Astérisque ## HIROO SHIGA # **Rational homotopy types of cofibrations** Astérisque, tome 113-114 (1984), p. 298-302 http://www.numdam.org/item?id=AST_1984__113-114__298_0 © Société mathématique de France, 1984, tous droits réservés. L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ #### RATIONAL HOMOTOPY TYPES OF COFIBRATIONS #### Hiroo SHIGA #### l. Main results. In this note we study the rational homotopy types of cofibrations. Spaces are always assumed to be connected and simply connected CW-complex and cohomologies are those with rational coefficient. The rational homotopy type of a space is described by Sullivan's theory of minimal model. A space is called a formal space if its minimal model can be constructed by its cohomology ring ([1]). Let X be a formal space and m(X) be its minimal model. Then there is a D.G.A. homomorphism $\rho_X: m(X) \to H(X) \quad \text{which induces an isomorphism on the cohomology. There is also a decomposition in each degree i , <math>m^i(X) = \emptyset \quad w^i_j \quad \text{such that} \quad w^i_j \cdot w^m_k \subseteq w^{i+m}_{j+k}$, $dw^i_i \subseteq w^{i+1}_{i-1} \quad ([2], [3]).$ Let Y a finite complex and formal and $f: Y \to X$ be a map. In general the cofiber of f is not a formal space, so we introduce the following condition: (P) There is a decomposition $m^i(X) = \bigoplus W^i_j$ and ρ_Y as above such that ρ_Y f: $m(X) \to H(Y)$ satisfies $\rho_Y f | W^i_j = 0$ for $j \geqslant 2$. Here we use the same notation f for the induced map between minimal models. Then we have THEOREM: The cofiber $X \cup CY$ is a formal space if the condition (P) is satisfied. If there are ρ_X and ρ_Y such that ρ_Y of = f* o ρ_X then f is called a formal map. A formal map satisfies condition (P). Hence COROLLARY 1: The cofiber of f is a formal space if f is a formal map. #### RATIONAL HOMOTOPY TYPES OF COFIBRATIONS This answers to a problem listed in [4] under the assumption that Y is a finite complex. Theorem is proved by reducing to the case where f* is surjective. ### 2. Proof of Theorem. The proof of Theorem consists of two steps: - A. Reduction to the case where $\rho_{\mathbf{Y}}$ of : m(X) \rightarrow H(Y) is surjective. - B. Reduction to the case where f * is surjective. First we prove step A. Let I_1 be an ideal of H(Y) generated by the image of ρ_{Y} of and J_1 be a quotientring of H(Y) by I_1 . Let Y_l and Z_l be formal spaces whose cohomology rings are isomorphic to I_1 and J_1 respectively. Then we have a cofibration $$z_1 \xrightarrow{q_1} y \xrightarrow{p_1} y_1$$ where q_1 and p_1 are formal maps which induce the quotient map and the inclusion map on cohomologies. Since q_1^* o ρ_Y of: $m(X) \to H(Z_1)$ is null homomorphism q_1 f is null homotopic by Theorem (1.2) in [1]. Hence f factors through Y_1 as follows: Then we have a homotopy commutative diagram of cofibrations. By considering the horizontal cofibers we have a rational homotopy equivalence: $$x \cup cy$$ $(x \cup cy_1) \lor sz_1$ where ${\rm SZ}_1$ is a suspension of ${\rm Z}_1$ and it has a same rational homotopy type of wedge of spheres. Next we take an ideal I_2 of I_1 and do the same process. Proceeding this process we arrived at the situation where image of $\rho_{Y_{n-1}}$ o f_{n-1} is itself an ideal in I_{n-1} since $\dim H(Y) < \infty$. Then we have a space Y_n and a map $f_n: Y_n \to X$ such that ρ_{Y_n} o $f_n: m(X) \to H(Y_n)$ is surjective and rational homotopy equivalence: $X \cup CY \to (X \cup CY_n) \vee S^k$ i. Now we prove step B. We take an ideal I_{n+1} of $H(Y_n)$ generated by the image of f_n^* and J_{n+1} be a quotient ring of $H(Y_n)$ by I_{n+1} . Let Y_{n+L} and Z_{n+1} be a corresponding formal spaces. Then we have a diagram: where c_{n+1} is a natural map and we have a map f_{n+1} such that p_{n+1} o f_{n+1} is homotopic to c_{n+1} o f_n . By similar way as in step A we have a rational homotopy equivalence Proceeding this process we have a cofibration $$\mathbf{Y}_{n+k} \rightarrow (..(\mathbf{X} \cup \mathbf{CZ}_{n+1})..) \cup \mathbf{CZ}_{n+k} \rightarrow (..(\mathbf{X} \cup \mathbf{CZ}_{n+1})..) \cup \mathbf{CY}_{n+k}$$ such that f_{n+k} and rational homotopy equivalence. $$X \cup CY_n \longrightarrow (X \bigcup_{n+1}^{n+k} CZ) \cup CY_{n+k}$$ #### RATIONAL HOMOTOPY TYPES OF COFIBRATIONS where X $$\bigcup_{n+1}^{n+k}$$ CZ denotes (..(X \cup CZ_{n+1})..) \cup CZ_{n+k}. Now we need to show PROOF: By condition (P) any element in $H(Z_i)$ is in the image of $q_i^* \circ \rho_{Y_{i-1}} \circ f_{i-1}(W_l^*)$. Hence any product of elements in $H(Z_i)$ is zero. Therefore by formality Z_i is a wedge of spheres. Next we show the formality of n+k $X \cup CZ$. There is an a selfmap $P_t : Z_{n+1} \to Z_{n+1}$ such that $P_t^* = t^{i+1} : H^i(Z_{n+1}) \to H^i(Z_{n+1})$ and grading automorphism $G_t : m(X) \to m(X)$ such that $G_t \mid W_i^i = t^{i+j} \operatorname{Id}$. Then by condition (P) we have a homotopy commutative diagram: and a map G_t^{n+1} such that $(G_t^{n+1})^* = t^i Id$ on $H^i(X \cup CZ_{n+1})$. Hence X \cup CZ $_{n+1}$ is a formal space. By induction we can show that X \cup CZ $_{n+1}$ is a formal space. This ends the step B. Now we consider the case where f is surjective. Let Y \xrightarrow{f} X \xrightarrow{g} Z be a cofibration such that f^* is surjective. Let A(Z) be a kernel of $f:m(X)\to m(Y)$. Then A(Z) is a free D.G.A. quasi-isomorphic to m(Z). Since c^* is injective the map $\rho_X \mid A(Z):A(Z)\to H(X)$ induce isomorphism on H(Z). Hence Z is a formal space and this completes the proof of Theorem. #### REFERENCES - [1] P. DELINGNE, P. GRIFFITH, J. MORGAN and D. SULLIVAN. Inv. Math. 29 (1975). - [2] H. SHIGA. J. Math. Soc. Japan. 31 (1979). ## H. SHIGA - [3] D. SULLIVAN. Publ. Math. IHES, 47 (1978). - [4] 17 problems en Homotopie Rationnelle. Univ. de Lille - LILLE N 155 (1979).