Twistorial maps between quaternionic manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 1, p. 47-67

We introduce a natural notion of quaternionic map between almost quaternionic manifolds and we prove the following, for maps of rank at least one: - A map between quaternionic manifolds endowed with the integrable almost twistorial structures is twistorial if and only if it is quaternionic. - A map between quaternionic manifolds endowed with the nonintegrable almost twistorial structures is twistorial if and only if it is quaternionic and totally-geodesic. As an application, we describe all the quaternionic maps between open sets of quaternionic projective spaces.

Classification:  53C28,  53C26
@article{ASNSP_2010_5_9_1_47_0,
     author = {Ianu\c s, Stere and Marchiafava, Stefano and Ornea, Liviu and Pantilie, Radu},
     title = {Twistorial maps between quaternionic manifolds},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {1},
     year = {2010},
     pages = {47-67},
     zbl = {1193.53121},
     mrnumber = {2668873},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2010_5_9_1_47_0}
}
Ianuş, Stere; Marchiafava, Stefano; Ornea, Liviu; Pantilie, Radu. Twistorial maps between quaternionic manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 1, pp. 47-67. http://www.numdam.org/item/ASNSP_2010_5_9_1_47_0/

[1] D. V. Alekseevsky and S. Marchiafava, Quaternionic-like structures on a manifold: Note 2. Automorphism groups and their interrelations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 4 (1993), 53–61. | MR 1225887

[2] D. V. Alekseevsky and S. Marchiafava, A report on quaternionic-like structures on a manifold, In: “Proceedings of the International Workshop on Differential Geometry and its Applications” (Bucharest, 1993), Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 55 (1993), 9–34. | MR 1418417 | Zbl 0855.53018

[3] D. V. Alekseevsky and S. Marchiafava, Quaternionic structures on a manifold and subordinated structures, Ann. Mat. Pura Appl. 171 (1996), 205–273. | MR 1441871 | Zbl 0968.53033

[4] D. V. Alekseevsky, S. Marchiafava and M. Pontecorvo, Compatible complex structures on almost quaternionic manifolds, Trans. Amer. Math. Soc. 351 (1999), 997–1014. | MR 1475674 | Zbl 0933.53017

[5] E. Bonan, Sur les G-structures de type quaternionien, Cahiers Topologie Géom. Différentielle 9 (1967), 389–461. | Numdam | MR 233302 | Zbl 0171.20802

[6] J. Chen and J. Li, Quaternionic maps between hyperkähler manifolds, J. Differential Geom. 55 (2000), 355–384. | MR 1847314 | Zbl 1067.53035

[7] J. Eells and S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 589–640. | Numdam | MR 848842 | Zbl 0627.58019

[8] R. Fueter, Die Funktionentheorie der Differentialgleichungen Δu=0 und ΔΔu=0 mit vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307–330. | MR 1509515 | Zbl 0012.01704

[9] P. Griffiths and J. Harris, “Principles of Algebraic Geometry”, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1978. | MR 1288523 | Zbl 0408.14001

[10] A. Haydys, Nonlinear Dirac operator and quaternionic analysis, Comm. Math. Phys. 281 (2008), 251–261. | MR 2403610 | Zbl 1230.30034

[11] S. Ianuş, R. Mazzocco and G. E. Vîlcu, Harmonic maps between quaternionic Kähler manifolds, J. Nonlinear Math. Phys. 15 (2008), 1–8. | MR 2383575 | Zbl 1165.53353

[12] D. Joyce, Hypercomplex algebraic geometry, Quart. J. Math. Oxford Ser. (2) 49 (1998), 129–162. | MR 1634730 | Zbl 0924.14002

[13] J. Li and X. Zhang, Quaternionic maps between quaternionic Kähler manifolds, Math. Z. 250 (2005), 523–537. | MR 2179610 | Zbl 1080.53042

[14] E. Loubeau and R. Pantilie, Harmonic morphisms between Weyl spaces and twistorial maps II, Ann. Inst. Fourier (Grenoble), to appear. | Numdam | MR 2667782 | Zbl 1203.58005

[15] S. Marchiafava, Sulle varietà a struttura quaternionale generalizzata, Rend. Mat. 3 (1970), 529–545. | MR 276892 | Zbl 0271.53038

[16] V. Oproiu, Almost quaternal structures, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. 23 (1977), 287–298. | MR 493860 | Zbl 0373.53017

[17] V. Oproiu, Integrability of almost quaternal structures, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. 30 (1984), 75–84. | MR 800155 | Zbl 0573.53021

[18] R. Pantilie, On a class of twistorial maps, Differential Geom. Appl. 26 (2008), 366–376. | MR 2424018 | Zbl 1149.53028

[19] H. Pedersen, Y. S. Poon and A. F. Swann, Hypercomplex structures associated to quaternionic manifolds, Differential Geom. Appl. 9 (1998), 273–292. | MR 1661193 | Zbl 0920.53018

[20] D. Quillen, Quaternionic algebra and sheaves on the Riemann sphere, Quart. J. Math. Oxford Ser. (2) 49 (1998), 163–198. | MR 1634734 | Zbl 0921.14003

[21] S. Salamon, Differential geometry of quaternionic manifolds, Ann. Sci. École Norm. Sup. 19 (1986), 31–55. | Numdam | MR 860810 | Zbl 0616.53023

[22] S. Salamon, Special structures on four-manifolds, Riv. Mat. Univ. Parma 17* (1991), 109–123. | MR 1219803 | Zbl 0796.53031

[23] A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–224. | MR 516081 | Zbl 0399.30038

[24] A. Swann, HyperKähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421–450. | MR 1096180 | Zbl 0711.53051

[25] H. Tasaki, Quaternionic submanifolds in quaternionic symmetric spaces, Tohoku Math. J. 38 (1986), 513–538. | MR 867059 | Zbl 0593.53037