Stationary disks and Green functions in almost complex domains
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 4, pp. 975-1000.

Using generalized Riemann maps, normal forms for almost complex domains (D,J) with singular foliations by stationary disks are defined. Such normal forms are used to construct counterexamples and to determine intrinsic conditions under which the stationary disks are extremal disks for the Kobayashi metric or determine solutions to almost complex Monge-Ampère equation.

Published online:
Classification: 32Q60, 32Q65, 32U35, 32G05
@article{ASNSP_2013_5_12_4_975_0,
     author = {Patrizio, Giorgio and Spiro, Andrea},
     title = {Stationary disks and {Green} functions  in almost complex domains},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {975--1000},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {4},
     year = {2013},
     mrnumber = {3184576},
     zbl = {1295.32040},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2013_5_12_4_975_0/}
}
TY  - JOUR
AU  - Patrizio, Giorgio
AU  - Spiro, Andrea
TI  - Stationary disks and Green functions  in almost complex domains
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2013
SP  - 975
EP  - 1000
VL  - 12
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2013_5_12_4_975_0/
LA  - en
ID  - ASNSP_2013_5_12_4_975_0
ER  - 
%0 Journal Article
%A Patrizio, Giorgio
%A Spiro, Andrea
%T Stationary disks and Green functions  in almost complex domains
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2013
%P 975-1000
%V 12
%N 4
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2013_5_12_4_975_0/
%G en
%F ASNSP_2013_5_12_4_975_0
Patrizio, Giorgio; Spiro, Andrea. Stationary disks and Green functions  in almost complex domains. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 4, pp. 975-1000. http://www.numdam.org/item/ASNSP_2013_5_12_4_975_0/

[1] E. Bedford, Survey of pluri-potential theory, In: “Several Complex Variables (Stockholm, 1987/1988)”, Math. Notes 38, Princeton Univ. Press, Princeton, NJ, 1993. | MR | Zbl

[2] A. Besse, “Einstein Manifolds”, Springer, 1987. | MR | Zbl

[3] F. Bracci and G. Patrizio, Monge-Ampère foliations with singularities at the boundary of strongly convex domains, Math. Ann. 332 (2005), 499–522. | MR | Zbl

[4] B. Coupet, H. Gaussier and A. Sukhov, Riemann maps in almost complex manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), 761–785. | EuDML | Numdam | MR | Zbl

[5] B. Coupet, H. Gaussier and A. Sukhov, Fefferman’s mapping theorem on almost complex manifolds in complex dimension two, Math. Z. 250 (2005), 59–90. | MR | Zbl

[6] B. Coupet, H. Gaussier and A. Sukhov, Some aspects of analysis on almost complex manifolds with boundary, J. Math. Sci. (N.Y.) 154 (2008), 923–986. | MR

[7] J.-P.  Demailly,  “Complex  Analytic  and  Differential  Geometry”, 1997, posted on http://www-fourier. ujf-grenoble.fr/demailly/books.html.

[8] K. Diederich and A. Sukhov, Plurisubharmonic exhaustion functions and almost complex Stein Structures, Michigan Math. J. 56 (2008), 331–355. | MR | Zbl

[9] H. Gaussier and A.-C. Joo, Extremal discs in almost complex spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), 759–783. | Numdam | MR | Zbl

[10] H. Gaussier and A. Sukhov, On the geometry of model almost complex manifolds with boundary, Math. Z. 254 (2006), 567–589. | MR | Zbl

[11] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427–474. | EuDML | Numdam | MR | Zbl

[12] L. Lempert, Intrinsic distances and holomorphic retracts, In: “Complex Analysis and Applications ’81 (Varna, 1981)”, Publ. House Bulgar. Acad. Sci., Sofia, 1984, 341–364. | MR | Zbl

[13] S. Mikhlin and S. Prosdorf, “Singular Integral Operators”, Springer-Verlag, Berlin, 1986. | MR | Zbl

[14] M.-Y. Pang, Smoothness of the Kobayashi metric of non-convex domains, Internat. J. Math. 4 (1993), 953–987. | MR | Zbl

[15] G. Patrizio, Parabolic exhaustions for strictly convex domains, Manuscripta Math. 47 (1984), 271–309. | EuDML | MR | Zbl

[16] G. Patrizio, A characterization of complex manifolds biholomorphic to a circular domain, Math. Z. 189 (1985), 343–363. | EuDML | MR | Zbl

[17] G. Patrizio, Disques extrémaux de Kobayashi et équation de Monge-Ampère complexe, C. R. Acad. Sci. Paris, Sér. I Math. 305 (1987), 721–724. | MR | Zbl

[18] G. Patrizio and A. Spiro, Monge-Ampère equations and moduli spaces of manifolds of circular type, Adv. Math. 223 (2010), 174–197. | MR | Zbl

[19] G. Patrizio and A. Spiro, Foliations by stationary disks of almost complex domains, Bull. Sci. Math. 134 (2010), 215–234. | MR | Zbl

[20] A. Spiro and A. Sukhov, An existence theorem for stationary disks in almost complex manifolds, J. Math. Anal. Appl. 327 (2007), 269–286. | MR | Zbl

[21] A. Spiro, Total reality of conormal bundles of hypersurfaces in almost complex manifolds, Int. J. Geom. Methods Mod. Phys. 3 (2006), 1255–1262. | MR | Zbl

[22] A. Tumanov, Extremal disks and the regularity of CR mappings in higher codimension, Amer. J. Math. 123 (2001), 445–473. | MR | Zbl

[23] W. Wendland, “Elliptic Systems in the Plane”, Pitman Publ., 1979. | MR | Zbl

[24] K. Yano and S. Ishihara, “Tangent and Cotangent Bundles: Differential Geometry”, Pure and Applied Mathematics, Vol. 16, Marcel Dekker Inc., New York, 1973. | MR | Zbl