The conjugate linearized Ricci flow on closed 3-manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 8 (2009) no. 4, p. 681-724
We characterize the conjugate linearized Ricci flow and the associated backward heat kernel on closed three-manifolds of bounded geometry. We discuss their properties, and introduce the notion of Ricci flow conjugated constraint sets which characterizes a way of Ricci flow averaging metric dependent geometrical data. We also provide an integral representation of the Ricci flow metric itself and of its Ricci tensor in terms of the heat kernel of the conjugate linearized Ricci flow. These results, which readily extend to closed n-dimensional manifolds, yield various conservation laws, monotonicity and asymptotic formulas for the Ricci flow and its linearization.
Classification:  53C44,  53C21,  58J35
@article{ASNSP_2009_5_8_4_681_0,
     author = {Carfora, Mauro},
     title = {The conjugate linearized Ricci flow on closed 3-manifolds},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {4},
     year = {2009},
     pages = {681-724},
     zbl = {1190.53067},
     mrnumber = {2647909},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2009_5_8_4_681_0}
}
Carfora, Mauro. The conjugate linearized Ricci flow on closed 3-manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 8 (2009) no. 4, pp. 681-724. http://www.numdam.org/item/ASNSP_2009_5_8_4_681_0/

[1] B. Amman and C. Bär, The Einstein-Hilbert action as a spectral action, In: “Noncommutative Geometry and the Standard Model of Elementary Particle Physics”, F. Scheck and H. Upmeier (eds.), Springer Lecture Notes in Physics, Vol. 596, 2002. | MR 1998531 | Zbl 1255.81218

[2] G. Anderson and B. Chow, A pinching estimate for solutions of the linearized Ricci flow system on 3-manifolds, Calc. Var. Partial Differential Equations 23 (2005), 1–12. | MR 2133658 | Zbl 1082.53069

[3] T. Aubin, “Some Nonlinear Problems in Riemannian Geometry”, Springer Verlag, 1998. | MR 1636569 | Zbl 0896.53003

[4] A. Avez, Le laplacien de Lichnerowicz sur les tenseurs, C. R. Acad. Sci. Paris. Sér. A-B Math. 284 (1977), 1219–1220. | MR 470897 | Zbl 0349.58014

[5] I. Bakas, Geometric flows and (some of) their physical applications, In: “AvH conference Advances in Physics and Astrophysics of the 21st Century”, 6-11 September 2005, Varna, Bulgaria, hep-th/0511057. | Zbl 1342.81334

[6] I. Bakas, Renormalization group flows and continual Lie algebras, J. High Energy Phys. 0308, 013 (2003). | MR 2013050

[7] N. Berline, E. Getzler and M. Vergne, “Heat kernels and Dirac Operators”, Grundlehren Math. Wiss., Vol. 298, Springer-Verlag, New York, 1992. | MR 1215720 | Zbl 0744.58001

[8] T. Buchert and M. Carfora, Regional averaging and scaling in relativistic cosmology, Classical Quantum Gravity 19 (2002), 6109–6145. | MR 1947683 | Zbl 1021.83028

[9] T. Buchert and M. Carfora, Cosmological parameters are dressed, Phys. Rev. Lett. 90 (2003), 31101–1–4.

[10] C. Buzzanca, The Laplacian of Lichnerowicz on tensors, Boll. Un. Mat. Ital. B (6), 3 (1984), 531–541. | MR 762717 | Zbl 0552.53021

[11] H-D. Cao, R. S. Hamilton and T. Ilmanen, Gaussian densities and stability for some Ricci solitons, arXiv:math.DG/0404165.

[12] M. Carfora, Fokker-Planck dynamics and entropies for the normalized Ricci flow, Adv. Theor. Math. Phys. 11 (2007), 635–681. See also arXiv:math.DG/0507309 v3. | MR 2354077 | Zbl 1131.82031

[13] M. Carfora and A. Marzuoli, Model geometries in the space of Riemannian structures and Hamilton’s flow, Classical Quantum Gravity 5 (1988), 659–693. | MR 940055 | Zbl 0646.53073

[14] M. Carfora and A. Marzuoli, Smoothing out spatially closed cosmologies, Phys. Rev. Lett. 53 (1984), 2445. | MR 769055

[15] M. Carfora and K. Piotrkowska, Renormalization group approach to relativistic cosmology , Phys. Rev. D 52 (1995), 4393. | MR 1360889

[16] B. Chow and S.-C. Chu, A geometric interpretation of Hamilton’s Harnack inequality for the Ricci flow, Math. Res. Lett. 2 (1995), 701–718. | MR 1362964 | Zbl 0856.53030

[17] B. Chow and S.-C. Chu, A geometric approach to the linear trace Harnack inequality for the Ricci flow, Math. Res. Lett. 3 (1996), 549–568. | MR 1406020 | Zbl 0868.58082

[18] B. Chow and D. Knopf, “The Ricci Flow: an Introduction”, Mathematical Surveys and Monographs, Vol. 110, American Mathematical Society, Providence, R.I., 2004. | MR 2061425 | Zbl 1086.53085

[19] B. Chow, S-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu and L. Ni, “The Ricci Flow: Techniques and Applications. Part I: Geometric Aspects”, Mathematical Surveys and Monographs, Vol. 135, American Mathematical Society, Providence, R.I., 2007. | Zbl 1157.53034

[20] B. Chow and R. S. Hamilton, Constrained and linear Harnack inequalities for parabolic equations, Invent. Math. 129 (1997), 213–238. | MR 1465325 | Zbl 0903.58054

[21] B. Chow, P. Lu and L. Ni, “Hamilton’s Ricci Flow”, Graduate Studies in Mathematics, Vol. 77, American Mathematical Society, Providence, R.I., Science Press, New York, 2006. | Zbl 1118.53001

[22] D. Deturck, Deforming metrics in the direction of their Ricci tensor, J. Differential Geom. 18 (1983), 157–162. | MR 697987 | Zbl 0517.53044

[23] Y. Ding, A remark on degenerate singularities in three dimensional Ricci flow, Pacific J. Math. 240 (2009), 289–308. | MR 2485466 | Zbl 1161.53055

[24] D. Ebin, The manifolds of Riemannian metrics, Global Analysis, Proc. Sympos. Pure Math. 15 (1968), 11–40. | MR 267604

[25] K. Ecker, D. Knopf, L. Ni and P. Topping, Local monotonicity and mean value formulas for evolving Riemannian manifolds, J. reine angew. Math. (Crelle) 618 (2008), 89–130. | MR 2369488 | Zbl 1170.35050

[26] D. H. Friedan, Nonlinear models in 2+ε dimensions, Ann. Physics 163 (1985), 318–419. | MR 811072 | Zbl 0583.58010

[27] D. Garfinkle and J. Isenberg, The modelling of degenerate neck pinch singularities in Ricci flow by Bryant solitons, J. Math. Phys. 49, 073505 (2008), doi:10.1063/1.2948953. | MR 2432043 | Zbl 1152.81444

[28] N. Garofalo and E. Lanconelli, Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients, Math. Ann. 283 (1989), 211–239. | MR 980595 | Zbl 0638.35003

[29] P. B. Gilkey, “Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem” (2nd. ed.), CRC Press, Boca Raton, Florida, 1994. | MR 1396308

[30] P. B. Gilkey, J. Leahy and JH. Park, “Spinors, Spectral Geometry, and Riemannian Submersions”, Published on the EMIS server at: http://cdns.emis.de/monographs/GLP/index.html. Originally published as Lecture Notes Series, Vol. 40, Research Institute of Mathematics, Global Analysis Research Center, Seoul National University, 1998.

[31] P. B. Gilkey, The heat content asymptotics for variable geometries, J. Phys. A: Math. Gen. 32 (1999), 2825–2834. | MR 1685675 | Zbl 0953.58021

[32] P. B. Gilkey, K. Kirsten and JH. Park, Heat trace asymptotics of a time-dependent process, J. Phys. A: Math. Gen. 34 (2001), 1153–1168. | MR 1826794 | Zbl 0827.35081

[33] C. Guenther, J. Isenberg and D. Knopf, Stability of the Ricci flow at Ricci-flat metrics, Commun. Anal. Geom. 10 (2002), 741–777. | MR 1925501 | Zbl 1028.53043

[34] C. Guenther, The fundamental solution on manifolds with time-dependent metrics, J. Geom. Anal. 12 (2002), 425–436. | MR 1901749 | Zbl 1029.58018

[35] C. Guenther, J. Isenberg and D. Knopf, Linear stability of homogeneous Ricci solitons, Int. Math. Res. Not. (2006), Art. ID 96253, 30 pp. | MR 2264732

[36] H-L. Gu and X-P. Zhu, The existence of type II singularities for the Ricci flow on S n+1 , Comm. Anal. Geom. 16 (2008), 467–494. | MR 2429966 | Zbl 1152.53054

[37] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255–306. | MR 664497 | Zbl 0504.53034

[38] R. S. Hamilton, Four manifolds with positive curvature operator, J. Differential Geom. 24 (1986), 153–179. | MR 862046 | Zbl 0628.53042

[39] R. S. Hamilton, The formation of singularities in the Ricci flow, In: “Surveys in Differential Geometry”, Vol. 2, International Press, 1995, 7–136. | MR 1375255 | Zbl 0867.53030

[40] G. Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 17 (1985), 47–62. | MR 806701 | Zbl 0606.53026

[41] H. Koch and T. Lamm, Geometric flows with rough initial data, arXiv:0902.1488. | MR 2916362 | Zbl 1252.35159

[42] D. Knopf, Estimating the trace-free Ricci tensor in Ricci flow, Proc. Amer. Math. Soc. 137 (2009), 3099–3103. | MR 2506468 | Zbl 1172.53043

[43] T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1991), 301–307. | MR 1249376 | Zbl 0788.53034

[44] A. Lichnerowicz, Propagateurs et commutateurs en relativité générale, Inst. Hautes Études Sci. Publ. Math. 10 (1961), 56 pp. | Numdam | MR 157736 | Zbl 0098.42607

[45] J. Lott, Renormalization group flow for general sigma models, Comm. Math. Phys. 107 (1986), 165–176. | MR 861887 | Zbl 0603.58034

[46] L. Ni, A note on Perelman’s LYH inequality, Comm. Anal. Geom. 14 (2006), 883–905. | MR 2287149 | Zbl 1116.58031

[47] L. Ni, A matrix Li-Yau-Hamilton estimate for Kähler-Ricci flow, J. Differential Geom. 75 (2007), 303–358. | MR 2286824 | Zbl 1120.53023

[48] T. Oliynyk, V. Suneeta and E. Woolgar, A gradient flow for worldsheet nonlinear sigma models, Nucl. Phys. B 739 (2006), 441-458. | MR 2214659 | Zbl 1109.81058

[49] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, math.DG/0211159

[50] G. Perelman, Ricci flow with surgery on Three-Manifolds, math.DG/0303109. | Zbl 1130.53002

[51] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, math.DG/0307245. | Zbl 1130.53003

[52] O. C. Schnurer, F. Schulze and M. Simon, Stability of Euclidean space under Ricci flow, Comm. Anal. Geom. 16 (2008), 127–158. | MR 2411470 | Zbl 1147.53055

[53] N. Sesum, Curvature tensor under the Ricci flow, Amer. J. Math. 127 (2005), 1315–1324. | MR 2183526 | Zbl 1093.53070

[54] N. Sesum, Linear and dynamical stability of Ricci flat metrics, Duke Math. J. 133 (2006), 1–26. | MR 2219268 | Zbl 1103.53040

[55] M. Simon, Deformation of C 0 Riemannian metrics in the direction of their Ricci curvature, Comm. Anal. Geom. 10 (2002), 1033–1074. | MR 1957662 | Zbl 1034.58008

[56] W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357–381. | MR 648524

[57] W. P. Thurston, “Three-dimensional Geometry and Topology”, Vol. 1, S. Levy (ed.), Princeton Math. Series, Vol. 35, Princeton Univ. Press, Princeton NJ, 1997. | MR 1435975 | Zbl 0873.57001

[58] P. Topping, “Lectures on the Ricci Flow”, London Math. Soc. Lecture Notes Series, Vol. 325, Cambridge Univ. Press, 2006. | MR 2265040 | Zbl 1105.58013

[59] R. Ye, Ricci flow, Einstein metrics and space forms, Trans. Amer. Math. Soc. 338 (1993), 871–896. | MR 1108615 | Zbl 0804.53054