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ELEMENTARY PROOF S O F ANALYTI C HYPOELLIPTICIT Y 

FOR •  AN D TH E 3" - NEUMANN PROBLE M 

by D.S. TARTAKOFF (University of Illinois at Chicago Circle) 

I. L METHOD S IN PROOFS OF ANALYTICITY. A SIMPLE NON-ELLIPTIC CASE 

The real analyticity of solutions to (linear) elliptic partial differential 

équations with analytic coefficients is well known. Th e opérator is given by 

P = Z I a  (x)Da 
| a | <m 

where the aâ x ^ ar e real analytic (possibly matrix-valued) functions of 

n a  a l a n 
x E fi C R , D =d ^ * * *Dn ' Dj = ~i3/3xj i and the ellipticity is: 

Pm(x,^) = E a  (x)Ça  ̂0, Ç  t 0 . 
|a| =m 

Theorem 1. Le t P  b e a linear, elliptic partial differential with real analytic 

coefficients in an open set fi in R n . Let P u = f i n fi with u  E ̂ ffî* (fi) 

and f  rea l analytic» in fi . Then u  i s also analytic in fi . 

There are several well known proofs; the most useful today are 1) via the 

construction of an analytic pseudo-differential parametrix for P  , i.e., an 

analytic pseudo-differential operator ("Â DO" ) Q o f degree - m suc h that 

QP = 1 - R o n e1(fi ) wher e R  map s e'(fi ) int o Ct(iï) ,  the real analytic 

functions on fi and Q  préserve s local real analyticity (cf., e.g., Cl]) and 
2 

2) L method s based on Garding's inequality: for ail fi' c= fi , aC : 
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D. S. TARTAKOFF 

(1.1) l|v||m <C(||Pv||0 + l|v|l0> v 6CO(S') , 

the | | || s bein g Sobole v norms of order s  i n R n . 

Both of thèse proofs may be microlocalized, so that not only the analyticity 

but also the analytic wave front set of u  ma y be reconstructed frora that of f  . 

In particular, one says that (Xq,£o ) ^ WF^(g) fo r a distribution g  provide d 

there exists a constant an d a neighborhood U  o f X q an d an open cone V 

such that for ail N  ther e exists g N i n £ 1 (Rn) equa l to g  i n U  wit h 

l *»<«l "N' 

Theorem 1' (Hôrmander, Sato). Unde r the hypothèses of Theorem 1, if 

(x )  à WF (f) the n ( x )  $ WF (u) . o ̂ o ^  a  o  o  ^  a 

One can construct the g N i n the above définition explicitly: 

Proposition 1.1. Give n open sets \J^ŒŒ\]^ wit h d  = dist [U ̂  ,U2°mP) > 0 , there 

oo 

exists a constant K  suc h that: fo r any N  , there exists i n C0̂ U2̂  

identically one on suc h that 
(1.2) |D a(J)N(x) | < (Kd_1) l a U a l i f | a|<2N . 

(The construction of thèse functions goes back to Ehrenpreis. The y are "analytic 

up to level N" in that when | a | = N , the growth is (CN) N <_ (C')NN! ). 

Proposition 1.2. On e may take the g ^ i n the above définition of WF^(g ) t o be 

gN(x) = Vx)g * 

To get a flavor of the proofs below, we prove Theorem 1 using the localizing 

oo 
functions <| ) above , but assuming for simplicity that u  i s known to be in C  (Q.) 

oo 

already, since we are interested mostly in the passage from C  t o real 

analyticity. Als o for simplicitly we take m  = 2 . 
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ANALYTIC HYPOELLIPTICITY 

Proof of Theorem 1 when u  E C . 

~a " <  C|a|+1NN 
We fix N an d will show that sup|| D u|| < _ C1 1 N ,  the supremum over 

IT(U ) o 

ail a  wit h |a | <_ N , whence also pointwise for K czc= u , sup|D°u(x) | 

<- C |a'+1NN <. c N+1N! Usin g (1.1), for some 3 with Ig l = 2 , 
JN. JN . 1 1 

(1.3) 

IID°UH 2(0 ) = H * / 0 " " 6 " ! ! 2^c(||P*/-eu|| 2 + Hva"e« l l 2) 
L o  L  L  L 

< c(||cj)NDa-3f|| 2 + ||[P,VDa-3u|| 2 + ||ct)NcP,Da-3:u|| 2 + H y r t n 2) 

Now C P , ^ = I a..(x) Di(((>N)Dj + E ^ ( ^ D. ° (D.^) 

= Z(coef .)d>'D. + Kcoef Jè'D. + E (coef. ) (j)" j N  J N  ] T N 

and CP,DA-P ] = I Ccoef.,DA-B]D.D. = E («^ Wcoef. JD^^YD.D 

K M 

d ô so that, writing now D fo r any D wit h |ô | = d , 

(1.4) 

E l l C ^ I I 2 ^ C ( ^ sup|eoef | H ^ ' D ^ UH 2 
1<2 "  i / V1<J< 4 O  L 

+ Ç ( ? ) sup|coef.(k'| ||V**«|| 2 + ||VN-2f|| J 
k—1 L  L 

where "coef." dénote any of the coefficients of P . 

The above estimate mav be rewritten 

E l k / ' D ^ u l l < C ||VN"2f |l 
i<2 N L 

(1.5) 

+ Csup,2C,^NkK^ff E ||*N(J+1)DN-^-ku| | 2 
±<j+k=N coer r is2 \r 

•i -î 9 
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where we have used the bounds suplcoef f  ̂I  < K^+* k ! an d |  )k ! < N̂" for 
1 1  ~ coef f \  k / — 

i 
i+k 

k <_ N . We have also replaced the sum from j+ k = 1 t o N  o f C  F(j,k ) by 
^ i+ k ^ C sup(2C)J F(j,k ) , the supremum over j+ k betwee n 1 and N  , with C 

independent of N  . 

If one itérâtes this estimate until at most two derivatives are free to fall 

on u  , noting that every gain in such derivatives has shown up as a factor of CKN 

or a derivative of <J>N and multiplication by C  , in the end we have a right hand 

side of the form: 

(1.6) C  su p (2CK )j+V||<),<j)DN-2j-kf|| +  C su p (2CK)j+Ml*'J+i)D2-iu|| , 
j+k<N-2 L  j+k< N L 
i 2 i< 2 

Finally invoking the bounds in Proposition 1 for thé derivatives of <J>N , together 

with similar bounds for derivatives of f  , we have 

E l l C » " - 1 » ! ! 2< < ^ + V N ( i + E l|oau|| 2 ) 
i<2 L  1  |c|< l L2(UJ 7 

uniformly in N  , and hence the analyticity (in U ) • 

2 

Remarks on the L  approach . 

A more conventional form of this proof (see, e.g., Hôrmander, [10]) does not 

retain the same function <|> N throughout but introduces a new cutoff function for 

each itération of (1.5). Thu s each such function need only receive a few 

derivatives and N  suc h are "nested", each one identically equal to one near the 

support of the previous one, the distance between the région where each is equal to 

one and the complément of its support being proportional to 1/N , so that in a 

uniform manner first derivatives of thèse functions may be taken proportional to 
2 

N , second derivatives proportional to N  (an d so on up to any given number 

(independent of N)). Late r on we shall have occasion to nest loĝ N suc h 
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localizing functions <J>.T wit h distances d . betwee n the set where d) = 1 an d N. n  YN . 

the complément of its support proportional to j  an d N_ . proportional to . 

If the derivatives grow as in Proposition 1 with thèse constants and if 4>N 
j 

receives ail derivatives , the total contribution to the iterated estimâtes 
N 4  N/2^ will be C  N! time s a product, from j  = 1 t o log2 N , of ( j ) ,  which is 

bounded: 

d.?» n (34)n/2 J < CN 
j-i 

Non-Elliptic Problems. 

For non-elliptic operators P  , the proof of Theorem 1 will not apply, since 

Garding's inequality fails. On e can still achieve C°°-regularit y and even some 

Gevrey class regularity by means of "subelliptic" estimâtes of the form (for m = 2) 

(1.8) ||v|| ^ < c ( | (Pv,v) 2| + ||v||22) e  > 0 
L L 

such as were used b y J.J. Kohn for the 3-Neumann problem and the complex boundary 

Laplacian, \^\^ , onf for example, strongly pseudo-convex domains. Her e it is 

possible, as we shall discuss further below, to write the operator J |  a s a 

determined system 

(1.9) P  = ï, a_ (x,y,t)Xj.Xj + Z a±(x,y,t)xi + aQ(x,y,t) 

where the â (j ) ar e sniooth (analytic) square matrices and 

X. = 3/9x. - y.a/at j  = l,...,n 
3 D  D 

(1.10) 
Xn+j " 3 = 1 n  . 

The substitute for Garding's inequality here is 
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(1.11) \\v\\1 + Xj|x±X v||Q < C<||l?v|l0 + |v|l0) 

oo 
for v  e C .  Her e T  = d/dt . The following is in [163, [17]: o 

Theorem 2. Le t the operator P  hav e the form (1.9) and assume for simplicity that 

the coefficients â (j) (x'Y't) ar e constant. Le t the a priori estimate (1.11) be 

satisfied. I f u  G D1(Rn) wit h P u = f rea l analytic in U  , then u  i s real 

analytic in U  . 

Remarks. Th e theorem is true with no change when the coefficients are variable. 

See Lecture 2 for this case. Th e theorem is true for higher order operators with 

corresponding a priori estimâtes. Th e obvious microlocal versions of the theorem 

are true, together with microlocal real analytic regularity theorems for certain 

boundary value problems for elliptic operators, such as the 3-Neumann problem. W e 

shall corne back to some of thèse later. Fo r the moment we wish to set forth the 

method of proof in as transparent a form as possible. 

The Constant Coefficient Proof on the Heisenberg Group. 

We dénote by X ^ an y X . ... X. ,  noting that the X . d o not commute. 

Using a resuit by Nelson, in order to establish bounds 

||Dau|| , <dal+1|a | :  ai l a 
l/(U ) o 

it suffices to show that there is a C  suc h that for ail a,b : 

|XaTbu|| <  C'a+b+1(a+b)! 
L (U') 

O 

for some U'3=> U .  Now (1.11) treat s X  derivative s roughly as in the elliptic 
o o 

case, but not th e T  derivatives . Fo r in estimating high T  derivatives , the 

naive approach would bound, say, ||x̂(j)Tru| | b y ||P(j)Tru|| 0 , and the commutator of 
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TC TC 3 T 

P wit h (J) T wil l contain <f)'X T an d <J)" T ,  which can be resubjected to (1.11) 

only by writing a T  i n terms of two X' s (b y commutation); but the loss is too 

great; two derivatives on (j ) for each T  derivativ e gained will never lead to 

analyticity. I n place of (j)T r , then, we seek another expression, equal to T* " on 

the set U q ye t compactly supported which commutes well with the X_ . . 

For r  = 1 w e have 

^ î j ^ * 1 ^ - è ' V ' W xk]= [ ( t 1 v \ ] 

n n 

- - D v w ) x j + £ ( x k V } 
i=i 1=1 

.(f) x . 

While <| > does receive two derivatives, no T  remains , and the "corrected" <{) T is 

equal to T  i n U q sinc e ail other terms have derivatives on <J > . 

To generalize this case, it is convenient to dénote by X ' th e vector 

(X„,...,X )  an d b y X " th e vector ( X 4,...,X 0 ) . 

1 n  n+ l zn 
Then if we define 

(T2)A = d)T2 -  Z(X"(j))x:T + E(X'.(())X,:T + H \ (X,,A<{))X, A 
* 3 3 J 3 |a|-2 a! 

1 - Z (X'X"(f>)x:x" + H ^ - (X 'P<j))X"F k 3 |3|=2 p. 

we have 

p y x j ] = 0 an d p y ^ - l T 1 ) ^ » 

3 2 

modulo terms of the form ( X <|>)X .  This suggests the following définition, where 

we use multi-index notation: 

(1.12) (Tr ) =  Yl ^TTr (X'aX"3(f))X'3X" a Tr~la+3I . 
' |a+B|<r a,tj * 
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Proposition 1.3. Wit h ( T ), define d as above, 
(h 

(Tr).,X'. E  0 an d (Tr).,X\ ' [E - (Tr S.X'Î 

modulo C  term s of the form ( X (j)) X /r! 

The proof is an easy calculation together with a shift of index. 

Now we are ready to use (1.11) t o prove analyticity. A s indicated above, to 

estimate N  derivative s of u  i n U Q ' we shall nest loĝ N ope n sets U_ . and 

choose functions d> , denoted <b . for short, equal to one on U . an d in 
N. i i 3 

Co(Uj + l) With 

(1.13) I D V I <  (KdT1) 106 ' IST1061 fo r |a | < 2N . =q. 
3 3 3 3 3 

where d_ . = dist (U. . ,R2n+1 \U_. + 1 ) = d/j2 an d N  =  .  Fo r a  >. 2 an d 

a + b <_ KL , we have the estimâtes 

(1.14) ||xaTbu|| < ||x2<^> Xa-2u| | , 

L (n.) L 

EIIXNT1 3 ) x-^ull < ||x2(TB) xa-2u|| 
i<2 T j v j L 

(1.15) 

+ E I I X 1 ^ " 1 ) ^ X^ u H 2  + Cb E l l x 1 ^ ) ^ - 1 - 1 » ! ! 2 / b I 
i<2 T<Pj L  i< l 1 1 L 

(this expresses the resuit of trying to move two X' s t o the left of (T3 ) )  and 

(1.16) 

||x2(Tb) X3-2u|| < C j||p(Tb) Xa"2u|| + ||(Tb) Xa"2u|| 
j L f j L L  ) 

< C j||l(coef.)[x2,(Tb)^xa-2Ju||L2 + ||(Tb)^xa-2u||L2J 

(assuming that P u = 0 , as we may locally in the analytic case; the estimâtes 
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merely get a bit more complicated looking if we keep f  at each stage). Now 

[ * 2 ^ v a - 2 ] = [ * 2 ^ > , y - 2 • <*\.[*2<*a-2] 

- X ^ - 1 ) ^ X3"1 + (T^1)^ X3 + Ça (Tb)()) Xa"2T 
j j j 

+ Çb(^b+1))xa-1+b/b! +CbX . (*<b+1))Xa-2+b/b! 

where underlining a coefficient indicates the number of terms of the form which 

follows. Thu s we obtain: 

E l l x 1 ^ ) ^ xa-±u|| 2 < c £ l l x 1 ^ " 1 ) ^ x^ul l 2 
i<2 j  L  i  <2 j  L 

(1.17) 
+ ça E H x V V X ^ ^ T U I I . + ccb E H x N c D ^ ^ j x ^ 1 - 1 ^ ! ! 7 / b! 

i<2 j  L  i< 2 3  L 

Upon itération, the terms still containing (T b ^b-b'̂  loo k like 

CCb"b' E (Ca )k||x1(Tb'l ,  X ^ ^ T N I I I ,  b' <.b fo r some k  < (a-2)/2 . If 
i<2 T  ^  . L 

J 

we subject such a term with three X' s to (1.11) we may wind up with a term only 

containing one X . No matter; (1.11) also bounds terms with one X , though not 

quite so well, and this will occur only once in the lifetime of any given term. 

From this point on two X's will survive. The end resuit of thèse itérations will 

be to halve the total order, and one additional derivative will harmlessly be 

absorbed at this stage. We shall return to this point below. 

When the fundamental estimate applied to an expression such as that in the 

previous paragraph yields a term containing only X' s , i.e., a term such as the 

last in (1.15), it will be 

CCb-b,(Ca)k E C b ' | | x 1 r t . ( b + 1 ) ) k A - 2 K - I - 1 * V u| | , / (b') I 
i<2 3  L 

for some b ' <. b an d k <. (a-2)/2 . Thus we have at last 
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n a b n a+ b 
jlX T u|| < _ C supremu m 

L (U.) b'<b,k;l(a-2)/ 2 
(1.18) 3 

E a k l l x 1 ^ 1 ^ * - 2 * - 1 - 1 * ' Tku| | . / (b-)l 
i<2 3  L 

Of course we also may use (1.11) to yield, as in the proof of Theorem 1 but with 

Pu = 0 , 

E i i x W u i i 2 < c E E i i x V « v - V u i i 2 
i<2 L  i< 2 £<2 L 

(1.19) 
+ C E Ça'||x^xa,-2Tk+1u|| 2 

i<2 L 

(iterating) 

^ ^a+1 / • ii iUf(£)„a-i k+k' ,, <_ C su p (a') H X ¥ X T  u  || 
2k,+£<a' L 
a=2 or 3 
i<2 

(i.e., keep applying (1.11) until ail but 2 or 3 X' s eithe r give T' s o r land on 

Y ). Togethe r with (1.17), this is 

Il amb II ^ ~ia+b+1 ejL (b+l+£)Ja-i k-k' M 
Il X T u || <_ C sup|| x (c|). X  T  u| | /(b') ! 

L (U.) 3  L 

where the supremum is taken over ail k,k',£,b' , i  an d a  wit h i  <_ 2, b* <_ b, 

2k <_ a-2, a = 2 or 3, an d 2k1 + £ <_ a-2k + b1 - 1 . Simplifying, 

a» 
ll„amb II ^  ̂ a+b+1 kll,, ^ (b+l+A) x a-ik-k' n . . . , || X T u|| < _ C su p a || X <(). ) X T  u| | /(b1) ! 

L (U.) D  L 

the supremum now over a  = 2 or 3, 2k + £ <_ a+b1 -1, b ' <_ b . 

Notice: the number of remaining derivatives is less than (a+b )/2 + 3 . 

In view of the estimate (recall q_ . >_ a+b, (2j + ̂ = 3̂ /2) 
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.2(b+£+l) b+JUl k+b+£+l-b' , b' . IX  ̂q j .4qj q j - k ,  . 
j k  q. . (q. . /b') <_C J 3 j  q j + l unde r the afc,ove 

constraints on a,k,£, and b" , we have finally 

l|xaTbu|| l lx^ul l 
L (U.) q. 4q. L (U +1) 

(1.20) supremum j —̂ <_ C j -1 sujDremum — . 
a+b<qj qj* a+b<qj+1+4 (qj+r ' 

Iterating this resuit at most loĝ N times yields analyticity in view of (1.7), 

since the additional 4 derivatives on the right are harmless: 

O^. ( ) +4 ) / ./2+4)/2 . . ./2+4 )^£8 

log2N times 

II. NON-HYPOELLIPTIC OPERATORS; VARIABLE COEFFICIENTS 

§ 1. Introduction. 

The methods and results of the first lecture extend with no significant change 

to higher order Systems satisfying analogous estimâtes. Using this, the author and 

L.P. Rothschild are currently studying questions of analytic regularity of 

solutions to operators which have only "relative" fundamental solutions and whose 

kernels and cokernels are infinité dimensional. 

In particular, we consider homogeneous, left-invariant differential operators 

on the Heisenberg group Hn 

L = Z I a X. ... X. 
|l|=m 1 xl XI 

which are "elliptic in the generating directions", i.e., for which 
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E a(3/3x ) i s elliptic in R2 n 
|i|=» 1 

(and the a T ar e constants). Thu s here the X . ar e (may be taken) a s in the 
1 3 

first lecture, i.e., X ' = (X.,...,X ), X" = (X „,...,X 0 ) with 
1 n  n+ 1 z n 

(2.1) X | = 3/3x± - yi3/3t, x£ = 3/3y , an d T  = 3/3t 

Then Geller (C9D) proves the existence of a "regular homogeneous distribution" K 

(plus log terms if de g L >_ 2n+2) an d a principal value distribution P  wit h 
2 

LK = ô - P . Here f  f* P i s the L  projectio n onto the orthogonal complément 

of L  actin g on Schwartz functions. P  i s analytic except at 0  , and 

Lu = f E fo r some u  i n i f and only if f* P i s real analytic near 

the point under considération. Whe n L  i s Q  o n functions, i.e., 

L = L =  - \- I (Z.Z. + z".Z.) + inT, Z. = X'. + iX'! 
n 2  j j j j 3 3 3 

in the conventional notation, then P  i s the Cauchy-Szego kernel. I n this case, 

the above results were obtained by Greiner-Kohn-Stein (l7l) . When P  = 0 , the 

methods of the first lecture show that u  i s real analytic whereever L u is . 

When P   ̂0 , we have studied the analyticity properties of K  (an d P) by 

using an idea of Beals and Greiner together with the estimâtes of the first 

lecture. Namely , for small, non-zero complex X , L̂  = L + À i s again 

homogeneous and has no cokernel, i.e., the corresponding P ^ i s zéro, and hence 

the corresponding préserve s local analyticity. Then , writing 

The left invariant vector fields on the Heisenberg group are usually given as 

X̂  = 3/3x_. + 2y_.3/3t, XV = 3/3y_. - 2x_.3/3t ; since the group law is of no interest 

to us, a simple coordinate change brings them into the above form. Th e 

coefficients of L  remai n constant, of course. 
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Q = ~rr \ X XL. 1d\ an d B  =  TT-T J L ^ÔA xo 2TTI J ^ a  O  2ÏÏI J p a 
e e 

where r i s a small contour containing 0 , we have 

m/2 
LQ =  I - T B o o 

The estimâtes of the first lecture, (uniform in X! ) then show that Q  (an d B  ) 
o o 

préserve (micro-)local real analyticity. W e hope to study variable coefficient 

operators of this form soon. 

§2. an(3 the 8-Neumann problem. 

The (real analytic) boundary, T, of an open set Çl in § n inherit s a 

natural splitting of its complexified tangent space: 

(|:Tr = T' © T " © F  wher e T  ' = T"" 

and sections of T 1 ar e the restrictions to Y o f holomorphic vector fields 

(from <(:n) that are tangent to T . F ha s complex dimension 1 and is spanned by 

J8/3V , where v  i s the (unit) interior normal to Y . Letting , . . . , 1 ^ ^ b e 

certain local real analytic sections of T 1 , and defining C Z ] ^ i n terms of the 

, the operator 

1—'b b  b b  b 

may be viewed as a determined system mapping smooth (p/q) ^ form s to smooth 

(P/Ĉ k forms , and, in a local frame, has the form 

P = Y " a..(l ! {l\ + Z a.(£Î + a 
r—: i l i  l . 1 1 o 
i,D i 

with real analytic matrix coefficients. Whe n the Levi form, c. . : 

97 



D. S. TARTAKOFF 

(2.2) CL. , L, 1 = c T̂ mo d (L„,...,L . ) 
j k  3 k 1  n- 1 

satisfies Kohn's eigenvalue condition Y(q ) , we have the a priori estimate 

E 11 h ) V ^ v| | <  C(||Pv|| +  ||v|| ) 
i,j 1  3 ir \r lz 

for v  o f compact support. Writin g xi'***'X2n- 2 ̂ o r t*ie reâ- anĉ  imaginary 

parts of the L_ ^ , this estimate is (1.11) . 

§3. Proof of analytic hypoellipticity. 

Now the operator has variable coefficients and the vector fields {x_.} are 
not those given by (1.10) . Bu t a simple conséquence (due to A. Dynin) of the 

Darboux theorem then asserts that when det( c )   ̂0 , (i.e., the Levi form is non-

degenerate) then we may change coordinates analytically and obtain the form (1.10 ) 

without changing the linear span of the X_ . . And clearly we still have the 

"maximal" estimate: 

2n-2 
(2.3) E llx. X v|| < 

i,j=l 3  L 
C<||Pv|| 2 + ||v|| 2)r V  e Co(a)) 

L L 

The proof of analytic hypoellipticity here is the same as before except that 

the coefficients are variable. Thu s in estimating, for 

a >_ 2 >_ i. Il X""" (Tb)̂ T°xa ^ u | | 2  w e encounter, in [P,(Tb)̂ T °xa 2] , obvious terms 
L 

such as those in (1.17 ) where (Tb).Ccoef.X2,T °xa 23 enters , which are handled as 

before, and terms of this form 

Cg(x,y,t),(Tb)̂ ]TCxa 

where g  i s one of the coefficients of P  . This has been treated in Cl], but we 

have a simpler version of this essential Lemma which we give here: 

00 2n+ l 0 0 Lemma 2.1. Le t g(x,y,t ) E C (R )  . Then for any (j), v E Cq an d any s  >_ 0 , 
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I ^ V ^ U E c |<D i+J*g> | 
9 0<i+2j+k< s 13 

, u'+v'+v" .v-v'-v" (2.4) •  supremu m | y 0  X' 0 
|y'|<i,|v"|+|v'|<j=|v| 

• (x-^x'^'x^'x^'^x'^'x^-3' TP-I^I . 

Here c-ĵ s = (s-i-j)!/i!j!k!(s-i-j-k)! Ail X's act on everything and D stand s 

for a 7T~ r z = xn,yn,t , or T or an X . The underlined coefficient indicates dz 3 6 3 6 

that for each i, j ther e are Ci+3 term s of the form which follow. 

Admitting the Lemma, which we shall prove in "easy" stages, note that 

sk - 1 i+'+ k i+"+ k 
C- -v — • i • iv ;  the ( i ! j !k ! ) ICD1 3 g) | will be bounded by C1 3 ;  derivatives 

still able to hit (j) or g are reduced by k , hence the s .  The rest of the 

decrease in s merel y turns up as free X' s or passes to $ . 

Proof. Firs t consider functions g  independen t of t . Then 

K ' ] - i i f a [ ^ - " ^ " , t k - - > r t 

< " > • r E - T Î C T < : . > £ > • 

|a+b|<p 1 <Ja' +b' |<Ja+b| 
a'<a 
b'<b 

• ( x - ^ x ' ^ ' x ^ ' x ^ ' ^ x ' ^ ' x ^ - 3 ' T P - I ^ I . 

Thinking of a-a' = a" and b-b' = b" a s new indices depending on a^b1 , 

associating X" b directl y with $  and , thanks to the spécial form of the 

xk • 3 ^ - yk k 'so that [ 4 / x " ] = | ^ ' x " ] = ° - t h e extra x,a' to the ieft 

3 9 
have their —'s and T̂ JT'S pass directly to <J> and the coefficients y k remain 

a' la' l with g  . In ail, then X * give s rise to 21 1  terms each of the form 
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L L g a!b! (-^ x' x- ( ^ j x» <». 

• X'b" X"a" T(P-|a'+b'|)-|a"+b"| / 
/ a"!b"! 

for some a' <_ a' . That is, for g independent of t , 

[ , T V ' ] = , ? . l ; : i r ' Ç . ( t : ) ' - > , ' 4 ' J ^ k -
L y J l<.|a'+b'|< p a*<a' 

D-(a'+b1) Ĉ.., B,K+JA,:L(-A) J7T „ . . 1(A,B) 

i+2jTk<s 13kS s-2j-i-k ^ 

When g dépends on t , we must also consider the effect of 

[THa+bl,g: = £  ,pHa+b|\ (k^-la+H-k ^ ^ difficult y here ±s ^ 
l<k<p-|a+b| V *  ' 

the coefficient ^+^ ) shoul d not involve |a+b | explicitly or else it 

distorts the sum 

(2.6) j  ±_il̂  (x-ax"%)X-bX"aT(p-k)-|a+bl 

with différent weights for each |a+b | . To résolve this we use an elementary 

expansion for the binomial coefficient: 

( H r b | ) • E  ( K ) '->' C**1) • 

t<|a+3| 

Together with a change of indices this shows, after a tedious calculation, that 

(2.7) TT (A+A\B+B') = Y\ C.., B,K+JA,:L(-A) J7T „  . . 1(A,B) 

i+2jTk<s 13kS s-2j-i-k 

where C.. . =  . , . ̂ ^'V ! . ,  . Here 77 (A,B) = Yl A V ' V ^ I100 îjks i l j!k! (s-i-j-k) ! s  — — £ ^ 
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If we let A  = a(X ,XJ = <X" • Xl> - <X' • X"> ( X i s the vector field X  whic h — V (p V (j) v ( p v 

"sees" only v  an d its derivatives, not (j ) , similarly with X ^ ) , then it is easy 

to see that 

TT (Q(X ,X.) ,T ) = (TS) .v s v  cp v  q) 

provided X ' alway s is taken to act to the left of X " . Now we have 

(TS) ±qv =  TT (A+A' ,B+B ' ) gv 
cp s 

with A  = a(X ,XJ , A1 = a(X ,XJ, B = T , B' = T S O that (2.7) expresses our v cp g  cp v  g 

commutator, if we take 1  <_ i+2j+k _< s i n the sum, except that 

A,1(-A)-,ÏÏ .  ,  (A,B) wil l contain the order restriction (X ' t o the left of s-i-2j-k 

X"). Tha t is, (-A) 3 will contain some X̂ ' s jus t to the right of (J) and A'1 

will contain some "extra", X ' 's a s the left-most derivatives of d> . 

Written out in our previous notation, (2.7) looks like 

(TS) gv = V C  Tk+ j V y 
* l <i72j+k<s  ̂*  À i ^ U ' J i r j 

' ( x ; - x i ) 1 , ( - x g - ^ > i " i ' ^ - ^ ) 3 , ( - x ; - x ; ) j - 3 , g • 

• £ ( x - b x - a * ) x - W - 1 - 2 3 ^ - ! * * ! v 
|a+b|<s-i-2j-k 

but rember that ail X ! ac t to the left of ail X " , ail X * t o the left of X " (p (J) v  v 

(and likewise for X*,X") . Th e X " jus t sit against <j > , and the X " jus t sit g g  (p * Y  v  J 

against v  . As above, the extra X ! (withi n dot products) are written out: 

». • (M- »&) -

the derivatives passed onto (j ) , the powers of y  lef t to the (extrême) left. 
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Extra X ' (als o within dot product) are written as (X ' + X') - X' an d the X ' 
v v  (f ) (p <p 

treated as above. 

Finally, expanding the dot products: 

( A V = E ( J W b . ) * ' - E ( M a V 
| x | - a u / 3 3 | x | = a u y 

where L = -r—-r—-1 r—- ,  we have the statement of the Lemma. (Thoug h this may 
u/ x1u2i...xni 

seem complicated and combinatorial, the proof in Cl7] is more so). 

To complète the proof of the theorem we have only to observe that the 

itérations of (1.17) of the first lecture proceed very much as in that case. W e 

have seen how the terms in the Lemma contribute; losing at least i+j+ k fre e 

derivatives we allow Ĉ +̂ + k sinc e g  belong s to the (finite) set of (analytic) 
(g) 

coefficients of P  ; |y | < 1 i n sup p (J) s o powers of y  t o the left of ail 

derivatives are harmless; in the Lemma, of course, new X ' derivative s appear to 

s ' 

the left of ( T )̂ f -  but thèse may be commuted to the right quite harmlessly. 

The actual proof, as in C17D, defines a formai norm for finite expressions of 

the form 

G • 1 c A K , ^ i L 2 with GA,<r x a T C ( T b ) D h / x e u 

where A  = (a,c,b,d,e,h) , namely 

i g i i ; - l | C A | K b N N + h + b / b ! 

where |A | = a+c+b+d+e . Also, we set ||A| | = |A| + c+ cl, i.e. doubly weighting pure 

2 

T derivatives . On e then shows that applying (2.3 ) t o an expression X  o f 
A, © 

the form above leads to G  = E C . .  IIG . ,11 whose I I II 1 nor m is bounded by C 
A1 ,<j)11 A' 1 1 1 1 MN 2 

times ||X2G A || ^ but ail A ' i n G  hav e |A' | < |A| + 2 an d ||A ' || < . ||A|| + 2 

(provided K  i s well chosen and we assume |D̂ çj | <_ e l a l | a | ! i n the (small) 
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support of (J) with e small , as we may by dilation) . Calling Ĝ ,  ̂ simple if 

b = 0 an d a+ c <_ 1 , we may iterate the above for G  , . not (yet) simple. One 
A , (p 

apparent hitch is that if b   ̂ 0 an d a  + c = 3 , two X' s ma y commute to give a 

T (CP,xD wil l contain coef.X T i n gênerai): 

G .  = X G' . . •  XTG' , , = XG" „ , 
A,(p A 1 ,(}) A ' ,<p A " ,<p 

So far |A | has dropped by 1, ||A| | remained the same. Ho w to treat one X? A 

temporary excursion into forbidden territory is the solution: 

^ . A ^ ï i ^ . A * l l«*. , . l lT22) ll«*.,.llT22 
L L  L 

and since TG^ ,  ̂contain s a T  = Cx̂ ,X£3 , in both terms on the right we have two 

X's , |A | is back up, ||A| | possibly up by 1. Bu t on the next itération, 

||x T(j)* , , || •  terms with at least two X's , and to get into this situation 

A ,q> Lz 

again with 3 X' s Ccoef , (Tb) 1̂ mus t generate an X  ; it does so (cf. (2.4)) in 

the form 

V" v-V'-V" b -2i V ' 
y x- . (T 3) 1+| , • x-v , 

D 1 '(j) 

|v| =  j , i.e. |A | is now reduced below its original level, ||A| | no greater. 

The II I I ' nor m thus rose briefly but is back down (after two itérations) . 

Thus the itérations may continue until each G , . i s simple (at most one X 
A,(j) 

and b  = 0 ) . A t this point the total order has dropped by half and the rest of 

the argument is just as in the constant coefficient case (cf. (1 .20)) . 
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III. THE ANALYTIC PSEUDODIFFERENTIAL CASE 

2 

In this lecture we want to show how thèse L  method s are able to appreciably 

simplify récent proofs o f Métivier covering hypoelliptic pseudo-differential 

operators. 

We consider a pseudo-differential operator (or system) with symbol 

p(x,£) ~ p (xfÇ) + p (x,Ç ) + m m- 1 

where p ^ (x,£ ) i s homogeneous of degree m- j i n Ç  . The characteristic 

variety Z = p *(0) i s assumed to be a submanifold on which p  vanishe s to m m 

exactly order k  an d p  .  vanishes to order k -2j .  As in [43 and [133, we 
m-j 

assume that P  i s subelliptic with loss of —  derivatives . 

Theorem (Métivier [113). I f P  i s an analytic pseudo-differential operator as 

above and if, in addition, Z i s symplectic then P  i s analytic hypoelliptic. 

The condition that Z b e symplectic, used in [173, is the same as the non-

degeneracy on the Levi form in [163 and was actually introduced in [153 two years 

earlier to "break the Gevrey class 2 barrier"; unfortunately only quasi-analytic 

and D GS hypoellipticit y was achieved in [153. Als o it was clear from [93 that 
s>l 

2 

some additional assumption on Z wa s necessary for better than G  regularity , 

see also [23. 

Métivier's proof, like Trêves' for the case k  = 2 ([183), constructs a micro-

local pseudo-differential parametrix of type '  and the estimâtes required 

are very délicate. Afte r a microlocalization, which seems unavoidable here even 

for partial differential operators, he uses an analytic canonical transformation to 
bring Z nea r ( x )  E Z int o a standard form o o 

Z {Xi = ... = x v =̂  -  ... = CV = 0 } 
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and an associated elliptic Fourier intégral operator with analytic real phase and 

classical analytic amplitude. Th e problem is reduced to one concerning 

P = Yl CT(x,D)A T . 
|l|=m 1 

The C I ar e analytic pseudo-differential operators of order 0  i n Rn , 2v + 1 <_ n 

and the A . ar e given by A . = 3/3x. , 1 < j < V , and A  .  = x. 3/3x , 

1 <. j <_ V . The addition of variables brings P  int o the form (with the X ^ o f 

lecture I, t  = x an d y . = x . ) 
n * 3 V+j ' 

- L CT(X,D)XT 
i|<k 1  1 

(after taking a power of P  an d multiplying by an elliptic factor so that 

m = k > V). Fro m C4] and C5], we know that the hypothèses on P  ar e preserved 

under thèse opérations, and that what we must show is that (0;0,...,0, 1)  ̂WF^(u). 

The condition that P  b e microlocally hypoelliptic with loss of k/ 2 derivative s 

is that: the kernel in S? ot G* r x (P) i s {0 } fo r each ( x ,£ ) 6 E ; where 
(X ,ç, ) O  O 

o o 

a\ r  . (P)(y,D ) = E —ir- 3a3^p .  (x ,Ç JyV 
y 2 j + |a|+|6|=ka!6! X  Ç m"3 °  ^ 

(cf £4], C133), and this condition is équivalent to the "maximal hypoellipticity" 

of 

P / r s = H C  ( X ,Ç ) X 
(xo'Ço} |l|= k 1 0 0 1 

(see Beals [33, Helffer-Nourrigat [8]) tha t is, 3C :  Vv G C°°(a)) , U) fixed, 
0) o 

(3.1) E K v | | <Cu(||P(x v|| +  ||v|| 2) 
111 =k L  o  o  L  L 
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We claim that a similar estimate holds for P  , provided the functions v  ar e 

consider have suitably restricted conic support. 

s n 
Since u  belong s to e * , it belongs to some H  (R ) . We shall assume that 

oo 
s = 0 fo r simplicity and in fact later, also for simplicity, that u  E CQ 

oo 
(actually the C  regularit y is well understood (C43,[13]) ) . Th e functions v  w 

a 

shall insert into our estimâtes will be of the form v  = <|> (x) ¥ (D) D u wher e (j ) an 

¥ hav e small (small conic) support, ^(Ç ) being homogeneous of degree zéro 

outside a large sphère. Thu s v  ha s small x-support and the différence 

(P(x X >  - 1 CI(x'Ço)Xl)V o o 

2 

has L  nor m bounded by e  time s the left hand side of (3.1) . T o replace 

CI(X,Cq) b y C][.(x,D ) , we introduce E l nea r sup p an d obtain 

<p(x,ç) = S c i H ' V : 
o 

HXjvH <c||P(XfÇ ^WDau|| + ... 

(3.2) <  c||ZCT(x,Ç )?XT(j)̂ Dau|| _ + Z||CT(X,Ç ) CxJ , W D °U \ | _ + ... 
" I  O  I  L  O  I  L 

< c H Z c ^ x ^ ) ^ ^ !! 2  + eZ||xiV|| 2 + c||v|| 2 + S||R̂ u|| 2 + ... 
L L  L  L 

I ^ a 
where =  C X ^ ^ DD (since , modulo terms of order -1 , C(X,£q ) differ s from 
c(x,D) o n functions ¥  w i n norm by e||¥w| | « i f the cone supporting T i s 

L 

narrow enough). Her e the ...' s refer to the last term in (3.1), which will 

% a I reappear below. Commutin g ¥  bac k past X^ D (f) only adds to the R  ,  term; thus 

(3.3) 2 H X v|| <C (||Pv|| + ||v|| + L||R̂ u||) 
L L  L  I 

To control R 1 (whic h has zéro symbol) we présent a lemma next which will be 
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used again below. 

00 0 0 
Lemma 3.1, Let (|)(x) E Cq and E  C satisf y the estimâtes: 

(3.4) 

lDx*UKia|+lNJa| N i » . 

|D^o|^l+1(i+liL)"|B| |3| <2N, 

Then for k + s < min(N,,Nm),M 
(p T 

C4>,y(D)3 = Yl (Da<(i ) ((D )̂ (D))/a! +R 
|a|<M x  Ç 

2 k  s where the L  nor m of D R̂ D i n a compact set K is bounded by 

s M+l M+k+n+1 M+k+n+1 s s 
CKC ^ (N<() + ty/M! 

Proof. The symbol of R . r (x,£) , is (2TT) ~n r (x,n,£)dn wher e (cf. Cl]) 
M M J  M 

r (x,n,ç) = H ilylclx*V^(n ) f1 D^HÇ+tn) d - t ) lyl 1dt/yl 
|Y|=M+I J Q ^ 

For x  6K an d 2 |n | <. | Ç | , (3.4) implies 

|ç|S|D^(ç+tn)| <N|KIY|+1CS . 

and 

| r T Y iw \ < cKl«+Yl+n+1Nl«+Yl+"+V(i+|n|)n+1 

so that for 2|n| <_ |ç| 

|ç | X V xfn,ç> I ± cs+1Kl^l+n+1^l+1N^l+n+1/(i+|n|)n+1 
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When |Ç | < 2|n | , 

IDJVCÇ + tn) | < K M + 1 an d U | s | n Y + S i(n) |  < C S K I ^ I + s N I ^ I + s . 

2 k  s Crudely estimating the L  nor m in K  o f D  R D b y a constant C  time s M K 

sup |D̂ rM(x,Ç)|̂ |S | , thèse estimâtes prove the Lemma. 
[ ot | <n+l+k 

The localizing functions ^(x ) w e use will be as in lecture I: 

(3.5) |Da à (x ) I < (CdT^N^I 1061 < 2N. 
N. 1  i l 1 
J 

with d_ . = d/j2 , N_ . = N/2̂  1 . Fo r the functions w e have 

Proposition 3.1. Give n two cônes, r ^ c ^ wit h the infimum on the sphère of 

J|C - n | fo r y  e Tx, Ç i r2 J = e ther e exist ^ ( Ç ) € C™(T2) and identically one 

in r H "f | Ç | >. 2N} wit h 

| D % ( Ç ) | < (Ke-1)!»!^!^)1™1 ,  h < 2N 

K i s independent of N  an d the ¥  ar e zéro for |  £ | <_ N . 

Such functions are constructed in C1D. Th e restriction that the ¥  ar e zéro 
N 

for |Ç | <_ N i s minimal since for |Ç | < N, |est| <_ N, |D°V(£;)| 2 £N2N|v(Ç)|2 , and 

thus 

(3.6) ||^(Ç)|| 9 <CNN ! || V M . 
L ( |Ç|<N) L 

To prove the theorem, we show that ( x ,£ )  ̂WF (u ) , x = 0 , 
o o  r  a  o 

KQ ~ (0,...,0,1) . That is, by Proposition 1.2 of lecture I, that for some cone 

T => (0,...,0,1) , 
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| | x k T N c f ) < N + " o > / 2 V Q | | <  CNNN 

where n Q dépend s only on n  . I n the support of ^ N , | Ç | <. C | Ç | s o it 

suffices to show that 

||T\(X)YN(D)U|| 2 < C V 
L 

(using the lemma above to interchange <J> N and H* N ) and since [X̂ ,Xlj ] = T an d k 

is even, we shall estimate 

(3.7) ||xkTNcf)N(x)¥N(D) || 2 < c V . 

N 

As we saw in the previous lectures, merely localizing T  i n this fashion 

will not do. Th e suitable analogue of (T^) . here is 

E ±^|T\(X)YN(D)U ad*, ad£„(W • x ^ X - V l » * ' 

(ilfi2#...,i.al) 
where a d 1 1 (g) stand s for 

Cx! ,CX! ,C...Cx! , g ] ] . . . 3 
Xl X2 X|a | 

etc. W e have, as one may vérifies at once, 

CX'., (T9) . , NU//T̂H = 0 an d j (j)(x)̂ (D) 

(3.8) 

TY" (T^) 1 = CpP~^"\ Y " 
LAj' ;4)(x)̂ (D)J " U ;CT,(l)(x)lF(D):A j 

p 
modulo C  term s of the form 
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ad£+1(W o  xp/p! 

Sketch of the Proof. 

This séries of lectures is not the place to write out ail détails of the 

proof; they will appear in a forthcoming article. Bu t aside from handling the 

localizing functions, via the above Leirana 3 . 1 , along the same lines as in the case 

of function coefficients, the main difficulty arises in Connecting the pseudo-

differential coefficient with (TS), m . We outline below the resuit of this 

commutation. 

We next open sets U  cicin czc: ... czczu ŒŒ\J and choose the séparations ^ o  1 log2 N 

d. = dist(U.,UC°mp*) = d/2j a s before, ( d =  d) an d let N . = N/2j_1, <J> . (x) El 
3 3 D  + l o  3 3 

near U. , G C°°(U. „ ) with i 03+ I 

| D V | < CCkdTS^'NH |A | < 2N. 
J 3 3 3 

We also nest cônes T c c T , c e . . . ciczr „ c c T wit h séparations o 1 loĝ N 

e. = disur. fl {|ç|=i}, n {|ç| = 1} 

with e. . = e/23, eQ = e , and HMÇ) El o n I \ fl { | £ | >_ N..} , zéro outside 

fl {\K\ >. Nj +  ̂'  c '  and homogeneous of degree zéro in E, for |̂ | >_ N_. 

and with 

| D V ( Q | ^ ( K e " 1 ) ! ^ 1 ^ ) 

for |a | <_ 2N_. (= N/23) . 

The first step is to replace ( 3 . 7 ) by an expression whose main T-dependence is 

N 
in the form of ( T )̂  . Taking the ^  ,  i n ( 3 . 7 ) to be ^ Q'^Q ' and assuming 

00 
f = 0 fo r simplicity and u  £ C ,  we write 
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XkTN(J) (x)Y (D)u = XkTNd) V u = <b V Xk(TN)Uf . u + R, u o o  o  o T o o T.d) . 1 

where 

R, = CxV\(f) ¥ D + (f> Y Xk(TN-(TN) w . ) 
1 Y o o Y o o 1̂ 1 

k+N 

k 

K+JN 

E /N W k \ A ' ,N' .. . . k-k' N-N 1 + R0 
.+N,=1(N')(k')adXadT W X 2 

with 

R2 - 0>oVk<*N - <TN)^) 

(which has symbol =  0). 

Thus 

k+N 
c% \ v k N, ... V " \  / N \/k \ _k ' _N' , ... x k-k' N-N V „k,,N l (3.9) X  T *oïou = |(N.)(k- j adx adT ( WX ( T ) ^ J + R3 

with 

k\N' /  N W k \ ,k " ,N,, w . k-k1 /N-N1 N- N ' ) 
R3 =(N'j(k' j adX a d T( W X ( " ( T 

whose symbols are ail zéro. 

Thèse remainders are estimated via Lemma 3.1. Here we pursue the main 

argument. 

k ' N1 
In the first terms on the right in (3.9), we recognize that ad ^ ad̂  ^^Q) 

2 k  ' is a bounded operator in L  .  I t consists of at most 2  term s of the form 

/ k,-k"-2£mN'+£. \  Q / Je" .  k" \ 
\ ^o / V  y  ^0 / 

for some &,k " wit h 21 + k" < k . Now ad k (¥ )Tk i s bounded in L 2 b y 
- y  o 
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-1 k" k" construction of ¥ b y C(K e )  N whil e o o 

|xk'-k"-2V'+% | < C W ' N ,*•-*-«»•-* 
1 To ' — O 

2 k  ' N' 
so that the L nor m of ad adT (<|> ¥Q) i s no greater than 

C2(KN (d"1 + e-1))k,+N, 
o 
To estimate ||xk~k (TN~N )̂   ̂u|| w e use (3.3), with errors R* u as 

indicated there which have symbol zéro, and must bound the commutator 

(3.10) 

N-N ' ~1 T  N- N ' k 
P'<T w  u  = 2 ^ C (x,D) , (T )  X  u 
L V U ITUVL 1 V d 

* ,^['-rfH,,'.1.]- ' 

2 

The C I bein g bounded, the L nor m of the second term on the right is bounded by 

a constant times 

(3.11) 

E 
i<k 

I l x 1 ^ 1 " 1 ) . • V W xk"lullL 2 + 

Ç || X °  adx ( c f ) ^ ) ° x U H 2/( } 

i<k-1 L  / 

just as in the earlier lectures, in view of (3.8). I n fact, the further fate of 
(&) & 

the terms in (3.11) is just as before, with replace d here by aĉ x̂ l̂ l̂  * 

Writing (TS)XU f = Y A  °  B  ̂wit h B  =  X'bX,,aTS 'a+b' i ,  i a  !b! a b T a b a b |a+b|<_s 

we write 

(3.12) k ' ^ V ^ E S T 1 3 1 |[Cl'Aab]Bab + Aab[Cl'Bab]j " 

Now the analysis of the second term is simple. For Lx^FC_p i s the pseudo-

differential operator given completely by the symbol H  , .a(C ) , which we 
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shall write Hx abusively. The analysis of the second lecture applies 
j 

completely, and gives us a sum of the form 

y y i-u_'a| X.J- » H j - j " + i ' ( H a HB (Hl~l,+j"j,*v)) • 

i+2j+k=£ 

i'<i,j'<j,j"<j-j' 

• ( ( - H x , ) 1 " 1 ^ ^ , Hk+j Cl) • X ' W " "a"b o X"j'/ (s-A)| 

which have a good form except form except for the présence of (Hx,),(Hx„)in 

a" 
the middle. One might think that Hx, on the left was a problem; but Hx, 

j 
3 d r  8 

consists of three terms: , x^+. , and ^ . The first and third of 
Xj +J Xn n V+j 

a b 3 thèse commute with H , , H „ , as does 75 — . The "coefficients" of thèse X1 X" °x n 
d j" 
— , x̂  . , remain where they are or are even commuted with X' and brought out 
Xn +̂  

of the norm, just as in the second lecture. It remains to treat the problem of 

commuting ĉ  (or its derivatives) with operators such as A ^ (4̂ ) . 

Here we need a spécial form of Leibnitz formula in terms of operators, not 

just symbols. 

Proposition 3.2. Let G and H be classical pseudo-differential operators and 

let = 0p(3ÔDya(G) ) (full symbols) . Let {G} = G - Op((J (G)+ . . . + G (G)) ( y ) x f c , s o s 

where a (G)  ̂a (G) + a,(G) + ... . Then 
o 1 

(3.12) [G,H] = T ("D '6 '+1(G.f i . « H(B) - H . . . ° G(6))/f3! + R 

for any M , where 

^ - , £ , ' - » " I W ( « , B - , " - ( « » I - " , | H . I -

(3.13) 

- «(B,"g(B) -|H(B,-6(PV|3|»h' 
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i i a  b  ^  ^ In practice, H  = C (o r some H  Ĥ c .̂ ) an d G  = Hx,Hx„ (<f>V) fo r some 4),̂  

That is. 

•TaTTb /J* =  ,  ,J3|+1/Ta b  _ ( 3 ) 
(3.14) H ^ ^ C W » ^ E ; ( - D ^ ' ^ C H ^ ^ ^ Î ^ o C ^ V e ! 

|$|=i 
M 

+ E (-D131 CT o (H>^(«)(B)/B! 
|3|=0 x(6) x X 

modulo the remainder R  whic h consists entirely of terms of order - M . The M 
(P>) 

operators C  (x,D ) an d C  ar e treated like C  ,  while we rewrite 
J(3) 

(H^H^CW) lp; an d <HX.HX"(W} (3) somewhat . Sinc e an d 7^- d o not in 

a b  (g) 
gênerai commute with Hx , an d Hx „ , we cannot simply write Hx,HX „ ( (<()¥) )  an d 
a b 
H H  (  _  ) ; but we may write -r an d -r-r— as linear combinations of vector 
X X (P ) <3x . O C , 

3 3 
fields Y , o n T*R n wit h coefficients which are linear functions of the variables k 
x. , such that [Y^,Hx, ] = [Ŷ fH ,,] = 0 , pass thèse vector fields out (J)¥ , and, 
3 3 3 
as before, leave the powers of x  t o the left. 

Using the Proposition, and the discussion before and after it, we can write 

s ^ v' s ' v" % Ce , ( T ).„J a s a sum of terms of the form C T 0 X 0  (T ),.„. . 0 X plu s R I I  cp'Y M 
^ 2  V ' s 1 V" with C _ bounde d in L  an d some gain in X  ( T )..,,.,X a s in Lemma 2.1 in 
I (f) Y 

lecture II. 

Ail remainders encountered lead directly (i.e., without further itérations) to 

N N 

bounds of the form C  N .  We shall not work out the bounds in more détail here as 

they will appear in a fortheoming paper. 

With thèse ingrédients one may follow the itérations presented in the second 

lecture. 
Concluding note. W e do not claim that the above proof is "simple". Bu t it is 

essentially elementary and accessible and, we feel, demonstrates the power of 

2 
purely L  method s plus purely classical results on pseudo-differential operators. 
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