Astérisque

W. Abramczuk
 A remark on ellipticity of systems of linear partial differential equations with constant coefficients

Astérisque, tome 89-90 (1981), p. 117-128
http://www.numdam.org/item?id=AST_1981__89-90__117_0

© Société mathématique de France, 1981, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A REMARK ON ELLIPTICITY OF SYSTEMS OF LINEAR PARTIAL dIfferential EQuATIONS WITH CONSTANT COEFFICIENTS

by W. ABRAMCZUK (University of Stockholm)

INTRODUCTION.

It is well known (and easy to prove) that a linear partial differential operator with constant coefficients, $P(D)$, is elliptic and has order N if and only if it is a bounded operator with closed range when it acts between the spaces $H_{0}^{m}(\Omega)$ and $H_{o}^{m-N}(\Omega)$, where $H_{0}^{k}(\Omega)$ denotes the closure of $C_{o}^{\infty}(\Omega)$ in the norm $|\phi|_{k}=\sum_{|\alpha| \leqq k}\left|D^{\alpha} \phi\right|_{L^{2}}, \quad m$ is an integer such that $m-N \geqq 0$ and Ω is a bounded open subset of R^{n}.

Here this result is (partially) extended to systems of linear partial differential operators with constant coefficients and to more general spaces of distributions.

Theorem 1 below is a rather straightforward generalisation of the considerations in 10.6 of Hörmander [1]. The first part of Theorem 2 is an easy consequence of the coercivity results in Smith [1] and the second part was inspired by a counter example in Eskin and Shamir [1].

NOTATION AND DEFINITIONS

To measure the regularity of distributions we use the spaces $L_{s}^{p}=L_{S}^{p}\left(R^{n}\right)$,

W. ABRAMCZUK

$1<\mathrm{p}<\infty$, $\mathrm{s} \varepsilon \mathrm{R}$, of Bessel potentials of L^{p} functions (Calderon [1]): $u \in L_{s}^{p}$ if u is a temperate distribution and $\left(1+|\xi|^{2}\right)^{s / 2}$. \hat{u} is the Fourier transform of a L^{p} function denoted here by $J^{-s} u$. We let J^{-s} transport the L^{p} norm to $L_{s}^{p}: \quad|u|_{L} p=\left|J^{-s} u\right|_{L} p$. When u is a test function this can be made more explicit:

$$
|u|_{L_{s}} p=\left|(2 \pi)^{-n} \int\left(1+|\xi|^{2}\right)^{s / 2} \hat{u}(\xi) e^{i x \xi} d \xi\right|_{L} p
$$

When Ω is an open subset of R^{n} we let $L_{s, \bar{\Omega}}^{p}$ denote the distributions in L_{S}^{P} supported in $\bar{\Omega}$ and we put $L_{S}^{\mathrm{P}}(\Omega)=L_{S}^{\mathrm{p}} / L_{S, R}^{\mathrm{p}}{ }^{\mathrm{n}} \bar{S}^{\text {w which we think of as the }}$ restriction of L_{s}^{p} to Ω. For technical reasons we assume in what follows that Ω is also bounded and convex.

When $r=\left(r_{1}, \ldots, r_{K}\right) \in R^{K}$ we denote the product space $L_{r_{1}}^{p} \times \ldots x L_{r_{K}}^{p}$ by ${ }_{\mathrm{L}}^{\mathrm{p}}{ }_{r}^{\mathrm{p}}$, the space ${ }_{\mathrm{L}_{r_{1}}^{\mathrm{p}}, \bar{\Omega}}^{\mathrm{p}} \times \ldots \times \mathrm{L}_{\mathrm{r}_{\mathrm{K}}, \bar{\Omega}}^{\mathrm{p}}$ by ${ }_{\mathrm{L}_{r, \bar{\Omega}}^{\mathrm{p}}}$, etc.

By $P(D)$ we denote a matrix of linear differential operators with constant coefficients: $P(D)=\left(P_{j k}(D)\right), j=1, \ldots, J, k=1, \ldots, K$, and by $t_{P(D)}$ the transpose of $P(-D)$.

Definition 1: The operator $P(D)$ is determined if $P(D) u=0$ has no non-trivial solutions with compact support (i.e. $P(D): \mathscr{E}^{,}{ }^{K} \longrightarrow \mathscr{E}^{\prime}$ is injective).

Definition 2: Let r_{k} and $s_{j}, k=1, \ldots, k, j=1, \ldots, J$, be real numbers such that $r_{k}-s_{j}$ are non-negative integers. We call the operator $P(D)$ $\left(r_{k}-{ }_{j}\right)$-elliptic if
i) $\quad \operatorname{deg} P_{j k} \leqq r_{k}-S_{j}$
ii) $\operatorname{rank}\left(\stackrel{\circ}{\mathrm{P}}_{\mathrm{jk}}(\xi)\right)=\mathrm{K}$ if $0 \neq \xi \varepsilon \mathrm{R}^{\mathrm{n}}$;
here $\stackrel{\circ}{P}_{j k}$ denotes the part in $P_{j k}$ of degree $r_{k}-s_{j}$.
If i) and
ii)' $\operatorname{rank}\left(\stackrel{\circ}{\mathrm{P}}_{\mathrm{jk}}(\zeta)\right)=\mathrm{K}$ if $0 \neq \zeta \varepsilon \mathrm{c}^{\mathrm{n}}$
are satisfied we call $P(D) \quad\left(r_{k}-s\right)$-very strongly elliptic.
This definition of $\left(r_{k}-s_{j}\right)$-ellipticity was given in Douglis and Nirenberg
 sense were studied in Smith [1].

Remark: It is easy to see that $\left(r_{k}-s_{j}\right)$-ellipticity implies the usual one defined, for example, in terms of the characteristic variety of $P(D)$ and that $\left(r_{k}-S_{j}\right)-v$. s. ellipticity implies that the characteristic variety is discrete. The converse is obviously not true and it is an open problem whether an elliptic $P(D) \quad(a \quad P(D)$ with discrete characteristic variety) becomes $\left(r_{k}-s_{j}\right)$-elliptic $\left(\left(r_{k}-s_{j}\right)-v . s\right.$. elliptic) when multiplied by a non-singular $\mathrm{K} \times \mathrm{K}$ - matrix with differential operator entries.

Definition 3: Let $1 \leqq m<n$. Consider $R^{n}=R^{m}+R^{n-m}$ and write $x=\left(x^{\prime}, x^{\prime \prime}\right)$, $D=\left(D^{\prime}, D^{\prime \prime}\right)$ with the obvious meaning. We say that $P(D)$ is of tensor product type if $P(D)=\left(P^{1}\left(D^{\prime}\right), P^{2}\left(D^{\prime \prime}\right)\right)=\left(P_{1}\left(D^{\prime}\right), \ldots, P_{I}\left(D^{\prime}\right), P_{I+1}\left(D^{\prime \prime}\right), \ldots, P_{J}\left(D^{\prime \prime}\right)\right)$ is a row matrix with all polynomials $P_{j}, 1 \leqq j \leqq J$, homogeneous of degree $N>0$ with no non-trivial relations (i.e. every relation $\sum P_{j} Q_{j}=0, Q_{j}$ polynomials, is of the form $\left.P_{j} P_{k}-P_{k} P_{j}=0\right)$.

> THEOREMS

Let $r=\left(r_{k}\right)_{k}=1, \ldots, K^{\prime} s^{\prime}=\left(s_{j}\right)_{j}=1, \ldots, J$. Consider the condition

$$
\begin{equation*}
P(D): L_{r}^{\mathrm{p}}, \bar{\Omega} \rightarrow \mathrm{~L}_{\mathrm{S}, \bar{\Omega}}^{\mathrm{p}} \text { is bounded with closed range. } \tag{*}
\end{equation*}
$$

Theorem 1: For determined $P(D) \quad(*)$ and $\left(r_{k}-s_{j}\right)$-ellipticity are equivalent. Theorem 2: (*) is implied by $\left(r_{k}-s_{j}\right)-v . s$. ellipticity of $t_{P(D)}$. The converse is true (at least) when $P(D)$ is of tensor product type and $\Omega=\Omega^{\prime} x \Omega^{\prime \prime}$, where Ω^{\prime} and $\Omega^{\prime \prime}$ are open, bounded and convex sets of R^{m} and R^{n-m} respectively. Proof of Theorem 1: We first prove that ($*$) implies ($r_{k} \underline{-s}_{j}$)-ellipticity: ($*$) and the injectivity of $P(D)$ give the estimate

$$
\begin{equation*}
C^{-1} \cdot \sum_{j}\left|\sum_{k} P_{j k}(D) u_{k}\right|_{L} p_{s_{j}} \leqq \sum_{k}\left|u_{k}\right|_{L_{r_{k}}^{p}}^{p} \leqq C \cdot \sum_{j} \mid \sum_{k} p_{j k} \text { (D) }\left.u_{k}\right|_{L} p_{s_{j}} \tag{1}
\end{equation*}
$$

for some constant $C>0$ and all $u_{k} \varepsilon C_{o}^{\infty}(\Omega)$. If we in the first inequality put all u_{k} but one equal to zero we get

$$
\begin{equation*}
\left|p_{j k}(D) u\right|_{L_{S_{j}}}^{p} \leqq c \cdot|u|_{L_{r_{k}}^{p}}^{p} \tag{2}
\end{equation*}
$$

for all $u \in C_{o}^{\infty}(\Omega), 1 \leqq j \leqq J, \quad 1 \leqq k \leqq K$. Putting $u(x)=e^{i \lambda x \eta} \cdot \phi(x)$ with $\lambda>0, \quad 0 \neq \eta \varepsilon R^{n}, \quad 0 \neq \phi \varepsilon C_{o}^{\infty}(\Omega)$ and using Lemma $A 7$ from the Appendix one easily checks that (2) implies $\operatorname{deg} P_{j k} \leqq r_{k}-{ }_{j}$.

We now show that rank $\left.\stackrel{\circ}{(P}_{j k}(\eta)\right)<K$ for some $0 \neq \eta \varepsilon R^{n}$ violates the second estimate in (1):
if $\operatorname{rank}\left(\stackrel{\circ}{P}_{j k}(\eta)\right)<K$ then, for some $0 \neq\left(a_{1}, \ldots, a_{K}\right) \varepsilon C^{K}, \sum_{k}{ }^{\circ}{ }_{j k}(\eta) a_{k}=0$, $j=1, \ldots, J$, or, since $\stackrel{\circ}{P}_{j k}$ are homogeneous of degree $r_{k}-s_{j}$,

$$
\begin{equation*}
\sum_{k}^{\stackrel{\circ}{P}_{j k}}(\lambda \eta) \cdot \lambda^{-r_{k}} \cdot a_{k}=0 \quad j=1, \ldots, J \tag{3}
\end{equation*}
$$

Now put in the second estimate in (1) $u_{k}^{\lambda}(x)=\lambda^{-r} k \cdot a_{k} \cdot e^{i \lambda x \eta} \cdot \phi(x)$, $0 \neq \phi \varepsilon C_{o}(\Omega)$. By lemma A7, as $\lambda \rightarrow \infty$,

$$
\begin{equation*}
\Sigma_{k}\left|u_{k}^{\lambda}\right|_{L_{r_{k}}^{p}}=\Sigma_{k} \lambda^{-r_{k} \cdot\left|a_{k}\right| \cdot\left|e^{i \lambda x \eta} \cdot \phi\right|_{L_{r_{k}}^{p}} \rightarrow \Sigma_{k}\left|a_{k}\right| \cdot|\phi|_{L}^{p}>0 ~} \tag{4}
\end{equation*}
$$

At the same time it is easy to see that

$$
\begin{equation*}
\sum_{k}\left|P_{j k}(D) u_{k}^{\lambda}\right|_{L} p_{s_{j}}=0\left(\lambda^{-1}\right) \quad \text { as } \quad \lambda \rightarrow \infty, \quad j=1, \ldots, J \tag{5}
\end{equation*}
$$

Namely, in

$$
\mid \Sigma_{k} P_{j k} \text { (D) }\left.u_{k}^{\lambda}\right|_{L} p_{s_{j}} \leqq \mid \Sigma_{k} \stackrel{\circ}{P}_{j k} \text { (D) }\left.u_{k}^{\lambda}\right|_{L}{\underset{s}{j}}_{p}+\mid \Sigma_{k}\left(P_{j k}-\stackrel{\circ}{P}_{j k}\right) \text { (D) }\left.u_{k}^{\lambda}\right|_{L}{\underset{s}{j}}^{p}
$$

the second term of the right hand side is $0\left(\lambda^{-1}\right)$ by Lemma $A 7$, and as for the first term, observe that
$\sum_{k} \stackrel{\circ}{P}_{j k}(D) u_{k}^{\lambda}=\sum_{k} \stackrel{\circ}{P}_{j k}(\lambda \eta) \cdot \lambda^{-r}{ }_{k} \cdot a_{k} \cdot e^{i \lambda x \eta}+\sum_{k} \sum_{1} \lambda^{-r}{ }_{k} \cdot Q_{j k}^{l}(\lambda \eta) e^{i \lambda x \eta} \cdot \psi_{l k}$ for some homogeneous polynomials $Q_{j k}^{l}$ of degree $1,1 \leqq 1<r_{k}-s_{j}$, and some $\psi_{l k} \varepsilon C_{o}^{\infty}(\Omega)$, and then use (3) and Lemma A7.

This ends the proof of the first part of Theorem 1 since (4) and (5) clearly contradict (1).

We now prove that $\left(r_{k}-S_{j}\right)$-ellipticity implies ($*$) : that $P(D)$ in ($*$) is bounded is trivially clear because each $P_{j k}(D): L_{r_{k}}^{p}, \bar{\Omega} \rightarrow L_{S_{j}}^{p}, \bar{\Omega}$ is bounded if $\operatorname{deg} \mathrm{P}_{\mathbf{j k}} \leqq \mathbf{r}_{\mathbf{k}} \mathbf{- S}_{\mathbf{j}}$.

To show that $P(D)$ has closed range we first observe that the set
($\mathrm{P}(\mathrm{D}) \mathscr{E}^{\prime} \frac{\mathrm{K}}{\mathrm{K}}$) $\cap \mathrm{L}_{\mathrm{S}, \bar{\Omega}}^{\mathrm{p}}$ is closed in $\mathrm{L}_{\mathrm{S}, \bar{\Omega}}^{\mathrm{p}}$ (it is well known that $\mathrm{P}(\mathrm{D}) \mathscr{\mathscr { O }} \frac{\mathrm{K}}{\mathrm{K}}$ is closed in $\mathscr{E}^{\prime} \frac{J}{\Omega}$ and the topology of $L_{s, \bar{\Omega}}^{p}$ is stronger than that of $\mathscr{E}^{\prime} \frac{J}{\Omega}$) and then we prove that $\left(P(D) \mathscr{C}^{\prime} \frac{K}{\Omega}\right) \cap L_{S}^{p}=P(D) L_{r, \bar{\Omega}}^{p}$.

Proposition: If $u_{k} \varepsilon \mathscr{O}^{\prime}, k=1, \ldots, k, \sum_{k} P_{j k}(D) u_{k}=f_{j} \varepsilon_{L_{s}}^{p}, j=1, \ldots, J$, and $P(D)$ is $\left(r_{k}-s_{j}\right)$-elliptic, then $u_{k} \varepsilon L_{r_{k}}^{p}$.

Proof: First we show how we can reduce the proof to the case of a square system, then we prove that case.

Denote by Δ the polynomial $\sum_{k=1}^{n} x_{k}^{2}$ and the corresponding differential operator: $\Delta=\Delta(D)=\sum_{k=1}^{n} D_{k}^{2}$. Let N be some integer $\geqq \max \left(r_{k}-s_{j}\right)$. From $\sum_{k} P_{j k}$ (D) $u_{k}=f_{j}, \quad j=1, \ldots, J$, we get

$$
\sum_{j} \bar{P}_{j l}(D) \Delta^{N-\left(r_{1}-s_{j}\right)} \sum_{k} P_{j k}(D) u_{k}=\sum_{j} \bar{P}_{j l}(D) \Delta^{N-\left(r_{1}-s_{j}\right)} f_{j}, \quad 1=1, \ldots, K
$$

where $\bar{P}_{j k}$ denotes the polynomial obtained by complex conjugation of the coefficients of $P_{j k}$. After changing the order of summation and putting

W. ABRAMCZUK

$Q_{1 k}=\Sigma_{j} \bar{P}_{j 1} P_{j k} \Delta^{N-\left(r_{1}-s_{j}\right)}$ and $\phi_{1}=\sum_{j} \bar{P}_{j 1}(D) \Delta^{N-\left(r_{1}-s_{j}\right)} f_{j}$ we see that $u_{k}, k=1, \ldots, k$, satisfy a square system of differential equations:

$$
\begin{equation*}
\Sigma_{k} Q_{1 k}(D) u_{k}=\phi_{1}, \quad 1=1, \ldots, K \tag{6}
\end{equation*}
$$

This system is $\left(2 N+r_{k}-r_{1}\right)$-elliptic: $\operatorname{deg} Q_{l k} \leqq \operatorname{deg}\left(\bar{P}_{j 1} P_{j k} \Delta^{N-\left(r_{1}-s_{j}\right)}\right) \leqq$ $\left(r_{1}-s_{j}\right)+\left(r_{k}-s_{j}\right)+2 N-2\left(r_{1}-s_{j}\right)=2 N+r_{k}-r_{l}$. Denote by $\stackrel{\circ}{Q}_{l k}$ the part in $Q_{l k}$ of degree $2 N+r_{k}-r_{1}$ and observe that $\stackrel{\circ}{Q}_{1 k}=\sum \stackrel{\circ}{P}_{j 1} \stackrel{\circ}{P}_{j k} \Delta^{N-\left(r_{1}-s_{j}\right)}$. Now, if $\operatorname{rank}\left({ }^{\circ}{ }_{l k}(\xi)\right)<K$ for some $0 \neq \xi \varepsilon R^{n}$, then for some $0 \neq\left(a_{1}, \ldots, a_{K}\right) \varepsilon C^{n}$

$$
\Sigma_{k} \Sigma_{j} \stackrel{\circ}{\mathrm{P}}_{j 1}(\xi) \stackrel{\circ}{P}_{j k}(\xi)|\xi|^{2\left(N-\left(r_{1}-s_{j}\right)\right)} \cdot a_{k}=0, \quad l=1, \ldots, k .
$$

Putting $\xi=\lambda \cdot \eta, \lambda>0, \quad|\eta|=1$, this gives

$$
\begin{equation*}
\Sigma_{k} \Sigma_{j}{ }^{\frac{0}{P}}{ }_{j 1}(\eta) P_{j k}(\eta) \cdot\left(\lambda^{r_{k}} \cdot a_{k}\right)=0, \quad 1=1, \ldots, k . \tag{7}
\end{equation*}
$$

On the other hand it is easy to show that if $\operatorname{rank}\left(\stackrel{\circ}{P}_{j k}(\eta)\right)=K$ then also rank $\left(\Sigma_{j} \stackrel{\circ}{P}_{j 1}(\eta) \stackrel{\circ}{P}_{j k}(\eta)\right)=K$ what clearly contradicts (7) thus proving that $\operatorname{rank}\left(Q_{1 k}(\xi)\right)=K$ if $0 \neq \xi \varepsilon \mathrm{R}^{\mathrm{n}}$.
observe now that ϕ_{1} in (6) are in $L_{r_{1}-2 N}^{p}$ and so, if the Proposition is true in the special case when $K=J$, it follows that

$$
u_{k} \varepsilon L_{r_{1}-2 N+\left(2 N+r_{k}-r_{l}\right)}^{p}=L_{r_{k}}^{p}
$$

and the Proposition is true in the general case.
So assume from now on that $K=J$. Let $\phi \varepsilon C_{o}^{\infty}\left(R^{n}\right)$ be $=1$ on the (real) zeroes of det $\left(P_{j k}\right)$. This is possible since the set is bounded. Using the matrix notation we then have

$$
\hat{u}=\left(\phi+(1-\phi) \mathrm{P}^{-1} \mathrm{P}\right) \cdot \hat{\mathrm{u}}=\phi \cdot \hat{\mathrm{u}}+(1-\phi) \mathrm{P}^{-1} \mathrm{f}^{-},
$$

or, denoting by $\left({ }^{C O} P_{k j}\right)$ the matrix formed by the cofactors in ($P_{j k}$),

$$
\begin{equation*}
\hat{u}_{k}=\phi \cdot \hat{u}_{k}+\Sigma_{j}(1-\phi) \cdot \frac{{ }^{C O} P_{k j}}{\operatorname{det} P} \cdot f_{j}^{-}, \quad k=1, \ldots, K \tag{8}
\end{equation*}
$$

Now put $m_{s}(\xi)=\left(1+|\xi|^{2}\right)^{s / 2}$. It follows from (8) that

$$
\begin{equation*}
m_{r_{k}} \cdot \hat{u}_{k}=\phi \cdot m_{r_{k}} \cdot \hat{u}_{k}+\Sigma_{j}(1-\phi) \frac{{ }^{c o} P_{k j}}{\operatorname{det} P} \cdot m_{r_{k}-s_{j}} \cdot m_{s_{j}} \cdot f_{j}^{-}, \quad k=1, \ldots, k \quad . \tag{9}
\end{equation*}
$$

The first term in each of the sums of (9) is a C_{0}^{∞} function and therefore its inverse Fourier transform is in every $L^{p}, 1 \leqq p \leqq \infty$. The inverse Fourier transform of every other term is also in $L^{p}, 1<p<\infty$, because the functions

$$
(1-\phi) \frac{{ }^{c O_{P_{k j}}}}{\operatorname{det} P} m_{r_{k}-s_{j}}
$$

are easily seen to be multipliers on $L^{p}, \quad 1<\mathrm{p}<\infty$.
This ends the proof of the Proposition and thus of Theorem 1.
Proof of Theorem 2. ($\left.r_{k}-\underline{s}_{j}\right)-v . s$. ellipticity of $t_{P(D)}$ implies ($*$): $\operatorname{deg} p_{j k}=\operatorname{deg}\left({ }^{t}\right)_{k j} \leqq r_{k}-s_{j}\left(=-s_{j}-\left(-r_{k}\right)\right)$ and so $P(D)$ is bounded. To see that $P(D)$ has closed range it is enough to see that the adjoint of $P(D)$, $t_{P(D)}: L_{-S}^{q}(\Omega) \longrightarrow L_{-r}^{q}(\Omega), 1 / p+1 / q=1$, has closed range. Now, it is a well known fact that, for any $t_{P(D),} t_{P(D)} \mathscr{D}^{(\Omega)}{ }^{\mathrm{J}}$ is closed in $\mathscr{D}^{\prime}(\Omega)^{K}$ and since $L_{-r}^{q}(\Omega) \subset \mathscr{D}^{\prime}(\Omega)^{K}$ topologically, ($\left.{ }^{t} P(D) \mathscr{D}^{\prime}(\Omega)^{J}\right) \cap L_{-r}^{q}(\Omega)$ is closed in $L_{-r}^{q}(\Omega)$. But $\left({ }^{t} P(D) \mathscr{D}^{\prime}(\Omega)^{J}\right) \cap L_{-r}^{q}(\Omega)={ }^{t_{P(D) L}}{ }_{-S}^{q}(\Omega)$ when $t_{P(D)}$ is $\left(r_{k}-s_{j}\right)-v . s$. elliptic by Theorem 8.15 in Smith [1].

$$
\text { (*) implies }\left(r_{k}-s_{j}\right)-v . s . \text { ellipticity of } t_{P(D)} \text { when } P(D) \text { is of tensor }
$$

product type and $\Omega=\Omega^{\prime} \times \Omega^{\prime \prime}$: by duality this amounts to proving the following assertion:

Let $P(D): u \rightarrow\left(P^{1}\left(D^{\prime}\right) u, P^{2}\left(D^{\prime \prime}\right) u\right)=\left(P_{1}\left(D^{\prime}\right) u, \ldots, P_{I}\left(D^{\prime}\right) u, P_{I+1}\left(D^{\prime \prime}\right) u, \ldots, P_{J}\left(D^{\prime \prime}\right) u\right)$ as an operator from $L_{S}^{p}(\Omega)$ to $L_{S-N}^{p}(\Omega)^{J}$ have closed range for some $s \varepsilon R$,

W. ABRAMCZUK

$1<p<\infty$. Then the polynomials $P_{j}, j=1, \ldots, J$, have no common complex non-trivial zero.

Now the proof goes as follows: for any $g \varepsilon C_{o}\left(\Omega^{\prime}\right), P^{1}\left(D^{\prime}\right) g \neq 0$, and $h \varepsilon L_{s-N}^{p}\left(\Omega^{\prime \prime}\right), P^{2}\left(D^{\prime \prime}\right) h=0$, put $f=\left(P^{1}\left(D^{\prime}\right) g \otimes h, 0\right)$, i.e. $f_{j}=P_{j}\left(D^{\prime}\right) g \otimes h$ if $1 \leqq j \leqq I$ and $f_{j}=0$ if $j>I$. Using Lemma A4 of the Appendix, one easily checks that f is in the closure of the range of $P(D)$. Assume now that $f=P(D) u$ for some $u \varepsilon L_{S}^{p}(\Omega)$. Since also $f=P(D)(g \otimes h)$, we must have

$$
\begin{equation*}
u=g \otimes h+v \tag{10}
\end{equation*}
$$

for some $v \in \mathscr{D} \mathscr{D}^{\prime}(\Omega), \quad \mathrm{P}(\mathrm{D}) \mathrm{v}=0$. Let $\phi_{1} \varepsilon \mathrm{C}_{0}^{\infty}\left(\Omega^{\prime}\right)$ separate g and the kernel of $P^{1}\left(D^{\prime}\right)$ in $\mathscr{D} \cdot\left(\Omega^{\prime}\right):\left(g, \phi_{1}\right)=1$ and $\left(v_{1}, \phi_{1}\right)=0$ if $P^{1}\left(D^{\prime}\right) v_{1}=0$. Apply to (10) the operator $T_{\phi_{1}}$ of Lemma A5: it follows that $h=T_{\phi_{1}}(u)$ and is thus in $L_{s}^{p}\left(\Omega^{\prime \prime}\right)$. In this way the assumption that the range of $P(D)$ is closed leads to the implication: if $h \in L_{S-N}^{p}\left(\Omega^{\prime \prime}\right)$ and $P^{2}\left(D^{\prime \prime}\right) h=0$, then $h \varepsilon L_{S}^{p}\left(\Omega^{\prime \prime}\right)$. By Lemma A6 it now follows that the polynomials $P_{j}, I+1 \leqq j \leqq J$, have no common nontrivial complex zero. If we let P^{1} and P^{2} change roles we see that the same is also true about $P_{j}, 1 \leqq j \leqq I$. Theorem 2 is proved.

Example: Let $P(D)$ in the proof of the second part of Theorem 2 be the $\bar{\partial}$ operator and let Ω be a polydisc in $C^{n} \cong R^{2 n}$. The result is that $\overline{\partial u}=f$ cannot, in general, be solved with gain of one derivative in the L_{S}^{p}-space meaning in a polydisc in $c^{n}, n>1$.

APPENDIX

We first introduce some additional notation. The set of exponential polynomials in R^{n} is denoted by $\operatorname{EXP}\left(R^{n}\right)=\operatorname{EXP}$. Given two matrices of polynomials P and Q, we say that Q is a compatibility matrix for P if the rows of Q

ELLIPTICITY OF SYSTEMS OF LINEAR PDE's

generate the module of relations between the rows of P. We call a matrix of polynomials homogeneous if all its elements are homogeneous of the same degree. By Φ_{P} we denote the set of solutions to $P(D) u=0$ in a space Φ of (tuples of) distributions; when Φ is a cartesian product of K copies of some space Ψ, we write Ψ_{P} instead of $\left(\Psi^{K}\right)_{P}$. For $\phi \varepsilon C_{o}^{\infty}\left(R^{n}\right)$ and $\varepsilon>0$ define $\phi_{\varepsilon}(x)=\phi(\varepsilon x)$ and $\phi^{\varepsilon}(x)=\varepsilon^{-n} \phi\left(\varepsilon^{-1} x\right)$. For a distribution u define u_{ε} by $\left(u_{\varepsilon}, \phi\right)=\left(u, \phi^{\varepsilon}\right)$, $\phi \varepsilon C_{0}\left(R^{n}\right)$. Note that when u is a tempered distribution we have $u_{\varepsilon}=\hat{u}^{\varepsilon}$. Lemma A1: For $1<\mathrm{p}<\infty$ and $\mathrm{s} \varepsilon \mathrm{R} \quad \mathrm{f} \rightarrow \mathrm{f}_{\varepsilon}$ is a bounded operator in L_{s} and $\left|f_{\varepsilon}-f\right|_{L_{S}} p \rightarrow 0$ as $\varepsilon \rightarrow 1$.

Lemma A2: Let $\phi \in C_{0}^{\infty}\left(R^{n}\right), \phi \geqq 0, \quad \int \phi=1, \quad 1<p<\infty, \quad s \in R \quad$. Then $f \rightarrow \phi^{\delta} \star f$ is a bounded operator in L_{S}^{p} and $\left|f-\phi^{\delta} * f\right|_{L_{S}}^{p} \rightarrow 0$ as $\delta \rightarrow 0$.

These lemmas are common knowledge when s is a non-negative integer; for the general case see Abramczuk [1].

Lemma A3: For a homogeneous matrix Q (the restriction to Ω of) ExP_{Q} is dense in $L_{S}^{\mathrm{P}}(\Omega)_{Q} \quad$ (in the topology of $L_{S}^{\mathrm{p}}(\Omega)$).
Proof: Consider the inclusions: $\left.\left.E x P_{Q}\right|_{\Omega} \subset \bigcup_{\Omega C C \Omega^{\prime}} C^{\infty}\left(\Omega^{\prime}\right)_{Q}\right|_{\Omega} \subset L_{S}^{p}(\Omega)_{Q}$. The range of the first one is dense in the $C^{\infty}(\bar{\Omega})$-topology by the known (local) density results. We show that the range of the second inclusion is dense if Q is homogeneous:
 and $\Omega \operatorname{CC} \varepsilon^{-1} \cdot \Omega$ if $\varepsilon<1$ and $0 \varepsilon \Omega$ what can be assumed without loss of generality. With ϕ like in Lemma $A 2 u_{\varepsilon} * \phi^{\delta} \varepsilon C^{\infty}\left(\Omega_{\varepsilon, \delta}\right) Q$ for some $\Omega_{\varepsilon, \delta} \supset \supset \Omega$ if δ is small enough. The proof ends by using the two preceding lemmas on

$$
\left|u_{\varepsilon} * \phi^{\delta}-u\right|_{L} p_{S}(\Omega) \leqq\left|u_{\varepsilon} * \phi^{\delta}-u_{\varepsilon}\right|_{L} p+\left|u_{\varepsilon}-u\right|_{L} p
$$

Lemma A4: Let $P(D): L_{r}^{p}(\Omega) \rightarrow L_{S}^{p}(\Omega), \quad r \varepsilon R^{K}$, $\quad \varepsilon R^{J}$. If P has a homogeneous compatibility matrix Q then the range of $P(D)$ is dense in $L_{S}^{P}(\Omega){ }_{Q}$.

Proof: $\left.\operatorname{EXP}_{Q}\right|_{\Omega}=P(D)\left(\left.E X P\right|_{\Omega}\right) \subset P(D) L_{r}^{P}(\Omega) \subset L_{S}^{p}(\Omega) Q$ and use Lemma A3.

Lemma_A5: Let $\Omega=\Omega^{\prime} \mathrm{x} \Omega^{\prime \prime}$ be like in Theorem 2. For $\phi_{1} \varepsilon C_{o}^{\infty}\left(\Omega^{\prime}\right)$ and $u \in \mathscr{D}(\Omega)$ let $T_{\phi_{1}}(u)$ be the linear functional on $C_{o}^{\infty}\left(\Omega^{\prime \prime}\right)$ defined by $T_{\phi_{1}}(u): \phi_{2} \rightarrow\left(u, \phi_{1} \otimes \phi_{2}\right)$. Then
i) the operator $u \rightarrow T_{\phi_{1}}(u) \quad \operatorname{maps} L_{S}^{p}(\Omega)$ into $L_{S}^{p}\left(\Omega^{\prime \prime}\right)$
ii) if $P(D): u \rightarrow\left(P^{1}\left(D^{\prime}\right) u, P^{2}\left(D^{\prime \prime}\right) u\right)$ and ϕ_{1} vanishes on $\mathscr{D}^{\prime}\left(\Omega^{\prime}\right)_{p} 1$ then $T_{\phi_{1}}$ vanishes on $\left.{ }^{(\Omega)}\right)_{\mathrm{P}}$.

Proof: We only prove ii): it is easily seen that $\phi_{1}=\sum_{j} P_{j}\left(-D^{\prime}\right) \psi_{1}$ for some $\psi_{j} \varepsilon C_{o}^{\infty}\left(\Omega^{\prime}\right)$. But then, if $v \in \mathscr{V}^{\prime}(\Omega)_{p},\left(v, \phi_{1} \otimes \phi_{2}\right)=\left(v, \quad\left(\sum_{j} P_{j}\left(-D^{\prime}\right) \psi_{1}\right)\right.$ $\left.\otimes \phi_{2}\right)=\sum_{j}\left(v, P_{j}\left(-D^{\prime}\right)\left(\psi_{1}, \otimes \phi_{2}\right)\right)=\sum_{j}\left(P_{j}\left(D^{\prime}\right) v, \psi_{1} \otimes_{j} \phi_{2}\right)=0$.

Lemma A6: Let $1<p<\infty$ and $s \varepsilon R^{K}$. If for some K-tuple of positive integers $N=\left(N_{1}, \ldots, N_{K}\right)$ every solution to $P(D) u=0$ in $L_{S}^{p}(\Omega)$ is actually in $L_{S+N}^{p}(\Omega)$ then the linear space of distribution solutions to $P(D) u=0$ in Ω is finite dimensional.

Proof: The assumption implies that $L_{S}^{P}(\Omega)_{P} \subset \bigcap_{r} L_{r}^{p}(\Omega)=C^{\infty}(\bar{\Omega})$ K \quad Now $L_{S}^{p}(\Omega)_{P}$ is closed in $L_{S}^{P}(\Omega)$ and in the stronger topology of $C^{\infty}(\bar{\Omega})$. . Hence $L_{S}^{P}(\Omega){ }_{P}$ is a Fréchet space in two comparable topologies. By the closed graph theorem, the two topologies coincide. One of these is a Banach space topology and the other is a Montel space topology and it is known that these coincide only on finite dimensional spaces. Hence $\operatorname{dim} L_{S}^{p}(\Omega)_{P}<\infty$ and $\mathscr{D}^{\prime}(\Omega)_{P}=L_{S}^{p}(\Omega)_{P}$ by a density argument.

Lemma A7: Let $\phi \in C_{o}^{\infty}\left(R^{n}\right), \lambda>0, \eta \varepsilon R^{n}, s \varepsilon R, 1<p<\infty$. Let P be a polynomial of degree m with principal part P_{m}. Then

$$
\lim _{\lambda \rightarrow \infty} \lambda^{-(s+m)}\left|P(D)\left(e^{i \lambda x \eta} \cdot \phi\right)\right|_{L_{s}}^{p}=\left|P_{m}(\eta)\right| \cdot|\eta|^{s} \cdot|\phi|_{L} p
$$

Proof: Consider first the case $\underline{m=0}$:
$\left|e^{i \lambda x \eta} \cdot \phi\right|_{L}{ }_{s}^{p}=\left|(2 \pi)^{-n} \int \phi(\xi-\lambda \eta)\left(1+|\xi|^{2}\right)^{s / 2} e^{i x \xi} d \xi\right|_{L} p=\mid(2 \pi)^{-n} \int \phi(\xi) e^{i x \xi}$.
$\left.\cdot\left(1+|\xi+\lambda n|^{2}\right)^{s / 2} d \xi\right|_{L} p=\lambda^{s}\left|(2 \pi)^{-n} \int \phi(\xi) e^{i x \xi}\left(\lambda^{-2}+\left|\lambda^{-1} \xi+\eta\right|^{2}\right)^{s / 2} d \xi\right|_{L} p \quad$.
Now multiply by λ^{-s} and let $\lambda \rightarrow \infty$. If $\underline{m \neq 0} \quad P(D)\left(e^{i \lambda \times \eta} \cdot \phi\right)=$ $\sum_{\alpha} P^{(\alpha)}(\lambda \eta) \cdot e^{i \lambda x \eta} \cdot \frac{D^{\alpha} \phi}{\alpha!}=\lambda^{m} P_{m}(\eta) e^{i \lambda x \eta}+\sum_{1 \leq j<m} \lambda^{j} \cdot Q_{j}(\eta) \cdot e^{i \lambda x \eta} \cdot \psi_{j} \quad$ for some homogeneous polynomials $Q_{j}, \operatorname{deg} Q_{j}=j$, and test functions ψ_{j}. After multiplication of the last equality by $\lambda^{-(s+m)}$ the L_{s}^{p} norm of the first term has the limit $\left|P_{m}(\eta)\right| \cdot|\eta|^{s} \cdot|\phi|_{L} p \quad$ as $\quad \lambda \rightarrow \infty \quad$ by the previous case and the second term $\rightarrow 0$.

REFERENCES

ABRAMCZUK, W.: [1] On the range of linear partial differential operators in Lebesgue spaces of distributions, Research report, University of Stockholm, 1980.

CALDERON, A.P.: [1] Lebesgue spaces of differentiable functions and distributions, Proc. Symp. on Pure Math., Partial Differential Equations, 33-49 (1961).

DOUGLIS, A. and NIRENBERG, L.: [1] Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math. 8, 503-538 (1955).

ESKIN, M. and SHAMIR, E.: [1] Elliptic overdetermined differential systems in convex cones, Journal d'Analyse Mathématique, vol. 32 (1977).

HÖRMANDER, L.: [1] Linear partial differential operators, Springer, 1969.
HÖRMANDER, L.: [2] An introduction to complex analysis in several variables, North Holland, 1973.

PALAMODOV, V.P.: [1] Linear differential operators with constant coefficients, Moscow, 1967.

W. ABRAMCZUK

SMITH, K.T.: [1] Formulas to represent functions by their derivatives, Math. Ann.

$$
188,53-77 \text { (1970). }
$$

Wojciech ABRAMCZUK,
Department of Mathematics, University of Stockholm, Box 6701,

S-113 85 Stockholm, Sweden.

