Cauchy problem and quasi-stationary limit for the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 3, p. 503-543

In this paper we continue the investigation of the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations. In particular we extend some previous results about the Cauchy problem and the quasi-stationary limit to the case where the magnetic permeability and the electric permittivity are variable.

Published online : 2019-02-22
Classification:  35L45,  35Q60
@article{ASNSP_2012_5_11_3_503_0,
     author = {Dumas, Eric and Sueur, Franck},
     title = {Cauchy problem and quasi-stationary limit for the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {3},
     year = {2012},
     pages = {503-543},
     zbl = {1258.35191},
     mrnumber = {3059836},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2012_5_11_3_503_0}
}
Dumas, Eric; Sueur, Franck. Cauchy problem and quasi-stationary limit for the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 3, pp. 503-543. http://www.numdam.org/item/ASNSP_2012_5_11_3_503_0/

[1] F. Alouges and K. Beauchard, Magnetization switching on small ferromagnetic ellipsoidal samples, ESAIM Control Optim. Calc. Var.15 (2009), 676–711. | Numdam | MR 2542578 | Zbl 1167.49003

[2] F. Alouges and A. Soyeur, On global weak solutions for Landau Lifschitz equations: existence and non uniqueness, Nonlinear Anal. (11) 18 (1992), 1071–1084. | MR 1167422 | Zbl 0788.35065

[3] H. Bahouri, J.-Y. Chemin and R. Danchin, “Fourier Analysis and Nonlinear Partial Differential Equations”, Springer. | MR 2768550 | Zbl 1227.35004

[4] J. Bergh and J. Löfström, “Interpolation Spaces. An introduction”, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin, 1976. | MR 482275 | Zbl 0344.46071

[5] B. Bidégaray-Fesquet, A. Bourgeade and D. Reignier, Introducing physical relaxation terms in Bloch equations, J. Comput. Phys. 170 (2001), 603–613. | MR 1844905 | Zbl 1112.81022

[6] B. Bidégaray-Fesquet, “De Maxwell-Bloch à Schrödinger non Linéaire: une Hiérarchie de Modèles en Optique Quantique”, Collection Mathématiques et Applications, Vol. 49, Springer, 2006. | MR 2251349 | Zbl 1108.81055

[7] A. Bohm, “Quantum Mechanics”, Texts and monographs in Physics, Springer-Verlag, 1979. | MR 580320 | Zbl 0994.81502

[8] R. W. Boyd, “Nonlinear Optics”, Academic Press, 1992. | MR 2475397

[9] P. Brenner, On the existence of global smooth solutions of certain semilinear hyperbolic equations, Math. Z. (2) 67 (1979), 99–135. | MR 534820 | Zbl 0388.35048

[10] W. F. Brown, “Micromagnetics”, Interscience Publisher, John Willey and Sons, New York, 1963.

[11] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. | MR 52553 | Zbl 0047.10201

[12] G. Carbou and P. Fabrie, Time average in micromagnetism, J. Differential Equations 147 (1998), 383–409. | MR 1633953 | Zbl 0931.35170

[13] G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in 3 , Commun. Appl. Anal. (1) 5 (2001), 17–30. | MR 1844668 | Zbl 1084.35519

[14] G. Carbou and P. Fabrie, Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain, Differential Integral Equations 14 (2001), 219–229. | MR 1797387 | Zbl 1161.35421

[15] J. Chazarain, Opérateurs hyperboliques a caractéristiques de multiplicité constante, Ann. Inst. Fourier (Grenoble) (1) 24 (1974), 173–202. | Numdam | MR 390512 | Zbl 0274.35045

[16] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, “Processus d’Interaction Entre Photons et Atomes”, Savoirs actuels, Intereditions/Editions du CNRS, 1988.

[17] J. J. Duistermaat and L. Hörmander, Fourier integral operators, II, Acta Math. (3-4) 128 (1972), 183–269. | MR 388464 | Zbl 0232.47055

[18] E. Dumas, Global existence for Maxwell-Bloch systems, J. Differential Equations (2) 219 (2005), 484–509. | MR 2183269 | Zbl 1083.35055

[19] L. Gårding, Hyperbolic equations in the twentieth century, In: “Matériaux pour l’Histoire des Mathématiques au XX e siècle” (Nice, 1996), Vol. 3 of Sémin. Congr., pages 37–68, Soc. Math. France, Paris, 1998. | MR 1640255 | Zbl 1044.01525

[20] J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. (1) 133 (1995), 50–68. | MR 1351643 | Zbl 0849.35064

[21] H. Haddar, “Modèles Asymptotiques en Ferromagnétisme: Couches Minces et Homogénéisation”, Thèse INRIA-École Nationale des Ponts et Chaussées, 2000.

[22] L. Hörmander, Fourier integral operators, I, Acta Math. (1-2) 127 (1971), 79–183. | MR 388463 | Zbl 0212.46601

[23] F. Jochmann, Existence of solutions and a quasi-stationary limit for a hyperbolic system describing ferromagnetism, SIAM J. Math. Anal. (2) 34 (electronic) (2002), 315–340. | MR 1951777 | Zbl 1021.35122

[24] J. L. Joly, G. Métivier and J. Rauch, Global solutions to Maxwell equations in a ferromagnetic medium, Ann. Henri Poincaré (2) 1 (2000), 307–340. | MR 1770802 | Zbl 0964.35155

[25] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. (5) 120 (1998), 955–980. | MR 1646048 | Zbl 0922.35028

[26] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. (9) 46 (1993), 1221–1268. | MR 1231427 | Zbl 0803.35095

[27] H. Kumano-go, A calculus of Fourier integral operators on R n and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equations (1) 1 (1976), 1–44. | MR 397482 | Zbl 0331.42012

[28] L. Landau and E. Lifschitz, “Électrodynamique des milieux continus”, Cours de physique théorique, t. 8, Mir, Moscou, 1969. | MR 1145238 | Zbl 0146.23803

[29] P. D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24 (1957), 627–646. | MR 97628 | Zbl 0083.31801

[30] H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. (1) 118 (1996), 1–16. | MR 1375301 | Zbl 0855.35080

[31] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766–770. | MR 155146 | Zbl 0143.34701

[32] R. Loudon, “The Quantum Theory of Light”, Clarendon Press, Oxford, 1991. | Zbl 1009.81003

[33] D. Ludwig, Exact and asymptotic solutions of the Cauchy problem, Comm. Pure Appl. Math. 13 (1960), 473–508. | MR 115010 | Zbl 0098.29601

[34] G. Métivier, The Cauchy problem for semilinear hyperbolic systems with discontinuous data, Duke Math. J. (4) 53 (1986), 983–1011. | MR 874678 | Zbl 0631.35056

[35] A. C. Newell and J. V. Moloney, “Nonlinear Optics”, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1992. | MR 1163192 | Zbl 0714.35077

[36] L. Nirenberg and F. Trèves, On local solvability of linear partial differential equations, II, Sufficient conditions, Comm. Pure Appl. Math. 23 (1970), 459–509. | MR 264471 | Zbl 0208.35902

[37] L. Nirenberg and F. Treves, A correction to: On local solvability of linear partial differential equations, II, Sufficient conditions, (Comm. Pure Appl. Math. 23 (1970), 459–509). Comm. Pure Appl. Math. (2) 24 (1971), 279–288. | MR 435641 | Zbl 0221.35019

[38] R. Pantell and H. Puthoff, “Fundamentals of Quantum Electronics”, Wiley and Sons Inc., N.Y., 1969.

[39] J. Rauch and M. C. Reed, Discontinuous progressing waves for semilinear systems, Comm. Partial Differential Equations (9) 10 (1985), 1033–1075. | MR 806255 | Zbl 0598.35069

[40] L. Saint-Raymond, Un résultat générique d’unicité pour les équations d’évolution, Bull. Soc. Math. France (1) 130 (2002), 87–99. | Numdam | MR 1906194 | Zbl 0996.35002

[41] M. Sargent, M. O. Scully and W. E. Lamb, “Laser Physics”, Addison-Wesley, 1977.

[42] J. Starynkévitch, Local energy estimates for Maxwell-Landau-Lifshitz system and applications, J. Hyperbolic Differ. Equ. (3) 2 (2005), 565–594. | MR 2172697 | Zbl 1124.35086

[43] J. Starynkévitch, “Problèmes d’asymptotique en temps en ferromagnétisme”, PhD Thesis.

[44] F. Sueur, Approche visqueuse de solutions discontinues de systèmes hyperboliques semilinéaires, Ann. Inst. Fourier (Grenoble) (1) 56 (2006), 183–245. | Numdam | MR 2228685 | Zbl 1094.35024

[45] A. Visintin, On Landau-Lifshitz equations for ferromagnetism, Japan J. Appl. Math. (1) 2 (1985), 69–84. | MR 839320 | Zbl 0613.35018

[46] V. I. Judovič, Some bounds for solutions of elliptic equations, Mat. Sb. (N.S.) (101) (suppl.) 59 (1962), 229–244. | MR 149062 | Zbl 0161.31101