Arbarello, Enrico; Cornalba, Maurizio
Teichmüller space via Kuranishi families
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5 : Tome 8 (2009) no. 1 , p. 89-116
Zbl 1186.30041 | MR 2512202
URL stable : http://www.numdam.org/item?id=ASNSP_2009_5_8_1_89_0

Classification:  30F60,  14H15,  32G15,  14H10
In this partly expository note we construct Teichmüller space by patching together Kuranishi families. We also discuss the basic properties of Teichmüller space, and in particular show that our construction leads to simplifications in the proof of Teichmüller’s theorem asserting that the genus g Teichmüller space is homeomorphic to a (6g-6)-dimensional ball.

Bibliographie

[1] W. Abikoff, “The Real Analytic Theory of Teichmüller Space”, Lecture Notes in Mathematics, Vol. 820, Springer, Berlin, 1980. Zbl 0452.32015 | MR 590044

[2] L. Ahlfors and L. Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. Zbl 0104.29902 | MR 115006

[3] L. V. Ahlfors, The complex analytic structure of the space of closed Riemann surfaces., In: “Analytic Functions”, Princeton Univ. Press, Princeton, N.J., 1960, 45–66. Zbl 0100.28903 | MR 124486

[4] L. V. Ahlfors, Quasiconformal mappings, Teichmüller spaces, and Kleinian groups, In: “Fields Medallists’ Lectures”, World Sci. Ser. 20th Century Math., Vol. 5, World Sci. Publ., River Edge, NJ, 1997, 10–23. Zbl 0057.06506

[5] L. V. Ahlfors, “Lectures on Quasiconformal Mappings”, second ed., with supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard, University Lecture Series, Vol. 38, American Mathematical Society, Providence, RI, 2006. MR 2241787

[6] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, “Geometry of Algebraic Curves”, Vol. II, Grundlehren der Mathematischen Wissenschaften, Vol. 268, Springer-Verlag, New York, 2009, to appear. Zbl 0559.14017 | MR 2807457

[7] L. Bers, “Riemann Surfaces”, Notes by E. Rodlidtz and R. Pollack, Courant Institute of Mathematical Sciences, New York University, 1951-52.

[8] L. Bers, Quasiconformal mappings and Teichmüller’s theorem, In: “Analytic Functions”, Princeton Univ. Press, Princeton, NJ, 1960, 89–119. Zbl 0100.28904 | MR 114898

[9] L. Bers, Spaces of Riemann surfaces, In: “Proc. Internat. Congress Math. 1958”, Cambridge Univ. Press, New York, 1960, 349–361. Zbl 0116.28803 | MR 124484

[10] L. Bers, Uniformization and moduli, In: “Contributions to Function Theory”, Internat. Colloq. Function Theory, Bombay, 1960, Tata Institute of Fundamental Research, Bombay, 1960, 41–49. Zbl 0103.05002 | MR 131543

[11] L. Bers, Uniformization by Beltrami equations, Comm. Pure Appl. Math. 14 (1961), 215–228. Zbl 0138.06101 | MR 132175

[12] L. Bers, “On Moduli of Riemann Surfaces”, Mimeographed Lecture Notes, Eidgenössische Technische Hochschule, Zürich, 1964.

[13] L. Bers, On Teichmüller’s proof of Teichmüller’s theorem, J. Anal. Math. 46 (1986), 58–64. Zbl 0606.30024 | MR 861688

[14] S.-Shen Chern, An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc. 6 (1955), 771–782. MR 74856

[15] R. Courant and D. Hilbert, “Methods of Mathematical Physics: Partial Differential Equations”, Vol. II by R. Courant., Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. Zbl 0729.35001 | MR 140802

[16] C. J. Earle, Teichmüller spaces, Ann. Acad. Sci. Fenn. Math. 13 (1988), 355–361. Zbl 0676.32007 | MR 994469

[17] C. J. Earle and J. Eells, Jr., On the differential geometry of Teichmüller spaces, J. Anal. Math. 19 (1967), 35–52. Zbl 0156.30604 | MR 220923

[18] D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83–107. Zbl 0136.44605 | MR 214087

[19] F. P. Gardiner, “Teichmüller Theory and Quadratic Differentials”, Wiley-Interscience Publication, Wiley, New York, 1987. Zbl 0629.30002 | MR 903027

[20] A. Grothendieck, “Techniques de construction en géométrie analytique. I. Description axiomatique de l’espace de Teichmüller et de ses variantes”, In: “Familles d’Espaces Complexes et Fondements de la Géométrie Analytique”, Séminaire Henri Cartan, 13ième année: 1960/61. Exposés No. 7 et 8, Sécretariat Mathématique, Paris, 1962. Numdam | Zbl 0142.33503 |

[21] A. Grothendieck, “Techniques de construction en géométrie analytique. X. Construction de l’espace de Teichmüller”, In: “Familles d’Espaces Complexes et Fondements de la Géométrie Analytique”, Séminaire Henri Cartan, 13ième année: 1960/61, Exposé No. 17, Sécretariat Mathématique, Paris, 1962. Zbl 0142.33504 |

[22] Y. Imayoshi and M. Taniguchi, “An Introduction to Teichmüller Spaces”, Springer-Verlag, Tokyo, 1992. Zbl 0754.30001 | MR 1215481

[23] L. Keen, Intrinsic moduli on Riemann surfaces, Ann. of Math. (2) 84 (1966), 404–420. Zbl 0146.31503 | MR 203000

[24] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2) 71 (1960), 43–76. Zbl 0128.16902 | MR 115189

[25] A. Korn, Zwei Anwendungen der Methode der sukzessiven Annäherungen, In: “Schwarz Festschrift”, Berlin, 1914, 215–229. Zbl 45.0568.01

[26] O. Lehto, “Univalent Functions and Teichmüller Spaces”, Graduate Texts in Mathematics, Vol. 109, Springer-Verlag, New York, 1987. Zbl 0606.30001 | MR 867407

[27] L. Lichtenstein, Zur Theorie der konformen Abbildung nichtanalytischer, singularitätenfreier Flächenstücke auf ebene Gebiete, Bull. Int. de l’Acad. Sci. Cracovie, Sér. A (1916), 192–217. Zbl 46.0547.01

[28] A. Marden and K. Strebel, A characterization of Teichmüller differentials, J. Differential Geom. 37 (1993), 1–29. Zbl 0790.30031 | MR 1198598

[29] C. B. Morrey, Jr., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126–166. Zbl 64.0460.02 | MR 1501936

[30] E. Reich and K. Strebel, Teichmüller mappings which keep the boundary point-wise fixed, In: “Advances in the Theory of Riemann Surfaces”, Proc. Conf., Stony Brook, N.Y., 1969, Princeton Univ. Press, Princeton, N. J., 1971, 365–367. Zbl 0175.08402 | MR 280706

[31] E. Reich and K. Strebel, Extremal quasiconformal mappings with given boundary values, In: “Contributions to Analysis” (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, 375–391. Zbl 0318.30022 | MR 361065

[32] M. Seppälä and T. Sorvali, “Geometry of Riemann Surfaces and Teichmüller Spaces”, North-Holland Mathematics Studies, Vol. 169, North-Holland Publishing Co., Amsterdam, 1992. Zbl 0917.32016 | MR 1202043

[33] E. Sernesi, “Deformations of Algebraic Schemes”, Grundlehren der Mathematischen Wissenschaften, Vol. 334, Springer-Verlag, Berlin, 2006. Zbl 1102.14001 | MR 2247603

[34] K. Strebel, On the existence of extremal Teichmüller mappings, Complex Variables Theory Appl. 9 (1987), 287–295. Zbl 0641.30022 | MR 923229

[35] O. Teichmüller, Extremale quasikonforme Abbildungen und quadratische Differentiale, Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1939 (1940), no. 22, 197. MR 3242

[36] O. Teichmüller, Veränderliche Riemannsche Flächen, Deutsche Math. 7 (1944), 344–359. Zbl 0060.23201 | MR 18762

[37] O. Teichmüller, “Gesammelte Abhandlungen”, Springer-Verlag, Berlin, 1982, Edited and with a preface by Lars V. Ahlfors and Frederick W. Gehring. Zbl 0545.01013 | MR 649778

[38] A. J. Tromba, “Teichmüller Theory in Riemannian Geometry”, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992, Lecture notes prepared by Jochen Denzler. Zbl 0785.53001 | MR 1164870

[39] J. H. Hubbard, “Teichmüller Theory and Applications to geometry, Topology, and Dinamics”, Vol. 1: “Teichmüller Theory”. With contributions by A. Douady, W. Dunbar, R. Roeder, S. Bonnot, D. Brown, A. Hatcher, C. Hruska and S. Mitra, Matrix Editions, Ithaca, NY, 2006. MR 2245223