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P-ADIC THETA SERIES WITH INTEGRAL COEFFICIENTS 

Valentino CRISTANTE 

O. INTRODUCTION. 

Let R be the ring of the integers of a local field K, let k be 
its residue field, and assume k be perfect of characteristic p ^ 0. 
If A is an abelian variety over K with good reduction mod p, we will 
denote by A Q its reduced variety, by e and eQ the identity of A and 
A Q respectively, by 0Q the local ring of A at eQ and by S its comple­
tion. So, if A has dimension n, S = Rlt1,...,tnl, where (t.^,t2,...,tR) 
is a set of uniformizing parameters of A at eQ. 

Now, if X is a divisor of A , rational over K, and if we denote 
by 6 a theta of in = Klt,,...,t J (we are assuming that the 

A is. 1 n 
polar part of X doesn't go through e ) , a natural question arises : is 
it possible to choose e in S ? The answer, in general, is no. In 

A 
fact, if 0V e S, the image of e v in S0 = S®k would be a theta of the 

A A U 

image XQ of X in A Q . But, as shown in [7 ], if A Q is not ordinary, or 
if XQ f 0, the thetas of XQ live in a ring quite bigger than SQ. So, 
if we are looking for a positive answer to our former question, we 
must assume A Q be ordinary. In fact, with this assumption, denoted 
by D = (D1,...,Dn) a basis of the R-module of the invariant deri­
vation of A , and by (n, v, ,n„ v) the n-uple of integrals of the 
second kind corresponding to the couple (X,D) (see section 3. for a 
precise definition), we will show that the system of differential 
equations 0.1. D.e - вгьх = о, i = 1,2,...,n , 

has solutions in S. However, we will not use a direct approach to 
0.1. In fact, if we denote by p^, i= 1,2,3, the projections from A3 
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V. CRISTANTE 

to A, and if p* are the corresponding applications from S to S ® s 6 s , 
the system 0.1 is equivalent to the functional equation 

0.2 
( < P 1 + P 2 + P3>*e> < p * e ) ( P * e ) ( P * e ) 

((P1+P 2 ) * e )((P1+P 3 ) * e )((P2+P 3 ) * e ) 
= F , 

where F is an equation of the divisor 

Y = (P1+P2+P3)"1X + p^1X+p21X + p31X- (px+p2) 1X-(p1+p3) 1X-(p2+p3)"1X 

3 
of A . Now, in wiew of the cohomological properties of F, the equa­
tion 0.2 is not only much more easier to solve than O.l, but also 
allows to understand that 0.1 has solutions even in a more general 
situation. 

After the construction of the solutions of 0.2, we will show how 
these are related to the canonical decomposition of HDR(A) (see [9 ] 
and [4]), and finally we'll give some explicit computation for the 
elliptic curves. 

An analogous construction has been done by P. Norman using dif­
ferent techniques ; here I'd like to thank him for the useful conver­
sations we had on these topics. 

1. SPLITTING OF BI-MULTIPLICATIVE CO-CYCLES. 
Let R be a commutative ring with identity, t = (t^...,tn) a 

set of indeterminates over R, and let S = Rlt 1 be a R-bi-algebra. 
For short, the image of t in S « S given by the coproduct will be 
denoted by t. 4- t9 . 

1.1. DEFINITION. An element H = H(t1,t2,t3) G S $ s S s is called  
a symmetric, bi-multiplicative (resp. bi-additive) co-cycle of S if 

i) H(0,t2,t3) = 1 (resp. H(0,t2,t3) = 0) ; 

ii) H(t1,t2,t3) =H(tQ ,t0 ,ta ), for each permutation o e<!3 ; 

iii) H(t +t2,t3,t4)H(t ,t2,t4) =H(t ,t2+t3,t4)H(t2,t3,t4) (resp. 

H(t1+t2,t3,t4)+H(t1,t2,t4) =H(t1,t2+t3,t4)+H(t2,t3,t4)) . 
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Moreover, if there exists an element h e s such that 

1.2 
h(t1+t2+t3)h(t1)h(t2)h(t3) 

h(t1+t2) h (tx+t3) h (t2+t3) 
= H 

(resp. h(t1+t2+t3) +h(tx) + ... -h(t2+t3) = H) the co-cycle H is 
called a co-boundary of S. Later on the left hand side of 1.2 will be 

2 2 denoted by 3 h (resp. <©ah) . 

For instance, if R and t have the same meaning as in the intro­
duction, and if X is a divisor of A such that its reduced mod p 
doesn't go through eQ , one can choose for F (cfr. 02) a symmetric, 
bi-mult. co-cycle of S (see^[7] and [5]). So our main goal in this 
section will be the proof of the following. 

1.3. THEOREM. Let R be the' ring of the Witt vectors with components  
in the algebraically closed field k of characteristic p ̂  0 , and 
S = RfftJ be a multiplicative bi-algebra. Then each symmetric, bi-
multiplicative co-cycle of S is a co-boundary of S. 

The assumption about the algebraic closure of k seems necessary 
if we like results which can be applied to each divisor. Later on we 
will show that symmetric divisor possess theta series with integral 
coefficients even if k is only a perfect field. 

In order to prove 1.3 we need some results which are given in 
theorem A.4 and section 2 of [5 ]. With our actual language they can 
be formulated in the following way : 

1.4. THEOREM. If R is a Q-algebra, each symmetric, bi-multiplicative  
(resp. bi-additive) co-cycle H off S is a co-boundary of S. 

1.5. THEOREM. If R is an algebraically closed field of characteristic 
p ^ O , and if S is a multiplicative bi-algebra, then each bi-multipli­
cative co-cycle H of S is a co-boundary of S. 

If R is algebraically closed field of characteristic 0, and if 
A is an abelian variety over R, result 1.4, under the assumption that 
H be a rational function on A**, was first proved in [2]. 
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V. CRISTANTE 

Since the symmetric, bi-additive co-cycles are more easy to use, 
we start with the following result : 

1.6. PROPOSITION. Let S be as in 1.3 ; then each symmetric bi-additi­
ve co-cycle of S Q = S ® k is a co-boundary of S Q . 

In fact, as the following arguments will show, from 1.6 we 
deduce the following 

1.7. PROPOSITION. Let S be as in 1.3 ; then each symmetric, bi-ad­
ditive co-cycle of S is a co-boundary of S. 

An finally, from 1.7 we can get 1.3. 

Proof of (1.6 = > 1 . 7 ) . Let H e S & S & S be a symmetric, bi-addi­
tive co-cycle of S. Denote by HQ the image of H in SQ » SQ ® SQ ; now 
as H Q is a co-boundary of SQ , there exists an element n0 G S Q ' 
such that <2>?h_ = . If h is an element of S whose image in S^ is a 0 0 0 o h^ , and if H. = ®_.h , we have H = H. mod p ; and then, since 

~ (H-H1) is a symmetric, bi-additive co-cycle of S, our procedure may 
be repeated. As a consequence. 

H = n1 + pH2 + p H 3 + , 

is a co-boundary of S, Q.E.D. . 

Proof of (1.7 = ^ 1 . 3 ) . Let F e S $ S $ S be a symmetric, bi-multi-
plicative co-cycle of S, and denote by F Q its canonical image in 
S ^ ^ S ^ ^ S ^ . By 1.4 we know that F~ is a co-boundary of S ^ , so there u u u 2 + exists eQ in S Q , s.t. <2)̂  eQ = F Q . Now, denote by S the kernel of 
the coidentity of S, and let e1 be an element of S, 0' = 1 mod S + , 

2 
whose image in S Q is 6Q . If we denote by F 1 the co-boundary 3)^ 0* 
of S, we have 

F / F 1 = mod p , 

and therefore 
log F = log F1 + pH , 
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where H is a symmetric, bi-additive co-cycle of S. Now, by 1.7 there 
2 

exists an element h e s , s.t. ^ h = H ; and it is clear that 
2 

6 = 0 ' exp ph is an element of S which satisfies the equation & 6 = F, Q.E.D. . 

Now will give a lemma which will be used the proof of 1.6. 

1.8. LEMMA. Let B be an integral domain, of characteristic p ̂  0 , 
B It^, . . ., tn 1 a multiplicative bi-algebra ; then each symmetric ad­
ditive co-cycle of B[t B is a co-boundary. 

Proof. This result is probably well known ; neverthless we'll give 
here a direcrt proof. Let g be such a co-cycle. Using the co-cycle 
property g(t1+t2,t3) +g(t1,t2) = g C t ^ t ^ t ^ +g(t2,t3) , it is 
immediate to see that (pt Spc)g is a co-boundary (pi = multiplica­
tion by p) , i.e. there exists an element T G B ft ]J such that 

T(t1+t2) - T(tx) - T(t2) = g(p L t1 , p e t2) . 

From the last formula we deduce that 

1.9. DT - e (DT) = 0 

for each invariant derivation D of Bit!, where e is the co-identity. 
But, as Bltlis multiplicative, 1.9 implies that D T = 0 , and so x=ptai 
for a e Bfft J. In conclusion a(t1+t2) - a f t ^ -a(t2) =g(t1,t2) , 

Q.E.D. . 

Proof of 1.6. Let H e SQ ® SQ & SQ be a symmetric bi-additive co-cycle 
of SQ ; then by 1.8 there exists a (unique) element cp in SQ®SQ , 
such that 

1.10. Cf(tx,t2+t3) - cj>(t;L,t2) - <f>(t1,t3) = H . 

Now, if y e S Q ® S Q © SQ is the element defined by 

y(t1,t2,t3) = cf(t1,t2+t3) + 9<t2,t3) - Cf(t1+t2,t3) - sr(t1,t2) , 

as a consequence of the co-cycle properties of H (see def. 1.1) we 
have 
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u(tx, t 2 ,t3+t4) = u(tlft2,t3) + u(tlft2,t4) . 

But, since S0®klt1,t2l is a multiplicative k , t2 J-bi-algebra, 

from the last formula we deduce that u = 0 . As a consequence, recal­

ling also point ii) of 1.1, we conclude that is a symmetric, addi­

tive co-cycle of S Q ; so using 1.8 again we have 

<f,(t1,t2) = x(t1+t2) - T(t1) - T(t2) , 

and finally <©^T = H , Q.E.D. . 

1.11. Remark. Let S as in 1.3, and u = (u1,...,un) be a basis of 

the integrals of the first kind of S, i.e. a basis of the R-module 

of the additive elements u of Sv = S ê K such that Du is in S for 

each invariant derivation D of S . If F is a symmetric, bi-multipli-

cative co-cycle of S, and if 8 G S is a solution of the equation 

1.12. <2>u2e = F . 

each solution of 1.12 in S„ is of the form 0 exp(L(u) + Q(u)), where 
.K. 

L(u) and Q(u) are linear and respectively quadratic forms of the u|s. 

Now, since in S there is no element of the form expQ(u) (see [MA]), 

we conclude that all solutions of 1.12 in S are of the form 0 expL(u). 

Now we'll show that, if 1.12 admits a even solution, i.e. inva­

riant with respect to the inversion of SR , it is sufficient to assu­

me k perfect ; more precisely we have the following. 

1.13. THEOREM. Let k be a perfect field of characteristic p ̂  0,2 , 

let R be the ring of the Witt vectors with components in k , and 

S = Rlt1,...,tn] be a bi-algebra of multiplicative type. Then if F 

is a symmetric, bi-multiplicative co-cycle of S, such that 

F(t1,t2,t3) = F(-t^,-t2,-t3) (-t is the image of t given by the in­

version of S) , the equation 1.12 has a unique solution 8 e S which  

satisfies the relation 

1.14. r\j f\, 

0(t) = 0(-t) . 

Moreover if 0eS__ (K=FracR) is a solution of 1.12 which satisfies 
• J\ — — — — — — — — — — — — 

1.14 we have 
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1.15. 
ru r > 2 n 

e = lim e / ( p i ) " n e p 

'Xi 

finally, the direct relation between e and F is the following : 

1.16. 
pn-l n . 

0 = lim(pL)"n(l / n F ( t , - t , J L t ) P "]) 

n-M» j = l 

where the limits 1.15 and 1.16 are considered in the topology of 

lim(S Pl > S -£̂ -> . . .) given by the system I = tmS + pns of ideals 

of S. 

Proof. Let R be the ring W(k) of the Witt vectors with components in 

the algebraic closure k of k . By 1.3 we known that there exists a 

solution e(t) of 1.12 in R|[t 1 ; but in wiew of the properties of F , 

also 9(-t) is a solution of 1.12, and so e(t)ly/2 B(-t)1^2 is a solu­

tion of 1.12 which satisfies 1.14. Now, each element of R([tlwhich 

satisfies 1.14 is a even power series of u (see 1.11) ; therefore it 

can't be multiplied by an exponential of a linear form L(u) without 

loosing the property 1.14. As a consequence 1.12 has a unique solu­

tion in RjtJ such that e (t) = 9 (-t) . Now we'll show that e' is in 

R[tl. In fact by 1.1, if 0 is a solution of 1.12 in S„ which satis-

fies 1.14, we have 

1.17. 
2n pn-l n . 

0(t)p / (pL)n0(t) = n F(t,-t,j L t ) P ~3 , 
i=i 

for each n >1 . So the remaining part of the theorem will be proved 

if we verify that 

1.18. e'(t) = lim e(t) / (pO~n0(t)p . 
n+°° 

Now the relation between 0 and 0 must be 0 = 0expQ(u) , where Q(u) 

is a quadratic form. 

2n 2n 
But lim (pt) 0P = 1 , and lim(pt) (expQ(u))p = expW(u) , Q.E.D. . 

n-»-00 n-*«> 

1.19. Remark. With the notation of 1.17 also the limit 

1.20. 
P _1 r n . 2n 

lim ÏÏ F(t,-t,j L t)lp "1^/p 
n-V(» j = l 

175 



V. CRISTANTE 

exists in SK : it gives the (unique) solution 0 Q of 1.12 in SR which 

satisfies 1.14 and the initial condition 

e(D1D loge) = 0 , 

for each couple (D, D1) of invariant derivations of SR. in fact, in 

order to show that 1.20 exists, we remark that by 1.14, 0 =1+Q(u)+..., 

where Q is a quadratic form ; as a consequence 

lim 
fd 

1 

P2nkjhjt 
lim log(pL)N0 = Q(u) , 

and finally 

0 Q = 0 / exp Q(u) . 

This is the procedure used in [10] ; but in general 0 Q isn't 

in S . 

1.15. Remark. Let )¥ be the completion of the perfect closure of 

SQ = S à k and B i v ( ^ ) the completion of the ring of Witt bivectors 

with components in *5 • Using the methods described in [12 ] (see in 

particular th. 8.1) on can define a canonical embedding j of a sub-

ring of S„ , containing all solutions of 1.12, in Biv('J) . In such 

situation 0 is characterized by the property J 0 ^ W ( , j ) . Since 1.12 

has solutions with this pecularity also when SQ is a affine algebra 

of a general B-T group, it would be interesting to describe the func­

tions (series) which correspond to them. 

2. THETA SERIES. 

In this section we'll translate the previous results in a geo­

metric language. 

2.1. THEOREM. If k, K and R have the same meaning as in 1.13, if A 

is an abelian variety over K with good reduction mod p, and if the  

reduced variety AQ is ordinary ; then each divisor X of A, rational  

over K, has a theta series in R((t)), where R is the ring of the  

Witt vectors of the algebraic closure k of k, and t = (t^ . • «,t ) is  

a set of uniformizing parameters of A at the identity point eQ of AQ. 

Moreover if X is totally symmetric, i.e. if there exists X' , s.t. 
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X = X1 + (-t)'"1x,/ X possesses a theta series in R( (t)) , Q which 

satisfies the relation ex(t) = 0x(~t) . The series 9 is determined  
up to a constant. 

Proof. We'll assume that the support of the reduced divisor XQ 
doesn't intersect e^ ; in fact the result in general is an immediate 
consequence of this particular situation (see remark 2.2). If Y has 
the same meaning as in the introduction, as remarked in section 1, we 
can choose as an equation of Y a symmetric, bi-multiplicative co-
cycle F of S. At this point it is clear that the first part of the 
theorem is a consequence of 1.3. Now if X is totally symmetric, 
F(-t1,-t2,-t^) is, as F, an equation of Y, which satisfies i) of 
0.1, and so F(-t^,-t2,-t^) =F(tlft2,t3) . As a consequence, the 
second part our theorem follows immediately by the first part of 1.13, 

Q.E.D. . 

2.2. Remark. The assumption supp XQ n E Q = 0 used in the proof of 
2.1 is not necessary. In fact each divisor X' of A rational over K 
can be written as X' = X"+ (f), where X" satisfies the assumption and 
f is in R((t)) . In this case we define 6X, = 9xnf • In particular. 

if X = X' + (-c)""1x, 6Y(t) = 6 . (t) f(t)f(-t) 
* X"+(-t)"1X" 

is determined 

up to a multiplicative constant. Finally, if the polar part X"' of X 
satisfies the previous assumption, i.e. supX^'n eQ = 0, R((t)) and 
R((t)) can be replaced by Rfft J and Rjt 1 respectively. 

3. THE CANONICAL SPLITTING OF H^R(A) ASSOCIATED TO 6. 

With the notations and assumptions of 2., we recall that to A 
and S are associated the free R-modules H* (A) and H^_(S) of rank 2n 

UK. U K 
and n respectively. For our purposes, the more convenient description 
of them is the following (see [3 ] and [4 ]) : we start with two sub-R-modules of • = K[tJ : the first is 

I2(A) = (f G SR I df is a diff. of S, and f l t ^ l - f (t^-f (t2) €K(A2)} ; 

the second is 
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I 2 ( S ) = (f e S R | df is a diff. of S, and f (tj+tj)-f (t^-f (t2) e S ® S } . 

Clearly I2^A^ contains the local ring 0Q of A at eQ, and ^ ( S ) 
contains S. With these notations, we have : 

H £ R ( A ) = I2(A)/0Q and H ^ R ( S ) = I 2 ( S ) / S . 

Now let 1 1 be the sub-R-module of I 2 ^ A ) (and of I 2 ( S ) ) given by the 
additive elements : 

1 1 = {f e I2(A) | f (t1+t2)-f (t1)-f (t2) = 0 } . 

It is well known that ^ is a free R-module of rank n, and that 
I. n s = {o} . Therefore, by a comparison of the ranks, we conclude that 
the canonical map of I2(A) in H D R ( S ) is surjective, that 
I2(A) = I 1 © (I2(A) H S ) , and finally that 

3.1. HDR(A) = II® (I2(A) nS) / °o 1 

this is the canonical splitting of H3 . _ (A) . Now we'll show how the 

sub-R-module N = (I2(A) ns)/0Q of H^R(A) is related to the theta 
series. 

3.2. THEOREM. Let A be an abelian variety as in 2.1 ; let X > 0 be a  
totally symmetric, ample divisor of A rational over K, and  
and e (one of) its theta series in S. If Lie(S) denotes the 
R-module (dual of I^) of the invariant derivations of S, then the 
image of the map X : D > Dloge of Lie(S) in S is contained in 
I2(A) . Moreover, if N^ denotes the image of X(Lie(S)) in H*R(A) , 
we have 9 

N = {f | f e H^R(A) , pnf e N^ , for some n e w ) . 
6 

Proof. As in the proof of 2.1 we'll assume, for simplicity, that 
Supp XQ n eQ = 0 . So we can assume e = l mod S , and therefore 

3.3. N = {f | 

is a symmetric, bi-multiplicative co-cycle of S which is in K ( A ^ ) . 
Now, if we transform both therms of 3.3 by the operator ( ffet®* eD) log. 
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and successively by (LÔ eD') / where D, D1 e Lie(S) , we have 

3.4. (L® L3 eDUogFft, ,t0,tj = (Dloge') (t.+t0)-(Dloge) (t. )-(Dlog6 ) (t0) + 

- e(Dloge) , and 

3.5. ( iô eD' *eD)logF(tlft2,t3) = (DD'loge) (t±) - e(DD'loge) , 

which say precisely that Dloge is in I2(A) . Since 8 G S , X(Lie(S)) 

is contained in S, and so is contained in N . Finally, since X 
e 

is ample X(Lie(S)) is a free R-module which doesn't intersect e Q 

(see [1 ] and [6 ]), so by comparing the ranks we conclude that 

is isogenous to N, Q.E.D. . 

3.6. Remark. If A is the determinant of the map Lie(S) —> N, ||l/A||p 

is the separable degree of the polarization associated to XQ (cfr. 

[MA]). So, in particular, if A is principally polarized, one can 

choose X in such a way that N = N% . 

3.7. Remark. Let G1 and G^t be the local an the étale component of 

the Barsotti-Tate group G of the reduced abelian variety AQ . By 

results on the crystalline cohomology (see [3] and [9 ]) , H:!:_(A) 

a UK. 

is canonically isomorphic to the Dieudonné module D(G) and H* (S) is 
DJK 

canonically isomorphic to the Dieudonné module D (G, ) . Moreover the 
1 1 

canonical map from HDR(A) onto HDR(S) corresponds to the projection 

D(G) =D(G1) ©D(Ggt) >D(G1) ; therefore NQ as Dieudonné module, is 

isogenous to D(G^t). As a consequence, if V denotes the Verschiebung 
of H*R(A) and Dloge the image of Dloge in H*R(A) , we have 
lim V1 (Dloge ) = 0 , for each D£Lie(S) . 

4. AN EXAMPLE. 

Let 3Fp be the Galois field with p elements, p^2, and let XQ be 

an intederminate over Fp . We shall denote by k the perfect field 

2 

Fp(X0 ' A0/P ' XQ/P bv R-W(k)' the ring of the Witt vectors 
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with components in k, and by X an element of R whose image in k is 

XQ . Now we consider the cubic over K = FracR , whose affine 

equation is 

i) y2 = (1 - x2) (1 - Xx) . 

If we choose as identity the point e of coordinates x=0, y=l, (E^,e) 

is an abelian variety which satisfies the request of 3.2. Moreover 

2e is a totally symmetric divisor which gives a principal polari-

^ 1 

zation, and so the image of Dlog62e in HDR(E^) spans N (see th. 

3.2). This, in wiew of 3.7, is equivalent to saying that the image 
a! i 

Dlog92e is an eigenvector of the Frobenius of HDR(E^) corresponding 

to a unit eigenvalue. So, as remarked also by Norman (see [11]) , 

Dlog^2e spans the Dwork's sub-crystal of H*R(E^) (see [8] and [9]). 

The aim of this example is to give an explicit computation for 

Dlog62e . 

Since x is a uniformizing parameter of E^ at eQ , a basis of 

(E, ) is given by the canonical images of two series u and v of 

the following type : 

CO 

u = I (c./ijx1 
i=l 1 

and v = 
00 

I (b./Dx1, 
i=l 1 

where c. and b. are in R . 

In particular we can choose u and v in such a way that du = dy/y and  

dv = xdx/y ; with this choice bi = £¿-1 ' if i> l' and b 1 = 0 . 

Now let e (x) GRffxJ be a theta series of 2e (see th. 3.2) and 

let D be the derivation of S defined by Du= 1 . By 3.2 

ii) D8 / 0*= v + au , mod R( (x) ) , 

where a is in R. Since D6/0 - 2Dx/x e Rllx I , we deduce that 

iii) v + a u = 0 , mod Rlx ] . 

The relation iii), as shown in [4 ], allows to compute a : 

a = - lim c . / c ^ . 
i-*» p -1 p 
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To finish, let us show how the image of v + au may be recovered 
from each theta, $, of 2e which satisfies the property $. 
As we have shown in 1.13, there exists a constant $, such that 

iv) $ {f |e H^R( mod $ ,N = {f | f e H^R( 

and so 

v) D0/G + bu = 0 , mod R((x)) . 

The relation v) determines b. In fact if z = expu - 1, and if 
oo 

log(6/x2) = \ a.z"*" , v) is equivalent to 
i=l 

vi) (1+z) 
oo 

I ia.z1"1 
i=l 1 

OO 

+ h I (-l)i_1zi/i = 0 , 
i=l 

mod Rlx 1 ; 

and therefore 

b = - lim p1((p1+l)a i + p ^ .) . 
i-*-°° p +1 p 
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