Astérisque

B. Z. Moroz
 Euler products (variation on a theme of Kurokawa's)

Astérisque, tome 94 (1982), p. 143-151
http://www.numdam.org/item?id=AST_1982__94__143_0
© Société mathématique de France, 1982, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

EULER PRODUCTS (VARIATION ON A THEME OF KUROKAWA'S)

 by
B. Z. MOROZ

-:-:-:-

1. - Let k be a finite extension of the field Q of rational numbers, and $K \geqslant k$ is a normal extension of k of degree $d=(K: k)$ with Galois group $G(K / k)$, idèle-class group C_{K} and Weil group $W(K / k)$. Thus we have an exact sequence

$$
1 \longrightarrow \mathrm{C}_{\mathrm{K}} \longrightarrow \mathrm{~W}(\mathrm{~K} / \mathrm{k}) \longrightarrow \mathrm{G}(\mathrm{~K} / \mathrm{k}) \longrightarrow 1,
$$

and follows that every irreducible representation of $W(K / k)$ is finite dimensional. Let Z be the ring of integers, and

$$
X=\left\{\begin{array}{l|l}
\sum_{i=1}^{\ell} m_{i} X_{i} & \begin{array}{l}
m_{i}, \ell \in Z, \quad \ell \geq 1, \quad x_{i} \\
W(K / k) \text { for any } i
\end{array}
\end{array}\right\}
$$

is the ring of virtual characters of $W(K / k)$. For any polynomial

$$
H(t)=1+\sum_{j=1}^{n} a_{j} t^{j} \in X[t]
$$

and $g \in W(K / k)$ we set $H_{g}(t)=1+\sum_{j=1}^{n} a_{j}(g) t^{j} \in C[t]$, wher C is the complex number field. Let now σ_{p} and I_{p} be the Frobenius class and the inertia subgroup of $W(K / k)$ at the prime divisor p of $k[1]$, and ρ a finite dimensional representation of $W(K / k)$ with representation space V and character $\chi=\operatorname{tr} \rho$. Consider the subspace

$$
v^{I_{p}}=\left\{v \mid \rho(g) v=v \text { for } g \in I_{p}, v \in V\right\}
$$

of I_{p} invariant elements of V and choose a representative $\tilde{\sigma}_{p} \in \sigma_{p}$ of the Frobenius class. Then the trace of the operator

$$
\rho\left(\tilde{\sigma}_{p}\right): v^{I}{ }^{\mathrm{p}} \longrightarrow v^{\mathrm{I}_{p}}
$$

does not depend on the choice of $\tilde{\sigma}_{p}$ in σ_{p}; we set

$$
x\left(\sigma_{p}\right)=\left.\operatorname{tr} \rho\left(\tilde{\sigma}_{p}\right)\right|_{V}{ }_{p}
$$

and extend this definition to X by linearity. Thus we can define

$$
H_{p}(t)=1+\sum_{j=1}^{n} a_{j}\left(\sigma_{p}\right) t^{j},
$$

and for $\mathrm{Re} \mathrm{s}>1$ consider en Euler product

$$
\begin{equation*}
L(s, H)=\underset{p}{\Pi} H_{p}\left(|p|^{-s}\right)^{-1}, \tag{1}
\end{equation*}
$$

where p runs over prime divisors of k and $|p|=N_{k / Q} p$. In particular, for $H(t)=\operatorname{det}(I-t \rho)$ we get $[2] L(s, H)=L_{W}(s, \rho)$, where $L_{W}(s, \rho)$ is the Weil L-function associated to a representation ρ of $w(K / k)$.

PROPOSITION 1.- The function $s \longmapsto \mathrm{~L}(\mathrm{~s}, \mathrm{H})$ defined by (1) can be meromorphically continued to the half-plane $C^{+}=\{s \mid R e s>0\}$.

DEFINITION 1.- Representation ρ of $W(K / k)$ is said to be of Galois type, if $C_{K} \subseteq$ Ker ρ. We denote by $X_{0} \subset X$ the subring of X generated by the characters of representations of Galois type.

DEFINITION 2.- A polynomial $\mathrm{H} \in \mathrm{X}[\mathrm{t}]$ is called unitary, if for any $\mathrm{g} \in \mathrm{W}(\mathrm{K} / \mathrm{k})$ the condition $H_{g}(\alpha)=0$ implies $|\alpha|=1$, and non-unitary otherwise.

PROPOSITION 2.- If H is unitary, the function $\mathrm{L}(\mathrm{s}, \mathrm{H})$ can be meromorphically continued to the whole complex plane C; if $H \in X_{0}^{[t]}$ and is non-unitary, then $L(s, H)$ has C^{0} as its natural boundary.

To state the next proposition we recall the Generalised Riemann Hypothesis (GRH) : every L-function Hecke ("mit Grbssencharakteren") has all its roots with $\operatorname{Re} \mathrm{s}>0$ on the line $\mathrm{Re} \mathrm{s}=1 / 2$.

DEFINITION. - For any positive ε, c, x let $\mathcal{L}(x, \varepsilon, r)$ denote the number of prime divisors p in k satisfying two conditions :
a) $N_{k / Q} p<x$, and
B) there exists μ_{p} such that $H_{p}\left(\mu_{p}\right)=0$ and $|\log | \mu_{p}|-\log (1+c)|<\varepsilon$.

We call the polynomial H strongly non-unitary, if one can find $c>0$ such that for any $\varepsilon>0$ there exists

$$
\lim _{x \rightarrow \infty} \frac{\mathcal{L}(x, \varepsilon, c)}{\pi(x)}=\alpha(\varepsilon, c)>0 ;
$$

where

$$
\begin{gathered}
\pi(x)=\sum \underset{k / Q}{ } \begin{array}{c}
\sum<x
\end{array} . \\
N_{k}
\end{gathered}
$$

PROPOSITION 3. - If the GRH holds and H is strongly non-unitary, then C^{0} is the natural boundary of $L(s, H)$.
2. - As an application of these results, let us mention the following problem discussed by several authors [3-10]. Consider r finite extensions k_{1}, \ldots, k_{r} of k and the Galois hull K of these fields over k, and fix a Hecke character X_{i} in k_{i}. One can associate to X_{i} an L-function

$$
L\left(s, x_{i}\right)=\sum_{\dot{a}} x_{i}(a) N_{k_{i} / k} a^{-s}=\sum_{\mathfrak{n}} c_{\mathfrak{n}}\left(x_{i}\right) N_{k / Q} n^{-s}
$$

where a (accordingly \mathfrak{n}) runs over all the integral ideals of k_{i} (accordingly k) and $c_{\mathfrak{n}}\left(X_{i}\right)=\sum_{N_{k_{i}} / \mathfrak{k}} X_{i=n}(a)$. We define the scalar product of these L-functions as a Dirichlet series

$$
\begin{equation*}
L\left(s ; x_{1}, \ldots, x_{r}\right)=\sum_{\mathfrak{n}} \quad c_{n}\left(x_{1}\right) \ldots c\left(x_{r}\right) N_{k / Q} n^{-s} \tag{2}
\end{equation*}
$$

convergent for $\operatorname{Re} s>1$. It turns out $[6,8,10]$ that up to a finite number of Euler factors

$$
L\left(s ; \chi_{1}, \ldots, x_{r}\right)=L_{W}(s, p) L(s, H)^{-1}
$$

for some representation ρ of $W(K k)$ and a polynomial $H \in X[t]$. It can be proved that H is either unitary, or strongly non-unitary. Moreover, H is unitary, if and only if either no more than one of the fields k_{i} does not coincide with k,
or two of these fields are quadratic extensions of k and all the others coincide with k; in this case the function (2) can be easily evaluated [9]. The propositions 1-3 show that the function (2) can be continued to C^{+}and in most cases has a natural boundary C^{0}. We refer to the work of Kurokawa's [6-8] for further applications of the propositions 1 and 2.
3.- To outline the method of proof of propositions 1-3 let us consider the most simple case $k=Q=K$. The following proposition is, in fact, a classical result [11].

PROPOSITION 4. - Let $h(t)=1+\sum_{j=1}^{n} a_{j} t^{j}=\prod_{i=1}^{n}\left(1-\alpha_{i} t\right)$ and $a_{j} \in \mathbb{Z}$. Then the function

$$
\begin{equation*}
L(s, h)=\underset{p}{\Pi} h\left(p^{-s}\right)^{-1} \tag{3}
\end{equation*}
$$

defined by (3) for $R e s>1$ can be meromorphically continued to C^{+}. If $\left|\alpha_{i}\right|=1$ for any i, then $L(s, h)=\prod_{m=1}^{M} \zeta(m s)^{\beta_{m}}$ for some $\beta_{m} \in \mathbb{Z}$ and, therefore, $L(s, h)$ is meromorphic in C; if $\left|\alpha_{i}\right| \neq 1$ for some i, then C^{0} is the natural boundary of $L(s, h)$.

Proof.- Let us consider the ring $C[[t]]$ of formal power series and define by induction a sequence

$$
\left\{b_{k} \mid k=1,2, \ldots\right\} \subseteq \mathbb{Z}
$$

in such a way that

$$
\begin{equation*}
h(t)=\prod_{k=1}^{\infty}\left(1-t^{k}\right)^{b_{k}} \text { in } C[[t]] \tag{4}
\end{equation*}
$$

This sequence is uniquely determined; in fact,

$$
\begin{equation*}
b_{k}=\frac{1}{k} \sum_{\left.l\right|_{k}} \mu(\ell) u\left(\frac{k}{l}\right), \tag{5}
\end{equation*}
$$

where $u(x)=\sum_{i=1}^{n} \alpha_{i}, \mu$ is the Mybius function. In particular, it follows from (5) that

$$
\begin{equation*}
\left|b_{k}\right| \leq n\left(\frac{\mp(k)}{k}\right) Y^{k}, \tag{6}
\end{equation*}
$$

where $\tau(k)=\sum_{l \mid k} 1, \gamma=\max _{i}\left|\alpha_{j}\right|$. Therefore, the product (4) converges in in the disk $|t|<1 / \gamma$. For any $M, N>1$ we set

$$
\begin{aligned}
& \mathfrak{u}_{N}(s)=\prod_{p<N} h\left(p^{-s}\right)^{-1}, \quad \quad \psi_{M}(s)=\prod_{p} \prod_{k S M}\left(1-p^{-s k}\right)^{-b}{ }_{k} \\
& T_{N, M}^{(s)=} \underset{p \geq N}{\Pi} \prod_{k>M}\left(1-p^{-s k}\right)^{-b_{k}}, \quad R_{N, M}=\prod_{p<N N} \prod_{k \leq M}^{\Pi}\left(1-p^{-s k}\right)^{b_{k}} .
\end{aligned}
$$

So that for Res large enough

$$
\begin{equation*}
L(s, h)=\mathfrak{u}_{N}(s) y_{M}(s) T_{N, M}(s) R_{N, M}(s) \tag{7}
\end{equation*}
$$

We use now (7) to continue $L(s, h)$ to C^{+}. The functions u_{N} and $R_{N, M}$ are obviously meromorphic in C and so is the function

$$
{ }_{M}(s)=\prod_{n \leq M} \zeta(n s)^{b}{ }^{n}
$$

We prove that if $N>\gamma^{M}$, then the product expansion for $T{ }_{N}, M$ converges absolutely for $\operatorname{Re} s>1 / \mathrm{M}$. In fact, (6) implies

$$
\begin{aligned}
& \left|\log T_{N, M}(s)\right| \leq \sum_{p \geq N} \sum_{k>M}\left(n \frac{\tau(k)}{k} \gamma^{k}\right)\left|\log \left(1-p^{-s k}\right)\right| \leq \\
& \quad \leq n \sum_{p \geqq N} \sum_{k>M} \sum_{m=1}^{\infty} \frac{\tau(k)}{k m} \gamma^{k} p^{-k m(R e s)} \leq n \sum_{p \geq N} \sum_{k>M} \sum^{-k} \gamma^{k}(\tau(k))^{2} k^{-1} p^{-k \operatorname{Res}},
\end{aligned}
$$

and the last series converges absolutely for $\operatorname{Re} s>1 / M, N>\gamma^{M}$. Taking $M \rightarrow \infty$ we get the desired result.

If $\left|\alpha_{i}\right|=1$ for any i, then $\gamma=1$, and it follows from (6) that $b_{k}=0$ as soon as $n \mathcal{f}(k) k^{-1}<1$; therefore, expansion (4) contains only a finite number of terms, so that $L(s, h)$ is a product of a finite number of δ-functions, as it has been claimed. Assume that $\gamma>1$. We prove that in this case any point in C^{0} is a limit point of poles of $L(s, h)$ in C^{+}. Suppose that $\left|\alpha_{1}\right|=\gamma$, and set $\alpha_{1}=\gamma e^{i \Phi}$. Consider the sequence

$$
\left\{\left.s_{k}(p)=\frac{\log \gamma+i(\Phi+2 \pi k)}{\log p} \right\rvert\, k \in Z\right\}
$$

of roots of the functions $s \longmapsto h\left(p^{-s}\right)$ and count the number $S(\nu, \delta)$ of $s_{k}(p)$ in the reginn

$$
D_{\nu}(\delta)=\left\{s \left\lvert\, \frac{1}{\nu+1}<\operatorname{Res}<\frac{1}{\nu}\right., t_{0}<\operatorname{Im} s \leq t_{0}+\delta\right\},
$$

where ν is a positive integer, $\delta>0$ and $t_{0}>0$. If $\frac{2 \pi}{\log p}<\delta$ and $\frac{1}{\nu+1}<\frac{\log Y}{\log p}<\frac{1}{\nu}$, then there exists k such that $s_{k}(p) \in D_{\nu}(\delta)$. For
 $S(\nu, \delta)>A \gamma^{\nu}$ for some $A>0$ independent of ν. On the other hand, if $N>\gamma^{\nu+1}$ and $p<\gamma^{\nu+1}$, the number $s_{k}(p)$ is a pole of $u_{N}(s)$ for any k. Since $s_{k}(p) \neq s_{k}\left(p^{\prime}\right)$ for $p \neq p^{\prime}$, we conclude that $\mathfrak{u}_{N}(s)$ has at least A γ^{ν} distinct poles in $D_{\nu}(\delta)$ as soon as $N>\gamma^{\nu+1}$ and $\delta>\frac{1}{\nu}(2 \pi / \log \gamma)$. Take $M=\nu$, then $R_{N, M}(s) \neq 0$ and $T_{N, M}(s) \neq 0$ for $s D_{\nu}(\delta)$. Finally, the function ${ }^{4}{ }_{M}(s)=\prod_{n=1}^{M} \zeta(n s)^{b_{n}}$ cannot have more than $\sum_{n=1}^{M} N\left(n\left(t_{0}+\delta\right)\right)=O\left(M^{3}\right)$ distinct zeros in $D_{\nu}(\delta)$, where $N(T$.) denotes the number of zeros of $S(s)$ in the region $0<\operatorname{Im} s \leq T \quad W e$ see, therefore, that for large enough ν and $\delta>\frac{1}{\nu}\left(\frac{2 \pi}{\log \gamma}\right)$ the function $L(s, h)$ has poles in $D_{V}(\delta)$. Thus any neighbourhood of a point $t_{0} \in C_{0}$ contains a pole of $L(s, h)$. This completes the proof of proposition 4.

We should mention another classical result [12] responsible for the ideas dis cussed here.

PROPOSITION 5. - The function

$$
\mathrm{P}(\mathrm{~s})=\sum_{\mathrm{p}} \mathrm{p}^{-\mathrm{s}}
$$

defined for $\operatorname{Re} s>1$ can be continued to C^{+}and has C^{0} as its natural boundary.

Proof. - The standard expansion for $\log \zeta(s)$ and M

$$
\begin{equation*}
P^{\prime}(s)=\sum_{m=1}^{\infty} \mu(m) \frac{\zeta^{\prime}}{\zeta}(\mathrm{m} s) \tag{8}
\end{equation*}
$$

so that P^{\prime} is meromorphic in C^{+}. Let $v(s)$ denote the multiplicity of a zero s of $\zeta(s)$; since $N(T+1)-N(T)=0(\log T)$, it follows that $v(s)<A_{1} \log |\operatorname{Im} s|$ for some A_{1} independent on s (assuming $|\operatorname{Im} s| \geq 2$). Moreover, for any $\delta>0$ and $t_{0}>0$ we have

$$
N\left(m\left(t_{0}+\delta\right)\right)-N\left(m t_{0}\right)>0 \text { as soon as } m>A_{2}\left(t_{0}, \delta\right)
$$

Keeping these facts in mind, consider a region

$$
D(\delta)=\left\{s \mid 0<\operatorname{Res}<\delta, t_{0}<\operatorname{Im} t<t_{0}+\delta\right\}
$$

and choose a rational prime q satisfying inequalities

$$
q>1 / \delta, \quad q>2 / t_{0}, \quad q>A_{1} \log \left(\left(t_{0}+\delta\right) q\right), \quad q>A_{2}\left(t_{0}, \delta\right)
$$

Then one can find a root s_{1} of $\zeta(s)$ such that

$$
\begin{equation*}
\frac{1}{2} \leq \operatorname{Re} s_{1}<1, \quad q t_{0}<\operatorname{Im} s_{1} \leq q\left(t_{0}+\delta\right), \quad \mathrm{v}\left(\mathrm{~s}_{1}\right)<\mathrm{q} \tag{9}
\end{equation*}
$$

Obviously, $s_{1} / q \in D_{\nu}(\delta)$. To prove that s_{1} / q is, in fact, a pole of $P^{\prime}(s)$ we notice that $\zeta\left(\mathrm{ms}_{1} / q\right) \neq 0, \infty$ for $m \geq 2 q$, and, therefore, it is enough to show (see (8)) that

$$
\sum_{\mathrm{m}=1}^{2 \mathrm{q}-1} \frac{\mu(\mathrm{~m})}{\mathrm{m}} \mathrm{v}\left(\frac{\mathrm{~ms} 1}{\mathrm{q}}\right) \neq 0
$$

But (10) follows from (9) because

$$
\sum_{m=1}^{2 q-1} \frac{\mu(m)}{m} v\left(\frac{m s}{q}\right)=\frac{v\left(s_{1}\right)}{q}+\frac{a}{b}
$$

where $a / b=\sum_{\substack{m \neq q \\ m<2 q}} \frac{\mu(m)}{m} v\left(\frac{m s 1}{q}\right)$, so that $q / / b$ whenever $(a, b)=1$.
Thus the point $t_{0} \in D_{\nu}$ is a limit point of poles of $P^{\prime}(s)$, and the proposition follows.

For a generalisation of Propositions 4 and 5 we refer to a paper by G. Dahlquist [13] .
4. - The proof of the results discussed in $n^{\circ} 1$ can be obtained along the same lines $[6-8,10]$ with the help of the following lemma (whose proof we omit).

LEMMA. - Let $H(t) \in X[t], H(0)=1$ and $H_{g}(t)=\prod_{i=1}^{n}\left(1-\alpha_{i}(g) t\right)$ for $g \quad W(K / k)$; set $\gamma=\sup \left\{\left|\alpha_{i}(g)\right| \mid 1 \leq i \leq n, g \in W(K / k)\right\}$. Then

1) there exists a sequence of integers $\left\{a_{m, j} \mid m, j=1,2, \ldots\right\}$ such that

$$
\mathrm{H}(\mathrm{t})=\prod_{\mathrm{m}, \mathrm{j}} \operatorname{det}\left(\mathrm{I}-\mathrm{t}^{\mathrm{m}} \Phi_{j}\right)^{\mathrm{a} m, j} \text { in }[\mathrm{X}[[\mathrm{t}]]
$$

where $\Phi_{1}, \Phi_{2}, \cdots$ are the irreducible representations of $W(K / k)$;
2) dimension of Φ_{i} does not exceed $(\mathrm{K}: \mathrm{k})=\mathrm{d}$;
3) $\left|\sum_{i} a_{m, i} \operatorname{tr}\left(\Phi_{i}(g)\right)\right| \leq \frac{\tau(m)}{m}(d-1) \gamma^{m}$ for any m and $g \quad W(K / k)$;
4) $\sum_{i} a_{m, i}^{2} \leq \gamma^{2 m}\left(\frac{\tau(m)}{m}(d-1)\right)^{2}$ for any m;
5) the product

$$
H_{p}(t)=\prod_{m, i}\left(I-t^{m} \Phi_{i}\left(\sigma_{p}\right)\right)^{a} m, i
$$

converges absolutely in the disk $|t|<\gamma^{-2}$.
-:-:-:-

REFERENCES

[1] A. WEIL, Sur la théorie du corps de classes, Journal of the Math. Soc. Japan, 3 (1951), 1-35.
[2] J. TATE, Number Theoretic Background, Proceedings of Symposia in Pure Mathematics, v. 33, part 2, p. 3-26, Amer. Math. Soc., Providence, Rhode Island, 1979.
[3] A. I. VINOGRADOV, On extension to the left half-plane of the scalar product of Hecke L-functions with Grossencharakters, Izvestia Akad. Nauk. USSR, Seria Matem. 29 (1965), 485-492.
[4] P.K.J. DRAXL, L-Funktionen Algebraischer Tori, Journal of Number Theory, 3 (1971), 444-467.
[5] O. M. FOMENKO, Extendability to the whole plane and the functional equation for the scalar product of Hecke L-series of two quadratic fields, Proceedings of the Steklov Institute of Mathematics, 128 (1972), 275-286.
[6] N. KUROKAWA, On the meromorphy of Euler products, Part I, Tokyo Institute of Technology Preprint, 1977.
[7] N. KUROKAWA, On the meromorphy of Euler products, Proceedings of the Japan Academy, 54 A (1978), 163-166.
[8] N. KUROKAWA, On Linnik's problem, Proceedings of the Japan Academy, 54 A (1978), 167-169.
[9] B. Z. MOROZ, On the convolution of Hecke L-functions, Mathematika, 27 (1980), 312-320.
[10] B. Z. MOROZ, Scalar product of L-functions with Grossencharakters, its meromorphic continuation and natural boundary, Journal fur die Reine und Angewandte Mathematik, 332 (1982), 99-117.
[11] T. ESTERMANN, On certain functions represented by Dirichlet series, Proc. London Math. Soc., 27 (1928), 435-448.
[12] E. LANDAU, A. WALFISZ, Über die nichtfortsetzbarkeit einiger durch Dirichletsche reihen definierter funktionen, Rend. di Palermo, 44 (1919), 82-86.
[13] G. DAHLQUIST, On the analytic continuation of Eulerian products, Arkiv fur Matematik, 1, n ${ }^{\circ} 36$ (1952), 533-554.
B. Z. MOROZ

Department of Pure Mathematics The Hebrew University Jerusalem, Israel

