Astérisque

B. Z. MOROZ Euler products (variation on a theme of Kurokawa's)

Astérisque, tome 94 (1982), p. 143-151

<http://www.numdam.org/item?id=AST_1982_94_143_0>

© Société mathématique de France, 1982, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

EULER PRODUCTS (VARIATION ON A THEME OF KUROKAWA'S)

by

B. Z. MOROZ

-:-:-:-

1. - Let k be a finite extension of the field Q of rational numbers, and $K \supseteq k$ is a normal extension of k of degree d = (K : k) with Galois group G(K/k), idèle-class group C_{K} and Weil group W(K/k). Thus we have an exact sequence

$$1 \longrightarrow C_{K} \longrightarrow W(K/k) \longrightarrow G(K/k) \longrightarrow 1$$

and it follows that every irreducible representation of W(K/k) is finite dimensional. Let Z be the ring of integers, and

$$X = \begin{cases} \ell & \\ \sum_{i=1}^{\ell} m_i \chi_i \\ W(K/k) & \text{for any } i \end{cases} \text{ is an irreducible character of } \end{cases}$$

is the ring of virtual characters of W(K/k). For any polynomial

$$H(t) = 1 + \sum_{j=1}^{n} a_{j} t^{j} \in X[t]$$

and $g \in W(K/k)$ we set $H_g(t) = 1 + \sum_{j=1}^{n} a_j(g) t^j \in C[t]$, wher C is the complex number field. Let now σ_p and I_p be the Frobenius class and the inertia subgroup of W(K/k) at the prime divisor p of k [1], and ρ a finite dimensional representation of W(K/k) with representation space V and character $\chi = tr \rho$. Consider the subspace

$$V^{p} = \{ v \mid \rho(g) v = v \text{ for } g \in I_{p} , v \in V \}$$

of I invariant elements of V and choose a representative $\widetilde{\sigma}_p \in \sigma_p$ of the Frobenius class. Then the trace of the operator

$$\rho(\widetilde{\sigma}_{p}) : V \xrightarrow{I} V \xrightarrow{V} V$$

does not depend on the choice of $\widetilde{\sigma}_p$ in σ_p ; we set

$$\chi(\sigma_p) = tr \rho(\widetilde{\sigma_p}) |_{V_p}$$

and extend this definition to X by linearity. Thus we can define

$$H_{p}(t) = 1 + \sum_{j=1}^{n} a_{j}(\sigma_{p}) t^{j}$$
,

and for Re s > 1 consider en Euler product

$$L(s, H) = \prod_{p} H_{p} (|p|^{-s})^{-1}, \qquad (1)$$

where p runs over prime divisors of k and $|p| = N_{k/Q} p$. In particular, for $H(t) = det(I - t\rho)$ we get $[2J \ L(s, H) = L_W(s, \rho)$, where $L_W(s, \rho)$ is the Weil L-function associated to a representation ρ of W(K/k).

PROPOSITION 1. - <u>The function</u> $s \mapsto L(s, H)$ <u>defined by</u> (1) <u>can be meromorphically continued to the half-plane</u> $C^+ = \{s \mid \text{Re } s > 0\}$.

DEFINITION 1. - Representation ρ of W(K/k) is said to be of Galois type, if $C_{K} \subseteq \text{Ker } \rho$. We denote by $X_{o} \subset X$ the subring of X generated by the characters of representations of Galois type.

DEFINITION 2. - A polynomial $H \in X[t]$ is called unitary, if for any $g \in W(K/k)$ the condition $H_{\sigma}(\alpha) = 0$ implies $|\alpha| = 1$, and non-unitary otherwise.

PROPOSITION 2. - If H is unitary, the function L(s,H) can be meromorphically continued to the whole complex plane C; if $H \in X_0[t]$ and is non-unitary, then L(s,H) has C^0 as its natural boundary.

To state the next proposition we recall the Generalised Riemann Hypothesis (GRH) : every L-function Hecke ("mit Grössencharakteren") has all its roots with Re s > 0 on the line Re s = 1/2.

DEFINITION. - For any positive ε , c, x let $\mathfrak{L}(\mathbf{x}, \varepsilon, c)$ denote the number of prime divisors p in k satisfying two conditions :

- $\alpha) \quad N_{k/O} p < x , \text{ and}$
- β) there exists μ_p such that $H_p(\mu_p) = 0$ and $\left| \log \left| \mu_p \right| \log (1+c) \right| < \epsilon$.

We call the polynomial H strongly non-unitary, if one can find c > 0 such that for any $\epsilon > 0$ there exists

$$\lim_{\mathbf{x}\to\infty} \frac{\mathfrak{L}(\mathbf{x},\varepsilon,\mathbf{c})}{\pi(\mathbf{x})} = \alpha(\varepsilon,c) > 0;$$
$$\pi(\mathbf{x}) = \Sigma \quad 1 \quad .$$
$$N \quad p < \mathbf{x} \quad k/Q$$

where

PROPOSITION 3. - If the GRH holds and H is strongly non-unitary, then
$$C^{\circ}$$
 is the natural boundary of $L(s,H)$.

2. - As an application of these results, let us mention the following problem discussed by several authors [3-10]. Consider r finite extensions k_1, \ldots, k_r of k and the Galois hull K of these fields over k, and fix a Hecke character χ_i in k_i . One can associate to χ_i an L-function

$$L(s,\chi_i) = \sum_{\dot{a}} \chi_i(a) N_{k_i/k} a^{-s} = \sum_{n} c_n(\chi_i) N_{k/Q} n^{-s},$$

where a (accordingly n) runs over all the integral ideals of k_i (accordingly k) and $c_n(\chi_i) = \sum_{\substack{n \\ k_i/k}} \chi_i(a)$. We define the scalar product of these L-functions as

a Dirichlet series

$$L(s; \chi_1, \dots, \chi_r) = \sum_{n} c_n(\chi_1) \dots c(\chi_r) N_{k/Q}^{n-s}$$
(2)

convergent for Re s > 1. It turns out [6, 8, 10] that up to a finite number of Euler factors

$$L(s; \chi_1, \dots, \chi_r) = L_W(s, \rho) L(s, H)^{-1}$$

for some representation ρ of W(K k) and a polynomial $H \in X[t]$. It can be proved that H is either unitary, or strongly non-unitary. Moreover, H is unitary, if and only if either no more than one of the fields k_i does not coincide with k, or two of these fields are quadratic extensions of k and all the others coincide with k; in this case the function (2) can be easily evaluated [9]. The propositions 1-3 show that the function (2) can be continued to C^+ and in most cases has a natural boundary C^0 . We refer to the work of Kurokawa's [6-8] for further applications of the propositions 1 and 2.

3. - To outline the method of proof of propositions 1 - 3 let us consider the most simple case k = Q = K. The following proposition is, in fact, a classical result [11].

PROPOSITION 4. - Let $h(t) = 1 + \sum_{j=1}^{n} a_j t^j = \prod_{i=1}^{n} (1 - \alpha_i t)$ and $a_j \in \mathbb{Z}$. Then the function

$$L(\mathbf{s},\mathbf{h}) = \prod_{\mathbf{p}} \mathbf{h}(\mathbf{p}^{-\mathbf{s}})^{-1}$$
(3)

 $\frac{defined by}{defined by} (3) \quad \underline{for} \quad Re \ s > 1 \quad \underline{can \ be \ meromorphically \ continued \ to} \quad C^{+} \cdot \quad \underline{If} \\ \frac{|\alpha_{i}| = 1 \quad \underline{for \ any} \quad i \ , \ \underline{then} \quad L(s,h) = \prod_{m=1}^{M} \zeta(ms)^{\beta_{m}} \quad \underline{for \ some} \quad \beta_{m} \in \mathbb{Z} \quad \underline{and}, \ \underline{therefore}, \\ L(s,h) \quad \underline{is \ meromorphic \ in} \quad C \ ; \ if \ |\alpha_{i}| \neq 1 \quad \underline{for \ some} \quad i \ , \ \underline{then} \quad C^{\circ} \quad \underline{is \ the \ natural} \\ \underline{boundary \ of} \quad L(s,h).$

<u>Proof.</u> - Let us consider the ring C[[t]] of formal power series and define by induction a sequence

 $\{b_k \mid k=1, 2, \dots\} \subseteq \mathbb{Z}$

$$h(t) = \prod_{k=1}^{\infty} (1 - t^k)^{b_k} \text{ in } C[[t]] .$$
(4)

This sequence is uniquely determined ; in fact,

in such a way that

$$\mathbf{b}_{\mathbf{k}} = \frac{1}{\mathbf{k}} \sum_{\boldsymbol{\ell} \mid \mathbf{k}} \mu(\boldsymbol{\ell}) \mathbf{u}(\frac{\mathbf{k}}{\boldsymbol{\ell}}) , \qquad (5)$$

where $u(x) = \sum_{i=1}^{n} \alpha_{i}^{x}$, μ is the Möbius function. In particular, it follows from (5) that

$$\left|\mathbf{b}_{k}\right| \leq n \left(\frac{\tau(k)}{k}\right) \gamma^{k}$$
, (6)

where $\tau(k) = \sum_{\substack{\ell \mid k}} 1$, $\gamma = \max_{i} |\alpha_{j}|$. Therefore, the product (4) converges in in the disk $|t| < 1/\gamma$. For any M, N>1 we set

So that for Res large enough

$$L(s,h) = u_N(s) \ \psi_M(s) \ T_{N,M}(s) \ R_{N,M}(s) \ .$$
(7)

We use now (7) to continue L(s,h) to C^+ . The functions U_N and $R_{N,M}$ are obviously meromorphic in C and so is the function

$$\bigvee_{M} (s) = \prod_{n \leq M} \zeta(n s)^{b} n$$

We prove that if $N > \gamma^{M}$, then the product expansion for $T_{N,M}$ converges absolutely for Re s>1/M. In fact, (6) implies

$$\begin{aligned} |\log T_{N,M}(s)| &\leq \sum_{p \geq N} \sum_{k>M} (n \frac{\tau(k)}{k} \gamma^{k}) |\log (1 - p^{-sk})| \leq \\ &\leq n \sum_{p \geq N} \sum_{k>M} \sum_{k>M} \frac{\tau(k)}{km} \gamma^{k} p^{-km(Res)} \leq n \sum_{p \geq N} \sum_{k>M} \gamma^{k} (\tau(k))^{2} k^{-1} p^{-k Res} \end{aligned}$$

and the last series converges absolutely for Re s>1/M , N> γ^M . Taking $M \to \infty$ we get the desired result.

If $|\alpha_i|=1$ for any i, then $\gamma=1$, and it follows from (6) that $b_k=0$ as soon as $n \tau(k) k^{-1} < 1$; therefore, expansion (4) contains only a finite number of terms, so that L(s,h) is a product of a finite number of ζ -functions, as it has been claimed. Assume that $\gamma > 1$. We prove that in this case any point in C^0 is a limit point of poles of L(s,h) in C^+ . Suppose that $|\alpha_1| = \gamma$, and set $\alpha_1 = \gamma e^{i\Phi}$. Consider the sequence

$$\{ \mathbf{s}_{k}(\mathbf{p}) = \frac{\log \gamma + i(\mathbf{\Phi} + 2\pi k)}{\log p} \mid k \in \mathbb{Z} \}$$

of roots of the functions $s \mapsto h(p^{-s})$ and count the number $S(\nu, \delta)$ of $s_k(p)$ in the regimn

$$D_{v}(\delta) = \{ s \mid \frac{1}{v+1} < \operatorname{Re} s < \frac{1}{v} , t_{o} < \operatorname{Im} s \leq t_{o} + \delta \}$$

where ν is a positive integer, $\delta > 0$ and $t_o > 0$. If $\frac{2\pi}{\log p} < \delta$ and $\frac{1}{\nu+1} < \frac{\log \gamma}{\log p} < \frac{1}{\nu}$, then there exists k such that $s_k(p) \in D_{\nu}(\delta)$. For

$$\begin{split} \delta > \frac{2\pi}{\nu \log \gamma} & \text{we get } S(\nu, \delta) \geq \sum_{\substack{\gamma \gamma^{\nu+1} \text{ and } \delta > \frac{1}{\nu} (2\pi / \log \gamma). \text{ Take } M = \nu, \\ \text{then } R_{N,M}(s) \neq 0 \text{ and } T_{N,M}(s) \neq 0 \text{ for s } D_{\nu}(\delta). \text{ Finally, the function} \\ \mathfrak{U}_M(s) = \prod_{n=1}^{M} \zeta(ns)^{b_n} \text{ cannot have more than } \sum_{n=1}^{M} N(n(t_0 + \delta)) = O(M^3) \text{ distinct zeros} \\ \text{in } D_{\nu}(\delta), \text{ where } N(T) \text{ denotes the number of zeros of } \zeta(s) \text{ in the region} \\ 0 < \text{Im } s \leq T \text{ We see, therefore, that for large enough } \nu \text{ and } \delta > \frac{1}{\nu} (\frac{2\pi}{\log \gamma}) \text{ the} \\ \text{function } L(s,h) \text{ has poles in } D_{\nu}(\delta). \text{ Thus any neighbourhood of a point } t_0 \in C_0 \\ \text{contains a pole of } L(s,h). \text{ This completes the proof of proposition 4.} \end{split}$$

We should mention another classical result [12] responsible for the ideas discussed here.

PROPOSITION 5. - The function

$$P(s) = \sum_{p} p^{-s}$$

<u>defined for</u> Re s>1 <u>can be continued to</u> C^+ <u>and has</u> C^0 <u>as its natural boundary</u>.

<u>**Proof.**</u> - The standard expansion for $\log \zeta(s)$ and Möbius inversion formula give

$$\mathbf{P}'(\mathbf{s}) = \sum_{m=1}^{\infty} \mu(m) \frac{\zeta'}{\zeta}(m \mathbf{s}) , \qquad (8)$$

so that P' is meromorphic in C^+ . Let v(s) denote the multiplicity of a zero s of $\zeta(s)$; since $N(T+1) - N(T) = 0(\log T)$, it follows that $v(s) < A_1 \log |Im s|$ for some A_1 independent on s (assuming $|Im s| \ge 2$). Moreover, for any $\delta > 0$ and $t_0 > 0$ we have

$$N(m(t_o + \delta)) - N(m t_o) > 0$$
 as soon as $m > A_2(t_o, \delta)$.

Keeping these facts in mind, consider a region

$$D(\delta) = \{ s \mid 0 < \text{Re } s < \delta \ , \ t_o < \text{Im } t < t_o + \delta \}$$

and choose a rational prime q satisfying inequalities

$$q > 1/\delta$$
, $q > 2/t_o$, $q > A_1 \log((t_o + \delta)q)$, $q > A_2(t_o, \delta)$

Then one can find a root s_1 of $\zeta(s)$ such that

$$\frac{1}{2} \leq \operatorname{Re} \mathbf{s}_{1} < 1, \quad \operatorname{qt}_{o} < \operatorname{Im} \mathbf{s}_{1} \leq \mathbf{q}(\mathbf{t}_{o} + \delta), \quad \mathbf{v}(\mathbf{s}_{1}) < \mathbf{q} \quad . \tag{9}$$

Obviously, $s_1/q \in D_v(\delta)$. To prove that s_1/q is, in fact, a pole of P'(s) we notice that $\zeta(m s_1/q) \neq 0$, ∞ for $m \geq 2q$, and, therefore, it is enough to show (see (8)) that

$$\sum_{m=1}^{2q-1} \frac{\mu(m)}{m} v(\frac{ms}{q}) \neq 0.$$

But (10) follows from (9) because

$$\sum_{\substack{m=1\\m \in \mathbf{1}}}^{2\mathbf{q}-1} \frac{\mu(m)}{m} \mathbf{v}(\frac{m\mathbf{s}}{\mathbf{q}}) = \frac{\mathbf{v}(\mathbf{s}_1)}{\mathbf{q}} + \frac{\mathbf{a}}{\mathbf{b}} ,$$

where $a/b = \sum_{\substack{m \neq q \\ m < 2q}} \frac{\mu(m)}{m} v(\frac{m s_1}{q})$, so that $q \not\mid b$ whenever (a, b) = 1.

Thus the point $t \in D_{\mathcal{V}}$ is a limit point of poles of P'(s), and the proposition follows.

For a generalisation of Propositions 4 and 5 we refer to a paper by G. Dahlquist [13].

4. - The proof of the results discussed in $n^{\circ}1$ can be obtained along the same lines [6-8, 10] with the help of the following lemma (whose proof we omit).

LEMMA. - Let $H(t) \in X[t]$, H(0) = 1 and $H_g(t) = \prod_{i=1}^n (1 - \alpha_i(g)t)$ for $g \in W(K/k)$; set $\gamma = \sup \{ |\alpha_i(g)| | 1 \le i \le n, g \in W(K/k) \}$. Then

1) there exists a sequence of integers $\{a_{m,j} \mid m, j=1, 2, ...\}$ such that $H(t) = \prod_{m, i} \det(I - t^m \Phi_j)^{a_{m,j}} \quad \underline{in} \quad [X[[t]]],$

where $\Phi_1, \Phi_2, ...$ are the irreducible representations of W(K/k);

2) dimension of Φ_i does not exceed (K : k) = d ;

3)
$$\left| \begin{array}{c} \sum_{i} a_{m,i} \operatorname{tr}(\Phi_{i}(g)) \right| \leq \frac{\tau(m)}{m} (d-1) \gamma^{m} \operatorname{\underline{for any}} m \operatorname{\underline{and}} g W(K/k) ;$$

4) $\sum_{i} a_{m,i}^{2} \leq \gamma^{2m} \left(\frac{\tau(m)}{m} (d-1) \right)^{2} \operatorname{\underline{for any}} m ;$

5) the product

$$\begin{split} H_p(t) &= \prod_{m,i} \left(I - t^m \, \Phi_i \left(\sigma_p \right) \right)^{a_{m,i}} \\ \underline{\text{converges absolutely in the disk}} \quad \left| t \right| < \gamma^{-2} \; . \end{split}$$

-:-:-REFERENCES

- A. WEIL, <u>Sur la théorie du corps de classes</u>, Journal of the Math. Soc. Japan, 3 (1951), 1-35.
- [2] J. TATE, <u>Number Theoretic Background</u>, Proceedings of Symposia in Pure Mathematics, v. 33, part 2, p. 3-26, Amer. Math. Soc., Providence, Rhode Island, 1979.
- [3] A. I. VINOGRADOV, On extension to the left half-plane of the scalar product of Hecke L-functions with Grössencharakters, Izvestia Akad. Nauk. USSR, Seria Matem. 29 (1965), 485-492.
- [4] P.K.J. DRAXL, L-Funktionen Algebraischer Tori, Journal of Number Theory, 3 (1971), 444-467.
- [5] O. M. FOMENKO, <u>Extendability to the whole plane and the functional equation for the scalar product of Hecke L-series of two quadratic fields</u>, Proceedings of the Steklov Institute of Mathematics, 128 (1972), 275-286.
- [6] N. KUROKAWA, <u>On the meromorphy of Euler products</u>, Part I, Tokyo Institute of Technology Preprint, 1977.
- [7] N. KUROKAWA, On the meromorphy of Euler products, Proceedings of the Japan Academy, 54 A (1978), 163-166.
- [8] N. KUROKAWA, <u>On Linnik's problem</u>, Proceedings of the Japan Academy, 54 A (1978), 167-169.
- B. Z. MOROZ, <u>On the convolution of Hecke</u> L-<u>functions</u>, Mathematika, 27 (1980), 312-320.
- [10] B. Z. MOROZ, <u>Scalar product of L-functions with Grössencharakters</u>, <u>its meromorphic continuation and natural boundary</u>, Journal für die Reine und Angewandte Mathematik, 332 (1982), 99-117.
- [11] T. ESTERMANN, On certain functions represented by Dirichlet series, Proc. London Math. Soc., 27 (1928), 435-448.

- [12] E. LANDAU, A. WALFISZ, <u>Über die nichtfortsetzbarkeit einiger durch</u> <u>Dirichletsche reihen definierter funktionen</u>, Rend. di Palermo, 44 (1919), 82-86.
- [13] G. DAHLQUIST, On the analytic continuation of Eulerian products, Arkiv für Matematik, 1, n° 36 (1952), 533-554.

-:-:-:-

B. Z. MOROZ Department of Pure Mathematics The Hebrew University Jerusalem, Israel