The basic results of a new theory of regular functions of a quaternionic variable have been recently stated, following an idea of Cullen. In this paper we prove the minimum modulus principle and the open mapping theorem for regular functions. The proofs involve some peculiar geometric properties of such functions which are of independent interest.
@article{ASNSP_2009_5_8_4_805_0, author = {Gentili, Graziano and Stoppato, Caterina}, title = {The open mapping theorem for regular quaternionic functions}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {805--815}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {4}, year = {2009}, zbl = {1201.30067}, mrnumber = {2647912}, language = {en}, url = {www.numdam.org/item/ASNSP_2009_5_8_4_805_0/} }
Gentili, Graziano; Stoppato, Caterina. The open mapping theorem for regular quaternionic functions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 4, pp. 805-815. http://www.numdam.org/item/ASNSP_2009_5_8_4_805_0/
[1] “Analysis of Dirac Systems and Computational Algebra”, Vol. 39, Progress in Mathematical Physics, Birkhäuser Boston Inc., Boston, MA, 2004. | MR 2089988
, , and ,[2] An integral theorem for analytic intrinsic functions on quaternions, Duke Math. J. 32 (1965), 139–148. | MR 173012 | Zbl 0173.09001
,[3] Funzioni regolari nell’algebra di Cayley, Rend. Sem. Mat. Univ. Padova 50 (1974), 251–267. | EuDML 107491 | Numdam | MR 361113 | Zbl 0283.30039
and ,[4] Die Funktionentheorie der differentialgleichungen und mit vier reellen variablen, Comment. Math. Helv. 7 (1934), 307–330. | EuDML 138642 | JFM 61.1131.05 | MR 1509515
,[5] Über die analytische darstellung der regulären funktionen einer quaternionenvariablen, Comment. Math. Helv. 8 (1935), 371–378. | EuDML 138660 | JFM 62.0120.04 | MR 1509533
,[6] Zeros of regular functions and polynomials of a quaternionic variable, Michigan Math. J. 56 (2008), 655–667. | MR 2490652 | Zbl 1184.30048
and ,[7] A new approach to Cullen-regular functions of a quaternionic variable, C. R. Math. Acad. Sci. Paris 342 (2006), 741–744. | MR 2227751 | Zbl 1105.30037
and ,[8] A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (2007), 279–301. | MR 2353257 | Zbl 1124.30015
and ,[9] Generalizations of Fueter’s theorem, Methods Appl. Anal. 9 (2002), 273–289. | MR 1957490 | Zbl 1079.30066
, and ,[10] “Integral Representations for Spatial Models of Mathematical Physics”, Vol. 351, Pitman Research Notes in Mathematics Series, Longman, Harlow, 1996. | MR 1429392 | Zbl 0872.35001
and ,[11] Analytic Cliffordian functions, Ann. Acad. Sci. Fenn. Math. 29 (2004), 251–268. | EuDML 125381 | MR 2097231 | Zbl 1077.30046
and ,[12] Holomorphic Cliffordian functions, Adv. Appl. Clifford Algebr. 8 (1998), 323–340. | MR 1697976 | Zbl 0940.30028
and ,[13] On the structure of the set of zeros of quaternionic polynomials, Complex Var. Theory Appl. 49 (2004), 379–389. | MR 2073169 | Zbl 1160.30353
and ,[14] Generalization of Fueter’s result to , Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8 (1997), 111–117. | EuDML 244304 | MR 1485323 | Zbl 0909.30036
,[15] Osservazioni sulle serie di potenze nei moduli quadratici, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 23 (1957), 220–225. | MR 97386 | Zbl 0084.28302
,[16] Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–224. | MR 516081 | Zbl 0399.30038
,