Einstein-like geometric structures on surfaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 3, p. 499-585

An AH (affine hypersurface) structure is a pair comprising a projective equivalence class of torsion-free connections and a conformal structure satisfying a compatibility condition which is automatic in two dimensions. They generalize Weyl structures, and a pair of AH structures is induced on a co-oriented non-degenerate immersed hypersurface in flat affine space. The author has defined for AH structures Einstein equations, which specialize on the one hand to the usual Einstein-Weyl equations and, on the other hand, to the equations for affine hyperspheres. Here these equations are solved for Riemannian signature AH structures on compact orientable surfaces, the deformation spaces of solutions are described, and some aspects of the geometry of these structures are related. Every such structure is either Einstein-Weyl (in the sense defined for surfaces by Calderbank) or is determined by a pair comprising a conformal structure and a cubic holomorphic differential, and so by a convex flat real projective structure. In the latter case it can be identified with a solution of the Abelian vortex equations on an appropriate power of the canonical bundle. On the cone over a surface of genus at least two carrying an Einstein AH structure there are Monge-Ampère metrics of Lorentzian and Riemannian signature and a Riemannian Einstein Kähler affine metric. A mean curvature zero space-like immersed Lagrangian submanifold of a para-Kähler four-manifold with constant para-holomorphic sectional curvature inherits an Einstein AH structure, and this is used to deduce some restrictions on such immersions.

Published online : 2019-02-21
Classification:  53A15,  53C25,  53A30,  57N16,  57M50
@article{ASNSP_2013_5_12_3_499_0,
     author = {Fox, Daniel J. F.},
     title = {Einstein-like geometric structures on surfaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {3},
     year = {2013},
     pages = {499-585},
     zbl = {1285.53006},
     mrnumber = {3137456},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2013_5_12_3_499_0}
}
Fox, Daniel J. F. Einstein-like geometric structures on surfaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 3, pp. 499-585. http://www.numdam.org/item/ASNSP_2013_5_12_3_499_0/

[1] J. A. Aledo, J. M. Espinar and J. A. Gálvez, The Codazzi equation for surfaces, Adv. Math. 224 (2010), 2511–2530. | MR 2652214 | Zbl 1203.53016

[2] S. Armstrong, Einstein connections and involutions via parabolic geometries, J. Geom. Phys. 60 (2010), 1424–1440. | MR 2661149 | Zbl 1194.53022

[3] A. Banyaga, “The Structure of Classical Diffeomorphism Groups”, Mathematics and its Applications, Vol. 400, Kluwer Academic Publishers Group, Dordrecht, 1997. | MR 1445290 | Zbl 0874.58005

[4] Y. Benoist, “Convexes divisibles. I”, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai, 2004, 339–374. | MR 2094116 | Zbl 1084.37026

[5] S. B. Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Comm. Math. Phys. 135 (1990), 1–17. | MR 1086749 | Zbl 0717.53075

[6] E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958), 105–126. | MR 106487 | Zbl 0113.30104

[7] E. Calabi, On compact, Riemannian manifolds with constant curvature. I, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, 155–180. | MR 133787 | Zbl 0129.14102

[8] E. Calabi, Examples of Bernstein problems for some nonlinear equations, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, 223–230. | MR 264210 | Zbl 0211.12801

[9] E. Calabi, Complete affine hyperspheres. I, Symposia Mathematica, Vol. X (Convegno di Geometria Differenziale, INDAM, Rome, 1971), Academic Press, London, 1972, 19–38. | MR 365607 | Zbl 0252.53008

[10] E. Calabi, Extremal Kähler metrics, In: “Seminar on Differential Geometry”, Ann. of Math. Stud., Vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, 259–290. | MR 645743 | Zbl 0487.53057

[11] E. Calabi, Hypersurfaces with maximal affinely invariant area, Amer. J. Math. 104 (1982), 91–126. | MR 648482 | Zbl 0501.53037

[12] E. Calabi, Convex affine maximal surfaces, Results Math. 13 (1988), 199–223, reprinted in: “Affine Differentialgeometrie” [(Oberwolfach, 1986), 199–223, Tech. Univ. Berlin, Berlin, 1988]. | MR 941331 | Zbl 0653.53006

[13] D. M. J. Calderbank, Möbius structures and two-dimensional Einstein-Weyl geometry, J. Reine Angew. Math. 504 (1998), 37–53. | MR 1656822 | Zbl 0909.53029

[14] D. M. J. Calderbank, The Faraday 2-form in Einstein-Weyl geometry, Math. Scand. 89 (2001), 97–116. | MR 1856983 | Zbl 1130.53303

[15] D. M. J. Calderbank, Two dimensional Einstein-Weyl structures, Glasg. Math. J. 43 (2001), 419–424. | MR 1878586 | Zbl 1027.53047

[16] A. Čap and A. R. Gover, Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc. 354 (2002), 1511–1548. | MR 1873017 | Zbl 0997.53016

[17] A. Čap and J. Slovák, “Parabolic Geometries. I. Background and General Theory”, Mathematical Surveys and Monographs, Vol. 154, American Mathematical Society, Providence, RI, 2009. | MR 2532439 | Zbl 1183.53002

[18] A. Čap and V. Žádník, Contact projective structures and chains, Geom. Dedicata 146 (2010), 67–83. | MR 2644271 | Zbl 1204.53013

[19] X. Chen, P. Lu and G. Tian, A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc. 134 (2006), 3391–3393. | MR 2231924 | Zbl 1113.53042

[20] S. Y. Cheng and S. T. Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. (2) 104 (1976), 407–419. | MR 431061 | Zbl 0352.53021

[21] S.  Y.  Cheng  and  S.  T.  Yau, On the regularity of the Monge-Ampère equation det ( 2 u/x i x j )=F(x,u), Comm. Pure Appl. Math. 30 (1977), 41–68. | MR 437805 | Zbl 0347.35019

[22] S. Y. Cheng and S. T. Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), 507–544. | MR 575736 | Zbl 0506.53031

[23] S. Y. Cheng and S. T. Yau, The real Monge-Ampère equation and affine flat structures, Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 1, 2, 3 (Beijing, 1980) (Beijing), Science Press, 1982, 339–370. | MR 714338 | Zbl 0517.35020

[24] S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986), 839–866. | MR 859275 | Zbl 0623.53002

[25] S. Choi and W. M. Goldman, The deformation spaces of convex ℝℙ 2 -structures on 2-orbifolds, Amer. J. Math. 127 (2005), 1019–1102. | MR 2170138 | Zbl 1086.57015

[26] R. Courant and D. Hilbert, “Methods of mathematical physics. Vol. II: Partial Differential Equations”, (Vol. II by R. Courant.), Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. | MR 140802 | Zbl 0099.29504

[27] P. Dazord, Sur la géométrie des sous-fibrés et des feuilletages lagrangiens, Ann. Sci. École Norm. Sup. (4) 14 (1981), 465–480. | Numdam | MR 654208 | Zbl 0491.58015

[28] C. J. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geom. 3 (1969), 19–43. | MR 276999 | Zbl 0185.32901

[29] V. A. Fateev, E. Onofri and A. B. Zamolodchikov, Integrable deformations of the O(3) sigma model. The sausage model, Nuclear Phys. B 406 (1993), 521–565. | MR 1239623 | Zbl 0990.81683

[30] D. J. F. Fox, Geometric structures modeled on affine hypersurfaces and generalizations of the Einstein Weyl and affine hypersphere equations, arXiv:0909.1897. | MR 3738964

[31] D. J. F. Fox, Contact projective structures, Indiana Univ. Math. J. 54 (2005), 1547– 1598. | MR 2189678 | Zbl 1093.53083

[32] D. J. F. Fox, Commutative, nonassociative algebras with non-degenerate, invariant Killing form, and the associated cubic polynomials, preprint, 2010.

[33] Ó. García-Prada, A direct existence proof for the vortex equations over a compact Riemann surface, Bull. London Math. Soc. 26 (1994), 88–96. | MR 1246476 | Zbl 0807.53021

[34] P. Gauduchon, La 1-forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 (1984), 495–518. | MR 742896 | Zbl 0523.53059

[35] P. Gauduchon, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S 1 ×S 3 , J. Reine Angew. Math. 469 (1995), 1–50. | MR 1363825 | Zbl 0858.53039

[36] W. M. Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990), 791–845. | MR 1053346 | Zbl 0711.53033

[37] F. Herrlich and G. Schmithüsen, On the boundary of Teichmüller disks in Teichmüller and in Schottky space, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., Eur. Math. Soc., Zürich 11 (2007) 293–349. | MR 2349673 | Zbl 1141.30011

[38] R. Hildebrand, The cross-ratio manifold: a model of centro-affine geometry, Int. Electron. J. Geom. 4 (2011), 32–62. | MR 2854275

[39] R. Hildebrand, Half-dimensional immersions in para-Kähler manifolds, Int. Electron. J. Geom. 4 (2011), 85–113. | MR 2854277

[40] Z. Hou, S. Deng, S. Kaneyuki and K. Nishiyama, Dipolarizations in semisimple Lie algebras and homogeneous para-Kähler manifolds, J. Lie Theory 9 (1999), 215–232. | MR 1679991 | Zbl 0938.17008

[41] J. Jost and Y. L. Xin, Some aspects of the global geometry of entire space-like submanifolds, Results Math. 40 (2001), 233–245. | MR 1860371 | Zbl 0998.53036

[42] S. Kaneyuki, Compactification of parahermitian symmetric spaces and its applications. II. Stratifications and automorphism groups, J. Lie Theory 13 (2003), 535–563. | MR 2003159 | Zbl 1119.32301

[43] S. Kaneyuki and M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8 (1985), 81–98. | MR 800077 | Zbl 0585.53029

[44] J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. (2) 99 (1974), 14–47. | MR 343205 | Zbl 0273.53034

[45] S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), 293–311. | MR 855297 | Zbl 0637.58010

[46] S. Kobayashi, The first Chern class and holomorphic symmetric tensor fields, J. Math. Soc. Japan 32 (1980), 325–329. | MR 567422 | Zbl 0447.53055

[47] S. Kobayashi and K. Nomizu, “Foundations of differential geometry”, Vol. II, Interscience Tracts in Pure and Applied Mathematics, n. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. | MR 238225 | Zbl 0119.37502

[48] M. Kontsevich and Y. Soibelman, Homological mirror symmetry and torus fibrations, In: “Symplectic Geometry and Mirror Symmetry” (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, 203–263. | MR 1882331 | Zbl 1072.14046

[49] F. Labourie, Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q. 3 (2007), 1057–1099. | MR 2402597 | Zbl 1158.32006

[50] J. Loftin and I. McIntosh, Minimal Lagrangian surfaces in ℂℍ 2 and representations of surface groups into SU(2,1), Geom. Dedicata 162 (2013), 67–93. | MR 3009535 | Zbl 1268.53067

[51] J. C. Loftin, Affine spheres and convex ℝℙ n -manifolds, Amer. J. Math. 123 (2001), 255–274. | MR 1828223 | Zbl 0997.53010

[52] J. C. Loftin, Riemannian metrics on locally projectively flat manifolds, Amer. J. Math. 124 (2002), 595–609. | MR 1902890 | Zbl 1014.53023

[53] J. C. Loftin, The compactification of the moduli space of convex ℝℙ 2 surfaces. I, J. Differential Geom. 68 (2004), 223–276. | MR 2144248 | Zbl 1085.14024

[54] J. C. Loftin, Flat metrics, cubic differentials and limits of projective holonomies, Geom. Dedicata 128 (2007), 97–106. | MR 2350148 | Zbl 1145.57014

[55] J.  C.  Loftin,  Survey on affine spheres,  In:  “Handbook of Geometric Analysis”, Vol. II, Adv. Lect. Math. (ALM), Int. Press, Somerville, MA, 13 (2010), 161–192, arXiv:0809.1186. | MR 2743442 | Zbl 1214.53013

[56] J. C. Loftin, S. T. Yau and E. Zaslow, Affine manifolds, SYZ geometry and the “Y” vertex, J. Differential Geom. 71 (2005), 129–158. | MR 2191770 | Zbl 1094.32007

[57] J. C. Loftin, S. T. Yau and E. Zaslow, Erratum to affine manifolds, SYZ geometry and the “Y” vertex, Loftin’s web page, 2008. | Zbl 1094.32007

[58] H. Masur and S. Tabachnikov, Rational billiards and flat structures, In: “Handbook of Dynamical Systems”, Vol. 1A, North-Holland, Amsterdam, 2002, 1015–1089. | MR 1928530 | Zbl 1057.37034

[59] I. McIntosh, Special Lagrangian cones in 3 and primitive harmonic maps, J. London Math. Soc. (2) 67 (2003), 769–789. | MR 1967705 | Zbl 1167.53314

[60] N. Mok and S. T. Yau, Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions, In: “The Mathematical Heritage” of Henri Poincaré, Part 1 (Bloomington, Ind., 1980), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI 39 (1983) 41–59. | MR 720056 | Zbl 0526.53056

[61] M. Noguchi, Yang-Mills-Higgs theory on a compact Riemann surface, J. Math. Phys. 28 (1987), 2343–2346. | MR 907998 | Zbl 0641.53082

[62] K. Nomizu and F. Podestà, On affine Kähler structures, Bull. Soc. Math. Belg. Sér. B 41 (1989), 275–282. | MR 1022752 | Zbl 0683.53012

[63] K. Nomizu and T. Sasaki, “Affine Differential Geometry”, Cambridge Tracts in Mathematics, Vol. 111, Cambridge University Press, Cambridge, 1994. | MR 1311248 | Zbl 0834.53002

[64] R. Schoen and S. T. Yau, “Lectures on Differential Geometry”, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. | MR 1333601 | Zbl 0830.53001

[65] H. Shima and K. Yagi, Geometry of Hessian manifolds, Differential Geom. Appl. 7 (1997), 277–290. | MR 1480540 | Zbl 0910.53034

[66] C. H. Taubes, Minimal surfaces in germs of hyperbolic 3-manifolds, Proceedings of the Casson Fest, Geom. Topol. Monogr., Geom. Topol. Publ., Coventry 7 (2004), 69–100. | MR 2172479 | Zbl 1087.53011

[67] T. Y. Thomas, “The differential invariants of generalized spaces”, Chelsea Publishing Company, New York, 1934. | Zbl 0896.53004

[68] K. P. Tod, Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc. (2) 45 (1992), 341–351. | MR 1171560 | Zbl 0761.53026

[69] M. Troyanov, Les surfaces euclidiennes à singularités coniques, Enseign. Math. (2) 32 (1986), 79–94. | MR 850552 | Zbl 0611.53035

[70] M. Troyanov, On the moduli space of singular Euclidean surfaces, In: “Handbook of Teichmüller Theory”, Vol. I, IRMA Lect. Math. Theor. Phys., Eur. Math. Soc., Zürich 11 (2007), 507–540. | MR 2349679 | Zbl 1127.32009

[71] N. S. Trudinger and X.-J. Wang, The Monge-Ampère equation and its geometric applications, In: “Handbook of Geometric Analysis”, n. 1, Adv. Lect. Math. (ALM), Vol. 7, Int. Press, Somerville, MA, 2008, 467–524. | MR 2483373 | Zbl 1156.35033

[72] M. Viana, Ergodic theory of interval exchange maps, Rev. Mat. Complut. 19 (2006), 7–100. | MR 2219821 | Zbl 1112.37003

[73] A. Vitter, Affine structures on compact complex manifolds, Invent. Math. 17 (1972), 231–244. | MR 338998 | Zbl 0253.32006

[74] L. Vrancken, Centroaffine differential geometry and its relations to horizontal submanifolds, In: “PDEs, Submanifolds and Affine Differential Geometry” (Warsaw, 2000), Banach Center Publ., Polish Acad. Sci., Warsaw 57 (2002), 21–28. | MR 1972461 | Zbl 1023.53010

[75] C. P. Wang, Some examples of complete hyperbolic affine 2-spheres in 3 , In: “Global Differential Geometry and Global Analysis” (Berlin, 1990), Lecture Notes in Math., Vol. 1481, Springer, Berlin, 1991, 271–280. | MR 1178538 | Zbl 0743.53004

[76] H. Weyl, “The classical groups. Their invariants and representations”, Princeton University Press, Princeton, N.J., 1939. | MR 255 | Zbl 1024.20502

[77] M. Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989), 449–479. | MR 982185 | Zbl 0655.58009