DAVID WILLIAM MASSER
Transcendence and abelian functions

Astérisque, tome 24-25 (1975), p. 177-182
<http://www.numdam.org/item?id=AST_1975__24-25__177_0>
TRANSCENDENCE AND ABELIAN FUNCTIONS

by

David William MASSER

I will first describe the results in the special case of elliptic functions.

Let g_2, g_3 be algebraic numbers with $g_2^3 \neq 27 g_3^2$, and let $\wp(z)$ be the Weierstrass elliptic function satisfying the differential equation:

$$
(\wp'(z))^2 = 4(\wp(z))^3 - g_2 \wp(z) - g_3.
$$

(*)

This function is doubly periodic with a lattice Λ of periods which are also poles.

We define an algebraic point of $\wp(z)$ as a complex number u such that either u is in Λ or $\wp(u)$ is an algebraic number. The ring \mathbb{E} of complex multiplications of $\wp(z)$ is the ring of complex numbers σ such that $\sigma \Lambda \leq \Lambda$. Clearly $\mathbb{E} \supset \mathbb{Z}$, and for general g_2, g_3 we have $\mathbb{E} = \mathbb{Z}$; otherwise \mathbb{E} is an order of a complex quadratic extension \mathbb{K} of the rational field \mathbb{Q}. It is not hard to prove that the set of algebraic points of $\wp(z)$ is an \mathbb{E}-module. Accordingly it was conjectured by Coates that algebraic points of $\wp(z)$ are linearly independent over the field \mathbb{A} of algebraic numbers if and only if they are linearly independent over \mathbb{E}.
I have proved this conjecture when $\mathbb{E} \neq \mathbb{Z}$, and the following theorem is an essential tool.

Theorem 1. Let u_1, \ldots, u_m be algebraic points of $\mathcal{P}(z)$ that are linearly independent over $\mathbb{E} (\neq \mathbb{Z})$. Then given $\varepsilon > 0$ there is an effectively computable constant $C > 0$ depending only on ε, u_1, \ldots, u_m and $\mathcal{P}(z)$ such that

$$\left| \sum_{i=1}^{m} \sigma_i u_i \right| > C e^{-H^\varepsilon}$$

for any algebraic numbers $\sigma_1, \ldots, \sigma_m$ of \mathbb{E}, not all zero, of heights at most H.

With this we can prove the following generalization of the conjecture which incorporates the number 1 into the basic linear form.

Theorem 2. Let u_1, \ldots, u_m be algebraic points of $\mathcal{P}(z)$ that are linearly independent over $\mathbb{E} (\neq \mathbb{Z})$. Then $1, u_1, \ldots, u_m$ are linearly independent over \mathbb{A}.

In particular, each u_i and each ratio u_i/u_j is transcendental; in fact these special cases were obtained by Schneider in [2] for general \mathbb{E}. The quantitative version of theorem 1 can be used in conjunction with the finite basis theorem of Mordell-Weil to give a new proof of Siegel's theorem for elliptic curves with complex multiplication. For example, if k is a non-zero rational integer, the curves

$$y^2 = x^3 + k, \quad y^2 = x^3 + kx$$

have only finitely many integral points.

Although this proof does not use the inequality of Thue-Siegel-Roth, it remains ineffective in character because there is no effective way of constructing the basis whose existence is asserted by the result of Mordell-Weil.
To generalize all this to abelian functions we proceed as follows. Let \(\Lambda \) be a lattice in \(\mathbb{C}^n \) satisfying certain relations of Riemann. If it is non-degenerate in a certain sense, the field \(\mathcal{F} \) of functions meromorphic on \(\mathbb{C}^n \) containing \(\Lambda \) in its lattice of periods is of transcendence degree \(n \) over \(\mathbb{C} \). Thus we may write

\[
\mathcal{F} = \mathbb{C}(A_0, A_1, \ldots, A_n)
\]

where \(A_1, \ldots, A_n \) are algebraically independent and \(A_0 \) is integral over the ring \(\mathbb{C}[A_1, \ldots, A_n] \). We express this dependence by a polynomial relation

\[
F(A_0, A_1, \ldots, A_n) = 0.
\]

For example, if \(n = 1 \) we can take \(A_1 = \rho \), \(A_0 = \rho' \) and \(F \) is given by (1).

The analogue of the condition that \(g^1, \ldots, g^n \) are algebraic numbers is imposed as follows. The partial derivatives \(\partial / \partial Z_i \) map \(\mathcal{F} \) to itself, and so we can write

\[
G(A_1, \ldots, A_n) \partial A_j / \partial Z_i = G_{ij}(A_0, A_1, \ldots, A_n) \quad (1 \leq i \leq n, 0 \leq j \leq n)
\]

after taking a common denominator and clearing this of the function \(A_0 \). We say that \(\mathcal{F} \) is algebraically defined if

a) \(A_1, \ldots, A_n \) are holomorphic at the origin \(0 \) and take algebraic values there,

b) \(F, G, G_{ij} \) have algebraic coefficients,

c) If we write \(B(Z) = G(A_1(Z), \ldots, A_n(Z)) \) then \(B(0) \neq 0 \).

We call a vector \(u \) of \(\mathbb{C}^n \) an algebraic point of \(\mathcal{F} \) if

d) \(A_1, \ldots, A_n \) are holomorphic at \(u \) and take algebraic values there,

e) \(B(u) \neq 0 \).

Once again we define \(\mathbb{E} \) as the ring of matrices of \(GL_n(\mathbb{C}) \) that take the period lattice \(\Lambda \) into itself. It is no longer true that algebraic points form a
$$\mathcal{E}$$-module, because of the denominator $B(Z)$; however, this statement is almost always true. The conjecture extending that of Coates would assert that algebraic points of \mathfrak{F} are linearly independent over $M_n(\mathbb{A})$ if and only if they are linearly independent over \mathcal{E}, where $M_n(\mathbb{A})$ denotes the ring of $n \times n$ matrices with algebraic entries.

Our methods only succeed when \mathfrak{F} has complex multiplication of the type discussed by Shimura. This is when \mathcal{E} is isomorphic to an order \mathcal{O}_L of an algebraic number field \mathbb{F} of degree $2n$ over \mathbb{Q}. It is convenient to make this isomorphism explicit by diagonalizing \mathcal{E}. There are n monomorphisms

$$\psi_i : \mathbb{F} \to \mathbb{C} \ (1 \leq i \leq n)$$

such that the diagonal matrix $D(\sigma)$ of \mathcal{E} corresponding to a number σ of \mathcal{O}_L is given by

$$D(\sigma) = \text{diag}(\psi_1(\sigma), \ldots, \psi_n(\sigma))$$

The next result generalizes Theorem 1.

Theorem 3. Let u_1, \ldots, u_m be algebraic points of \mathfrak{F} that are linearly independent over \mathcal{E} ($\cong \mathcal{O}_L$). Then given $\varepsilon > 0$ there is an effectively computable constant $C > 0$ depending only on ε, u_1, \ldots, u_m, and \mathfrak{F} such that

$$|D(\sigma_1)u_1 + \ldots + D(\sigma_m)u_m| > C e^{-H^\varepsilon}$$

for any algebraic numbers $\sigma_1, \ldots, \sigma_m$ of \mathcal{O}_L, not all zero, with heights at most H.

This enables us to give a new proof of Siegel's Theorem for any curve whose Jacobian variety has Shimura complex multiplication. An example is

$$ax^p + by^q + c = 0$$

where a, b, c are nonzero rational integers and p, q are different primes.
Once again the estimates would all become effective if the theorem of Mordell-Weil for abelian varieties could be made effective.

Finally Theorem 2 can be generalized by introducing the vector \(\mathbf{v} = (1, 1, \ldots, 1) \).

THEOREM 4. - Let \(u_1, \ldots, u_m \) be algebraic points linearly independent over \(E \). Then the vectors \(\mathbf{v}, u_1, \ldots, u_m \) are linearly independent over the set of non-zero diagonal matrices of \(M_n(A) \).

In other words, if \(R, S_1, \ldots, S_m \) are diagonal matrices of \(M_n(A) \), not all zero, the vector

\[
R \mathbf{v} + S_1 u_1 + \ldots + S_m u_m
\]

does not vanish. This clearly gives the transcendence of the vectors \(u_i \) (i.e. the transcendence of at least one of their components); this had been proved for general \(E \) by Lang in [1]. More interestingly, we can separate components by taking the matrix coefficients suitably singular. For example, when \(m = 1 \) we can take for algebraic \(a \)

\[
R = \text{diag}(a, 0, \ldots, 0) \quad S_1 = \text{diag}(1, 0, \ldots, 0)
\]

this implies the transcendence of the first component of \(u_1 \) (and so obviously that of each component). Similarly, the choice \(R = 0 \) and

\[
S_i = \text{diag}(\alpha_i, 0, \ldots, 0)
\]

for algebraic \(\alpha_i \) gives the linear independence over \(A \) of the first components of \(u_1, \ldots, u_m \).
REFERENCES

David William MASSER
University of Nottingham
Department of Mathematics
University Park
NOTTINGHAM NG7 2RD