Some remarks on the structure of the Lie algebra of formal vector fields
Structure transverse des feuilletages, Astérisque, no. 116 (1984), pp. 190-194.
@incollection{AST_1984__116__190_0,
     author = {Reinhart, Bruce L.},
     title = {Some remarks on the structure of the {Lie} algebra of formal vector fields},
     booktitle = {Structure transverse des feuilletages},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {116},
     year = {1984},
     zbl = {0572.17007},
     mrnumber = {755170},
     language = {en},
     url = {http://www.numdam.org/item/AST_1984__116__190_0/}
}
TY  - CHAP
AU  - Reinhart, Bruce L.
TI  - Some remarks on the structure of the Lie algebra of formal vector fields
BT  - Structure transverse des feuilletages
AU  - Collectif
T3  - Astérisque
PY  - 1984
DA  - 1984///
IS  - 116
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1984__116__190_0/
UR  - https://zbmath.org/?q=an%3A0572.17007
UR  - https://www.ams.org/mathscinet-getitem?mr=755170
LA  - en
ID  - AST_1984__116__190_0
ER  - 
%0 Book Section
%A Reinhart, Bruce L.
%T Some remarks on the structure of the Lie algebra of formal vector fields
%B Structure transverse des feuilletages
%A Collectif
%S Astérisque
%D 1984
%N 116
%I Société mathématique de France
%G en
%F AST_1984__116__190_0
Reinhart, Bruce L. Some remarks on the structure of the Lie algebra of formal vector fields, in Structure transverse des feuilletages, Astérisque, no. 116 (1984), pp. 190-194. http://www.numdam.org/item/AST_1984__116__190_0/

1. J. Brezin and C. C. Moore, Flows on homogeneous spaces : a new look, to appear. | MR | Zbl

2. S. G. Dani, Kolmogorov automorphisms on homogeneous spaces, Amer. J. Math. 98(1976), 119-163. | DOI | MR | Zbl

3. S. G. Dani, Spectrum of an affine transformation, Duke J. Math. 44(1977), 129-155. | DOI | MR | Zbl

4. I. M. Gelfand, D. I. Kalinin, and D. B. Fuks, Cohomology of the Lie algebra of Hamiltonian formal vector fields, Functional Analysis and Applications 6(1972), 193-196. | DOI | Zbl

5. C. C. Moore, The Mautner phenomenon for unitary representations. Pacific J. Math. 86(1980), 155-169. | DOI | MR | Zbl

6. C. L. Terng, Natural vector bundles and natural differential operators, Amer. J. Math. 100(1978), 775-828. | DOI | MR | Zbl

7. V. V. Vagner, The classification of simple differential geometric objects (Russian), Dokl. Akad. Nauk S.S.S.R. 49(1949), 293-296. | MR | Zbl