Nicholas M. Katz
 Expansion-coefficients as approximate solution of differential equations

Astérisque, tome 119-120 (1984), p. 183-189
http://www.numdam.org/item?id=AST_1984__119-120__183_0

© Société mathématique de France, 1984, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

By

Nicholas M. KATZ

INTRODUCTION.
One of the fundamental themes of Dwork's work is the study of the variation with parameters of the zeta function in a parameterized family of varieties, and of the p-adic cohomology which gives rise to them. A basis example of such a family is the Legendre family of elliptic curves

$$
E: y^{2}=x(x-1)(x-\lambda)
$$

over the ring

$$
R=\mathbb{Z}[1 / 2, \lambda][1 / \lambda(1-\lambda)] .
$$

It was (implicitly) known to Gauss that the differential of the first kind $\omega=d x / y$, viewed as lying in $H_{D R}^{l}(E / R)$, is annihilated by the action of the hypergeometric differential operator with parameters (1/2,1/2,1),

$$
D=\lambda(1-\lambda)\left(\frac{d}{d \lambda}\right)^{2}+(1-2 \lambda) \frac{d}{d \lambda}-\frac{1}{4}
$$

acting on $H_{D R}^{1}(E / R)$ via the Gauss-Manin connection.

One of the early indications of the possible existence of a padic theory was Igusa's discovery ([3]) that in any characteristic $p \neq 2$, the Hasse-invariant $A_{p}(\lambda) \in \mathbb{F}_{p}[\lambda]$ of the same Legendre curve, considered in characteristic p, provided an \mathbb{F}_{p}-polynomial solution of the same differential equation :

$$
D\left(A_{p}(\lambda)\right)=0 \quad \text { in } \quad F_{p}[\lambda]
$$

One knows that the $A_{p}(\lambda)$ for variable p may all be obtained simultaneously from the expansion coefficients of ω at the origin. Explicitly, the quantity

$$
t=1 / \sqrt{x}
$$

provides a formal parameter at the origin for E / R, in terms of which the expansion of ω is given by

$$
\begin{aligned}
\omega=\frac{d x}{y} & =\frac{d x}{\sqrt{x(x-1)(x-\lambda)}} \\
& =\frac{-2 d t}{\sqrt{\left(1-t^{2}\right)\left(1-\lambda t^{2}\right)}} \\
& =-2 \sum_{n \geqslant 0} P_{2 n+1}(\lambda) t^{2 n+1} \frac{d t}{t},
\end{aligned}
$$

with expansion coefficients

$$
P_{2 n+1}(\lambda)=(-1)^{n} \sum_{a+b=n}\binom{-1 / 2}{a}\binom{-1 / 2}{b} \lambda^{b}
$$

Thus we have

$$
P_{2 n+1}(\lambda) \in \mathbb{Z}[1 / 2][\lambda], \operatorname{deg} P_{2 n+1}=n
$$

The relation of the Hasse invariant $A_{p}(\lambda)$ to the P_{n} 's is simply

$$
A_{p}(\lambda) \equiv P_{p}(\lambda) \quad \bmod p
$$

From this point of view, Igusa's observation becomes the statement that

$$
\begin{aligned}
& \nabla(D)(\omega)=0 \text { in } H_{D R}^{l}(E / R) \\
& D\left(P_{p}\right) \equiv 0 \bmod p R, \text { for all } p \neq 2
\end{aligned}
$$

By explicit computation of the P_{N} in this case, the reader can convince himself that one has the more general congruence-differential equation

$$
D\left(\mathrm{P}_{\mathrm{N}}\right) \equiv \mathrm{O} \quad \bmod \mathrm{~N} \cdot \mathrm{R}
$$

for every integer N.

The purpose of this note is to point out that this is a completely general phenomenon.

THE MAIN RESULT.
Let A be a noetherian ring, R a smooth $A-a l g e b r a$, and X a smooth R-scheme, purely of relative dimension $N \geqslant 1$. We suppose given

- a marked R-valued point $O \in X(R)$;
- a set $\left(T_{1}, \ldots, T_{N}\right)$ of local coordinates on X at 0 ;
- a (possibly empty)finite set of R-smooth divisors $D_{j} \subset X$ which have normal crossings relative to R, and which satisfy the following condition : for each j, either D_{j} is disjoint from $O \in X(R)$, or, in a small enough Zariski neighborhood of O, D_{j} is defined by $T_{i}=O$ (for some $i=i(j)$).

On X we dispose of the following complexes, in increasing order of generality :
$\Omega_{\mathrm{X} / \mathrm{R}}^{\dot{\circ}}$, the de Rham complex of X / R
$\Omega_{X / R}\left(\log U D_{j}\right)$, the logarithmic de Rham complex of X / R with respect to the D_{j} 's
and for any collection of integers n_{j}, one for each D_{j}, the complex

$$
\Omega_{X / R}\left(\log U D_{j}\right) \otimes\left(\otimes I_{j}^{-1}\left(D_{j}\right)^{\oplus n_{j}}\right)
$$

where $I^{-1}\left(D_{j}\right)$ denotes the inverse ideal sheaf of D_{j} in X. The third of these includes the previous two as the specal case "no D_{j} 's at all" and "all $n_{j}^{\prime \prime s}=0 "$.

We denote by

$$
H_{D R}^{P}\left(X\left(\log U D_{j}+\sum n_{j} D_{j}\right) / R\right)
$$

the hypercohomology groups of X with coefficients in the complex

$$
\Omega_{X / R}\left(\log U D_{j}\right) \otimes\left(\otimes I^{-1}\left(D_{j}\right)^{\otimes n_{j}}\right)
$$

The Katz-Oda construction [4] of the Gauss-Manin connection carries over mutatis mutandis to this case (simply filter the $\mathrm{X} / \mathrm{A}-$
analogue,

$$
\Omega_{X / A}\left(\log U D_{j}\right) \otimes\left(\otimes I^{-1}\left(D_{j}\right)^{\otimes n} j\right)
$$

by the ideals generated by the pull-backs of the $\Omega \frac{i}{R / A}$, and proceed as in [4]). Thus the cohomology groups

$$
H_{D R}^{P}\left(X\left(\log U D_{j}+\sum n_{j} D_{j}\right) / R\right)
$$

have the structure of R-modules (not necessarily of finite type unless X is assumed proper over R) endowed with the integrable Gauss-Manin connection ∇ relative to A. For any "P-D differential operator" (in the sense of lO]) D on R relative to A, we can thus speak of the A-linear endomorphism

$$
\nabla(D): H_{D R}^{P}\left(X\left(\log U D_{j}+\sum n_{j} D_{j}\right) / R\right) \circlearrowleft
$$

Let us denote by \hat{X} the formal completion of x along O. In terms of the local coordinates T_{1}, \ldots, T_{N}, we have an isomorphism of pointed formal R-schemes

$$
\operatorname{Spf}\left(R\left[\left[\mathrm{~T}_{1}, \ldots, T_{N}\right]\right]\right)<\underset{\sim}{ } \hat{X}
$$

Each divisor D_{j} is either disjoint from \hat{X}, or is defined in \hat{X} by an equation $T_{i}=0$. Therefore if we invert T_{1}, \ldots, T_{N}, we obtain a natural R -linear morphism of complexes
$\Gamma\left(X, \Omega_{X / R}\left(\log U D_{j}+\sum n_{j} D_{j}\right)\right) \longrightarrow\left(\Omega_{R\left[\left[T_{1}, \ldots, T_{N}\right]\right] / R}\right)\left[1 / T_{1}, \ldots, 1 / T_{N}\right]$, which we call "formal expansion at O ".

THEOREM. Let D be a P-D differential operators on R relative to A, $p \geqslant 1$ an integer, and

$$
\omega \in H^{O}\left(X, \Omega_{X / R}^{P}\left(\log U D_{j}+\sum n_{j} D_{j}\right)\right)
$$

a closed p-form on x with the allowed poles along the D_{j} Let us denote by $a(\underline{k}, \underline{w}) \in R$ the coefficients of the formal expansion at O of ω :

If the cohomology class $\tilde{\omega}$ of ω is killed by 0 , i.e., if

$$
\nabla(D)(\tilde{\omega})=0 \quad \text { in } \quad H_{D R}^{p}\left(X\left(\log U D_{j}+\sum n_{j} D_{j}\right) / R\right)
$$

then each expansion coefficient $a(\underline{k}, \underline{w}) \in R$ satisfies the congruence differential equation

$$
D(a(\underline{k}, \underline{w})) \equiv 0 \quad \bmod \sum_{v=1}^{p} w_{k_{v}} R
$$

Proof : By the functoriality of the Gauss-Manin connection we may replace X by an affine open neighborhood of O which is etale over \mathbb{A}_{R}^{N} by $\left(T_{1}, \ldots, T_{N}\right)$, and in which the $D_{j} ' s$, if there are any, are defined by $T_{i}=0$ for various i. Increasing the number of $D^{\prime} s$, we may suppose we have D_{1}, \ldots, D_{N}, with D_{i} defined by $T_{i}=0$. Because x is etale over \mathbb{A}_{R}^{N}, any differential operator D on R has a unique extension \tilde{D} to X which on the subring $R\left[T{ }_{1}, \ldots, T_{N}\right]$ is given by

$$
\tilde{D}\left(\sum a(\underline{w}) \underline{T}^{\underline{W}}\right)=\sum D(a(\underline{w})) \cdot \underline{T}^{\underline{W}} .
$$

The O_{X}-modules

$$
\Omega_{\mathrm{X} / \mathrm{R}}^{\mathrm{p}}\left(\log U \mathrm{D}_{\mathrm{j}}+\sum \mathrm{n}_{\mathrm{j}} \mathrm{D}_{\mathrm{j}}\right)
$$

are O_{X}-free, with basis

$$
\frac{1}{\underset{j=1}{N} T_{j}^{n_{j}}} \frac{d T_{k_{1}}}{T_{k_{1}}} \Lambda \ldots \Lambda \frac{d T_{k_{p}}}{T_{k_{p}}}, \quad l \leqslant k_{1}<\ldots<k_{p} \leqslant N
$$

We extend \tilde{D} to the entire complex

$$
{ }^{\Omega} \dot{X} / R\left(\log U D_{j}+\sum n_{j} D_{j}\right)
$$

by defining, for $f \in O_{X}$,

It is transparent from the definitions that this action of $\tilde{\mathcal{D}}$ induces $\nabla(D)$ on the cohomology. Therefore, if ω has formal expansion

$$
\omega \sim \sum_{\underline{k}, \underline{w}} a(\underline{k}, \underline{w}) \underset{i}{\Pi} T_{i}^{w_{i}} \underset{v}{\Pi} \frac{d T_{k}}{T_{k}},
$$

it is obvious by T-adic continuity that $\tilde{\mathcal{D}}(\omega)$ has formal expansion

$$
\tilde{D}(\omega) \sim \sum_{\underline{k}, \underline{w}} \mathcal{D}(a(\underline{k}, \underline{w})) \prod_{i} T_{i}^{w_{i}} \prod_{v} \frac{d T_{k_{v}}}{T_{k_{v}}} .
$$

This being the case, the hypothesis

$$
\nabla(D)(\tilde{\omega})=0 \quad \text { in } \quad H_{D R}^{P}\left(X\left(\log U D_{j}+\sum n_{j} D_{j}\right) / R\right)
$$

guarantees that the formal differential form over R

$$
\sum_{\underline{k}, \underline{w}} D(a(\underline{k}, \underline{w})) \cdot \sum_{i} T_{i}^{w_{i}} \underset{v}{\pi} \frac{d T_{k_{v}}}{T_{k}}
$$

is formally exact. Writing it as the exterior derivative of a formal ($p-1$)-form over R and equating coefficients yield the asserted congruences on the $\mathcal{D}(\mathrm{a}(\underline{\mathrm{k}}, \underline{\mathrm{w}}))$. Q.E.D.

REFERENCES

[O] P. BERTHELOT, Cohomologie cristalline des schémas de caractéristique p > O. Springer Lecture Notes in Math. 407, SpringerVerlag (1974).
[l] B. DWORK, A deformation theory for the zeta functions of a hypersurface, Proc. Int'l. Cong. Math. (1962), 247-259.
[2] B. DWORK, P-adic cycles, Pub. Math. I.H.E.S., Paris, 1969, 27-116.
[3] J. IGUSA, Class number of a definite quaternion with prime discriminant, Proc. Nat. Acad. Sci. 44 (1958), 312-314.
[4] N. KATZ and T. ODA, On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ. 8 (1968), 199-213.
[5] J. I. MANIN, The Hasse-Witt matrix of an algebraic curve, A.M.S. Translations (2), 45, 245-264.
N.M. KATZ

Princeton University Dept.of Mathematics
Fine Hall
PRINCETON , N.J. 08540
U.S.A.

