A note on quasilinear parabolic equations on manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 4, p. 857-874

We prove short time existence, uniqueness and continuous dependence on the initial data of smooth solutions of quasilinear locally parabolic equations of arbitrary even order on closed manifolds.

Published online : 2018-06-21
Classification:  35K59,  35K41,  35K52
@article{ASNSP_2012_5_11_4_857_0,
     author = {Mantegazza, Carlo and Martinazzi, Luca},
     title = {A note on quasilinear parabolic equations on manifolds},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {4},
     year = {2012},
     pages = {857-874},
     zbl = {1272.35123},
     mrnumber = {3060703},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2012_5_11_4_857_0}
}
Mantegazza, Carlo; Martinazzi, Luca. A note on quasilinear parabolic equations on manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 4, pp. 857-874. http://www.numdam.org/item/ASNSP_2012_5_11_4_857_0/

[1] R. Adams, “Sobolev Spaces”, Academic Press, New York, 1975. | MR 450957 | Zbl 1098.46001

[2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623–727. | MR 125307 | Zbl 0093.10401

[3] T. Aubin, “Some Nonlinear Problems in Riemannian Geometry”, Springer-Verlag, 1998. | MR 1636569 | Zbl 0896.53003

[4] S. Brendle, Convergence of the Yamabe flow for arbitrary initial energy, J. Differential Geom. 69 (2005), 217–278. | MR 2168505 | Zbl 1085.53028

[5] M. Giaquinta and G. Modica, Local existence for quasilinear parabolic systems under nonlinear boundary conditions, Ann. Mat. Pura Appl. 149 (1987), 41–59. | MR 932775 | Zbl 0655.35049

[6] G. Huisken and A. Polden, Geometric Evolution Equations for Hypersurfaces, In: “Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996)”, Springer–Verlag, Berlin, 1999, 45–84. | MR 1731639 | Zbl 0942.35047

[7] E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional, Comm. Anal. Geom. 10 (2002), 307–339. | MR 1900754 | Zbl 1029.53082

[8] J. L. Lions and E. Magenes, “Non-homogeneous Boundary Value Problems and Applications”, Vol. I, Springer-Verlag, New York, 1972. | MR 350177 | Zbl 0223.35039

[9] A. Malchiodi and M. Struwe, Q-curvature flow on 𝕊 4 , J. Differential Geom. 73 (2006), 1–44. | MR 2217518 | Zbl 1099.53034

[10] A. Polden, Curves and Surfaces of Least Total Curvature and Fourth–Order Flows, P.h.D. thesis, Mathematisches Institut, Univ. Tübingen, 1996, Arbeitsbereich Analysis Preprint Server – Univ. Tübingen, http://poincare.mathematik.uni-tuebingen.de/mozilla/home.e.html.

[11] H. Schwetlick and M. Struwe, Convergence of the Yamabe flow for “large” energies, J. Reine Angew. Math. 562 (2003), 59–100. | MR 2011332 | Zbl 1079.53100

[12] J. J. Sharples, Linear and quasilinear parabolic equations in Sobolev space, J. Differential Equations 202 (2004), 111–142. | MR 2060534 | Zbl 1056.35091

[13] R. Ye, Global existence and convergence of Yamabe flow, J. Differential Geom. 39 (1994), 35–50. | MR 1258912 | Zbl 0846.53027