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Bounds for double zeta-functions

ISAO KIUCHI AND YOSHIO TANIGAWA

Abstract. In this paper we shall derive the order of magnitude for the double
zeta-function of Euler-Zagier type in the region 0 ≤ �s j < 1 ( j = 1, 2). First
we prepare the Euler-Maclaurin summation formula in a suitable form for our
purpose, and then we apply the theory of double exponential sums of van der
Corput’s type.

Mathematics Subject Classification (2000): 11L07 (primary); 11M41 (second-
ary).

1. Introduction

Let s j = σ j + i t j ( j = 1, 2, . . . , r) be complex variables. The r -ple zeta-function
of Euler-Zagier type is defined by

ζr (s1, . . . , sr ) =
∑

1≤n1<···<nr

1

ns1
1 · · · nsr

r
,

which is absolutely convergent for σr > 1, σr + σr−1 > 2, . . . , σr + · · · + σ1 > r .
The function ζr has many applications to mathematical physics. In particular, alge-
braic relations among the values of ζr at positive integers have been studied exten-
sively [14]. As a function of the complex variables s j , the analytic continuation of
ζr has been dealt already. For r = 2, this problem was studied by F. V. Atkinson
[3] in his research on the mean value formula of the Riemann zeta-function. For
general r , the analytic continuation was proved by S. Akiyama, S. Egami and Y.
Tanigawa [1] and J. Q. Zhao [17] independently, and later by K. Matsumoto [13].
The values at negative integers were considered in [2].

On the other hand, the order of magnitude of the zeta-function on some vertical
line plays an important role in the theory of zeta-functions, e.g. it is used for the
estimation of the sum of arithmetical functions (see below). The aim of this paper
is to study such a problem for the double zeta-function of Euler-Zagier type:

ζ2(s1, s2) =
∑

1≤m<n

1

ms1ns2
. (1.1)
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Before stating our results, we shall recall the previous result for the Riemann
zeta-function ζ(s) and the double zeta-function ζ2(s1, s2). Let µ(σ) denote the
infimum of a number c ≥ 0 such that

ζ(σ + i t) � |t |c,
or alternatively as

µ(σ) = lim sup
t→∞

log |ζ(σ + i t)|
log t

. (1.2)

As for a classical result for the function µ(σ) it is known that (see A. Ivić [11,
Theorem 1.9])

µ(σ) =
{

1
2 − σ if σ ≤ 0,

0 if σ ≥ 1,

and

µ(σ) ≤ 1

2
(1 − σ) if 0 ≤ σ ≤ 1.

Furthermore it is well known that

ζ(i t) � |t | 1
2 log |t | (1.3)

and
ζ(1 + i t) � (log |t |) 2

3 (1.4)

for |t | → ∞ (Ivić [11, p. 144 (6.7)]). In the case of σ = 1
2 , which is the most

important in the theory of zeta-function, the first non-trivial result

µ

(
1

2

)
≤ 1

6
(1.5)

was obtained by G. H. Hardy and J. E. Littlewood (see [11]). The best estimate

hitherto proved is µ
(

1
2

)
≤ 89

570 = 0.156140 . . . due to M. N. Huxley [8]. (He

announced that he got an improvement µ( 1
2 ) ≤ 32

205 = 0.156098 . . . [9].)
Concerning the multiple zeta-function, H. Ishikawa and K. Matsumoto used

the Mellin-Barnes integral formula to obtain some results on the order of magnitude
on the line σ1 = σ2 = 0. In fact, they [10] showed that for a fixed α(�= ±1) and
any ε > 0,

ζ2(i t, iαt) � (1 + |t |) 3
2 +ε (1.6)

and

ζ3(−i t, i t, i t) � (1 + |t |) 5
2 +ε.
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As they mentioned in [10], it holds that ζ2(i t, i t) � (1 + |t |)1+ε trivially. Hence
(1.6) is far from the true order of magnitude for the double zeta-functions. Any
other results on the order of magnitude for the double zeta-function (1.1) on the
line σ j = 1

2 are not stated in [10]. In view of this, it is of some interest to try
to determine an upper bound for the double zeta-function on the line other than
σ j = 0.

In this paper, we shall study the order of magnitude of the double zeta-function
(1.1) in the region 0 ≤ σ j < 1 ( j = 1, 2), where we use, instead of Mellin-Barnes
integral formula, the theory of double exponential sums of van der Corput’s type
(see E. Krätzel [12] and E. C. Titchmarsh [15]).

We use the standard notation e.g. f (x) = O(g(x)) means that | f (x)| < Cg(x)

for x > x0 and some constant C > 0 where f (x) is a complex function and g(x) is
a positive function. Further f (x) � g(x) means the same as f (x) = O(g(x)) and
f (x) � g(x) means that both f (x) � g(x) and g(x) � f (x) hold.

Our main result can be stated as follows.

Theorem 1.1. Let |t1| and |t2| ≥ 2 be real numbers such that

|t1| � |t2| and |t1 + t2| 	 1.

In the case σ1 = σ2 = 0, we have

ζ2(i t1, i t2) � |t1| log2 |t1|. (1.7)

Suppose that 0 ≤ σ j < 1 ( j = 1, 2) and σ1 + σ2 > 0. Then we have

ζ2(σ1+i t1, σ2+i t2)�




|t1|1− 2
3 (σ1+σ2) log2 |t1|

(
0≤σ1 ≤ 1

2 , 0≤σ2 ≤ 1
2

)
|t1| 5

6 − 1
3 (σ1+2σ2) log3 |t1|

(
1
2 <σ1 <1, 0≤σ2 ≤ 1

2

)
|t1| 5

6 − 1
3 (2σ1+σ2) log3 |t1|

(
0≤σ1 ≤ 1

2 , 1
2 <σ2 <1

)
|t1| 2

3 − 1
3 (σ1+σ2) log4 |t1|

(
1
2 <σ1 <1, 1

2 <σ2 <1
)
.

(1.8)

As an immediate consequence we have:

Corollary 1.2. Suppose the same condition on t1 and t2 as in the above theorem.
Then we have,

ζ2

(
1

2
+ i t1,

1

2
+ i t2

)
� |t1| 1

3 log2 |t1| (1.9)

ζ2

(
0 + i t1,

1

2
+ i t2

)
� |t1| 2

3 log2 |t1| (1.10)

ζ2

(
1

2
+ i t1, 0 + i t2

)
� |t1| 2

3 log2 |t1|. (1.11)



448 ISAO KIUCHI AND YOSHIO TANIGAWA

Remark 1.3. Under the condition |t1| � |t2| and |t1 + t2| 	 1, we can expect that

ζ2(s1, s2) � |t1|µ(σ1)+µ(σ2) logA |t1|
for some constant A. The non-trivial estimates of the Riemann zeta-function on the
imaginary axis and the critical line are µ(0) = 1

2 and µ
(

1
2

)
≤ 1

6 , respectively. The

exponents in Corollary 1.2 can be said to correspond to the classical estimates of
the Riemann zeta-function.

Our theorem has an application to the modified weighted divisor problem. Let
1 ≤ a ≤ b be fixed integers, and d(a, b; n) the number of representations of n as
n = na

1nb
2, where n1 and n2 are positive integers. This function plays an important

role in many problems. J. L. Hafner [7] and A. Ivić [11, Chapter 14] considered the
asymptotic behaviour of the sum

∑
n≤x d(a, b; n) whose main term can be obtained

by the residue of ζ(as)ζ(bs) since

∞∑
n=1

d(a, b; n)

ns
= ζ(as)ζ(bs) �s > 1/a.

The above representation reveals the close connection between the weighted divisor
problem and the Riemann zeta-function.

Now let h(a, b; n) be the number of representations of n as n = na
1nb

2 with
n1 < n2:

h(a, b; n) =
∑

n=na
1nb

2
n1<n2

1.

In this case we have ∞∑
n=1

h(a, b; n)

ns
= ζ2(as, bs)

for �s > max{2/(a + b), 1/b}. Our estimate can be applied to the analysis of∑
n≤x h(a, b; n), which will be considered elsewhere.

ACKNOWLEDGEMENTS. The authors would like to express their gratitude to Pro-
fessor Andrzej Schinzel for pointing them Huxley’s new result on µ(1/2) and to
Professor Chaohua Jia for the valuable discussions. They are also grateful to the
referee for valuable comments.

2. Some lemmas on the Riemann zeta-function

Our proof of Theorem 1.1 depends on the expression derived from the Euler-
Maclaurin summation formula. Usual formula, however, is not enough for our pur-
pose, so we will give some refinement of it in the following lemma.
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We prepare some notation. Let Br and Br (x) denote the r -th Bernoulli number
and r -th Bernoulli polynomial, respectively. We put Br (x) = Br (x − [x]) as usual.
Let �(a, z) and �(a, b; z) denote the incomplete Gamma function of the second
kind and one of the solutions of confluent hypergeometric equation defined by

�(a, z) =
∫ ∞

z
e−t ta−1dt, �(a) > 0,

and

�(a, b; z) = �(1 − b)

�(a − b + 1)
1 F1(a, b; z)

+ �(b − 1)

�(a)
z1−b

1 F1(a − b + 1, 2 − b; z),

respectively. These two functions are connected by the relation

�(a, z) = zae−z�(1, a + 1; z) (2.1)

(see A. Erdélyi et al. [4, p. 257 (6) and p. 266 (21)]). The integral representation

�(a, c; z) = 1

�(a)

∫ ∞eiφ

0
e−zt ta−1(1 + t)c−a−1dt (2.2)

holds true for �a > 0, −π < φ < π and − 1
2π < φ + arg z < 1

2π ([4, p. 256 (3)]).
Finally let (w)p be the rising factorial defined by

(w)0 = 1, (w)p+1 = (w + p)(w)p

for non-negative integer p.

Lemma 2.1. Let �µ < 1 and x be real which satisfies |x | ≥ π
2 |
µ|. Then we have

|�(1, µ + 1; i x)| ≤ 2

|x | − |
µ| . (2.3)

Proof. We may suppose that 
µ > 0 without loss of generality. Let

J := �(1, µ + 1, i x) =
∫ ∞eiφ

0
e−i xt (1 + t)µ−1dt

for simplicity, where we used the integral representation of (2.2).
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(I) The case x > 0.
Since arg(i x) = π

2 , we can take −π < φ < 0. We introduce a new variable u by
t = eiφu (u ≥ 0), thereby we have

J = eiφµ

∫ ∞

0
e−ei(φ+ π

2 )xu(u + e−iφ)µ−1du.

Putting
u + e−iφ = reiξ (r ≥ 1, 0 < ξ ≤ −φ)

and noting that �µ < 1 by the assumption of this lemma, we have

|J | ≤ e−φ 
µ

∫ ∞

0
e−xu cos( π

2 +φ)e−ξ 
µdu. (2.4)

Now we take φ = −π
2 , then we have cot ξ = u for this choice. To evaluate the

integral (2.4), we divide the range of integration into two parts at 1. For 0 ≤ u ≤ 1,
using the following inequality

ξ = arccotu ≥ π

2
− u,

we have ∫ 1

0
e−xu−ξ 
µdu ≤

∫ 1

0
e−xu−( π

2 −u)
µdu ≤ e− π
2 
µ

x − 
µ
. (2.5)

For u ≥ 1, we have ∫ ∞

1
e−xu−ξ 
µdu ≤

∫ ∞

1
e−xudu = e−x

x
. (2.6)

Hence (2.5) and (2.6) give us

|J | ≤ e
π
2 
µ

(
e− π

2 
µ

x − 
µ
+ e−x

x

)
≤ 2

x − 
µ
. (2.7)

(II) The case x < 0.
Since arg(i x) = −π

2 , we can take 0 < φ < π in this case. We put u + e−iφ =
re−iξ (0 < ξ ≤ φ) and as in the previous case, we can easily see that

|J | ≤
∫ ∞

0
e−|x |u cos(− π

2 +φ)e−(φ−ξ)
µdu ≤ 1

|x | cos(−π
2 + φ)

.

Hence, taking φ = π
2 , we have

|J | ≤ 1

|x | . (2.8)

This completes the proof of the lemma.
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Lemma 2.2. Let s = σ + i t , |t | > 1. For N > 1
4 |t |, m ≥ 1 and σ > −2m − 1, we

have

ζ(s) =
∑
n≤N

1

ns
+ N 1−s

s − 1
− N−s

2
+

2m∑
k=1

Bk+1

(k + 1)!
(s)k N−(s+k)

+ O
(
|t |2m+1 N−σ−2m−1

)
,

(2.9)

where the implied constant does not depend on t.

To prove our theorem, we apply Lemma 2.2 in the case m = 1 which we
present as a corollary.

Corollary 2.3. Let s = σ + i t , |t | > 1. For N > 1
4 |t | and σ > −3, we have

ζ(s) =
∑
n≤N

1

ns
+ N 1−s

s − 1
− N−s

2
+ s

12
N−s−1 + O

(
|t |3 N−σ−3

)
, (2.10)

where the implied constant does not depend on t.

Proof of Lemma 2.2. We start with the well-known formula for the Riemann zeta-
function which is derived by the Euler-Maclaurin summation formula:

ζ(s) =
∑
n≤N

1

ns
+ N 1−s

s − 1
− 1

2N s
+

M−1∑
k=1

Bk+1

(k + 1)!
(s)k N−(s+k) + RM,N , (2.11)

where N and M are positive integers and

RM,N = − (s)M

M!

∫ ∞

N
B M (x)x−s−M dx . (2.12)

We take M = 2m + 1. The function B2m+1(x) is a periodic function with period 1
whose Fourier expansion is given by

B2m+1(x) = 2(2m + 1)!(−1)m−1
∞∑

ν=1

sin 2πνx

(2πν)2m+1
. (2.13)

Substituting (2.13) into (2.12), we have

R2m+1,N = 2(−1)m(s)2m+1

∞∑
ν=1

(2πν)s−1
∫ ∞

2πνN
x−s−2m−1 sin x dx . (2.14)

Now the last integral of (2.14) can be written as∫ ∞

2πνN
xµ−1 sin xdx = i

2

{
e− π iµ

2 �(µ, 2π iνN ) − e
π iµ

2 �(µ, −2π iνN )
}
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for �µ < 1 (I. S. Gradshteyn and I. M. Ryzhik [5, 3.761-2]), hence putting µ =
−s − 2m and using Lemma 2.1, we have∫ ∞

2πνN
x−s−2m−1 sin xdx � (νN )−σ−2m

2πνN − |t | (2.15)

for N ≥ 1
4 |t |. Therefore we get

R2m+1,N � |(s)2m+1|N−σ−2m
∞∑

ν=1

1

ν2m+1

1

2πνN − |t |

� |t |2m+1

Nσ+2m+1

(2.16)

for N ≥ 1
4 |t |. This completes the proof of Lemma 2.2.

Remark 2.4. (i) If we evaluate the integral (2.12) directly, we only get

R2m+1,N � |t |2m+1

Nσ+2m
,

which is not sufficient for our purpose.
(ii) The approximate functional equation in the simplest form can be written as

ζ(s) =
∑
n≤x

1

ns
+ x1−s

s − 1
+ O(x−σ ) (2.17)

for 0 < σ0 ≤ σ ≤ 2, x ≥ |t |/π (A. Ivić [11, Theorem 1.8]). Lemma 2 can be
regarded as a refinement of this formula.

For the estimate of finite zeta sum and the zeta-function, we shall use the fol-
lowing lemma.

Lemma 2.5. Let t > 2, N ≤ N1 ≤ 2N and N � t , then we have

∑
N<n≤N1

1

n1/2+i t
� t

1
6 , (2.18)

∑
N<n≤N1

1

nit
� t

1
2 , (2.19)

∑
N<n≤N1

1

ns
�




t
1
2 − 2

3 σ
(

0 < σ < 1
2

)
t

1
3 − 1

3 σ log t
(

1
2 < σ ≤ 1

)
,

(2.20)
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and

ζ(σ + i t) �



t
1
2 − 2

3 σ log t
(

0 ≤ σ ≤ 1
2

)
t

1
3 − 1

3 σ log2 t
(

1
2 < σ ≤ 1

)
.

(2.21)

Proof. For the proof of (2.18) and (2.19), see E. C. Titchmarsh [16, Theorem 5.12]
and S. W. Graham and G. Kolesnik [6, Theorem 2.2]. As for (2.20), we use (2.18),
(2.19), trivial estimate

∑
n≤N

1
n1+i t � log N and the Phragmén-Lindelöf convexity

principal.
From Corollary 2.3, we get

ζ(s) =
∑
n≤N

1

ns
+ O

(
t−σ

)
for

t

4
< N � t.

Hence by dividing the range 1 ≤ n ≤ N into O(log t) subsums of the form of the
left-hand side of the above, we obtain (2.21).

3. Double exponential sums

Next we shall recall the simplest result for double exponential sum, which is given
by E. Krätzel [12, p. 61] and E. C. Titchmarsh [15]. Throughout this paper the
following conditions are always assumed to be true:

(A) Suppose that D is a subset of the rectangle

D1 = {(x1, x2) | a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2}
with c j := b j − a j ≥ 1 ( j = 1, 2), where D denotes a bounded plane domain
with the area |D|.

(B) Any straight line parallel to any of coordinate axis intersects D in a bounded
number of line segment. For the sake of simplicity we only consider such do-
mains D where these straight lines intersects the boundary of D in at most two
points or in one line segments. We can do this without loss of generality, because
each such general domain can be divided into a finite number of these special
domains.

(C) Let f (x1, x2) be a real function in D1 with continuous partial derivatives of as
many orders as may be required. Suppose that the functions fx1(x1, x2) and
fx2(x1, x2) are monotonic in x1 and x2, respectively.

(D) Intersections of D with domains of the type fx j (x1, x2) ≤ c or fx2(x1, x2) ≤
c ( j = 1, 2) must satisfy condition (B) as well.

(E) The boundary of D can be divided into a bounded number of parts. In each
part the curve of boundary is given by x2 = constant or a function x1 = ρ(x2),
which is continuous in the closed intervals described above.

We need the following lemmas.
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Lemma 3.1 (Titchmarsh [15, Lemma γ ]). Let f (x1, x2) be a real differentiable
function of x1 and x2. Let fx1(x1, x2), as a function of x1 for each fixed value of x2,
have a finite number of maxima and minima, and let fx2(x1, x2) satisfy a similar
condition as a function of x2 for each fixed value of x1. Let 0 < δ < 1 be a fixed
number and let

| fx1(x1, x2)| ≤ δ, | fx2(x1, x2)| ≤ δ

for (x1, x2) ∈ D. Then

∑
(n1,n2)∈D

e2π i f (n1,n2) =
∫ ∫

D
e2π i f (x1,x2)dx1dx2 + O(c1) + O(c2).

Lemma 3.2 (Krätzel [12, Theorem 2.21]). Let f (x1, x2) be a real function in D′,
and let H1, H2 be integers with 1 ≤ Hj ≤ c j ( j = 1, 2). Let

W =
∑

(n1,n2)∈D

e2π i f (n1,n2).

Then we have

W � |D′|√
H1 H2

+
{

|D′|
H1 H2

H1−1∑
h1=1

H2−1∑
h2=0

|W1|
}1/2

+
{

|D′|
H1 H2

H1−1∑
h1=0

H2−1∑
h2=1

|W2|
}1/2

,

where
W1 =

∑
(n1,n2)∈D

(n1+h1,n2+h2)∈D

e2π i( f (n1+h1,n2+h2)− f (n1,n2)),

and
W2 =

∑
(n1,n2)∈D

(n1+h1,n2−h2)∈D

e2π i( f (n1+h1,n2−h2)− f (n1,n2)).

Further, we denote the Hessian of the function f (x1, x2) by

H( f ) = ∂( fx1, fx2)

∂(x1, x2)
= fx1x1(x1, x2) fx2x2(x1, x2) − f 2

x1x2
(x1, x2).

Lemma 3.3 (Krätzel [12, Lemma 2.6]). Suppose that

λ j ≤ | fx j x j (x1, x2)| � λ j ( j = 1, 2), | fx1x2(x1, x2)| � √
λ1λ2

and
H( f ) 	 λ1λ2
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throughout the rectangle D1. For all parts of the curve of boundary let x2 = const
or x1 = ρ(x2), where ρ(x) is partly twice differential and |ρ′′(x)| � r . Then we
have∫∫

D
e2π i f (x1,x2)dx1dx2 � 1 + log |D1| + | log λ1| + | log λ2|√

λ1λ2
+ c2r

λ2
. (3.1)

Lemma 3.4 (Krätzel [12, Theorem 2.16]). Suppose that

| fx j x j (x1, x2)| � λ j ( j = 1, 2), | fx1x2(x1, x2)| � √
λ1λ2

and
|H( f )| 	 λ1λ2

throughout the rectangle D1. For all parts of the curve of boundary let x2 = const
or x1 = ρ(x2), where ρ(x) is partly twice differentiable and |ρ′′(x)| � r . If R is
defined by

R = 1 + log |D1| + | log λ1| + | log λ2| + c2r

√
λ1

λ2
,

then we have ∑
(n1,n2)∈D

e( f (n1, n2))

�
(

c1λ1 + c2

√
λ1λ2 + 1

) (
c2λ2 + c1

√
λ1λ2 + 1

) R√
λ1λ2

.

(3.2)

Let M and N be positive integers such that M < N . In the next lemma we shall give
the partial summation formula for the double sum

∑
M<m≤n≤N f (m, n)g(m, n)

where f (x, y) is a C2-function on [M, N ] × [M, N ] and g(m, n) is an arithmetical
function on the same domain. Let

G(x, y) =
∑

x<m≤n≤y

g(m, n).

Lemma 3.5. Let the notation be as above. Suppose that

|G(x, y)| ≤ G, | fx (x, y)| ≤ κ1,∣∣ fy(x, y)
∣∣ ≤ κ2, | fxy(x, y)| ≤ κ3

for any M ≤ x, y ≤ N.
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Then we have∣∣∣∣∣
∑

M<m≤n≤N

f (m, n)g(m, n)

∣∣∣∣∣
≤ G

(
| f (M, N )| + (κ1 + κ2)(N − M) + κ3(N − M)2

)
.

(3.3)

Proof. We shall apply partial summation twice. Let

V (n) =
∑

M<m≤n

f (m, n)g(m, n).

Then we can write

J :=
∑

M<m≤n≤N

f (m, n)g(m, n) =
∑

M<n≤N

V (n). (3.4)

By using partial summation to the sum V (n), we have

V (n) = f (n, n)H(n, n) −
∫ n

M
fx (x, n)H(x, n)dx (3.5)

with
H(x, n) =

∑
M<m≤x

g(m, n).

Substituting (3.5) into (3.4), we have

J =
∑

M<n≤N

f (n, n)H(n, n) −
∑

M<n≤N

∫ n

M
fx (x, n)H(x, n)dx

= J1 − J2,

say. We apply partial summation again in the sums of J1 and J2, namely we have

J1 = f (N , N )
∑

M<n≤N

H(n, n) −
∫ N

M

d

dx
f (x, x)

( ∑
M<n≤x

H(n, n)

)
dx

= f (N , N )G(M, N ) −
∫ N

M

d

dx
f (x, x)G(M, x)dx

= f (N , N )G(M, N ) −
∫ N

M

(
fx (x, x) + fy(x, x)

)
G(M, x)dx,
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and

J2 =
∫ N

M

∑
x<n≤N

fx (x, n)H(x, n)dx

=
∫ N

M

{
fx (x, N )

∑
x<n≤N

H(x, n) −
∫ N

x
fxy(x, y)

( ∑
x<n≤y

H(x, n)

)
dy

}
dx

=
∫ N

M

{
fx (x, N )

(
G(M, N ) − G(M, x) − G(x, N )

)

−
∫ N

x
fxy(x, y)

(
G(M, y) − G(M, x) − G(x, y)

)
dy

}
dx

= G(M, N )
(

f (N , N ) − f (M, N )
)

−
∫ N

M

(
fx (x, N )G(x, N ) + fx (x, x)G(M, x)

)
dx

−
∫ N

M

∫ N

x
fxy(x, y)

(
G(M, y) − G(x, y)

)
dy dx .

Hence we have

J = f (M, N )G(M, N ) +
∫ N

M

(
fx (x, N )G(x, N ) − fy(x, x)G(M, x)

)
dx

+
∫ N

M

∫ N

x
fxy(x, y)

(
G(M, y) − G(x, y)

)
dydx .

(3.6)

Our assertion follows by taking the absolute value in the right-hand side of
(3.6).

4. Proof of Theorem 1.1

Let s j = σ j + i t j ( j = 1, 2) be complex variables with |t1| � |t2|. We take a
parameter τ such that max{|t1|, |t2|, |t1 + t2|} + 2 ≤ τ � |t1|.

Assuming that �s j = σ j > 1 ( j = 1, 2), we divide the double series (1.1) as

ζ2(s1, s2) =
∑

m<n≤τ

1

ms1ns2
+

∑
m<n
n>τ

1

ms1ns2

=: S1(s1, s2) + S2(s1, s2),

(4.1)

say. After analytic continuation of the infinite sum S2(s1, s2), we consider the order
of magnitude of these sums in the range

0 ≤ σ j < 1 ( j = 1, 2).
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4.1. Evaluation of S2(s1, s2)

First we shall consider the estimate of S2(s1, s2). Since n runs over the integers
greater than τ > |t1|, we can use Corollary 2.3 to obtain

S2(s1, s2) =
∑
n>τ

1

ns2

(∑
m≤n

1

ms1
− 1

ns1

)

= ζ(s1)
∑
n>τ

1

ns2
+ 1

1 − s1

∑
n>τ

1

ns1+s2−1
− 1

2

∑
n>τ

1

ns1+s2

− s1

12

∑
n>τ

1

ns1+s2+1
+ O

(
|s1|3

∑
n>τ

1

nσ1+σ2+3

)

=: I1 + I2 + I3 + I4 + I5,

(4.2)

say.
Since σ1 + σ2 ≥ 0, the sum in I5 converges absolutely, and we have

I5 � τ 1−(σ1+σ2). (4.3)

The analytic continuation and the estimate of the sum
∑

n>τ
1

nw in the range �w ≤
1 are also given by Corollary 2.3 under the condition τ > |
w|/4. For the estimate
of I1, we have

I1 = ζ(s1)

{
τ 1−s2

s2 − 1
− 1

2
τ−s2 + s2

12
τ−s2−1 + O

(
τ−σ2

)}

� |ζ(s1)|τ−σ2,

(4.4)

and for I2, we have

I2 = 1

1 − s1

{
τ 2−(s1+s2)

s1 + s2 − 2
− 1

2
τ 1−(s1+s2)

+ s1 + s2 − 1

12
τ−(s1+s2) + O

(
τ 1−(σ1+σ2)

)}

� τ 1−(σ1+σ2).

(4.5)

Similarly we have
I j � τ 1−(σ1+σ2), ( j = 3, 4). (4.6)

Combining (4.3), (4.4), (4.5) and (4.6), we have

S2(s1, s2) � τmax{µ(σ1),1−σ1}−σ2,

in particular, for σ1 < 1,

S2(s1, s2) � τ 1−(σ1+σ2). (4.7)
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4.2. Evaluation of S1(s1, s2)

We shall consider the estimate of S1(s1, s2). Let 2 ≤ M ≤ τ/2. We define, for
σ j ≥ 0 ( j = 1, 2),

T (s1, s2; M) =
∑

M<m<n≤2M

1

ms1ns2

and

U (s1, s2; M) =
∑

m≤M

1

ms1

∑
M<n≤2M

1

ns2
.

Since S1 can be written as

S1(s1, s2) =
[

log 2τ
log 2

]∑
j=1

{
T (s1, s2; 2− jτ) + U (s1, s2; 2− jτ)

}
, (4.8)

it is enough to consider the estimates for T (s1, s2; M) and U (s1, s2; M).
First we consider the case σ1 = σ2 = 0. Applying Lemma 3.4 to the function

f (x1, x2) = − 1
2π

(t1 log x1 + t2 log x2) and noting that τ � |t j | and M ≤ τ/2, we
have

T (i t1, i t2; M) � τ log τ. (4.9)

As for the term U (i t1, i t2; M), we have from (2.19)

U (i t1, i t2; M) � τ log τ. (4.10)

From (4.8), (4.9) and (4.10), we have

S1(i t1, i t2) � τ log2 τ. (4.11)

The proof of (1.7) follows from (4.11) in conjunction with (4.7).
Next we consider the case of σ1 + σ2 > 0.

Estimation of T (s1, s2; M). To consider the upper bounds for T (s1, s2; M), we
divide the region into three parts:

M � τ
1
3 , τ

1
3 � M � τ

2
3 , τ

2
3 � M � τ.

Let j0 = [log τ/3 log 2] and N = 2− j0τ � τ 2/3. To reduce the evaluation of
T (σ1 + i t1, σ2 + i t2; M) into that of T (i t1, i t2; M), we apply Lemma 3.5 with
f (x, y) = 1

xσ1 yσ2 and g(m, n) = e−i(t1 log m+t2 log n). Thus we have

T (s1, s2; M)

=
∑

M<m≤n≤2M

1

mσ1+i t1nσ2+i t2
−

∑
M<n≤2M

1

nσ1+σ2+i(t1+t2)

� M−σ1−σ2

{
max

M<x<y≤2M

∣∣∣∣ ∑
x<m≤n≤y

1

mit1nit2

∣∣∣∣ + max
M<u≤2M

∣∣∣∣ ∑
M<n≤u

1

ni(t1+t2)

∣∣∣∣
}
,
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and hence

∑
j≤ j0

T (s1, s2; 2− jτ) � 1

Nσ1+σ2
τ log2 τ � τ 1− 2

3 (σ1+σ2) log2 τ (4.12)

by (2.19) and (4.9).
On the other hand, for M � τ 1/3, it follows that

T (s1, s2; M) =
∑ ∑

M<m<n≤2M

1

ms1ns2
� M2−σ1−σ2 log M.

We take j1 = [2 log τ/3 log 2], then∑
j> j1

T (s1, s2; 2− jτ) � τ
2
3 − 1

3 (σ1+σ2) log τ. (4.13)

We use Lemma 3.2 with H1 = H2 = H to consider the estimate of T (s1, s2; M)

for τ 1/3 � M � τ 2/3, where H is chosen later. Let M < M ′ ≤ 2M and

W =
∑ ∑

M<m<n≤M ′
mit1nit2 =

∑ ∑
M<m<n≤M ′

e2π i f (m,n),

where we put

f (x1, x2) = 1

2π
(t1 log x1 + t2 log x2).

For each 1 ≤ h j ≤ H ( j = 1, 2), we define

Dh1,h2 = {(m, n) ∈ Z2 | M < m < n ≤ M ′, M < m + h1 < n + h2 < M ′}
and

D′
h1,h2

= {(m, n) ∈ Z2 | M < m < n ≤ M ′, M < m + h1 < n − h2 < M ′}.
By Lemma 3.2, we have

W � M2

H
+ M

H




(
H−1∑
h1=1

H−1∑
h2=0

|W1(h1, h2)|
)1

2

+
(

H−1∑
h1=0

H−1∑
h2=1

|W2(h1, h2)|
)1

2

, (4.14)

where
W1(h1, h2) =

∑
(m,n)∈Dh1,h2

e2π i( f (m+h1,n+h2)− f (m,n))

and
W2(h1, h2) =

∑
(m,n)∈D′

h1,h2

e2π i( f (m+h1,n−h2)− f (m,n)).
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Now we treat the sum W1. Denote

g(x1, x2) = f (x1 + h1, x2 + h2) − f (x1, x2),

then

gx1(x1, x2) = t1
2π

(
1

x1 + h1
− 1

x1

)
, gx2(x1, x2) = t2

2π

(
1

x2 + h2
− 1

x2

)

gx1x1(x1, x2) = t1
2π

h1(2x1 + h1)

x2
1(x1 + h1)2

, gx2x2(x1, x2) = t2
2π

h2(2x2 + h2)

x2
2(x2 + h2)2

.

Consider the case h2 �= 0 firstly. We divide the triangular region Dh1,h2 into the
squares of side l, or parts of such squares

�p,q = {(x, y) | M + pl < x ≤ M +(p+1)l, M +ql < y ≤ M +(q+1)l}∩Dh1,h2

with

l = AM3

τ H
(4.15)

where A is a small constant.
For a fixed (α, β) ∈ �p,q , we get

gx1(x1, x2) − gx1(α, β) � τ H

2π

l M

M2
= A,

and if A is small enough, the total variation of gx1 in �p,q is smaller than 3
4 , and so

is gx2 . Hence there are two integers P and Q such that∣∣∣gx1(x1, x2) − P
∣∣∣ ≤ 3

4
and

∣∣∣gx2(x1, x2) − Q
∣∣∣ ≤ 3

4

for any (x1, x2) ∈ �p,q . Now putting

G(x1, x2) = g(x1, x2) − 2π(Px1 + Qx2),

then we have, from Lemma 3.1,∑
(m,n)∈�p,q

e2π ig(m,n) =
∫∫

�p,q

e2π iG(x1,x2)dx1dx2 + O(l).

Since

Gx1 x1(x1, x2) � λ j = τh j

M3
( j = 1, 2),

by applying Lemma 3.3, we have∫∫
�p,q

e2π iG(x,y)dxdy � log τ

τ

M3

√
h1h2

.
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Now the number of �p,q is at most O(M2/ l2), thus we have

W1(h1, h2) �
∑
p,q

∣∣∣∣∣
∫∫

�p,q

e2π iG(x,y)dxdy + O(l)

∣∣∣∣∣
�

(
log τ

τ

M3

√
h1h2

+ l

)
M2

l2

� τ log τ
H2

√
h1h2

1

M
.

by (4.15).
When h2 = 0, we have, by E. Krätzel [12, Theorem 2.1],

W1(h1, 0) =
∑

M+h1<n≤M ′

∑
M<m<n

eit1(log(m+h1)−log m)

�
∑

M+h1<n≤M ′

τh1/M2√
τh1/M3

� √
τ Mh1

Similar estimates can be obtained for W2(h1, h2).
Therefore, we obtain

W � M2

H
+ M

H




(
H−1∑
h1=1

H−1∑
h=1

τ log τ

M

H2

√
h1h2

) 1
2

+
(

H−1∑
h1=1

√
τ Mh1

) 1
2

+
(

H−1∑
h2=1

√
τ Mh2

) 1
2



� M2

H
+ (M Hτ log τ)

1
2 +

(
τ M5

H

) 1
4

.

Taking H = M/τ 1/3, we get

W � Mτ
1
3 (log τ)

1
2 . (4.16)

By Lemma 3.5 and (4.16), we have

T (s1, s2; M) � M1−σ1−σ2τ
1
3 log

1
2 τ.

It follows that

∑
j0< j≤ j1

T (s1, s2; 2− jτ) �



τ 1− 2
3 (σ1+σ2) log

3
2 τ σ1 + σ2 ≤ 1

τ
2
3 − 1

3 (σ1+σ2) log
3
2 τ σ1 + σ2 > 1.

(4.17)
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From (4.12), (4.13) and (4.17) we have∑
j

T (s1, s2; 2− jτ) �
(
τ 1− 2

3 (σ1+σ2) + τ
2
3 − 1

3 (σ1+σ2)
)

log2 τ. (4.18)

Remark 4.1. In the case W1(h1, 0), we note that gx2x2 = 0, H(g) = 0, since
g(x1, x2) = t1

2π
(log(x1 + h1) − log x1). This is the reason that we used E. Krätzel

[12, Theorem 2.1]. The situation is the same for W2(0, h2).

Estimation of U (s1, s2; M)

To treat the sum of U (s1, s2, M), we shall apply Lemma 2.5. Noting that
τ � |t j |, we have

∑
1≤m≤M

1

ms1
�




τ
1
2 − 2

3 σ1 log τ
(

0 ≤ σ1 ≤ 1
2

)
τ

1
3 − 1

3 σ1 log2 τ
(

1
2 < σ1 < 1

)
and ∑

M<n≤2M

1

ns2
�




τ
1
2 − 2

3 σ2

(
0 ≤ σ2 ≤ 1

2

)
τ

1
3 − 1

3 σ2 log τ
(

1
2 < σ2 < 1

)
.

Collecting these estimates, we obtain that

∑
j

U (s1, s2; 2− jτ) �




τ 1− 2
3 (σ1+σ2) log2 τ

(
0≤σ1 ≤ 1

2 , 0≤σ2 ≤ 1
2

)
τ

5
6 − 1

3 (σ1+2σ2) log3 τ
(

1
2 <σ1 <1, 0≤σ2 ≤ 1

2

)
τ

5
6 − 1

3 (2σ1+σ2) log3 τ
(

0≤σ1 ≤ 1
2 , 1

2 <σ2 < 1
)

τ
2
3 − 1

3 (σ1+σ2) log4 τ
(

1
2 <σ1 <1, 1

2 <σ2 <1
)
.

(4.19)

From (4.7), (4.18) and (4.19), we get the assertion (1.8).
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