G (M,7) est exact, ce qui prouve le point 3.
5) Le point 2 du lemme résulte des constructions faites les morphismes de

bord.
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Rj, ¢ (M,7) — h"™* C"(M,s’) résultant fournissent par le point 4 de la
démonstration des morphismes naturels
R'j, £ — b* T (M,97).
Les foncteurs ¢£im o j et j o #¢im : Pro(W,G/B) — Ab(G/B,7’) sont
— — ==
égaux. Soit % ce foncteur. Par le lemme 90, on a
R*» = H'j o R*¢im = R*¢im o R'j . On a donc d’autre part
* — — *

R*'2 £ (M) = R*j_ o R*¢im & (M)
w * — W

R*j‘ £(M) , par le lemme 99.
On a d’autre part
R*» € (M) = R* £im o R*j_ % (M)
w — x W

Comme les morphismes §w —— (G/B,7’) sont des homéomorphismes sur leur
image, on a pour tout w e W Rej* §W(M) = 0 pour tout 2 # 0 . On a donc
R*> ¥ (M) = Zim* ¥ (M) . Or C°(M) est une résolution du systéme projectif

W A—— w w
€ (M), et 1’on a eim? a&(M) = 0 pour tout entier ¢ , et tout entier

w — w

q # 0, par le point 2 de la démonstration. Donc le complexe «im E;(M) a

pour homologie £im* ¥ (M) . On a donc R'» ¢ (M) = h‘(ﬁ'(M,V')) . On obtient
— Tw w

donc 1’isomorphisme cherche, ce qui achéve la preuve du lemme.

Pour tout espace topologique X , soit C(X) la catégorie des complexes
de faisceaux en groupes abéliens # = (Srn)nElN (on n’autorise pas de degrés
négatifs). Soit 9’ une topologie de G/B avec 7m c 7’ ¢ 7 . Le foncteur de
¢(b) dans C(G/B,7') , qui a M € ¢(b) associe T (M,7’) est exact par le
lemme 101-1 . Donc la série de foncteurs T  : ¢(b) — Ab donnés par la
formule T*M = R& C°(M,7’) est un &-foncteur. L’augmentation naturelle
j* §(M) —_— E’(M,T’) (pour tout M € ¢(b)) défini donc un morphisme de
foncteur D° —, 7° , et par universalité de D un morphisme de &-foncteurs

p* — T .
Lemme 102 : Soient 9’ wune topologie de G/B avec Yo S 7’ cTr , et
M € ¢(b) . Alors les morphismes naturels D*M — R E'(M,ﬂ’) sont des

isomorphismes.
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Démonstration : Soit j : G/B — (G/B,7’) 1’application continue naturelle.
Le second terme de la suite spectrale de Leray
By = BYG/B,7* ,RPj, ¥(M)) (permettant de calculer H'(G/B, ¥(M)) et le
second terme de la suite spectrale d’hypercohomologie
Eg’q = Hq(G/B,T’,hp ¢°(M,7’)) sont fonctoriellement &gaux, par le lemme
101-2, donc il en est de méme de tous les termes suivants, ce qui prouve que
1’on a H'(G/B, €M) = Rr € (M,7°) .
Donc par le lemme 100, les morphismes naturels D*M — R C'(M,7’) sont
des isomorphismes, ce qui montre le lemme.
On obtient ainsi une amélioration au théoréme que j’ai montré dans [42],

par le théoréme suivant

Théoréme 4-HYP : Soient £ € P, et 9’ une topologie de G/B avec
y c9’cy .
m S <
1) Si il existe A e P+, veW tels que - ¢ = v(A+tp) — p , alors on a
RF 8 (k,,7") = (L EWT

2) Si ¢ ne satisfait pas aux conditions précédentes, on a

R '5'(_k€,7’) =0 .

Le théoreme 4-HYP resulte des lemmes 102 et 95.
Je vais montrer un phénoméne amusant qui se produit lorque g est de

dimension infinie, hypothese que je garderai dans la fin de ce chapitre

(cf.[16]) .

Proposition 10 Soient 9’ wune topologie de G/B avec 7n 7' cT , et
M e e(®) . Il existe une suite spectrale E , qui converge vers RI ¢ (M,y?) ,

et dont le terme E2 vaut
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By’ Y = HYe/B,7’ 0P T (M)
1) On suppose que 1l’on a ¥’ =7 . Alors on a Eg’q = 0 pour tout couple
d’entiers p , g avec p # O.

2) On suppose que l’on a Ym cT’ c T * Alors on a Eg’q = 0 pour tout

couple d’entiers p , g avec q # O .

Démonstration : Le point 1 de la proposition résulte du lemme 101-3 , et
n’utilise pas que g est de dimension infinie.
Je vais prouver le point 2 . Soient p un entier, U un ouvert de 97’ ,
Z le complémentaire de U dans G/B , et pour tout w € W , soient
Z =ZnS ,u =Un3S . Par définition, il existe u e W, tel que pour
w W w w
tout w > u , on ait codim Zw >p+ 2.
sw
Par le lemme 83-2, pour tout w > 2 , les morphismes
B3, 2 M) — B, T (M)
w.’ W J \ w’ W A
Pl 3 oy 3
B (S ,2 (M) H® (U, £ (M)
sont des isomorphismes. Par le lemme 92, 1impj* zw(M) est un faisceau associé
a8 une série de préfaisceaux <  tel que 1’on ait une suite exacte
0 — lin'® U, M) — (1) — lim B(U,7’, % (M) — O .
— w — w
D’ou on obtient en une suite exacte
0— lim! ®1E, 2 M) — P — lin G, T (M) — 0 .
— w w — W w
Donc le préfaisceau U — $P(U) est constant. Comme 1’espace topologique
(G/B,7’) est connexe, ceci montre que 2impj g (M) est un faisceau
— Yx Tw
constant, et méme flasque car (G/B,7’) est clairement irréductible. Par le
lemme 101-4, il vient donc que n? E'(M,7’) est flasque. Ceci implique que

1’0n a Hq(G/B,V’, nP 6'(M,7’)) =0 pour q#0, i.e. on a Eg’q = 0 pour

q # 0, ce qui prouve la proposition 11.

Remarque : On remarque que G/B n’est pas un schéma, excepté lorsque g est
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de dimension finie. Je donnerai des énoncés plus précis au chapitre suivant.

46 Annexe : structures de_ g-modules.

Soit Wo 1’ensemble ordonné W u {0} ., avec pour ordre l’ordre de Bruhat
et la relation O ¢ w pour tout w e WB .
Lemme 103 : Soit i e {1,...,N} . On suppose W infini. Alors il existe une
fonction croissante ?i : Wo NN Wo telle que

(a) pour tout w e WO , WD ?i(w),

i

(b) ¥;(W) < {0} u W,

(c) lim ?i(w) = ® ,

(d) fi (o] ?i = ?i .
Démonstration : Par le lemme 1, il existe une suite infinie d’éleéments

w, < L < ... dans W , tels que l’ensemble X = {wn/n € N} soit cofinal. Je
pose donc Pi(w) = Maxf{x € X , x < w} , avec la convention Max(@#) = O . Les

conditions (a) (b) (c) (d) sont alors automatiquement satisfaites.

Soit X un espace topologique: .Je note gggo(x) la catégorie des
systemes projectifs (Vw) de faisceaux abéliens sur X indexes par Wo , tels
que ¥ = 0 . Je note g;g(x) la catégorie des systémes projectifs de
b-faisceaux (iw) € g;go(x) tels que 1’on ait
(1) Pour tout i€ {1,...N} et we iw, L est muni d’une structure de
gi—faisceau qui prolonge sa structure de b-faisceaux.

(2) Pour tout couple u, w & iw le morphisme ?w—-ayu commute aux structures de
gi—modules.

Dans la suite de ce paragraphe, les limites projectives seront calculées

sur divers sous—ensembles pleins X de WO, et seront alors notées % On

., .
—X
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notera que si (_S'W) € Proo(X), le morphisme naturel

$U%krgr—» ﬁémx fw
est un isomorphisme. Donc si (?w) € Pro(X), pour tout i € {1,...,N,},

1’identification %0 i fm',_mw L. induit une structure naturelle de
b-faisceau. Ainsi ¥ est naturellement un faisceau de E—module.

Je vais donner une régle plus pratique pour calculer 1l’action des
opérateurs de ; sur ¥. Une séquence a de longueur n est la donnée d’une
séquence S TERREEL N d’éléments de {1,...,N}. Soit » 1’ensemble des séquences de

diverses longueur, et *:¥ x ¥ 1l’opérateur d’assemblage des séquences . Si

a = a8y et pl...[in sont deux éléments de ¥ de longueur n et m, je pose

¥ = ax8 ou 7 est la séquence ¥ = Vpee? de longueur n+m telle que

n+m

vj=ajpour1$j$n
’I‘j = ﬁj—n pour n+l < j< n+m.

Tout élément i € {1,...,N} d&fini une une séquence de longueur 1, notée
encore i.

Dans la suite je fixe pour tout i € {1,...,N} une fonction 'Pi:wo——.Wo
satisfaisant aux conditions (a), (b), (c) du lemme 103.

Je vais définir, par récurrence sur sa longueur pour tout a € ¥ des
fonctions ?u:wo_. 0 et un sous—espace Ea par les régles suivantes

1) Ei = p;s pour tout i € {1,...,N}

2) Si a = ix8 est un élément de longueur >2 de ¥, oi i € {1,...,N} et
per, jepose¥ =P Pyt et £, = Ad(U(p)))(®).

Par définition de E, on a E =u Ea Si a € ¥, 'Pa est croissante, et 1’on

a lim ’Pq(w) = o (on remarquera qu’il existe des fonctions croissantes non
W0

bornees ‘P:Wo—. 0 qui n’ont pas de limite a 1’infini, pour des groupes de Weyl
suffisament gros).

Soit ¥ € Proo(wo), et r:wo_.wo une fonction croissante telle que

lim P(w) = . Comme le sous—ensemble ?(_Wo) est cofinal dans W, le morphisme
W0
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naturel f_‘_’ﬁ

A o M(wo) % est un isomorphisme.

Lemme 104 Soit o € ¢

1) La fonction \"d est croissante, et 1’on a lim ¥(w) = o
W0

2) Soit (vw) € Pro(X). Pour tout w € WO, il existe un morphisme naturel de

b-module Ea-—-—. Hom(':'w,? , toutes les compatibilités possibles étant

)
?a(w)
satisfaites.

3) Le morphisme induit par limite projective £, — End(¥), ou ¥ = %0 ¥,

est la restriction a écx de 1’action de _é sur F.

Démonstration Le point 1 du lemme résulte d’une récurrence immédiate sur la
longueur de a, et du lemme 103.
Lorsque o est de longueur 1, on pose o = i, le morphisme naturel

p,— Hom(vw,v,!, (w)) est obtenu comme suit. Soit r le morphisme de restriction
1 (W

¥ — ¥ . Comme on a ¥.(w) € Wu {0}, est naturellement un
w P, (W) i

¥
i ¥ (w)

p.-faisceau, d’ou un morphisme naturel p. —s End(¥ ). Composant avec r,
i i ¥, (w)

on obtient un morphisme naturel B, — Hom(yw”\"i(w))'

On suppose que a est de longueur < 2, soit a = ixf pour certains
ie {1,...,N}, B € ¥. Par recurrence, on a un morphisme naturel

'g —— Hom(# ¥ ).
?i(w) ?B’Pi(w)

Utilisant la restriction ?*B*i(w) —_— v"a(") on

obtient un morphisme naturel E — Hom(¥ ). Le terme de droite

¥
’
'Pi(_w) ?a(w)
étant un U(Qi)—module, on obtient un U(Ei)—morphisme
P: U(Ei) OU(!_J) gﬁ N Hom(sf‘[,i(w),v?q(w)).

Soit I' 1’ensemble des éléments v € ¥ tels que

3

1) v+ = ixy’ pour un certain v’ € ¥, ou v = i,

2) 8 = ¥’’xy pour un certain v’’ € ¥, ou 8 = ¥.
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Par construction g:x est le quotient de U(Ei) QU(E) gﬁ par les relations
triviales suivantes

(a) fi.u - [fi,u], ou u € g;

(b) fi'h’ oa hehet ai(h) =0
2

(c) fi.h

(d) fi.v - [fi’v] ol v e Uver Ev

Par naturalite des constructions, ces relations sont dans le noyau du

morphisme Y. Composant une derniére fois avec la restriction vrw —_— 9'? (w)? ©0
i

obtient le morphisme naturel Ea —_ Hom(sfw, ( )) cherche.

’? W
a
Cette meme récurrence prouve le point 3.

Dans la suite je noterai §0 la variété vide, et lorsque k = € je noterai

~an
So

réduit & 1’élément O.

la variété analytique vide. Le faisceau structural de ces variétés est

Soit M € ¢(b). Je pose alors de meme EO(M) =0, DOM = 0, (et ign(M) =0
lorsque k = €), de sorte que EW(M) est naturellement un élément de Pro(G/B)
(respectivement i:n(M) € m)(G/Ban)). Le lemme 104 s’applique alors & un tel

systéme projectif.

Lemme 105: On suppose que 1’on a k = €. Soient a € ¥, y€e g, w € W,.. L’ image
~ehme 09 £y 0

S

de 1’opérateur y dans Hom(af—an,orréan), ol v = ’Pa(w) , est continu (en topologie
W v

de la convergence compacte).

Démonstration 1) Soient ue W, ue W, i u {1,...,N} et x B> tels que
s;u £ u, si’ﬁ_{ﬁ, ol U est une décomposition réduite de u. Comme §u et D(u) sont
des Pi—variétés, x définit un opérateur 8(x) (respectivement 8’(x)) sur

85 (respectivement sur ogan. Comme 8’ (x) est un champ de vecteur holomorphe
u u

sur la variété analytique lisse D('ﬁ), il est continu en topologie de la

convergence compacte. Comme le morphisme ﬂID(TJ)—bEu est propre, et que 1’on a
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“xob(ﬁ) = agu, 8(x) est également continu.

2) Si u, u’ € WO avec wu’, 1’opérateur de restriction r € Hom(Ugan,Uﬁan), est
S,
également continu.

3) L’image 0(y) € Hom(agan,ogan) de 1’élément y est obtenue par composition et
v
combinaisons linéaires finies d’opérateurs étudieés au point 1 et 2. Donc 8(y)

est également continu.

Lemme 106 Soit M € ¢(b). Alors 1’action de E sur £(M), p*M (et §an(M) lorsque

k =€) factorise a travers g.

Démonstration Soient i, j deux €léments distincts de {1,...,N}, et
y = adn(fi)(fj) une des relations de Serre, ou n = ~aj(hi)+l, et a = ixj. On a
donc vy € Ea'

Soient w € WO, u = ?j(w) et v = ?&(w), de sorte que 1’on a w>wv, u,

vV € iW et v = ¥ (u).
a

1) Je vais d’abord prouver que pour tout N € €¢(b), 1’image © de y dans
Hom(DuN,DvN) défini par le lemme 104 est nulle.

Soient n un élément de DuN, E = U(Qi).n, F' = @(E) et F = U(Ei).F’. Comme
DuN et DvN sont U(Ei)—localement finis, E et F sont des U(Bi)—modules de
dimension finie, et par restriction @ définit un morphisme 6’:E—F.

Dans le U(Ei)—module Hom(E,F), on a eiG’ =0 et hie’ = md@’, pour un
certain entier m<0. Comme Hom(E,F) est de dimension finie, cela implique que
1’on a ®' = 0, donc on a ®.n = 0. Cette derniére relation étant vérifiée pour
tout n € DuN, on a ® = 0, ce qui prouve 1’assertion

Par construction, cela implique que 1’image de y dans Hom(DwN,DvN) est
aussi nulle.

2) On fixe un poids dominant entier A tel que les faisceaux zv(—A),

Ew(-A) soient trés amples. Soit N € €¢(b) Je pose pour tout z € Wo
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_ 0, = . . o .
M(z,N) = ® 2 H (Sz,x(N ® k—nA)' Tout élément x e £, agit comme une dérivation

de A(w,A) dans A(v,A) et de U§ dans U§ . Comme §w et §v sont les espaces
w v

projectifs associés aux anneaux gradués A(w,A) et A(v,4), et que y a une image
non nulle dans Hom(x(w,A),K(v,A)) par le point 1, vy a une image non nulle dans

Hom(0§ ,ag ). Lorsque N est de dimension finie, EW(N) et QV(N) sont les
w v

faisceaux cohérents associés aux 3(w,A)~modu1es M(w,N) et M(v,N)

respectivement. On remarque que 1’image de y est a valeur dans

Hoqmv (iw(N),iv(N)). Donc par le point précédent, cet image est nulle. Par un
w

argument de limite , ce résultat vaut également lorsque N est de dimension
infinie.
3) On suppose que 1’on a k = €, et 1’on fixe N € ¢(b). Par densité, et la

continuite montrée au lemme 105, 1’image de y dans Hom(u§an,6§an) est nulle.
w v

Cela prouve que y est a image dans Hom (Ean(N),Ean(N)). Par le théoreme
Ggan w v
w

GAGA de Serre, l’application naturelle [55]

Hom o (§w(N) ,SEV (N) )—»Homogan (§3“(N) ,Ej’{'N))
w w

est bijective. Donc 1’image de y dans ce dernier groupe est egalement nulle.

4) Comme les points 1, 2, 3 sont valables pour tout w € W le lemme 104

o’
prouve gue y agit de maniere nulle sur E(M) (et sur §an(M) lorsque k = C).
Enfin en utilisant le théoréme 4-AL il vient que y agit de maniére nulle sur
D*M (ceci résulte aussi du fait que D* est le foncteur dérivé de D).

5) Enfin comme le résultat précédent est vrai pour tout couple d’éléments
i, Jj, cela prouve le lemme.

Remarque: G. Segal a donné une autre version du théoréme de Borel-Weil pour

les groupes de lacets [54].
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XVI Le foncteur F

Soit T* = T°,T'... un O-—foncteur covariant de qu dans Ab qui
commute aux limites inductives. On appelle réalisation de T* la donnée d'un
triplet Qt,C,F) , o Jb est une catégorie abélienne ayant suffisamment
d'injectifs et stable par limite inductive, oli £ £@®) ———>Jﬁ est un fonc-
teur exact qui commute aux limites inductives, et oi I' :vb — Ab est un
foncteur covariant exact 3 gauche, tels que l'on ait un isomorphisme de &-
foncteurs T* =T* , L .,

Par le lemme 79, on peut retrouver alors T* 3 l'aide d'une suite spec-
trale, et des groupes T*k[B] .

On notera d'abord que le foncteur D* commute 3 la limite inductive si
et seulement si g est de dimension finie. En effet, on suppose dim g = o,
Soit A wun poids dominant et régulier. On constate aisément que le module
%(A) n'a aucun poids antidominant. Par le lemme 95, on a donc DE = 0 , pour
tout sous-module E < %QA) de dimension finie. En revanche le lemme 7l im-
plique que l'application naturelle D%(A) —_ %QA) est surjective.

Donc D mne commute pas aux limites inductives lorsque g est de dimen-
sion infinie. Il est aisé d'en déduire que les foncteurs T et ?’ introduits
aux chapitres précédents ne commutent pas non plus aux limites inductives.
C'est pourquoi, pour tout M € $(b) , on pose

F*M = lim D*E

—_—

c*M,6") = &im C*(E,€") ,

—_—
les limites &tant prises sur 1l'ensemble des sous-modules E ¢ M de dimension
finie, et T' &tant une topologie de G/B avec ﬁ; ct c €.

En 1'absence de précision, G/B d&signe l'espace topologique G/B avec
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sa topologie fw .

-~

§ 1. Les foncteurs F et F

Soit :/‘l,(h) la catégorie des u(&)—modules, et €M) 1a sous—catégorie
des W(H)-modules semi-simples 3 poids dans P . Soit b’ Jl(ﬁ) ——-vrl(ll_)

le foncteur de Ducloux, qui 3 tout module M associe le sous-module l"hM
des vecteurs U(h)-finis [I3] ( l"h est aussi le foncteur des sections ; sup-
port fini, lorsqu'on considére M_ comme un faisceau sur h* [22]).

Soit Vu(h) = fth€h, (WtA)(h) # O pour tout A € P} , pour W€ h* .

Soient M € ./K(p_) » et A € h* . Je pose
KM(A') = Z (h-A(h)) . M,
h€h*

On suppose d'abord k algébriquement clos. On note alors a(_ll) la caté-
gorie des U(h)-modules M qui satisfont aux propri&tés suivantes, pour tout
AEP.

a) On a I‘hME #B) .

b) On a K;(A.)=M si A€ P.

¢) Ona (A(h) -h)K,(A) = K,(A) pour tout h € U’A .

d) M,
Dans le cas général, soit k la cldture algébrique de k . Je note {B,(h)

est le noyau de (h-A(h)) , pour tout h GU’A .

la catégorie des modules M tels que k ®M € R(k ® h)

Lemme 107 : La catégorie &(_tl) est une sous-catégorie abélienne de JL(E) ,
stable par limite inductive. La restriction du foncteur de Ducloux 3 &(ﬁ)
est exacte.

Démonstration : On peut supposer que k est algébriquement clos. Je vais

d'abord montrer que a(h) est une sous-catégorie abélienne de Jﬁ(_}_x_) . Soit

Vv : E—> E' un morphisme de U(h)-modules entre deux modules E ,E' € R(b) .
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Soient X et Y 1le noyau et le conoyau de Vv . Il s'agit de prouver que
l'ona X€&Mh) et Y 631(2) .
On notera que, pour tout A € h* , on a U'A. # @ . On suppose d'abord

que 1'ona A ¢ P, et soit h GU'A . Le diagramme commutatif

00—+ X—s>E—E'—Y—0
LBk
00— X—E —E' — Y —0
oll les fléches verticales sont les multiplications par (h-A(h)) prouve
que (h-A(h)) est un isomorphisme sur X et sur Y . On en déduit les as-
sertions (b) (¢)(d) lorsque A € P .
Lorsque A € P, on dé&duit les assertions du fait que l'on peut écrire
E et E' comme somme directe du noyau de (h-A(h)) et de son image, et
que (h-A(h)) est bijectif sur KE(}\.) et KE'O") , pour tout h € Ui
I1 est clair que a(h) est stable par limite inductive. Enfin, pour
tout h € Ui , et tout E 6&,(2) , le morphisme naturel EA. — E/(h=A(h))E

est un isomorphisme. Donc l"h est exact sur &(E) . C.Q.F.D.

Pour tout M B , je pose F*M = T, o, F*M . Lorsque M est de dimen-

sion finie, on a aussi F*M = lim DwM , limite calculée dans B(H) . Cette
p—

formule implique aussitdt le lemme suivant :

Lemme 108 : Pour tout M € §(B) , on a F*M 63(_11) . Corollairement F* est

un O6-foncteur.

) ~ . . _ oz
Soit .lnt(_g_) (Gint(g)) la catégorie des U(_g) modules intégrables,

=

U(E)-semi—simples 3 poids entiers, et U,(E) (respectivement U(B")) loca-

lement finis.
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Lemme 109 : La structure naturelle de U.(_lg)-module a droite sur D k[B] et
F* k[B] se prolonge naturellement en une structure de u.(_g)-module. Comme

‘U-(_g)-module i droite, on a F* k[B] € @in (g) . En outre, on a

t
F* k[B] € 611“:(_5) comme U(g)-module & gauche.

Démonstration : Pour tout w € W , on a DW k[B] = k[B(w)] . Donc il existe

un isomorphisme naturel (sorte d'inversion)

w, : D k[B] — D__, k[B]

qui &change les structures de b-modules 3 droite et 2 gauche. On obtient

donc un isomorphisme naturel
@ : D k[B] — D k[B]

qui échange de méme les structures gauches et droites. Par le lemme 106,
D k[B] est naturellement un u.(_g)—module a3 gauche. Ainsi D k[B] est na-
turellement un u(g)—module 3 droite.

Soit M€ #B) un U(E)—module de dimension finie. La proposition 5,
passée a la limite projective, donne une longue suite exacte, pour tout

ief{l,..., M

...—»F’(’M—+F'C_ID; M—»F’ZHDS M oy —
i i

Lorsque M décrit l'ensemble des U(lo_)—sous—modules de dimension finie

de k[B] , le fait que Dgi commute 3 la limite inductive implique que 1l'on a
F* k[B] =~ F* k[Pi]

car on a D;,l k[B] = 0 . Or k[Pi] est naturellement un 'U.(_p_i)—module inté-
grable 3 droite. Comme F* commute 3 la limite inductive, la structure natu-
relle de U(E)-module 3 droite sur F* k[B] se prolonge en une structure de
u(_gi)-module intégrable. Par recollement et intégrabilité, on obtient que

F* k[B] est naturellement un U(_g_)—module intégrable 3 droite.
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~o
Enfin, on a F* Me(aint(-g-) pour tout module M de dimension finie,

donc également pour tout module. Donc F* k[B] est un g-module a gauche

)
dans (9, (g) . C.Q.F.D.

int

Soit G le groupe (discret) de Kac-Moody. Suivant la construction de

Tits, on a par définition[59]

G = l_iﬂ)&(w)
(suivant les définitions du chap. XI). Le groupe considéré ici est aussi le
méme que celui construit par Kac et Peterson [49] , au sous-groupe de Cartan
H prés. Par exemple le groupe G construit ici n'opére que sur les modules
intégrables L(A) avec AEP (puisque 1l'on a choisi ici un réseau des poids
entiers).

Suivant les notations usuelles, G contient un ''groupe de Borel B,
et un ''groupe de Borel opposé" §- (toutes ces notions étant prises au sens
discret).

Pour tout i€ {1,...,N} , on a un morphisme de groupe discret
Ai(k)—>G , ou Ai(k) désigne le groupe des K-points de A; . On notera
que Ai est un groupe algébrique. Suivant Kac et Peterson, [34] on définit
1l'ensemble kf[G] des fonctions faiblement réguliéres de G comme suit.
Une fonction Y : G—> k appartient a kf[G] si et seulement si pour toute
famille i,,...,i  finie d'éléments de [1,...,N} la fonction

A, (k) x ... x A, (k)—>k
11 n

(al,...,an)—)\P(al...an)
est la restriction d'une fonction réguliére de Ai X «e. X Ai (et ce, de
1 n
maniére unique, car il est clair que Ai (k) x ... x Ai (k) est dense dans
1 n
A, x ... x4, )

1l ) )

i
n
On pose U= (B,B) , U = (B ,B ) . L'anneau kf[G] est un G x G-module.
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Soit L et R 1les actions de G sur cet anneau.

Suivant Kac et Peterson [34] , on appelle anneau des fonctions fortement régu-—
liéres le sous—anneau de kf[G] des fonctions @ € kf[G] tel qu'il existe
un entier n tel que l'on ait

Lw)RWo=9

pour tout u— € gn U, u€ & u (®® désigne la série centrale descendan-

te). On note cet anneau kF[G] .

Lemme 110 : On a un isomorphisme naturel

F k[B] =~ kF[G] .

Démonstration : On a, pour tout w € W , D, k[B] = T"(B(wW) , OB(W)) . Par pas-
sage 3 la limite projective, on en dé&duit une application D k[B] — kf[G] .
qui est injective par le lemme 6%.

Par restriction, on en déduit une application injective F k[B] — kf[G] R
qui par le lemme 109 donne une application naturelle F k[B] — kF[G] . Par
construction, la restriction d'un élément € kF[G] & B détermine un Elé-

ment de k[B] . Le diagramme obtenu

F k[B] ——— kF[G]

k[B]

est commutatif.

Par propriété universelle du foncteur D , on obtient un morphisme
kF[G] —— D k[B] . Soient ¢ € kF[G] , et V= U(E_) . @ . Par construction,
ona dimV<ew.Soit V' =U(g).¢.0na mV') =mnW) .v) = uk) n@ ,
donc on a dim m(V') < o . Donc le morphisme kF[G] — D(k[B]) factorise 3
travers F k[B] , et donc 3 travers F k[B] .

Ainsi le morphisme F k[B] — kF[G] est un isomorphisme. C.Q.F.D.
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On verra dans le dernier paragraphe de ce chapitre que le morphisme

D k[B] — kf[G] construit dans la démonstration n'est pas un isomorphisme.

Lemme 111 : On suppose construite une réalisation de F . Soit M€ f(®) .
Alors la suite spectrale E(M) du lemme 79 dont le terme Ez>(M) est
H;(E,E,F* k[B] ® M) , induit une suite de complexes E2a(M),Ea(M)... (chacun
de ces complexes &tant l'homologie du précédent) qui convergent vers une fil-

tration convenable de FM , et tels que Ea(M) = H*(B,p_,f’* k[B] ® M) .

Démonstration : Les différentielles dz,ds ... des complexes Ea(M),Es(M) ...
commutent aux actions de b . On pose donc pour chaque entier r 2 2

Er(M) = Fh Er(M) .

Par le lemme 108, on a E2(M) € JKE) . Donc par le lemme 107, on a

Er(M) € 3&@1) pour tout entier r = 2 , et le morphisme naturel

h* Er(M) — E (M)

r+l

est un isomorphisme. Ceci prouve le lemme.
On va montrer comment l'existence d'une réalisation implique dans cer-

tains cas un résultat de nullité. On constatera que dans le cas ol A est

symétrisable, ceci conduit 3 une démonstration simple du résultat de nullité

du §5 (la premi&re réalisation de F &tant purement formelle).

Lemme 112 : On suppose construite une réalisation de F , et A symétrisable.

Alors on a F2 k[B] = 0 , pour tout entier £ > 0 .

Démonstration : Soit A un poids dominant. Pour chaque entier £ , le théo-
réme de semi-simplicité de la catégorie @int(g) (théoréme de Deodhar, Gabber
et Kac [I1]) et le lemme 109 impliquent que Fz k[B] est somme directe de mo-

dules L(A) comme module 3 droite ( A dominant). La formule de Kostant (due
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3 H. Garland et J. Lepowsky [J6] dans le cas présent) implique donc que 1'on a
q ya
He (b,h, F k[B] (8>k_A) =0,

pour tout entier q # 0 .

Ainsi la suite spectrale E(k—A) dégénére et 1'on a
% = HO * ®
F (k_A) HO (b,F* k[B] kﬁA) .

Par le lemme 95, on a Ife(k_A) =0 pour £ # 0 . Donc une nouvelle applica-

tion de 1'inté&grabilité du module & droite Fz k[B] implique que 1l'on a

Fek[B]=0 pour £ # 0 .

*
§ 2. La réalisation de F

Lemme 113 : L'espace topologique (G/B,S"m) est noethérien (i.e. tout ouvert
est quasi-compact).

Le lemme 113 est &vident. Soit X un espace topologique. On rappelle
que C(X) (la catégorie des complexes de faisceaux indexés par IN ) est une
catégorie abélienne, ayant suffisamment d'injectifs. Si ¥ - Fo —F — ...
est un é€lément de C(X) , on rappelle que Rl"(X,ff") n'est autre que la famille

des foncteurs dérivés du foncteur covariant exact 3 gauche
F — [le noyau de Fo(X) — F7(X)] .

On généralise sans difficulté 3 1'hypercohomologie le théoréme 4.12.1 [40],
a4 savoir : sur un espace noethérien, 1'hypercohomologie commute 3 la limite

inductive. On obtient donc la proposition suivante.

Proposition 11: Le trinlet (C(G/B,F) , ¢'( ,f) . R ) est une

réalisation du &§-foncteur F .
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Proposition 12 : On suppose .?— symmétrisable. Alors pour tout M€ g(b),

on a des isomorphismes
F* M= @, L(N* @H’;(b,h,L(/\) ®M
AepP
M= © L*A)® HE}b,h,LA)®M) .
Aep
Le morphisme naturel 41 : F M——>M est alors donné par la formule
suivante : si & §j @mj est un élément de H°(b,L(A) ® M) (ou ;J.e L(A),

mJ.éM pour tout indice j ) pour un certain A ept , et si NeLA) , on a
T M ®LE @) -z« | Epom .

Démonstration : Soit T* le foncteur g(b)——>Ab défini par la formule
T* M = A@+ L(A)* ® Hf(D,h, LA @M) pour tout MEK(Q) . La formule de

la proposeiiion définit un morphisme naturel de foncteur T°——>1Id .

Comme pour tout M€8(t_>) , T° M est intégrable, on en déduit par réccurence
sur w un morphisme T°—=> Dw , pour tout w W . On a donc un morphisme
naturel T°—5 D , qui factorise clairement en un morphisme T°—— F° .

I1 est clair que ce morphisme est un isomorphisme.

Par le lemme 112, le foncteur F* est homologique, et par construction

T* 1l'est aussi.

On a donc : T* = F* . La formule de F* s'en déduit aussitét.

§3. Une version faible du théoréme de Peter-Weyl :

Dans ce paragraphe, on suppose que A est un produit de matrices de
Cartan indécomposables, toutes de type infini. L'ensemble P+ est dénombrable, et

1'on peut alors écrire P+ = {AO’/\I ’AZ’AB } , tels que pour tout couple
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.

d'entiers i, j on ait Ai < AJ. =>ji < j . En effet, dans ce cas, tout &lé-

ment A € Pt s'dcerit

A=Exiai+u,oﬁ xJ.EQ,xJ.SO et u(hj)=0 pour tout j .

Etant donné un module M € Gint((;) , on construit sa filtration canoni-

que comme suit: pour tout entier n = 0 , on pose

ExM=meM, HOG,U®D) .m®k ) =0, pourtout i<m},
i

de sorte que, pour tout n , €nM est un U(9)~sous—module de M, et 1'on
a G6ns+q Mc oM. En outre, pour tout couple d'entiers n =2 m , on a une suite
exacte

(*) 0 — H@,§ M —HG@,& M —u,8 WE m—o0.

Lemme 11§ : Soit M€ Eint(g) . Pour tout entier j =2 0 , je pose

dj M) = dim HO(Bb~,M® kA ) . On suppose dj (M) < o pour tout entier j 2 0 .
J

Alors on a dim M?» < ® pour tout A , et
o
ch(M) < 2 d.(M) ch L*(A.) .
j=0 J J

On a en outre &galité dés que %satisfait T .

Démonstration : En utilisant la suite exacte (*), il vient que le seul poids
de H°(_§‘,£’n M/&s+1 M) est - An , avec la multiplicité dn(M) (pour tout
n€N). Donc &n M/€nv1 M est un sous-module de dn(M) copie de L*(An) ,
avec égalité lorsque L*(An) est simple. On a donc

©

ch(M) = Z ch(én M/&nsa M)
n=0

< 2 dn(M) ch L*(An) ,
n=0
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avec égalité d&s que .9. satisfait I . En particulier dim M, < e pour

tout A .

Proposition 13 : Les multiplicités du h x h-module k[G] sont finies, et
l'on a

ch kF[G] S Z ch(*@Q) ®L@) .
AEP+

Lorsque _9. satisfait I , on a égalité.

Démonstration : On a H°(b,k[G] ® k_A) = L*(A) , par le lemme 110, et on a
donc
HO(n~ x nt* , kF[G]) =® (k_A ®k.A) .

La proposition 16 résulte alors du lemme 123, appliquée & l'algeébre de Lie
,9.:(.9. avec pour sous-algdbre "nilpotente" n~ x n* .
§ 4. Remarque : Dans cette remarque, on suppose A arbitraire.

1) Kac et Peterson ont montré que lorsque 9, est symétrisable, on a

kF [6] = ®L*(A) ®L(A) [34]. Leur démonstration s'étend facilement au cas oll

% satisfait £ (car le théoréme de semi-simplicité de B,

1nt(?) vaut aussi

dans ce cas).
2) On dit que 1'algébre de Kac-Moody 9, est simple au sens de Gabber et
Kac si 1'on a H° (_11‘*,2,) Nn~ =0 [I5]. Gabber et Kac ont montré que tel &tait

le cas quand 9, est symétrisable. On a aussi
Lemme 115 : Si __9__ satisfait I , ’9‘ est simple au sens de Gabber et Kac.

Démonstration : Soit § €H°(n"‘,.?) Nn~ . On peut supposer E homogéne de

poids - I n, Q. On choisit un poids dominant A avec A(hi) = n, , pour

i

tout i . Soit vEL(A)A— 03 .0na n*E.v=0, donc
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N = 'U.(%) E.v=1U®) . Ev satisfait NA = 0 . Comme L(A) est simple, on

A(hy)+1

adonc E.v=0, 1i.e. EE€Z U(n™) fi . Pour des raisons de poids,

ona E=0. C.Q.F.D.

3) Je profite de cette remarque pour donner une seconde démonstration
simple du théoréme de Gabber et Kac, démonstration que je n'ai jamais publide

[44], et qui a &galement &té trouvée indépendamment par A. Fialovski.

Soit m = m_ une algébre de Lie positivement graduée, engendrée par

®
0 ™
le sous-espace vectoriel mq . Soit k 1'algébre de Lie libre engendrée par

1'espace vectoriel my , et soit r le noyau du morphisme naturel k — m .

On notera que r et k sont naturellement des algébres de Lie graduées.

Lemme 1}6 : On a un isomorphisme naturel d'espace vectoriel gradué

r/ [k,x] =~ Ha(m) .

Démonstration : On utilise la suite 3 5 termes d'Hochschild - Serre [30]
Ha (k) — Ha(m) — Ho(m,H4(x)) — Hq(k) — H () — O .

Par hypoth&se, le morphisme H,(k) — H,(m) est un isomorphisme, et
k &tant libre, on a Hz(k) = O . Enfin, un calcul simple prouve que l'on a
Ho (m,H,(x)) =~ r/ [k,r] .

On en déduit alors le lemme suivant.

. i + - - :
Lemme 117 : 1) Soit A€ P" ., Ona Hy(n ,L(A)) ?ksi(Aﬂa)-o . Soit

I . . . . . N
Lmin(A) 1l'unique quotient simple de L(A) . Si Lmin(A) satisfait la méme
formule, on a L(A) = Lmin(A) .

2) On a HZ(E) = Z(v;e=£ kvp-p ,pour £ =0, 1 ou 2 . Soit ‘?‘min

o o~ _ s c g - -
1'algébre de Kac-Moody minimale [33]. Si 1'image n . de n” dans ‘9‘min
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satisfait la méme formule, on a §,= Shin .

4) La méme méthode s'applique 3 l'algébre W; [33], [44]. Cette algdbre
a pour base {en , n = -1} avec pour crochet de Lie [en ,em] = (m-—n)en+m .

Soit m la sous-algébre de Wy : m = @®ken (pour n>1). Le groupe Hz (m)

a &té calculé par L. Goncarova [I§], et 1'on a

Lemme 11§ : L'algébre de Lie m est l'algdbre de Lie engendrée par 2 &léments

eq 5 €2 soumis aux relations

ad®(eq) (ez) = -6 ad2(ez)(eq)

ads (eq) (e2) = -60 ad3®(ez)(eq) .

5) De l'existence de réalisation vient la suite spectrale
BE (D0, F* k[B] ® ) =>F* .

Il est aisé de montrer que cette suite spectrale ne dépend pas de l'une des
deux réalisations choisies (par le lemme 122). Lorsque A est produit de

matrices indécomposables de type infini, on aimerait déduire la formule

2% ch kBl = T ch@*@) ®LA)) .
AP

Malheureusement, il n'est pas clair que le terme de gauche soit défini.

§5. Comparaison avec la construction de Kac et Peterson

Dans ce paragraphe, je vais montrer que les constructions déduites de
celles de Kac et Peterson sont strictement différentes de celles construites
ici. Ceci indique que les constructions ensemblistes des faisceaux E, repré-
sentant le faisceau des fonctions sur le groupe de Kac-Moody satisfaisant une

certaine propriété d'invariance, ne coincident avec la construction adoptée

ici que dans le cas de données associfes aux algdbres de dimension finie.
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Soient w E W , et si1 - une décomposition réduite de w . Pour
tout systéme d'indice a = 011 ...am) , je note %m 1'espace topologique
Bal(k) X vea X Bam(k) (avec la topologie induite de la topologie Zarisky).
Soit ¢ : B(w) — k une fonction (respectivement U une partie de B(w) ).
Je dis que @ est faiblement réguli&re (respectivement que U est ouvert)
si, pour tout famille Qo ...0n de systémes d'indice @ o j (respectivement
jT' ) est réguliére (respectivement unouvert) dans X , oil
X = qu(k) x Ai1(k) X eee X Ain(k)x Bqn(k) , et oi j est l'application na-
turelle j : X — B(w) . L'anneau des fonctions faiblement réguli&res de
B(w) est noté kf[B(w)] . On vérifie aisément qu'il ne dépend pas de la décom-
position choisie pour w .

On a un morphisme naturel kf[G] — kf[é(w)] . On note kf[B(w),G] son

image. On a un morphisme naturel kF[G] — k[B(w)] . On note kF[Eﬁw)] son

image. On a donc les inclusions suivantes entre anneaux
kp[BW] c k[B(w)] = k [B(w),6] = k [B(W] .
Je pose k[G] = D k[B] . On a aussi
ko[6] = kl6] =k [6] .

J'appellerai dans la suite kF[Eﬁw)] (respectivement kf[g(w)] ) anneau
des fonctions fortement réguliéres (respectivement faiblement réguliéres) au

sens de Kac et Peterson.

Proposition l§ : On suppose i}_de dimension infinie. Alors, pour tout w € W,
on a kF[E(W)] # k[B(w)] et Kk[B(w)] # kf[B(w),G] . On a aussi kF[G] # k[G]

et k[G] # kf[G] .
Démonstration : 1) Je vais indiquer la démonstration du fait que 1l'on a

kF[B(w)] # k[B(w)] et kF[G] # k[G] , la démonstration des autres assertions

étant montrées au point 2.
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Soit A un poids dominant et régulier. Dans la suite de la démonstrationm,
on ne considére que les structures de module 3 gauche. On a kF[G]A =0, car
? est supposée de dimension infinie. On a donc kF[E(w)]A = 0 . Par ailleurs,
1'application k[B(w)] — k[B] est surjective. On a donc k[B(w)]A #0 .

Comme les différentes applications k[B(u)] — k[B(v)] sont surjectives, on

a aussi k[G]A # 0 . Ainsi on a
kpl6] # k[6l ,
kF[E(W)] # k[B(W)] .

2) On fixe A un point dominant entier régulier (ou plus faiblement tel
que L(A) soit de dimension infinie). On pose Y = Al(k) X ea. X AN(k) , et
pour tout entier m : Xm =Yx ... x Y (m facteurs). Soit Vv un vecteur
non nul de L* (A)_A . On a une application naturelle j : Xm —— G . On montre
facilement que, pour tout entier m> 0 , l'espace vectoriel Em < L*(A) en-
gendré par j(Xm) . v est de dimension finie. Il est clair que, pour tout

entier m , on a Em + E . On peut donc choisir un &lément Em de L) ,

m+1
qui soit h-propre, et tel que l'on ait

<§m| E> =0

<§m| Em+l> # 0 , pour tout m> 0 .
On a donc, pour tout g€ G ¢ <§m| gv> =0, pour m grand.

La fonction & : G — k , définie par la formule

@

9(g) = T <E_|gw
® = = Eyl 8

est bien définie, et elle est faiblement réguliére. On a donc O € kf[G] .
Soit n 1la restriction de © a B(1) . Il est clair que N n'est pas
U(b)-finie pour 1'action & gauche. On a donc n € kf[g(l),G] ~ k[B] . Ceci

prouve que 1'on a 9 ¢ k[G] . Ainsi on a

k[6] # kcle]

224



LE FONCTEUR F

k[B(w)] # kf[g(w),c] . C.Q.F.D

§6. Groupes de Picard de G/B

Lemme 119 : On suppose ga de dimension infinie. Alors tout ouvert non
vide de G/B contient un ensemble discret infini. En particulier G/B

n'est pas un schéma.

~
Démonstration : Soit w,EW tel que Un Sw soit non vide. Par le lemme
o
11, il existe une suite infinie {wn} d'éléments de W avec wa<w1<...
~ ~
Je choisis pour tout entier n>0 un point P_€(U_S )\ (U S ).
n n v noow
L'ensemble {Pn’ n>0} est discret et infini.
Donc U n'est pas quasi-compact, et en particulier n'est pas le spectre
d'un anneau. Donc G/B n'est pas un schéma.
Puisque G/B n'est pas un schéma, je dois préciser la définition de
son groupe de Picard Pic G/B : c'est le groupe des classes d'isomorphies
G/B
finie, on a K(P) = 0 et il est connu que le morphisme P——>Pic G/B est

de @ -modules localement libre de rang un. Lorsque % est de dimension

un isomorphisme. Je vais généraliser ce fait.

~)
Proposition 15 : Pour tout A € P %(ﬁ) est un module de (9G/B module

localement libre de rang un. De plus "\é(ﬁ) est isomorphe a @ dés que

A appartient & K(P) . Le morphisme P/K(P)_Q?CG/B ainsi déduit est un

isomorphisme.
Démonstration : 1) Je vais d'abord prouver que les faisceaux de (OG/B modules

og(ﬂ) sont localement libres. Il est clair qu'il suffit de le prouver
lorsque 2 est antidominant. Soit O ¢ L(-2)* . Pour tout we&W , soient
(rw la restriction de & a ’gw s Dw(o‘) 1'ouvert de ?w ol Crw #0

et DE@) = U D (d") . Par construction Cr est un générateur du faisceau

inversible J*z(l) sur D @) , donc O engendre le falsceau de

©

G/B modules“&(?) sur l'ouvert D(@) . En partlcullerOg(//\), D) est
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libre. l'assertion résulte du fait que les ouverts D@’) (@e L(-Z)*-{O})
formentun recouvrement de G/B . En outre, lorsque 2 EK(P) et T #0 ,

~r
ona D@) = G/B . Donc o‘é(?k) est alors isomorphe i (9G/B .

~D

2) Soit % un faisceau localement libre de rang un sur G/B . On
fixe un élément de wWEW tel que 1l'on ait w s; pour tout i€ {1,...N}
(par exemple on choisira 1'élément de Coxeter w ={si. ..s_{ ). Par la
proposition 6, il existe Aep t/e{’l que l'on ait j;t’g= w('l\) . Donc
quitte & remplacer z par x@-&-l) , on peut supposer que l'on a
jv’;%= (9:; . Soit ué€W , u % w . Par la proposition 6 l'application

w

1 LY . . kel = (9
Pic (Su)-——9P1C (Sw) est un isomorphisme. Donc on aura aussi J:‘l = .

u
Comme % est localement libre de rang un, on azﬁ.’ Lim j";q\f, donc on a
veWw
r‘ = i r g 1%, = i r‘ 0( —5' }
/B ,&) Lin (§,,3%8) = k . soit & el(e/B ,%)-{of .
Il est clair que @ induit un isomorphisme (9 => et ceci prouve la

G/B

proposition.
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XVII Dualité des foncteurs de Joseph et algébres de Lie affines

§ 1. Non lissité des variétés générales de Schubert

Pour éviter des &noncés techniques, je n'étudierai que les variétés de
Schubert "boréliennes" §w . Je simplifie ies notations du chapitre XII en

posant, pour tout w W:

S(w) = S¢(w) ( S(w) est dit support de w )
U(w) = t%(w) ( U pour voisin).
Je dis que le groupe W est libre si l'on a

aij aji > 4 , pour tous i,j € {1, ...,N} .

Lorsque cette hypothése est satisfaite, W est le groupe engendré par
les éléments s; satisfaisant aux seules relatiomns s? = 1 . Dans ce cas,
un élément w € W est dit spécial s'il est de longueur < 1 , ou s'il satis-
fait la condition suivante, 3 une permutation des indices {1, ..., N} prés
(a) Il existe un entier n > 2 tel que S(w) = {1,2 ... n} .
(b) Il existe une fonction ¢ : {2, ... n} — {l, ..., N} telle que
l'on ait
(by) @) <1i pour 2<i<n.
(b2) (i) € {i-1,9(1-1)} pour 3<i<n.
(b3) Ona W= Wy ... Wy Ol v, € W(i,p(i)) pour 2<i<<n,
L(w) = jgz Z(wj) et sp Wy < W, » pour 2<isg<n-1,o00 £=0@{E+1) .
Dans la définition précédente W(i,p(i)) désigne le sous-groupe de W
engendré par s; et sw(i) .
Lemme 120 : On suppose que W est libre. Soit w € W . Alors les deux asser-

tions suivantes sont &quivalentes.
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(a) On a # WXw) = #SwW) ;
(b) w est produit d'&léments spéciaux & support disjoint, i.e. on peut
gcrire W = ...® , 00 W ,...,Q sont spéciaux et S(coi) n S((nj) =0

m
si i# 3 (et ceci implique que 1l'on a £(w) = Z £(coi) .
i=1

Démonstration : 1) On va d'abord montrer que l'assertion (b) implique 1l'asser-
tion (a). On fixe donc w satisfaisant (b). Il est clair que 1l'on a
m
V(w) = igl W e U’(mi) Wy e
Comme on a # U(v) =2 # S(v) pour tout v € W (remarque finale du chapi-
tre 12), il suffit de montrer que si w est spécial, on a # U(w) = # S(w) .
On peut en outre supposer que l'on a £(w) 2 2 . On peut donc &crire

W=W_ ...w, comme dans la définition précédente. Il existe aussi deux en-

n 2

tiers £, &' , et deux éléments u,v € W tels que l'on ait w = Spu = Vs, .

Je dis que V(w) est constitué des &léments suivants : u,v, LA ij

W. voo W pour n-12 j = 2 . En effet pour tout j , wj est un

S .. .

oG+ 7] 2
€lément du type S sB Sq vt {a B} € {1,...N} . Donc lorsqu'on enlé&ve une ré-
flexion &lémentaire dans la décomposition réduite de w , cette réflexion

étant 3 l1'intérieur de 1'un des LA le nouveau mot obtenu n'est pas réduit.

En outre, soit j avec n-1< j <2 . On a alors

i T SeGgrn T

eee S

LI @(§+1) *j+1
Donc lorsqu'on enléve la réflexion sj” dans la décomposition w

(cette réflexion étant la réflexion la plus &d droite dans w ), le nouveau

j+1
mot obtenu n'est pas réduit. Donc les seules possibilité&s pour obtenir une dé-
composition réduite de longueur £(w) -1 est de supprimer la premiére ré-

flexion de 1l'un des wj , ou la derniére de W, . Ceci montre l'assertion, et

prouve que l'on a # U(w) < n , ce qui prouve que (b) implique (a).
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2) On va prouver la réciproque, par récurrence sur £(w) . On peut évi-
demment supposer que l'on a £(w) 2 2 . Il existe deux entiers i, j tels
que 1l'on ait w = sisjw' , pour un certain w' € W, avec £(w) = £(w') +2 .

Je pose alors w=uv , oi u et v sont les &léments de W uniquement dé-

terminés par les relations
L(w) = L(u) + £(v)
u € W(i,j)

s,.Vv2V, s.v2V.
1 J

On considére alors deux cas. On pose w'" = sjw' .

3) On suppose d'abord que 1l'on a £(u) 23 . 0n a ¥(w) c si'lf(w") u W' .

1

On a w' € W(w") , et par hypothése on a s;w' < w'

. Donc on a
Z(siw') < £(w) -1 . Par ailleurs, comme W est libre, on a s;%¥ 2 x pour
tout x EVYW") , x# w' . On a donc Ww) = si(U(w') -{w'l) U " . Par

hypothése, on a i € S(w") . On a donc S(w") = S(w) , d'oli on a

#SW") = # S(w)

# V(w)

il

# V") .

Par hypoth&se de récurrence, w" satisfait (b). Comme £(u) est plus grand

que 3, on a aussi w" = sjsiu' , pour un certain u' € W , avec

L(u') = £(w") =2 . Il est alors clair que w = siw" satisfait aussi 1'asser-
tion (b).
4) On suppose que l'on a £L(u) <2, i.e. £(u) = 2 . On a donc s;u 2u,

donc pour tout x € U(w") , on a s;X > x . On a donc

U(w) = s, B(w") U (W',

et donc on a

#UOW") = #Vw) - 1
=#sSw) - 1.
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Par ailleurs, on a
#S(w) - 1< #s(W" < #Ww") .
On a donc
#SOW") = #Sw) - 1.
Donc par hypothése de récurrence w'" est produit d'éléments spéciaux de sup-
s e s . "o - . Vo
ports disjoints, soit w 0)1 mm s et on a w siml cee (-Om s et 1 n ap

partient 3 aucun des supports des &€léments mj . Ceci démontre le lemme.

Proposition 16 : On suppose que W est libre. Soit w € W . Alors pour que les
groupes Pic('gw) et Cl('gw) aient méme rang, il est nécessaire et suffisant

que w soit produit d'éléments spéciaux de support disjoint. (cf. aussi [4s].

Démonstration : Par le chapitre XII, # U(w) et # S(w) sont respectivement
les rangs du groupe de Picard et du groupe des classes. Donc la proposition
résulte du lemme 120. On utilisera le lemme suivant, bien connu pour g de

dimension finie.

Lemme 121 : Soient w € W, W une décomposition réduite de w . Alors le
morphisme D(W) — Ew est un isomorphisme si et seulement si on a

L(w) = #Sw) .

Démonstration : Les variétés D) , g‘w sont normales, et le morphisme
D(W) — gw est birationnel. Donc (en utilisant par exemple le thé&oréme prin-
cipal de Zarisky), il suffit de montrer que D(W) —ogw est bijectif si et

seulement si £(w) = #S(w) . Si ona £(w) = #S(w) , la bijectivité est
claire. Si on a £(w) > #S(w) , il existe des éléments v € W , Tew,
i€ {l,... N} avec vEw,v<w, si V n'est pas réduit, et vV est une

~

décomposition réduite de v avec V> Si . Alors l'image réciproque de Ss
B

i

contient (au moins) une variété de dimension deux Pi. X Pi/B , ce qui montre
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le lemme.

Remarque : A. Arabia et M. Vergne ont posé la question suivante. Etant donnée
une variété de Schubert S , existe-t-il une variété de Schubert lisse I avec
ScZ ? (J'emploie ici une notation différente de ce qui précédait, parce que
ici j'ai appelé variétés de Schubert des objets (a prioinl) différents de ceux
considérés usuellement. Ici, une variété de Schubert est la normalisation des
variét&s obtenues dans les représentations.) La proposition 16 fournit une
quantité de contrexemples. On suppose par exemple W libre, et g de rang
>3 . Soit w = s;s;8358q . Alors w n'est inférieur 3 aucun des &léments sa-
tisfaisant aux conclusions du lemme 16. Donc §; n'est jamais plongée dans
une variété de Schubert lisse. On a ainsi un premier invariant e : W — NN
défini par e(w) = #UWw) - #S(w) , et 1'on a : §w est non lisse dé&s que
e(w) est non nul.

Je vais définir un second invariant Vol comme suit. Soit w€ W . On a
une application div : Pic(g;) — Cl(g;) . Le groupe de torsion du conoyau

Tor Coker div est fini. Je pose
Vol(w) = # Tor Coker div .

Donc 1l'application div est un isomorphisme si et seulement si on a
e(w) =0 et Vol(w) = 0 . J'appelle affine factoriel tout schéma affine X
dont 1l'anneau associé F(X,%8 est factoriel. Je dis qu'un schéma Y est lo-
calement factoriel s'il poss&de un recouvrement affine factoriel (je m'&carte
ici de la terminologie usuelle). Il est facile de montrer que pour tout
wWEW,ona Vol(w) =0 et e(w) =0, si et seulement si g; est locale-
ment factorielle. Il est clair aussi que si E; est lisse, on a Vol(w) =0
et e(w) =0 .

Avant d'utiliser le second invariant Vol pour trouver des variétés de

Schubert non lisses, je vais donner des exemples oill cet invariant est nul. On
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rappelle qu'étant donnée une variété X , je note Sing X son lieu singulier.

Lemme 122 : Soient w€ W, i€ {l,...,N} . Je suppose que 1'on a sWw2w,

et que Sing s NS est de codimension = 2 dans S_ . Alors on a
siw w w

Vol(siw) < Vol(w) .

~
Démonstration : Par hypothé&se sur le lieu singulier de Ss-w » on peut (notant
i
iz Sw-——» Ss‘w 1'inclusion naturelle) définir de mani&re naturelle une ap-
i
plication i*:CI(Ss-w) — Cl(Sw) rendant commutatif le diagramme
i

Lo~ i* Lo~
—_—
Plc(Ss.w) PLc(Sw)

div div
1(s i* 1(s
—_—
c1( s w) c1( w)'

i
On considére alors deux cas.
(1) On suppose d'abord que l'on a i€ S(w) . Dans ce cas, l'application
i* Pic(gsiw) —_— Pic(gw) est un isomorphisme. Comme les groupes des classes
sont libres (chapitre XII), on en déduit que i* induit un morphisme injec-

tif sur les groupes de torsion des conoyaux des applications div . Donc on a
Vol(siw) divise Vol(w)

et en particulier, on a Vol(siw) < Vol(w) .

(2) On considére ensuite le cas ol l'on a i g S(w) . Il vient alors que

le morphisme naturel Pi xB Sw — Ss w est un isomorphisme. En outre, par
i

le lemme 76, on a divéEs-w(pi)) = [Sw] . On applique le lemme 75-4, et la
i

proposition 6. On a donc des suites exactes

. i* .Y
0 — Z Plc(Ssiw) —_— Plc(Sw) —_ 0
div div
~ ~ i* ~
0 —> Z. [Sw] — Cl1 (Ssiw) — 1 (Sw) - 0,
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ot 1'application Z— Pic(Ss.w) est donnée par la formule n -—ﬂ'ﬁs w(npi),
1'application Z-—-»Z[Ss.w] par la formule n — n[Ss.w] . Par le lemme du
i i

serpent, les conoyaux des morphismes div sont &gaux. Dans ce cas, on a donc

Vol(siw) = Vol(w) , ce qui implique également l'assertion du lemme.

Proposition 17 : Soit w € W . On suppose que l'une ou l'autre des assertions
suivantes est satisfaite

(a) On a aijaji < 1, pour tout couple d'entiers i # j ,

(b) W est libre, w

u
(2]
He

- ' . .
Sin avec £L(w) =n , et 1'on a 1J. # 1j+2’

pour tout j avec 1< js<n-2.

[}
o

Alors on a Vol(w)

Démonstration : 1) On pose w = s;v , avec L(w) = £(v) +1 . On effectue la
démonstration par récurrence sur £(w) . On note que si w satisfait (a) ou
(b), il en est de méme de v . Donc on peut supposer que l'on a Vol(v) =0 .
Par le lemme précédent, il suffit de prouver que Sing gw n gv est de codi-
mension 2 dans gv . Or Sing gw est stable par Pi . Donc il suffit de
prouver que si 1'on fixe W €W avec usv, s;u < u, 1'une des deux as-
sertions suivantes est réalisée
(a') L(u) < L(w)-2 3

(b") S, n'est pas contenu dans Sing(gw)

2) On se place dans le cas (a), et on suppose donné un tel u qui sa-

tisfasse £(u) = £(v)-1 . On a s;u <u, s;v 2 v . Il existe donc

je {l,...N} tel que l'on ait v = sju . Je pose aussi x = s;u . On a ainsi
w = sisjsix , et L(w) = L£(x)+3 .

Soit G le groupe SL(3) . On notera que 1l'on a aussi w = Sjsiij , car on

aji = 1 . Donc les actions de Pi. et de Pj sur '§w donnent une ac-

a a,,.
J
tion de G . La grosse orbite de '§u est incluse dans la G-orbite despoints

i
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de la grosse orbite de §'w . En particulier, Sing '§w ne contient pas '§'u ,

ce qui prouve l'assertion (b').

3) Dans le cas (b), alors l'assertion (a') est automatiquement réalisée
pour tous les €léments u € W , us v, s.u < u . Donc ceci achéve la démons-

tration de la proposition.

On va montrer comment la connaissance du groupe de Picard permet de cal-

culer des dimensions cohomologiques des représentations.

Lemme 123 : On suppose W 1libre. Soit w € W , tel que l'on ait
#VU(w) = #S(w) . Soient u,v €EW tels que w=uv , £(w) =L@u)+L(W) .

~

Alors '§u et gv sont localement intersection ensembliste compléte dans Sw .

3 . ~ ~ -
Démonstration : Je vais montrer le lemme pour Sv » la preuve pour S“l étant

identique. On pose w = S; ..-8; VvV, avec £L(w) = n+4L(v) . Pour tout entier

1 n
j , on pose xJ. = s, ...s.lnv (1< j<n+l) . Par la proposition 1 , on a
J

aussi #IXxj) = #S(xj) pour tout j . Donc ceci signifie que pour tout j,

~
toute sous—-variété de codimension un de Sx est localement ensemblistement

~
intersection complé&te. En particulier S est localement ensemblistement
- j+1 ~
défini par une équation dans Sx . Donc par induction, Sv est localement

-~ 3
intersection compléte dans Sw .
Proposition '® : Soient W, w , u, v comme au lemme 123, Soit U le com-
plémentaire dans gw de '§'u ou de gv , et soit r 1la codimension du com-
plémentaire de U . On suppose r = 2 . Alors on a H'Z(U,fw(k[B])) =0 , pour
£L+#40, r-1, et Hr_l(U,zw(k[B])) est un u(_l:i)-modules a gauche de dimen-

sion cohomologique £(w)-r .

Démonstration : Soit Z 1le complémentaire de U dans Sw . Par le lemme 123,
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Z est localement ensemblistement intersection compl&te. On a donc, par la
formule de Deligne, }(,g(&’) =0 pour £ > r , pour tout faisceau cohérent F
[ 1. Donc on a xiz)'(fwk[B]) =0 pour £ #r , et par le lemme 83, on a
donc Hf(gw,fwk[B]) =0 pour £ # r . Donc utilisant la longue suite exacte,
on a HI‘(U,fw(k[B])) =0 pour £#0, r-1.

Soit G : @(h) —> Ab le ©&-foncteur défini par la formule
G*M = H*(U,f(M)) . La suite spectrale du lemme 79 dégénére. On a donc des
suites exactes, pour tout entier £ ,

£l o,n, (kB M) — ...

e — Hf(_l_)_,b_,Go(k[B] M) — M —

Comme Z est de codimension > 2 , on a aussi Gok[B] = k[B(w)] . Comme U

n'est pas compléte, on a GK(W) = 0 . Par la proposition 7, on a aussi
Hﬁ”(h,p_,cok[B] @M =0, pour £ > £(w) . On a donc
KE 7 (,n, 6" k8] ® 1) = 0, pour tout M € £(B) . Donc le U()-module

3 droite Gr_lk[B] est de dimension cohomologique < £(w) -r . Par ailleurs,

il existe M€ ﬁ’(k) tel que 1l'on ait Huw) ('gw,fw(M)) # 0 . On a donc

HE(o,h, (6k[B]) B M) # 0, et de 12 HC™) T (b,n,c" 'k[B] © M) # 0 . Done 1le

U(b)-module & droite Grclk[B] est de dimension homologique A£(w) -r dans

&(E) . Changeant w , u , v en leurs inverses, on &change les structures a

. r-1

gauche et 3 droite. Donc le U(E)—module G~ 'k[B] a gauche est de dimension

cohomologique 4£(w) -r dans Z(E) .

§ 2. Dualités des foncteurs de Joseph

Soit w € W . Je dis que le foncteur Dw est dualisable, s'il existe

1’,(w)k

v o " 1 , et tel que les applications

un poids w € P , tel que dim D

£ (w;

£ £ £ (w)
D,(M* ®k ) ®D ) — D"k

W (M
soient des couplages parfaits pour tout £ € N, et ME (6(2) de dimension

finie. Je dis que Dw est faiblement dualisable s'il existe un poids W€ P ,
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une forme linéaire Res :

L (w)
w

km — k , tels que pour tout A dominant

entier régulier, le couplage naturel

£ (w) Res
Dw(ku)-A) ® Dw kA —k

soit un couplage parfait.

Proposition 19 : Les assertions suivantes sont équivalentes :
(a) g; est Gorenstein (i.e. le faisceau canonique Kw est inversible) ;
(b) Dw est dualisable ;
(c) Dw est faiblement dualisable.
En outre, le poids w de l'une des définitions précédentes a pour image

K, dans Pic(gw) , d&s que ces conditions sont satisfaites.

Démonstration : 1) La définition [22] de variétés de Gorenstein est la suivan-
te : une variété X est Gorenstein si X est Cohen - Macaulay et si le fais-
ceau canonique KX est inversible. Par le théoréme 3 les variétés §; sont
Cohen - Macaulay. Ceci explique 1l'assertion (a).

2) On va prouver que l'on a (a) implique (b). Par la proposition 6, il
existe un poids w € P , tel que l'on ait Kw = E;Gn) . Par le théoréme 3,
§; est Cohen - Macaulay. La dualité de Serre et la proposition 3 impliquent

alors que l'on a, pour tout entier £

£ v % -1
fom oKy - 6@, T 007 B )

- bE LT o)

£ (w)-£
G M*

pour tout module M de dimension finie. Ceci prouve le point (b).
3) On a (b) implique (c) trivialement.
4) On suppose (c). On notera que la forme Res de la définition est

nécessairement non nulle. Or par la proposition 3, on a
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Hl(w) (gw R fw((o)) = Dﬁ(w)kw . Donc Res définit un é€lément non nul de
Hom(fw(w) R Kw) . Comme fw(w) est inversible, l'application ainsi déterminée

est injective, de sorte que l'on a une suite exacte
O—o.Cw(m) —»Kw—og-—»o

pour un certain faisceau 9, Pour tout A dominant entier régulier on a donc

dim HQ('Ew ,£~w((u-A)) = dim Dwko)—A (proposition 3)
= dim DXy
- ain 8* ™G LT ) (proposition 3)
P - o sy s
= dim H (SW ,-Cw(-A) K Kw) (dualité de Serre).

En outre, pour A suffisamment grand, on a Hl('gw,.CNw(m-A)) = 0 , donc on
o ¥ .
a H (Sw,.Cw(—A) ®9,) = 0 . Comme ceci vaut pour A grand, on a %= 0, ce
qui implique que 1l'on a un isomorphisme Kw = £W(w) .
Le lemme suivant est di 3 A. Joseph (plus précisément 1l'énoncé dual) [3]].
. . (n . P
Lemme 124 : Soit i€ {l1,...,N .Ona Ds- ka- =k , oi k désigne le
i 94
Zl(p_)-module trivial. Pour tout module M € (6(1:_) de dimension finie, les cou-

plages Df M ® ka. ) ® D;.-i‘M — k qui s'en déduisent sont parfaits.
i i i

Démonstration : Le lemme n'est que la traduction en foncteur de Joseph de la

dualité de Serre sur la droite projective.

Lemme 125 : Soit WE W . On a

pf® M M i w=

, si 8. ...8, avec n = L(w) .
W sy 8: i
n 14 n 1

Démonstration : On effectue la démonstration par récurrence sur £(w) . On
peut supposer que l'on a f£(w) > 1 . On pose alors w = §;V » pour un certain
i€ {l1,...,N , et un certain v € W avec £L(v) = L(w) -1 . Par le lemme 72,

on a une suite exacte de foncteur additif
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0 — pDEO __, 2 __ o G g
s v v

i Vv Si
.. £ (w) . . .
et par la proposition 4, on a DV = 0 . On obtient donc un isomorphisme
DS)D"C;(V) S Dﬁ(w) , ce qui prouve le lemme par récurrence.
i
. ' £ (w)
Lemme 126 : Soient A€ P et wE W . On suppose que 1l'on a DW kl #0.

£

Alors le U(b)-module Dw(w)k)L est U(p_:;)-cycli.que, et il est engendré comme

'(,[(_r_l:l)—module par un vecteur de poids w(A-p) +p .

Démonstration : 1) Je vais d'abord prouver la premidre assertion. Soit W une
- . s - : . - + -
décomposition réduite de w . Alors on a une dualité de '[L(E )Y-module (donnée

par la dualité de Serre sur D(¥)) :
L(w), 0, 5 *
D "ky = H (D) , La(-2) Bay” .

Or D(Ww) contient une orbite ouverte Uw sous l'action du groupe Nw , et
£‘7(-)») ®°’e,' est un faisceau inversible B-&quivariant. On a donc (cf. chapi-
tre XII)

dim H® (E; , B°D (), L1 B ) <1
£ (w)

avec égalité dés que Dw Dﬁ(w)k

kA. est non nul. Ceci prouve que si 5 est

non nul, ce module est U(E;;)-cyclique.
2) soit i€ {l,...,N} , et soit M€ &b) de dimension finie. Par le

1 o * ' 1 Si
lemme 125, ona D M=D (M*®k )~ , d'oiona D M=D "(M®k ) .
Si Si. Gi Si [e] -

3) On va montrer la seconde assertion par récurrence sur £(w) . On sup-

pose donc que l'on a w=s;v, avec ie€ef{l,..., N ,vEW et

£L(w) = £(v) +1 . Par le point 2, on a

£(w) _ 81, L)
Dw k}\. = D0 ((DV kA.) ®k"°'i) .
Donc par hypothése de récurrence (Df(v)kx) ® k'o’i est engendré par un vec-

teur x de poids v(A-p) te-a . En outre, les poids de ce module sont la

. . . o e . +
somme du poids de x , et de combinaisons linéaires de racines de n, - On a

donc e;x = 0 . Par conséquent Dz(w)k

' 5, est un U,(pi)-module cyclique engendré

238



DUALITE DES FONCTEURS DE JOSEPH

par 1'image x de x dans D‘Z(w)kx . Donc De(w)k est un u(n+)—modu1e
\ w A —
cyclique engendré par si:-c . Donc lorsque DEJ(W)k)\ est non nul, son plus bas

poids est si(v(A—p) +p-cx.i) =w(A-p) +p , ce qui prouve le lemme.

Lemme 127 : Soit w € W . On suppose que '§w est Gorenstein. Soient 9, E

. , . 3 L) ~ o~ _
des poids tels que l'on ait Kw £w(8) , H (Sw ,.Cw(ﬁ)) k§ . Alors on

a E=w@®-p)+p .
Démonstration : Le lemme résulte du lemme 126.

Lemme 128 : Soient w , ve W, i€ {l,... N avec w=sv, et

£(w) = £(v) +1 . On suppose Ev Gorenstein. On fixe & et E deux poids

' . o Lv) 2
tels que 1'on ait K =£ (9) , H (8,,L,0)) =k

£ -
1) On suppose que l'on a g(hi) = 2 . Alors Ew est Gorenstein, et l'on

_ 7 Low) 2 _ ~ -
a KW = £w(\‘:)) , H (SW,JZW(%)) = kg_u'_1 . En outre [Sv] est un diviseur

localement principal de '§w si et seulement si v n'est pas 2 85 .
2) On suppose que l'on a g(hi) 23 ,et v2 s; - Alors '§w n'est pas

Gorenstein.

Démonstration : Je note j : 'gv —»Ew 1'inclusion canonique. Soit M € [5(2)) N

de dimension finie. On a

IO 2y
w

=D1D
iV

Si

1
= D (M*x ® * B
Dsi_ v( kﬂ) kE

S:
1 % *

D "D (M ®k8) ®k§—a-l .

1) On suppose d'abord que 1'on a g(hi) = 2 ., On obtient alors

L(w),  _ w
Dw M—D(M(X)k_a)®k§_ai

L}

* *
D M ®k8) ®k§"0~i
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Comme cette identification est canonique, on en déduit que l'on a K, = £w({3) ,

~

et H['(w) ('5 ,E ®)) = k5 . Donc S est Gorenstein. Soit ﬂ 1'idéal dé-
w’ w -a W

i
finissant S_ dans S_.Ona K_= Extl(6~ ,K) . On suppose 4 inversi-
v w v Sv W
ble. Utilisant la résolution projective 0 — J— 6'5' — 6'5 — 0 de Og s
w v v

on obtient la formule bien connue

K Hom (U/ﬂz , Kw)

v

G |
J*j ®K .
W
Par ailleurs, comme faisceaux inversibles, j*Kw et Kv sont isomorphes

d'aprés ce qui précéde. Donc on a

L O
I - Os

v
Comme J_l est non trivial, 1l'application j¥* Pi.c(gw) — Pic(gv) n'est pas
injective. Par la proposition 6, ceci implique que 1'on a S(v) # S(w), i.e.
B ~
X

~
que l'on a v # 8y - Réciproquement, si 1'on a v # s; »ona Sw = }?i Sv ,

~
et [Sv] est un diviseur localement principal.

2) Soit A un poids tel que A-9 soit dominant. On a alors

Dﬂ(w)k = Dsi(E A-9) @k ) Comme E(h.) est 2= 2 1'application
w A v Eay’ i ’
sc
i .. .
EV(A 9 B k§ . — D (EV(A. 9N ® kE i) est injective. Je pose
s: & a
i

N=D EV(A.-S) [ k§-0.1 . Je dis que le U(_11+)—modu1e N n'est isomorphe 3

aucun des modules du type Ew(u) , ol | est dominant. En effet, N est en-
gendré par un vecteur x de poids s.l\) (ot v = (A.-8+§—a.i)) et satisfait

les relations suivantes
ma+l ma
e .x=0 et e .x#0
a a

-+
pour tout oo € ® , ol e_  est un vecteur non nul de n_, et
w a -

m, = v(hi) pour o = Q.
m, = si(A-&) (ho.) pour o € & - {or.i} .
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Si N est isomorphe 2 Ew(u) , on a aussi
m, = u(hq) , pour tout a € ¢w .

Comme on a Vv 2 5 » il est clair que hi est combinaison linéaire de ha ,

- 1 = = \
pour a € ¢w ﬁui} , soit hi I cqpa . On a alors mai z Colly 2 d'ol

\)(hi) =3 casi(l—ﬁ) (ha) = si(A-S) (hi) , d'ol §-0.i(hi) =0, ce qui est

contraire 3 1'hypothése.

On pose t ceeSy de sorte que t est un produit de N ré-

TSN PN-1

flexions élémentaires. Un €lément de W é&gal 3 un tel élément t , 3 une
permutation des indices {1 ...N} prés, est dit un élément de Coxeter. On
note 9 un Elément de P qui satisfasse aux relations suivantes
S(h,) = ? (b)) , pour tout j avec 1<js<N.
- 1I<i<j
Pour tout entier j avec 0 < j < N, je pose aussi

B.= Z a,, et B=PB_.
I gy J N

~ NN ~
Lemme 129 : On a K, £t(8) , et H (St ,£t(8)) = ke~a .

Démonstration : Pour chaque entier j avec 0 < j < N, je pose
t. = s, s,

i it .
K =L (® ,et BI(GS, ,L ) =k

tj tj tj tj 8—65

d'abord que 1l'on a 13 Eo = 0 , donc l'assertion est triviale pour j =0 .

see 8 . Je vais prouver, par récurrence sur j , que l'on a

, pour tout j < N . On remarque

On suppose cette assertion prouvée pour un certain entier j , j < N.

' = =
On remarque que l'on a tj+l sj+l tj et Z(tj+l) Z(tj) +1 . Par
ailleurs, ona : (©-B.)(. ) = z o.(h. ) - Z a.(.. )
R P P PRI A AL PP BN R AL
= %y (Byap)
=2 .

Ainsi, je viens de vérifier les hypoth&ses du lemme 128-1, pour le couple (w,v)
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~

Ve tj+l y V= tj . On a donc Ktj+l = £tj+l(8) et

j+l o~ ~

H (s L @) =k
tie1” tjal O-B;

avec w =

4] = kfFBj+l . Ceci prouve l'assertion par

récurrence. En particulier, pour j = N, on obtient 1'&noncé du lemme.

Remarque : On utilise les notations précédentes. On suppose que l'on a
B(hq) £ -1, et on pose u = sqt . Les lemmes 127 et 12& prouvent donc que
gu n'est pas Gorenstein. Par exemple, lorsque g est de rang deux, la con-
dition précédente est équivalente 3 02(h1) < -3 . Donc en général, la va-
riété de Schubert Es,szs1 n'est pas Gorenstein. Dans G, , l'une des va-
riétés de Schubert de dimension 3 n'est pas Gorenstein.

Le fait qu'un grand nombre de variétés de Schubert soient Gorenstein est
donc probablement un fait tré&s spécial 3 certaines algébres de Lie affines,

comme le montre le paragraphe suivant {cf. aussi [4ﬂ ).

§ 3. Variétés de Schubert de certaines variétés affines

Dans ce paragraphe, on conserve les notations du lemme 1 .

Lemme 130 : Les conditions suivantes sont &quivalentes
(1) On a B(hi) =0 pour tout i€ {1,...,N .
(ii) L'algeébre de Lie g est produit direct d'algébre de Kac-Moody af-

fines isomorphes a A(l) et D(z)

N n  » Pour divers entiers n , m .

Démonstration : Il est clair que 1l'on peut supposer que g est indécomposa-
ble. On rappelle que le graphe de Dynkin TI' associé & g est le graphe dont
les sommets sont les indices {1, ...,MN , et dont les arétes sont les paires

{i, j} avec ai(hj) # 0 . On suppose d'abord l'assertion (i). Soit i un

sommet de I' . On a donc

(*) z laj(hi)l =2,

j#i
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Donc le nombre d'arétes de sommet i est 1 ou 2 . On en déduit fa-

cilement que le graphe TI' est 1'un des deux suivants

(a)

— ... &—2o (b).

Dans le cas (a), on peut supposer les sommets index&s circulairement,
i.e. tels que les arétes soient les paires {i,i+1} (1 <i<N) et {l1,N.

L'égalité (*) donne alors

O.i(h ) =-1 pour 1 < i< N

i+l

ai(hi_l) = -1 pour 1 <i<N

ai(hN) = O‘N(hi) =-1,

et g est donc isomorphe 2 Alg-l)l .

Dans le cas (b), on peut supposer les sommets indexés linéairement, i.e.
tels que les arétes soient les paires {i,i+1} , 1< i< N-1 . L'égalité
(*) donne alors

ai(hiH) = O'i(hi—l) = -1 pour 1< i< N
Oglhy ) =0y (hy) = -2 .

Lorsque N = 2 , l'algébre de Lie g a pour diagramme de Dynkin & ,
(1)
1

et est isomorphe 3 A . Lorsque 1'on a N2 3, l'algébre de Lie g a pour

NO)

diagramme de Dynkin 0&=0 ... O—O0=> , et est isomorphe 3 N-1

Remarque : Lorsque dans la suite on considérera de telles algébres de Lie af-
fines, on ne supposera pas nécessairement que les indices {1, ..., N} sont

ordonnés comme dans la démonstration.
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Soient j,m deux entiers 2 0 avec 0< j< N . Je pose
u(m, j) = s, s,
(m, j) j %j-1
Lemme 13! : On suppose les conditions &quivalentes du lemme 136 satisfaites.
Alors :
1) On a g(u(m, j)) =m N+j ,

2 0ma Kymi) = Lu@p® >

3 ona H u(m,§) * fum, i) ©) = “o-up-p, *

Démonstration : On montre le lemme par récurrence sur l'entier £ =m N+j .
Lorsque l'ona £ =0, il n'y a rien 3 montrer. On fixe donc un entier
£ =mN+j> 0, et 1'on suppose les assertions vérifiées pour £-1 . On
pose w=u(m,j) ,et w=u(m,j-1) si j#0, w=u(@m-1,N-1) si
j =0 . On considére alors deux cas

1) On suppose 0 < j < N-1 . Par hypothése de récurrence, on a

o~ 1~ o~ _
Kw = .,Cw(ﬁ) s et H‘e (Sw,,cw(e)) ka’mﬁ'ﬁj—] . On a alors

(®-mp-p_)=0-8_ k),
= 2 , comme au lemme 129.

En particulier, Hl—l('g‘w' ,:va(ﬁ)) n'est pas un U(pi)—module. Donc on a
s.lw' > w' , et ceci prouve que 1'on a £L(u(m, j)) =n N+j . Par le lemme 129,

. - ~ K ~ ~ = -
on a aussi Kw .Cw(s) , et H (Sw,£w(8)) ka'mB'Bj-l'Oj k&‘mﬂ'ﬁj .

2) On suppose j = 0 . Par hypothése de récurrence, on a

~ =1~ e~
qu = £w'(3) et H (Sw. , .CW(S)) = . On a alors

Ko (m-1)p-py. |
8- (m- I)B—BN_I) (hN) = (9-B —l)(hN) = 2 , et on conclut de mani&re identi-

que, en notant que l'on a
(8- (m-NDB-By_ ) ~a=9-m=9-mp-B .

C.Q.F.D.
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Un élément w de W , qui 3 une permutation pré&s des indices est 1'un
des €léments u(m, j) , est dit cyclique. La variété de Schubert associée est

dite cyclique.

Proposition 20 : Soit g une algébre de Kac-Moody produit direct d'algébres

affines du type A;l) et Déz) , pour divers entiers p, q . Alors toute va-
riété de Schubert cyclique associée 32 g est Gorenstein (toute variété de

Schubert est en outre une sous—variété d'une variété cyclique).

Démonstration : La proposition résulte directement du lemme précédent (1'as-—

sertion entre parenthéses résultant d'un calcul aisé sur W ).
P

Proposition 2| : On suppose g isomorphe 2 Afl) . Les assertions suivantes

sont équivalentes, pour tout w € W
(1) On a Vol(w) =0 ;

(ii) Ona £(w) <2

we

(iii) Ew est lisse.

Démonstration : On suppose que l'on a £(w) = 3 . On pose alors w = 8.V
avec w = v . Par la proposition E; et E; sont Gorenstein. Par le lemme
135, [E;] n'est pas un diviseur localement principal de §; . Un calcul ai-
sé prouve que l'on a # U (w) = 2 . Donc Pic('gw) et Cl('gw) sont des grou-
pes de méme rang, et non &gaux. On a donc Vol(w) # O . Ceci prouve que (i)

implique (ii). Comme 1'assertion (iii) résulte de (ii) par le lemme 12t, et

que (i) est une conséquence bien connue de (iii), la proposition est prouvée.
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XVIII Constructions en base arbitraire.

Dans tout ce chapitre, je considérerai un anneau commutatif arbitraire
R . Je rappelle que j’ai construit au chapitre I des algébres UR(g),
UR(Q)...,et des schémas en groupes H, B, Pi. Les R—formes des schémas et
modules que 1’on va considérer seront notés comme précédemment, avec un R en
exposant ou en indice en plus. Lorsqu’aucune ambiguité ne sera possible,
Jj'oublierai cet exposant ou cet indice. Pour tout A € P, je note HA le
H-module (respectivement le U(h), B, U(h)-module) lui correspondant, et VH(A)

le module de Verma

V(A) = U(g) ® R, -
u(b)

Soit A un poids dominant entier. On fixe un vecteur non nul A de L(A)q,
Z_ £ R _ z
et on pose L(A) =1 (g).vA , LA =Re@e L(A)” . Pour tout we W, meP;

NP ~ R R R
On definit de méme Ew(A) , FW(A) , L(A)u’vA .

+ ~ P s s
Soient A e P, J = {i/A(hi) = 0}, w € WJ et W une décomposition
réeduite de w . Je note SR le sous—schéma ﬁ_i?XT_-' dans P E (_A)R .
WA WA w

On a un morphisme naturel m: D(;)R —_— SSA . L’espace annelé

R

Sg,n

, n*Og) ne dépend en fait que de J et de w . Je le note §w , et je

,J

1’appelerai schéma de Schubert (il sera prouvé plus loin que Sw 3 est un
I

schéma). Comme au chapitre V, on prouve que xg(-A) est le pull-back a
D(w) du faisceau inversible tautologique de P EW(A) . On note alors

~R . . . Loy .
xw(—A) 1’image inverse de ce faisceau a S de sorte que 1’on a aussi

w,J ’

§§(—A) = u*xg(—A) . Comme au chapitre V, ceci est suffisant pour définir un

morphisme PI —— Pic (§w J) (m —— ES(U)) . On remarque que pour
* ’
R .. =R ~R
u, v € WJ avec u ¢{ v , on a un morphisme naturel i: Su,J —t Sv,J

et un morphisme naturel $5(n) —_— i*zg(ﬂ) . On pose donc

~ R _ lim °o~R . R +
LJ(A) = 371;1T; H (SW,J' tw( A)") , pour tout A e P N PJ de sorte que

1’on a un morphisme naturel T.J(/\)R —_— L(/\)R . Pour tout « € A:e , Je
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choisis e, (respectivement jﬁ) un générateur du z-module libre de rang un

. 2 . - . 2
gi (respectxvementdh:) et je dénote encore e, et j& leurs images dans,; .

31 Constructions en caractéristique arbitraire :
Dans ce paragraphe, je suppose que R est un corps

Lemme 132: Soient J une partie de I, we W, w une décomposition réduite de

+
w, A€ P n P]

1) L’application continue D(;) —_— Sw 3 est connexe.
L’espace annelé Sw 7 est une variéte.
bl

3) Les fermetures des B—orbites de Sw sont en bijection avec les images

»J
des morphismes Sv,J —_— Sw,J avec V € WJ , Vv<w (et Sw,J ne contient
qu’un nombre finit de B-orbite).

4) Le morphisme iJ(A) —— L(A) est surjectif.
Démonstration: Le point I du lemme se démontre par récurrence sur w comme au
chapitre V. Soient m e P; , K le corps de fractions de D(;) , et § 1la

fermeture intégrale de Swm dans K . On a un diagramme naturel

D(W) —— § —, SwA . Donc le morphisme S — SwA . qui est fini, est un

homéomorphisme. Donc 1’espace annelée §w 7 est isomorphe & la variété § .
?
Les points 3 et 4 sont évidents.
On note P++ 1’ensemble des poids dominants entiers.
Lemme 133: Soit A & .
. +
1) Soit a € dre . On a jﬁ.vA #0.
2) Soit w € W. Le morphisme naturel gw —_— SvA est birationnel
(i.e.S est la normalisation de § Y.
w wA
- . P + - . s .
Demonstration: 1) Tout élément o € Are s’écrit de maniére unique
a = Z ma., avec m, € N . Je pose ht(a) = Z m, . Le point 1 du lemme

iel iel
est clair lorsque a est une racine simple, i.e. lorsque 1’on a ht(a) # 1.

Je vais prouver 1’assertion 1 par induction sur ht(a) . On peut supposer que

1’on a ht(a) #1 . Il existe donc i€ I, B8 € 4:6, ne€mN avec
(n)

= siﬁ =8 + nay, et 1’on a donc f, = & Ad(ei

B

Y(f ) . On a alors
i
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(n) (q)

- ), 88 ’ ), = 3
iﬁ'vl\ = e f'a'v/\ (car 1’on a e, v, 0 pour tout entier q > 0 )
Par hypothése on a jB.VA =0, on a donc _f_‘a.vA =0 .

2) Pour toute variete X , je note R(X) son corps des fonctions rationnelles.
I1 est clair que 1’ensemble {ea, o € éw} engendre le H(§W)~espace vectoriel
DerH(R(§w)) . On a aussi par le point 1: e Ven # 0 pour tout a € ¢w . Donc
1’ensemble {ea, a € éw} forme un ensemble R(SwA)—indépendant de dérivations
de R(Sm) , et 1’extension R(_SwA) —_— H(§w) est donc seéparable. Comme le
morphisme §w RN Sw/\ est un homéomorphisme absolu, le morphisme

~

— S est birationnel (i.e. § est la normalisation de S R
WA w wA

w
C.Q.F.D.
. ++ ~ o :
Soient A e€P , weW . Je pose A(w,A) = & H (Sw, zw(—nA)) , et je
n>0
note Zw/\ le cone de Ew(/\) associe a Sw/\ . de sorte

que R [ZWA] s’identifie au sous—anneau de x(w,/\) engendré par sa

composante de degre 1 FW(A). Le lemme clef est alors le suivant:

Lemme 134: Soient 4,4’ deux sous—algebres graduées et B-invariantes de
A(wA) avec B[ZwA] c A¢g A’ . Alors il existe un élément homogéne

c €A’ de degré > 0 avec o ¢ 4 et 01 € A pour tout entier 1 ) 2 .
Démonstration: 1) Soient M = A’/A et 4Ass M 1’ensemble des idéaux premiers
associes au A’-module m Comme Mm est de type fini, et que B est connexe,
Ass M est un ensemble fini d’idéaux premiers B—invariants et gradués.
Soient P € uss m et A’ = {x € A’/Px c A} . L’extension A4 —— A’
estfinie, donc d’aprés le "going-up" théoréme on a 24’ N A =2 . En
particulier on a ®4" =% , et A" est une algebre graduée B-invariante
avec A # A" . Par construction % est un idéal gradué de A"

2) Je suppose par 1’absurde que % est un ideal reduit de 4" . Par
construction §w —_— Sw/\ est un homéomorphisme absolu. Donc

Spec A(wWA) —— Zw/\ est aussi un homéomorphisme absolu, et

Spec A" —— Spec A , Spec A —— zw/\ sont des homéomorphismes absolus. En
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particulier % est un idéal premier de 4" . Ona 4, = 4) =R .
Donc ® n’est pas 1’idéal maximal gradué. Donc il existe v e W,
avec v < w tel que 1’on ait des inclusions naturelles

A(vA).

L
R [sz] A A .

/P /P

Soient K, K" les corps de fractions de A/? et de 4"/? . Par construction,
" - W ’ s X

ona Knua Je = A Je " Par le lemme 144, 1’extension R[ZvA] — A(VA) est

birationnelle. Donc on a K = K", A"/? =A/?, A" =A ce qui est absurde.

3) Par conséquent % n’est pas un idéal réduit de A" . Donc il existe un

élément homogeéne o € A" avec o £ 4 et ol € # pour tout entier 1 > 2 .

.

En particulier o est homogéne de degré > 0, et on a :
o€ A, o¢g aet ol € A pour tout entier 1 > Z.
On suppose que R est un corps de caractéristique p # 0 . Soient

X une varieéte sur R , D un diviseur de Cartier effectif,

et F: X —— X 1le morphisme de Frobenius absolu. On a ainsi des morphismes

naturels de Ux—modules: Z: Uy — F*ax et jD: F*UX —_— F*(UX[D]) . Suivant

Metha, Ramanan et Ramanathan, on dit que X est D-scindable s’il existe un

morphisme de Ux—module T: F*(UX[D]) — Uy tel que 1’on ait

TOJDOZ = idax . Soit Y —— X un morphisme, tel que |D| ne contienne pas

1’image de Y . On a ainsi une notion évidente de D-scindage compatible.

Lemme 135: (R corps parfait de caractéristique p) Soit wewWw.

1) I1 existe une section globale de x;(—p) sur D(;) dont le diviseur

D vérifie: D(1) ¢ |D|.

2) Pour un tel diviseur D , D(Q) est (p-1)-scindable compatiblement a
chacunes de ses sous-variétés de Demazure.

Démonstration: Dans la suite je noterai U; et Lod le faisceau structural et
le faisceau canonique de D(a) . La premiére assertion résulte du fait

que 2%(—p) est sans point base, puisque correspondant au morphisme

D(W) —— Shp . Comme au chapitre IV, on a
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Lo x;(+p) ® U;(—[z’;]+...) . L’assertion 2 résulte donc de [47].
Lemme 136: Soient # un faisceau cohérent sur Pl , P un point rationnel
de P’ et i: P —— PP’ 1le morphisme associé. On suppose que 1’application

H° (P’,¥) —— isx¥ est surjective. Alors ona H'(P’,¥) = 0 .

Démonstration: On peut évidemment supposer ¥ sans torsion, et que R est
algebriquement clos. Alors d’aprés un théoréme de Grothendieck [2]] (valable,
comme la décomposition de Birkkoff sur n’importe quel corps algébriquement
clos) ¥ est somme directe de faisceaux inversibles UP’(H) . Le lemme
résulte alors d’un calcul direct.

Lemme 137: Soient w.u € W avec w > U, A e P+, et soit j: D(E) _— D(;)

1’un des morphismes naturels.

1) Le morphisme H°(D(W),$;(—A)) —_— H°(D(E),$G(ﬁA)) est surjectif.

2) Ona ch B(D(W), £(-A)) = A,
3) On a Hq(D('vvv, :e;(—/\) =0 pour q > 0.
Démonstration: Je peux supposer que R est un corps parfait de
caractéristique p # 0.

1) Je vais d’abord montrer le point 1 dans le cas ou l’on a A € P++

Soient w, u € W les &léments dont w et u sont des décompositions réduites.
Par le lemme 135, §w et §u sont compatiblements scindées. Donc le lemme clef
134 implique que 1’application H°(§w, zw(—A) —_— H°(§u, wu(—A)) est
surjective. Ceci prouve le lemme dans ce cas.

2) On suppose maintenant A € P+. On choisit un ((p~1)D) scindage

compatible de D(w) comme au lemme 135. On obtient un diagramme
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o (T _ Res o (M —(—
HO(D(W), #po(-pA)) e Ho(D(u), #y(-pA))
z HO(D(W), ex(-pA-(p-1)p)) 222 He(D(R), s (-pA-(p-1)0)
T T
RO, e(A) 2 RO, #(A)

Dans ce diagramme, on a 71,j,Z = id , et les applications de
restrictions, notée Res, commutent aux fleches Z, i, 7. La surjectivité de
1’application H°(D(w), e~ (-pA=(p~1)p)) —— He (D(uw), e (-pA-(p~1)p))
(d’apres le point 1) implique celle de i
He (D(w), x;»v(—/\)) — . H°(D(1), .seﬁ(_—/\)) . Les points 2 et 3 se montrent par
récurrence sur W , en utilisant le lemme 135.

, W une

Théoreme 5: Soient J une partie de I , A € P+ n PJ , W€ WJ

décomposition réduite de w et u: D(';v) —_— SW 3 le morphisme naturel.
’

o (S _ - - A
1) On a H ('Sw,J’ xw( A)) Fw(/\) et ch Fw(/\) de .
2) La variéte §w 3 est a singularités rationnelles, i.e. on a
I
L U; = U§w ; )y T ww est le faisceau canonique de Sw,J , et
?

Rq'n* oy, = an*ww =0 pour q > 0 .
qa,5 S -
3) Ona H (Sw,J’xw(' A)) 0 pour q > 0.

4) On a LJ(A) = L(A), et le morphisme Ey(A) —> L(A) est injectif.

5) On suppose en outre que l’on a A € P; . Alors on a I-lq(§w J,§w(/\)) =0
,
pour q # 1(w). Pour n suffisament grand le morphisme S — S est
w,J WnA
une immersion fermée projectivement normale.
6) Soit ueW, avec u ¢ w . Alors S —_ S est une immersion
J u,J w,J

fermée.

. — R _ . 4 2 .
Demonstration: On a Fw(_/\) = Rez w(/\). Comme w(A) est sans torsion, le
caractére de Fx(/\) ne dépend pas de R . On a donc ch(Fw(A)) = Awe_/\. Par

le lemme 137 on a ch H°(D(‘~v), 2;(—/\)) = Awe—A. Comme le morphisme naturel

Fw(_—/\) —_— H°(D(W), .‘£W(~/\_)) est de plus injectif, ce morphisme est un
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isomorphisme. Ceci prouve le point 1 (on notera que 1’on a utilise la
connaissance de la formule de Demazure en caractéristique 0). Donc le
caractere du module iJ(A) est donné par la formule de Weyl. Il en est de
méme du module L(A) . On en déduit donc le point 4 du lemme 132-4. Le seul
point de 1’assertion 2 dont la démonstration n’est pas similaire a celle en
caractéristique 0 est celui ci: on a:

un* oy = 0 pour q > 0 Bien qu’on ne dispose plus du théoreme de
Gravert-Riemanschneider la démonstration de Ramanathan [52] s’applique ici mot
a mot.

L’assertion 5 est une amélioration relativement aux résultats obtenus
précédemment (méme en caractéristique 0). Par le point 2, Ew,J est
Cohen-Macaulay. Donc pour n suffisament grand, on a
Hq(gw’J, zw(—nA)) =0 pour q # 1(w) . Il suffit aussi de considérer le cas
ol R est parfait de caractéristique p # 0. Comme gw,J est scindée, les
morphismes Hq(§w’J, Qw(-A)) —_— Hq(gw’J, z(—pmA)) sont. injectifs, pour tout
entier m > 1 . Ceci prouve le point 5.

Les points restants se montrent comme en caractéristique 0.

Comme en caractéristique 0, on prouve

Proposition 22: Soient J une partiede I , we W Le morphisme naturel

3 -
P;,J/PJ —_— Pic(§w,J) est un isomorphe.

Ceci permet de généraliser la discussion du chapitre XVII sur les
varietés de Schubert localement factorielles et Gorenstein, au cas de corps de
caractéristique arbitraire.

Remarque: Je n’ai eu connaissance de 1’article de A.Ramanathan [52] qu’apres
mon exposé [42]. C’est pourquoi j’y ai indiqué que je ne savais pas prouver la
rationalité des varié¢tes de Schubert en caractéristique p (alors que la

démonstration de [52] se généralise sans probléme, comme on 1’a vu dans la

demonstration du théoréme 5).
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32) Construction en base arbitraire:

Lemme 138: Soient J wune partiede I, we w] , w une décomposition réduite
de w et m: D(';v)z —_— S: 3 le morphisme naturel.
?

1) L’espace annelé S: 3 est un schéma.
,

2) On a an*(fé =0 pour q > O.
Démonstration: Soit K le corps de fraction de D(.;l)z et § 1la fermeture

intégrale de Si’\ dans K , pour un certain A € P:; . D’apres le lemme 143,

est connexe. Donc le morphisme s, Sz est

le morphisme D('i;')z Y A

WA

un homeomorphisme, et 1’espace annele Sf’ 3 est isomorphe au schéma S . La
seconde assertion résulte, par semi-continuité du théoréeme 5-2.

On conserve les mémes hypotheses sur w, w, J, et =u:

Proposition 23:

1) Pour tout anneau R , 1’espace annele Eg 3 est un schema. On a
'§H = Spec R @ §Z En outre '§R estbnormal dés que R est normal
w,J w,J ° i w,J i - - ) :
2) Soit u e W, avec u ¢ w . Le morphisme naturel §R —_ §R est une
J u,.J w,J

immersion fermée.

q _ .
3) on a R% ug = an*ww

Proposition 24:

0 pour q > 0.

., + ° (X ~ -
1) Soit Ae€eP NP..Ona H (SW,J, xw( A)) Fw(/\) et

3
Hq(gw,J, '.‘Ew(—/\)) =0 pour q > O.
+
'
Hl(w)(§ ¢ (-A)) est un R-module libre
w’J’ W =

2) Soit Ae€P. . On a Hq(§w p EW(—A)) =0 pour q ¥ 1(w) et
,.

Proposition 25:

Soit AeP NP .

1) ona Ii(A) = L(A).

2) Le R-sous-module EW(A) est un facteur direct de L(A).

3)ona LA) =U@)/( 2 z £y,
iel n>A(hi)

Je note <¢(B) la catégorie des B-modules.
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Démonstration: Par le lemme 138 et le théoréme de semi—-continuité, on a
™ UB =Re 0% et % ch =0 pour q > 0. On en déduit que 1’espace
*w w * W
annelé §w 5 est isomorphe au schéma Spec R ® NS: 3 En utilisant le
i »

théoréme de semi-continuité on prouve alors, par le théoréme 5, les
propositions 23-3, 24 et que pour tout x, y e WJ avec x ¢ v, le

. e ~ o (S P . .
morphisme H (Sy,J’ éf:y( A)) — H (Sx,J’ éex( A)) est surjectif. Les
propositions 23 -2 et 25 -1 en résultent.

Comme en particulier on obtient que 'I:J(/\) —_— Fw(/\) est surjectif . Le
point 2 de la proposition 25 est aussi démontré. Pour montrer le point restant

(proposition 25 -3), on peut ne considérer que le cas oi R est un corps. On

note que le U(n)-module 1(A) = U(n )/ Z z fi(n)) est naturellement
iel n)A(hi)

un %(g)-module, et un Pi—module pour chaque i € I . Soit v 1’image de 1
dans 1(A) , et pour tout x € W soit ex(l\) = U(b) x.v et fx(A) = ex(l\)‘.
Pour chaque décomposition réduite X de x , on a un morphisme naturel

D(X) —— P ex(/\) , dont 1’image engendre linéairement P ex(_A)

Par ailleurs on a un morphisme naturel 1(A) —— L(A) qui envoie ex(/\)
sur Ex(l\) . On en déduit des morphismes injectifs Fx(l\) Cs fx(/\)

et fx(/\) e B (D(X), .'c;(—/\)) . On a donc ex(/\) = Ex(/\) . On a aussi

clairement 1(A) = lim ex(/\) , ce qui prouve les propositions.
X€

Lemme 139: -Soient we W, W € W une décomposition réduite de w ,

mw: D('ﬁ) —_— §w le morphisme naturel, et M € ¢(B) . Alors on a

Rq*n':cf‘;(M) =0 pour q ¢ O .

Démonstration: 1) Soient S, S’ deux anneaux commutatifs, et S —— S’ un

morphisme d’anneaux. On a un diagramme commutatif
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Par le lemme 23-3, on a ,j*:cr‘;(M) = ;l:'v;(_M) pour tout B(s’)-module M . Comme
les morphismes i et j sont affines, les assertion

an*:c;;(M) =0 pour q > 0

Rqrr;:&;l(M) =0 pour q > 0
sont equivalentes.
2) On se raméne donc au cas oi R =2 . Comme Z est noethérien, on peut
egalement supposer que M est de type fini. Alors M a une suite de
composition par des modules Z}‘ et (Z/pz)” , pour divers A, u € P et nombres
premiers p .
Dans chacun des cas on conclut par semi—continuité.C.Q.F.D.
Avec les notations du lemme précédent, on pose ;cw(_M) = n*:c;(_M) . Comme au
chapitre III, on prouve que SCW(M) ne dépend pas du choix de w . Le

foncteur M —— :cw(M) est exact, et il est aisé de prouver comme au lemme

R

.. , LI
précédent que 1l’on a = ‘n'*sew(M) .‘ew(M)
Pour tout w € W , je pose DwM = H°(_Sw, :cw(M)) , et je note D; les derives
du foncteur Dw (les dérivés sont donc calculés dans <¢(B)).

Soit w e W . Il est clair que :cw(_R[B]) est un faisceau d’algebres
cohérentes sur '§w . Il existe donc un unique schéma B(w) , avec un morphisme
affine @: B(W) —— S tel que 1l’on ait +» & (k[(B]) = ¢

w W B(w)
Pour tout ue W, u<{w on a une immersion fermée naturelle

B(u) — B(w) . Pour toute décomposition réduite w de w , on a un diagramme

commutatif (commutant aux restrictions)
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E(W) ———— 1 B(w)

T T

D ) s

w
Comme au chapitre XI on montre

Proposition 26: Soient we W, W une décomposition réduite de w .
1) Le schéma B(w) est affine.
2) Le schéma B(w) est 1’affinisation du schéma E(W).
Dans la suite je poserai R[B(w)] = H°(B(w), 0 B(w)).
Proposition 27.: Soient w € W, w une décomposition réduite
de w, M e ¢(B). On a des isomorphismes fonctoriels
DM = H(B, RIB(WJIeM
H' (S, €, M)
H (D(W), #=(M)).
Démonstration: Le premier isomorphisme résulte du fuit que 1’on a
DM = H° (B, R[B(w)] ® M) de maniere naturelle.
Pour prouver le second morphisme, il suffit de prouver que pour tout injectif
~Z

q,5 ~ _ . P
I € ¢B), ona H (Sw’ :ew(_I)) =0 pour q > 0. Soit j: Sw—----oSw

le
morphisme naturel. Il suffit donc de prouver que 1’on a Hq(_%, j‘fiw(I) =0
pour q > 0 . Par restriction, i est aussi un B(2)-module, et I est
limite de B(Z)-module de type fini. Soit E un tel sous—-module. Il existe un
poids dominant A tel que 1l’on ait H° (§w, EW(E ® Z_A)) =0 pour gq > 0.

On a un morphisme naturel de B(Z)-modules Z — Lz(_/\) ez  , et ce
morphisme est scindé a gauche comme Z-module. On a

I1e1%A) @ Z,=T®LA) @R, , et come T est injectif, le morphisme de
B-modules I —— I ® L(A) ® R—/\ est scindable a gauche. On a un diagramme

commutatif
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HYE , & (1)
w w

Ic

Ee?*Nez )—HYS .2 (IeLiA) ez )
-\ w w —A\

1

9z -
nis, €, (e
a

HY(FE,
w

—p

<

W

On suppose q # 0 . Par hypothése, on a
¥, 2 e %A ez ) = HUFE, 2 (Eez_ ) e 15(A)
w w -A w w A
=0
Donc le morphisme a est nul. Par hypothese le morphisme ¢ est injectif.
Donc le morphisme b est nul. Comme gw est noethérien, la cohomologie

commute a la limite inductive. On a donc Hq(gw, QW(I)) =a pour q > O .

Enfin le troisiéme isomorphisme résulte du lemme 138.

Lemme 140: Soient u, v, w € W avec w = uv et 1(w) = 1(u) + 1(v)

Pour tout M e€ ¢(B) , il existe une suite spectrale E(M) , fonctorielle en
M , avec Eg’q = DE DS M , et qui converge vers D; M.

Demonstration: Soient E, vV des decompositions reduites de u et de v ,

w=uv et m: D(W) —— D(W) 1le morphisme naturel associé. Par le lemme
23-3 et la proposition 28, on a antza(M) = iE(DE M) , pour tout entier q .
Donc la suite spectrale de Leray E(M) assocife &8 =n satisfait

Eg’q(M) = Da D3 M (par la proposition 28) et converge vers D; M.

On peut aussi obtenir le résultat suivant, que je n’avais pas montré en

caractéristique 0 .

Lemme 141: Soient J une partie de I, we WJ et A € P} . Alors on a

1 - 1 - .
H (Sw,J’ xw(A)) =0 pour 1 £ l(w) , et H (W)(SW’J, XW(A)) est un R-module
libre.

Démonstration: Par semi-continuitéd, il suffit de prouver le résultat lorsque

R est un corps parfait en caractéristique p # 0 . Soit 1 # 1(w) . Par le
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théoréme 5, §w T est Cohen—Macaulay. Il existe donc un entier n > 0 , tel
,e
. 1.~ ~
’ -
que 1’on ait H (Sw,J’ :ew(m'\) =0 pour m > n .
Soit q une puissance de p , q 2 n . Comme Sw 3 est scindable, le

b

morphisme naturel H1(§ 2 (A)) —s H1(§ , £ (gA)) est injectif. On a
w W w,J’ w

) J’

donc H1(§ y ¥ (A)) = 0, ce qui prouve le lemme.
w,J W

§3: Géneralisation du théoréme de Kempf:

Je définis (G/B, ¢ comme 1’espace annelé lim

)
G/B =

Soit M e ¢(B) . Pour tout we W, §w est un sous—espace fermé de G/B . Je
peux donc considerer EW(M) comme un faisceau a support dans §w . Je

pose ¢£(M) = £im xw(M) .
WE

Comme au chapitre XV, on prouve que le foncteur M — Z(M) est exact.
Pour tout M € €¢(B) , je pose DM = H°(G/B, £(M)) ,et je note D* 1les dérivées
du foncteur D . Comme au chapitre XV, on prouve pour tout M € ¢(B)

x x

D*M = H*(G/B, £(M))

DDuM = DM, pour tout U e W
et que 1’on a des suites exactes fonctorielles

0 —. lim' DM — p'M ——, 1im D‘lvM—. 0.

WEW W€

Soit J une partie de I . Je pose 1(J) = o si le groupe W(J) est
fini, et je note 1(J) 1la longueur du plus grand élément de W(J) lorsque
W(J) est fini. J’obtiens la géneéralisation suivante du théoréme de
Kempf [35].

Proposition 28: 1) Pour tout A € P, Z(A) est un UG/B—module localement
libre.

2) (R corps) Le morphisme P/K(P) —— Pic(G/B) ainsi déterminé est un

isomorphisme.
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Théoreme 6: 1) Soit A un poids dominant. On a:

H°(G/B, €(-A)) = L(A)* et HY(G/B, (-A))) = 0 pour q > 0 .

2) Soit M e P, et soit J = {i/M(hi) > 0} . On a alors

Hq(G/B, €(M)) =0 pour q < 1(J) .

Démonstration: La proposition se démontre comme au chapitre XVI en utilisant
la proposition 2[. Le point 1 du théoréme résulte, comme au chapitre XV, du
théoréeme 5-3. Pour montrer le point 2, je choisis un élément u € W(J) avec
1(u) > g . Soit X le sous—ensemble de W des éléments de la forme

w 1(w) = 1(v) + 1(u) . Il est clair que X est cofinal. D’apres

I
<
=1
[
<
@
'}

ce qui précéde, on a alors une suite exacte

0 — 1in' 037 'm, —, u%a/B, EM) — lim DZ Ry — O .
WGX w WGR w

Par le lemme 141, on a Di RM =0 pour 1 < 1(u) . Par le lemme 140, on a

1 _
done DWRM—O pour 1 < 1(u), we X .

Ceci montre le point 2 du theoreme.
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Tableau des notations

1) Relatives a4 1’algébre de Kac-Moodv g :

h, b, n, By Yy hi’ h’i, e fi’ Ay, g; @ sous algébres de Lie remarquables
(cf. tableau ch. I).

H, B, N, Pi’ Ui’ Bi’ B'i, Ei’ Fi’ Ai’ Ci : groupes associés (cf. tableau

ch. I).

n : sous-algébre de Lie opposée & n .

2) Relatives au groupe de Weyl W:

€ + W— {21} : caractére déterminant.

¢ : W— N : fonction longueur.

Wj t={fweW/w sj > w pour tout j e J}.
jw : ={fwewW/ sjw < w pour tout j e J}.

W : ensemble des décompositions réduites des éléments de W .
W(J) : sous—groupe engendré par sJ (jeld).

P(w) : ={i eI/ s; ¢ w}.

v(w) : ={fveW/viw et ¢e(v) = e(w) - 1}.

3) Relatives & la réalisation entiére P :

P : {AeP/ A(hi) > 0 pour tout i e I}.

M

Pyt {A€P/A(hj) =0 pour tout ‘je .
P} : {A e P N PJ , A(hj) # 0 pour tout j ¢ J}.

o

Pw : {A e PJ / A(hi) =0 pour tout i € ¥(w) ou we WJ}.

Q : réseau des racines.

+ L NP - . . . .
Q : combinaison linéaire a coefficients entiers > 0 de racines positives.

4 : ensemble de racines.

+ . cas
4 : ensemble des racines positives.
Arﬂ : ensemble des racines réelles.
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Note : La notation PJ est également utilisée a la fin du chapitre IV pour

désigner un sous groupe parabolique.

4) Relatives aux représentations:

V(A) : module de Verma de plus haut poids A .

L(A) @ quotient intégrable maximal de V(A) (A € P+) .

EW(A) :

F@(A) H

U(k) L(A) \ -

i

x
Ew(/\) .
foncteur de Joseph.
D : dual du foncteur de Joseph.

4 : operateur de Demazure.

5) Objects geometriques:

Sw,A : la sous—variétée B.EW(A)W’A dans P Ew(A) .

J(A) ¢ ={1i/ /\(hi = 0}.

Sw'A : la normalisation de Sw,A (o J = J(A)) .

D(w) : la variete de Demazure.
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ABSTRACT

In his 1968 paper about the classification of graded simple Lie
algebras, Victor Kac introduced a new class of Lie algebras ( also
simultaneously appeared in a paper of R.Moody). Now called Kac-Moody
Lie algebras, these new mathematical objects are infinite dimensio-
nal generalizations of semi-simple Lie algebras.

The goal of the paper is to extend some classical results of the
theory of semi-simple Lie algebras to Kac-Moody Lie algebras. In
particular, we will show the following two theorems:

1) Weyl and Demazure' character formulas,

2) Borel, Weil, Bott and Kempf' theorems.

The key point of proofs is identifying the character formulas
with some Euler-Poincaré characteristic dimensions and showing vani-
shing theorems for the cohomology of semi-ample line bundle over
Schubert varieties.We get the results by reducing to finite charac-
teristic and using Frobenius splittings ( following an idea due to

Metha, Ramanan and Ramanathan).
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