Isoperimetric inequalities & volume comparison theorems on CR manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, p. 279-307
In this article we study the Jacobi equation associated with the geodesics in a pseudo-hermitian manifold wish vanishing Webster torsion. We develop integral geometric formula generalizing the well known Santalo formula in Riemannian geometry. As applications we obtain volume comparison results under suitable curvature assumptions as well as isoperimetric inequalities for domains in such manifolds.
Classification:  32V20,  32V05,  53C17,  53C21
@article{ASNSP_2009_5_8_2_279_0,
     author = {Chanillo, Sagun and Yang, Paul},
     title = {Isoperimetric inequalities \& volume comparison theorems on CR manifolds},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {2},
     year = {2009},
     pages = {279-307},
     zbl = {1176.32014},
     mrnumber = {2548248},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2009_5_8_2_279_0}
}
Chanillo, Sagun; Yang, Paul. Isoperimetric inequalities & volume comparison theorems on CR manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 279-307. http://www.numdam.org/item/ASNSP_2009_5_8_2_279_0/

[1] A. Bellaiche, The tangent space in Sub-Riemannian Geometry, in Sub-Riemannian Geometry, Progr. Math., Birkhäuser, Basel 144 (1996), 1–78. | MR 1421822 | Zbl 0862.53031

[2] J.-H. Cheng, J.-F. Hwang, A. Malchiodi and P. Yang, Minimal surfaces in pseudohermitian geometry, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (2005), 129–177. | Numdam | MR 2165405 | Zbl 1158.53306

[3] C. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup. 13 (1980), 419–435. | Numdam | MR 608287 | Zbl 0465.53032

[4] S. S. Chern and R. S. Hamilton, On Riemannian metrics adapted to three dimensional contact manifolds, with an appendix by A. Weinstein, Lecture Notes in Math., Vol. 1111, Springer Berlin, 1985, 279–308. | MR 797427

[5] P. Pansu Une inegalite isoperimetrique sur le group de Heisenberg, C.R. Acad. Sc. Paris 295 (1982), 127–130. | MR 676380 | Zbl 0502.53039

[6] M. Rumin, Forms differentielles sur les varíetés de contact, J. Differential Geom. 39 (1994), 281–330. | MR 1267892 | Zbl 0973.53524

[7] N. Tanaka, “A Differential Geometric Study on Strongly Pseudo-convex Manifolds”, Kinokuniya, Tokyo, 1975. | MR 399517 | Zbl 0331.53025

[8] F. Treves “Introduction to Pseudo-differential and Fourier Integral Operators”, Vol. 1, Plenum Press. | MR 597144

[9] N. Varopoulos; Sobolev inequalities on Lie groups and symmetric spaces, J. Funct. Anal. 86 (1989), 19–40. | MR 1013932 | Zbl 0697.22013

[10] S. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25–41. | MR 520599 | Zbl 0379.53016