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A REMARK ON ELLIPTICITY OF SYSTEMS OF LINEAR PARTIAL 
DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS 

by W. ABRAMCZUK (University of Stockholm) 

INTRODUCTION. 
It is well known (and easy to prove) that a linear partial differential 

operator with constant coefficients, P(D) , is elliptic and has order N if and 
only if it is a bounded operator with closed range when it acts between the spaces 
Hm(fi) and H m N(fi) , where Ĥ (fi) denotes the closure of C°°(fi) in the norm o o o o 

l̂ l̂  = |DacJ>|L2 ' m is a n integer such that m-N ̂  0 and Q is a bounded 
|a|̂ k 

open subset of R n . 
Here this result is (partially) extended to systems of linear partial 

differential operators with constant coefficients and to more general spaces of 
distributions. 

Theorem 1 below is a rather straightforward generalisation of the considera
tions in 10.6 of Hormander Cl]. The first part of Theorem 2 is an easy consequence 
of the coercivity results in Smith Cl] and the second part was inspired by a 
counter example in Eskin and Shamir CI]. 

NOTATION AND DEFINITIONS 

To measure the regularity of distributions we use the spaces iP = LP(Rn) , 
s s 
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l<p<oof s e R , of Bessel potentials of LP functions (Calderon 111) : u £ 
if u is a temperate distribution and (1 + |^|2)S^2. u is the Fourier transform 
of a function denoted here by J Su . We let J S transport the norm to 
iP: |uLp=|jSuLp. When u is a test function this can be made more s 1 1L 1 1 IT s 
explicit: 

|u| p - |(2ir)-n f (1+|5|2)S/2 u(?) eix? d? |Lp . 
s ' 

When ft is an open subset of Rn we let -pr- denote the distributions in 
s,ft 

supported in ft and we put L̂ (ft) = iP / iP _n.̂  which we think of as the s s s s,R U-
restriction of to ft . For technical reasons we assume in what follows that s 
ft is also bounded and convex. 

When r = (r̂ ,...,rK) £ RK we denote the product space x ... x by 
1 K 

Lr ' the space Lrrfi x ••• x LrR/fi by Lr,fl ' etC-

By P(D) we denote a matrix of linear differential operators with constant 
coefficients: P(D) = (P (D)), j = 1,...,J, k = 1,...,K, and by S(D) the 

Dk 
transpose of P(-D) . 

Definition 1: The operator P(D) is determined if P(D)u = 0 has no non-trivial 
solutions with compact support (i.e. P(D):^,K—>^,J is injective) . 

Definition 2: Let r and s., k = 1,...,K, j = 1,...,J , be real numbers such 
that r^ - s_. are non-negative integers. We call the operator P(D) 

(r, -s .) -elliptic if k j 

i) deg P .., < r. -s . 
3k - k 3 

ii) rank (P., (£)) = K if 0 £ £ e Rn ; 
o 

here P denotes the part in P of degree r -s. 
jk 3k k 3 

If i) and 
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ELLIPTICITY OF SYSTEMS OF LINEAR PDE's 

ii) ' rank (P., (£)) = K if 0 ̂  e C n 

are satisfied we call P(D) (r̂ -ŝ )-very strongly elliptic. 

This definition of (r,-s.)-ellipticity was given in Douglis and Nirenberg k 3 
[ID. See also Hormander [ 1 ] , Ch.X. Systems (r-s.)-v.s. elliptic in a similar 

k 3 
sense were studied in Smith ill. 

Remark: It is easy to see that (r-s.)-ellipticity implies the usual one defined, 
k 3 

for example, in terms of the characteristic variety of P(D) and that (r-s.)-v. 
K 3 

s. ellipticity implies that the characteristic variety is discrete. The converse 
is obviously not true and it is an open problem whether an elliptic P(D) (a P(D) 
with discrete characteristic variety) becomes (r -s .)-elliptic ((r -s.)-v.s. 

k j k j 
elliptic) when multiplied by a non-singular K x K - matrix with differential 
operator entries. Definition 3 : Let 1 ̂  m < n . Consider R R = R m + R R m and write x = (x',x") , 
D = (D',D") with the obvious meaning. We say that P(D) is of tensor product 
type if P(D) = (P^D') ,P2(D")) = (P1(D,),...,PI(D,),PI+1(D"),...,Pj(Dn)) is a row 
matrix with all polynomials P , 1 ̂  j ̂  J , homogeneous of degree N > 0 with 
no non-trivial relations (i.e. every relation ^Pj^j = ^ ' Qj polynomials, is of 
the form P.P, - P. P. = 0 ) . 3 k k 3 THEOREMS 

Let r = (r ) _ tri s =( s-)._i -r - Consider the condition k k — l,...,K ] ] - 1,. .. ,J 

(*) P(D) : -pr —• Lp r=r is bounded with closed range. 
r , ft S , ft * 

Theorem 1: For determined P(D) (*) and (r-s.)-ellipticity are equivalent. 
* 3 

Theorem 2: (*) is implied by (r -s.)-v.s. ellipticity of ^(D) . The converse 
K 3 

is true (at least) when P(D) is of tensor product type and Q = ft* x ft" , where 
ft' and ft" are open, bounded and convex sets of R m and R n m respectively. 
Proof of Theorem 1: We first prove that (*) implies (r-s.)-ellipticity: (*) and 

the injectivity of P(D) give the estimate 
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(1) c_1- 5 1 1 v D ) u * iLp = e i ^ ILJ ^ C • 5 1 1 v o ) u k iLp 

for some constant C > 0 and all e Ĉ (ft) . If we in the first inequality put 
all u^ but one equal to zero we get 

(2) lPik(D)UlLP = C ' lUlLP s. r. 3 k 

for all u Z Ĉ (ft) , l ^ j ^ J , l ^ k ^ K . Putting u(x) = elXxT1- <|)(x) with 
A > 0, 0 / II £ Rn, 0 / (j) e Ĉ (fi) and using Lemma A7 from the Appendix one easily 
checks that (2) implies deg P., < r.-s. . 

3k — k j 
o ^ 

We now show that rank (P (n)) < K for some 0 ̂  n £ R violates the second 
jk 

estimate in (1): 
o K ° 

if rank (pjk(n)) < K then, for. some 0 ̂  (a^...^^ e C , skPjk^)ak = 0, 
o 

j = 1,...,J, or, since P ̂  are homogeneous of degree rk~sj ' 
(3) Z P (An)•A~rk#a =0 j = 1,...,J . 

k 3k k 
Now put in the second estimate in (1) uk̂ x̂  = ̂  rk*â «eî Xr,-(J) (x) , 

0 ^ (J) e C (ft) . By lemma A7, as A -> °° , 

(4> Sk l \ lLP = \ ^ - \ * k \ - \ e i X X n - * \ L P L r K -> - k̂|ak|.|<t>lLP > 0 . 

At the same time it is easy to see that 

(5) EklP'k(D)uklLP = 0(X"1) as X ** 00' J = lf-/J • 
-1 s. 3 

Namely, in 

iskpJk(D)\iLp ^ iv J k ( D ) \ i L P ^ y v v 1 ^ 1 ^ 
s. s. s. 
3 3 3 
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ELLIPTICITY OF SYSTEMS OF LINEAR PDE's 

the second term of the right hand side is 0(X S by Lemma A7, and as for the 
first term, observe that 

V j k ( D > \ = V J k ( X ^ x " r k - V e i X x n + \ \ Y-RK. ^ j k ( ^ ) e i X x H k 

for some homogeneous polynomials QLjk of degree 1, 1 ̂  1 < rjc~Sj ' an<̂  some 
£ C~(ft) , and then use (3) and Lemma A7. 
This ends the proof of the first part of Theorem 1 since (4) and (5) clearly 

contradict (1). 
We now prove that (r̂ _-s_.)-ellipticity implies (*) : that P(D) in (*) is bounded 
is trivially clear because each P (D) : iP TT LP TT is bounded if lk r, ,0, s. ,Q J k y 
deg P .. < r. -s . . jk - k j 

To show that P(D) has closed range we first observe that the set 
(P(D)£̂ ŷK) n L^ is closed in LP (it is well known that P(D)̂ -̂K is closed 
in <*3l~(^ an<3 tne topology of LP ̂  is stronger than that of ̂ '^*J) an(̂  then we 
prove that (P(D)^^K) n I? = P(D)LP ̂  . 

Proposition: If uk zffi , k = 1,...,K, ^ p \ = f • e L^ ' j = 1,-..,J, and 
P(D) is (rn-s .)-elliptic, then u, £ LP k D k r 

Proof: First we show how we can reduce the proof to the case of a square system, 
then we prove that case. 

n 
Denote by A the polynomial x£ and the corresponding differential 

k=l 
n 

operator: A = A(D) = . Let N be some integer ^ max (r̂ -s.) . From 
k=l j,k 3 

EkPjk(D)uk = fj' i=1'---/J, we get 

V i i ( D ) A f S j V j k ^ = V i i ( D ) A f S j v 1 = 1 K -

where P. denotes the polynomial obtained by complex conjugation of the 
coefficients of P_.̂  . After changing the order of summation and putting 
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Qm = ̂ .P.,P,A * 1 3 and (f), = E.P..,(D)A V 1 3 f. we see that *lk ] ]1 ]k J rl 3 jlv J 3 
u^, k = 1,...,K , satisfy a square system of differential equations: 

(6) Z]A.k(D)uk = *1' 1 = 1"*"K • 

This system is ^N+r^-r^-elliptic: deg ^ deg P̂j1Pjk̂ N ^ S^ ) ̂  
o (r -s .) + (r -s .)+2N-2 (r -s .) = 2N+r -r . Denote by Q the part in Q of i 3 k 3 1 3 k l Ik J.K 

o J3_ o J\J— (— s ) degree 2N+r, -r, and observe that p.. = Z P..P..A 1 j . Now, if * k 1 *lk 3I 3k 
rank (Q (£)) < K for some 0 ̂  £ e Rn , then for some 0 ̂  (a ,...,a ) e C11 lk 1 K 

v A i ( ? ) ^ ( ? ) l ? l 2 ( N " < r r S j , ) - a k = 0 ' 1 = 1 K • 

Putting £ = A-ri/ A > 0, |n I =1, this gives 

(7) EkEjPjl(n)Pjk(n)-(Xrk-ak) = 0 , 1=1,...,K . 

o 
On the other hand it is easy to show that if rank (P., (n)) = K then also 

3k 
-2- o rank ( Z.P. (n)P., (n)) = K what clearly contradicts (7) thus proving that 3 31 3k 

rank (Qlk(?)) = K if 0 £ g e Rn . 
Observe now that <|>̂  in (6) are in Lp r1-2N and so, if the Proposition is 

true in the special case when K = J , it follows that 

P _ P 
Uk ES Lr -2N+(2N+r1 -rn) ~ Lr 1 k 1 k 

and the Proposition is true in the general case. 
So assume from now on that K = J . Let d> £ C°°(Rn) be = 1 on the (real) zeroes  o 
of det (P., ) . This is possible since the set is bounded. Using the matrix 3k 
notation we then have 

u = (ty+a-ty)?'1?) -u = <J>-u + (l-4))P_1f ̂ , 
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or, denoting by (C°P, .) the matrix formed by the cofactors in (P ) , 

c°p.. 
(8) \ - * - \ u K + V I - * ) . d**P * Y ' k " 1,........K,. 

Now put mg(£) = (1+|̂ |2)S//2 . It follows from (8) that 
cop.. 

(9) » uk= *.mrk + Z (1-0» ^ •» mrk•» .fj" , k - 1..... K . 
k k k j j 

The first term in each of the sums of (9) is a C°° function and therefore its 

inverse Fourier transform is in every LP, 1 ̂  p ̂  00 • The inverse Fourier 

transform of every other term is also in L , 1 < p < <» , because the functions 

Y det P r -s. 
k 3 

are easily seen to be multipliers on LP, 1 < p < » . 

This ends the proof of the Proposition and thus of Theorem 1. 

Proof of Theorem 2. (r̂ -s_.)-v. s. ellipticity of ^(D) implies (*) : 

deg p = deg (*"P).. ̂  rv~s • ( = -s.-(-r )) and so P(D) is bounded. To see that JK. kj k j j k 
P(D) has closed range it is enough to see that the adjoint of P(D) , 

^(D): L̂ g(ft) • Lĵ tft) , 1/p + 1/q = 1 , has closed range. Now, it is a well 

known fact that, for any ^(D), fcP (D) i^' (ft)J is closed in (ft)K and since 

L^(ft) c: (ft)K topologically, (S (D) <2&x (ft)J) n (ft) is closed in L^(ft) . 

But ( S t o ) ^ ' (ft)J) Pi L^(ft) = S(D)L^s(ft) when S(D) is (r^s^)-v.s. elliptic 

by Theorem 8.15 in Smith [ID. 

(*) implies (r -s.)-v.s. ellipticity of *"P (D) when P(D) is of tensor 
K j —— — - • • 

product type and ft = ft' x ft" : by duality this amounts to proving the following 

assertion: 
Let P(D): u -> (P1 (D •) u,P2 (D") u) = (PJ (D 1) u, . . . ,PJ (D1) u,PJ+1 (D") u, . . ,PJ (D") u) 

as an operator from LP(ft) to LP „(ft)J have closed range for some s e R , s s-N 

cop 

1-ф) - Г, m 
Y det P r -s. 
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1 < p < co m Then the polynomials P_., j = 1,...,J , have no common complex 
non-trivial zero. 

Now the proof goes as follows: for any g e C^ft')/ P*(D')g ^ 0 , and 
h e L p (ft"), P2(DM)h = 0 , put f = (P^D ' lgQh, 0) , i.e. f. = P.(D')g©h if 

S N j j 
1 ̂  j ̂  I and f = 0 if j > I . Using Lemma A4 of the Appendix, one easily 
checks that f is in the closure of the range of P(D) . Assume now that 

f = P(D)u for some u £ LP(ft) . Since also f = P(D) (g (x)h) , we must have 

(10) u = g © h + v 

for some v £ (ft) , P(D)v = 0 . Let <\>l £ C~(ft') separate g and the kernel 

of P^D 1) in I^' (ft1): (g,^) = 1 and (v^c^) = 0 if P1(D,)v1 = 0 . Apply 
to (10) the operator T, of Lemma A5: it follows that h = T, (u) and is thus in 
LP(ft") . In this way the assumption that the range of P(D) is closed leads to 
the implication: if h £ L P „(ft") and P2(D")h = 0 , then h £ LP(ft") . By Lemma 

s-N s 
A6 it now follows that the polynomials P_., 1+1 ̂  j ̂  J , have no common non-

1 2 
trivial complex zero. If we let P and P change roles we see that the same is 
also true about P , 1 ̂  j = I • Theorem 2 is proved. 
Example: Let P(D) in the proof of the second part of Theorem 2 be the 3 
operator and let ft be a polydisc in C n = R 2 n . The result is that 3u = f 

P 
cannot, in general, be solved with gain of one derivative in the L̂ -space meaning 
in a polydisc in C n , n > 1 . 

A P P E N D I X 

We first introduce some additional notation. The set of exponential poly
nomials in R n is denoted by EXP(RR) = EXP . Given two matrices of polynomials 
P and Q , we say that Q is a compatibility matrix for P if the rows of Q 
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generate the module of relations between the rows of P . We call a matrix of 

polynomials homogeneous if all its elements are homogeneous of the same degree. By 

$ p we denote the set of solutions to P(D)u = 0 in a space $ of (tuples of) 

distributions; when $ is a cartesian product of K copies of some space ¥ , we 

write 4L instead of (YK)„ . For <b e C°°(Rn) and e > 0 define d> (x) = <h(ex) 

and 4>£(x) = £ n (J)(e *x) . For a distribution u define u^ by (u£,())) = (u,(J)
e) , 

(J) £ Cq (Rn) . Note that when u is a tempered distribution we have û ~ = û e . 

Lemma Al: For 1 < p < °° and s £ R f -* f is a bounded operator in L P and 
£ S 

|f - f|Tp + 0 as £ + 1 . 1 £ 1L s 

Lemma A2 : Let (J) £ C~(Rn) , cf> ^ 0, /<{) = 1, 1 < p < «>, S £ R . Then f -> ̂  * f 

is a bounded operator in L P and | f - <|>̂  * f | p -> 0 as ô 0 . 

These lemmas are common knowledge when s is a non-negative integer; for the 

general case see Abramczuk CI]. 

Lemma A3: For a homogeneous matrix Q (the restriction to ft of) E X P Q I S D E N S E 

in LP(ft) (in the topology of LP(ft)). s Q s 

U Proof: Consider the inclusions: EXP^|^<^ ,C°°(ft') ̂  | ̂  c: Lp(ft)^ . The range of 

the first one is dense in the C°°(ft)-topology by the known (local) density results. 

We show that the range of the second inclusion is dense if Q is homogeneous: 

given u £ LP(ft) it is clear that Q(D)u = £ d e g 2-(Q(D)u) so u £ L P(£~ 1^)^ 

and QCC£ if £ < 1 and 0 £ what can be assumed without loss of 

generality. With d> like in Lemma A2 u * <b £ C (ft r) for some ft r DD ft 
£ £,o Q £,o 

if 6 is small enough. The proof ends by using the two preceding lemmas on 

|uE * *
6 - u|Lp ^ |ue * 0>6 - U£|Lp + |« - u|Lp . 

s s s 

Lemma A4: Let P(D): LP(ft) LP(ft) , r £ R K , s £ R J . If P has a homogeneous 

compatibility matrix Q then the range of P(D) is dense in LP(ft)^ . 
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Proof: EXP L = P(D) (EXPKL) a P(D)LP(ft) c LP(ft) and use Lemma A3.  Q 'ft 'ft r s Q 

Lemma A5: Let ft = ft1 x ft" be like in Theorem 2. For ^1 e Ĉ (ft') and 

u £ (ft) let T. (u) be the linear functional on Ĉ ift") defined by 

T^(u): <f>2 + (u, (h©4>2) • Then 

i) the operator u -*• T. (u) maps L P (ft) into LP(ft") 
(pi s s 

ii) if P(D): u -> (P1 (D* )u,P 2 (D")u) and á>i vanishes on i ^ ' №)„1 then T̂  
P §x 

vanishes on (ft)p . 
Proof: We only prove ii) : it is easily seen that (f>i = Ẑ P.. (-D')^ifor some 

£ C~(ft') . But then, if v £ j^ 1 (ft)p , (v, 4>i©<í>2) = (v, (Z_.P̂  (-D' )̂ i J 

©•2) = Z (vf P (-D
1) (^©4)2)) = E..(P (D')v, ̂ © ^ 2 ) = 0 . 

Lemma A6: Let 1 < p < 0 0 and s £ R . If for some K-tuple of positive integers 

N = (N.,...,N ) every solution to P(D)u = 0 in LP(ft) is actually in L P (ft) 1 K s s+N 

then the linear space of distribution solutions to P(D)u = 0 in ft is finite 

dimensional. 

Proof: The assumption implies that LP(ft)pcz LP(ft) = C°°(ft)K . Now Lg(ft)p 

is closed in LP(ft) and in the stronger topology of C°°(ft)K . Hence L g ^ p i s a  

Fréchet space in two comparable topologies. By the closed graph theorem, the two 

topologies coincide. One of these is a Banach space topology and the other is a 

Montel space topology and it is known that these coincide only on finite 

dimensional spaces. Hence dim LP(ft) < 00 and j^' (ft) = LP(ft) by a density 
r S P P s P 

argument. 

Lemma A7: Let (J) £ C~(Rn) , X > 0, r| £ Rn, S£R, 1 < p < «> . Let P be a 

polynomial of degree m with principal part P^ . Then 

lim\- < S + m ) |p(D)(e i A x%)| LP = |Pm<ri>|-|Tl|
S-|<i>lLP -

Á-X» S 
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Proof ; Consider first the case m = 0 : 

|eiXxn-0»|LP = |<2*)-n/ $(Ç-Xn)(l+|Ç|2)S/2eixÇdÇ|Lp = |(2ir)"n/ e±xÇ-
S 

•(H-U+Xn|2)s/2dÇ|Lp = Xs|(2TT)-n/ $(Ç) eixÇ (X"2+1 X^Ç-Hl | 2) s/2dÇ | Lp . 

Now multiply by X~s and let X ~ . If m ̂  0 P (D) (elXxn«<t>) = 

I P(a)(Xn)-eiXxT1.2^= Xm P <n> eiXxT1 + E Xj .Q. (n) -eiXx% . for some homoge-a a- m lâ<m j 3 

neous polynomials Q_. , deg Q_. = j , and test functions . After multipli
cation of the last equality by \ ŝ+m̂  the LP-norm of the first term has the 
limit I pm(r|) I • |r| I S- I ({> ILP as \ -* oo by the previous case and the second term 
-> 0 . 
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