A T1 criterion for Hermite-Calderón-Zygmund operators on the BMO H ( n ) space and applications
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 1, p. 157-187

In this paper we establish a T1 criterion for the boundedness of Hermite-Calderón -Zygmund operators on the BMO H ( n ) space naturally associated to the Hermite operator H. We apply this criterion in a systematic way to prove the boundedness on BMO H ( n ) of certain harmonic analysis operators related to H (Riesz transforms, maximal operators, Littlewood-Paley g-functions and variation operators).

Published online : 2019-02-21
Classification:  42B20,  42B25,  42B35,  35J10,  42B15,  42C10
@article{ASNSP_2013_5_12_1_157_0,
     author = {Betancor, Jorge J. and Crescimbeni, Raquel and Fari\~na, Juan C. and Stinga, Pablo Ra\'ul and Torrea, Jos\'e L.},
     title = {A $T1$ criterion for Hermite-Calder\'on-Zygmund operators on the $BMO\_{H}(\protect \mathbb{R}^{n})$ space and applications},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {1},
     year = {2013},
     pages = {157-187},
     zbl = {1276.42014},
     mrnumber = {3088440},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2013_5_12_1_157_0}
}
Betancor, Jorge J.; Crescimbeni, Raquel; Fariña, Juan C.; Stinga, Pablo Raúl ; Torrea, José L. A $T1$ criterion for Hermite-Calderón-Zygmund operators on the $BMO_{H}(\protect \mathbb{R}^{n})$ space and applications. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 1, pp. 157-187. http://www.numdam.org/item/ASNSP_2013_5_12_1_157_0/

[1] I. Abu-Falahah, P. R. Stinga and J. L. Torrea, Square functions associated to Schrödinger operators, Studia Math. 203 (2011), 171–194. | MR 2784023 | Zbl 1219.35050

[2] B. Bongioanni, E. Harboure and O. Salinas, Riesz transforms related to Schrödinger operators acting on BMO type spaces, J. Math. Anal. Appl. 357 (2009), 115–131. | MR 2526811 | Zbl 1180.42013

[3] R. Crescimbeni, R. A. Macías, T. Menárguez, J. L. Torrea and B. Viviani, The ρ-variation as an operator between maximal operators and singular integrals, J. Evol. Equ. 9 (2009), 81–102. | MR 2501353 | Zbl 1239.42012

[4] R. Crescimbeni, F. J. Martín-Reyes, A. de la Torre and J. L. Torrea, The ρ-variation of the Hermitian Riesz transform, Acta Math. Sin. (Engl. Ser.) 26 (2010), 1827–1838. | MR 2718083 | Zbl 1206.42008

[5] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371–397. | MR 763911 | Zbl 0567.47025

[6] J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea and J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), 329–356. | MR 2115447 | Zbl 1136.35018

[7] J. Dziubański and J. Zienkiewicz, Hardy space H 1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15 (1999), 279–296. | MR 1715409 | Zbl 0959.47028

[8] T. A. Gillespie and J. L. Torrea, Dimension free estimates for the oscillation of Riesz transforms, Israel J. Math. 141 (2004), 125–144. | MR 2063029 | Zbl 1072.42011

[9] L. Grafakos, “Classical and Modern Fourier Analysis”, Pearson Education, Inc., Upper Saddle River, NJ, 2004. | MR 2449250 | Zbl 1148.42001

[10] T. Hytönen, An operator-valued Tb theorem, J. Funct. Anal. 234 (2006), 420-463. | MR 2216905 | Zbl 1119.42006

[11] T. Hytönen and L. Weis, A T1 theorem for integral transformations with operator-valued kernel, J. Reine Angew. Math. 599 (2006), 155-200. | MR 2279101 | Zbl 1130.42020

[12] S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189–196. | MR 438030 | Zbl 0341.43005

[13] E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), 207–218. | MR 780660 | Zbl 0546.42019

[14] Z. Shen, L p estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513–546. | Numdam | MR 1343560 | Zbl 0818.35021

[15] K. Stempak and J. L. Torrea, On g-functions for Hermite function expansions, Acta Math. Hungar. 109 (2005), 99–125. | MR 2174241 | Zbl 1150.42326

[16] K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 (2003), 443–472. | MR 1990533 | Zbl 1040.42015

[17] P. R. Stinga and J. L. Torrea, Regularity theory for the fractional harmonic oscillator, J. Funct. Anal. 260 (2011), 3097–3131. | MR 2774066 | Zbl 1232.35187

[18] S. Thangavelu, “Lectures on Hermite and Laguerre Expansions”, Mathematical Notes, Vol. 42, Princeton University Press, Princeton, NJ, 1993. | MR 1215939 | Zbl 0791.41030

[19] A. Torchinsky, “Real-Variable Methods in Harmonic Analysis”, Pure and Applied Mathematics, Vol. 123, Academic Press, Inc., Orlando, FL, 1986. | MR 869816 | Zbl 0621.42001