Halverscheid, Stefan; Iannuzzi, Andrea
A family of adapted complexifications for SL 2 ()
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5 : Tome 8 (2009) no. 1 , p. 17-49
Zbl 1180.53053 | MR 2512199 | 1 citation dans Numdam
URL stable : http://www.numdam.org/item?id=ASNSP_2009_5_8_1_17_0

Classification:  53C30,  53C22,  32C09,  32Q99,  32M05
Let G be a non-compact, real semisimple Lie group. We consider maximal complexifications of G which are adapted to a distinguished one-parameter family of naturally reductive, left-invariant metrics. In the case of G=SL 2 () their realization as equivariant Riemann domains over G =SL 2 () is carried out and their complex-geometric properties are investigated. One obtains new examples of non-univalent, non-Stein, maximal adapted complexifications.

Bibliographie

[1] R. Aguilar, Symplectic reduction and the homogeneous complex Monge-Ampère equation, Ann. Global Anal. Geom. 19 (2001), 327–353. Zbl 1001.53058 | MR 1842574

[2] D. N. Akhiezer and S. G. Gindikin, On Stein extensions of real symmetric spaces, Math. Ann. 286 (1990), 1–12. Zbl 0681.32022 | | MR 1032920

[3] R. Bielawski, Complexification and hypercomplexification of manifolds with a linear connection, Internat. J. Math. 14 (2003), 813–824. Zbl 1064.53029 | MR 2013146

[4] R. Bremigan, Pseudokähler forms on complex Lie groups, Doc. Math. 5 (2000), 595–611. Zbl 0982.32021 | | MR 1796499

[5] D. Burns, On the uniqueness and characterization of Grauert tubes, In: “Complex Analysis and Geometry”, V. Ancona and A. Silva (eds.), Lecture Notes in Pure and Applied Math., Vol. 173, 1995, 119–133. Zbl 0921.32006

[6] D. Burns, S. Halverscheid and R. Hind, The geometry of grauert tubes and complexification of symmetric spaces, Duke Math. J. 118 (2003), 465–491. Zbl 1044.53039 | MR 1983038

[7] J. Berndt, F. Tricerri and L. Vanhecke, “Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces”, Lecture Notes Math., Vol. 1598, Springer-Verlag, Berlin 1995. Zbl 0818.53067 | MR 1340192

[8] J. E. D’Atri and W. Ziller, “Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups”, Mem. Amer. Math. Soc., Vol. 215, 1979. Zbl 0404.53044 | MR 519928

[9] O. Fels, Pseudo-Kählerian structure on domains over a complex semisimple Lie group, Math. Ann. 232 (2002), 1–29. Zbl 1009.32012 | MR 1906905

[10] G. Fels, A. T. Huckleberry and J. A. Wolf, “Cycle Spaces of Flag Domains: A Complex Geometric Viewpoint”, Progress in Mathematics, Vol. 245, Birkhäuser, Boston, 2005. Zbl 1084.22011 | MR 2188135

[11] L. Geatti and A. Iannuzzi, On univalence of equivariant Riemann domains over the complexification of a non-compact, Riemannian symmetric space, Pacific J. Math. 238 (2008), 275–330. Zbl 1156.32015 | MR 2442995

[12] C. S. Gordon, Naturally reductive homogeneous Riemannian manifolds, Canad. J. Math. 37 (1985), 467–487. Zbl 0554.53035 | MR 787113

[13] V. Guillemin and M. Stenzel, Grauert tubes and the homogeneous Monge-Ampère equation, J. Differential Geom. 34 (1991), 561–570 (first part); J. Differential Geom. 35 (1992), 627–641 (second part). Zbl 0746.32005 | MR 1163451

[14] S. Halverscheid and A. Iannuzzi, Maximal complexifications of certain Riemannian homogeneous spaces, Trans. Amer. Math. Soc. 355 (2003), 4581–4594. Zbl 1039.32009 | MR 1990763

[15] S. Halverscheid and A. Iannuzzi, On naturally reductive left-invariant metrics of SL 2 (). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006), 171–187. Numdam | Zbl 1150.53015 | | MR 2244697

[16] P. Heinzner, Geometric invariant theory on Stein spaces. Math. Ann. 289 (1991), 631–662. Zbl 0728.32010 | | MR 1103041

[17] P. Heinzner and A. Iannuzzi, Integration of local actions on holomorphic fiber spaces, Nagoya Math. J. 146 (1997), 31–53 Zbl 0879.55006 | MR 1460953

[18] S. Helgason, “Differential Geometry, Lie Groups and Symmetric Spaces”, Graduate Studies in Mathematics, Vol. 34, Amer. Math. Soc., Providence R.I., 2001. Zbl 0993.53002

[19] L. Lempert and R. Szőke, Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundles of Riemannian manifolds, Math. Ann. 290 (1991), 689–712. Zbl 0752.32008 | | MR 1119947

[20] B. O’Neill, “Semi-Riemannian Geometry”, Academic Press, New York, 1983. MR 719023

[21] G. Patrizio and P.-M. Wong, Stein manifolds with compact symmetric center, Math. Ann. 289 (1991), 355–382. Zbl 0729.32003 | | MR 1096176

[22] H. Rossi, On envelopes of holomorphy, Commun. Pure Appl. Math. 16 (1963), 9–17. Zbl 0113.06001 | MR 148940

[23] W. Stoll, The characterization of strictly parabolic manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), 87–154. Numdam | Zbl 0438.32005 | | MR 577327

[24] R. Szőke, Complex structures on tangent bundles of Riemannian manifolds, Math. Ann. 291 (1991), 409–428. Zbl 0749.53021 | | MR 1133340

[25] R. Szőke, Adapted complex structures and Riemannian homogeneous spaces, In: “Complex Analysis and Applications” (Warsaw, 1997) Ann. Polon. Math. 70 (1998), 215–220. Zbl 0966.53038 | | MR 1668726

[26] R. Szőke, Canonical complex structures associated to connections, Math. Ann. 329 (2004), 553-591. Zbl 1074.53013 | MR 2127990

[27] V. S. Varadarajan, “Lie Groups, Lie Algebras, and their Representations”, Springer-Verlag, New York, 1984. Zbl 0955.22500 | MR 746308

[28] P. Zhao, “Invariant Stein Domains: A Contribution to the Program of Gelfand and Gindikin”, PhD Thesis, Berichte aus der Mathematik, Shaker Verlag, Aachen 1996. Zbl 0859.32007