Astérisque

J.-L. LIEUTENANT

Applications of decompositions of holomorphic functions to partial differential equations with constant coefficients

Astérisque, tome 89-90 (1981), p. 203-212

http://www.numdam.org/item?id=AST_1981__89-90__203_0

© Société mathématique de France, 1981, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

APPLICATIONS OF DECOMPOSITIONS OF HOLOMORPHIC FUNCTIONS TO PARTIAL DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

by J.-L. LIEUTENANT (University of Liège) (Research Assistant F.N.R.S.)

NOTATIONS.

We consider \mathbb{R}^n endowed with the usual scalar product defined by $\langle \mathbf{y}, \boldsymbol{\xi} \rangle = \Sigma \mathbf{y}_j \ \boldsymbol{\xi}_j$ and the euclidean norm $|\mathbf{y}| = \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}$ as a closed submanifold of \mathbb{C}^n . We shall denote by \mathbf{S}^{n-1} the unit sphere of \mathbb{R}^n and for any cone $\Gamma \subset \mathbb{R}^n$ we define the <u>polar</u> of Γ by $\Gamma^{\bullet} = \{\boldsymbol{\xi} \in \mathbb{R}^n \setminus \{0\} : \langle \mathbf{y}, \boldsymbol{\xi} \rangle \ge 0, \ \forall \mathbf{y} \in \Gamma\}$. By a <u>salient</u> cone, we mean a cone that does not contain any straight line. Given an open subset Ω of \mathbb{R}^n and an open convex cone $\Gamma \subset \mathbb{R}^n$, a subset A of \mathbb{C}^n will be called <u>of profile</u> $\Omega + i\Gamma$ if for every compact sets $K \subset \Omega$ and $K \subset \Gamma \cap \mathbf{s}^{n-1}$, there exists $\rho_0 > 0$ such that the wedge

{x + ipy :
$$x \in K$$
, $y \in K$, $\rho \in]0,\rho]$ }

is contained in A. We are going to represent by \mathscr{D} the <u>ring of linear partial</u> <u>differential operators with constant complex coefficients</u>. It is well known that \mathscr{D} is unitary and noetherian. If $P = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$ belongs to \mathscr{D} , we shall write \mathring{P} the <u>principal symbol</u> of P and car(P) the <u>characteristic variety of</u> P, i.e. the set $\{\xi + i\eta \in \mathbb{C}^n : |\xi|^2 + |\eta|^2 = 1, P(\xi + i\eta) = 0\}$. Finally, let us denote by \mathscr{O} the sheaf of holomorphic functions on \mathbb{C}^n and by \mathscr{A} the linear space of \mathbb{C} -valued analytic functions on \mathbb{R}^n .

Let us first recall two decomposition theorems proved in [5] and [6].

<u>Theorem 1</u>: For any $F \in \mathcal{O}$ and any finite family of open convex salient cones Γ_j of \mathbb{R}^n whose polars cover S^{n-1} , there exist domains of holomorphy V_j containing \mathbb{R}^n and an open convex tube $\mathbb{R}^n + i\Omega_j$ of profile $\mathbb{R}^n + i\Gamma_j$ and $F_j \in \mathcal{O}(V_j)$ such that $F = \Sigma F_j$ holds on a neighborhood of \mathbb{R}^n . Moreover, if the interiors of the polars of the Γ_j 's cover S^{n-1} , given $r \in]0, +\infty[$, one can assume that the V_j 's are open pseudoconvex neighborhoods of the closed tubes

$$\mathbb{R}^n + i\{y \in \overline{\Gamma}_i : |y| \le r\}$$
.

<u>Theorem 2</u>: Let Γ be an open convex cone of \mathbb{R}^n , Ω an open subset of \mathbb{R}^n and \mathbb{V} an open subset of \mathbb{C}^n of profile $\Omega + i\Gamma$. For any $r \in]0, +\infty[$, any $F \in \mathcal{O}(\mathbb{V})$ and any open subcone Γ' of Γ whose intersection with S^{n-1} is relatively compact in Γ , there exist an open convex neighborhood Ω' of $\{y \in \overline{\Gamma'} : 0 < |y| \le r\}$ in \mathbb{R}^n , an open pseudoconvex neighborhood \mathbb{W} of Ω contained in $\Omega + i \mathbb{R}^n$, $A \in \mathcal{O}(\mathbb{W})$ and $G \in \mathcal{O}(\mathbb{R}^n + i\Omega')$ such that $\mathbb{W} \cap (\mathbb{R}^n + i\Omega') \subset \mathbb{V}$ and F = G + A on $\mathbb{W} \cap (\mathbb{R}^n + i\Omega')$.

<u>Remark 3</u>: This last statement constitutes in fact a slight improvement of the result obtained in [6]. To establish it, one only needs (besides evident modifications) to remark that lemma 6 of [5] can be precised as follows: if the U_j 's are stricly pseudoconvex tubes with C_2 -boundaries $\partial U_j \supset \mathbb{R}^n$, for any complex neighborhood W of an open set Ω of \mathbb{R}^n , there exists an open pseudoconvex neighborhood V_W of $\Omega \cup (\Omega U_j)$ such that $V_W \setminus (\Omega U_j) \subset W$.

Lemma 4: Let Γ be an open convex non void cone of $\mathbb{R}^{n'}$. The polar of $\mathbb{R}^n \times \Gamma$ coincides with $0 \times \Gamma^{\perp}$ and is a convex salient cone closed in $\mathbb{R}^{n+n'} \setminus \{0\}$. Moreover, for any open cone $\gamma \supset 0 \times \Gamma^{\perp}$, there exists $\rho > 0$ such that γ^{\perp} is contained in

$$\widetilde{\Gamma}_{\rho} = \{ (\mathbf{x}, \mathbf{y}) : |\mathbf{x}| \leq \frac{|\mathbf{y}|}{\rho} , \mathbf{y} \neq 0, \ d(\frac{\mathbf{y}}{|\mathbf{y}|}, \mathbf{s}^{n'-1} \setminus \Gamma) \geq \rho \} ,$$

where d denotes the euclidean distance.

<u>Proof</u>: One obtains immediately the equality $(\mathbb{R}^n \times \Gamma)^{\perp} = 0 \times \Gamma^{\perp}$ and as Γ is open and non void, this is a salient cone closed in $\mathbb{R}^{n+n'} \setminus \{0\}$. For the second part of the statement, let us first choose $\epsilon > 0$ such that

$$\omega_{\varepsilon} = \{ (\xi, \eta) \in s^{n+n'-1} : |\xi| < \varepsilon, \ d(\frac{\eta}{|\eta|}, \ \Gamma^{\perp} \cap s^{n'-1}) < \varepsilon \} \subset \gamma \ ,$$

hence such that γ^{\perp} is contained in

$$\Gamma' = \bigcap_{(\xi,\eta)\in\omega_{\varepsilon}} \{(\mathbf{x},\mathbf{y}) : \langle \mathbf{x},\xi\rangle + \langle \mathbf{y},\eta\rangle \ge 0\}.$$

As it is clear by definition of ω_{ε} that $\Gamma' \setminus \{0\}$ is disjoint from $\{(\mathbf{x}, \mathbf{o}) : \mathbf{x} \in \mathbb{R}^n\}$, we are going to show that the existence of sequences $(\mathbf{x}_m, \mathbf{y}_m)$ or $(\mathbf{x}_m', \mathbf{y}_m') \in \Gamma' \setminus \{0\}$ such that $|\mathbf{x}_m| > m|\mathbf{y}_m|$ or such that $|\mathbf{y}_m'| = 1$ and $d(\mathbf{y}_m', \mathbf{s}^{n'-1} \setminus \Gamma) < \frac{1}{m}$ leads to a contradiction in each case. As a matter of fact, for any $\eta_o \in \Gamma^{\perp} \cap \mathbf{s}^{n'-1}$, the points $(\xi_m, \eta_m) = \frac{1}{V_{1+m}^{2}} \left(-\frac{\mathbf{x}_m}{|\mathbf{x}_m|}, m\eta_o\right)$ belong to ω for m sufficiently large and one obtains

$$0 \le \langle \mathbf{x}_{m}, \xi_{m} \rangle + \langle \mathbf{y}_{m}, \eta_{m} \rangle < -\frac{m|\mathbf{y}_{m}|}{\sqrt{1+m^{2}}} + \frac{m|\mathbf{y}_{m}|}{\sqrt{1+m^{2}}} = 0$$

hence a first contradiction. In the second case, we can find $y_m^{"} \in s^{n'-1} \setminus \overline{\Gamma}$ such that $|y_m' - y_m^{"}| < \frac{1}{m}$ and by convexity of $\overline{\Gamma}$, there are points $\eta_m^{'} \in \Gamma^{\perp} \cap s^{n'-1}$ verifying $\langle y_m^{"}, \eta_m^{"} \rangle < 0$.

As the points
$$(\xi_m, \eta_m) = \frac{1}{\sqrt{1+m^2}} (0, m\eta'_m - y'_m)$$
 belong to ω_{ε} for m

sufficiently large, we obtain another contradiction:

$$\begin{split} & 0 \leq <\mathbf{x}'_{m}, \xi_{m}> + <\mathbf{y}'_{m}, \eta_{m}> \leq \frac{1}{\sqrt{1+m^{2}}} \left[\mathbf{m} < \mathbf{y}'_{m} - \mathbf{y}''_{m}, \eta_{m}'> + \mathbf{m} <\mathbf{y}''_{m}, \eta_{m}'> - 1\right] \\ & < \frac{1}{\sqrt{1+m^{2}}} \left[\mathbf{m} |\mathbf{y}'_{m} - \mathbf{y}''_{m}| - 1\right] \leq 0 \quad . \end{split}$$

J. L. LIEUTENANT

<u>Definition 4</u>: Adapting a definition due to Bony and Schapira (cf. [1]) to the particular situation we have in mind, we shall say that a point z_0 of the boundary of an open subset V of \mathbb{C}^n <u>verifies the condition</u> $c(z_0, \gamma, V)$ with respect to a convex salient cone γ closed in $\mathbb{R}^n \setminus \{0\}$ if for any $\varepsilon > 0$, there exists $\eta > 0$ such that

$$\{z \in V : |z-z_0| < \eta\} - i\{y \in (\gamma_{\varepsilon})^{\perp} : |y| < \eta\}$$

is contained in V , where $\gamma_\epsilon^{}$ denotes the conic hull of the set of points of $s^{n-1}^{}$ whose distance to $\gamma \cap s^{n-1}^{}$ is less than ϵ .

Lemma 5: a) If $\Gamma \subset \mathbb{R}^n$ is an open convex non void cone and $V = \mathbb{R}^n + i\Omega$ an open tube of \mathbb{C}^n , then for any $z_o \in \partial V$, the condition $c(z_o, -\Gamma^{\perp}, V)$ is equivalent to the cone condition $C(z_o, (0 \times \Gamma^{\perp}) \cap S^{2n-1})$ stated in 4.1 of [1].

b) Let r belong to $]0, +\infty[$, Γ be an open convex non void cone of \mathbb{R}^n and V denote the open tube $\{z \in \mathbb{R}^n + i\Gamma : |y| < r\}$. Every $x \in \mathbb{R}^n \subset \partial V$ verifies then the condition $c(x, -\Gamma^{\perp}, V)$. Moreover, if γ is an open conic neighborhood of $(-\Gamma^{\perp}) \setminus \{0\}$ and if $V' = \mathbb{R}^n + i\Omega$ is an open tube of profile $\mathbb{R}^n + i\Gamma$, there exists an open convex subcone Γ' of Γ such that $-\Gamma'^{\perp} \subset \gamma$ and any $x \in \mathbb{R}^n \subset \partial [V' \cap (\mathbb{R}^{n} + i\Gamma')]$ verifies the condition $c[x, -\Gamma'^{\perp}, V' \cap (\mathbb{R}^{n} + i\Gamma')]$ <u>Proof</u>: a) We first show that c implies C. Let I' be an open neighborhood of $(0 \times \Gamma^{\perp}) \cap S^{2n-1}$ in S^{2n-1} . By Lemma 4, the polar of I' in the sense of Bony and Schapira (which is the opposite of ours) is contained in $-\widetilde{\Gamma}_{\rho}$ for some $\rho > 0$. There exists $\varepsilon > 0$ such that $(\Gamma^{\perp}_{\varepsilon})^{\perp}$ contains $\{y \in S^{n-1} : d(y, S^{n-1} \setminus \Gamma) \ge \rho\}$. Now let η be the number which corresponds to ε by application of $c(z_{\rho}, -\Gamma^{\perp}, \nabla)$.

The proof of $C \rightarrow c$ is similar and as we shall not use this implication in what follows, we do not give further details.

b) The first assertion follows immediately from the inclusion $[(\Gamma^{\perp})_{\epsilon}]^{\perp} \subset \Gamma$, which is easy to obtain. For the second one, let us denote by γ' an open convex cone of \mathbb{R}^{n} verifying

$$-\Gamma^{\perp} \subset \gamma' \subset \overline{\gamma'} \setminus \{0\} \subset \gamma$$

and set $\Gamma' = -\gamma'^{\perp 0}$. One has evidently $\overline{\Gamma'} = -\gamma'^{\perp} = -\overline{\gamma'}^{\perp} \subset \Gamma^{\perp 0} = \Gamma$ and $-\Gamma'^{\perp} = \overline{\gamma'} \setminus \{0\} \subset \gamma$ and as $\mathbb{R}^n + i\Omega$ is of profile $\mathbb{R}^n + i\Gamma$, there exists $\rho_0 > 0$ such that $\{y \in \Gamma' : |y| < \rho_0\} \subset \Omega$. Hence the conclusion by application of the first part of this result.

<u>Theorem 6</u>: Let $P \in \mathscr{D}$, $r \in]0, +\infty[$ and Γ_j be a finite family of open convex non void cones of \mathbb{R}^n . If $\operatorname{car}(P) \cap [-i \cup \Gamma_j^{\perp}]$ is empty, the equation Pu = fis solvable in the subspace of \mathscr{N} , whose elements can be written $\Sigma F_j|_{\mathbb{R}^n}$ with $F_j \in \mathscr{N} \cap \mathscr{O}[\mathbb{R}^n + i \{y \in \Gamma_j : |y| < r\}]$.

If there moreover exists an open convex conic neighborhood γ of $-U\Gamma_j^{\perp}$ such that $\operatorname{car}(P) \cap i\gamma$ is empty, the same equation is solvable in the subspace of \mathscr{N}_j , whose elements can be written $\Sigma F_j |_{\mathbb{R}^n}$ with $F_j \in \mathscr{N} \cap \mathscr{O}(V_j)$, where V_j denotes an open convex tube of profile $\mathbb{R}^n + i\Gamma_j$.

In particular, when P is ξ_{o} -hyperbolic in the sense that it verifies the following two conditions

a)
$$\tilde{P}(\xi_{\lambda}) \neq 0$$

b) P does not vanish on $\mathbb{R}^n + i\{\lambda\xi_o : \lambda > c\}$ for some $c \ge 0$, the second situation occurs if $-U\Gamma_j^{\perp}$ is contained in the open convex cone

$$\gamma_{\mathbf{P}} = \bigcap_{\lambda > 0} \{ \xi \in \mathbf{R}^{n} : \mathbf{P}(\xi + \lambda \xi_{o}) \neq 0 \}$$

<u>Proof</u>: According to the Malgrange-Ehrenpreis theorem (cf. [4] or [7]), the equations $PU_{i} = F_{i}$ are solvable in both cases in a convex tube of profile

 $\mathbb{R}^{n} + i\Gamma_{j}$. By the precedent lemma, we can apply theorem 4.1 of [1] and therefore suppose that the U_{j} 's are also holomorphic on a neighborhood of \mathbb{R}^{n} . Hence the conclusion by linearity of P.

The third assertion is a direct consequence of a slight modification of Garding's well known result on hyperbolic polynomials (cf. [2]) which asserts under our hypothesises that $\stackrel{\circ}{P}$ does not vanish on $\mathbb{R}^n + i\gamma_p$.

<u>Remark 7</u>: a) Our definition of ξ_0 -hyperbolicity differs from Garding's one because we interchange the roles of the real and imaginary parts of the complex directions.

b) When P is $\xi_0^-hyperbolic, it is easy to prove by Hurwitz's theorem that <math display="inline">\gamma_D^-$ coincides with the connected component of

 $\{\xi \in \mathbb{R}^n : \overset{\circ}{P}(\xi) = 0\}$

that contains ξ_0 .

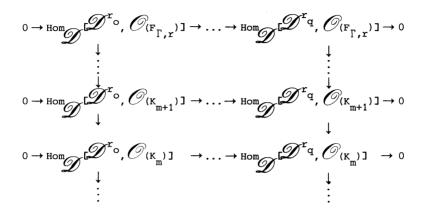
c) Combining theorems 1 and 6, one obtains immediately the following well known result:

<u>Corollary 8</u>: If $P \in \mathscr{D}$ is elliptic, one has $P(D) : \mathscr{A} = \mathscr{A}$. <u>Proof</u>: One only needs to point out that car(P) does not meet $i\mathbb{R}^n$. <u>Proposition 9</u>: Let $\Gamma \subset \mathbb{R}^n$ be a closed convex cone with non void interior and \mathscr{W} be a finitely generated \mathscr{D} -module. For any $r \in]0, +\infty[$, one has $Ext_{\mathscr{D}}^{j}[\mathscr{W}, \mathscr{O}(F_{\Gamma,r})] = 0$ for all $j \ge 2$, where $F_{\Gamma,r}$ denotes $\{x + iy \in \mathbb{R}^n + i\Gamma : |y| \le r\}$.

<u>Proof</u>: The $K_m = \{x + iy \in \mathbb{R}^n + i\Gamma : |x| \le m, |y| \le r\}$ $(m \in \mathbb{N})$ form a sequence of compact convex sets which increases towards $F_{\Gamma,r}$ in such a way that one has $\mathcal{O}(F_{\Gamma,r}) = \lim_{\leftarrow m} \mathcal{O}(K_m)$ and consequently $\lim_{\leftarrow m} \operatorname{Hom}_{\mathscr{D}}[\mathscr{D}^N, \mathscr{O}(K_m)] =$ $= \operatorname{Hom}_{\mathscr{D}}[\mathscr{D}^N, \mathscr{O}(F_{\Gamma,r})]$ for any $N \in \mathbb{N}$. Let

$$0 \leftarrow \mathcal{M} \leftarrow \mathcal{D}^{r} \circ \overset{t_{\psi}}{\longrightarrow} \circ \mathcal{D}^{r} \overset{t_{\psi_{1}}}{\longleftarrow} 1 \dots \overset{t_{\psi_{q-1}}}{\longleftarrow} \mathcal{D}^{r} \overset{q}{\longleftarrow} 0 \quad (q \leq n)$$

be a free projective resolution of M and consider the commutative diagram



A well known result (cf. [3], p. 410, for example) asserts that the canonical maps

$$\Phi^{j} : \operatorname{Ext}^{j} [\mathcal{M}, \mathcal{O}(\mathbf{F}_{\Gamma, r})] \to \lim_{m} \operatorname{Ext}^{j} [\mathcal{M}, \mathcal{O}(\mathbf{K}_{m})], \quad \forall j \geq 2$$

are isomorphisms because Mittag-Leffler's condition is satisfied since we have for every $j\geq 1$ and $m\in {\rm I\!N}$

$$H^{j}(0 \to \operatorname{Hom}_{\mathscr{D}} \mathscr{D}^{r_{0}}, \mathscr{O}(K_{m})] \to \ldots \to \operatorname{Hom}_{\mathscr{D}} \mathscr{D}^{r_{q}}, \mathscr{O}(K_{m})] \to 0) = \operatorname{Ext}_{\mathscr{D}}^{j} \mathscr{U} \mathcal{U}, \mathscr{O}(K_{m})] = 0$$

by virtue of the Malgrange-Ehrenpreis theorem. Hence the conclusion.

Notation 10: If Γ is an open convex non void cone of $\ensuremath{\mathbb{R}}^n$, we set

$$\widetilde{\mathscr{H}}_{\Gamma} = \lim_{\substack{\to \\ v}} \mathcal{O}(v)$$
 ,

where V runs over the open subsets of \mathbb{C}^n of profile $\mathbb{R}^n + i\Gamma$. We shall also denote by \mathscr{F}_{Γ} the family of open convex non void subcones Γ' of Γ such that $\Gamma' \cap s^{n-1}$ is relatively compact in Γ .

J. L. LIEUTENANT

<u>Theorem 11</u>: For any open convex non void cone Γ of \mathbb{R}^n and any finitely generated \mathscr{D} -module \mathfrak{M} , one has

$$\underset{\Gamma'\in \mathcal{F}_{\Gamma}}{\overset{\lim}{\longrightarrow}} \operatorname{Ext}_{\mathcal{D}}^{j} [\mathcal{M}, \mathcal{\widetilde{E}}_{\Gamma}, \mathcal{A}] = 0, \quad \forall j \geq 1$$

<u>Proof</u>: Given any $\Gamma' \in \mathscr{F}_{\Gamma}$, we are going to establish that for every $j \ge 1$ and every $\Gamma'' \in \mathscr{F}_{\Gamma}$ such that $\Gamma' \in \mathscr{F}_{\Gamma''}$ the canonical operator

$$\operatorname{ext}^{\mathbf{j}}_{\mathscr{D}}[\mathscr{M}, \widetilde{\mathscr{A}}_{\Gamma^{\mathsf{u}}}/\mathscr{A}] \to \operatorname{Ext}^{\mathbf{j}}_{\mathscr{D}}[\mathscr{M}, \widetilde{\mathscr{A}}_{\Gamma^{\mathsf{u}}}/\mathscr{A}]$$

vanishes. Using the same notations as in the precedent proof to denote the free projective resolution of \mathcal{M} , we are lead to prove that the image of

$$(\widetilde{\mathscr{H}}_{\Gamma^{''}}/\mathscr{A})^{r_{j-1}} \xrightarrow{\psi_{j-1}} (\widetilde{\mathscr{H}}_{\Gamma^{''}}/\mathscr{A})^{r_{j}} \xrightarrow{\psi_{j}} (\widetilde{\mathscr{H}}_{\Gamma^{''}}/\mathscr{A})^{r_{j+1}}$$

in the complex

is exact.

$$(\widetilde{\mathscr{C}}_{\Gamma},\mathscr{A})^{r_{j-1}} \xrightarrow{\psi_{j-1}} (\widetilde{\mathscr{C}}_{\Gamma},\mathscr{A})^{r_{j}} \xrightarrow{\psi_{j}} (\widetilde{\mathscr{C}}_{\Gamma},\mathscr{A})^{r_{j+1}}$$

In other words, we have to prove that given any $F \in \widetilde{\mathscr{C}}_{\Gamma^{"}}^{r_{j}}$ verifying

$$\psi_{j}F = 0 \mod \mathcal{A} , \qquad (1)$$

there exists $U \in \widetilde{\mathscr{H}}_{\Gamma}^{r}$ ^rj⁻¹ such that

$$\psi_{j-1} U = F \mod \mathscr{H}.$$
 (2)

By theorem 2, we can decompose F in G + A with $G \in \mathcal{O}[\mathbb{R}^n + i\{y \in \overline{\Gamma}' : 0 < |y| \le r\}]$ and $A \in \mathcal{N}$. Therefore (1) and (2) become respectively

$$\psi_{j^{G}} \in \mathcal{O}(F_{\overline{\Gamma}',r})^{r_{j+1}}$$
(3)
$$\psi_{j-1} U = G \mod \mathcal{A}.$$
(4)

As we have trivially $\psi_{j+1} \quad \psi_j G = 0$ the precedent lemma assures the existence of $H \in \mathcal{O}(F_{\overline{\Gamma}}, r)^{r_j}$ such that $\psi_j H = \psi_j G$ and we can replace (3) and (4) respectively by

$$\psi_{j}(G - H) = 0 \text{ on } F_{\overline{\Gamma}'}, r$$
$$\psi_{j-1}U = G - H \mod \mathscr{H}.$$

Since $\mathbb{R}^n + i\{y \in \Gamma' : |y| \le r\}$ is an open convex subset of $\mathbb{F}_{\overline{\Gamma}',r}$, another application of the Malgrange-Ehrenpreis theorem allows to conclude.

I thank Professor P. Schapira for the frequent discussions I had with him during this meeting.

REFERENCES

- [1] J.M. BONY et P. SCHAPIRA, Existence et prolongement des solutions des équations aux dérivées partielles, Inventiones Math. 17 (1972), pp. 95-105.
- [2] L. GARDING, Linear hyperbolic partial differential equations with constant coefficients, Acta Math. 85 (1951), pp. 1-62.
- [3] A. GROTHENDIECK, Eléments de Géométrie Algébrique III, Publ. Math. I.H.E.S., 11, (1961).
- [4] H. KOMATSU, Relative cohomology of sheaves of solutions of differential equations, Lecture Notes in Math. 287, Springer Verlag, Berlin (1973), pp. 192-259.
- [5] J.L. LIEUTENANT, Decomposition of analytic functions on Rⁿ in sum of holomorphic functions in conic tubes, Bull. Soc. Roy. Sc. Liège, 49 (1980), pp. 347-357.
- [6] J.L. LIEUTENANT, Decomposition of functions holomorphic in tuboids, Bull. Soc. Roy. Sc. Liège, 49 (1980).

[7] B. MALGRANGE, Systèmes différentiels à coefficients constants, Séminaire Bourbaki, 246, Paris, (1962).

> Jean-Louis LIEUTENANT, Institute of Mathematics, University of Liège, Avenue des Tilleuls 15, B-4000 Liège, Belgium.