Transcendental manifolds in real projective space and Stiefel-Whitney classes
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, p. 267-277
It is shown that the Stiefel-Whitney classes of a smooth manifold can give obstructions to realizing this manifold as the set of real points of a nonsingular real algebraic subvariety of projective space of a given dimension, even when the manifold can be embedded as an algebraic subset of real projective space of that dimension (meaning that the corresponding real algebraic variety must have complex singularities outside the real points). This strengthens earlier results by Akbulut and King. The result is an application of more technical results concerning algebraic cycles on real varieties combined with the Barth-Larsen Theorem in complex geometry.
Classification:  14P05,  14C25,  57R20
@article{ASNSP_2009_5_8_2_267_0,
     author = {Kucharz, Wojciech and van Hamel, Joost},
     title = {Transcendental manifolds in real projective space and Stiefel-Whitney classes},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {2},
     year = {2009},
     pages = {267-277},
     zbl = {1174.14050},
     mrnumber = {2548247},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2009_5_8_2_267_0}
}
Kucharz, Wojciech; van Hamel, Joost. Transcendental manifolds in real projective space and Stiefel-Whitney classes. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 267-277. http://www.numdam.org/item/ASNSP_2009_5_8_2_267_0/

[1] S. Akbulut and H. King, Transcendental submanifolds of 𝐑 n , Comment. Math. Helv. 68 (1993), 308–318. | MR 1214234 | Zbl 0806.57017

[2] S. Akbulut and H. King, Transcendental submanifolds of ℝℙ n , Comment. Math. Helv. 80 (2005), 427–432. | MR 2142249 | Zbl 1071.57026

[3] J. Bochnak, M. Buchner and W. Kucharz, Vector bundles over real algebraic varieties, K-Theory 3 (1989), 271–298. | MR 1040403 | Zbl 0761.14020

[4] J. Bochnak, M. Coste and M.-F. Roy, “Real Algebraic Geometry”, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 36, Springer-Verlag, Berlin, 1998. | MR 1659509 | Zbl 0633.14016

[5] J. Bochnak and W. Kucharz, On homology classes represented by real algebraic varieties, In: “Singularities Symposium-Łojasiewicz 70” (Kraków, 1996; Warsaw, 1996), Banach Center Publ., Vol. 44, Polish Acad. Sci., Warsaw, 1998, 21–35. | MR 1677394 | Zbl 1066.14065

[6] A. Borel and A. Haefliger, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461–513. | Numdam | MR 149503 | Zbl 0102.38502

[7] A. Degtyarev, I. Itenberg and V. Kharlamov, “Real Enriques Surfaces”, Lecture Notes in Mathematics, Vol. 1746, Springer-Verlag, Berlin, 2000. | MR 1795406 | Zbl 0963.14033

[8] A. Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9 (1957), 119–221. | MR 102537 | Zbl 0118.26104

[9] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. 79 (1964), 109–203; ibid. 79 (1964), 205–326. | MR 199184 | Zbl 0122.38603

[10] V. A. Krasnov, Harnack-Thom inequalities for mappings of real algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 268–297 (Russian); English transl., Math. USSR-Izv. 22 (1984), 247–275. | MR 697296

[11] V. A. Krasnov, Characteristic classes of vector bundles on a real algebraic variety, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 716–746 (Russian); English transl. Math. USSR-Izv. 39 (1992), 703–730. | MR 1137584 | Zbl 0746.14024

[12] V. A. Krasnov, On the equivariant Grothendieck cohomology of a real algebraic variety and its application, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), 36–52 (Russian); English transl. Russian Acad. Sci. Izv. Math. 44 (1995), 461–477. | MR 1286838

[13] W. Kucharz, Transcendental submanifolds of projective space, Comment. Math. Helv. 84 (2009), 127–133. | MR 2466077 | Zbl 1209.57023

[14] M. E. Larsen, On the topology of complex projective manifolds, Invent. Math. 19 (1973), 251–260. | MR 318511 | Zbl 0255.32004

[15] R. Lazarsfeld, “Positivity in Algebraic Geometry”, I, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge, Vol. 48, Springer-Verlag, Berlin, 2004. | MR 2095472

[16] F. Mangolte and J. Van Hamel, Algebraic cycles and topology of real Enriques surfaces, Compositio Math. 110 (1998), 215–237. | MR 1602080 | Zbl 0920.14029

[17] J. W. Milnor and J. D. Stasheff, “Characteristic Classes”, Annals of Mathematics Studies, Vol. 76, Princeton University Press, Princeton, N.J., 1974. | Zbl 0298.57008

[18] J. Nash, Real algebraic manifolds, Ann. of Math. 56 (1952), 405–421. | MR 50928 | Zbl 0048.38501

[19] V. V. Nikulin and R. Sujatha, On Brauer groups of real Enriques surfaces, J. Reine Angew. Math. 444 (1993), 115–154. | MR 1241796 | Zbl 0805.14021

[20] R. Silhol, “Real Algebraic Surfaces”, Lecture Notes in Mathematics, Vol. 1392, Springer-Verlag, Berlin, 1989. | MR 1015720 | Zbl 0645.14012

[21] A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 167–185. | Numdam | MR 396571 | Zbl 0263.57011

[22] A. Tognoli, Une remarque sur les approximations en géométrie algébrique réelle, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 745–747. | MR 707333 | Zbl 0559.14016

[23] J. Van Hamel, “Algebraic Cycles and Topology of Real Algebraic Varieties”, CWI Tract, Vol. 129, Stichting Mathematisch Centrum, Amsterdam, 2000. | MR 1824786 | Zbl 0986.14042

[24] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, Ann. of Math. 45 (1944), 220–246. | MR 10274 | Zbl 0063.08237