We characterize convex isoperimetric sets in the Heisenberg group. We first prove Sobolev regularity for a certain class of -valued vector fields of bounded variation in the plane related to the curvature equations. Then we show that the boundary of convex isoperimetric sets is foliated by geodesics of the Carnot-Carathéodory distance.
@article{ASNSP_2009_5_8_2_391_0, author = {Monti, Roberto and Rickly, Matthieu}, title = {Convex isoperimetric sets in the Heisenberg group}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {391--415}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {2}, year = {2009}, zbl = {1170.49037}, mrnumber = {2548252}, language = {en}, url = {www.numdam.org/item/ASNSP_2009_5_8_2_391_0/} }
Monti, Roberto; Rickly, Matthieu. Convex isoperimetric sets in the Heisenberg group. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 391-415. http://www.numdam.org/item/ASNSP_2009_5_8_2_391_0/
[1] Transport equation and Cauchy problem for BV vector fields, Invent. Math. 158 (2004), 227–260. | MR 2096794 | Zbl 1075.35087
,[2] “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford Science Publications, Clarendon Press, Oxford, 2000. | MR 1857292 | Zbl 0957.49001
, and ,[3] “An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem”, Birkhäuser, 2007. | MR 2312336 | Zbl 1138.53003
, , and ,[4] Existence and uniqueness for -area minimizers in the Heisenberg group, Math. Ann. 337 (2007), 253–293. | MR 2262784 | Zbl 1109.35009
, and ,[5] Regularity of smooth surfaces with prescribed -mean curvature in the Heisenberg group, preprint, 2007. | MR 2481053
, and ,[6] Minimal surfaces in pseudohermitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 129–177. | EuDML 84552 | Numdam | MR 2165405 | Zbl 1158.53306
, , and ,[7] A partial solution of the isoperimetric problem for the Heisenberg group, Forum Math. 20 (2008), 99–143. | MR 2386783 | Zbl 1142.53021
, and ,[8] Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557–571. | EuDML 165267 | MR 1314734 | Zbl 0830.46027
, and ,[9] Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479–531. | MR 1871966 | Zbl 1057.49032
, and ,[10] Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081–1144. | MR 1404326 | Zbl 0880.35032
and ,[11] On the isoperimetric problem in the Heisenberg group , Ann. Mat. Pura Appl. (4) 184 (2005), 533–553. | MR 2177813 | Zbl 1223.49051
and ,[12] Isoperimetric sets on Carnot groups, Houston J. Math. 29 (2003), 609–637. | MR 2000099 | Zbl 1039.49037
and ,[13] Brunn-Minkowski and isoperimetric inequality in the Heisenberg group, Ann. Acad. Sci. Fenn. Math. 28 (2003), 99–109. | EuDML 125301 | MR 1976833 | Zbl 1075.49017
,[14] Heisenberg isoperimetric problem. The axial case, Adv. Calc. Var. 1 (2008), 93–121. | MR 2402213 | Zbl 1149.49036
,[15] Isoperimetric inequality in the Grushin plane, J. Geom. Anal. 14 (2004), 355–368. | MR 2051692 | Zbl 1076.53035
and ,[16] Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Differential Equations 13 (2001), 339–376. | MR 1865002 | Zbl 1032.49045
and ,[17] Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 127–130. | MR 676380 | Zbl 0502.53039
,[18] An isoperimetric inequality on the Heisenberg group, Conference on differential geometry on homogeneous spaces (Turin, 1983). Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1983), 159–174. | MR 829003 | Zbl 0634.53034
,[19] Minimal surfaces in the Heisenberg group, Geom. Dedicata 104 (2004), 201–231. | MR 2043961 | Zbl 1054.49029
,[20] H-minimal graphs of low regularity in , Comment. Math. Helv. 81 (2006), 337–381. | MR 2225631 | Zbl 1153.53305
,[21] A proof by calibration of an isoperimetric inequality in the Heisenberg group, 2008, preprint. | MR 2898770
,[22] Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group . J. Geom. Anal. 16 (2006), 703–720. | MR 2271950 | Zbl 1129.53041
and ,[23] Area-stationary surfaces in the Heisenberg group , Adv. Math. 219 (2008), 633–671. | MR 2435652 | Zbl 1158.53022
and ,