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A PROGRESS REPORT ON DISCREPANCY 

by 

Robert TIJDEMAN 

1. - Definitions 

Let X be a set of normalized measure |j(X) = 1 . Let I be a subset of IN 
and J an arbitrary set. Let fX.l. T be a set of u-measurable subsets of X . 
Furthermore, let ou= f £.}. T be a set of elements of X , repetitions allowed. 
The counting function A(X ,̂N) , for j £ J , N £ IN , is defined as the number of 
integers n with l<n<N and x c X. . Denote the number of elements of I not 
exceeding N by 1^ . The difference D(X̂  , N) := A(X̂  , N) - ^ufX^) is called 
the discrepancy of ou at (X.,N). A sequence ^ { f . } . j is said to be uniformly  
distributed with respect to f X . } . _ if 

lim i'1 D(X.,N) = 0 N->» N J 
for all j£ J . We shall distinguish two cases : 

a) Static case : the study of sets ou such that fD(X. , NVI for a fixed N  J J€ J 
is in some sense minimal. Here only the elements of ou which do not exceed N 
are of interest. 

b) Dynamic case : the study of sets ou such that {D(Xj » "^^j^ J *s m n̂̂ mal 

in some sense. n£ IN 

We shall neglect the more general situation that the measure p. is not fixed, 
but that for every i f IN there is a measure u. such that X. is u -measurable 

i J I 
for all i and j and ^L(X) = 1 for all i . Such problems occur, for example, 
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in game theory. 
If a result is stated without a reference, then it can be found in the book of 

Kuipers and Niederreiter [12] . 

2. - Uniform distribution modulo 1 

Let X = U be the real unit interval [0, 1) and let J = (0, 1] . Let f x ) 
be the set of all subintervals X = [ 0, b) of X . Put |j(XL)= b and I = IN . In 
this situation the static case has an ideal solution uu = ["777 > » ••• » —} and 
is not interesting. The dynamic case coincides with the classical theory of uniform 
distribution modulo 1 initiated by Weyl and others in the beginning of our century. 
Put 

r£ = bsup |D(Xb.N,| . 

Van der Corput posed the problem whether there exists a sequence ou =xi r 
for which fD,,TV — is bounded. Mrs van Aardenne - Ehrenfest proved in 1945 
that this is not the case and she gave a first quantitative result in 1949. This 
result was improved by Roth in 1954 and by Schmidt in 1972. Schmidt proved that 
for every sequence ID ^ 

(1) lim sup ~T>0 . 

This result is of the best possible order, since the sequence f n /£} _T and also 
^ n £ IN 

the so-called van der Corput-sequence satisfy D* N 
lim sup rr < oo . 

log N 
A number of people have tried to find bounds for the absolute constant 

* N 
c = inf lim sup ~ rr . 

w N-„ logN 
The best bounds known at present were given by Bejian [6] and Faure [9] , 
namely 

.06< c* < . 224 . 
The lower bound is deduced by a refinement of Schmidt's argument. The upper 
bound is derived by constructing a low-discrepancy sequence which is a variant 
of the van der Corput-sequence. It follows from computations of Dupain, Sos and 
Ramshaw that the discrepancies of sequences {ia 3i_1 for 1R are not that 
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small (cf. [9, p. 144]). 

Schmidt [21] showed that sup J D(X , N)| is unbounded for all but countably 
many b in J . The structure of such bounded discrepancy sets was studied by 
Tijdeman and Voorhoeve [31]. Schmidt [23, p. 40] derived also a lower bound 
for |D(Xb, N)| valid for almost all b . Halasz [11] and Tijdeman and Wagner 
[32] improved upon this bound. They showed that 

|D(Xb, N)| ^ 
Ŝ P log N - loo 

for almost all b . 

Numerous variants are possible. Many authors have studied the discrepancy 
function corresponding to all subintervals X̂  ^= [a,b) of X with 0<a<b<l . 
Put 

°N= BU> 'D(Xa.b'N>'-
^ 0<a<b<l Then D̂ T<D̂ TS2D̂ T . Hence bounds for D T imply bounds for D T . The values N N N N N 

of (a, b) for which { D(X^ ^, remains bounded were studied by 
Schmidt [22] and Shapiro [25] . One can also vary the definition of uniform dis
tribution. For example, Rauzy [16] has shown that there exists a so-called 
completely uniformly distributed sequence such that 

D*(N) , 1 lim sup ~ T̂" < ~ r* . 
N-»co log N log 2 

Another possible variation is the way of measuring discrepancies. In the next 
section we shall also consider the L -norm. 

P 

3. - Uniform distribution in a hypercube 
Let s£lN. Let X be the unit-hypercube US with U =[0,1) and let 

J = X = fb= (b, , ... ,b ) : 0<b.<l for j = 1 , ... , s } . We consider the set [X 1 
1 s j c bJb£j of all subintervals X, = {(x1, ... , x ) : 0^ x<b. for j = l , . . . , s ] of X and put b 1 s J J 

|a (X )̂ = b̂ b̂  ••• bg • It turns out that the s-dimensional dynamic case is closely 
related to the (s+1) -dimensional static case, cf. [17, pp. 77-78] . We may there
fore restrict ourselves to the dynamic case. Put I = TN and 

D̂ S) = sup |D(Xb> N)| . 
b£ J 

It follows from a result of Roth [17] published in 1954 that for every sequence 
*=fSi}i"1 in X 
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(2) lim sup D^V( log N)S//2>0 . 

On the other hand, Halton constructed sequences ou in X such that 

(3) lim sup D^}/(log N)S< oo . 

.s/2 
N-°> N 

It is widely believed that (log N) is closer to the optimal value than (log N)" 
but this is only known for s = 1 (as has been discussed in the previous section) . 
Recently Faure [10] improved upon the existing bounds for the constant which can 
be put at the right-hand side of (3) by constructing so-called Indian sequences. 
Like the sequences used by Halton these sequences are generalizations of the 
van der Corput-sequence, but for Indian sequences 2 is the base for all coordinate 
axes, whereas for the sequences introduced by Halton and Hammersley different 
prime bases are used for different axes. Indian sequences have properties which 
remind us of the proof of Roth of (2) . 

Another way of measuring discrepancies is by using L^-norms. Put for p>0 
and fo r ou = f §. }.°° ., in X L I i=l 

D{J'| | =(J |D(X N)|pdb)1/p. 
N - x 

The above mentioned result of Roth gives even that for every s £ IN and every ou 

lim sup ||D^S)|| /(logN)s/2>0 . 
N-•00 w L 

Davenport showed in 1956 that this result is best possible for s = 1 . Schmidt [24] 
proved in 1977 that for every p> 1 and every ou 

(4) lim sup ||DJ!}|| /(logN)s/2>0 , 
N->co N P 

and, moreover, 
lim sup ||DJ>>|L > 0 . 

N••00 N 1 logloglog N 
Halasz [11] proved that (4) also holds if p = s = l . On the other hand, it follows 
from recent work of Roth [19] and his student Chen [7] that for every s and 
p>0 there exists a sequence ou such that 

lim sup l lD^L/( logN)s/2<l 

The proof makes uses of generalized Hammersley sequences and is very compli
cated. Thus (4) is best possible for all p> l , s >1 . 

178 



A PROGRESS REPORT ON DISCREPANCY 

There is no special reason to consider only blocks X^ for b£ J . It does not 
make much difference whether one studies blocks with edges parallel to the coor
dinate axes instead. For example, it follows from Schmidt's result (1) that for 
every set of N points in U 

sup |D(E,N)f /log N>0 
E 

if the supremum is taken over all rectangles with sides parallel to the coordinate 
axes. This result is best possible. However, if we take the supremum over all 

2 
rectangles E in U , then, for any e> 0 , 

i F 
sup |D(E,N)| / N 4 >O . 
E 

This was proved by Schmidt in 1969. A recent result of Beck [2] implies that this 
result is almost best possible : There exists a set of N points in U such that 
for every rectangle E in U 

X l 
|D(E,N)|/N4 (logN)^<oo . 

Both Schmidt [20] and Beck [4] have proved a number of related results. 

4. - Uniform distribution in finite sets 

Let X = [x^, ... , x^] be a finite set and let \i be a measure with \i{X) = 1 . 
Let fX.}. T be a set of u-measurable subsets of X . In the static case we want 

J J € J 
to estimate 

D = sup IVXj>l 
and in the dynamic case 

D = sup 
J6 J 

IVXj>l re 

Since X is a finite set, we may assume without loss of generality that J is 
finite. 

We shall first consider estimates in terms of the number m = | j | of elements 
of J . A construction of sets {X.} by using Ha damar dmatr ices leads to a bound 

IVXj>l d 

for every cu in X . By a so-called probabilistic method, on considering distri
bution of point sets in X put at random, Beck and Fiala [5] showed that for 
every [X.]. T and Nc IN there is an ou with 
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(5) D ^ c / m log m . 

Spencer [28] has given a highly original proof that there is an ou such that 

D <sc Vm log m . 

In the special case that the sets X̂  are pairwise disjoint much better bounds can 
be given. Then there exists an ou with 

1 
(6) D < 1 

and sets X. can be constructed for which this bound is optimal. (A proof of this 
assertion is given in section 7. ) The corresponding dynamic problem is the so-
called chairman assignment problem posed by Niederreiter. Meijer [14] and 
Tijdeman [29, 30] have shown that there is an uu with 

(7) D ^ 1 - ^ T 

and that this result is best possible (cf. section 7) . The algorithm given in [30] 
is closely related to the so-called Quota-method of Balinski and Young [1] in
troduced for solving the apportionment problem in the House of Representatives 
of the U.S.A. 

It is also possible to give bounds in terms of the covering degree d . This is 
defined as the maximum of the number of sets X. to which an element of X can 
belong. The case of pairwise disjoint sets X̂  , discussed above, corresponds to 
d=l . Then, by (6), for every N there is an ou such that 

DN<1-

Assume d>2 . It follows from a nice result of Beck and Fiala [5] that for every 
N there is an uu such that 

(8) DN < d . (cf. section 7) 

The dynamic case has not been studied yet. It is likely that the optimal bound for 
D is also (approximately) a constant power of d . If d=l , then, by (7) , D<1 . 

5. - Inhomogeneous approximation 

Although it is beyond the scope of this paper, we want to state the basic lemma 
of result (5), since it is very interesting from a diophantine point of view 
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LEMMA (Beck and Fiala [5]) . - Let n >5 . Let v. £ IR , u.. £ IR , |u . . |<l for 
i,j = l ,2 , . . . ,n . Then there exist integers x̂  , x ,̂ ... , with |x -̂ v̂ | < 1 
(i=l, . . . ,n) such that 

max 
j = l, ... ,n 

n 
i=l 

i.. (x.- v.) I <4 v/2nlog 2n . ij i i 1 

COROLLARY (Spencer [27]).- Let n>5 . Let ^ 6 11 with |u„ |< l for 
i, j = 1, ... ,n . Then there exist integer x , ... ,x with x. £ [-1 , 1} for i = 1, ...,n 
such that 

max 
j=l,... ,n 

n 
' i=l 

u.. x.l< 8*/ 2n log 2n . 

Proof. - Take v, = v = ... = v -z: in the lemma and multiply by 2 .  \ L n L 
The proof of the lemma provides an algorithm for the construction of the numbers 
x . Spencer proved the corollary with other constants and has given game-theore-

i 
tic variants of it. 

6. - Uniform distribution in the set of integers 

The classical concept of uniform distribution of integer sequences refers to 
m -1 

the case X=2£ , I = IN and fX.l. _ are the residue classes modulo some posi-
tive integer m , each with measure l/m . Hence, a sequence uu = {§^}J_J °* 

integers is uniformly distributed (mod. m) if each residue class mod. m 
contains N/m + o(N) terms among g ,̂ §̂  » ••• » S-̂  • For example, the Fibonacci 
sequence is uniformly distributed mod. m if and only if m is a perfect power of 
5 [13, 15] . A sequence is said to be uniformly distributed in 2£ if it is uniform
ly distributed modulo every positive integer. For example, the sequence 
{ ^nttj }™_̂  is uniformly distributed in Z if and only if a ^ ID or a = l/m for 
some non-zero integer m . Here a j denotes the integer part of n o t . The 
study of uniformly distributed integer sequences is related to the study of normal 
numbers. It is clear that this case is an important, but very special example of 
uniform distribution in Z . In fact, several results in additive and combinatorial 
number theory can be stated as results on discrepancy, but with other choices of 
J, {X.}. j and \i. We give a typical example. 
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Let X = {1, 2, ... , 2m } , |j(i) = l/2m for i=l , . . . ,2m and I = { 1, ... , m] . 
it fX.}. _ be the set of all a 

X . The problem is to estimate 
Let fX.}. _ be the set of all arithmetic progressions with positive difference in 

D = inf sup |D(X. , m)| . 

that is we wonder how well m integers in X can be selected such that almost 
half of the elements of each arithmetic progression belongs to this selection. 
Alternatively, one wants to find an optimal mapping f : X - * { - l , l } such that 
| E f(x)| is small if x runs through any arithmetical progression in X . In 1964 
Roth [18] proved that D :» m and he conjectured that for every e> 0 , 

m 
D ^>m*"£ . m 

Spencer [26] proved the existence of sets (uu ) such that 
m m 

D <3cV^ loKloSm . m log m 
In 1974, Sark&zy [8, § 8] refuted the conjecture of Roth by constructing sets cum 
such that 

D (m logm)^ . 

Beck [3] has now replaced the right-hand side of this inequality by m (logm) 
This is almost best possible in view of the result of Roth. 

7. - Proofs and remarks 
We give a simple proof of (6) , since we do not know an appropriate reference. 

Let X = f x. , . . . ,x } be a set with u(X) = 1 and let [X.}m. be a set of <• 1 nJ j j=l 
measurable subsets of X which are pairwise disjoint. Without loss of generality 
we may consider X = [Xq , Xj Xm} , where Xq= X\(Xj U ... U XM) . Let 
N g N . Write N|i(X.)= ^ ^ X . l j + e . for j = 0 , l , . . . , m . Compute 
r = N- E , N(i(X.) . = E 0.. This is an integer. If r = 0, then put 

j=0 u J j=0 J 
A(X,N)= N|j(X ) and hence D(X ,̂ N) = 0 for all j . If r>0 , then relabel 
X ,X„,. . . ,X in such a way that 0 >0-> . . .>0 . Put A(X.,N) = , N|j(X.) +1 o 1 m 7 o °1 um J u J J 
for j = 0, 1, ... , r-1 and A(X ,N) = uN|j(X for j = r , r+1, ... , m . We obtain 
D(X^,N)=l-0j for j = 0, 1, ... , r-1 and D(X̂  , N) = -0^ for j = r , r+1 , ... , m 
and hence 

r-1 , m , 
E |D(X., N)| = E |D(X ,N)| . 

j=0 J j=r J 
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Furthermore, l<r<m and max |D(X.,N)| = max(| D(X , N)| |D(X ,N)|). 

If |D(Xr 1 , N|> l-l/(m+l), then 1<l/(m+l) and therefore 

1 - 1 
m+1 

<|D(X^ 
r-1 

N)|< m |D(X.,N)|<(m-r+l) 1 
m+1 

< 1 1 
m+1 

a contradiction. If | D (X^ , N)|> 1-l/(m+l), then 0r 1> 0r> 1 -l/(m+l) and 
|D(X^,N)| <l/(m+l) for j = 0, 1, ... , r-1. Hence 

1 - 1 
m+1 < |D(X ,N)|< r-1 

j=0 
|D(X, N) |<r. 1 

m+1 
< 1- 1 

m+1 
again a contradiction. Thus D .̂< 1-l/(m+l). The value at the right hand side is 
attained if N=1 and M(Xq) = l-ifX̂ ) = ... = f-KX^) = l/(m+l) . For exactly one value 
of j we have A(X, 1)=1 and hence D(X̂  , N) = 1-1/(m+1). 

For the proof of (7) note that in this report we do not require 
X„ UX„ U...U X = X as was done in the papers of Meiier [14] and Tijdeman 1 2 m 
[29, 30] . We therefore define a complementary set Xq as in the previous para
graph and m+1 in this report corresponds to k in the quoted papers. 

Inequality (8) needs a similar clarification. Beck and Fiala [5] prove the 
existence of a set ID in X such that 

(9) |A(X)-Nu(X.) |£ d-1 

for all j , but it is not guaranteed that cu has exactly N elements. In order to 
prove (8) one can adjoin the equality 

2 p.= 0 
j J 

to the system of equalities considered in their proof. Thereby the covering degree 
is increased by 1. Since the new equality involves all variables, Case (b) in their 
proof cannot occur. By a suitable rounding off at the end we can secure that 
A(X) = N (j, (X) = N . Now (8) follows from (9) by replacing d by the new covering 
degree d+1 . 
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