Forward, backward and elliptic Harnack inequalities for non-negative solutions of a class of singular, quasi-linear, parabolic equations, are established. These classes of singular equations include the -Laplacean equation and equations of the porous medium type. Key novel points include form of a Harnack estimate backward in time, that has never been observed before, and measure theoretical proofs, as opposed to comparison principles. These Harnack estimates are established in the super-critical range (1.5) below. Such a range is optimal for a Harnack estimate to hold.
@article{ASNSP_2010_5_9_2_385_0, author = {DiBenedetto, Emmanuele and Gianazza, Ugo and Vespri, Vincenzo}, title = {Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {385--422}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {2}, year = {2010}, zbl = {1206.35053}, mrnumber = {2731161}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2010_5_9_2_385_0/} }
DiBenedetto, Emmanuele; Gianazza, Ugo; Vespri, Vincenzo. Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 2, pp. 385-422. http://www.numdam.org/item/ASNSP_2010_5_9_2_385_0/
[1] Hölder estimates of solutions of singular parabolic equations with measurable coefficients, Arch. Ration. Mech. Anal. 118 (1992), 257–271. | MR 1158938 | Zbl 0836.35029
and ,[2] Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3 (1957), 25–43. | MR 93649 | Zbl 0084.31901
,[3] Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equations, Arch. Ration. Mech. Anal. 100 (1988), 129–147. | MR 913961 | Zbl 0708.35017
,[4] Intrinsic Harnack estimates and extinction profile for certain singular parabolic equations, Trans. Amer. Math. Soc. 330 (1992), 783–811. | Zbl 0772.35006
and ,[5] Local space analiticity of solutions of certain singular parabolic equations, Indiana Univ. Math. J. 40 (1991), 741–765. | MR 1119195 | Zbl 0784.35055
, and ,[6] “Degenerate Parabolic Equations”, Springer Verlag, Series Universitext, New York, 1993. | MR 1230384 | Zbl 0794.35090
,[7] Harnack estimates for quasi-linear degenerate parabolic differential equations, Acta Math. 200 (2008), 181–209. | MR 2413134 | Zbl 1221.35213
, and ,[8] Extension à l’équation de la chaleur d’un théorème de A. Harnack, Rend. Circ. Mat. Palermo 3 (1954), 337–346. | MR 68713 | Zbl 0058.32201
,[9] On a class of similarity solutions of the porous media equation III, J. Math. Anal. Appl. 77 (1980), 381–402. | MR 593221 | Zbl 0454.35053
,[10] On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. | MR 159138 | Zbl 0111.09302
,[11] A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. | MR 159139 | Zbl 0149.06902
,[12] On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 (1971), 727–740. | MR 288405 | Zbl 0227.35016
,[13] Self-similar solutions of a fast diffusion equation that do not conserve mass, Differential Integral Equations 8 (1995), 2045–2064. | MR 1348964 | Zbl 0845.35057
and ,[14] Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, Rend. Sem. Mat. Univ. Padova 23 (1954), 422–434. | EuDML 106892 | Numdam | MR 65794 | Zbl 0057.32801
,