Astérisque

P. Lousberg
 Backward parabolic equations

Astérisque, tome 89-90 (1981), p. 213-221
http://www.numdam.org/item?id=AST_1981__89-90__213_0
© Société mathématique de France, 1981, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

BACKWARD PARABOLIC EQUATIONS

by P. LOUSBERG (University of Liège)

I. INTRODUCTION

This paper is devoted to the study of the singularities of the solutions of backward parabolic pseudo-differential equations.

Let \mathbb{R}^{n} denote the n-dimensional euclidean space and write $x=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}$, $x^{\prime} \in \mathbb{R}^{n-1}$. Let Ω^{\prime} be an open subset of \mathbb{R}^{n-1} and S a positive constant. Suppose that the extendible distribution $\vec{\tau}=\left(\tau_{1}, \ldots, \tau_{N}\right)$ of $D^{*}(\Omega \cdot x] 0, S[)$ satisfies

$$
\begin{equation*}
\vec{\tau} \cdot\left[\left(D_{x_{n}}+Q\left(x, D_{x^{\prime}}\right)\right)\right] \in C_{\infty}\left(\Omega^{\prime} x[0, S[)\right. \tag{I.1}
\end{equation*}
$$

where $Q\left(x, D_{x}\right)$ is a first order properly supported ($\mathrm{N} \times \mathrm{N}$) pseudo-differential operator in Ω^{\prime} depending smoothly on $x_{n} \in[0, S[$ and with principal symbol $Q_{1}\left(x, \xi^{\prime}\right)$ homogeneous of degree 1 in ξ^{\prime}.

It follows that

$$
\vec{\tau} \cdot \vec{\phi}=\int \vec{\tau}_{x_{n}} \cdot \vec{\phi} d x_{n}
$$

with $\vec{\tau}_{x_{n}} \in C_{\infty}\left(\left[0, S\left[; D^{*}\left(\Omega^{\prime}\right)\right)\right.\right.$.
We assume that the operator $D_{x_{n}}+Q$ is backward parabolic at $\left(x_{0}^{\prime}, \xi_{0}^{\prime}\right) \in T^{*}\left(\Omega^{\prime}\right) \backslash 0$, that is
(I.2) all the eigenvalues of the matrix $Q_{1}\left(x_{0}^{\prime}, 0,-\xi_{0}^{\prime}\right)$ have positive real parts.

P. LOUSBERG

By extension, we say that the equation (I.1) is backward parabolic at ($\mathrm{x}_{0}^{\prime}, \xi_{0}^{\prime}$). The condition (I.2) still holds if (x, ξ^{\prime}) belongs to a conic neighborhood $\omega^{\prime} \times\left[0, s\left[\times \gamma\right.\right.$ of ($x_{0}^{\prime}, 0,-\xi_{0}^{\prime}$).
We examine the behaviour of the singularities of $\vec{\tau}$ near ($x_{0}^{\prime}, \xi_{0}^{\prime}$). As is well known, [4], $\vec{\tau}$ is microlocally C_{∞} if $x_{n}>0$; more precisely,

$$
\text { WF } \vec{\tau} \cap\left[\left(\omega^{\prime} \times\right] 0, s[) \times(-\gamma \times \mathbb{R})\right]=\emptyset \text {. }
$$

Moreover, all the traces of $\vec{\tau}$ are regular at ($x_{0}^{\prime}, \xi_{0}^{\prime}$). This is the main result of the present paper which we prove in section III. We obtain it by constructing in section II a microlocal parametrix at ($x_{0}^{\prime}, \xi_{0}^{\prime}$) for the Cauchy problem
(I.3) $\left\{\begin{array}{l}D_{x_{n}} \vec{u}+Q\left(x, D_{x^{\prime}}\right) \vec{u}=0, \\ \left.\vec{u}\right|_{x_{n}=0}=\vec{g}\left(x^{\prime}\right) \quad .\end{array}\right.$
J. Polking has obtained in [2] other regularity theorems for parabolic operators, using L^{2} methods, (see also [3]).

II. CONSTRUCTION OF A MICROLOCAL PARAMETRIX

We first introduce an auxiliary space.
Let us set

$$
\mathrm{q}\left(\mathrm{x}, \xi^{\prime}, \mathrm{W}\right)=\operatorname{dtm}\left(Q_{1}\left(\mathrm{x}, \xi^{\prime}\right)+\mathrm{iWI}_{N}\right), \mathrm{W} \in \mathbb{C} .
$$

It follows from (I.2) that all the roots W of q have positive imaginary parts when $\left(x, \xi^{\prime}\right) \in \omega^{\prime} \times\left[0, s\left[\times \gamma\right.\right.$. We denote by $\phi_{x, \xi^{\prime}}$ a closed curve containing these roots in its interior.

Definition II.1.: The space Σ_{m} is the linear hull of the functions

BACKWARD PARABOLIC EQUATIONS

$$
\frac{w^{j_{A_{k}}}\left(x, \xi^{\prime}\right)}{\left[q\left(x, \xi^{\prime}, w\right)\right]^{1}}, j+k-1 N \leq m, j, l \in \mathbb{N},
$$

where A_{k} is a classical ($N \times N$) symbol of order k in $\omega^{\prime} \times[0, s[$ with support in ξ^{\prime} contained in a closed subcone of γ.

The essential property of this space is presented in the following theorem.

Theorem II.1.: If F is an element of Σ_{m}, then the function

$$
A\left(x, \xi^{\prime}\right)=\int_{\phi_{x, \xi^{\prime}}} e^{i x_{n} W} F\left(x, \xi^{\prime}, W\right) d W
$$

belongs to the space

$$
\phi_{m+1}=s_{m+1}^{\rho, \sigma}\left(\omega^{\prime} \times\left[0, s\left[\times \mathbb{R}^{n}\right) \cap s_{-\infty}\left(\omega^{\prime} \times\right] 0, s\left[\times \mathbb{R}^{n}\right)\right.\right.
$$

with $\rho=(1, \ldots, 1), \quad \sigma=(0, \ldots, 0,1),[1]$.
Proof: If $K=K^{\prime} \times\left[\varepsilon_{0}, \varepsilon_{1}\right]$ is a compact subset of $\omega^{\prime} \times[0, s[$, we have, uniformly for $x \in K$,

$$
\left|A\left(x, \xi^{\prime}\right)\right| \leq \begin{cases}C\left|\xi^{\prime}\right|^{m+1} & \text { if } \varepsilon_{0}=0, \\ \frac{C_{N}^{\prime}}{\left|\xi^{\prime}\right|^{N}}, & \text { VN, if } \varepsilon_{0}>0 .\end{cases}
$$

Let γ^{\prime} denote a closed subcone of γ containing $[F(x, ., W)]$.
It clearly suffices to prove that
(II.1) $\sup _{x \in K}\left|\int_{\phi_{x, \xi^{\prime}}} \frac{e^{i x_{n} W} W_{W}^{j}}{\left[q\left(x, \xi^{\prime}, W\right)\right]^{l}} d W\right| \leq \begin{cases}C\left|\xi^{\prime}\right|^{j-1 N+1} & \text { if } \varepsilon_{o}=0, \\ \frac{C_{N}^{\prime}}{\left|\xi^{\prime}\right|^{N}}, ~ v N, & \text { if } \varepsilon_{0}>0,\end{cases}$
in γ^{\prime}.
Note that there exists a closed curve ϕ enclosing the compact set

$$
\left\{W: \exists\left(x, \xi^{\prime}\right) \in K \times \gamma^{\prime},\left|\xi^{\prime}\right|=1: q\left(x, \xi^{\prime}, W\right)=0\right\}
$$

and contained in

P. LOUSBERG

$$
\{\mathrm{W}: \operatorname{Im} \mathrm{W}>\mathrm{c}>0\}
$$

Hence, for $\left(x, \xi^{\prime}\right) \in K \times \gamma^{\prime}$, we obtain

$$
\begin{aligned}
& \int_{\phi_{x, \xi^{\prime}}} \frac{e^{i x_{n} W} W^{j}}{\left[q\left(x, \xi^{\prime}, W\right)\right]^{l}} d w=\int_{\left|\xi^{\prime}\right| \phi} \frac{e^{i x_{n} W} W^{j}}{\left[q\left(x, \xi^{\prime}, W\right)\right]} d w= \\
& =\left|\xi^{\prime}\right|^{j-1 N+1} \int_{\phi} \frac{e^{i x_{n}\left|\xi^{\prime}\right| W}}{\left[q\left(x, \frac{\xi^{\prime}}{\xi^{\prime}}, W\right)\right]^{j}} d W
\end{aligned}
$$

The absolute value of this expression is bounded by

$$
c e^{-c \varepsilon_{0}\left|\xi^{\prime}\right|}\left|\xi^{\prime}\right|^{j-l N+1}
$$

We then easily obtain (II.1).
It follows that the expression

$$
D_{x^{\prime}}^{\alpha^{\prime}} D_{x_{n}}^{\alpha_{n}} D_{\xi^{\prime}}^{\beta^{\prime}} A\left(x, \xi^{\prime}\right)=\sum_{p=0}^{\alpha_{n}} C_{\alpha_{n}}^{p}\left(\int e^{i x_{n} W} W_{p_{D}}^{\alpha_{\prime^{\prime}}^{\prime}} D_{x_{n}}^{\alpha_{n}-p} D_{\xi^{\prime}}^{\beta^{\prime}} F d W\right)
$$

gives the required estimate since

$$
w^{p} D_{x^{\prime}}^{\alpha^{\prime}} D_{x_{n}}^{\alpha}{ }_{n}^{-p}{ }_{D_{\xi^{\prime}}^{\beta^{\prime}}} F \in \Sigma_{m+p-\left|\beta^{\prime}\right|} C \Sigma_{m+\alpha_{n}-\left|\beta^{\prime}\right|} .
$$

Now, we shall construct a microlocal parametrix at ($x_{0}^{\prime}, \xi_{0}^{\prime}$) for the Cauchy problem (I.3) .

Theorem II.2.: There exists of smooth family of ($\mathrm{N} \times \mathrm{N}$) pseudo-differential operators in ω^{\prime} of order \circ

$$
P\left(x, D_{x^{\prime}}\right) \vec{\psi}=f e^{i\left(x^{\prime}-y^{\prime}\right) \cdot \xi^{\prime}} A\left(x, \xi^{\prime}\right) \vec{\psi}\left(y^{\prime}\right) d y^{\prime} d \xi^{\prime}
$$

with

$$
x_{n} \in\left[0, s\left[, A \in \Phi_{0}\right.\right.
$$

and such that
(i) $\quad\left(D_{X_{n}} I_{N}+Q\right) P$ is an integral operator with kernel in $C_{\infty}\left(\omega^{\prime} \times\left[0, s\left[\times \omega^{\prime}\right)\right.\right.$, (ii) $P\left(x^{\prime}, 0, D_{x}\right.$) is elliptic at ($\left.x_{0}^{\prime},-\xi_{0}^{\prime}\right)$.

Proof: Let us define the amplitude by

$$
A\left(x, \xi^{\prime}\right) \sim \sum_{p, q=0}^{\infty} A_{p q}\left(x, \xi^{\prime}\right)
$$

where $A_{p q} \in \mathcal{S}_{-(p+q)}$.
More precisely, we set

$$
A_{p q}\left(x, \xi^{\prime}\right)=\int_{\phi_{x, \xi^{\prime}}} e^{i x_{n} W} F_{p q}\left(x, \xi^{\prime}, W\right) d w
$$

with $F_{p q} \in \Sigma_{-1-(p+q)}$.
In particular, we take
(II.2) $\quad F_{o q}=\left(Q_{1}\left(x, \xi^{\prime}\right)+i W I_{N}\right)^{-1} F_{q}\left(x^{\prime}, \xi^{\prime}\right)$,
with $F_{q} \in S_{-q}\left(\omega^{\prime} \times \mathbb{R}^{n}\right)$.
Applying $D_{X_{n}}+Q$ to P yields, [3],

$$
\left(D_{x_{n}}+Q\right) P \vec{\psi}=f e^{i\left(x^{\prime}-y^{\prime}\right) \cdot \xi^{\prime}}\left[D_{x_{n}} A\left(x, \xi^{\prime}\right)+B\left(x, \xi^{\prime}\right)\right] \vec{\psi}\left(y^{\prime}\right) d y{ }^{\prime} d \xi^{\prime}
$$

where $B\left(x, \xi^{\prime}\right)$ is a symbol of $\$_{1}$ defined by the following asymptotic expansion

$$
B\left(x, \xi^{\prime}\right) \sim \sum_{\alpha} \frac{i^{-|\alpha|}}{\alpha!} D_{\xi^{\prime}}^{\alpha} Q\left(x, \xi^{\prime}\right) D_{x \prime^{\prime}}^{\alpha} A\left(x, \xi^{\prime}\right)
$$

Writing for large ξ^{\prime},

$$
Q=Q_{1}+Q_{0}
$$

with $Q_{0} \in S_{0}$, we obtain

$$
D_{X_{n}} A+B \sim \sum_{k=0}^{\infty} T_{1-k} A
$$

where

$$
\begin{aligned}
& T_{1}\left(x, \xi^{\prime}, D_{x_{n}}\right)=D_{x_{n}}+Q_{1}, \\
& T_{0}\left(x, \xi^{\prime}, D_{x^{\prime}}\right)=Q_{0}+\sum_{|\alpha|=1} \frac{i^{-|\alpha|}}{\alpha!} D_{\xi^{\prime}, Q}^{\alpha} D_{x^{\prime}}^{\alpha}, \\
& T_{1-k}\left(x^{\prime}, \xi^{\prime}, D_{x^{\prime}}\right)=\sum_{|\alpha|=k} \frac{i^{-|\alpha|}}{\alpha!} D_{\xi^{\prime}}^{\alpha}, Q D_{x^{\prime}}^{\alpha}, \text { if } k \geq 2,
\end{aligned}
$$

are differential operators which map $\$_{\mathrm{m}}$ into $\$_{\mathrm{m}+1-\mathrm{k}}$.
Noting that

$$
A \sim \sum_{r=0}^{\infty}\left(\sum_{p+q=r} A_{p q}\right)
$$

we get

$$
D_{x_{n}}^{A+B} \sim \sum_{r=0}^{\infty}\left(\sum_{k=0}^{r} \sum_{p+q=r-k} T_{1-k} A_{p q}\right)
$$

In order to realize condition (i), we annihilate each term of the asymptotic expansion of $D_{x_{n}} A+B$. We obtain
(II.3)

$$
\sum_{q=0}^{r-1} \sum_{k=0}^{r-q} T_{1-k} A_{r-q-k, q}=0, \text { for } r \geq 1,
$$

if we remark that

$$
T_{1} A_{o q}=\left(\int_{\phi_{x, \xi}} e^{i x_{n} W}\left(i W I_{N}+Q_{1}\right)\left(i W I_{N}+Q_{1}\right)^{-1} d W\right) F_{q}=0 .
$$

The conditions (II.3) are satisfied if the functions $F_{p q}$ are given by
(II.4) $\quad F_{p q}=-\left(i W I_{N}+Q_{1}\right)^{-1} \sum_{k=1}^{p} T_{1-k} F_{p-k, q}, p \geq 1, q \in \mathbb{N}$.

These relations determine F_{pq} from F_{oq}.
Furthermore, we have

$$
P\left(x^{\prime}, 0, D_{x},\right) \vec{\psi}=\int_{e^{i\left(x^{\prime}-y^{\prime}\right)} \cdot \xi^{\prime}}^{A\left(x^{\prime}, 0, \xi^{\prime}\right)} \vec{\psi}\left(y^{\prime}\right) d y^{\prime} d \xi \xi^{\prime} .
$$

Here $A\left(x^{\prime}, 0, \xi^{\prime}\right)$ is a classical symbol of order 0 having the following asymptotic expansion

$$
A\left(x^{\prime}, 0, \xi^{\prime}\right) \sim A_{o o}\left(x^{\prime}, 0, \xi^{\prime}\right)+\sum_{q=1}^{\infty}\left(\sum_{p=1}^{\infty} A_{p, q-1}\left(x^{\prime}, 0, \xi^{\prime}\right)+A_{o q}\left(x^{\prime}, 0, \xi^{\prime}\right)\right)
$$

The condition (ii) is satisfied if we take

$$
\left\{\begin{array}{l}
A_{o o}\left(x^{\prime}, 0, \xi^{\prime}\right)=\alpha\left(x^{\prime}\right) X\left(\xi^{\prime}\right) I_{N}, \\
A_{o q}\left(x^{\prime}, 0, \xi^{\prime}\right)=-\sum_{p=1}^{\infty} A_{p, q-1}\left(x^{\prime}, 0, \xi^{\prime}\right) \quad, \text { for } q \geq 1
\end{array}\right.
$$

where $\alpha \in D\left(\omega^{\prime}\right)$ is equal to 1 in a neighborhood of x_{0}^{\prime} and $\chi \in C_{\infty}\left(\mathbb{R}^{n}\right)$ is homogeneous of degree \circ for large ξ^{\prime}, equal to 1 in a conic neighborhood of $-\xi_{0}^{\prime}$ for $\left|\xi^{\prime}\right| \geq \frac{1}{2}\left|\xi_{0}^{\prime}\right|$ and with support contained in a closed subcone γ^{\prime} of γ. Noting that

$$
A_{o q}\left(x^{\prime}, 0, \xi^{\prime}\right)=\left(\int_{\phi_{x^{\prime}, 0, \xi^{\prime}}}\left(Q_{1}\left(x^{\prime}, 0, \xi^{\prime}\right)+i W I_{N}\right)^{-1} d W\right) F_{q}\left(x^{\prime}, \xi^{\prime}\right)=2 \pi F_{q}\left(x^{\prime}, \xi^{\prime}\right)
$$

we obtain
(II.5) $\left\{\begin{array}{l}F_{0}=\frac{1}{2 \pi} \alpha\left(x^{\prime}\right) \chi\left(\xi^{\prime}\right) I_{N}, \\ F_{q}=-\frac{1}{2 \pi} \sum_{p=1}^{\infty}{ }_{A_{p, q-1}}\left(x^{\prime}, 0, \xi^{\prime}\right) \quad, \text { for } q \geq 1 .\end{array}\right.$

The relations (II.2), (II.4), (II.5) determine the functions F_{pq}. It is easy to prove by induction that $\mathrm{F}_{\mathrm{pq}} \in \Sigma_{-1-(p+q)}$. Let us remark that the support in $\left(x^{\prime}, \xi^{\prime}\right)$ of $F_{p q}$ is contained in $[\alpha] x \gamma^{\prime}$; hence

$$
\left[A\left(., x_{n}, \cdot\right)\right] \subset[\alpha] \times \gamma^{\prime}
$$

Furthermore, if $x_{n}>0, P\left(x, D_{x},\right)$ is an integral operator with kernel $\in C_{\infty}\left(\omega^{\prime} x\right] 0, s\left[x \omega^{\prime}\right)$.

P. LOUSBERG

III. MAIN THEOREM

Lemma III.1.: If the distribution $\vec{\tau}$ satisfies the equation (I.1), we have
 and where $\vec{f} \in C_{\infty}\left(\Omega^{\prime} x[0, S[)\right.$,

$$
\begin{align*}
& \int_{0}^{+\infty} \vec{\tau}_{x_{n}} \cdot\left(D_{x_{n}}+Q\left(x, D_{x^{\prime}}\right) \vec{\phi} d x_{n}+\iint_{0}^{+\infty} \vec{f} \cdot \vec{\phi} d x=-\vec{\tau}_{0} \cdot \vec{\phi}\left(x^{\prime}, 0\right) \quad\right. \text {, for every } \tag{ii}\\
& \vec{\phi} \in D\left(\Omega^{\prime} x \text { }\right]-S, S[)
\end{align*}
$$

Proof: Integrating by parts, we obtain
(III.1)

$$
\begin{array}{r}
\int_{0}^{+\infty} \vec{\tau}_{x_{n}} \cdot\left(D_{x_{n}}+Q\left(x, D_{x},\right)\right) \vec{\phi} d x_{n}=\int_{0}^{+\infty}\left[-D_{x_{n}} \vec{\tau}_{x_{n}} \cdot \vec{\phi}+\vec{\tau}_{x_{n}} \cdot Q(x, D,) \vec{\phi}\right] d x_{n}+ \\
-\vec{\tau}_{0} \cdot \vec{\phi}\left(x^{\prime}, 0\right)
\end{array}
$$

In particular, if we take

$$
\vec{\phi}=\psi \vec{\phi}^{\prime} \quad, \vec{\phi}^{\prime} \in D\left(\Omega^{\prime}\right) \quad, \psi \in D(] 0, S[)
$$

we obtain

$$
\begin{aligned}
& \int \psi d x_{n} \int \vec{f}^{\vec{f}} \cdot \vec{\phi}^{\prime} d x^{\prime}=\int_{0}^{+\infty} \psi\left[-D_{x_{n}} \vec{\tau}_{x_{n}} \cdot \vec{\phi}^{\prime}+\vec{\tau}_{x_{n}} \cdot Q\left(x, D_{x}\right)^{\prime} \vec{\phi}^{\prime}\right] d x_{n} \\
& \text { where } \vec{f} \in C_{\infty}\left(\Omega^{\prime} x[0, S[) \quad .\right.
\end{aligned}
$$

Hence we deduce (i) and using (III.1), we get (ii).

Theorem III.1.: If the equation (I.1) is backward parabolic at ($x_{0}^{\prime}, \xi_{0}^{\prime}$), all the traces of the distribution $\vec{\tau}$ are regular at $\left(x_{0}^{\prime}, \xi_{0}^{\prime}\right)$.
Proof: Let us introduce in the relation (ii) of Lemma III. 1 the function

$$
\alpha\left(x_{n}\right) P\left(x, D_{x},\right) \vec{\psi}
$$

where P is the microlocal parametrix constructed in Theorem II. 2 and α is a function in $D(]-s, s[)$ equal to 1 in a neighborhood of the origin.

We obtain

$$
\vec{\tau}_{\bullet}\left(D_{x_{n}} \alpha\right) P\left(x, D_{x^{\prime}}\right) \vec{\psi}+\int \vec{g} \cdot \vec{\psi} d x^{\prime}=-\vec{\tau}_{0} \bullet P\left(x^{\prime}, 0, D_{x^{\prime}}\right) \vec{\psi}
$$

where

$$
\vec{g} \in C_{\infty}\left(\omega^{\prime}\right)
$$

Hence

$$
\vec{\tau}_{0} \cdot P\left(x^{\prime}, 0, D_{x^{\prime}}\right) \in C_{\infty}
$$

Since $P\left(x^{\prime}, 0, D_{x^{\prime}}\right)$ is elliptic at $\left(x_{0}^{\prime},-\xi_{0}^{\prime}\right)$, it follows that

$$
\left(x_{0}^{\prime}, \xi_{0}^{\prime}\right) \notin W F \vec{\tau}_{0}
$$

To complete the proof, it remains to note that

$$
\text { WF } \vec{\tau}_{0}=\bigcup_{k=0}^{\infty} \text { WF } D_{x_{n}}^{k} \stackrel{\rightharpoonup}{\tau}_{x_{n}} \mid x_{n}=0
$$

by relation (i) of Lemma III. 1.

REFERENCES

[1] L. HÖRMANDER, Fourier integral operators, Acta Math. 127 (1971), pp. 79-183.
[2] J. POLKING, Boundary value problems for parabolic systems of partial differential equations. Singular integrals, Proc. Symp. Pure Math., Amer. Math. Soc. 1967.
[3] M. TAYLOR, Pseudo-differential operators. Lecture notes in Math., 416, Springer-Verlag (1974).
[4]
M. TAYLOR, Reflection of singularities of solutions to systems of differential equations, Comm. Pure Appl. Math., 28 (1975), pp. 457-478.
Pierre LOUSBERG,
Institute of Mathematics,
University of Liège,
Avenue des Tilleuls 15,
B-4000 Liège,
Belgium.

