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Regularity of the singular set for Mumford-Shah minimizers

in R3 near a minimal cone

ANTOINE LEMENANT

Abstract. We prove that if (u, K ) is a minimizer of the Mumford-Shah func-

tional in an open set ! of R3, and if x ∈ K and r > 0 are such that K is close
enough to a minimal cone of type P (a plane), Y (three half planes meeting at x
with 120◦ angles) or T (cone over the 6 edges of a regular tetrahedron centered
at x) in terms of Hausdorff distance in B(x, r), then K is C1,α equivalent to the
minimal cone in B(x, cr) where c < 1 is a universal constant.

Mathematics Subject Classification (2010): 49Q20 (primary); 49Q05 (sec-
ondary).

1. Introduction

The Mumford-Shah functional originally comes from an image-segmentation prob-

lem. If ! is an open subset of R2, for example a rectangle, and g ∈ L∞(!) is an
image, D. Mumford and J. Shah [15] proposed to define

J (u, K ) :=
∫

!\K
|∇u|2dx +

∫

!\K
(u − g)2dx +H1(K ) (1.1)

and, to get a segmentation of the image g, to minimize the functional J over all the

admissible pairs (u, K ) where K is a closed one-dimensional set and u is regular

outside K . More precisely (u, K ) belongs to the set of admissible pairs A defined

by

A :=
{
(u, K ); K ⊂ ! is closed, u ∈ W

1,2
loc (!\K )

}
. (1.2)

For any solution (u, K ) that minimizes J , the function u represents a “smoother”
version of the image g and the set K stands for the edges of the image. One can

easily be intuitively convinced that when being minimized, J tends to detect the

singularities of g, which leads to solve the desired segmentation problem.
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Of course there are no restrictions to define the functional in higher dimen-

sions, simply replacing H1 by HN−1 in (1.1) when ! ⊂ RN . Existence of min-

imizers is now a well-known result (but however nontrivial, see for instance [9])

using SBV theory. As far as the optimal regularity for the singular set K of a mini-

mizer in R2 has been investigated, the following conjecture from D. Mumford and
J. Shah is currently still open.

Conjecture 1.1 ([15, Mumford-Shah, 1989]). Let (u,K ) be a reduced minimizer
for the functional J . Then K is the finite union of C1 arcs.

A pair (u, K ) ∈ A is called “reduced”, when there exists no pair (ũ, K̃ ) ∈ A
such that K̃ ! K and ũ is an extension of u in W

1,2
loc (!\K̃ ). Given a pair (u, K ) ∈

A, one can always find a reduced pair (ũ, K̃ ) ∈ A such that K̃ ⊂ K and ũ is an

extension of u (see [6, Proposition 8.2]). We cannot expect any regularity result

on non-reduced minimizers since we still get a minimizing pair from a minimizer

(u, K ) by adding some negligible set to K . In the sequel, we will always assume
(u, K ) to be reduced. Some partial results are true for this conjecture. For instance
it is known that K is C1,α almost everywhere (see [1, 3, 5]), which also leads to

further regularity under more assumptions on g ([2, 11]).

Many results about the Mumford-Shah functional are stated in R2. In dimen-
sion 3, lots of proprieties are unknown. The theorem of L. Ambrosio, N. Fusco

and D. Pallara [1] about regularity of minimizers is one of the best regularity re-

sults valid in every dimension N . It says in particular that if K is flat enough in a

ball B, and if the energy there is not too big, then K is a C1,α hypersurface in a

slightly smaller ball. The proof of L. Ambrosio, N. Fusco and D. Pallara relies on a

“tilt-estimate” that it does not seem to be possible to generalize to get a similar per-

turbation result close to other geometric configurations different from a hyperplane.

We claim that dimension 3 is a natural step into optimal regularity results in

higher dimension. Indeed, some works on minimal surfaces of soap bubbles-type

in dimension 3 give some indications about what could be the singularities of a

Mumford-Shah minimizer, at least when the energy is small. In particular in the

famous paper of Jean Taylor [16] we can find the description of the three mini-

mal cones in R3. Jean Taylor also proves that any minimal surface is locally C1
equivalent to one of these cones. So we can think that for the Mumford-Shah mini-

mizers a similar description should hold. We prove in this paper that this is the case

whenever the energy of u is small enough.

Our main theorem is a perturbation result near minimal cones in R3. More
precisely, assume that in a ball the singular set K of a Mumford-Shah minimizer is

very close to a minimal cone in Hausdorff distance; then we prove that K is C1,α

equivalent to this cone in a slightly smaller ball. This is a generalization to the cones

Y and T of what L. Ambrosio, N. Fusco et D. Pallara have done with hyperplanes
in [1]. It is also a generalization in higher dimension of what G. David [6] did in

R2 about the regularity near lines and propellers.
The key ingredient in the proof of our main result is a new way to construct

some competitors using a stopping-time argument on the flatness of K (or closeness

to minimal cones), together with a Whitney-type extension for the function u in the
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region where the set K is geometrically bad. This technique was announced in the

introduction of [14] and appears here like a powerful tool to get thin estimates on

the energy of a minimizer, that lead to regularity.

Now, to be more precise, we start giving some definitions. Let ! be an open

subset of RN and letA still denote the set of admissible pairs defined in (1.2).
Definition 1.2. Let (u, K ) ∈ A and B be a ball such that B ⊂ !. A competitor for
the pair (u, K ) in the ball B is a pair (v, L) ∈ A such that

u = v
K = L

}
in !\B

and in addition such that if x and y are two points in !\(B ∪ K ) that are separated
by K then they are also separated by L .

The expression “be separated by K ” means that x and y lie in different con-

nected components of !\K .
Definition 1.3. A gauge function h is a non-negative and non-decreasing function

on R+ such that limt→0 h(t) = 0.

Definition 1.4. Let ! be an open subset of RN . A Mumford-Shah minimizer with

gauge function h is a pair (u, K ) ∈ A such that for every ball B ⊂ ! and every

competitor (v, L) in B we have
∫

B\K
|∇u|2dx +HN−1(K ∩ B) ≤

∫

B\L
|∇v|2dx +HN−1(L ∩ B) + r N−1h(r)

with r the radius of the ball B.

It is not difficult to prove that a minimizer for the functional J of the begin-

ning of the introduction is a minimizer in the sense of Definition 1.4 with h(r) =
CN‖g‖2∞r as gauge function, where CN is a dimensional constant (see [6, Proposi-

tion 7.8, page 46]).

Definition 1.5. A global minimizer in RN is a Mumford-Shah minimizer in the

sense of Definition 1.4 with ! = RN and h = 0.

In this paper we will not work on global minimizers but they play an important

role in the study of the Mumford-Shah functional, which is why we introduced the

definition. In dimension 2, only three types of connected sets can give a global

minimizer; K is a line and u is locally constant, K is a propeller (a union of three

half-lines meeting with 120 degrees angles) and u is locally constant as well, and

finally K is a half-line and u is a cracktip, namely C
√
r sin(θ/2) with a proper

constant C . Knowing whether there exist other global minimizers or not would

give a positive answer to the Mumford-Shah conjecture. The main fact is that every

blow-up limit of a Mumford-Shah minimizer is a global minimizer. We do not know

much about global minimizers in dimension greater than 2. See [13] (or [12]) for a

beginning of investigation in R3.
Let us now define the minimal cones that will be used in the next sections. We

define three types of cones. Cones of type 1 are planes in R3, also called P. Cones
of types 2 and 3 and their spines are defined as in [8] and [14], in the following way.
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Definition 1.6. Define Prop ⊂ R2 by

Prop =
{
(x1, x2) : x1 ≥ 0, x2 = 0

}

∪
{
(x1, x2) : x1 ≤ 0, x2 = −

√
3x1

}

∪
{
(x1, x2) : x1 ≤ 0, x2 =

√
3x1

}
.

Then let Y0 = Prop× R ⊂ R3. The spine of Y0 is the line L0 = {x1 = x2 = 0}. A
cone of type 2 (or of type Y) is a set Y = R(Y0) where R is the composition of a
translation and a rotation. The spine of Y is then the line R(L0). We denote by Y
the set of all cones of type 2.

Definition 1.7. Let A1 = (1, 0, 0), A2 = (−1
3
, 2

√
2
3

, 0), A3 = (−1
3
,−

√
2
3

,
√
6
3

),

and A4 = (−1
3
,−

√
2
3

,−
√
6
3

) be the four vertices of a regular tetrahedron centered
at 0. Let T0 be the cone over the union of the 6 edges [Ai , A j ] i /= j . The spine of

T0 is the union of the four half lines [0, A j [. A cone of type 3 (or of type T) is a set
T = R(T0) where R is the composition of a translation and a rotation. The spine
of T is the image by R of the spine of T0. We denote by T the set of all cones of

type 3.

In the sequel we will also denote by type(Z) the number 1, 2 or 3 correspond-
ing to the type of the minimal cone Z .

Figure 1.1. Cones of type Y and T.

We denote by Dx,r the normalized Hausdorff distance between two closed sets E

and F in B(x, r) defined by

Dx,r (E, F) := 1

r

{
max

{
sup

y∈E∩B(x,r)

d(y, F), sup
y∈F∩B(x,r)

d(y, E)

}}
. (1.3)

We now come to the main result of the paper.
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Theorem 1.8. For any constants C > 0 and b ∈ (0, 1] we can find a positive
constant ε > 0 such that the following holds. Let (u, K ) be a reduced Mumford-
Shah minimizer in ! ⊂ R3, with gauge function h(r) = Crb. Let x ∈ K and r > 0

be such that B(x, r) ⊂ !. Assume in addition that there is a minimal cone Z of

type P, Y or T centered at x such that

Dx,r (K , Z) + h(r) ≤ ε.

Then there is a diffeomorphism φ of class C1,α from B(x, cr) to its image such that
K ∩ B(x, cr) = φ(Z) ∩ B(x, cr), where c is a universal constant.

When (u, K ) is a Mumford-Shah minimizer in ! ⊂ RN and B(x, r) is a
ball such that B(x, r) ⊂ !, we denote by ω2(x, r) the normalized energy of u in
B(x, r), defined by

ω2(x, r) := 1

r N−1

∫

B(x,r)\K
|∇u|2dx . (1.4)

Arguing with blow-up limits we also get a version of Theorem 1.8 with only a

condition on the normalized energy instead of the geometric condition.

Theorem 1.9. For any constantsC > 0 and b ∈ (0, 1]we can find a constant ε > 0

such that the following holds. Let (u, K ) be a reduced Mumford-Shah minimizer
in ! ⊂ R3, with gauge function h(r) = Crb. Let x ∈ K and r > 0 be such that

B(x, r) ⊂ ! and

ω2(x, r) + h(r) ≤ ε.

Then there is a diffeomorphism φ of class C1,α from B(x, cr) to its image, and there
is a minimal cone Z of type P, Y or T such that K ∩ B(x, cr) = φ(Z) ∩ B(x, cr)
where c is a universal constant.

In all the following we will work in R3. However, the proof of Theorem 1.8
still works in higher dimension for the case of hyperplanes so that we could have a

new proof of L. Ambrosio, N. Fusco, D. Pallara’s entire result [1]. With the same

proof we could also imagine to have other results in RN , but the analogue of Jean

Taylor’s Theorem in higher dimension is missing. Indeed, one of the ingredients to

prove Theorem 1.8 is to use the description of the singularities for a minimal surface

in R3. In particular, we will use the recent work of G. David ([4, 7]) following J.
Taylor [16], that is the analogue of Theorem 1.8 but for almost minimal sets which,

are defined below.

Definition 1.10. An MS-competitor for the closed set E in ! ⊂ RN is a closed set

F such that there is a ball B ⊂ ! of radius r with

F\B = E\B

and if x, y ∈ !\(B ∪ E) are separated by E then they are also separated by F .
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Definition 1.11. A set E ⊂ ! ⊂ RN is MS-almost minimal with gauge function h

if

HN−1(E ∩ B) ≤ HN−1(F ∩ B) + r N−1h(r)

for all ball B ⊂ ! and for all MS-competitor F for E in the ball B (of radius r).

If E is an MS-almost minimal set in R3 we set

θ(x, r) = r−2H2(E ∩ B(x, r)).

Bymonotonicity results on the density of an almost minimal set (provided sufficient

decay on h), the limit as r tends to 0 of θ exists at every point x (see [7, Proposi-
tion 5.24]). The limit is called “density” of E at the point x and will be denoted by

θ(x). This quantity can only take three possible values, corresponding to the three
minimal cones. Then we introduce the excess of density, defined by

f (x, r) = θ(x, r) − lim
t→0

θ(x, t) = θ(x, r) − θ(x).

[4, Corollary 12.25] says the following.

Theorem 1.12 ([4]). For each choice of b ∈ (0, 1], and C0 > 0 we can find α > 0

and ε1 > 0 such that the following holds. Let E be a reduced MS-almost minimal

set in ! ⊂ R3 with gauge function h. Suppose that 0 ∈ E , r0 > 0 is such that

B(0, 110r0) ⊂ ! and h is satisfying

h(r) ≤ C0r
b for 0 < r < 220r0.

Assume in addition that

f (0, 110r0) + C0r
b
0 ≤ ε1 (1.5)

and

D0,100r0(E, Z) ≤ ε1

where Z is a minimal cone centered at the origin such that

H2(Z ∩ B(0, 1)) ≤ d(0).

Then for x ∈ E ∩ B(0, r0) and 0 < r ≤ r0 there is a C
1,α diffeomorphism ' :

B(0, 2r) → '(B(x, 2r)), such that '(0) = x , |'(y) − y − x | ≤ 10−2r for
y ∈ B(0, 2r) and E ∩ B(x, r) = '(Z) ∩ B(x, r).

To apply Theorem 1.12 to a Mumford-Shah minimizer, the key point is to

control the normalized energy of u (that is the quantity ω2). A big part of this fact is
already contained in a preliminary paper [14] where a decay estimate on the energy

for energy minimizers is proved by a (technical) compactness argument. Actually

we will be able to control the energy but with some rest that will be computed in

term of what we call the “bad mass” m(r), namely the Hausdorff measure of the
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part where K is geometrically very bad. This quantity need also to be controlled,

and for this we will use a second compactness argument.

The present paper is organized in three main sections. Section 1 describes some

tools to construct new competitors, in particular using a stopping-time argument. In

Section 2 we employ these tools in order to find some estimates on the normalized

energy, the bad mass and minimality defect. Finally in the last section we prove

that the above estimates imply the desired regularity result.

Let us go further and give more precisions about our approach and the key

points to prove Theorem 1.8. The first section begins with the control of the nor-

malized Jump. Although this section could seem somehow technical to the novice

reader, it is actually not the most difficult part. Indeed, it consists in some easy

generalizations in R3 of what G. David [5] already did in R2. However, this pre-
liminary work is crucial to avoid some topological and geometrical problems in all

the sequel. Indeed, the inverse of the jump of u controls the size of the holes of

K which allows us to work with a set F that is “separating” and which difference

with the original set K has very small H2 measure. We also need a further prop-

erty about the flatness of F at small scales, which will be called “Property (”. This
is probably the only real difference with the 2-dimensional results about the jump

contained in [5].

Then we give some new tools to construct some competitors. The method is

based on a stoping time argument on the flatness, or more generally on the closeness

to minimal cones. The stopping-time on the geometry of K is then combined with a

Whitney extension for u. In particular, some preliminary work from [14] about the

Whitney extension associated to a “geometric function” will be needed. We also

introduce one of our main quantity, namely the “bad mass” denoted m(r) which
corresponds to the normalized total mass of “bad balls” for which the stopping-

time stops.

We end the first section of the paper with a compactness Lemma that is needed

later to control the bad mass. The rough idea to say that the stopping-time does not

occur too often is as follows. It is proved in [4] that if E is an almost minimal set

sufficiently close to a minimal cone in B(r0), then the closeness to minimal cones
of E ∩ B(r) decays with the radius. By contradiction we deduce that if E is close
enough to a minimal cone in a ball B(r), and if E stops being close to a minimal
cone in half of this ball, then E is not minimal. Consequently there is a set L that

coincides with E at the boundary of the ball and satisfiesH2(E ∩ B(r)) −H2(L ∩
B(r)) > rη. Applied to the singular set K of a Mumford-Shah minimizer, it will

imply that the total mass of bad balls cannot be greater than 1/η times the lack of
minimality of K . This is done in the next section.

Section 2 contains the “heart” of the proof. We will use the tools described

in the previous section in order to get some estimates about the two main quanti-

ties that we want to control: the normalized energy ω2(r) and the bad mass m(r).
The bad mass will be controlled using the compactness Lemma as it was described

above. For the normalized energy, it also follows from a compactness argument that

is almost contained in our preliminary paper [14]. Thank to the work in [14] we just

need to compare an energy minimizer with a Mumford-Shah minimizer. At the end
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of Section 2 we also prove that the minimality defect of K depends on those two

main quantities.

Finally in the last section we prove that the estimates of Section 2 yields some

decay on bothm(r) andω2(r), implying in particular that the stopping-time actually
never happens if the singular set is close enough to a minimal cone and this leads

to our regularity result. At the end we state a few different versions of the main

theorem.

ACKNOWLEDGEMENTS. The Author wishes to warmly thank his advisor Guy

David for his patience and constant enthusiasm during all the long discussions about

this work.

2. Tools for the construction of competitors

Before describing some tools to construct new competitors, let us first recall some

definitions and geometrical results from [14].

2.1. First definitions and notation

In the sequel the letter Z will always denote a generic minimal cone of type P, Y
or T. When Z is of type T, the definition of its center is clear. When Z is of type Y
we will call center any point that belongs to the spine of Z , while in the case when

Z is of type P, any point x ∈ Z is a center. We say that Z is centered at x0 if x0 is

a center for Z . In the sequel we will use a notion of almost centered cones that is

defined as follows.

Definition 2.1 (Almost centered). Let Z be a minimal cone and B a ball that meets

Z . We say that Z is almost centered in B if the center of Z lies in 1
10
B.

The next lemma will be useful to deal with almost centered cones.

Lemma 2.2 ([14]). Let Z be a minimal cone in R3 that contains 0 (but is not nec-
essarily centered at 0). Then for any r0 > 0 there exists a r1 such that

r1 ∈ {r0, 10r0, 100r0}
and such that we can find a cone Z ′, containing 0 and centered in B(0, 1

10
r1) with

Z ∩ B(0, r1) = Z ′ ∩ B(0, r1).

Now in order to define the jump J (x, r), a quantity that will be crucial in the
sequel, we need to introduce some notations. Let (u, K ) be a reduced Mumford-
Shah minimizer in ! ⊂ R3. We denote by β(x, r) the “generalized Peter Jones
unilateral number” defined by

β(x, r) := 1

r
inf
Z

{
sup{dist(y, Z); y ∈ K ∩ B(x, r)}

}
(2.1)
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where the infimum is taken over all the cones of type P, Y, or T that contain x (but
are not necessarily centered at x). Sometimes we will use the notation βK (x, r) to
precise that the quantity is associated to the set K but it will not be a general rule.

Definition 2.3 (Associated cone). Let K ⊂ R3 be a closed set, x ∈ K and r > 0.

Then any minimal cone Z satisfying

sup
y∈K∩B(x,r)

dist(y, Z) ≤ 2rβK (x, r)

will be called an associated cone in B(x, r).

Notice that there always exists at least one associated minimal cone. We will

choose one and denote this cone by Z(x, r). In addition if βK (x, r) ≤ 10−5 and
if Z(x, r) is almost centered in B(x, r), we will denote k (x, r) the number of con-
nected components of B(x, r)\Z(x, r)which is actually equal to type(Z(x, r))+1.
Notice that from Lemma 2.2 we know in particular that if Z(x, r) is not almost cen-
tered, then we can assume that Z(x, r/10) or Z(x, r/100) is.

Furthermore, for all k ∈ N ∩ [1, k (x, r)] we consider a ball Dk(x, r) of radius
1
10
r in such a way that each Dk(x, r) is situated in one of the connected compo-

nents of B(x, r)\Z(x, r), the farthest as possible from Z(x, r). We also denote by
mk(x, r) the mean value of u on Dk(x, r). Then we introduce

δk,l(x, r) = |mk(x, r) − ml(x, r)|

and finally, the normalized jump in B(x, r) is defined by

J (x, r) := r− 1
2 min{δk,l : 1 < k, l < k (x, r) and k /= l}. (2.2)

Now we need to define the jump in the case when β(x, r) ≤ 10−7 but with an
associated minimal cone that is not necessarily almost centered. To do so, we re-

mind that the recentering Lemma 2.2 insures that B(x, r/10) or B(x, r/100) has
an associated cone which is almost centered. Moreover β(x, r) ≤ 10−7 implies
that β(x, r/10) ≤ 10−5 and β(x, r/100) ≤ 10−5. Then we define the normalized
jump J (x, r) as being equal to the jump of the first ball between B(x, r/10) or
B(x, r/100) for which the associated cone is almost centered.

All the parameters that define the jump (choice of cone Z(x, r), constant 10 to
have the almost centering property, diameter and position of the Dk(x, r)) are not
so important since the difference is just multiplying the jump by a constant.

Finally we introduce a notion of separation.

Definition 2.4 (Separating). Let K be a closed set in R3 such that βK (x, r) ≤
10−5 and Z(x, r) is almost centered in B(x, r). We say that K is separating in

B(x, r) if each Dk(x, r) lie in a different connected component of B(x, r)\K .
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Some notation:

• β(x, r): defined in (2.1);
• Z : a generic minimal cone;

• t ype(Z) ∈ {1, 2, 3}: the type of the cone Z ;
• Z(x, r): a minimal cone associated to B(x, r);
• k (x, r): the number of connected components of B(x, r)\Z(x, r) when Z(x, r)
is almost centered (equal to type(Z(x, r) + 1));

• J (x, r): the jump of u defined in (2.2) when Z(x, r) is almost centered and
defined in the paragraph after (2.2) in the general case;

• Dk(x, r): the balls from the definition of the jump J (x, r) when Z(x, r) is al-
most centered;

• mk(x, r): the mean value of u on Dk(x, r);
• C : a universal constant which value can change from line to line;

• dist: the euclidian distance in R3;
• ω2(x, r): the normalized energy (defined in (1.4)).

2.2. Separation and control of the jump

It will be convenient to work with a set that is separating (in the sense of Defini-

tion 2.4). This is why in a first part we have to control the jump of function u, that

will be useful to estimate the size of holes in K , and will allow us to replace K with

a set F that contains K and is separating. The result is the same as [6, Proposition 1

page 303] but generalized to the case of Y and T. We also use the opportunity here
to prove an additional fact about the set F (called Property () that will be used later.
Recall that the normalized energy in the ball B(x, r) is denoted by

ω2(x, r) := 1

r2

∫

B(x,r)\K
|∇u|2dx .

Proposition 2.5. Let (u, K ) be a Mumford-Shah minimizer in ! ⊂ R3. Suppose
that there is an x ∈ K , a r > 0 and a positive constant ε < 10−10 such that
B := B(x, r) ⊂ !,

β(x, r) ≤ ε

and that the associated cone Z(x, r) is almost centered. Moreover, assume that
J (x, r) /= 0,

ω
1
2

2 (x, r)J (x, r)−1 ≤ ε (2.3)

and that

ω2(x, r)
1
8 ≤ C J (x, r) (2.4)
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with C a positive universal constant given by the demonstration. Then there is a

compact set F(x, r) ⊂ B(x, r) such that

K ∩ B(x, r) ⊂ F(x, r) ⊂ {y ∈ B; dist(y, Z(x, r)) ≤ Cr
√

ε} (2.5)

F(x, r) separates each Dk(x, r) from Dl(x, r) for k /= l in B(x, r) (2.6)

H2(F(x, r)\K ) ≤ Cr2ω2(x, r)
1
2 J (x, r)−1.

Moreover, F(x, r) satisfies Property ( (defined below).

Property ( shows that we control the geometry of F(x, r) at small scales when
the geometry of K is controlled. This is the definition.

Definition 2.6 (Property (). F ⊇ K satisfies Property ( if for every ε0 < 10−5,
y ∈ K ∩ B(x, r) and s > 0 such that

inf{t;∀t ′ ≥ t,βK (y, t ′) ≤ ε0} ≤ s ≤ d(y, ∂B(x, r))

we have

βF (y, s) ≤ ε0.

Remark 2.7. Condition (2.4) allows us to have Property ( and Condition (2.3) is
here to prove the last inclusion of (2.5). Proposition 2.5 is still true without Prop-

erty ( and without Conditions (2.3) and (2.4). In this case, (2.5) is proved by use of
a retraction as in [6, 44.1].

Proof. The first step is the same as [6, Proposition 1 page 303] but applied toY and
T as well. However we will write the entire proof here because it will be easier next
to show Property (.

For all λ we denote

S(λ) := {y ∈ B(x, r); dist(y, Z(x, r)) ≤ λr}

and denote by Ak(λ) for any k ∈ N ∩ [1, k (x, r)] the connected component of
B(x, r)\S(λ) that meets Dk(x, r). Since x and r are fixed we will denote now Dk
and mk instead of Dk(x, r) and mk(x, r) (recall that mk(x, r) is the mean value of
u on Dk(x, r)).

We set V = B(x, r)\K . Let us find a function v such that

v(y) = mk for y ∈ Ak (1/10) (2.7)

and ∫

V

|∇v| ≤ C

∫

V

|∇u|. (2.8)
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To do this we consider for all k a function ϕk such that 0 ≤ ϕk ≤ 1 and ϕk = 1 on

Ak(1/10), φk = 0 on V \Ak(1/100) and |∇φk | ≤ Cr−1. Then we set

ϕ = 1−
∑

k

ϕk

and

v = ϕu +
∑

k

ϕkmk .

We have (2.7) trivially. Concerning (2.8) we have

∇v(y) = ϕ(y)∇u(y) −
∑

k

1Ak(1/100)(y)∇ϕk(y)[u(y) − mk]

and since ε < 10−5, the Ak(1/100) do not meet K and then applying Poincaré

inequality in Ak(1/100) gives

∫

Ak(1/100)
|∇ϕk(y)||u(y) − mk |dy ≤ Cr−1

∫

Ak(1/100)
|u(y) − mk |dy

≤ C

∫

Ak(1/100)
|∇u(y)|dy

thus (2.8) is verified.

Now we want to replace v with a smooth function w in V such that

w(y) = mk for y ∈ Ak(2/10) (2.9)

and ∫

V

|∇w| ≤ C

∫

V

|∇u|. (2.10)

For this purpose we use a Whitney extension. For all z ∈ V we denote by B(z)
the ball B(z, 10−2d(z, ∂V )), and we let X ⊂ V be a maximal set such that for all

z ∈ X , the B(z) are disjoint. Note that by maximality, if y ∈ V , then B(y) meets
some B(z) for a certain z ∈ X hence y ∈ 4B(z) thus the 4B(z) cover V .

For all z ∈ X we choose a function ϕz which support is contained in 5B(z) such
that ϕz(y) = 1 for all y ∈ 4B(z), 0 ≤ ϕz(y) ≤ 1 and |∇ϕz(y)| ≤ C dist(z, ∂V )−1
everywhere. Set '(y) = ∑

z∈X ϕz(y) on V . We have '(y) ≥ 1 because the 4B(z)
cover V and the sum is locally finite (because all the B(z) are disjoint and because
the 5B(z) that contain a fixed point y have a radius equivalent to d(y, ∂V )). Then
we set ψz(y) = ϕz(y)/'(y) such that

∑
z∈X ψz(y) = 1 on V . Finally, if mz(v) is

the mean value of v on B(z) we set for all y ∈ V

w(y) =
∑

z∈X
mz(v)ψz(y).
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If y ∈ Ak(2/10),mz(v) = mk for all z ∈ X such that y ∈ B(z) thus (2.9) is verified.
In addition,

∇w(y) =
∑

z∈X
mz(v)∇ψz(z) =

∑

z∈X
[mz(v) − my(v)][∇ψz(y)]

where my(v) is the mean value of v on B(y) = B(y, 10−2dist(y, ∂V )). The sum at
the point y has at most C terms, and all of these terms is less than

C dist(y, ∂V )−1|mz(v) − my(v)| ≤ Cdist(y, ∂V )−3
∫

10B(y)
|∇v|

by Poincaré inequality and because all the 5B(z) that contain y are contained in
10B(y) ⊂ V . Thus |∇w(y)| ≤ C dist(y, ∂V )−3

∫
10B(y) |∇v|, and to obtain (2.10)

it suffice to integrate on V , apply Fubini and use (2.8).

Then we apply the co-area formula (see [10, page 248], and also [6, Chap-

ter 28]) to the function w on V . We obtain

∫

R
H2(0t )dt =

∫

V

|∇w| ≤ C

∫

V

|∇u|

where 0t := {y ∈ V ;w(y) = t} is the set of level t of the function w. Recall that

J (x, r) := r− 1
2 min{δk,l; k /= l}

and

δk,l = |mk − ml |

where mk is the mean value of u on Dk . For all k0 /= k1 we know by definition that

δk0,k1 ≥ √
r J (x, r). Using the Tchebychev inequality we can choose t1 ∈ R such

that t1 lies in
1
10

[mk0,mk1] and such that

H2(0t1) ≤ C|mk0 − mk1 |−1
∫

V

|∇u|

≤ Cr− 1
2 J (x, r)−1

∫

V

|∇u|

≤ Cr2 J (x, r)−1ω2(x, r)
1
2 .

(2.11)
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For every pair k0 /= k1 we do the same and choose t2 etc., as many times as required

by the number of connected components of B(x, r)\Z(x, r) (one if Z(x, r) is a
plane, three if Z(x, r) is a Y and four if Z(x, r) is a T). Then we set

F(x, r) =
⋃

i

0ti ∪ [K ∩ B(x, r)] ⊂ B(x, r).

The set F(x, r), that we will also denote simply by F , is a closed set in

B(x, r) because each 0ti is closed in V = B(x, r)\K and K is also a closed

set. Since we have chosen some level sets, F separates the Ak(2/10) to each
other in B(x, r). Indeed, if it is not the case then there is k, l and a continu-
ous path γ that join Ak(2/10) to Al(2/10) and that does not meet K (because

K ⊂ F). Then γ ⊂ V , thus w is well defined and continuous on γ , it follows
that there is a point y ∈ γ such that w(y) = ti . Then, y ∈ F , and this is a contra-

diction.

Now we want to prove the Property (. Let B(ȳ, s) be a ball centered on K
such that β(ȳ, 2l s) ≤ ε0 for all 0 ≤ l ≤ L where L is the first integer such

that B(ȳ, 2L+2s) is not contained in B(x, r). Set Bl := B(ȳ, 2l s) and possibly
by extracting a subsequence we may suppose using Lemma 2.2 that in each Bl
the minimal cone associated is almost centered. The radius of Bl is not as before

exactly 2l s but is equivalent with a factor 100. Thus the balls Bl forms a sequence

of balls centered at ȳ such that Bl ⊂ Bl+1 and B0 = B(ȳ, s). Denote by Zl the cone
associated to Bl . We want to show that F ∩ B(ȳ, s) ⊂ Z0(ε0) := {z; dist(z, Z0) ≤
ε0s}. By definition of F , it suffice to show that for all i

w(y) /= ti in B(ȳ, s)\Z0(ε0). (2.12)

So let y ∈ B(ȳ, s)\Z0(ε0) and recall that

w(y) =
∑

z∈X
mz(v)ϕz(y).

Let X (y) ⊂ X be the finite set of z such that ϕz(y) /= 0. We claim that

∀z ∈ X (y), |mz(v) − mk | ≤ Cr
1
2ω2(x, r)

1
8 (2.13)

where mk is the mean value of u in an appropriate domain Dk (depending in

which connected component lies y) and mz(v) is as before the mean value of v
on Bz := B(z, 10−2d(z, ∂V )). First of all, we can use the proof of [14, Lemma
16] to associate to each connected component of Bl\Zl(ε0), a component of Bl+1∩
{y; d(y, Zl+1) ≥ 10ε0rl}, and by this way we can rely each component ofBl\Zl(ε0)
to a certain Ak (that contain a Dk) (the argument is just to do an iteration on the scale

since we know that the set K is close to a minimal cone at each scale that we look

at). We denote by O0 the component of Bs ∩ {y; d(y, Z0) ≥ ε0s} that contains y
and by induction we denote by Ol the component of Bl\Zl(ε) that is relied to O0.
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With help of the particular geometric configuration in each Bl we can choose a do-

main Gl contained at the same time in Ol and in Ol+1, and of diameter equivalent
to the diameter of Bl . We denote by ml(v) the mean value of v on Gl . We are now

ready to estimate

|m0(v) − mL(v)| ≤
L∑

l=0
|ml(v) − ml+1(v)| ≤

L∑

l=0

1

|Ol |

∫

Ol

|v − ml+1(v)|

≤
L∑

l=0
C

1

(2l s)3

∫

Ol+1
|v − ml+1(v)| ≤

L∑

l=0
C(2l s)−2

∫

Ol+1
|∇v|

≤
L∑

l=0
C(2l s)−

1
2

(∫

Ol+1
|∇v|2

) 1
2

≤
L∑

l=0
C(2l s)−

1
2

(∫

Ol+1
|∇v|2

) 3
8
(∫

Ol+1
|∇v|2

) 1
8

≤
L∑

l=0
C(2l s)+

1
4 .

Next we use the classical estimate on the gradient of a Mumford-Shah minimizer

that is ∫

B(0,R)\K
|∇u|2dx ≤ CN (1+ h(R))RN−1 (2.14)

obtained by comparing (u, K ) and (v, K ′) where v is equal to 0 in B(0, R) and
K ′ = (K\B(0, R)) ∪ ∂B(0, R). This yields

|m0(v) − mL(v)| ≤
(∫

Ol+1
|∇v|2

) 1
8

≤ C

(∫

V

|∇v|2
) 1
8

L∑

l=0
(2l s)

1
4 ≤ C

(∫

V

|∇v|2
) 1
8

L∑

l=0
(2−lr)

1
4

≤ C

(∫

V

|∇v|2
) 1
8

+∞∑

l=0
(2−lr)

1
4 ≤ Cr

1
4

(∫

V

|∇v|2
) 1
8

≤ Cr
1
4

(∫

V

|∇u|2
) 1
8

thus

|m0(v) − mL(v)| ≤ Cr
1
2ω2(x, r)

1
8 . (2.15)

With a similar proof we also get

|mL(v) − mk | ≤ Cr
1
2ω2(x, r)

1
8 .
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On the other hand, since z ∈ X (y), then ϕz(y) is not equal to zero. This implies that
dist(z, ∂V ) ≥ 2 dist(y, ∂V ) ≥ 2ε0s thus Bz := B(z, 10−2 dist(z, ∂V )) ⊂ Z0(ε0)

c.

Since by hypothesis K does not meet this region, we can apply Poincaré inequality

to prove that

|mz(v) − m0(v)| ≤ Cr
1
2ω2(x, r)

1
8 .

Finally

|mz(v)−mk |≤ |mz(v)−m0(v)|+|m0(v)−mL(v)|+|mL(v)−mk |≤Cr
1
2ω2(x, r)

1
8

and this completes the proof of (2.13).

Now since
∑

z ϕz(y) = 1 we deduce that

|w(y)−mk |=|w(y)−
∑

z∈X (y)

ϕz(y)mk |≤
∑

z∈X (y)

|mz(v)−mk | ≤ Cr
1
2ω2(x, r)

1
8 . (2.16)

If we return to the choice of the ti (see near (2.11)) we have taken ti ∈ 1
10

[mk0,mk1]
for some k0 and k1. So thank to (2.16), if ω2(x, r)

1
8 is small enough with respect to

J (x, r) (which is the case by assumption (2.3)) then for a suitable choice of ti (that
does not depend on ε0) we are sure that w(y) /= ti thus F does not meet the region

Zs(ε0), and Property ( is proved.
Finally we have to prove (2.5). With use of (2.3) and (2.11) we can find a cover

of F by a family of balls Bj centered at x j ∈ K , with radius equal to C
√

εr and

such that 1
2
Bj are disjoint. Otherwise we would have a hole in K of size greater

than Cεr2 which is a contradiction with (2.11). Now, for every y ∈ F ∩ Bj we have

dist(y, Z(x, r)) ≤ dist(y, x j ) + dist(x j , Z(x, r)) ≤ C
√

εr + εr ≤ C
√

εr

and the conclusion follows.

Lemma 7 of [6, on page 283] shows how to control the normalized jump in the

flat case. Here we give a similar result for our definition of jump based on the cones

of type P, T and Y. The only substantial modification of the original proof consist
in being careful with definition of the jump that depends on the existence of almost

centered cones, but this is not much troublesome.

Lemma 2.8. Let (u, K ) be a Mumford-Shah minimizer in !. Let x ∈ K , r and

r1 being such that B(x, r) ⊂ ! and 0 < r1 ≤ r ≤ 2r1. Suppose in addition that

β(x, r) ≤ 10−7. Then
∣∣∣∣
(r1
r

) 1
2
J (x, r1) − J (x, r)

∣∣∣∣ ≤ Cω2(x, r)
1
2 ≤ C(1+ h(r))

1
2 (2.17)

with a constant C that depends only on N .
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Proof. Since β(x, r) ≤ 10−7 we know that β(x, t) ≤ 10−5 for all t ∈ [r1/4, r].
Assume first that Z(x, r) and Z(x, r1) are almost centered. Then by use of Poincaré
inequality and the fact that β(x, t) stays small for t ∈ [r1, r] one can easily prove,
after a suitable relabeling of mk(x, r1) corresponding to the proper choice of con-
nected component of B(x, r)\Z(x, r), that

|mk(x, r) − mk(x, r1)| ≤ Cr−2
∫

B(x,r)\K
|∇u| ≤ Cr

1
2ω2(x, r)

1
2

≤ C(1+ h(r))
1
2 r

1
2 .

(2.18)

Recall that the Jump is defined by

J (x, r) = r− 1
2 min{δk,l}

where δk,l = |mk(x, r) − ml(x, r)|. Thus (2.18) gives the estimate of r
1
2 J (x, r) −

r
1
2

1 J (x, r1) that proves (2.17). Notice that Z(x, r) could be of different type from
Z(x, r1) but the estimate still hold in this case omitting one value mk for the one of

biggest type.

Now if Z(x, r) or Z(x, r1) are not almost centered, then we argue by the same
way with the proper radius r1/10 or r1/100 to get the same estimate with a slight
modification of constant C and this ends the proof of the Lemma.

Lemma 2.9. Let (u, K ) be a Mumford-Shah minimizer in !. Then if x ∈ K and r

are such that B(x, r) ⊂ ! and for all r1 < t < r , β(x, t) ≤ 10−7, then

J (x, r1) ≥
(
r

r1

) 1
2 [
J (x, r) − C ′] (2.19)

where C ′ := C(1+ h(r))
1
2 and C depends only on N .

Proof. If r1 ≤ r ≤ 2r1 then (2.19) is a consequence of Lemma 2.8. Otherwise we

use a sequence of radii rk such that rk = 2rk−1 and we apply Lemma 2.8 sufficiently
may times until rk becomes greater than r . We obtain

J (x, r1) ≥ 2
k
2 J (x, 2kr1) − C2

k
2 (1+ 2

−1
2 + 2

−2
2 + . . . )

≥ 2
k
2

[
J (x, 2kr1) − C2

1
2

1− 2
1
2

]
(2.20)

from which the conclusion follows.
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2.3. Stopping-time balls, bad mass and standard assumptions

In all the sequel we will work under the following general assumptions.

Definition 2.10 (Standard Assumptions 1). We will say that we are under Stan-

dard Assumptions 1 in B(x0, r0) when the situation is as follows. (u, K ) is a
Mumford-Shah minimizer in ! ⊂ R3, x0 ∈ K , B(x0, 3r0) ⊂ !,

β(x0, 2r0) ≤ 10−5ε, (2.21)

J (x0, r0)
−1 + ω2(x0, r0) ≤ 10−5ε (2.22)

for some ε < 10−8. Moreover we assume that the associated cone Z(x1, 2r1) is al-
most centered. We also assume that ε is small enough so that (2.21) and (2.22) im-
plies that the assumptions of Proposition 2.5 hold in B(x0, r0). We denote F(x0, r0)
the corresponding separating set.

Remark 2.11. Under Standard Assumptions 1 and when no confusion is possible,

we will sometimes denote only F instead of F(x0, r0).

Our goal in this section is to construct a family of good balls G by a stopping-
time argument, with the condition that in all balls of G, the singular set K will

always look like a minimal cone.

We assume that we are under our Standard Assumptions 1 and we consider

some constants ε0 and ε′
0 such that ε ≤ ε′

0 ≤ ε0 < 10−8.
For all x ∈ F(x0, r0) and r ∈ (0, r0), we say that B(x, r) is a good ball (and

then denote B(x, r) ∈ G) if

K ∩ B(x, r) /= ∅,H2(F ∩ B(x, r)) −H2(K ∩ B(x, r)) ≤ ε′
0r
2, (2.23)

and

βK (x, r) ≤ ε0. (2.24)

Observe that since by (2.21) we have β(x0, r0) ≤ 10−5ε, then the radii of balls
that do not verify (2.24) is bounded by 10−5 ε

ε0
r0 and under our assumptions (in

particular ω2(x0, 2r0)
1
2 J (x0, 2r0)

−1 ≤ Cε), the radii of balls that do not verify
(2.23) is bounded by C

√
εr0.

Now, for all x ∈ F we define the stopping-time function

d(x) := inf{r;∀t ∈ (r, r0), B(x, t) ∈ G}

and the set

S :=
⋃

x∈F
F ∩ B(x, d(x)),

with the convention that a ball of radius 0 is the empty set. Then we introduce a

new quantity called “Bad mass” defined for every x ∈ B(x0, r0) and r < r0 by

m(x, r) := 1

r2
H2(S).
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In the sequel, to estimate the quantity m(x, r) it will be convenient to use a Vi-
tali subfamily of balls. Indeed, with help of the Vitali covering lemma, from the

collection of balls

{
B(x, Ad(x)); x ∈ F and d(x) > 0

}
,

with A a constant that will be chosen later (in Remark 2.25), we get a disjoint

subfamily {Bi }i∈I such that {5Bi }i∈I is covering. We will denote xi and ri the
center and radius of Bi . Observe that

m(x0, r0) 4 1

r2

∑

i∈I
r2i (2.25)

where the constant in the equivalence (2.25) depends on A.

Notice also that by definition βK (x, t) ≤ ε0 for all t ≥ d(x), which implies
βF (x, t) ≤ Cε0 for all t ≥ d(x) using Property (. Indeed, since B(x, t) ∈ G there
exists a point in z ∈ K ∩ B(x, t) which allows us to apply Property ( to the balls
centered at this point z.

2.4. Whitney extension

In order to construct some competitors, we explain how to extend the function u in

the region where the geometry of K is bad, using a Whitney type extension. For

this purpose, we recall some definitions and a result from [14].

Let E be a closed set in B(x0, r0) such thatH2(E) < +∞. Suppose that there

is a positive constant ε0 < 10−5 such that

βE (x0, r0) ≤ ε0 (2.26)

and that the associated cone Z(x0, r0) is almost centered. Suppose in addition that
E is separating in B(x0, r0). Let ρ ∈ [1

2
r0,

3
4
r0] and assume that we have an appli-

cation

δ : B(x0, ρ) →
[
0,
1

4
r0

]
(2.27)

with the property that

βE (x, r) ≤ ε0, for all x ∈ K ∩ B(x0, ρ) and r such that δ(x) ≤ r ≤ 1

4
r0. (2.28)

In addition we suppose that

δ is C0 − Lipschitz. (2.29)

The application δ will be called the “geometric function”.

Definition 2.12 (Hypothesis H1). Wewill say that a closed set E ⊂ B(x0, r0)with
finiteH2 measure is satisfying hypothesis H1 if all the above assumptions on E and

δ are satisfied (i.e. (2.26), (2.27), (2.28) and (2.29) hold).
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There exists a constant U > 30C0, depending on C0 and on a dimensional

constant such that the following holds provided that ε0 is small enough compared
to U−1. Define

V :=
⋃

x∈E∩B(0,ρ)

B

(
x,
10

U
δ(x)

)
, (2.30)

and set

V ρ :=
⋃

x;B(x, 10
U

δ(x))∩∂B(x0,ρ)/=∅
B

(
x,
10

U
δ(x)

)
. (2.31)

With use of the same notations k (x0, r0) and Dk as in the section before, and re-
calling that by hypothesis, E is separating in B(x0, r0), for all k ∈ [1, k (x0, r0)] we
denote by !k(x0, r0) the connected component of B(x0, r0)\E that contains Dk .
We also define

3k := B(x0, ρ) ∩ (!k(x0, r0) ∪ V ). (2.32)

Now the following lemma is proved in [14] and will be needed in the sequel.

Lemma 2.13 ([14, Whitney Extension]). Let E be a closed set in B(x0, r0) sat-
isfying Hypothesis H1 with a geometric function δ, a constant ε0 < 10−5 and a
radius ρ ∈ [1

2
r0,

3
4
r0]. Then for any function u ∈ W 1,2(B(x0, r0)\E), and for all

k ∈ [1, k B(x0,r0)], there is a function

vk ∈ W 1,2(3k\V ρ)

such that

vk = u in B(x0, ρ)\V

and ∫

3k\V ρ

|∇vk |2dx ≤ C

∫

B(x0,r0)\E
|∇u|2dx (2.33)

where C is a constant depending only on dimension and where V , V ρ , and 3k are

defined in (2.30), (2.31), and (2.32) with a certain constant U > 30C0 given by the

demonstration and depending on C0.

Remark 2.14. In the original statement of Lemma 2.13 (compare [14, Lemma 17])

one can find a slightly better estimate than (2.33) but in the sequel we only need the

more simpler inequality (2.33).

We return now to our Mumford-Shah minimizer. From the bad balls {Bi }i∈I
(constructed in Section 2.3), we want to apply Lemma 2.13 to get a good extension

of u in each ball Bi . This extension will allow us replace in each bad ball the set K

by a new set in order to get some estimates about the bad mass itself. This will be

done in the next section.
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We begin by introducing a geometric function associated to the balls {Bi }i∈I .
For this purpose we consider some functions

ψi =
{
ri on Bi

0 in the complement of 5Bi .

For instance let us take

ψi (x) := min(ri , dist(x, (5Bi )
c). (2.34)

Then for all x we define

δ(x) :=
∑

i∈I
ψi (x). (2.35)

The function δ(x) is a sort of regularized version of function d(x).

Proposition 2.15. Assume that B(x0,r0) satisfies the Standard Assumptions1. Then
Application δ is a geometric function associated to F in B(x0, r0) for all ρ ∈
[1
2
r0,

3
4
r0], with Lipschitz constant C0 (a dimensional constant) and geometric con-

stant ε0. In addition, we have Hypothesis H1 on F in B(x0, r0) and

⋃

i∈I

10

U
Bi ⊂ V , V ρ ⊂

⋃

i;C1Bi∩∂B(x0,ρ)/=∅
C1Bi (2.36)

where V and V ρ are defined in (2.30) and (2.31), and C1 is a constant depending

on dimension and U .

Proof. We have to verify (2.27), (2.28) and (2.29). Let ρ ∈ [1
2
r0,

3
4
r0]. Recall that

ε (the constant in the Standard Assumptions 1) is small as we want with respect to
ε0 (and A) and the radius of balls Bi are less than C

ε
ε0
A so that one can easily get

δ(x) ≤ 1
4
r0 thus (2.27) holds. Moreover it is clear by construction that ψ is C0-

Lipschitz with C0 the covering bound associated to the family {5Bi } that depends
only on dimension.

Now let x ∈ F∩B(x0, ρ) and let r be a radius such that δ(x) ≤ r ≤ 1
4
r0. Firstly

if x lie in the complement of all the 5Bi then d(x) = 0 so that βK (x, t) ≤ ε0 for all
t > 0 and this holds in particular for r = t and replacing βK by βF using Property (
and the fact that K ∩ B(x, t) is not empty for every t . On the other hand if x ∈ 5Bi
for some ball Bi , then since the {5Bi } are covering all the {B(y, Ad(y))} we deduce
that Ad(x) ≤ dist(x, (5Bi )

c) for some 5Bi containing x . Now by construction

using the definition of ψi (see (2.34)),

δ(x) :=
∑

i∈I
ψi (x) ≥ 1

10
min

i;x∈5Bi
dist(x, (5Bi )

c) ≥ 1

10
Ad(x).

Therefore, provided A > 10 it comes that r ≥ δ(x) ≥ d(x). Next, we know by
definition of d(x) that βK (x, t) ≤ ε0 for all t > d(x). And since K ∩ B(x, r) /= ∅
Property ( implies βF (x, t) ≤ ε0 for all t ≥ r and (2.28) is proved.
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So we deduce that we have Hypothesis H1 on F in B(x0, r0) with application
δ defined in (2.35).

Then, if Bi = B(xi , ri ) is a bad ball we have that δ(xi ) = ri by definition of δ
thus

⋃

i∈I

10

U
Bi ⊂ V (2.37)

and finally if δ(x) > 0 then x ∈ 5Bi for some i ∈ I and assuming ri to be the

maximum among the radius of all possible balls 5Bi containing x one has
10
U

δ(x) ≤
Cri

10
U
(where C is depending on the bounded cover constant of 5Ci ) thus

V ⊂
⋃

i∈I

(
5+ 10

U

)
Bi (2.38)

which ends the proof of the proposition.

Remark 2.16. Note that since the Lipschitz constant of δ depends only on dimen-
sion, then U is only a dimensional constant.

2.5. A compactness lemma for almost minimal sets

The purpose of this section is to show some geometrical results about almost min-

imal sets (see Definition 1.11). We want to give an argument which allows us to

win something in each bad ball, in order to prove later that there are not so many.

The main lemma says the following. If B(x, r) is a ball such that x ∈ K and

βK (x, r) ≤ ε0 but βK (x, r/100) > ε0, then there is a set that has smaller H2-

measure than K in B(x, r). The argument will be by contradiction and compact-
ness.

Recall that for any almost minimal set E in B(x, r), we denote by f (r) the
excess of density

f (r) = θ(x, r) − lim
t→0

θ(x, t) (2.39)

with

θ(x, r) = r−2H2(E ∩ B(x, r)).

The limit in (2.39) exists because E is almost minimal (see [7, 2.3.]). For x ∈ E

we call θ(x) the density at x , that is θ(x) = limt→0 θ(x, t). The function θ(x) can
only take a finite number of values, more precisely θ(x) ∈ {0,π, 3π

2
, d+} that are

(excepted 0) densities of the three minimal cones in R3.
Now [4, Proposition 12.28] gives the following result that will be needed. We

give a statement only for almost minimal sets with vanishing gauge function (i.e.

simply minimal sets) because it will be sufficient in the sequel. The same result

holds for almost minimal sets under assumptions on h(r) (see [4]).
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Theorem 2.17 ([4]). There exists ε1 > 0 and α ∈ (0, 1) such that the following
holds. Let E be a reduced MS-almost minimal set in ! ⊂ R3 with gauge function
h = 0. Suppose that 0 ∈ E , r0 > 0 is such that B(0, 110r0) ⊂ ! and

f (0, 110r0) + D0,100r0(E, Z) ≤ ε1

where Z is a minimal cone centered at the origin satisfying

H2(Z ∩ B(0, 1)) ≤ d(0).

Then for all x ∈ E and r > 0 such that x ∈ E ∩ B(0, 10r0) and 0 < r < 10r0,

we can find a minimal cone Z(x, r), not necessarily centered at x or at the origin,
such that

Dx,r (E, Z(x, r)) ≤
(
r

r0

)α

.

See (1.3) for the definition of the normalized Hausdorff distance Dx,r . The constant

α is a universal constant depending on dimension and other geometric facts.
For an almost minimal set E , the function θ(x, t) is nondecreasing in t thus the

limit when t tends to 0 exists and that allows us to define the function θ(x). Unfortu-
nately, if E is now the singular set of a Mumford-Shah minimizer, the monotonicity

of θ is not known. So we have some difficulties to define the analogue of f (r) for a
Mumford-Shah minimizer. In order to use Theorem 2.17, we have to control f (r)
and that will be the role of the following lemmas. Our goal is to obtain a state-

ment analogous to Theorem 2.17 but with only an hypothesis on β(0, r0) instead of
f (0, r0).

First of all, an application of [7, Proposition 16.24] in B(x, r10−3) with η1 =
ε210

3, mixed with [7, Proposition 18.1] in B(x, r10−5) and η1 = ε710
−5 (where

ε7 and ε3 are defined in [7]) allows us to state the following lemma.

Lemma 2.18 ([7]). There exists a η1 ≥ 0 such that if E is an almost minimal set

in an open set ! ∈ R3, with gauge function h(r) = 0, if x ∈ E and r > 0 are such

that B(x, r) ⊂ !, if there is Z , centered at x , of type P, Y or T such that

Dx,r (E, Z) ≤ η1

and if E is separating in B(x, r), then there is a point x ∈ E ∩ B(x, r10−5), of the
same type of Z .

We say that x has the same type as Z if θ(x) is equal to the density of the
cone Z .

Remark 2.19. The hypothesis of separating are only useful for the case of T and

it is an open problem to know wether this assumption is necessary or not. See [7,

Propositions 16.24 and 18.1] for more details.

Here is now the statement that will be useful for the next sections. The reader

is invited to compare it with Theorem 2.17.
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Lemma 2.20. There exists η2 > 0 and α ∈ (0, 1) such that the following holds.
Let E be a reducedMS-almost minimal set in ! ⊂ R3 with gauge function h = 0.

Suppose that 0 ∈ E , r0 > 0 is such that B(0, 110r0) ⊂ ! and

D0,100r0(E, Z) ≤ η2

where Z is a minimal cone centered at the origin such that

H2(Z ∩ B(0, 1)) ≤ d(0)

and such that Z is separating in B(0, 110r0). Then for all x ∈ E ∩ B(0, 4r0) and
for all 0 < r < 5r0 there is a minimal cone Z(x, r) such that

Dx,r (E, Z(x, r)) ≤
(
r

r0

)α

.

Proof. We take η2 < ε1 (the constant of Theorem 2.17). In order to apply Theo-
rem 2.17, all we have to prove is that

f (0, 110r0) ≤ ε1.

We may assume that η2 is smaller than η1 so that we can apply Lemma 2.18 to E in
B(x, 110r0) thus there is a point z in B(x, 10−3r0) of same type of Z . In particular
θ(z) = H2(Z ∩ B(z, 1)) = 1

r2
H2(Z ∩ B(z, r)) for all r . Hence we can compute

the excess of density at z in B(z, 55r0) by

f (z, 55r0) = 1

(55r0)2

[
H2(E ∩ B(z, 55r0)) −H2(Z ∩ B(z, 55r0))

]
.

Now define a competitor L by

L =
{
M ∪ Z ∩ B(z, 55r0) in B̄(z, 55r0)

E in !\B(z, 55r0)

where M is a little wall:

M := {x ∈ ∂B(z, 55r0); dist(x, Z) ≤ 500η2r0}.

The set L is a MS-competitor for E thus

H2(E ∩ B(z, 55r0)) ≤ H2(L ∩ B(z, 55r0)) + (55r0)
2h(55r0)

≤ H2(M) +H2(Z ∩ B(z, 55r0)).

SinceH2(M) ≤ Cr20η2 we deduce

f (z, 55r0) ≤ Cη2.
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Now if η2 is small enough compared to ε1, we can apply Theorem 2.17 in B(z, 55r0)
then for all y ∈ E ∩ B(z, 5r0) and 0 < r < 10r0 we have

β(y, r) ≤
(
r

r0

)α

. (2.40)

In addition, since dist(x, z) ≤ 10−3r0 we deduce that (2.40) is true for all y ∈
B(x, 4r0) and 0 < r < 5r0.

Definition 2.21. By now we will denote by η2 and α the constants given by Lemma
2.20 and we denote by r̄(ε0) < 1 the radius such that

(100r̄(ε0))
α = 1

2
ε0. (2.41)

Technical Remark 2.22. Concerning the next lemma, it would be tempting to ob-

tain a statement that one could apply directly on F instead of K . On the other

hand to do this using the same technics as below, one would have to prove that

F satisfies a uniform concentration property or something to make the Hausdorff

measure lower semi-continuous. This is why we prefer arguing on K for which

we already know that uniform concentration property holds. We will transfer the

result on F later using Property (. Notice that the uniform concentration property
is verified in particular by the singular set of a Mumford-Shah minimizer. We do

not recall here the definitions and result about uniform concentration and we refer

to [6] (Section 35) and references therein for more details.

We are now ready to prove the main lemma of this section.

Lemma 2.23. For every ε0 ∈ (0, η2), and r < r̄(ε0), there is a constant η0 such
that the following holds. Let E be a closed set of finiteH2 measure in B(0, 1) ⊂ R3
that contains the origin, with the uniform concentration Property (with constant
Cu), and such that

βE (0, 1) ≤ η2 (2.42)

βE (0, r) ≥ ε0. (2.43)

Assume that the associated cone in B(0, 1) is centered in B(0, 10−5). In addition
we assume that there is a set F that contains E , that is separating in B(0, 1) and
such that

H2(F) −H2(E) ≤ η0.

Then there is aMS-competitor L for E in B(0, 1) such that

H2(E) −H2(L) ≥ η0.
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Proof. The argument is by contradiction. If the lemma is not true, then there is an

ε0 < η2 and a r < r̄(ε0) such that for all η > 0 one can find a set Eη that verifies

(2.42) and (2.43). In addition for all MS-competitor Lη for Eη we have

H2(Eη) −H2(Lη) ≤ η. (2.44)

Moreover for all η there is a set Fη that contain Eη, that is separating in B(0, 1),
and such that

H2(Fη) −H2(Eη) ≤ η. (2.45)

Now let η tend to 0. Passing if necessary to a subsequence, we may assume that
the sequence of sets Eη converges to a certain E0 in sense of Hausdorff distance.

Passing to the limit, we deduce that this set E0 still verifies (2.42) and (2.43).

We want to show that E0 is a minimal set in B(0, 1). Let L be a MS-competitor
for E0 in B(0, R) with R < 1. Since Eη tends to E0 for the Hausdorff distance (de-

noted DH ), we know that for any τ > 0, DH (E0, Eη) ≤ τ for η small enough. Thus
denoting Tτ := {x ∈ ∂B(0, R); dist(x, E0) ≤ τ }, we have that Eη∩∂B(0, R) ⊂ Tτ

for η small enough. Therefore, since L = E0 on ∂B(0, R), the set

Lη := [L ∩ B(0, R)] ∪ [Eη\B(0, R)] ∪ Tτ

is a MS-competitor for Eη. Then applying (2.44) we obtain

H2(Eη ∩ B(0, R)) ≤ H2(Lη ∩ B(0, R)) + η

≤ H2(L ∩ B(0, R)) +H2(Tτ ) + η

≤ H2(L ∩ B(0, R)) + η + Cτ.

Owing that by assumption the sets Eδ verify the uniform concentration property

with same constant Cu , we are allowed to say that (see [6, Section 35])

H2(E0) ≤ limη→0H2(Eη).

Hence, letting η tend to 0 we obtain

H2(E0 ∩ B(0, R)) ≤ H2(L ∩ B(0, R)) + τ

and letting τ tend to 0,

H2(E0 ∩ B(0, R)) ≤ H2(L ∩ B(0, R)).

This proves that E0 is a minimal set.

On the other hand, E0 is separating in B(0, 1), because if it is not the case, we
can find a continuous path γ joining Dk1 and Dk2 (two balls in different connected
component of B(0, 1)\Z ) in B(0, 1) and such that γ does not meet E0. Since Eη

converge to E0 for the Hausdorff distance, for all τ there is a ητ such that all the Eη

are τ close to E0 for η < ητ . Let x be the point of γ that realizes the infimum of
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dist(x, E0). Since γ is disjoint from E0, there is a ball centered at x with positive

radius r that does not meet E0. Thus if we choose η smaller than r we get that
all the Eη for η < ητ contain a hole of size r , but this is not possible according

to (2.45).

Thus finally E0 is a minimal set in B(0, 1), which is separating and verifies
(2.42) and (2.43). We want now to apply Lemma 2.20 to obtain a contradiction. We

know that

βE0(0, 1) ≤ η2

and that the associated cone is centered in B(0, 10−5). We claim that

D0,1(E0, Z) ≤ η2

(i.e. with a bilateral definition of the distance). All we have to show is that for all

x ∈ Z ∩ B(0, 1), dist(x, E0) ≤ η2. If it is not the case, then we can find x ∈ Z

such that B(x, η2) ∩ E0 = ∅. But then we can find a continuous path that join two
different connected components of B(0, 1)\Z without meeting E , and that is not
possible if E is separating. Thus (2.5) holds and then we can apply Lemma 2.20 in

B(0, 1) (i.e. r0 = 1
100

), which implies that

βE0(0, r) ≤ 1

2
ε0

because of the definition of r̄(ε0) (see (2.41)), and this yields a contradiction with
(2.43) so the proof is now complete.

Applying Lemma 2.23 we deduce to following useful proposition.

Proposition 2.24. Let i ∈ I be an index such that 1
A
Bi := B(xi , d(xi )) does not

verify (2.24). Then there is aMS-competitor L for K in

B̃i := B

(
xi ,

M

r̄
d(xi )

)

such that

H2(K ∩ B̃i ) −H2(L ∩ B̃i ) ≥ η0r̃
2
i

with r̃i := M
r̄
d(xi ) and M is a constant equal to 1, 105 or 1010.

Proof. Since Bi do not verify (2.24), we know that

β(xi , d(xi )) ≥ ε0

and in addition

β

(
xi ,
1

r̄
d(xi )

)
≤ ε0.

Multiplying if necessary the radius by 105 or 1010, and using the proof of the re-

centering Lemma 2.2, we can suppose that the center of the cone is in a ball of
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radius 10−5 times smaller in B(xi ,
M
r̄
d(xi )) (M is the constant equal to 1, 105 or

1010). Set

r̃i := M

r̄
d(xi ).

Then if ε0 is small enough compared to η2 we have that

β(xi , r̃i ) ≤ ε0 ≤ η2

with a cone centered in B(xi , 10
−5r̃i ). Moreover we have

β(xi , r̄ r̃i ) ≥ 1

M
ε0.

We also have F ∩ B(xi , r̃i ), that is a separating set in B(xi , r̃i ) and such that

H2(F ∩ B(xi , r̃i )) −H2(K ∩ B(xi , r̃i )) ≤ ε′
0r̃i .

Therefore, we can apply Lemma 2.23 in B(xi , r̃i ) with
1
M

ε0 instead of ε0 that we
may suppose smaller than Cε1. We can also take ε′

0 5 η0 and the proposition
follows from Lemma 2.23.

Remark 2.25 (Choice of A). We can now fix our constant A, that will depend on

ε0. We want that for every bad ball Bi := B(xi , Ad(xi )) with i ∈ I , the ball

B(xi , r̃i ) := B

(
xi ,

M

r̄
d(xi )

)
⊂ B

(
xi ,
10A

U
d(xi )

)
⊂ V

in order to have that the extension of u given by Lemma 2.13 is well defined in each

B(xi , r̃i ). Thus it suffices to take for instance

A = U1010

r̄(ε0)
> 1.

Comments about the constants The hierarchy between the constants

ε < ε′
0 < ε0

has to be preserved. Notice that all the constants η0, η1, η2 and ε1 are coming
from some independent results about minimal sets or almost minimal sets and the

constants ε, ε′
0 and ε0 can always be chosen small as we want with respect to them.

The constants U and M are just some universal constants. On the other hand the

constants r̄ and A are depending on ε0. The most important fact to keep in mind is
that throughout all this paper, ε is always small as we want with respect to all the
other constants.
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3. Useful estimates

We are now ready to compute some estimates about the different quantities that

will lead to regularity. Throughout this section we assume that B(x0, r0) satisfies
the Standard Assumptions 1 (see Definition 2.10). We start by finding a judicious

radius ρ to begin the estimates.

3.1. Choice of the radius

The following lemma is very simple but it gives an estimate that will be crucial in

the sequel.

Lemma 3.1. Let {Bi }i∈I be the Vitali balls defined in Section 2.3 and set

I (ρ) := {i ∈ I ; Bi ∩ ∂B(x0, ρ) /= ∅}. (3.1)

Then there exists ρ ∈ [ r0
2
, 3
4
r0] such that
∑

i∈I (ρ)

r2i ≤ C
√

εr20m(x0, r0).

Proof. We select a ρ ∈ T := [ r0
2
, 3
4
r0] such that the mass of the bad balls {Bi }i∈I

that are meeting ∂B(x0, ρ) is less than average. By such a choice of ρ we have

∑

i∈I (ρ)

r2i ≤ 1

|T |

∫

T

∑

i∈I (t)
r2i dt ≤ 1

|T |
∑

i∈I

∫

t;i∈I (t)
r2i ≤ C

1

|T |
∑

i∈I
r3i .

Finally we have found a ρ that verifies

∑

i∈I (ρ)

r2i ≤ C

r0

∑

i∈I
r3i ≤ C sup

i

{ri }
∑

i∈I
r2i ≤ C

√
εr20m(x0, r0). (3.2)

3.2. Comparaison with an energy minimizing function

The next proposition will give the fundamental estimate that will be used to control

the energy.

Proposition 3.2. Assume that B(x0, r0) satisfies the Standard Assumptions 1. Then
for all a < 1/2 there exists ε2 := ε2(a, ε0) such that if ε < ε2 then

ω2(x0, ar0) ≤ 2
√
aω2(x0, r0) + C

1

a2
ω2(x0, r0)

1
2 J (x0, r0)

−1

+ C

√
ε

a2
m(x0, r0) + 1

a2
h(r0).

(3.3)
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Proof. We keep the same notation I (ρ) := {i ∈ I ; Bi ∩ ∂B(x0, ρ) /= ∅} as before,
and ρ is the radius given by Lemma 3.1. We are ready to compare u with an energy
minimizing function and use the decay result of [14]. By construction of G, the set
F is (ε0,

√
ε)-minimal in the sense of Definition 8 of [14]. In fact, we know by

construction that F is ε0-minimal in the complement of the {Bi }i∈I , and for all i ,
we have that ri ≤ √

εr0. Set

G := Fρ :=
(
F\

⋃

i∈I (ρ)

Bi

)
∪

⋃

i∈I (ρ)

∂Bi .

Wemay assume that ε is small enough with respect to the constant of [14] so that we
can apply [14, Theorem 9]. Thus we know that the normalized energy decreases for

all energy minimizer in B(x0, r0)\G. In particular if w is the energy minimizer in

B(x0, r0)\G that is equal to u on ∂B(x0, r0)\G = ∂B(x0, r0)\F (for the existence
of such a minimizer, one can see for example [6, page 97]), applying [14, Theo-

rem 9] with γ = 1
2

< 2(
√
2 − 1), we have that for all a < 1

2
, there is a ε2 (that

depends on a and ε0), such that if ε < ε2 then

1

(ar0)2

∫

B(x0,ar0)\G
|∇w|2 ≤ a

1
2
1

r20

∫

B(x0,r0)\G
|∇w|2. (3.4)

The second useful fact is the following. Since (u, K ) is a Mumford-Shah minimizer
and (w,G) is a competitor we have

∫

B(x0,r0)\K
|∇u|2 +H2(K ∩ B(x0, r0))

≤
∫

B(x0,r0)\G
|∇w|2 +H2(G ∩ B(x0, r0)) + r20h(r0).

Hence
∫

B(x0,r0)\K
|∇u|2 −

∫

B(x0,r0)\G
|∇w|2

≤ H2(G ∩ B(x0, r0)) −H2(K ∩ B(x0, r0)) + r20h(r0)

≤ Cr20ω2(x0, r0)
1
2 J (x0, r0)

−1 + C
∑

i∈I (ρ)

r2j + r20h(r0)

≤ Cr20ω2(x0, r0)
1
2 J (x0, r0)

−1 + C
√

εr20m(x0, r0) + r20h(r0).

(3.5)

The third point is that ∇w and ∇(w − u) are orthogonal in L2(B(x0, r0)). This
comes from the fact that w is an energy minimizer in B(x0, r0)\G and u is a com-
petitor for w. Thus

∫

B(x0,r0)\G
|∇u − ∇w|2 =

∫

B(x0,r0)\G
|∇u|2 −

∫

B(x0,r0)\G
|∇w|2.
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We can now estimate the energy of u. Let 0 < a < 1
2
, then

∫

B(x0,ar0)\G
|∇u|2≤2

∫

B(x0,ar0)\G
|∇w|2 + 2

∫

B(x0,ar0)\G
|∇w − ∇u|2

≤2a2+ 1
2

∫

B(x0,r0)\G
|∇w|2 + 2

∫

B(x0,r0)\G
|∇w − ∇u|2

≤2a2+ 1
2

∫

B(x0,r0)\G
|∇u|2+2

∫

B(x0,r0)\G
|∇u|2−2

∫

B(x0,r0)\G
|∇w|2.

Hence, dividing by ar0 and using (3.5) we get

ω2(x0, ar0) ≤ 2
√
aω2(x0, r0) + C

1

a2
ω2(x0, r0)

1
2 J (x0, r0)

−1

+ C

√
ε

a2
m(x0, r0) + 1

a2
2h(r0).

(3.6)

3.3. Control of the bad mass

We still assume that we are under our Standard Assumptions 1. The following

proposition is an estimate about the bad mass m(x0, r). Let ρ ∈ [ r0
2
, 3
4
r0] be the

radius given by Lemma 3.1.

Proposition 3.3. If m(x0,
ρ
2
) ≥ τm(x0, r0) for some τ > 0 and provided ε small

enough with respect to τ and η0 (the constant of Proposition 2.24) , on has

m
(
x0,

ρ

2

)
≤ C

η0

(
ω2(x0, r0) + ω2(x0, r0)

1
2 J (x0, r0)

−1 + h(r0)
)

. (3.7)

Proof. To prove Proposition 3.3, we will count the contribution of Bi for i ∈ I

and use Proposition 2.24 to say that there are not so many. Recall that the Bi are

disjoints.

In order to estimate the bad mass we will construct a competitor for (u, K ) in
B(x0, r0). We denote by I1 the set of indices of bad balls Bi such that B(xi , d(xi ))
doesn’t verify (2.24) and I2 := I\I1. In particular, balls of I2 do not verify (2.23).
Hence we know that if i ∈ I2 we have

K∩B(xi , d(xi ))=∅ or d(xi )
2≤ 1

ε′
0

(
H2(F∩B(xi , d(xi )))−H2(K∩B(xi , d(xi ))

)

and since the Bi are disjoint we deduce that

∑

i∈I2
r2i ≤C

1

ε′
0

(H2(F(x0, r0))−H2(K∩B(x0, r0)))≤Cr20ω2(x0, r0)
1
2 J (x0, r0)

−1.



592 ANTOINE LEMENANT

Now we have to count the contribution of I1. We will modify each Bi for i ∈ I1
with the use of Proposition 2.24. Set

I ′1 := {i ∈ I1; Bi ∩ B(x0, ρ) /= ∅ and Bi ∩ ∂B(x0, ρ) = ∅}

and

I ′′1 := {i ∈ I1; Bi ∩ ∂B(x0, ρ) /= ∅}.
Then define

G̃ :=
{
F(x0, r0) in B(x0, r0)\

⋃
i∈I ′1 Bi

Li in Bi for all i ∈ I ′1
where Li is the set given by Proposition 2.24. Then set

G := G̃ ∪
⋃

i∈Iρ
∂C1Bi

where C1 is the constant in (2.36). For the function we use the extension of Propo-

sition 2.13 which can be applied in B(x0, ρ) by Proposition 2.15. Thus we take

v = vk in !k ∩ B(x0, ρ),

and

v = u in B(x0, r0)\
(
B(x0, ρ) ∪

⋃

i∈I (ρ)

C1Bi

)
.

By choice of constant A we know that the function v is well defined in B(x0, r0)\G.
Notice that m(x0,

ρ
2
) ≤ C 1

r0

∑
i∈I ′1 r

2
i and

∑
i∈I ′′1 r

2
i ≤ Cr20

√
εm(x0, r0) by Lemma

3.1. In addition G is a competitor (because of the same argument as [7, Remark

1.8.]). We apply now the fact that (u, K ) is a Mumford-Shah minimizer and we
obtain
∫

B(x0,r0)\K
|∇u|2 +H2(K ∩ B(x0, r0))

≤
∫

B(x0,r0)\G
|∇v|2 +H2(G ∩ B(x0, r0)) + r20h(r0)

≤C

∫

B(x0,r0)\K
|∇u|2+H2(F(x0, r0))−η0

∑

i∈I ′1
r2i + C

∑

i∈I ′′1
r2i +C

∑

i∈I2
r2j + r20h(r0).

Hence,

η0Cr0m
(
x0,

ρ

2

)
− C

√
εr0m(x0, r0)

≤ C

∫

B(x0,r0)\K
|∇u|2 + r20ω2(x0, r0)

1
2 J (x0, r0)

−1 + r20h(2r0).
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Therefore, since m(x0,
ρ
2
) ≥ τm(x0, r0) and if ε is small enough compared to η0

and τ we deduce

m
(
x0,

ρ

2

)
≤ C

η0

(
ω2(x0, r0) + ω2(x0, r0)

1
2 J (x0, r0)

−1 + h(2r0)
)

(3.8)

and the proposition follows.

Now by the same sort of argument as in the Proposition before, we have this

second estimate about m that will also be useful.

Proposition 3.4.

m(x0, r0(1− C
√

ε))

≤ C

η0

(
ω2(x0, r0) + ω2(x0, r0)

1
2 J (x0, r0)

−1 + β(x0, r0) + h(r0)
)

.
(3.9)

Proof. The proof is very similar to Proposition 3.3. We keep the notation of I1 and

set

I ′1 := {Bi ; 5Bi ∩ ∂B(x0, r0) /= ∅}.
Then we set

G̃ :=






F(x0, r0) in B(x0, r0)\
⋃

i∈I ′1
Bi

Li in Bi for all i ∈ I ′1

where the Li are the sets given by Proposition 2.24. Our competitor is now

G := G̃ ∪ Tβ

where Tβ is a little wall of size β := 10β(x0, r0)

Tβ := {y ∈ ∂B(x0, r0); d(y, Z) ≤ βr0}

with Z = Z(x0, r0).
As before we have

∑

i∈I2
r2i ≤C

1

ε′
0

(H2(F(x0, r0))−H2(K∩B(x0, r0)))≤Cr20ω2(x0, r0)
1
2 J (x0, r0)

−1.

For the function we use the extension of Proposition 2.13 but applied in B(x0, 2r0)
and with ρ = r0 and an analogous geometric function. We fix v = vk in !k ∩
B(x0, ρ) and v = u in B(x0, 2r0)\B(x0, r0). By choice of constant A we know
that the function v is well defined in B(x0, r0)\G and since we added Tβ there is no

boundary problem.
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We apply now the fact that (u, K ) is a Mumford-Shah minimizer and we ob-
tain,

∫

B(x0,r0)\K
|∇u|2 +H2(K ∩ B(x0, r0))

≤
∫

B(x0,r0)\G
|∇v|2 +H2(G ∩ B(x0, r0)) + r20h(r0)

≤ C

∫

B(x0,r0)\K
|∇u|2 +H2(F(x0, r0)) − η0

∑

i∈I ′1
r2i +H2(Tβ) + r20h(r0).

Hence,

η0m(x0, r0(1− C
√

ε)) ≤ C

∫

B(x0,r0)\K
|∇u|2 + r20ω2(x0, r0)

1
2 J (x0, r0)

−1

+ Cr20β(x0, r0) + r20h(2r0)

because all the Bi have a radius less than C
√

εr0 thus all the Bi for i ∈ I1 such that

5Bi ∩ ∂B(x0, r0) = ∅ are contained in B(x0, r0(1 − C
√

ε)), and the proposition
follows.

3.4. Control of the minimality defect

In this section we want to control the defect of minimality of K in terms of energy

and bad mass. For some topological reasons we are not going to work directly on

K , but we will use the set F to be sure that it is separating in B. We show in

this section that F is an almost minimal set with gauge function depending on the

energy of u and the bad mass.

Proposition 3.5. Assume that B(x0, r0) satisfies the Standard Assumptions 1. Then
there is a positive constant c1 < 1 such that for allMS-competitor L for the set F

in the ball B(x0, c1r0), we have:
1

r20

[H2(F ∩ B(x0, c1r0)) −H2(L ∩ B(x0, c1r0))]

≤ C
[
ω2(x0, r0) + √

εm(x0, r0) + h(r0)
]
.

Proof. Let Z0 := Z(x0, r0) be the associated cone in B(x0, r0). We also denote Z
0
ε

the region

Z0ε := {x ∈ B(x0, r0); dist(x, Z0) ≤ ε}. (3.10)

We consider our usual Vitali balls {Bi }i∈I and we take the same functions as before

ψi :=
{
ri on Bi

0 in the complement of 5Bi .
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Then for all x we define as before

δ(x) :=
∑

i∈I
ψi (x)

which is a geometric function, and finally for all x ∈ B(x0, ρ) (where ρ is the radius
of Lemma 3.1) we set

δ1(x) := max(dist(x, ∂B(x0, ρ)), δ(x)).

By the same way as for Proposition 2.15, one can easily prove that δ1(x) is a ge-
ometric function associated to F in B(x0, r0). Thus applying Lemma 2.13 we get
some functions vk such that vk ∈ W 1,2(!k ∪ V \V ρ) and such that

∫

!k∪V \V ρ

|∇vk |2 ≤ C

∫

B(x0,ρ)\F
|∇u|2

in addition, vk is equal to u on ∂B(x0, ρ) ∩ !k\V .
Moreover, since δ1(x) ≥ dist(x, ∂B(x, ρ)), if ε is small enough we can easily

deduce that there is a constant c1 < 1
2
depending on other constants like U and C0,

such that B(x0, c1r0) ⊂ V . Consider now

G ′ =
{
F in B(x0, r0)\B(x0, c1r0)

L in B(x0, c1r0).

If L is a competitor for F in B(x0, c1r0), we know that L is separating B(x0, c1r0)
into k (x, ρ) big connected components (because F is separating and L is a topolog-
ical competitor). ThusG ′ is separating in B(x0, ρ) and we denote by (B(x0, ρ)\G)k

the big connected components.

Then set

G := G ′ ∪
⋃

i∈I (ρ)

∂C1Bi

and

v :=






u in B(x0, r0)\B(x0, ρ)

vk in (B(x0, ρ)\G)k

0 in other components of B(x0, ρ)\G.

Using that (u, K ) is a Mumford-Shah minimizer and that (v,G) is a competitor we
obtain

∫

B(x0,ρ)\K
|∇u|2 +H2(K ) ≤

∫

B(x0,ρ)\G
|∇v|2 +H2(G) + ρ2h(ρ)
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thus

H2(K ∩ B(x0, c1r0)) −H2(L ∩ B(x0, c1r0))

≤ C




∫

B(x0,r0)\K
|∇u|2 +

∑

i∈I ′′1
r2i + r20ω(x0, r)

1
2 J (x0, r)

−1 + r20h(r0)





and the proposition follows.

4. Conclusion about regularity

Now we are ready to use all the preceding estimates in order to prove some regular-

ity. We begin with this proposition about self-improving estimates.

Proposition 4.1. There is an ε > 0, some τ4 < τ3 < τ2 < τ1 < ε and a < 1 such

that the following holds. Assume that B(x, r) satisfies the Standard Assumptions 1
and that

h(r) + J (x, r)−1 ≤ τ4, ω2(x, r) ≤ τ3, m(x, r) ≤ τ2, β(x, r) ≤ τ1. (4.1)

Then (4.1) is still true with ar instead of r and 10−5τi instead of τi for i ∈{1, 2, 3, 4}.
Proof. We choose ε small enough such that all the results of the preceding sections
holds. Then we fix a < 1

4.1010
such that applying (3.3) to (u, K ) gives

ω2(x, ar)≤10−6ω2(x, r)+C2ω2(x, r)
1
2 J (x, r)−1+C2

√
εm(x, r)+C2h(r), (4.2)

with a constant C2 depending on a. Since a is chosen, we can fix τ1 small enough
such that for all ar < t < r we have β(x, t) ≤ 10−6. Hence by Lemma 2.9

J (x, ar) ≥ a− 1
2 [J (x, r) − C ′] ≥ 1

2
a− 1

2 J (x, r)

if τ4 is small enough compared to C
′. Then we deduce

J (x, ar)−1 ≤ 2a
1
2 J (x, r)−1 ≤ 10−5 J (x, r)−1

because a < 1
4.1010

. In addition if τ4 is small enough compared to τ3, we have

C2τ
1
2

3 τ4 ≤ 10−6τ3. (4.3)

Therefore by (4.2),

ω2(x, ar) ≤ 2.10−6τ3 + C2
√

εm(x, r) + C2τ4 ≤ 10−5τ3
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because τ4 is small as we want with respect to τ3 and under the further condition
that for instance

C2
√

ετ2 < 10−6τ3. (4.4)

Now for m(x, r) we have two cases. If m(x, ar) ≤ 10−5m(x, r) then m(x, ar) ≤
10−5τ2 and this is what we want. Otherwise, we have m(x, ar) > 10−5m(x, r)

which implies m(x, ρ
2
) > a210−5

(
8
3

)2
m(x, r) and then we can apply Proposition

3.3 with τ = a210−5
(
8
3

)2
to obtain

m(x, ρ/2) ≤ C

η0
(τ3 + τ

1
2

3 τ4 + τ4)

which implies

m(x, ar) ≤ (ρ/2)2

(ar)2
m

(
x,

ρ

2

)

≤ C(a, η0)(τ3 + τ
1
2

3 τ4 + τ4)

≤ C(a, η0)(2+ 10−6/C2)τ3 ≤ 10−5τ2,

(4.5)

using (4.3) and provided that

105C(a, η0)(2+ 10−5/C2)τ3 ≤ τ2. (4.6)

So it suffice to choose ε small enough compared to η0 and a in order to have the
existence of τ3 < τ2 that verifies simultaneously (4.4) and (4.6). Hence, we control
ω2(x, ar) and m(x, ar).

To finish we have to control β(x, ar). For that we use the estimate in Proposi-
tion 3.5 and Lemma 2.23. Indeed, suppose by contradiction that a 5 r̄(10−5τ1)c1
is such that

β(x, ar) ≥ 10−5τ1. (4.7)

Then applying Lemma 2.23 with ε0 = 10−5τ1 gives a η0(τ1, a) and a competitor L
for K in B(x, c1r) such that

H2(K ) −H2(L) ≥ η0(τ1, a). (4.8)

On the other hand, according to Proposition 3.5, if we choose τ2 and τ3 small
enough compared to η0(τ1, a), the inequality (4.8) cannot hold. This shows that

β(x, ar) ≤ 10−5τ1

which achieves the proof of the proposition.
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We keep the constants a and τi given by the preceding proposition. Let b be
the positive power such that (a/200)b = 1

2
. Set

h̃r (t) = sup

{(
t

s

)b

h(s); t ≤ s ≤ r

}

for t < r and h̃r (t) = h(t) for t > r . According to [6, page 318], the function

h̃ is still a gauge function (i.e. monotone and with limit equal to 0 at 0). We also

trivially have that h(t) ≤ h̃r (t) and one can prove that

h̃r (t) ≥
(
t

t ′

)b

h̃r (t
′) for 0 < t < t ′ ≤ r. (4.9)

Notice that since (a/100)b = 1
2
, we have

h̃r (at/100) ≥ 1

2
h̃r (t) for 0 < t ≤ r. (4.10)

The purpose of Proposition 4.1 is just to have β(x, r) ≤ τ1 at all scales in order
to have more decay for the other quantities. Notice that at this step, an iteration of

the last Proposition could prove that K is the bi-hölderian image of a minimal cone

using the Reifenberg parametrization of G. David, T. De Pauw and T. Toro [8]. This

will be done in Corollary 4.4 to prove that K is a separating set. Before that we will

prove some more decay estimates.

Proposition 4.2. We assume that we have the same hypothesis as in the proposition

before. Then for all 0 < t < r we have

J (x, t)−1 ≤ 2

(
t

r

)b

τ4

ω2(x, t) ≤ C

(
t

r

)b

τ3 + Ch̃r (t)

m(x, t) ≤ C

(
t

r

)b

τ2 + Ch̃r (t).

Proof. We begin by iterating Proposition 4.1. Let us do the first step. We start

with some control of the different quantities ω2, m, J , β in B(x, r) and we ob-
tain a similar control in B(x, ar). The only problem that could occur to re-apply

the proposition in B(x, ar) is that the cone associated to B(x, ar) might not be al-
most centered (which is required the have Standard Assumptions 1 in B(x, ar/2)).
But in this case we know by the recentering Lemma that the cone associated to

B(x, ar/10) or B(x, ar/100) is almost centered. Moreover since the conclusion of
Proposition 4.1 yields a control of all the quantities by 10−5τi we are sure that in
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B(x, ar/10) or B(x, ar/100) the quantities are still controlled at least by τi . There-
fore we can apply the proposition in B(x, ar/20) or B(x, ar/200) and continue
the iteration at all smaller scales. In conclusion we just constructed a sequence an
converging to 0 such that a0 = 1, an+1 ∈ {aan, aan/20, aan/200}, such that each
B(x, anr) has an associated cone almost centered and

h(anr) + J (x, anr)
−1≤τ4, ω2(x, anr) ≤ τ3, m(x, anr) ≤ τ2, β(x, anr) ≤ τ1

for all n ∈ N.
Next we want to get some further decay. First we control the jump. Up to take

a slightly smaller constant τ1 (depending on a) we can assume that β(x, t) ≤ 10−7
for all t < r . Then by Lemma 2.9

J (x, t) ≥
(r
t

)− 1
2 [J (x, r) − C ′] ≥ 1

2

(r
t

)− 1
2
J (x, r)

if τ4 is small enough compared to C
′. We deduce

J (x, t)−1 ≤ 2

(
t

r

) 1
2

J (x, r)−1.

And since a < 1
4
we have in particular

J (x, anr)
−1 ≤ 2

(
1

2

)n

τ4. (4.11)

Now we want to show by induction that

ω2(x, anr0)≤2−nτ3+C3h̃r (anr) and m(x, anr) ≤ 2−nτ2+C3h̃r (anr) (4.12)

for a suitable choice of constant C3.

If n = 0, (4.12) holds by our assumptions. Suppose by now that (4.12) is true

for n. Then inequality (3.3) applied in B(x, anr) yields

ω2(x, aanr) ≤ 10−6ω2(x, anr) + C2ω2(x, anr)
1
2 J (x, anr)

−1

+ C2
√

εm(x, anr) + C2h(anr).
(4.13)

Now, using the inequality 2αβ ≤ α2 + β2 we obtain

ω2(x, anr)
1
2 ≤ 10−6

2C2
ω2(x, anr)J (x, anr) + 106C2

2
J (x, anr)

−1. (4.14)

Thus (4.13) becomes

ω2(x, aanr) ≤
(
10−6 + 10−6

2

)
ω2(x, anr) + 106

2
C22 J (x, anr)

−2

+ C2
√

εm(x, anr) + C2h(anr).



600 ANTOINE LEMENANT

Now using (4.11) and the induction hypothesis (4.12) we obtain

ω2(x, aanr) ≤ 3

2
10−62−nτ3 + 106C222

−2nτ 22 + C2
√

ε2−nτ2

+
(
3

2
10−6C3 + C2

√
εC3 + C2

)
h̃r (anr).

Then, using that τ4 is controlled by τ3, since ε is small as we want compared to C2,
using also (4.4) and (4.10), and finally if we choose C3 large enough with respect

to C2 we deduce that

ω2(x, aanr) ≤ 3.10−62−nτ3 + 10−5C3h̃r (anr)

which implies

ω2(x, an+1r) ≤ 2002ω2(x, aanr) ≤ 104[3.10−62−nτ3 + 10−5C3h̃r (anr)]
≤ 3.10−22−nτ3 + 10−1C3h̃r (anr)

≤ 2−(n+1)τ3 + C3h̃r (an+1r).

(4.15)

Concerning m(x, r) it is a similar argument. We may assume that

m(x, aanr) > 10−5m(x, anr) (4.16)

otherwise

m(x, an+1r) ≤ 104m(x, aanr) ≤ 10−1m(x, anr)

and we would conclude by the induction hypothesis.

Now if (4.16) holds, then the same argument employed to prove (4.5) implies

that

m(x, aanr) ≤ C(a, η0)[ω2(x, anr) + ω2(x, anr)
1
2 J (x, anr)

−1 + h(anr)].

Then using again an inequality similar to (4.14) one gets

m(x, aanr) ≤ C(a, η0)

[
3

2
ω2(x, anr) + 1

2
J (x, anr)

−2 + h(anr)

]
.

Setting C4 = C(a, η0), using (4.11) and induction hypothesis we obtain

m(x, aanr) ≤ C42
−nτ3 + C42

−2n+1τ 24 + C4h(anr)

≤ 10−42−n+1τ2 + 10−4C3h̃r (an+1r)

because τ3 and τ4 are small as we want with respect to C4 and τ2, because we can
chose C3 big enough with respect to C4 and we also have used (4.10). Finally since

m(x, an+1r) ≤ 104m(x, aanr) we conclude that

m(x, an+1r) ≤ 2−n+1τ2 + C3h̃r (an+1r).
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To finish the proof let 0 < t < r and n such that an+1r ≤ t ≤ anr . In particular

(a/200)n+1r ≤ t . Then we have

ω2(x, t) = 1

t2

∫

B(x0,t)\K
|∇u|2 ≤

(anr
t

)2
ω2(x, anr)

≤
(
200

a

)2 (
2−nτ3 + C3h̃r (anr)

)

≤
(
200

a

)2
(a/200)bnτ3 + C ′

3h̃r (t)

≤ C

(
t

r

)b

τ3 + C ′
3h̃r (t)

and similarly,

m(x, t) ≤
(anr
t

)2
m(x, anr) ≤

(
200

a

)2 (
2−nτ2 + C3h̃r (anr)

)

≤
(
200

a

)2
(a/200)bnτ2 + C ′

3h̃r (t) ≤ C

(
t

r

)b

τ2 + C ′
3h̃r (t),

which ends the proof.

Proposition 4.3. There is ε > 0 and τ ′
4 < τ ′

3 < τ ′
2 < τ ′

1 < ε such that if the
Standard Assumptions 1 are fulfilled in B(x0, r0) and if

h(r0) + J (x0, r0)
−1 ≤ τ ′

4, ω2(x0, r0) ≤ τ ′
3, m(x0, r0) ≤ τ ′

2, β(x0, r0) ≤ τ ′
1,

then for all x ∈ B(x0,
1
10
r0) and for all 0 < t < 1

200
r0 we have

J (x, t)−1 ≤ C

(
t

r0

)b

ω2(x, t) ≤ C

(
t

r0

)b

+ Ch̃r (t)

m(x, t) ≤ C

(
t

r0

)b

+ Ch̃r (t)

β(x, t) ≤ τ1.

Proof. It suffice to show that there are τ ′
4 < τ ′

3 < τ ′
2 < τ ′

1 < ε such that if

h(r0) + J (x0, r0)
−1 ≤ τ ′

4, ω2(x0, r0) ≤ τ ′
3, m(x0, r0) ≤ τ ′

2, β(x0, r0) ≤ τ ′
1
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then for all x ∈ B(x0,
1
10
r0) we have

h

(
1

2
r0

)
+ J

(
x,
1

2
r0

)−1
≤ τ4, ω2

(
x,
1

2
r0

)
≤ τ3,

m

(
x,
1

2
r0

)
≤ τ2, β

(
x,
1

2
r0

)
≤ τ1

hence we could apply all the work of preceding sections in B(x, 1
10
r0) and conclude.

Note that for all x ∈ K ∩ B(x0,
1
10
r0) we have

ω2(x, sr0) ≤ 1

s
ω2(x0, r0)

m(x, sr0) ≤ 2
1

s
m(x0, r0)

β(x, sr0) ≤ 1

s
β(x0, r0)

(4.17)

in addition if β(x0, r0) is small enough then

J (x, sr0)
−1 ≤ 1

s
J (x0, r0)

−1.

Finally, since h is non-decreasing

h(sr0) ≤ h(r0).

We deduce that for i ∈ [1, 4] we can set

τ ′
i := 1

400
τi

so that all the assumptions of Proposition 4.2 are satisfied in B(x, s) where x ∈
B(x0, r0/10) and s ∈ [r0/200, r0/2], except that the associated cone might not be
almost centered. But for at least one radius s ∈ [r0/200, r0/2] the associated cone
is almost centered which allows us to apply Proposition 4.2 so that finally the decay

holds for any r < r0/200 as it is claim in the statement of the proposition.

Corollary 4.4. In the same situation as in proposition before, if τ1 is small enough
we can choose

F

(
x0,

1

10
r0

)
= K ∩ B

(
x0,

1

10
r0

)
.

Proof. The approach is to prove that K is separating in B(x0,
1
10
r0), so that we

can take F = K in this ball. To show that K is separating it will be convenient



REGULARITY OF MUMFORD-SHAH MINIMIZERS IN R3 603

to apply [8, Theorem 1.1]. Actually one could probably prove it directly without

using the whole result of [8], but this would make the present paper longer.

The main point is to show that for all x ∈ B(x0,
1
10
r0) and for all r such that

B(x, r) ⊂ B(x0,
1
200

r0) there is a cone Z(x, r) such that

Dx,r (K , Z(x, r)) ≤ ε′

with ε′ a certain constant given by [8, Theorem 1.1]. Recall that Dx,r is the normal-

ized Hausdorff distance

Dx,r (E, F) := 1

r
max

{
sup

z∈E∩B(x,r)

{dist(z, F)}, sup
z∈F∩B(x,r)

{dist(z, E)}
}

. (4.18)

If we choose τ1 small enough compared to ε′ we know that for all x and for all r we
have β(x, r) ≤ ε′ by the preceding proposition. Hence we can find a cone Z(x, r)
that satisfy the first half of Dx,r . We have to show now that

sup{dist(z, K ), z ∈ Z(x, r)} ≤ rε′.

We know that J (x, r)−1 ≤ τ4 and ω2(x, r) ≤ τ3. Thus there is a set F(x, r) that is
separating in B(x, r) and such that

H2(F(x, r) ∩ K ∩ B(x0, r)) ≤ Cω2(x, r)
1
2 J (x, r)−1 ≤ 10−6τ3r2

by (4.3). Then for all z ∈ Z(x, r), we have

dist(z, K ) ≤ dist(z, y) + dist(y, K )

with y a point of F(x, r) such that dist(z, F(x, r)) = dist(z, y). If τ1 ≤ ε′
2
we can

suppose that F(x, r) ⊂ {y; dist(y, Z) ≤ r ε′
2
}. Thus dist(z, y) ≤ r ε′

2
. We claim

that dist(y, K ) ≤ r ε′
2
. The argument is by contradiction. If it is not true, then

K ∩ B(y, r ε′
2
) = ∅. But F(x, r) is contained in T := {y; dist(y, Z) ≤ rε′}. Let

Ak be the connected components of B(y, r ε′
2
)\T . Then F(x, r) separates the Ak in

B(y, r ε′
2
), and the minimal set that have this property is a cone of type P, Y or T of

area greater than Cε′2r2. On the other hand H2(F(x, r)\K ) ≤ τ3r
2. Thus if τ3 is

small enough compared to ε′ it is not possible, thus finally dist(y, K ) ≤ ε
2
and

Dx,r (K , P) ≤ ε′.

Now [8, Theorem 1.1] says that K is containing the image of a minimal cone

by a homeomorphism from B(x0,
1
10
r0) to B(x0,

1
5
r0) and this proves in particu-

lar the desired separation property on K which implies that one can take F = K as

claimed.
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Theorem 4.5. There is some absolute positive constants ε and c such that the fol-
lowing is true. Let (u, K ) be a Mumford-Shah minimizer in ! ⊂ R3 with gauge
function h, let x ∈ K and r be such that B(x, r) ⊂ ! and

ω2(x, r) + β(x, r) + J (x, r)−1 + h(r) ≤ ε

where the associated cone in B(x, r) denoted Z is of type P, Y or T centered at x .

Then there is a diffeomorphism φ of class C1,α from B(x, cr) to its image such that
K ∩ B(x, cr) = φ(Z) ∩ B(x, cr).

Proof. To prove Theorem 4.5 it suffice to show that K ∩ B(x, cr) is an almost
minimal set that verify the assumptions of Theorem 1.12. If ε is small enough,
then B(x, r/2) satisfies the Standard Assumptions 1 and provided ε small enough
with respect to τ ′

4, all the quantities ω2(x, r/2), β(x, r/2), J (x, r/2)−1 and h(r/2)
verify the hypothesis of Proposition 4.3. Furthermore, according to Proposition

3.4, m(x, r/2) is also smaller that τ2. Therefore, all the assumptions of the last
propositions are fulfilled.

By Corollary 4.4, we know that F = K in B(x, 1
20
r). So we can apply Propo-

sition 3.5 directly on K (instead of F) and the decay result on ω2 and m obtained in
Proposition 4.3 shows that K is an almost minimal set in B(x, 1

20
c1r) with gauge

function

ĥ(t) := C

(
t

r

)b

+ Ch̃r (t).

To conclude using Theorem 1.12 we have to verify (1.5). If ε and c are small enough

we have that ĥ(cr) ≤ ε1 so we only have to control f (x, r). To do this we can use
the same argument as we used in Lemma 2.20. We use Lemma 2.18 to find a point

x of same type of cone Z that define f , then we use the same competitor L as in the

proof of 2.20 that is Z ∪ M where M is a small wall. We deduce a bound of f by

β. Thus if the τi are small enough compared to ε1, (1.5) is verified hence the proof
is achieved.

Remark 4.6. Constant c in Theorem 4.5 is depending on c1, U , α, and other con-
stants. Thus, constant c is fairly small but one might give an explicit value by doing

some long computations. On the other hand the constant ε cannot be explicited
since it rely on some infinitesimal coming from some compactness arguments.

Now we want to prove that the conditions on J and ω2 can be removed in
Theorem 4.5 if we suppose that c and ε are a bit smaller. To begin, we have to use
this following lemma from [6].

Lemma 4.7 ([6]). For each η1 ∈ (0, 1) there is some constants ε3 and τ1 such
that the following holds. Let (u, K ) is a Mumford-Shah minimizer in !, x ∈ K ,

B(x, r) ⊂ !, and
ω2(x, r) + h(r) + β(x, r) ≤ ε3.

In addition assume that K is not separating in B(x, r). Then

J (x, τ1r) ≥ η1.
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Proof. The proof is the same as [6, Lemma 5 page 333], generalized to the case of

Y and T as well. This is not a serious issue so we omitted the proofs and refer to

the aforementioned results.

About the normalized energy we also have this result that naturally comes from

an argument with blow-up limits.

Lemma 4.8. For each η2 > 0 there is some constants ε3 and a0 with the following
property. Let ! ⊂ R3 and let (u, K ) be a Mumford-Shah minimizer in ! with

gauge function h. Let x ∈ K and r > 0 be such that B(x, r) ⊂ !. Suppose that
h(r) ≤ ε3 and that we can find a cone Z of type P, Y or T centered at x such that

Dx,r (K , Z) ≤ ε3.

Then

ω2(x, a0r) ≤ η2.

Proof. The proof is the same as [6, Lemma 3 page 476], provided that we know

who are the global minimizers inR3 with u locally constant. Thank to a result from
G. David [4] we know that there are the cones of type P, Y and T and this is exactly
what we need to conclude.

Now we can state the main theorem.

Theorem 4.9. For every C > 0 and α ∈ (0, 1),there is a ε > 0 such that the

following holds. Let (u, K ) be a Mumford-Shah minimizer in ! ⊂ R3 with gauge
function h(r) = Crα , let x ∈ K and r be such that B(x, r) ⊂ ! and h(r) ≤ ε.
Assume in addition that there is a cone Z of type P, Y or T centered at x such that

Dx,r (K , Z) ≤ ε.

Then there is a diffeomorphism φ of class C1,α from B(x, cr) to its image, such that
K ∩ B(x, cr) = φ(Z).

Proof. We have to control the normalized jump and then apply Theorem 4.5. First

assume that K is not separating. Then if ε is small enough compared to ε3 we can
use Lemma 4.8 and then Lemma 4.7 to obtain that

J (x, r ′)−1 ≤ ε̄

where ε̄ is the constant of Theorem 4.5 and for a certain radius r ′ given by Lemma
4.7.

Now since ε is still small as we want, and possibly by taking a slightly smaller
r ′, we can assume that the associated cone in β(x, r ′) is still centered near x and in
addition

β(x, r ′) + J (x, r ′)−1 + ω2(x, r
′) + h(r ′) ≤ ε̄.

Then we apply Theorem 4.5 in B(x, r ′) and the conclusion follows.
Finally if K is already separating in B(x, r), then all the part of the proof

corresponding to the construction of F and control of the jump is useless so that

Theorem 4.5 is true with J (x, r) = 0 and this is enough to conclude.

This is an example of statement in terms of functional J .
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Corollary 4.10. Let g ∈ L∞ and! ⊂ R3. Then there is some constants r̃ > 0 and

ε > 0, that depends only on ‖g‖∞, such that for all pair (u, K ) ∈ A that minimize

the functional

J (u, K ) :=
∫

!\K
|∇u|2dx +

∫

!\K
(u − g)2dx +H2(K ),

for all x ∈ K and r < r̃ such that there is a cone Z of type P, Y or T centered at x

with

Dx,r (K , Z) ≤ ε

there is a diffeomorphism φ of class C1,α from B(x, cr) to B(x, 10cr) such that
K ∩ B(x, cr) = φ(Z) ∩ B(x, cr).

Proof. We know by [6, Proposition 7.8. page 46] that (u, K ) is a Mumford-Shah
minimizer with gauge function

h(r) = CN‖g‖2∞r

where CN depends only on dimension. The conclusion follows applying Theo-

rem 4.9 in B(x, r) if we choose

r̃ = ε̃

2CN‖g‖2∞
where ε̃ is the constant of Theorem 4.9.

Now we want a statement with only a condition about energy. We begin by

this following lemma (DH denotes the Hausdorff distance).

Lemma 4.11. For every η4 > 0 there exist a radius R > 1 and a η3 > 0 such that

for every Mumford-Shah minimizer (u, K ) in B(x, R) ⊂ R3 such that x ∈ K and

ω2(x, R) + h(R) ≤ η3,

there is a minimal cone Z of type P, Y or T that contains x and such that

DH (K ∩ B(x0, 1), Z ∩ B(x0, 1)) ≤ η4.

Proof. The argument is by compactness. If it is not true, then we can find a η4 > 0

such that for all n > 0, there is a Mumford-Shah minimizer (un, Kn) in B(x, n)
such that

ω2(x, n) + h(n) ≤ 1

n3
(4.19)

and

sup
Z

DH (Kn ∩ B(x0, 1), Z ∩ B(x0, 1)) ≥ η4 (4.20)
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where the supremum is taken over all minimal cones containing x . We let now tend

n to infinity. Since (un, Kn) is a sequence of Mumford-Shah minimizers, with same
gauge function hl(r) := sup{h(nr); n ≥ l}, and such that

∫

B(x,n)
|∇u|2 ≤ r

1

n
≤ C

by [6, Proposition 37.8] we can extract a subsequence such that (unk , Knk ) con-

verges to (u, K ) in R3 in the following sense: DH (Knk ∩ A, K ∩ A) tends to 0 for

every compact set A ⊂ R3. Moreover for all connected component! ofR3\K and
for all compact set A of!, there is a sequence ak such that {unk −ak}k∈N converges
to u in L1(A). Then, using (4.19) and Proposition 37.18 of [6], we know that for
every ball B ⊂ R3,

∫

B\K
|∇u|2 ≤ lim inf

k→+∞

∫

B\Kn
|∇un|2 ≤ lim

k→+∞
r
1

nk
= 0.

Thus ∇u = 0 and u is locally constant. Finally, [6, Theorem 38.3] says that the

limit (u, K ) is a Mumford-Shah minimizer with gauge function hl(4r). Since it is
true for all l, and that supl hl = 0, we can suppose that (u, K ) is a Mumford-Shah
minimizer with gauge function equals to zero, and u is locally constant. But in this

case we know by [4] that K is a minimal cone of type P, Y or T, and since for all
n, Kn is containing x , it is still true for the limit K . In addition, there is a rank L

such that for all k ≥ L we have DH (K ∩ B(x0, 1), Knk ∩ B(x0, 1)) ≤ η4
2
which is

in contradiction with (4.20) and achieves the proof.

Lemma 4.11 implies the following theorem.

Theorem 4.12. For every C > 0 and α > 0 there is some positive constants ε and
c < 1 such that the following holds. Let (u, K ) be a Mumford-Shah minimizer in
! ⊂ R3 with gauge function h(r) = Crα , let x ∈ K and r be such that B(x, r) ⊂ !
and

ω2(x, r) + h(r) ≤ ε.

Then there is a diffeomorphism φ of class C1,α from B(x, cr) to its image, and there
is a minimal cone Z such that K ∩ B(x,Cr) = φ(Z) ∩ B(x, cr).

Proof. Denote by ε̄ the constant of Theorem 4.9. We apply Lemma 4.11 to (u, K )
with η4 = ε̄/100. We know that there is a constant c < 1 and there is a cone Z that

contains x such that

Dx,cr (Z , K ) ≤ ε̄/100.

Dividing if necessary c by 100 we may assume that the center of the cone lies in
1
10
B(x, cr). Thus

Dx,cr (Z , K ) + ω2(x, cr) + h(r) ≤ ε̄

and then we can apply Theorem 4.9 in B(x, cr), and the conclusion follows.
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By the same way of Corollary 4.10, in terms of functional J we have the fol-

lowing statement.

Corollary 4.13. Let g ∈ L∞ and ! ⊂ R3. Then there is some constants ε > 0,

r̃ > 0 and c > 0 depending only on ‖g‖∞, such that for all pair (u, K ) ∈ A that

minimizes

J (u, K ) :=
∫

!\K
|∇u|2dx +

∫

!\K
(u − g)2dx +H2(K ),

for all x ∈ K and r < r̃ such that

ω2(x, r) ≤ ε

there is a diffeomorphism φ of class C1,α from B(x, cr) to its image such that
K ∩ B(x, cr) = φ(Z) ∩ B(x, cr).
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[12] A. LEMENANT, “Sur la régularité des minimiseurs de Mumford-Shah en dimension 3 et
supérieure”, Thesis Université Paris Sud XI, Orsay, 2008.
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