Hamilton-Jacobi flows and characterization of solutions of Aronsson equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 6 (2007) no. 1, p. 1-13
In this note, we verify the conjecture of Barron, Evans and Jensen [3] regarding the characterization of viscosity solutions of general Aronsson equations in terms of the properties of associated forward and backwards Hamilton-Jacobi flows. A special case of this result is analogous to the characterization of infinity harmonic functions in terms of convexity and concavity of the functions rmax yB r (x) u(y) and rmin yB r (x) u(y), respectively.
Classification:  35J60,  49L25,  35F25
@article{ASNSP_2007_5_6_1_1_0,
     author = {Juutinen, Petri and Saksman, Eero},
     title = {Hamilton-Jacobi flows and characterization of solutions of Aronsson equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 6},
     number = {1},
     year = {2007},
     pages = {1-13},
     zbl = {1150.35017},
     mrnumber = {2341511},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2007_5_6_1_1_0}
}
Juutinen, Petri; Saksman, Eero. Hamilton-Jacobi flows and characterization of solutions of Aronsson equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 6 (2007) no. 1, pp. 1-13. http://www.numdam.org/item/ASNSP_2007_5_6_1_1_0/

[1] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561. | MR 217665 | Zbl 0158.05001

[2] G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 439-505. | MR 2083637 | Zbl 1150.35047

[3] E. N. Barron, L. C. Evans and R. R. Jensen, The infinity Laplacian, Aronsson's equation and their generalizations, preprint. | MR 2341994 | Zbl 1125.35019

[4] E. N. Barron, R. R. Jensen and C. Y. Wang, The Euler equation and absolute minimizers of L functionals, Arch. Rational Mech. Anal. 157 (2001), 255-283. | MR 1831173 | Zbl 0979.49003

[5] T. Champion and L. De Pascale, A principle of comparison with distance functions for absolute minimizers, J. Convex Anal., to appear. | MR 2341302 | Zbl 1128.49024

[6] M. G. Crandall, An efficient derivation of the Aronsson equation, Arch. Rational Mech. Anal. 167 (2003), 271-279. | MR 1981858 | Zbl 1090.35067

[7] M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13 (2001), 123-139. | MR 1861094 | Zbl 0996.49019

[8] M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67. | MR 1118699 | Zbl 0755.35015

[9] L. C. Evans, “Partial Differential Equations”, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1998. | MR 1625845 | Zbl 0902.35002

[10] R. Gariepy, C. Y. Wang and Y. Yu, Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers, Comm. Partial Differential Equations 31 (2006), 1027-1046. | MR 2254602 | Zbl 1237.35052

[11] R. R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), 51-74. | MR 1218686 | Zbl 0789.35008

[12] R. R. Jensen, P.-L. Lions and P. E. Souganidis, A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations, Proc. Amer. Math. Soc. 102 (1988), 975-978. | MR 934877 | Zbl 0662.35048

[13] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, preprint (available at http://arxiv.org/archive/math) | MR 2449057 | Zbl 1206.91002

[14] R. Schneider, “Convex Bodies: The Brunn-Minkowski Theory”, Cambridge University Press, 1993. | MR 1216521 | Zbl 1143.52002

[15] T. Strömberg, The Hopf-Lax formula gives the unique viscosity solution, Differential Integral Equations 15 (2002), 47-52. | MR 1869821 | Zbl 1026.49023

[16] C. Wang and Y. Yu, C 1 -regularity of the Aronsson equation in 2 , Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. | Numdam | Zbl 1179.35124

[17] E. Zeidler, “Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization”, Springer-Verlag, New York, 1985. | MR 768749 | Zbl 0583.47051

[18] Y. Yu L variational problems and Aronsson equations, Arch. Ration. Mech. Anal. 182 (2006), 153-180. | MR 2247955 | Zbl 1130.49025