Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 2, pp. 253-295.

We discuss the limiting behavior (using the notion of Γ-limit) of the 3d nonlinear elasticity for thin shells around an arbitrary smooth 2d surface. In particular, under the assumption that the elastic energy of deformations scales like h 4 , h being the thickness of a shell, we derive a limiting theory which is a generalization of the von Kármán theory for plates.

Classification : 74K20, 74B20
Lewicka, Marta 1 ; Mora, Maria Giovanna 2 ; Pakzad, Mohammad Reza 3

1 University of Minnesota, Department of Mathematics, 206 Church St. S.E.,Minneapolis, MN 55455, USA
2 Scuola Internazionale Superiore di Studi Avanzati, via Beirut 2-4, 34014 Trieste, Italia
3 University of Pittsburgh, Department of Mathematics, 139 University Place, Pittsburgh, PA 15260, USA
@article{ASNSP_2010_5_9_2_253_0,
     author = {Lewicka, Marta and Mora, Maria Giovanna and Pakzad, Mohammad Reza},
     title = {Shell theories arising as low energy $\mathbf{\Gamma }$-limit of 3d nonlinear elasticity},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {253--295},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {2},
     year = {2010},
     mrnumber = {2731157},
     zbl = {05791996},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2010_5_9_2_253_0/}
}
TY  - JOUR
AU  - Lewicka, Marta
AU  - Mora, Maria Giovanna
AU  - Pakzad, Mohammad Reza
TI  - Shell theories arising as low energy $\mathbf{\Gamma }$-limit of 3d nonlinear elasticity
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2010
SP  - 253
EP  - 295
VL  - 9
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2010_5_9_2_253_0/
LA  - en
ID  - ASNSP_2010_5_9_2_253_0
ER  - 
%0 Journal Article
%A Lewicka, Marta
%A Mora, Maria Giovanna
%A Pakzad, Mohammad Reza
%T Shell theories arising as low energy $\mathbf{\Gamma }$-limit of 3d nonlinear elasticity
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 253-295
%V 9
%N 2
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2010_5_9_2_253_0/
%G en
%F ASNSP_2010_5_9_2_253_0
Lewicka, Marta; Mora, Maria Giovanna; Pakzad, Mohammad Reza. Shell theories arising as low energy $\mathbf{\Gamma }$-limit of 3d nonlinear elasticity. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 2, pp. 253-295. http://www.numdam.org/item/ASNSP_2010_5_9_2_253_0/

[1] P. G. Ciarlet, “Mathematical Elasticity”, Vol. 3, “Theory of Shells”, North-Holland, Amsterdam, 2000. | MR | Zbl

[2] S. Conti, “Habilitation Thesis”, University of Leipzig, 2003.

[3] S. Conti and G. Dolzmann, Derivation of elastic theories for thin sheets and the constraint of incompressibility, In: “Analysis, Modeling and Simulation of Multiscale Problems”, Springer, Berlin, 2006, 225–247. | MR

[4] S. Conti and G. Dolzmann, Derivation of a plate theory for incompressible materials, C. R. Math. Acad. Sci. Paris 344 (2007), 541–544. | MR | Zbl

[5] S. Conti and F. Maggi, Confining thin sheets and folding paper, Arch. Ration. Mech. Anal. 187 (2008), 1–48. | MR | Zbl

[6] G. Dal Maso, “An Introduction to Γ-Convergence”, Progress in Nonlinear Differential Equations and their Applications, Vol. 8, Birkhäuser, MA, 1993. | MR | Zbl

[7] L. C. Evans, “Partial Differential Equations”, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1998. | MR

[8] G. Friesecke, R. James, M. G. Mora and S. Müller, Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Math. Acad. Sci. Paris 336 (2003), 697–702. | Zbl

[9] G. Friesecke, R. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure. Appl. Math. 55 (2002), 1461–1506. | MR | Zbl

[10] G. Friesecke, R. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Ration. Mech. Anal. 180 (2006), 183–236. | MR | Zbl

[11] G. Geymonat and E. Sanchez-Palencia, On the rigidity of certain surfaces with folds and applications to shell theory, Arch. Ration. Mech. Anal. 129 (1995), 11–45. | MR | Zbl

[12] Q. Han and J.-X. Hong, “Isometric Embedding of Riemannian Manifolds in Euclidean Spaces”, Mathematical Surveys and Monographs, Vol. 130, American Mathematical Society, Providence, RI, 2006. | MR

[13] L. Hörmander, Uniqueness theorems for second order elliptic differential equations, Comm. Partial Differential Equations 8 (1983), 21–64. | MR | Zbl

[14] T. Von Kármán, Festigkeitsprobleme im Maschinenbau, In: “Encyclopädie der Mathematischen Wissenschaften”, Vol. IV/4, 311–385, Leipzig, 1910. | JFM

[15] H. Ledret and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. 73 (1995), 549–578. | MR | Zbl

[16] H. Ledret and A. Raoult, The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci. 6 (1996), 59–84. | MR | Zbl

[17] M. Lewicka and S. Müller, The uniform Korn-Poincaré inequality in thin domains, arXiv: 0803.0355. | Numdam | MR | Zbl

[18] F. C. Liu, A Lusin property of Sobolev functions, Indiana Univ. Math. J. 26 (1977), 645–651. | MR | Zbl

[19] A. E. H. Love, “A Treatise on the Mathematical Theory of Elasticity”, 4th edition, Cambridge University Press, Cambridge, 1927. | JFM

[20] R. Monneau, Justification of nonlinear Kirchhoff-Love theory of plates as the application of a new singular inverse method, Arch. Rational Mech. Anal. 169 (2003), 1–34. | MR | Zbl

[21] S. Müller, Unpublished note.

[22] S. Müller and M. R. Pakzad, Convergence of equilibria of thin elastic plates – the von Kármán case, Comm. Partial Differential Equations 33 (2008), 1018–1032. | MR | Zbl

[23] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394. | MR | Zbl

[24] O. Pantz, On the justification of the nonlinear inextensional plate model, Arch. Ration. Mech. Anal. 167 (2003), 179–209. | MR | Zbl

[25] É. Sanchez-Palencia, Statique et dynamique des coques minces. II. Cas de flexion pure inhibée. Approximation membranaire, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), 531–537. | MR | Zbl

[26] B. Schmidt, Plate theory for stressed heterogeneous multilayers of finite bending energy, J. Math. Pures Appl. 88 (2007), 107–122. | MR | Zbl

[27] M. Spivak, “A Comprehensive Introduction to Differential Geometry”, Vol V, 2nd edition, Publish or Perish Inc., 1979. | MR | Zbl

[28] K. Trabelsi, Modeling of a membrane for nonlinearly elastic incompressible materials via gamma-convergence, Anal. Appl. (Singap.) 4 (2006), 31–60. | MR | Zbl