Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 1, p. 43-92

In this paper we derive some quantitative uniqueness estimates for the shallow shell equations. Our proof relies on appropriate Carleman estimates. For applications, we consider the size estimate inverse problem.

Published online : 2019-02-21
Classification:  53J58,  35R30
@article{ASNSP_2013_5_12_1_43_0,
     author = {Di Cristo, Michele and Lin, Ching-Lung and Wang, Jenn-Nan},
     title = {Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {1},
     year = {2013},
     pages = {43-92},
     zbl = {1272.35091},
     mrnumber = {3088437},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2013_5_12_1_43_0}
}
Di Cristo, Michele; Lin, Ching-Lung; Wang, Jenn-Nan. Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 1, pp. 43-92. http://www.numdam.org/item/ASNSP_2013_5_12_1_43_0/

[1] G. Alessandrini and A. Morassi, Strong unique continuation for the Lamé system of elasticity, Comm. Partial Differential Equations 26 (2001), 1787–1810. | MR 1865945 | Zbl 1086.35016

[2] G. Alessandrini, A. Morassi and E. Rosset, Detecting an inclusion in an elastic body by boundary measurements, SIAM J. Math. Anal. 33 (2002), 1247–1268. | MR 1920629 | Zbl 1011.35130

[3] G. Alessandrini, A. Morassi and E. Rosset, Size estimates, In: “Inverse Problems: Theory and Applications” (Cortona/Pisa, 2002), Contemp. Math., Vol. 333, Amer. Math. Soc., Providence, RI, 2003, 1–33. | MR 2032004 | Zbl 1060.35158

[4] G. Alessandrini, A. Morassi, E. Rosset and S. Vessella, On doubling inequalities for elliptic systems, J. Math. Anal. Appl. 357 (2009), 349–355. | MR 2557649 | Zbl 1167.35541

[5] G. Alessandrini, A. Morassi and E. Rosset, The linear constraints in Poincaré and Korn type inequalities, Forum Math. 20 (2008), 557–569. | MR 2418206 | Zbl 1151.26319

[6] G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object, SIAM J. Appl. Math. 58 (1998), 1060–1071. | MR 1620386 | Zbl 0953.35141

[7] G. Alessandrini, E. Rosset and J. K. Seo, Optimal size estimates for the inverse conductivity problem with one measurement, Proc. Amer. Mat. Soc. 128 (2000), 53–64. | MR 1695112 | Zbl 0944.35108

[8] J. Bourgain and C. Kenig, On localization in the continuous Anderson-Bernoulli model in higher dimension, Invent. Math. 161 (2005), 1389–426. | MR 2180453 | Zbl 1084.82005

[9] H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), 161–183. | MR 943927 | Zbl 0659.58047

[10] N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, A p weights and unique continuation, Indiana Univ. Math. J. 35 (1986), 245–267. | MR 833393 | Zbl 0678.35015

[11] N. Garofalo and F. H. Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math., 40 (1987), 347–366. | MR 882069 | Zbl 0674.35007

[12] L. Hörmander, “The Analysis of Linear Partial Differential Operators”, Vol. 3, Springer-Verlag, Berlin/New York, 1985. | MR 404822 | Zbl 0521.35002

[13] V. Isakov, “Inverse Problems for Partial Differential Equations”, Second Edition, Springer, New York, 2006. | MR 2193218 | Zbl 0908.35134

[14] I. Kukavica, Quantitative uniqueness for second order elliptic operators, Duke Math. J. 91 (1998), 225–240. | MR 1600578 | Zbl 0947.35045

[15] C.L. Lin, Strong unique continuation for m-th powers of a Laplaceian operator with singular coefficients, Proc. Amer. Math. Soc. 135 (2007), 569–578. | MR 2255304 | Zbl 1152.35117

[16] F. H. Lin, A uniqueness theorem for parabolic equations, Comm. Pure Appl. Math. 43 (1990), 127–136. | MR 1024191 | Zbl 0727.35063

[17] C. L. Lin, S. Nagayasu and J. N. Wang, Quantitative uniqueness for the power of the Laplacian with singular coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), 513–529 | Numdam | MR 2905377 | Zbl 1237.35164

[18] C. L. Lin, G. Nakamura and J. N. Wang, Quantitative uniqueness for second order elliptic operators with strongly singular coefficients, preprint. | MR 2848528 | Zbl 1219.35058

[19] C. L. Lin, G. Nakamura and J. N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients, arXiv:0901.4638 [math.AP] | MR 2730376 | Zbl 1202.35325

[20] A. Morassi, E. Rosset and S. Vessella, Size estimates for inclusions in an elastic plate by boundary measurements, Indiana Univ. Math. J. 56 (2007), 2325–2384. | MR 2360612 | Zbl 1137.35080

[21] A. Morassi, E. Rosset and S. Vessella, Detecting general inclusions in elastic plates, Inverse Problems 25 (2009). | MR 2482160 | Zbl 1163.35496