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UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM AND ANALYTIC 
REGULARITY FOR PARTIAL DIFFERENTIAL EQUATIONS WITH POLYNOMIAL 

COEFFICIENTS IN THE PRESENCE OF GROWTH TYPE CONDITIONS 

by O. LIESS (Technische Hochschule Darmstadt) 

§1. INTRODUCTION 

1. In this paper we study the uniqueness of solutions for the characteristic 

Cauchy problem and regularity questions for solutions of a class of linear partial 

differential operators with polynomial coefficients when growth conditions are 

imposed at infinity. Le t s  > 1 and h > 0 be given and denote, here and in the 

sequel, by a = s/(s-l) , and by R̂ + 1 = {(x,t) £ Rn+1 ; |t| < h} . Assume that 

p(x,t,Dx,Dt) i s an operator of form 

(1) p(x,t, D ,D ) = I Z a  Q.(t) xa D6 D̂  
X *  |a |/s+|e|/a+j <m ^ X t 

where the â _ . (t) ar e real analytic functions defined for |t | < h and 

a ft.(t) = 1 when j  = m . (Her e a,$ ar e multiindices, |a|,|3 | is their lenghth 

and, as usual, x a = x,1 ... x n,D̂ =(-id/dx.) 1 ... (-i3/9x ) n , D̂  = (-i3/9t)j ). 
1 n  x  1 n  t 

We can then prove the following two results: 

Theorem 1.1. Le t s  > 1 and h > 0 be given and let p b e an operator of form 

(1). Suppos e u € 0 (R ^ ) i s a solution of p(x,t,Dx,Dt ) u = 0 suc h that 

a) sup p u C {(x,t) £ R£+1 ; t >. 0} 
b) ther e is B > 0 suc h that for any y , £ ,  we can find Cy £ > 0 with 
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0. LIESS 

|D^ D£ u(x,t)| < C exp(B|x|S ) ,  V  (x,t) £ R£+ 1 . 

Then it follows that u  = 0 . 

Theorem 1.2. Le t p(x,t,Dx,Dt ) b e as in Theorem 1.1 and assume that 

JZ a  _(t) £3Tj t 0 i f (£,x ) £ Rn+1\{0} an d |t | < h . 
|e|/a+j=m a ^ 

(Of? oo 
Let also u  € T3 (R ^ ) b e a solution of p(x,t,D^,Dt ) u = 0 whic h 

satisfies condition b) from the statement of Theorem 1.1. The n u  i s real 

analytic on R^+ ^ • Moreover for every h 1 < h w e can find B 1 > 0 an d c  > 0 
so that u  extend s to an analytic function u  define d on 

C^t1 ={(z,t ) €Cn+1; |t| < h'} fo r which |u(z,t) | <_ c exp(B1|z|S) i f 

<z,t> e c^t1 . 

2. Operators of form (1) have been considered previously by J. Persson CI] 
when studying the Cauchy-Kowalewska theorem for analytic functions which satisfy 

growth conditions for |  z | •> °° analogous to those used in this paper. W e shall 

give later on examples which show that it is natural to restrict oneself to 

operators of form (1) in the context of this paper. Whe n p  i s an operator with 

constant coefficients, i.e. when p  ha s the form 

(2) p (D ,DJ = H  aQ.D3D^ 
|3|/a+D<m 

for some aD . € C , then the theorems 1.1 and 1.2 are wellknown. I n fact, theorem PD 
1.1 then reduces to a wellknown result of I.M. Gel'fand-G.E. Shilov [ID, which 
generalizes earlier results concerning the characteristic Cauchy-problem for the 

heat equation (due to E. Holmgren, A.N. Tichonov, M. Nicolescu and others) and 

Theorem 1.2 is then essentially due to V.V. Grushin [ID. Fo r a result related to 
Theorem 1.2 for the case of operators with polynomial coefficients, cf. I.A. Luckij 
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111. 

3. Results similar to those from the theorems 1.1 and 1.2 can be proved also 
when the solutions u of the equation p(x,t,Dx#Dt)u = 0 are distributions on 
which "growth" restrictions at infinity have been imposed. Since this only leads 

4. In the proof of the theorems 1.1 and 1.2 we shall study the singularities 
of the solutions of p(x,t,Dx,Dt) u = 0 by using a simultaneous localization in 
the t variable and in the variables Fourier-dual to x and t (one might note 
here that there is also a "localization" for the growth in the x variables). In 
analogy to the situation from the local analysis of singularities of solutions of 
partial differential equations we call this a microlocalization. To make this more 
precise we shall introduce (cf. definition 3.3 below) a notion of analytic wave 
front set adapted to the study of problems in which growth-type conditions are 
imposed at infinity. We shall then show that both theorems are in fact 
consequences of a microlocal variant of Theorem 1.2. This is in complete analogy 
to the local situation where Holmgren's uniqueness theorem and the analytic 
regularity of solutions of elliptic equations with analytic coefficients are both 
consequences of the regularity theorem of Hormander-Sato (cf. Hormander C3D and M. 
Kashiwara ClD). The microlocal variant of Theorem 1.2, which is stated after some 
preparations, as proposition 3.8, and which replaces the regularity theorem of 
Hormander-Sato in this context, is therefore the main technical result from this 
paper. 

5. Starting point for this paper has been an attempt to generalize Gel1fand-
Shilov's theorem on the uniqueness of the characteristic Cauchy problem. One might 
then consider an operator of form 

to supplimentary technical complications we restrict ourselves to the C2 case. 

(3) p(x,t,D ,D.) = X t aQ . (x,t)D° DJ , a = pi X t om 1 
3 I/0+j<m 
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0. LIESS 

for some a  > 1 an d ask what conditions on p  on e should impose if one wants to 
G^°° n+ l 

conclude that u  = 0 fo r any solution u  £ C? (R ^ )  o f p(x,trD^,D^) u = 0 
concentrated in t  > 0 an d which satisfies su p ,  |D^ U  (X, t) I /exp (B| X| S) <°° ~ /  1  x t 

(x,t)€Rh 

Vy,£ . Sinc e no condition on the type of the operator is imposed in Gel'fand-

Shilov's theorem we can only put restrictions on the regularity of the coefficients 

â _. an d on their growth at infinity. I t is then natural to assume that the 

coefficients â _ . ar e at least real analytic. 

Before we continue this discussion we now give some elementary examples. 

3 3 4 
Example 1.3. Denot e by c|)(x,t) = exp(i(x +x)/t -  1/t ) , by 

a = -Q<f>/3t)/02(J>/8x2) an d by 

j <J> (x,t) fo r t  >. 0 
| 0 fo r t  < 0 . 

2 2 
Then a  i s real analytic, bounded, and we have (9/9t + a(x,t)9 /9x )u=0 . This 
example is a variant of an example considered in L. Hormander C4]. 
Example 1.4. Le t g (0) :R -* R b e a bounded functio n with support in 0 > 0 
but 0 £ supp g . Then 

!

g(t-l/x) fo r t  > 1/x i f x  > 0 
0 otherwis e 

2 
satisfies (3/3t - x 9/9x) u = 0 . 

From this (standard) example one can see in particular that the problem in 

this paper is global. 
2 

Example 1.5. Conside r the equation p(x,Dx,Dt) u = D̂ u-D̂ (xu)+iu an d denote by 

H+(£) th e Heaviside function in £  € R . Then u  =t^^"1(H+( )̂ exp(-l/£ +ix/?)) 

is a solution of p(x,Dx,Dt ) u = 0 an d its Fourier transform H+(£ ) exp(-1/^+ii/ )̂ 

has an analytic extension for I m T > 0 whic h is bounded. I t follows that u  i s 
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and denote by w 

concentrated in t  >_ 0 t >_ 0 . If we consider v(t)£ ^PQ(R) ,supp v C (t £ R;t >_ 0} 
= Ju(x,t-t')v(t') dt1 , then w is still a solution of 

p(x,Dx,Dt) w = 0 concentrate d in t  >_ 0 an d it is easy to see that it is bounded 

with all derivatives. Essentiall y the same example is obtained if one simply 

performs a Fourier transform in x  i n example 1.4. 

6. It follows from example 1.3 that one cannot, in general, prove results 
similar to the ones from this paper for operators of form (3) if one only assumes 
that the coefficients are real analytic. Anothe r natural choice is then to assume 

that they are entire in x  . When imposing also growth conditions of polynomial 

type on them (which is necessary in view of the other examples), we then arrive at 

coefficients which are polynomial in x  . (Restrictio n to this case seems also 

natural in view of the results from J. Persson C1D) . The examples 1.4, 1.5 and 
more sophisticated ones from S.D. Eidel'man [1] of the same type suggest that the 
results from this paper are optimal. I  cannot prove this however. 

7. The present paper is an extended version of a talk at the conference on 
"Analytic Solutions of Partial Differential Equations", Trento, March 1981. It 
does not contain the proof of proposition 3.8 below. 

1. In this paragraph we collect a number of facts concerning function spaces 
defined by growth type conditions. Fo r more details we refer e.g. to Gel'fand-

Shilov [2]. 

§2. THE SPACE Es »̂ (R̂ +1) AND ITS DUAL. THE SPACE , 7^0^ (Ĉ ' 

Definition 2.1. Consider s>l,A >0,h>0 Then 
Ops n+1 

we denote bY GA(RJ1 ) the 

space of functions f  fro m W V+1 > such that the quantities 

167 



0. LIESS 

sup |D a f(x,t) | /exp(D|x|S) , 
x€Rn,|t|<h' X  t 

are finite for all a  , all j  , all D  > A an d all h ' wit h 0 < h' < h . 
QPs, n+1, 

A^R^ )wil l be endowed with the topology defined by thoj. seminorms 

f •+ sup |D " D3t f (x,t) |/exp(D|x|S) , the sup being for (x,t ) ^ .  I t is then a 

C/^°° n +1 
Frechet space in which (R , )  i s dense. It s dual, endowed with the weak 

^ o  n 
topology, will be denoted by ^ ^ R h + ^ 

QPs n+1 QPs n +1 
When f  £ ^ ^ Rh ^  an d g   ̂^ A1 ^  ' then it: follows that the point-

ers n +1 n +1 
wise product f(x,t)g(x,t ) i s in ,  (K. ) . I f f  £ & ( R )  , then 

f(x+x°,t) i s in ^7^Rh+ ^ ̂ o r everY x ° £ r11 • Moreover, if ¥  £ ^^Q(RN) 

then ¥*' f = Jf (x-x',t)¥(x')dx' i s in ^S(R!?+1 ) • Further, if we fix C  £ C*1 ' A h 
C^s n +1 

and T  £ C , then exp(-i<x,£>-itT ) i s in ©A^R n )  f° r anY s  > 1 an d any 
A > 0 . More precisely, when s  > 1 an d D  > 0 ar e fixed, then it follows with 

the notations 

(1) a  = s/(s-l), A  = (sD)"a/s(l/a) , 

that 

(2) |D ^ exp(-i<x,C>-itT ) <_ |̂ |a|T|j exp(D|x|S + A | ImC; | °+h' | Imx |) , if 

|t| < h- . 

In fact, (2) is a consequence of Youngs inequality |<x,£> | <_ |x|S/s + |̂ |Q/a 

The notation introduced in (1), i.e. the association of a, A wit h s, D , will 

be used very often in this paper, sometimes without explicit reference to (1). 
Ops n+i 

2. Let us now consider v  £ ©A(R^ ) ' • Then v(exp(-i<x,£>-itT) ) make s 

sense for all (C,T ) £ cn+* an d is an entire analytic function in (£,T ) whic h 

will be denoted by v  , or sometimes, by v  wil l be called the Fourier-

Borel transform of v  (th e same notations will also be used for the Fourier, or 

Fourier-Borel transform in more standard situations). I t is easy to see that 

v = 0 i f v  E 0 o n Cn+ 1 . Further it follows from (2) that for any 
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Ops n+1 

v £ © A(Rh ) ' we can find c > 0 , b > . 0 , D > A and h' < h such that 

(3) |v(C,T)| < C(l + |(£,x)|)b exp(A|lmc|a + h«|lmx|) . 

Conversely, if (f)£«̂  X) (we denote by <_y$?(l3) the functions f : U -* C 
which are analytic in U ) is an entire analytic function which satisfies an 
estimate of type (3), then it is classical (cf. e.g. I.M. Gel'fand-G.E. Shilov C23 

QPs n+1 
for a similar result) that there is v £ ^ A ^ n '̂ such tnat <MC*T) = v(£,x) . 
Moreover, if f € ^^?^Rh+^ ' t̂ ien lv^ H — c' where c' depends only on 

Q£>s n+1 
c,b,A,h' . If (3) is valid with c,b,A,h' for some given v£ ^ A ^ n '̂ then 
we shall say that v is of order b . 
Lemma 2.2. Consider v £ ^^A^Rh+^ ' w^^c^ ^ -"-s vali^ an<̂  choose D' with 

QPs n+1 
A < D' < D . Then we can find a sequence v £ ^ A ^ n '̂ suĉ  tnat: 
a) all Vj are of order- ::cro, 

b) v -> v in O AlRh 1 ' r 

c) |v <£,T) | < c'(1 + j |)b exp(A'|lmc|a + h'|Imx|) , 
for some c' which does not depend on j (A ' is associated with D' via (1)). 

In fact, if g £ 0̂ r11+̂  ŝ positiv, with integral one, and if g_.(x,t) = 
= jn+1g(jx,jt) , then we can define v by v_. = g_.v . a) and c) are then obvious 

<j£>s n+l 
and to prove b) it remains to observe that g * f f in ^ A ^ n" ̂  b" < ̂ * 

QPs n+1 
3. Consider now f £ ̂ A ^ h ^ and D > A , n ' < h , b > _ 0 . By the above 

f defines a linear functional on the space of entire analytic functions 
(j) £ ̂ /̂ >(Cn+1) for which 

SUP n+1 k(C,T)| / exp(A|lmc|a+h' | Imx | + b In (1+1 (5 ,x) |)) < °° 
(C,x)€Cn+i 

and it is continuous if we endow this space of entire functions with an obvious 
topology. It follows from Hahn-Banach's theorem that we can find a Radon measure 
0) : Cn+1 •> C (which depends on D,h',b) with the following two properties: 
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0. LIESS 

/exp(A|lm(;|a + h' |Imx | + b In(1+|(T)|)) do3(£,T) < °° 

and 

(4) v(f ) = Jv(C,,T') doXCrT1) 

if v  C ^^?^Rh+^ ' satisfies 

sup |v(C,T) | / exp(A|lmC|a + h' | Imx | + b In (1+ | (£,T) |) ) < °o . 

In particular it follows from (4) that f(x,t ) = Jexp (-i<x, £' >-itT') do3 (£ ' ,T1) i f 

|t| < h' . We shall therefore call 03 a  representation measure for f  . Consider 

QPs n +1 QPs n+ i 
now again f  £ © )  an< ^ also choose v  £ ^5 A« ^  ' fo r some A ' > A . 

Ops n+l 
We can then define an element f v € ©Ai_A^Rn ) ' by (fv ) (g) = v(fg) i f 

g € ^^i_A^Rh+1^ suc h that it makes sense to ask for *j^(fv) (̂ ,T) = 

= v(f exp(-i<x,C>-itT)) = (exp(-i<x,C>-itT)v)(f) . Since 

^^(exp (-i<x, C>-itT) v) (£' ,T' ) = v(C+£',T+T') i t follows after a change of 

variables that 

(5) *^(fv)(i;,T) = /vCCT'JdaXC'-^T'-T) 

if 0) i s a representation measure for f  (an d for suitable A,h',b) . 

4. It has been observed already in I.M. Gel'fand-G.E. Shilov 111 that the 

class of functions q  £ L (Rn)  for which the Fourier transform g  extend s to an 

entire analytic function on C n whic h satisfies 

(6) |g(C) | < c e x p ( - c '+ c"|lmc|a ) , 

for some positive constants c,c',c " i s of special interest in questions related 

to the uniqueness of the characteristic Cauchy problem. I t is wellknown that non-

trivial entire functions with (6) exist. Mor e precisely we have 
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Lemma 2.3. Let s > 1 and D > 0 be given. Then one can find g £ ¿7(RN),g t 0 

and positive constants ĉ ,i=l,2,3,4,5 such that 

(7) |g(x)| < exp(-D|x|S), V X C R " , 

(8) |g(0 | < cx exp(-c2|c|a + c3|lmc|a), V£ £ cn , 

(9) |g(i£)| > c4 exp(-c5|c|a) if U R N • 

Note that g is an entire analytic function in view of (7). 

For a proof of Lemma 2.3 we refer e.g. to I.M. Gel'fand-G.E. Shilov C23. The last 

property is not explicitly stated in that book, but it is immediate if we consider 

a positive g with (7) and (8). 

5. Proposition 2.4. Consider s > 1, A > 0 and let g be given by Lemma 2.3 

Ops n+i 
for some D > A . Also choose f € © ( ) and assume that 

(10) Jg (x') exp(i<x',£» f(x-x',t) dx' =0 

for all (x,t) £ R^+1 and all £ £ RN . Then it follows that f E 0 . Note that 

(10) makes sense in view of (7). 

Proof (cf. I.M. Gel'fand-G.E. Shilov 121). If x,t are fixed, then 

x' -> f (x-x', t) g (x') is in *^(RN ) . The condition (10) then just states that the 

Fourier transform of this function vanishes identically. It follows that 

g(x')f(x-x',t) E 0 in x,x',t . Since g t 0 this implies f E 0 . 

6. Proposition 2.5. Let s > 1,A' > A > 0,h > 0,b >_ 0,d1 > d2 > 0,x > 0 be 

given. Then there are constants c,B such that 

a) |D £ f(C)| <. cB^Ca/s]! exp(A' | c|a) ,Va,V£ £ Cn for any function f£«_y^(Cn) 

which satisfies |f(£)| <_ exp (A | £ |a) • 

b) |D " f(C)| <. cB^Ca/s]! exp(A'|lm<;|a+b In (1+1 £ |)) ,Va,V£ £ cn for any 

fCt7^(Cn) which satisfies |f(£)| <. exp (A | Im£ |0 + bln(l + |c | ) ) . 
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0. LIESS 

c) Fi x (̂ /x ) £ R an d denote by th e sets ft± = {(£,T) £ C 

|C~?|A + | T-T | £ di(|?|a+fr| ) • Also choose f  £ KJ&KSI^ suc h that 

|f(CT)| £ exp(A|lm^|a + h|lmr| + b ln(l + | (£,T)|)) o n ^ . 

Then it follows that 

F (C»T) I £ C BW Ca/s] ! exp(A'|lmr |° + h|lmr| + b ln(l + | (£ ,T) | ) ) for 

|ot| < X(|e|a+|T|) on fi2 . 

Here and in the sequel we will denote (for a £ R+ ) by [a] the integer part of 

a . 

Proposition 2.5 is a wellknown consequence of Cauchy's integral formula. Cf . e.g. 

I.M. Gel'fand-G.E. Shilov [2D for the proof of a) and b). For the convenience of 

the reader we scetch the proof of the more technical c). To do so, we choose at 

first d >0 suc h that | c-?|Q+|T-T| < d2(|c|a+|x|) an d | 9|0 £ d(| £| °+1T|) 

implies |  £-g+0 |A+|T-'r| £ (| £ I Q+| T'I ) . With this choice of d i t follows from 

Cauchy's integral formula that 

|D̂  f (£,T) I < C'a! mi n max ^  |  0 |" la ' | f (C+6 ,T) | 
c d-£ d l e i ^ . t i g i ^ + i T l ) 

for all a an d all (£,T ) with |  ^- |̂ °+1 T-T| £ d2 (|f | Q+ |~|) . Let us also fix 

A" suc h that A|lm(£+6)| A £ A'|Im£|Q+AN|0|° . The proof then comes to an end if 

we can show that for suitable c^,B 

(11) mi n a ! |?rlal"bexp(AM|0|A) £ c, B^'ca/s]! 
|?|a£d(|?|Q+|T|) 1 

if |a | £X(|?|aHT|) • 

Let us in fact choose 0 * such that 0  = (dlal/x)1^ • xt follows in particular 

that £d(|^|a+|x| ) a s long as |a | £ X( | ? ] a + l ~ l ) • It is a consequence of 

Stirling's formula that for such (T , ot! 16 | l a l b exp (A" | 1T| °) ca n be estimated 

by the right hand side of (11), whence the proposition. 

172 



UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM 

7. Definition 2.6. Let s  > 1 and A  > 0, h > 0 be given. The n we denote 

by c£+1 = {(z,t) 6 Cn+1; |t| < h} an d by 

^^A(CÜ+1) = {f ^^^(C^1) ; sup | f (z,t) |/exp(D|z|S) < « for all D  > A 
z€C ,|t|<h' 

and all h ' < h} . 

One can easily prove: 

Ops n +1 
Proposition 2.7. Conside r f  € £5> )  * Then there are equivalent: 
(i) Ther e is A 1 > 0,h' > 0 suc h that f  ca n be extended to an element in 

Qf^s n+1 

(11) Ther e are D  > 0,n > 0,c > 0 suc h that |  v (f) | <_ c fo r all v  £ ^ D ^\ ) ' 

which satisfy 

(12) |v (CrT)| < exp(A|c|Q+n|T|) . 

8. The estimates (3) respectivel y (12) correspon d to the Paley-Wiener 

respectively Martineau-Ehrenpreis theorem. Whe n multiplying v  wit h an element 

from ,( C , ) the n we obtain of course estimates of the same type. The 

following result shows that this is essentially also true locally. Mor e precisely 

we have: 

Lemma 2.8. Le t e >0,D>0 , тT>0,d , ,0<d, <_ 1 b e given and consider a holo-

morphic function a(t ) define d for |t | < n suc h that |a(t ) | <_ 1 . Then we can 

find c  > 0,A > 0,e' > 0,D' > 0,n' > 0, whic h do not depend on a(t ) , with the 

following property: 

~  ̂n +1 Q^s n +1 
if (£,x) £  R i s fixed and if v  £ ©^(R^. )' satisfies 

(13) |v(£,T) | < exp((e'/2)(|Rec|+|ReT|)+A'|Im^|a+n1|Irax|+b ln(l+|(£,T)|) 

v<e,T> c cn+1 

respectively 

Ana, (Cnh+1)n 
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0. LIESS 

(14) |v(C,T ) | <_ exp(A' | Im̂  | a+n1 | ImT |+b ln(l+| (£,T) |) ) for 

K-T|A+|T-T| > d'(|̂ |a+|T|) , 

then the functions f  (£,T) defined for |V | ± (|̂ |a+|'r|) by 

fv(C,T) = v(exp(-i<x,C>-itT) a(t)-xV) , 

satisfy the estimates 

(15) |fv(£,T) | < cA'Vlcv/s3»exp(A|lmC|a+n|lmT|+b In(1+|(£,T)|)) for 

K-?|A+|T-T| > 3d'(|?|a+|r|) , 

respectively 

(16) | f (C,T) | ± cA'V':V/s3!exp(E(|REC|Q+|ReT|)+^|lm^|a+TT|lmTl 

+b ln(l+|(£,T)|)) for |c-t|A+|T-T| < 3d'(|?|A+|T|) . 

Proof. W e only prove (15). (16) may be proved with similar arguments but is 

easier. 

Let us then choose x' , 0 < x' J5L 1 and consider a function p(t) £ (R ) 

(which depends on £, T ) suc h that for some A ^ > 0 and some r |',0 < T|1 < n : 

a) sup p p C {t € R; |t| < rf} , 

b) p(t) =1 for |t| < n' , 

o |Dj+b+ 2 P(t)UA 1̂ X'£d?r+|T|)£ fo r i < x'dtr+m) . 

Here and in the sequel we shall denote by A_^ and also by c^ positive 

constants which do not depend on £ , T and v . The "b+2" has been inserted in 

c) for later convenience. 

Later on we shall put restrictions on X' » kut A^ must not depend on 

£/T,X' • It is wellknown that such functions exist, provided A^ is great enough 

(cf. e.g. L. Hormander C3]). 

To simplify notations we denote X ' (L?LA+L~H I N THE SECIUEL BY k* . We will 

also denote temporarily by F the Fourier-Bore l transform in t . Since the 

same notation shall be used (still further) also for the Fourier-Borel transform in 
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(x,t) , the precise meaning of mus t be clear from the context. 

Now we observe that 

(17) f (Ç,T) = (l/27r)J°° (-Dr)Vv(Ç,T')^Tp(t)a(t)) (T-T')dT' . 

To estimate the integrand in (17) we apply Proposition 2.5. Since T ' £ R i t 

follows that 

|D^v(C,T')| < A^VI+1CV/S3! exp(A|lmç|a+b In(1+|(Ç,T')|)) 

if |ç-tr+|T«-T| > 2d ' ( | t | a + m ) an d |v| < (|?|a+|T|) 

respectively 

|D^V(Ç,T')| < A|VI+1CV/S]! exp(e'(|Reç|a+|x'|)+A|lmç|a+b ln(l+| (Ç,T') |)) i n all 

other cases, provided that A ' < A . 

£' > 0 is here chosen with e ' <_ e , but later on we will impose another 

restriction on e' . 

At this moment we use the hypothesis on a(t ) an d P(t ) . This gives in view 

of Cauchy's inequalities 

|DJ+b+2 p(t)a(t)| < 4 + 1 *•* if I < k-

such that 

|^Tp(t)a(t)) (T-T 1 ) I < cx Â  k,£(l+|x-T' |)"£"b'2 exp(rT|lmT|) fo r £ < k' . 

We conclude that 

(18) |D^V(Ç,T ' )«^Tp (t ) a(t) ) (T-T ' ) I < c2 A|VI+£ k'£(l + |T-T'|)"£"b"2Cv/s3! exp G 

for I <_ k1 

where G = A | ImÇ | Q+rT| ImT |+b In ( 1+1 (Ç ,T ' ) | ) when |  Ç-f | Q+1T-T] >. 2d' ( | Ç^+IT] ) , 

respectively G  = e' ( | ReÇ |Q+1 T ' | ) +A| ImÇ |a+n| ImT | +b In(1+|(Ç,T')|) for 
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|C-?|°+|T-r| < 2d'(|?|°+|Y|) . 

When estimating the integrand from (17) we now distinguish between two cases. 

The first is when | °+\t ' -T | >_ 2d1 (\%\°+\'r\) . In this case we use (18) for 

£ = 0 such that we can estimate this integrand by 

(19) C2A4V' exP(A|lm |̂a+n|lmr|+b ln(l + | (C,T)|))/(1 + |T-T'|)2 . 

The second situation is when | T - T | <_ 2d' (| £ |°+| T"| ) , such that 

| c | a + K ' | _< ĉ  (| £ I^+IT] ) for some ĉ  . Since in (15) we are interested only in 

points (£,T) for which | |Q+|T-' T | >_ 3d' (\X\°+ \~\ ) we then have 

| T ' -T | >. d* (\X\°+\~\ ) >. c4(|c|A+|T' | ) . We now apply (18) for I = k1 and choose 

X' and £' (in the order: first x ' an(̂  then £1 ) so small that 

A*' k'k'c^'(|5|0+|?|)"k' exp(e'(|Res|A+|T'|)) < c5 . 

The integrand in (17) can therefore also in the second case be estimated by 
(19), perhaps with ĉ  replaced by some greater constant. The estimate (15) now 
follows. 

Remark 2.9. It is clear that we now can also estimate a finite number of 

derivatives of f by (15) or (16). 

Remark 2.10. In the proof of Lemma 2.8 we have introduced the constant x ' / which 

must be small. No other restriction is put on x ' however and the choice of x ' 

only affects the e1 . 

§3. THE ANALYTIC WAVE FRONT SET WFS. DEFINITIONS AND STATEMANT OF THE RESULTS  A — 

1. In this paragraph we introduce a notion of analytic wave front set adapted 

to the study of problems when growth type conditions in part of the variables 
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appear. To justify our definition we recall the following result: 

Proposition 3.1. Let f £ (Rn) ,x° £ Rn and £° € Rn\{0} be given. Then 

there are equivalent: 

a) (x°,£°) £ WFA f . 

b) There are £ > 0,c > 0 and an open cone T  C Rn \ {0} which contains £° 

such that |v(f) I <_ c for any v £ (Rn) which satisfies the estimates 

|v(ç)| <_exp(e|lm.ç| + <x°,ImÇ>) , for ReÇ £ -r , 

and 

|v(ç) I <_ exp(e|ç| + <x ,Imç>) for ReÇ 

Here WFAf denotes the (standard) analytic wave front set of f , introduced 

by M. Sato [1] and L. Hôrmander [23. Proposition 3.1 is a consequence of results 

from 0. Liess CH cf. also J.E. Bjôrk C13, pp. 310-313, for arguments which 

immediately give this result. Note that e |£|+<x°,£> is just the support-function 

of an £-neighborhood of x° . 

2. When trying to define a notion similar to WF^ in the case when growth 

type conditions appear, we have to replace conic neighborhoods of points by quasi-

conic neighborhoods of a certain kind. At first we therefore explain what we shall 

call a quasi-cone in this paper (as well as other notions in this paper this will 

depend on s , but, since we may keep s fixed everywhere we will not make this 

dépendance explicit in the terminology or notation). 

Definition 3.2. T C RR+1 \ {0} (or T  C Cn+1 \ {0} ) will be called a quasi-cone if 

(Ç,T) € r implies (t1/a£,t t) € T for all t > 0 . 

Similar or also more general objects have been considered in connection with 

(standard) wave front sets e.g. by L. Hôrmander [2] and B. Lascar [1]. 

Definition 3.3. Consider f £ ^A(Rh+1)' ^ ^ R' 1̂ 1 < h and 
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(£°,T°) £ Rn+1 \ {0} . Then we shall say that (t°,̂ °,T°) $ WF^ f if we can find 

c > 0,e > 0,D > 0,n. > 0 and an open quasi-cone Y C Rn+1 \ {0} which contains 

(£°,T°) such that |v(f) | <. c for any v £ ^^D^1*^"*"^ ' wnicn satisfies 

(1) |v(C,T)| < exp(A|lmc|G + t° ImT + n|ImT|) if Re(£,x) $ - T , 

respectively 

(2) |v(C,T) | < exp(e(|i;|a + |T|)+A|lmc|a+t°ImT + n|lmT|) , if Re(C,T )£-r . 

(A is here associated with D by (1), §2). 
For technical reasons it is very useful to have the following equivalent 

characterization of WF : A 

Proposition 3.4. Consider f £ ̂ ^^Rh ^ " T̂ en tnere are equivalent: 
(i) (t0,5°,T°) t WF* f . 
(ii) There are £ > 0,D > 0,r| > 0 an open quasi-cone T C Rn+1 \ {0} which 

contains (£°,T°) and for every b _> 0 some c > 0 such that |v(f) | <_ c 
QPs n+1 

for any v € ©pCR^ )' which satisfies 

(3) |V(C,T ) I <. exp(A|lmc|Q + t°Imr+n | Imx |+bln(l + | (£,T) |)) , if Re(<;,T)£ - V , 

respectively 

(4) |V(C,T )| <. exp(e(|̂ |a+|T| )+A|lm̂ |a+t°ImT+n|lniT|+bln(l+| (£,T)|)), 
if Re(£,T)£ - r -

(iii) There e > 0,D> 0,n > 0 and an open quasi-cone V C RR+1 \ {0} which 

contains (£°,T°) and for every b _> 0 some c > 0 such that |v(f) | _< c 
QPs n+1 

for any v £ © D̂ Rn ^ ' °^ orĉ er zero wnich satisfies (3) and (4) . 

In particular it follows from Proposition 3.4 that (t°,̂ °,T°) $ WF^ Dg f if 

(t°,?°,T°) * WF* f . 

Proposition 3.4 will be proved in §6. 
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3. The notation WF^ from definition 3.3 is also justified by the fact that 

WF^ has a number of properties which one expects an analytic wave front set to 

have. Befor e we mention some of them we introduce a notation. Let then s > 1 be 

given and denote by T : Rn+* \ {O} -* Rn+* th e map 

T(Ç,T) = (E/(|E|O) + |T|)1/a,T/(|£|a+|T|)) fo r Ç £ Rn,T £ R . 

Thus the image of T is {(£,T) £ RR+1;|£|°+|T| = l} and T_1(Ç,T) = 

= {(t1/aÇ,tT); t > 0 if |C|Q + |T| = 1} . Further V C RR+1 \ {0} i s a quasi-

cone precisely when T *T T = T . 

Proposition 3.5. Let U be a closed set in E = {(£,T) £ Rn+1;|£|°+|T| =1} and 

consider f  £ Es A (Rnh+1)aaoa• Suppose that (0,C°,T° ) £ WF^ f for all (Ç°,T°) £ U . 

Then we can find e > 0 , D > 0 , n > 0 an d for every b >_ 0 some c > 0 such that 

|v(f) I <^ c for any v £ ^?^RJJ+1) ' which satisfies 

(5) |v(Ç,T ) I < exp(A|lmç|a+n|lmT| + b ln(l + | (Ç,T) |)) if T(ReÇ,ReT) £ - U , 

respectively, 

(6) |V(Ç,T ) I < exp(e(|(;|a+|T|)+A|lmC|a+n|lmT| + b In( 1 +1 (Ç,T) | ) ) 

if T(ReÇ,ReT) £ - U . 

In particular it follows from this result that f  £ t̂ /1̂ S (Cn+1 ) for some B 
B f| 

and n if (0,£°,T° ) £ WF^ f for all (£°,T° ) £ Rn+1 \ {o} . The converse is of 

course also true (cf. Proposition 2.7). Proposition 3.5 corresponds to H. 

Epstein's version of the edge-of-the-wedge theorem. I t will be proved in §6. 
CPs n+1 s s Proposition 3.6. Consider f0,f 0 £ & ^ (K. ) and assume that WF f + WF f„ 2 z A  n A 1 A 2 

{def.{(t̂1 + +  T2);(t^i/Ti) £ WF^ f.} C {(t,Ç,T) C Rn+2; |t| < h, (Ç,T) t 0} 

Then we have 

WF̂ (f1 • f2) C WF^ fx UWF̂  f2 u (WF̂ (fx) + WF*(f2)) 
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(by definition we put WF^ f + WF^ f = 0 if WFS f or WFS f is void). 
A 1 Pi Z. Pi 1 A Z. 

The hypothesis from Proposition 3.6 is in particular satisfied when WF^ f̂  = 0 

and it follows that WFS(f,-f_) C WF*f f_ then. Proposition 3.6 will be proved in A 1 2  A 2 e 

§6. 

4. The following two results are of particular interest in this paper. 

Proposition 3.7. Consider f £ ^^A(Rh+1) SUCh that f̂ x,t) E 0 for t < 0 and 

assume that (0,0,a) é WF*f f for a = 1 and a = -1 . Then there is n > 0 such 
A 

that f (x,t) E 0 for t <. n • 

Proposition 3.7 will be proved in §6. 

Proposition 3.8. Let s > 1 be a rational number and consider a linear partial 

differential operator of form 

(7) p(x,t,D ,D.) = I— a _.(t) x%ii dI 
x fc  |a |/s+|3|/a+j<m ^ X * 

where the aâ j are holomorphic functions defined for |t| < r\ , T\ > 0 and 

aQ Q M E 1 . Let also (t°,Ç0,T°) € Rx(Rn+1 \ {0}) be such that 

(8) Yl anR-(t0 ) (T°) j * 0 
|3|/a+j=m °^ 

Ops n+1 and consider f € © , (IC ) such that p(x,t,D ,D )f = 0 . A h x t 

Then it follows that (t°,Ç0,T°) £ WF^ f . 

Definition 3.9. If (t°^°,T°) € Rx(Rn+1 \ {0}) satisfies (8) then we shall say 

that it is noncharacteristic for p . 

Thus Proposition 3.8 replaces the regularity theorem of L. Hormander-M. Sato for 

operators of type (7). It will be proved in a forthcoming paper. 

It is now clear that Theorem 1.1 is a consequence of the Propositions 3.7 and 

3.8. Similarly Theorem 1.2 is a consequence of the Propositions 3.5 and 3.8. 

5. We conclude this paragraph with one more definition: 
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Definition 3.10. Consider t° £ R an d (£°,т°) £ RN+ \ {0} . Then we say that 
U С R^N+^ i s a microlocal neighborhood of (t°,£ ° т°) if it contains a set of 

form {(x,t,£,T ) € R2n+2;x€ RN, |t-t°| < e,|T(Ç,T)-T(Ç°,T°)| < e} fo r some 

£ > 0 . Note that microlocal neighborhoods are global in x  . This is justified 

CPs n+1 

by the fact that the conditions which define elements from ^д^1^ ) are global 
in x  . 

§4. PREPARATIONS FOR THE STUDY OF WF S  A 

1. Let s > 1 be given. Th e notation a  ha s been introduced in (1), §2, and 
the notations T  an d E  i n §3. 

Lemma 4.1. For every c ' > 0 we can find c  > 0 such that 

| Ç - ? T +  |T-T°| < c ( U T + |TQ) implies 

(1) |T(Ç,T ) - T(£°,T°)I < c' . 

This is obvious if we observe that it suffices to prove (1) under the 

additional assumption that (£,T ) £ E . 

Lemma 4.2. Consider U, V close d sets in E  suc h that 0 ̂  T 1(U) + T 1(V) . 

Then TfT^dJ ) + T-1(V)) i s a closed set in E  . 

Proof. Th e set A  = T 1(U) + T 1(V) i s quasiconic, so it suffices to show that 

A n E i s closed. Thi s follows if we show that there is M such that 

\% € T-1(U), AM CT_1(V), A' + A" £ E implie s |A' | <.M,|X" | £M . Assume then by 

contradiction that there is no such M . It follows that we can find sequences 

(Ç'^T1^), T"̂ ) i n T'^U ) , respectively in T_ 1 (V) suc h that 

(£• j,x' j) + (C,,J,T,,J) € E an d such that (Ç,:I,T,J) •> °° . Denote |£,J| A + |T,J| b y 

t an d consider A j = ( (Ç• J)/t1/0, (T' J+T" j)/t.) , A,j = T(Ç ' J ,T ' J) , 
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X"j = (S ' - V t^T ^ / t . ) . 

Then X D -* 0 and |X,:i | + |X"j| is bounded. If X'° , X"° are limit points for 

X'-1, X"-1 , we get 0 = X'° + X"° , which contradicts our assumption. 

Notation 4.3. Let s > 1 be given and consider U C RR+1 \ {0} . We denote by 

(U) the set of functions r : RR+1 •> R+ with the following properties: 

a) there are constants ci'c2'ci > 0 such that r(£,T) .>c^(|£|a + |T|) ~ C2 if. 
T(C,T) £ T(U ) , 

b) there is a constant c such that 

|r(£,T)-r(?\T') | < c(l + I?-?1 |Q + |T-T'|),v£,£« £ Rn,VT,T1 C R • 

In particular r(£,T) <_ c ( | £ \ °+ | T |) + c3 . 

If U consists of just one point (g°#T°) , then we will also use the notation 

^?°,T°) instead of ^g({(C°,T°)}) . 

Note that the two inequalities (1) and (2) from §3 can now be replaced by 

|v(£,T) | <_ exp(r(-ReC,-ReT)+A|lm̂ |a+t°ImT+n|lm̂ |) for some refĵ ?(?0,T°) . 

Lemma 4.4. Consider U C E and r£ R (u) Then there is £ > 0 such that 

r C ^ ( U ' ) for U' = {(£,T) C E;|5 - V\ + |T-T 1 | < £> for some (?\T') e u'} . 

This is immediate. 

Lemma 4.5. Let U C E and for every (C,T) £ U some r^ T)£ «_>̂ ?(£,T) be 

given. Then we can find a finite set of points ,T1),i=l,...,k and constants 

ĉ /c2 such that 

max r . .  (?#T ) > c. (U|Q+|T|) - c. if T (^,i) £ U . 
i (SV1) 1 2 

This is an obvious consequence of Lemma 4.4. 

3. The following lemma is helpful when we study the wave front set of a 

product of two functions. 

182 



UNIQUENESS FOR THE CHARACTERISTIC CAUCHY PROBLEM 

Lemma 4.6. Consider V 2 C E closed sets such that 0 i T~ (V^ + T~ (V2) and 

choose (?°,T° ) in E  , (£°,T° ) £ v u  V2 U(T"1(V1) + T"1(V2)) . Also choose 

r±£ J%(CV±) ,i=l,2 . Then there is r€^B(^°,T°) such that 

r(Ç\T') < min (гЛ^'Чд'-т) +rJC,T)) . 
<S,T> £ Rn+1 1 2 

Proof. It suffices to show that for some £>0,c^>0,c2 we have 

(2) rx T'-T ) + r2(C,T) > c^l?1 |Q + |T'|)-C2 if |T(£\T.')-T(£°,T0)| < e . 

If we choose £ small enough, then we may assume that (£*,x') £ CV̂  n CV2 . In 

-1 -1 

view of Lemma 4.2 we may further assume that (£',x') f T (V̂ ) + T (V^) then. 

For such (£',x') and for some fixed (£,T) we can now have one of the following 

three situations: 

a) (?,T > e v2 

b) (£,T ) £ V2, T(£'-£,x'-x) € 

c) (£,T ) £ V2, T(£'-£,x'-x) £ v . 

We shall study the three cases one after the other. 

Case a). If we choose £ small then it follows from (£,x) £ and Lemma 4.1 

that |£»-£|A+|T»-T| J> c(|£'|a+|x'|) for some constant c > 0 which does not 

depend on ^ T ^ ' I T * . Further we must have T ' , x '-x) ^ V then such that 

r1 (£ '-C,T'-T) _> c3 (| ̂ ' |a+1x 1 -T |) - c4 in view of ^ £ ̂ ^(CV^ . This gives 

(2) . 

Case b). |T(£',X ') - T(£°,x°)| < £ and T ' , x 1-x) £" implies 

( | 5|A+|T|) > C5 ( | 5 ' - 5 | ° + | T ' - T | ) . Thus |5 '|A+|T'| < 2 ° | 5 ' - 5 r + 2 a | ? r + 

|T'-T| + |T| < C6(|^|Q+|T|) . We then obtain (2) from r ^ ^ ^ ( C V) . 

Case c). Again we use |5 ' |a+lT,| ^ 2<J U ' ~? | Q+2a 15 | a+1 x'-T | +1T | , and then we 

apply r,£ R(CVi) 

4. Lemma 4.7. Let r : Rn+1 -> R be a function such that 
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(3) |r(£,x) - r(£\x')| < 1+1E + E ]||||a+|T-T'| for all £  E E E Rn , T/T' £ R 

n+l 
Then there are constants c, y an d a plurisubharmonic function p  : C R  suc h 

that 

r(Re£, Rex) <. p (£,x) +y( |  Im£ |Q+ | Imx |) 

respectively 

p(£,x) <.2r(ReC, Rex)+y( |lmc|ö+|lmx|) + c 

Moreover, y  an d c  d o not depend on r  here . 

Proof (for a related result, cf. 0. Liess ClU) . We start by choosing a continuous 

function lj;(T,t) : C x R+ R  , which is plurisubharmonic in T  fo r each fixed t 

and which satisfies the following inequalities: 

a) i|/(T,t ) <. C + B|lmx| , 

b) i|;(T,t ) <_ -|T| + B|lmT| , for (l/4)t <_ |T| <. t,T £ C , 

c) i//(T,t ) <. -t + B|lmx| , for |x | >_ t, x £ C , 

d) i|;(ix,t ) >. -B|X| ,  i f x  £ R , 

for suitable constants C, B (cf . 0. Liess CI]). 

Further we choose Ф€*Ус?(сп), ф(0)=1 such that 

<MC)| £ c1exp(-|c|a+c2|lmc|Q) , respectively |<|>(iC)| > c^xp (-c^ \ £ \ °) if ? £ R3 n 

for some positive constants ĉ ,i=l,2,3, 4 (cf . Lemma 2.3). 

For every (£°,x° ) £ Rn+* w e now define a plurisubharmonic function 

: CN+1 -> R b y p  (£,x ) = r(£°,x°)+4 lnU(C-E°)| + 4* (x-X° ,r (£° ,x°) ). .wO o . ,~ o o. (£ ,x ) ( £ ,T ) 

We claim that the following inequality is then valid: 

(4) р (С,т) <_ 2r(ReÇ,ReT) + 4c2|lmç| +  4B|lmr| + cg , 

p 

(Ç /Т ) 

where c _ doe s not depend on (£ ,x ) . 
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Proof of (4). Three cases are to be considered: 

I. Whe n | c - £ ° | a +  |T-T°| £r(^°,T°)/2 , then it follows from (3) that 

|r(ReC,ReT)-r(£°,T°)| < l+r(£°,T°)/2 , such that r(£°,T° ) < 2r(Re£,Rex) + 2 , 

whence also (4). 

II. Whe n |£-£°|a+|T-T° | > r(E°,T°)/2 , but |T-T° | < r(£°,T°)/4 , then 

> r(£°,T°)/4 suc h that r (C°,T°)+4 In | <J) | <_ 4c2 | Im<; |0 + 4 In  ̂, 

which again gives (4) . 

III. Finally, when |T-T° | > r(£°,T°)/4 , then we can apply b) or c) and conclude 

that r(£°,T° ) + 4̂ (T-T°,r(£°,T°)) <. 4 B|lmT| + 4C suc h that (4) is valid 

also in this case. 

We have now proved (4) and return to the proof of Lemma 4.7. I n fact let us 

define p'(£,T) = su p p (£,T ) . Then p'(£,T ) <_ 2r(Re£,Rex) + 
(£°,T°)€Rn+1 

y(|lm̂ |a + |ImT|) + c,_ fo r y  = max(4c2,4B) . I n particular p' i s finite at 

every point. I t is easy to see that p' i s plurisubharmonic and from d) and the 

corresponding property for 4 > it follows that r(Re£,Ref ) <_ p'(£,T) + 

y(|Im£|°+|Imx|) + Cg . We now set p = p1+c^ . 

5. With the aid of Lemma 4.7 one can now prove: 

Proposition 4.8. Conside r r(£,T ) : Rn+1 -> R+ a  function which satisfies 

|r(£,T) - r(^',T')| £ cd+l^-E,' | a+1 x-T' |) , and let k  >. 0 b e given. The n there 

are constants c',k ' an d b " suc h that the following is true: 

if u  t c? ( c )  satisfie s 

|3"0/8C)aO/3c")a' U(£,T) | < exp(r(ReC,ReT)/2+A|lmc|a+h|lmT|+b ln(l + | (£,T) |)) 

for |a | + |a' | < _ k' 

(~̂~> °° n+1 
then there is v  £ & ( C )  suc h that 9v = 3u an d such that 

| ç - ç T 

(Ç ,т ) 
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I 0/3C)^0/3C)^' V(Ç,T)| < c' exp(r(ReÇ,ReT) + (A+cy) | ImÇ | ° + (h+cy)|lmT| + 

+ b ln(l + | (ÇfT)|)) fo r |3 | + |6'|<k . 

y is here the constant from Lemma 4.7 and 9 stands for the Cauchy-Riemann 

operator in Ç,T . 

In view of Lemma 4.7, Proposition 4.8 is a consequence of classical results 

from L. Hormander [ID. Fo r details of a proof in a similar situation, cf. 0. Liess 

[1], and also 0. Liess [23. 

§5. PREPARATIONS FOR THE STUDY OF WF^. SPLITTING OF ENTIRE FUNCTIONS  A 

1. Proposition 5.1. Conside r <\> i : CR+1 R,i= l ,2,3,4, an d :  Cn+1 + R 

continuous functions with the following properties: 

a) ((^(CT ) < <|>3(C,T), <()2(C,T) < (|>4(CfT) , 

b) \p is plurisubharmonic, 

c) min((J) 1 (C,T) , <J>2(£/T)) £ip(C,T) <_ min((J)3(̂ ,T) , <J>4(£,T) ) , 

d) ther e is C suc h that |  ((K (£ #T) - c|>i (£ ' ,T ') | <_ C (1 + 11,-1,' \ °+ | T-T 1 | ) , 

i=l,2,3,4 . 

Then there are constants c  an d y suc h that every h  £ «̂ /£?(C"' *) wit h 

|h(£,T)| <_ exp max ((^(£,1) , (J)2(£,T)) ca n be decomposed in the form h  = ĥ  + h2 , 

) wit h h . satisfyin g 

IhjteiT) | < c exp(<|>3(C,T) + y In(1 + | (£,T) |)) , 

|h2(£,T)| < c exp($4(C,T) + y ln(l + | (C,T)|)) . 

A similar result has been proved in 0. Liess [2D. I n fact (by means of a 

partition of unity) it is quite easy to decompose h  i n the form h = + 

G^°° n+ l i  i 
where the FI are in C? ( C )  and satisfy | f (£,T) | <_ exp ^^(^,1) , 

respectively |  aTf± (̂ ,T) | <_ c' exp (min ((J>1 (£ ,T) ,$2 (£ ,T) ) + y ' In (1 + | (£ ,T) |)) fo r some 

h .c^ (cn+1) 
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c' and y' . Using b), c), d) and results from L. Hôrmander C1• one can then 

show that there is g£ (C ) such that 8f̂  = 3g and such that 

|g(C,T)| <. c" exp(min(4>3(C,T),$4(C,T)) + y In (1+1 (Çfx) | ) ) for some c" and y . 

We then define ĥ  by ĥ  = f̂  - g and h^ by H2 = F2 + g . For more details, 

cf. O. Liess C23. 

2. Proposition 5.2. Consider a finite set of functions 

r. : Rn+1 •> R ,i=l,...,j , such that 1 + 

(1) |r.(Ç,T) - r.(Ç\T,)| < C(l+|C-C,|a+|T-T,|),i=l,...,j 

for some C . Let D1 >D>0 , r | > r | , > 0 and b >. 0 be given. Then there are 

c > 0,d,0 < d < l,y' _> 0 such that every h£«_y^(cn+1) which satisfies 

(2) |h(C,T) I £ exp(d max r. (Re£,ReT) +A' |lm5|a+TT | ImT | + b In ( 1+1 (£,T) | ) ) 

i 

can be decomposed in the form 

h = ZI h. 

1 
for some h. such that 1 

|h±(C,T)| <_ c exp(ri(ReC,ReT)+A|lmc|Q + n | ImT | + (b+y* ) ln(l+ | (£fT) | ) ) . 

Here d depends only on j,C,D,D',n,n' (and not explicitly on the ) and y' , 

which is related to y from Proposition 5.1, depends only on j (and n ). 

QPs n+1 
Moreover, if h is of form h = v for some v £ (3 D, (R , ) ' , then we can 

Qpc> n+1 choose the h. to be of form h. = v. for some v. £ fn (R )' . 1 1 1 1  ^ D 

(D and D" are here related to A,A' via relation (1) from §2). 

Proof. Arguing by induction we may assume that j = 2 . The first part of the 

proposition is then an immediate consequence of Proposition 5.1. To see this, we 

introduce <|> = d r± (Re£,ReT) +A' | Im£\° + n'|ImTl + b In(1+| (£,T) | ) for i = 1,2 
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and <J>i = 2  (ReC,ReT)+A|lm̂  |a + n|lmT| + b In(1+|(£,T) |) + fo r some i f 

i = 3,4 . The only thing which remains then to be shown is that for suitably 
choosen d  and ĉ  we can find a plurisubharmonic function \p such that 

min ((j) ,(f)2) <_ < _ min ((j) ,<J> ) . The existence of such a function \\) is a 
consequence of Lemma 4.7. In fact in view of that lemma and for d sufficientl y 
small we can find a plurisubharmonic function <j ) : cn+* ->• R suc h that 

d min(r1 (ReC,ReT) ,r2 (ReC,ReT) ) <_(J)(£,T) <. min(r 1 (Re£,Rei) ,r2 (Re£,Rex) ) + (A-A') 
|Im̂ |° + (n-n')|lmT| + c2 . Since |lm£|a , |ImT | and b In(1+| (£,T) |) are 
plurisubharmonic it then remains to define \\) b y 

\p = (J) + A' | ImC |° + n' | ImT | + b ln(l+| (C,T) |) . 

Let us now turn our attention to the second statement from the proposition. 

Gf?s n+1 
Thus assume h = v for some v £ G> Di (R̂t ) ' . We want to show that the second 

assertion is a consequence of the first applied for some modified . 

The first thing to observe here is that we can find >  0,b̂  >_ 0,A^ < A' 
and n < n1 (whic h all may depend on v ) such that 

(3) |h(C,T ) | < Cx exp(A1|lmc|a + njlmrl + b^nd+l (£,T) |)) . 

In particular it follows that 

(4) |h(£,T) I < exp(A1|lm^|a + njlmrl + (b^l) In (1 +1 (£ ,x) |) ) for 

I (CT) I > c1 . 

Let us also fix ̂ 2,r|2 with ^ ' < A2 < A,n,' < n2 < H and let d be tne one 

given by the first part of the proposition for 2C,D',D2 (associate d with A2), 

n\n2 . 

We now choose r ! : Rn+* -> R suc h that l + 

a) I r !_(£,!) - r' (E',T') I < 2C(l+|S-£" |° + |T-T' |) , 

b) r|(̂ ;T ) = r^^T) if I (£/T) I <_ C2 fo r some >_ which will be chosen 
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later on, 

O r.(^i) >r!(^,T) > min(ri(̂ ,T) ,2((b1 + l)/d)ln(l + | (?,T) |)) , if | (£,T) | > C2 , 

d) r!(̂ ,i) = min(ri(̂ ,T) ̂ ((b^D/dJlnd+l (?,T) |)) if | (£,T) | > C3 for some 

C3 > C2 * 

Let us then assume that h satisfies (2) for the d introduced just before and 

assume that it satisfies (3). We claim that h then also satisfies 

(5) |h(£,T)| <. exp(d max r!(Re£,ReT)+A'|lmC|Q + n*|ImTl + b ln(l+|(C#T)|)) 
i 

if is chosen great enough. 

In fact when |Re(£,T)| £ then (5) follows from b) and (2) and when 

|Re(C,T)| _> C2 but |lm(C,T)| £ |Re(£,T)| , then (5) follows from c) and (4). It 

therefore remains to consider the case |lm(£,T)| >_ |Re(£,x)| _> when (5) is a 

consequence of (3) if we choose great enough in order to have 

(A'-Aj) | ImC |Q + (n'-Tij) |lmr| >. (b^l) In (1 +1 (£,x) |) for the (£,T) under 

consideration. 

We have now proved that we may assume that h satisfies (5). It follows from 

the first part of the proposition that we can find tu£ t^7$?(cn+^) such that 

h = I hi and such that | , T ) | £ c' exp (r̂  (Re£,ReT) + "n̂  | Ixm: | + 

(b+y') ln(l + | (£,T) |)) . In view of d) from the definition of r̂  it is then clear 

QPs n+l that h. is of form h. = v. for some v. C G (R ) 1 • l 1 1 l D n 

3. Remark 5.3. It is possible to apply Proposition 5.2 also if instead of (2) 

we only have the weaker estimate 

|h(£,T) | £ exp(d I r. (Re^Rex) + A• | Im£ |° + n' | Imx | + b ln(l + | (£,T)|)) . 

In fact then |h(£,T)| £ exp((jd) max r.(ReÇ,ReT) + ...) and we must only change 
i 

the notation for d . 

4. Proposition 5.4. Consider r : Rn+1 R+ such that 
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|r (£,T) - r(£' ,T') I < 1+ ) E - E ) 0|a+|T-T' | and let D1 > D > 0,n > n• > 0,b >. 0 and 

y >_ 0 b e given. I f y  i s sufficiently great then we can find d  > 0 an d c  > 0 

such that every h £ A( Cn+1) which satisfies 

(6) |h(£/T ) | <_ exp(d r (Re£ ,Rex) +A' | Im̂  |Q + n'|ImTI + b In(1+|(£,x)|)) 

can be written in the form h  = ĥ  + h ,̂ h ^ *^?/&(cn+^) i with h ^ 2 satisfyin g 

Ihx (C,T) | £ c exp(r(Re£,Rex)+A|lm£|a + n | Imx | + y In(1+| (£,x) |)) 

respectively 

|h2(̂ ,x) | £ c exp(A|lm̂ |a + n|lniT| + (b+y) In (1+| (<;,x) | ) ) . 

Moreover, y  doe s not depend on r , A' , A,n ' ,r| ,b here. 
Ops n +1 

Further if h  = v fo r some v  £ fn ,(R . )1 the n we can choose the h . suc h 
D ry i 

Ops n+1 
that h . = v. fo r some v . 6 fn ( R ) ' 1 1 l  D 

Proof. (cf . 0. Liess C2] for a similar result). Le t us choose A ' < A" < A , 

n.' < ri" < T) . The n we can find c ^ suc h that 

|h(£,x)| £ cx exp(d r (Re£,Rex)+b In(1+|Re,x)|)+A"|lm£|a + n"|Imx|) 

if h  satisfie s (6). W e would like to reduce ourselves to remark 5.3 by 

essentially taking j  = 2,r̂  = r,r2 = (1/d) b In(1+| (£,x) |) , where d  > 0 i s the 

constant from the conclusion of Proposition 5.2 (whe n combined with Remark 5.3) fo r 

C = 1,A",Ti",A,ri . Remark 5.3 i s however not directly applicable since for small 

^,X,^',x' w e do not necessarily have |r2(£,x)-r2(£',x') | £l +  |5-5'|a+ lT-T'l • 

We therefore introduce an auxiliary function r 2 an d a constant c ' suc h that 

r̂ (£,x) = r2(£,x) i f |  (€,T) | > C an d |r « (̂ ,x) - r̂ (̂ ,x) | < 1 + ) E E ) £ \ ° + |x-x' | 

everywhere. Fo r some c 2 w e will then have 

|h(£,x)| £ c2 exp(d(r2(Rê ,Rex) + r^(Re£,Rex))+A"|Im£|° + n"|lmx| . 
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The proposition is now a consequence of Remark 5.3. 

5. Proposition 5.5. Let r'£ ^^(C°,T°) ,D' > 0,n' > 0,d' > 0 be given. 
Then we can find c > 0,r£ R (E, I ), D > O 0,r) > 0,b >. 0 and a sequence of points 
k k n+1 

(£ ,T ) £ R ,=1,2,3,... with the following property: 
if v £ © D(R ) ' satisfies 
(7) |v(£,x)| < exp(r(-ReC,-ReT)+A|lm£|a + n|lmx|) , 

then there is a sequence of entire analytic functions h^ : cn+* -* C , k = 1,2,..., 
such that only a finite number of them are % 0 (how many functions are £ 0 may 
depend on v) and such that 

(8) v(£,T) = Z h, (c,T) , 
k n 

(9) |hk(C,T)| < (c/(1+k2))exp(r1(-Re£,-Rex)+A'|Im£|^ + n'|Imx| + 
+ b ln(l+| (£,x) |)) for all £,T , 

(10) |hK(^,T)| < (c/(l+k2))exp(A'|lm^|a + n'|IlDTl + 

+ b ln(l+|<c,T>|)> if U-Ck|° + K-TK| > d'(|̂ k|a + |Tk|) . 

Proposition 5.5 is closely related to Proposition 5.2. On the other hand the main 
difference is here that the constants must not depend on the number of terms which 
effectively appear in (8). Induction in this number is not allowed therefore and 
we must obtain all terms from the decomposition at the same time. We prepare the 
proof by a lemma in which we show that it suffices to obtain (10) on a smaller set 
(smaller appart from a renotation). 

Lemma 5.6. There is c* such that every h^ which satisfies (9) and 

(ID |hK(£,T)| < (c/(l+k2))exp((A72) |lm£|a + (rT/2)|lmx| + 

+ b ln(l+| (£,T)|)) for |Re£-£k|a + |Rex-TK| >. (d ' /2) ( |?k| + |xk|) , 
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also satisfies (10) with c  replace d by cc ' , if r'E R(E, T°),T ) is small 

enough. 

Proof of Lemma 5.6. When |ReÇ-Çk|Q + |ReT-Tk| _> (d '/2) ( | £k | ° + |Tk|) , then (10) 

follows from (11). In the remaining case we have for 

|ç-Çk|° + |x-Tk| > d'(|Çkr + |Tk|) tha t (|Reç|0+ | ReT | ) < ̂  ( | ImÇ |0 + |lmx|) 

for some c ^ . If we choose r ' smal l enough in order to have 

r ' (-ReÇ,-Rex) <. (A'/2)|lmç|a + (rT/2) | ImT |+c fo r such Ç,T then it follows from 

(9) that (10) is satisfied with c  replace d by c  expĉ  . 

We now return to the proof of Proposition 5.5. The situation is here similar 

to the one in Lemma 3.6 from O. Liess Lll or (even more so) to the one from 

Proposition 5.18, chapt. VII in J.E. Bjôrk [1]. 

Proof of Proposition 5.5. We choose a C8 partition of unity g  o n 

Rn+''',gk >_ 0,k=l,2,..., a  sequence of functions r ^ : Rn+* -> R+,k=l, 2, . . ., and a 

k k n +1 

sequence of points , T ) £ R wit h the following properties: 

a) ther e are c^ > 0 fc^ >. 0 suc h that (£,x ) £ supp ĝ  implie s 

|(C,T)| > Clk1/0 - c2 , 

b) sup p g n supp g. = 0 i f |k-j| >_ 2 
k D 

c) ther e are an d V suc h that |  grad̂  T9k(£'TH £ c3(1 +1 ,T) I)V f° r all k, 
d) fo r k >_ 2 we can decompose grad r g  int o the form grad r g  =  g* + g" 

c,, T k c , jT k k k 

for some 9k'9 k suc h that 

dx) sup p ĝ . n supp g£ = 0 
d2} 9k = ~gk-l if k - 2,gl = 9rad£  ̂(b y definition), 

e) ther e is a sequence of positive numbers t ^ 0 0 such that 

(e,Tk) = (tj/ae0. v ° ) , 

f) rk(^,T ) < r«(^,x) , V(£,T ) £ Rn+1 , 

g) rk(£,T ) = 0 i f U-CkT + |x-Tk| > (d'/2)(Uk|° + |Tk|) , 

h) |rK(£,T ) - rK(^,T')| < 1+|C-C'|Q + | T-T f | , for all £,£,,T,T ' , 
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i) ma x r(£,T) DEF  ? ( ^ T ) £ J % ( S ° , T °) , 
k K 

j) (£,T ) € supp gk n supp r_. r.(^,T ) < r ^ , ! ), Vk,j 

k) (^T ) £ suPP 9̂  n SUPP rj = > rj(£'T) < min(rK(^,T),rK+1(^T)) , Vk,j . 

k k 

Such rk'9 k an d ' T ) ar e easy to construct. (Not e that e) will not be used 

later on -it only serves to make the construction more transparent- and that k) is 

in fact a consequence of b), d) and j)). I n fact, we may, e.g., consider the sets 

C Rn+1 define d by 
= { (?,T) € Rn+S I C T + K I <  2},UK = { (C,T) C Rn+1;2k-3 < |£|°+|T | < 2k} , 

and choose the partition g ^ to be subordinate to this covering of Rn+* . 

Further we choose some "small" r° E R ( E, T°) and define r ^ on Uk u uk+1 to 

be the restriction of r° to this set. We then extend r ^ to Rn+1 by letting 

it die out as rapidly as this is allowed by h). Thi s immediately gives the desired 

properties, if r° has been choosen suitably (in particular r ° must vanish in a 

neighborhood of the origin in order to avoid the difficulties which might come from 

the fact that for small d' and small k th e sets 

|£-£k|a + |x-TK| <_ (d'/2)(|£k|a + |Tk|) ca n be small)). A similar construction is 

implicit in J.E. Bjork [1], loc. cit. We omit further details. 

k k 
Once we have constructed r-^'<3-^ an d ^ ,T ) wit h the properties a) , . .. ,k) , 

the proof of Proposition 5.5 is straightforward. Le t us in fact assume that 

QPs, n+1 ^  ^ v £ C>D(R )  1 satisfie s (7) for r = d r , where r  is from i) and d > 0 

shall be specified later on. I n view of Proposition 5.4 we may assume that v is 

of order y  suc h that we can find cA for which 
4 

|v(£,T) | < exp(A|lm£|a + n | Imi | + (y+1) In (1+1 (£ ,T) |)) fo r |  (£,x) | >_ . 

It follows in particular that for some k° 

(12) |V(£,T) | <exp(dmax r,(-Re £ ,-Rex) +A | Im£ |0 + T) | Imx | + (y+1)In(1+|(£,x)|)) 
k<k° 
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As a first attempt to find hk  w e introduce functions f ^ b y 

fk(C,T) = gk(ReÇ,ReT) h(Ç,T) . 

In view of a) and j) it follows that 

|fk(Ç,T)| ̂ c5(l+k3)_1 exp(d rk(-ReÇ,-ReT)+A|lmç|a + n|Imx| + 

+ (3a+y+l) ln(l+|(Ç,t)|)) . 

Further 9f = (1/2) grad g (ReÇ,ReT)h = ( 1/2) (g/ (ReÇ,Reî)h + g"(ReÇ,Rex)h) 

In view of d ) it is now clear that (1/2) (g' (ReÇ,Rex)h) = 8 ( ( g.)h ) (one might 
1 k j< k 3 

alternatively observe that in view of d^) , 9ĝ  (ReÇ,ReT) h = 3g£ (ReÇ,Rei) h = 0 , 

where we have now interpreted ĝ h an d ĝ h a s (0,1)-forms, and use a variant of 

Proposition 4.8 later on). We now use a), j) and k) and conclude that 

|ĝ (ReÇ,ReT)h(Ç,T) | ^c^l+k3)"1 exp(d min (r̂  (-Re£,-ReT) , 

if k  <_ k° , respectively 

rk+1(-ReÇ,-ReT))+A|lmç|a + n|lmT| + (3a+u+V+l) In(1+|(Ç,t) | )) 

|g¿(ReC,ReT)h(C,T) | ̂ c6(l+k3) 1 exp (Л | ImÇ |0 + r) | Imx | + (3a+y+V+l) ln ( 1+ | ( ç, т) | ) ) 

for к > k° . 

Now fix A,l,r)" suc h that A < A" < A1 ,r\ < r\" < n' - If d i s sufficiently small 

V 
~w G<?00 n+1 —~ then we can find f  £ ( C )  suc h that 3f. = (1/2)g'(Rê ,Rex)h an d such 

that 

i~ i 3-1 
I f k ( Ç, T ) j £c?(l+k ) exp(min(rk(-ReC,-ReT) ,rk+1 (-Re(;7-ReT) ) + 

+ A"IImÇ|Q + n"|lmT| + b"ln(l+|(ç,t)|)) if k £ k° 

respectively 

|?k(Ç,T)| £c7(l+k3)"1 exp(A"|lmC|a + nn|lmT| + b"ln(1+1 (Ç ,T) | )) 
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for k > k° and suitable c7,b" . This follows from Proposition 4.8. The proof 

of Proposition 5.5 comes now, in view of Lemma 5.6, to an end if we set 

hi - fi " V h k - fk - fk + fk-i for 2 ̂ k and 

= ZI (f - ? + ? . ) , and observe that ^_ (1 +k3) 1 £ c (1+(k°+l)2) 1. 
hk°+l t ̂  o VJ"k "k ' "k-1 k>k k>k" 

§6. PROOF OF THE PROPOSITIONS 3.4, 3.5, 3.6 and 3.7-

1. Proof of Proposition 3.4 (first part), 

(ii) =>(i) and (ii) ̂> (iii) are trivial. If (iii) is valid then (ii) follows from 

Lemma 2.2. It remains to prove that (i)(ii). In doing so, we may of course 

assume that t° = 0 . 

Proposition 6.1. Suppose (0,Ç°,T°) ̂  WF^ f and let b _> 0 be given. Then we 

can find r £ R (E°, T) ,D > 0,r] > 0 , which do not depend on b and c such that 

(1) |v(f*g)| £c/|g(x,t)| dx dt for any v £ ̂ T̂ (RJJ+1)' which satisfies 

(2) IV(Ç,T)I <. exp(r(-ReÇ,-Rex)+A|ImÇ|Q + n|Imx| + b In(1 + | (Ç,x) | )) , and for 

any g€^?^7°°(Rn+1) such that supp g C {(x,t) £ Rn+1;|x| <- A, 111 < n} . 

In particular we obtain from (1) that |v(f) | <_ c for any v satisfying (2), 

by just inserting in (1) for g a sequence of functions g. such that 

J|g (x,t)| dx dt = 1 which approximates the 6-distribution in (Rn+*) and 

have support in |x| <_A,|t| <_ n . Thus Proposition 6.1 shows that (i) => (ii) . We 

have taken the idea to estimate v(f) via v(f*g) from W. Rudin [1]. For a 

similar argument, cf. 0. Liess [2]. 

Before we prove Proposition 6.1, we mention a simple lemma which follows 

essentially from the fact that the Laplace operator in n+1 variables is elliptic. 
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Lemma 6.2. Denote by V the Laplacean in n+1 variables and let 

A>0,n>0,b'_>y be given, y is here the constant which appears in the 

conclusion of Proposition 5.4. Then we can find > 0,il > 0, £ an integer, and 

maps 

S 2 : £f~({(x,t) € Rn+1;|xl < A,|t| < n}) + £T~({(x,t) € Rn+1;|x| < 2A,|t| < 2n) 

such that 

g = V Sxg + S2g 

and such that 

sup n+1 
(x,t)ÉR |a|+j<b'+l 

lDx Dtsi,2g(x,t)I - c1/|g(x't)ldx d t • 

It follows in particular that 

(3) (1 + 1 (C/T) |)B' \^iS1 2g) (C,x) I < c2/|g(x,t) | dx dt -

. exp(2A|lmç| + 2n|ImT|) , 

for some c 2 . 

2. Proof of Proposition 6.1. In view of the hypothesis on f we can find 

r'€ J%( £ ° , T °) , D1 > 0,n' > 0 and c3 such that |  v (f ) | < for any 

v £ ^^D'^TV"1^' WHIC H SATISFIES |V(Ç,T)| <_ exp(r' (-ReÇ,-Rex) + A'|lmç|a + 

+ ri' I ImT I ) . We now apply Lemma 6.2 with A = A"/4 and n = n ' /4 such that 

v(f*g) = (v*S„g)(f) + (V£v*S0g) (f) . Let also v6<o^(Rn + V satisf y (2) for 1 Z D  n 

these A,r| and consider r £ R(E, I).  If r (e.g . of form dr ' ) is small 

enough, then we can apply Proposition 5.4 in order to split V v in the form 

V v = vx + v2 

CPs n+1 for some v. £ / 5 > „(R . /0) ' which satisfy l D n /2 2 
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|vj(Ç,T) I <_ c4 exp(r'(-ReÇ,-ReT) + (A72)|lmç|Q + ( n ' / 2 ) |ImT| + y In(1+|(Ç,T)|)) , 

respectively 

|V2(Ç,T) I < c4 exp((A'/2) |lraç|a + (n,/2)|lmx| + b^nd + l (Ç,T) | ) 

and where A ' / 2 = (sDM)~°/s(1/a) . 

We now estimate v(f*g ) usin g v(f*g ) = (v*S1g) (f) + (v^S g) (f) + (v2*S2g)(f)a 

It is then clear that the proposition follows as soon as we can show that the 

inequalities (4), (5), (6) below are valid 

(4) I (v*Sig) (f) I < c5J|g(x,t) I dx dt , 

(5) I(Vl*S2g)(f)I < c6/|g(x,t)| dx dt , 

(6) I(v2*S2g)(f)| < c7/|g(x,t)| dx dt . 

a) Proof of (4) and (5). It follows from (3) that 

|.̂ ('v*S1g) (C,T) I £ c2exp(r' (-ReC,-ReT)+A'|lmç|a + n ' | ImTh * J|g(x,t) dx dt . 

Thus (4) follows with C5 = c2 * °3 ^ Y tne choice of t* ,L* ,T\% . A similar 

argument gives (5). 

b) Proof of (6). This follows from the fact that v^S^g/j | g (x,t) | dx dt i s a 

Op s n+1 

bounded set in © Â Rj1 )' i f A W ar e small, as we may assume. Thi s 

concludes the proof of Proposition 6.1 and thus also that of Proposition 3.4. 

3. Proof of Proposition 3.5. Using the assumption on f  , Proposition 3.4 and 

Lemma 4.5 we conclude that we can find a finite set of functions 

r„,...,r . :R -*R . , some r  f (U ) an d c > 0 , D > 0 , n > 0 whic h have the 

following properties: 

a) for every b ' >_ 0 we can find c ' suc h that |v(f ) | <_ c ' for any 
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v £ ©^(R^+1) ' for which |v(Ç,T) | < exp (rk (-ReÇ ,-ReT) +A | ImÇ |Q + 

+ n|lmT| + b'lnd+1 (Ç,T) |) ) for some k,l £ k £ j , 

b) |r..(Ç,T ) - r. (Ç',T') | < 1 + { E - E| |Q + |T-T ' I f i=l , j , 

c) max r. (Ç,T) _> r (Ç,T) 
i>l 1 

Let us also fix b >_ 0 , and apply Proposition 5.2. It follows that we can find 

d > 0,A' > 0,n' > 0,b* >_ 0 and c " suc h that every v  € ^Tp(R^+1)' whic h 

satisfies |V(Ç,T) | <_ exp(d r̂ (-ReÇ,-ReT) + A ' | ImÇ | ° + T) * | ImT | + b In(1+|(Ç,T)|)) 

V ops n +1 
can be decomposed in the form v  = v_̂  , for some v_ ^ £ © D« ̂ R̂i ^ ' wnicn 

satisfy 

I ^ C C T ) I <. c" exp(r (-ReC-ReT) + A | ImÇ | ° + X] | ImT | + b ' In ( 1+1 (Ç ,T) | ) ) . 

The proposition now follows since we obtain that |v(f ) | = l^v^f) | <_ j c'c" 

Ops n +1 

4. Proof of Proposition 3.6. Consider f ,f £ ^^ri ^  a S ̂ n t*ie 

proposition and consider quasi-cones Û 'U 2 ̂  rU+̂  ̂  {o} suc h that 

{0} x u. n WF^f. = 0 for i  = 1,2 and such that the sets T(U. ) ar e closed. W e 

may assume that CU ^ + C\J^ C RR+* \ {o} . To prove the proposition it then 

suffices to show that (0,^°,T°)  ̂̂ ^^1 *^2^ ^ 

(£°,T°) £ (CU1 U CU2 u (CU1 + CU2)) . In order to prove this last assertion, let 

us choose r.f ,i=l,2 , D  > 0,n > 0 and c  > 0 such that v(f. ) <_ c i f 

v £ ^^(R^+1) ' satisfies 

(7) |V(Ç,T) I < exp(r (-ReÇ,-ReT) + A|imÇ|0 + n|ImT|) . 

l 

Such v^,D,n exist in view of Proposition 3.5. 

Let us now apply Lemma 4.6 for r̂ 'r 2 anc ^ denote by r the element from 

t^(^°,T°) given by that lemma. We want to show that |v(f̂  • f^) | <_ c1 if 
- CPs , n+lx. . ̂. 

v £ C?D,(R^ ) satisfies 

i >1 
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(8) |v (C,T) | <. exp(r(-Re<;,-ReT) + (A/2°) | Im£ |a + n|lmT|) 

where D 1 is associated with (A/2a) via (1), §2. In order to show this we shall 

show that 

(9) It^TfjV) (ÇfT) I < c"exp(r (-ReÇ,-ReT) + A|lmç|a + r\\lm\ 

in this case. 

To prove (9) we choose a suitable representation measure u) for f^ . 

In fact from the definition of r ,̂A,n and from Hahn-Banach* s theorem it follows 

that we can find a Radon measure oj on cn+* an d c^ suc h that 

a) /expfr^-Re^-ReT'J+Allmç' |° + n|lmT" |)d (jj(^t') <cx , 

b) v(fx ) = /v(ç',t') do3(C,,T') fo r all v which satisfy (7) for i=l . 

In particular we get from (5), §2, that 

(10) J^fjV) (^t) = Jv(Ç\t') do)' (Ç'-CT'-T) 

for all such v  . It now remains to estimate the integral from (10) when v 

satisfies (8) with the aid of Lemma 4.6. 

Qf>s n+i 

5. Proof of Proposition 3.7. We consider f  £ A(R^ ) as in tne 

proposition. Furthe r we choose g £ L (Rn) such that |g(x ) I _< exp(-A' Ixl ) and 
|g(Ç) I <. c1 exp(-c2|ç| + c3|lmç| ) for some A' > A,^ > 0,c2 > 0,c3 and 

g t 0 . It is easy to see that H(x,t ) = Jf(x-x',t) g(x') dx' is in & S „ (R̂ +1 ') 

and that {0} x (Rn+1 \ {0}) n WF^ h = 0 . In particular H is therefore an 

analytic function for |t| small. Sinc e it vanishes for t <_ 0 we conclude that 

H E 0 . We can now apply Proposition 2.4. 
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