
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. IV (2005), 729-748

Kolmogorov kernel estimates
for the Ornstein-Uhlenbeck operator

ROBERT HALLER-DINTELMANN AND JULIAN WIEDL

Abstract. Replacing the Gaussian semigroup in the heat kernel estimates by
the Ornstein-Uhlenbeck semigroup on R

d , we define the notion of Kolmogorov
kernel estimates. This allows us to show that under Dirichlet boundary condi-
tions Ornstein-Uhlenbeck operators are generators of consistent, positive, (quasi-)
contractive C0-semigroups on L p(�) for all 1 ≤ p < ∞ and for every domain
� ⊆ R

d . For exterior domains with sufficiently smooth boundary a result on the
location of the spectrum of these operators is also given.

Mathematics Subject Classification (2000): 47D06 (primary); 35K20 (secon-
dary).

1. Introduction

Heat kernel estimates have proved to be a powerful tool for the analysis of elliptic
differential operators. Besides many other things, they allow the extension of a
given semigroup on L p0 for some p0 to the whole scale of L p-spaces for 1 ≤ p <

∞ in a consistent way, transferring certain nice properties to all these semigroups,
such as analyticity, and yielding p-invariance of the spectrum.

Dealing with Ornstein-Uhlenbeck operators on L p(�) for unbounded domains
� we evidently cannot expect to get heat kernel estimates, as the spectrum of these
operators in L p(Rd) already depends heavily on p. Nevertheless, the well-known
representation for the Ornstein-Uhlenbeck semigroup on L p(Rd) that is due to
A. N. Kolmogorov and given by

T (t) f (x) =
∫

Rd
kt (e

t B x − y) f (y) dy = (kt ∗ f )(et B x),

where the Kolmogorov kernel is

kt (x) = 1

(4π)
d
2 (det Qt )

1
2

exp

(
−1

4
Q−1

t x · x

)
with Qt =

∫ t

0
es B Qes B�

ds ,
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looks very similar to the heat semigroup. So it is a natural idea to consider Kol-
mogorov kernel estimates replacing the Gaussian semigroup by the Kolmogorov
semigroup (T (t))t≥0, thus getting a majorising semigroup that is well adapted to
operators of the Ornstein-Uhlenbeck type. These estimates then allow us to extend
semigroups on L p0 to the whole scale of L p-spaces for 1 ≤ p < ∞, analogously
to the case of heat kernel bounds.

Having established this idea, in the sequel we apply it to Ornstein-Uhlenbeck
operators with Dirichlet boundary conditions in L p(�), where 1 ≤ p < ∞ and � is
a domain in Rd . Ornstein-Uhlenbeck operators are differential operators, formally
given by

(Au)(x) =
d∑

i, j=1

qi j Di D j u(x) + Bx · ∇u(x), (1.1)

where Q = (qi j )
d
i, j=1 ∈ Rd×d is a symmetric and positive definite matrix and

B = (bi j )
d
i, j=1 ∈ Rd×d \ {0}. They first appeared in stochastic analysis, describing

a Brownian motion with an additional drift. In this context one usually works in
spaces of continuous functions on Rd or in the spaces L p(Rd , µ), where µ is the
invariant measure of the underlying process.

Recently, it became clear that an analytic treatment of these operators is of
great interest. For instance, looking at the Stokes equation in the exterior of a
rotating obstacle leads to operators of the Ornstein-Uhlenbeck type, see [14], [13]
and [9]. Thus one is interested in their behaviour on L p(�) with respect to the
Lebesgue measure for domains and especially exterior domains.

Passing from the invariant measure to the Lebesgue measure changes the prop-
erties of the operator completely. The spectrum is no longer contained in the nega-
tive real axis, instead it contains a vertical line (cf. [15]), so the semigroup (T (t))t≥0
on L p(Rd) is not analytic, as it is in L p(Rd , µ) (cf. [16]), and it even fails to be
eventually norm-continuous.

Whereas Ornstein-Uhlenbeck operators are well understood in L p(Rd) (cf.
[15, 18, 17]) and for bounded domains, where they can be viewed as a perturbation
of lower order of the elliptic diffusion part, there are very few results for unbounded
domains. M. Geissert, H. Heck, M. Hieber and I. Wood showed in [10] that in the
case of an exterior domain � with sufficiently smooth boundary, a realisation of A
on L p(�) generates a C0-semigroup and G. da Prato and A. Lunardi treat the case
of L2-spaces of convex sets with respect to Neumann boundary conditions and in-
finitesimally invariant measures in [4]. The Dirichlet problem in spaces of bounded
continuous functions on smooth domains is treated by S. Fornaro, G. Metafune and
E. Priola in [8]. An overview may be found in [3].

In this paper we show that for arbitrary domains � ⊆ Rd a realisation of A
in L2(�) generates a (quasi-)contractive, positive C0-semigroup, that has a Kol-
mogorov kernel estimate, see Theorem 3.2. In the sequel this allows us to define
consistent Ornstein-Uhlenbeck semigroups on L p(�) for 1 ≤ p < ∞ that have the
same contractivity, positivity and domination properties. This immediately gives
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an upper bound on the growth bound of the semigroups and implies that Ornstein-
Uhlenbeck operators admit a bounded H∞-calculus on L p(�) (Theorem 4.5).

In the special case of an exterior domain with sufficiently smooth boundary, it
turns out that the domain is

W 1,p
0 (�) ∩ W 2,p(�) ∩ { f ∈ L p(�) : Bx · ∇ f ∈ L p(�)}

and we even deduce in Theorem 5.2 that the same vertical line as in the case of the
whole space is contained in the spectrum of the operator, so the spectral behaviour
is the same as for the case � = Rd . This means that also in this case the semigroup
is not eventually norm-continuous. Nevertheless we can show that its growth bound
and the spectral bound of its generator coincide, which is no longer clear by standard
spectral theory for semigroups.

The paper is organised as follows. In section 2 we introduce the notion of
Kolmogorov kernel estimates and prove their main implications. The generation
result for A in L2(�) is contained in section 3 and in section 4 we show that this
semigroup is positive and admits a Kolmogorov kernel estimate. Section 5 finally
contains the results for exterior domains.

Notation. Throughout this paper we use the following notation.
For a closed operator (A, D(A)) on some Banach space X we denote by σ(A)

the spectrum, by �(A) the resolvent set and by R(λ, A) = (λ − A)−1, λ ∈ �(A),
the resolvent of A. Furthermore, the space of all bounded linear operators on X is
denoted by L(X).

As usual, for � ⊆ Rd open, ‖ · ‖p stands for the norm of the Lebesgue spaces
L p(�) whenever the set � is clear from the context. We write W k,p(�), or Hk(�)

in the case p = 2, for the Sobolev spaces, C∞
c (�) for the space of all smooth

functions having compact support in � and W 1,p
0 (�), or H1

0 (�), is the closure of
C∞

c (�) in the norm of W 1,p(�) or H1(�), respectively. Furthermore, if X is a
function space, X+ stands for the cone of all positive functions in X .

Finally, Br (x0) is the open ball of radius r with centre x0 and, given a matrix
B ∈ Rd×d , we write tr(B) = ∑d

j=1 b j j for its trace.

2. Kolmogorov kernel estimates

Given a matrix B ∈ Rd×d \ {0} and a positive definite matrix Q ∈ Rd×d , we define
the Kolmogorov semigroup (K p(t))t≥0, on L p(Rd) by

(
K p(t) f

)
(x) =

∫
Rd

kt (e
t B x − y) f (y) dy, f ∈ L p(Rd),

where the Kolmogorov kernel kt is given by

kt (x) = 1

(4π)
d
2 (det Qt )

1
2

exp

(
−1

4
Q−1

t x · x

)
with Qt =

∫ t

0
es B Qes B�

ds.
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It is well known (cf. [15]) that (K p(t))t≥0 is a positive C0-semigroup on L p(Rd) for
every 1 ≤ p < ∞ and it is straightforward by substitution and Young’s inequality
that for every f ∈ L p(Rd)

‖K p(t) f ‖p =
(∫

Rd

∣∣(kt ∗ f )(et B x)
∣∣p dx

) 1
p

= e− tr(B)
p t‖kt ∗ f ‖p ≤ e− tr(B)

p t‖ f ‖p, (2.1)

since ‖kt‖1 = 1. The generator ARd ,p of this semigroup is the Ornstein-Uhlenbeck
operator A given in (1.1) and G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt
showed in [18] that its domain is

D(ARd ,p) = W 2,p(Rd) ∩ { f ∈ L p(Rd) : Bx · ∇ f ∈ L p(Rd)} (2.2)

for 1 < p < ∞.
Now, let � ⊆ Rd be an open set, 1 ≤ p < ∞, and let (T (t))t≥0 be a C0-

semigroup on L p(�) with generator A.

Definition 2.1. We say that the semigroup (T (t))t≥0 on L p(�) satisfies a Kol-
mogorov kernel estimate if there exist a matrix B ∈ Rd×d \ {0}, a positive definite
matrix Q ∈ Rd×d , M ≥ 0 and ω ∈ R, such that for all f ∈ L p(�) and all t ≥ 0
we have the pointwise estimate

|T (t) f | ≤ Meωt K p(t)| f̃ |,
where f̃ denotes the trivial extension of f to Rd .

For such semigroups we have the following result.

Proposition 2.2. Let � ⊆ Rd be open, 1 ≤ p < ∞, and let (T (t))t≥0 be a C0-
semigroup on L p(�) that satisfies a Kolmogorov kernel estimate for some matrix
B, a positive definite matrix Q and constants M and ω. Then for 1 ≤ q < ∞ there
exist consistent C0-semigroups (Tq(t))t≥0 on Lq(�), such that Tp = T and

‖Tq(t)‖L(Lq (�)) ≤ Me(ω− tr(B)
q )t

for every t ≥ 0. Furthermore, Tq satisfies the same Kolmogorov kernel estimate
and if T is a positive semigroup, Tq is also positive.

Proof. Let g ∈ L p(�)∩ Lq(�) and t ≥ 0. Then, by consistency of the semigroups
Kq for 1 ≤ q < ∞ and (2.1), we have

‖T (t)g‖q =
(∫

�

|T (t)g|q
) 1

q ≤ Meωt
(∫

Rd
(K p(t)|g̃|)q

) 1
q

= Meωt‖Kq(t)|g̃|‖q ≤ Me(ω− tr(B)
q )t‖g‖q .
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Thus we can extend the operator T (t) continuously to an operator Tq(t) on Lq(�),
obtaining C0-semigroups that are consistent by construction and that obey the stated
norm estimate by the above calculation.

For f ∈ Lq(�) ∩ L p(�) the inequality

|Tq(t) f | ≤ Meωt Kq(t)| f̃ |
is immediate by consistency. Thus Meωt Kq(t)| f̃ |−|Tq(t) f | is positive for all these
functions and the Kolmogorov kernel estimates follow for arbitrary f ∈ Lq(�),
since Lq(�)+ is closed in Lq(�).

Finally, the same closedness argument yields the positivity of Tq , whenever T
is positive.

For every 1 ≤ q < ∞ we denote the generator of (Tq(t))t≥0 by Aq . The
Kolmogorov kernel estimates also provide consistency results for these operators
and their resolvents. We collect them in the next proposition.

Proposition 2.3. Let 1 ≤ q < ∞. Then

1. R(λ, Aq) f = R(λ, Ar ) f for all f ∈ Lq(�) ∩ Lr (�), all 1 ≤ r < ∞ and all

λ ∈ C with Re(λ) > λ0 := max
(
ω − tr(B)

q , ω − tr(B)
r

)
.

2. The set { f ∈ D(A)∩ Lq(�) : A f ∈ Lq(�)} is contained in D(Aq) and Aq f =
A f for all such f .

3. |R(λ, Aq) f | ≤ M R(λ, ω + ARd ,q)| f̃ | for all f ∈ Lq(�) and all λ > ω − tr(B)
q .

Proof.

1. By Proposition 2.2 we know that the growth bounds of Tq and Tr are at most λ0.
Taking λ ∈ C with Re(λ) > λ0, this allows us to conclude with the help of the
Laplace transform

R(λ, Aq) f =
∫ ∞

0
e−λt Tq(t) f dt =

∫ ∞

0
e−λt Tr (t) f dt = R(λ, Ar ) f

for every f ∈ Lq(�) ∩ Lr (�) by the consistency of the semigroups.
2. Let f ∈ D(A)∩ Lq(�) with A f ∈ Lq(�). Then, choosing λ > ω +|tr(B)|, we

have λ ∈ �(A) ∩ �(Aq) and since (λ − A) f ∈ L p(�) ∩ Lq(�), we get

f = R(λ, A)(λ − A) f = R(λ, Aq)(λ − A) f ∈ D(Aq)

by part (1) of this proof. The above equality also yields Aq f = A f .
3. Let λ > ω − tr(B)

q . Then we may again use Laplace transform for R(λ, Aq) and
we obtain for f ∈ Lq(�)

|R(λ, Aq) f | =
∣∣∣∣
∫ ∞

0
e−λt Tq(t) f dt

∣∣∣∣
≤ M

∫ ∞

0
e−λt eωt Kq(t)| f̃ | dt = M R(λ, ω + ARd ,q)| f̃ |,

since Tq also has a Kolmogorov kernel estimate by Proposition 2.2.
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In the special case that M = 1 in the kernel estimates, the operators Aq −
ω+ tr(B)/q generate contraction semigroups for all q ∈ (1, ∞). Since |tr(B)/q| ≤
|tr(B)| for all q ∈ (1, ∞), the amount of the shift is bounded. Thus Aq −ω−|tr(B)|,
1 < q < ∞, is a family of generators of contraction semigroups on Lq(�). If in
addition the semigroup (T (t))t≥0 is positive, by Proposition 2.2 all the semigroups
are positive. This immediately yields a bounded H∞-calculus for their generators,
see [12].

Proposition 2.4. The operators Aq − ω − |tr(B)| admit a bounded H∞-calculus
for every 1 < q < ∞, whenever (T (t))t≥0 is a positive semigroup satisfying a
Kolmogorov kernel estimate with M = 1.

3. The Ornstein-Uhlenbeck semigroup on L2(�)

In the following we want to use Kolmogorov kernel estimates to show that the
Ornstein-Uhlenbeck operator A is the generator of a positive C0-semigroup on
L p(�) for every open and connected subset � of Rd . As we already mentioned in
the introduction, the key is a generation result for the case p = 2 and Kolmogorov
kernel estimates. We will prove these two items in this and the following section.

We define the realisation of the Ornstein-Uhlenbeck operator in L2(�) by

D(A�,2) = H1
0 (�) ∩ {u ∈ H2

loc(�) : Au ∈ L2(�)},

(A�,2u)(x) =
d∑

i, j=1

qi j Di D j u(x) + Bx · ∇u(x)

=
d∑

i, j=1

qi j Di D j u(x) +
d∑

i, j=1

bi j x j Di u(x), x ∈ � ⊂ R
d ,

where Q = (qi j )
d
i, j=1 ∈ Rd×d is a symmetric and positive definite matrix and

B = (bi j )
d
i, j=1 ∈ Rd×d \{0}. Note that this notation is consistent with the definition

of ARd ,2 in (2.2). In fact, the domain in (2.2) is clearly contained in the domain
given here, so when we have shown in Proposition 3.5 that A�,2 is dissipative, the
equality of the two domains follows by the following general observation.

Remark 3.1. Let B be the generator of a C0-semigroup on some Banach space X
and let A ⊇ B be dissipative. Then we already have A = B. In fact, there exists
λ > 0, such that λ− B is surjective and λ− A is injective by dissipativity. Thus the
claim follows by [7, IV.1.21 (5)].

Now we can formulate our result for the case p = 2.

Theorem 3.2. Let � ⊆ Rd be a domain. Then the operator A�,2 generates a

positive C0-semigroup (T�,2(t))t≥0 on L2(�) with ‖T�,2(t)‖L(L2(�)) ≤ e− tr(B)
2 t
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for all t ≥ 0. Moreover for every λ > −tr(B)/2 and every t ≥ 0 we have the
domination properties

|R(λ, A�,2) f | ≤ R(λ, ARd ,2)| f̃ |, f ∈ L2(�),

|T�,2(t) f | ≤ TRd ,2(t)| f̃ | = K2(t)| f̃ |, f ∈ L2(�),

where f̃ denotes the extension of f by 0. In particular, T�,2 fulfills a Kolmogorov
kernel estimate with M = 1 and ω = 0.

In the following we use the notation

(A0u)(x) =
d∑

i, j=1

qi j Di D j u(x) and (Lu)(x) = Bx · ∇u(x)

for the diffusion and the drift part of A, respectively. We start with a simple lemma,
that will be useful for many proofs.

Lemma 3.3. Let G ⊆ Rd be open and u ∈ H1
0 (G) be a real-valued function. For

any ϕ ∈ C∞
c (Rd) we have

∫
G
(Lu)uϕ = − tr(B)

2

∫
�

u2ϕ − 1

2

∫
�

u2Lϕ.

Proof. Since u ∈ H1
0 (G), there is a sequence (un)n∈N ⊆ C∞

c (G) converging to u
in H1(G). Therefore, we have

∫
G(Lu)uϕ = limn→∞

∫
G(Lun)unϕ, since Bx is

bounded on the support of ϕ. We get∫
G
(Lun)unϕ =

∫
G

Bx · ∇ununϕ = −
∫

G
div

(
unϕBx

)
un

= −
∫

G
(Lun)unϕ − tr(B)

∫
G

u2
nϕ −

∫
G

u2
nLϕ.

Letting n tend to ∞, we derive
∫

G (Lu)uϕ = − tr(B)
2

∫
G u2ϕ − 1

2

∫
G u2Lϕ.

Remark 3.4. To be precise, one has to check that integration by parts is allowed
in the proof of Lemma 3.3. This will be used again later on, so it might be useful
to note the following generalisation. For any open set G, integration by parts is
possible if u ∈ C∞

c (G) and v ∈ H1
loc(G).

In this case, there is a compact set K ⊆ G with supp(u) ⊆ K ◦. Then v ∈
H1(K ) and by the definition of weak derivatives one gets for all 1 ≤ i ≤ d∫

G
u(Div) =

∫
K

u(Div) = −
∫

K
(Di u)v = −

∫
G
(Di u)v.
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In order to show that A�,2 is a generator of a C0-semigroup we will apply the
Lumer-Phillips theorem. So we first need dissipativity.

Proposition 3.5. The operator

A := A�,2 + tr(B)

2

is dissipative in L2(�).

Proof. Let f ∈ D(A�,2) = D(A). Writing f = u + iv for suitable real u, v ∈
L2(�), we get

Re
∫

�

(A f ) f =
∫

�

(Au)u +
∫

�

(Av)v,

so it suffices to show
∫
�
(Au)u ≤ 0 for real-valued functions u. Note that u, v ∈

D(A�,2), since the coefficients of A are real.
We choose η∈C∞

c (Rd) vanishing outside of B2(0) with η|B1(0) =1 and define
ηm(x)=η( x

m ) for m ∈N. Since (Au)u ∈ L1(�) we derive limm→∞
∫
�
(Au)uηm =∫

�
(Au)u by the pointwise convergence of ηm to 1 and Lebesgue’s Theorem.

Next we choose a sequence (un)n∈N of C∞
c (�)-functions converging to u with

respect to the H1-norm. Now, partial integration (as in Remark 3.4) yields∫
�

(A�,2u)(x)un(x)ηm(x) dx

=
∫

�

d∑
i, j=1

qi j Di D j u(x)un(x)ηm(x) dx +
∫

�

d∑
i, j=1

bi j x j Di u(x)un(x)ηm(x) dx

=
∫

�

d∑
i, j=1

qi j Di D j u(x)un(x)ηm(x) dx + 1

2

∫
�

d∑
i, j=1

bi j x j Di u(x)un(x)ηm(x) dx

+ 1

2

∫
�

d∑
i, j=1

bi j x j Di u(x)un(x)ηm(x) dx

= −
∫

�

d∑
i, j=1

qi j Di u(x)D j un(x)ηm(x) dx −
∫

�

d∑
i, j=1

qi j Di u(x)un(x)D jηm(x) dx

+ 1

2

∫
�

d∑
i, j=1

bi j x j Di u(x)un(x)ηm(x) dx− 1

2

∫
�

d∑
i, j=1

bi j x j u(x)Di un(x)ηm(x) dx

− 1

2

∫
�

d∑
i, j=1

bi j x j un(x)u(x)Diηm(x) dx − tr(B)

2

∫
�

u(x)un(x)ηm(x) dx .
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Note that, thanks to the bounded supports of the functions ηm and un , all integrals
in the above calculations are well defined.

The H1-convergence of the sequence (un)n∈N yields

lim
n→∞

∫
�

d∑
i, j=1

qi j Di u(x)D j un(x)ηm(x) dx =
∫

�

d∑
i, j=1

qi j Di u(x)D j u(x)ηm(x) dx

and

lim
n→∞

∫
�

d∑
i, j=1

bi j x j Di un(x)u(x)ηm(x) dx =
∫

�

d∑
i, j=1

bi j x j Di u(x)u(x)ηm(x) dx,

since x jηm(x) is bounded. The other summands can be treated analogously, so we
derive∫

�

(A�,2u)(x)u(x)ηm(x) dx = lim
n→∞

∫
�

(A�,2u)(x)un(x)ηm(x) dx

= −
∫

�

d∑
i, j=1

qi j Di u(x)D j u(x)ηm(x) dx −
∫

�

d∑
i, j=1

qi j Di u(x)u(x)D jηm(x) dx

− 1

2

∫
�

d∑
i, j=1

bi j x j u(x)u(x)Diηm(x) dx − tr(B)

2

∫
�

u(x)u(x)ηm(x) dx .

Next, we want to pass to the limit m → ∞, so we have to consider the terms
containing derivatives of ηm . The equality (Diηm)(x) = 1

m (Diη)( x
m ) implies

x j Diηm(x) = x j

m
Diη

( x

m

)
= 0 for

|x |
m

> 2,

and therefore all functions x j Diηm(x), 1 ≤ i, j ≤ d, are bounded with

|x j Diηm(x)| =
∣∣∣ x j

m
Diη

( x

m

)∣∣∣ < 2‖∇η‖∞

and have support inside {x ∈ Rd : m ≤ |x | ≤ 2m}.
Now let ε > 0. Since u2 ∈ L1(�), there is a compact subset Kε ⊆ � with∫

�\Kε

u2 ≤ ε

2‖∇η‖∞
.

If we choose m0 large enough, we have Kε ∩ supp(x j Diηm) = ∅ for all m ≥ m0
and therefore∣∣∣∣

∫
�

u2(x)x j Diηm(x) dx

∣∣∣∣ =
∣∣∣∣
∫

�\Kε

u2(x)x j Diηm(x) dx

∣∣∣∣ ≤ ε.
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This proves

lim
m→∞

∫
�

d∑
i, j=1

bi j x j u(x)u(x)Diηm(x) dx = 0.

Since ‖Diηm‖∞ ≤ 1
m ‖∇η‖∞, we also have

lim
m→∞

∫
�

d∑
i, j=1

qi j Di u(x)u(x)D jηm(x) dx = 0 .

Finally we obtain dissipativity of A by∫
�

(Au)u = lim
m→∞

∫
�

(A�,2u + tr(B)

2
u)uηm

= −
∫

�

d∑
i, j=1

qi j Di u(x)D j u(x) dx ≤ 0,

as Q is positive definite.

In order to show that A�,2 is a generator, it remains to be proven that λ − A is
surjective for some fixed λ > 0. This will be done by approximating the solution
u of the resolvent problem (λ − A)u = f , f ∈ L2(�), with solutions of the same
problem on bounded and regular subdomains of �.

By [5, II.4, Lemma 1], there exists an increasing sequence (�n)n∈N of bounded
subdomains of �, that have a C2-boundary, such that � = ⋃

n∈N
�n . Note that

the specific choice of this sequence is not important, since by dissipativity of A a
solution of the resolvent problem is unique, whenever it exists.

Since the coefficients of L are bounded on bounded sets, by standard pertur-
bation theory, the operator A + tr(B)/2 generates a C0-semigroup on L2(�n) for
every n ∈ N, when we equip it with the domain D = H1

0 (�n) ∩ H2(�n). As
D(A�n,2) contains D, we get D(A�n,2) = D again by Remark 3.1. This coin-
cidence of the domains even gives us some more precious information. Since the
generator A�n,2 + tr(B)/2 is dissipative it even generates a contraction semigroup
on L2(�n) for every n ∈ N. Thus the bounds on the resolvent do not depend on n,
which will be important in the following.

Fixing λ > 0 and f ∈ L2(�) we find a unique solution un ∈ H1
0 (�n) ∩

H2(�n) for the problem λun − A�n,2un − tr(B)
2 un = f |�n for every n ∈ N with

‖un‖L2(�n) =
∥∥∥∥R

(
λ, A�n,2 + tr(B)

2

)
f
∣∣
�n

∥∥∥∥
L2(�n)

≤ 1

λ
‖ f ‖L2(�), (3.1)

independently of the domain �n .
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As by [1, Lemma 3.22], the trivial extension of un is an element of H1(Rd) and
hence of H1

0 (�), we may regard (un)n∈N as a sequence in H1
0 (�). The next lemma

will show that even the gradients of the functions un are bounded independently of
the chosen domain, which does not follow by elliptic regularity alone.

Lemma 3.6. Let G ⊆Rd be a bounded domain with C2-boundary and u ∈ H1
0 (G)∩

H2(G) be a solution of λu − AG,2u − tr(B)
2 u = g for some λ > 0. Then

‖∇u‖2 ≤
√

2

λ
‖Q− 1

2 ‖‖g‖2.

Proof. Let u = v + iw with real-valued v, w ∈ H1
0 (G) ∩ H2(G). Then

‖Dαu‖2
2 =

∫
G

Dαu Dαu =
∫

G
(Dαv + i Dαw)(Dαv − i Dαw)

= ‖Dαv‖2
2 + ‖Dαw‖2

2

for any multiindex α with |α| ≤ 2.∫
G

Q
1
2 ∇vQ

1
2 ∇v =

∫
G

Q∇v∇v = −
∫

G
(A0v)v

=
∫

G

(
λv − AG,2v − tr(B)

2
v

)
v − λ

∫
G

vv +
∫

G
(Lv)v + tr(B)

2

∫
G

vv

=
∫

G

(
λv − AG,2v − tr(B)

2
v

)
v − λ

∫
G

vv

=
∫

G
Re(g)R

(
λ, AG,2 + tr(B)

2

)
Re(g) − λ

∥∥∥∥R

(
λ, AG,2 + tr(B)

2

)
Re(g)

∥∥∥∥
2

2
.

We conclude by (3.1)

‖∇v‖2
2 = ‖Q− 1

2 (Q
1
2 ∇v)‖2

2 ≤ ‖Q− 1
2 ‖2 2

λ
‖Re(g)‖2

2.

Repeating the same calculations for w, we obtain

‖∇u‖2
2 ≤ ‖Q− 1

2 ‖2 2
λ
‖Re(g)‖2

2 + ‖Q− 1
2 ‖2 2

λ
‖Im(g)‖2

2 = ‖Q− 1
2 ‖2 2

λ
‖g‖2

2.

Now we can prove the main result of this section.

Proposition 3.7. Let � ⊆ Rd be a domain. Then A�,2 is the generator of a C0-

semigroup (T�,2(t))t≥0 on L2(�) with ‖T�,2(t)‖ ≤ e− tr(B)
2 t .
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Proof. It only remains to show that for a fixed λ > 0 and for every f ∈ L2(�) there
exists a function u ∈ H1

0 (�) ∩ {v ∈ H2
loc(�) : Av ∈ L2(�)} with λu − Au = f .

We consider the sequence (un)n∈N of trivial extensions of the solutions on �n
mentioned above. In view of Lemma 3.6, it is bounded in H1

0 (�), so there exists a
weakly convergent subsequence (unk )k∈N. We denote its limit by u and show in the
following that u is the desired solution.

As a first step, we will prove that u ∈ H2
loc(�). Fix two compact sets K1, K2 ⊆

� with K1 ⊆ K ◦
2 . Then, by construction, K2 ⊆ �nk for sufficiently large k. The

coefficients of A are bounded on K2, so [11, Theorem 9.11] implies that there is a
constant C depending on K1, K2 and the bound of the coefficients on K2, such that
‖unk ‖H2(K1)

≤ C(‖unk ‖2+‖ f ‖2), so there exists a weakly convergent subsequence
(unkl

)l∈N in H2(K1). Let v denote its limit. Since the sequence (unkl
|K1)l∈N also

converges weakly to u|K1 in L2(K1), we derive v = u|K1 from the uniqueness of
weak limits in L2(K1). This shows u ∈ H2

loc(�).
In order to finish the proof, it remains to show λu − Au = f . Let g ∈ C∞

c (�)

and fix a compactum K ⊆ � with supp(g) ⊆ K ◦. Then K ⊆ �nk for k large
enough. Let (unkl

)l∈N be again a weakly convergent subsequence of (unk )k∈N on

H2(K ) and A� be the formal adjoint of A. Then we conclude

∫
�

(λu − Au − f )g =
∫

K
(λu − Au − f )g =

∫
K
(λug − u A�g − f g)

= lim
l→∞

∫
K
(λunkl

g − unkl
A�g − f g) = lim

l→∞

∫
K
(λunkl

− Aunkl
− f )g = 0.

Thus the assertion follows by the fundamental theorem of variational calculus.

4. Domination and positivity of the semigroup

The aim of this section is to prove Kolmogorov kernel estimates for the semigroup
(T�,2(t))t≥0 obtained in Proposition 3.7. While doing so, we also obtain positivity
of the semigroup. Our method is inspired by the proof of heat kernel estimates for
the Dirichlet Laplacian, cf. [2].

Lemma 4.1. Let � ⊆ Rd be a domain, λ > −tr(B)/2 and let u ∈ D(A�,2),
v ∈ H1(�) ∩ { f ∈ H2

loc(�) : A f ∈ L2(�)} be real-valued functions such that
v ≥ 0. Then the inequality (λ − A)u ≤ (λ − A)v a.e. implies u ≤ v a.e.

Proof. As in the proof of Proposition 3.5, we choose a positive η ∈ C∞
c (Rd) van-

ishing outside of B2(0) with η|B1(0) = 1 and define ηm(x) = η( x
m ) for m ∈ N.

By hypotheses, we have

λ(u − v) − A0(u − v) − L(u − v) ≤ 0, a.e.
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so we obtain

λ

∫
�

(u − v)ϕηm −
d∑

i, j=1

∫
�

qi j Di D j (u − v)ϕηm −
∫

�

Bx · ∇(u − v)ϕηm ≤ 0

for all m ∈ N and all positive ϕ ∈ C∞
c (�). By integration by parts, cf. Remark 3.4,

we conclude that

λ

∫
�

(u − v)ϕηm +
d∑

i, j=1

∫
�

qi j D j (u − v)Diϕηm +
d∑

i, j=1

∫
�

qi j D j (u − v)ϕDiηm

−
∫

�

Bx · ∇(u − v)ηmϕ ≤ 0.

for all m ∈ N. Now, this last inequality is even valid for all ϕ ∈ H1
0 (�)+ by density.

In the following we show that (u − v)+ ∈ H1
0 (�)+. In order to do so, we

choose a sequence (un) ⊆ C∞
c (�), that converges to u in H1(�). Then the function

(un −v)+ is in H1(�)+ for every n ∈ N and since v ≥ 0, we get supp((un −v)+) ⊆
supp(un). Thus (un − v)+ has compact support in �, which implies (un − v)+ ∈
H1

0 (�)+. This finally yields (u − v)+ ∈ H1
0 (�)+, as H1

0 (�) is a closed subspace
of H1(�).

Putting ϕ = (u − v)+ in the above inequality and observing that then all the
integrals vanish on the set {u ≤ v}, we get

λ

∫
�

(
(u − v)+

)2
ηm +

∫
�

∇(u − v)+Q∇(u − v)+ηm

−
∫

�

Bx · ∇(u − v)+(u − v)+ηm +
n∑

i, j=1

∫
�

qi j D j (u − v)+(u − v)+Diηm ≤ 0.

Now Lemma 3.3 yields for the third integral∫
�

Bx · ∇(u − v)+(u − v)+ηm = − tr(B)

2

∫
�

(
(u − v)+

)2
ηm

−
∫

�

Bx · ∇ηm
(
(u − v)+

)2
.

As all the limits for m → ∞ on the left hand side exist (cf. proof of Proposi-
tion 3.5), this implies

−
∫

�

Bx · ∇(u − v)+(u − v)+ = tr(B)

2

∫
�

(
(u − v)+

)2
.

We derive the inequality(
λ + tr(B)

2

) ∫
�

(
(u − v)+

)2 +
∫

�

∇(u − v)+Q∇(u − v)+ ≤ 0.
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Since Q is positive definite and λ > −tr(B)/2, this can only be true, if both in-
tegrals are zero, in particular, we get ‖(u − v)+‖L2(�) = 0, which implies u ≤ v

a.e.

Setting v = 0, as an immediate corollary, we get the following positivity result
for A.

Corollary 4.2. Let λ > −tr(B)/2 and let u ∈ D(A�,2) be a real-valued function.
Then

(λ − A)u ≤ 0 a.e. �⇒ u ≤ 0 a.e. and

(λ − A)u ≥ 0 a.e. �⇒ u ≥ 0 a.e.

The next step is to show that the resolvent and the semigroup act monotonously,
when the domain � is enlarged. As a byproduct of the proof, we also deduce the
positivity of the semigroup and the resolvent.

Proposition 4.3. Let �1, �2 ⊆ Rd be domains and let �1 ⊆ �2. Then for every
f ∈ L2(�1)+, for every λ > −tr(B)/2 and every t ≥ 0, we have

1. 0 ≤ R(λ, A�1,2) f ≤ R(λ, A�2,2) f̃ ,
2. 0 ≤ T�1,2(t) f ≤ T�2,2(t) f̃

almost everywhere. Here f̃ denotes the extension of f by 0.

Proof.

1. Put u := R(λ, A�1,2) f and v := R(λ, A�2,2) f̃ . Then, both u and v are real-
valued. Indeed, for u = u1 +iu2, we have f = (λ− A�1,2)u = (λ− A�1,2)u1 +
i(λ − A�1,2)u2, where (λ − A�1,2)u j , j = 1, 2, are real-valued functions. This
implies (λ− A�1,2)u2 = 0, and, by injectivity of (λ− A�1,2), even u2 = 0. The
argument for v is the same.
Since u ∈ D(A�1,2), v ∈ D(A�2,2) and f and f̃ are positive we get u, v ≥ 0
a.e. by Corollary 4.2. It remains to show u ≤ v. As (λ −A)u = f = (λ −A)v

a.e. in �1, we have in particular (λ − A)u ≤ (λ − A)v. Furthermore, we know
that u ∈ D(A�1,2) and the restriction of v to �1 is in H1(�1)∩{ f ∈ H2

loc(�1) :
A f ∈ L2(�1)}. Thus we may apply Lemma 4.1, in order to get u ≤ v a.e. in
�1.

2. Since R(λ, A� j ,2) = 1
λ
(I − 1

λ
A� j ,2)

−1, j = 1, 2, the first part of the proof
yields

0 ≤ (I − s A�1,2)
−1 f ≤ (I − s A�2,2)

−1 f̃

for all 0 < s < 2/|tr(B)| or for every s > 0 if tr(B) = 0. Thus we have the
same for every power k ∈ N:

0 ≤ (I − s A�1,2)
−k f ≤ (I − s A�2,2)

−k f̃ .
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Now let t > 0. Then, if k is large enough, we have t/k < 2/|tr(B)| and

0 ≤
(

I − t

k
A�1,2

)−k

f ≤
(

I − t

k
A�2,2

)−k

f̃ .

Passing to the limit k → ∞, the claim follows (cf. [7, Cor. III.5.5]).

Since for a positive operator T on a Banach lattice X we always have the
inequality |T f | ≤ T | f | for all f ∈ X (cf. [19, II, §2 and §11]), for arbitrary
f ∈ L2(�1) we get:

Corollary 4.4. If �1 and �2 are as in Proposition 4.3, we have for every f ∈
L2(�1), for every λ > −tr(B)/2 and every t ≥ 0

1. |T�1,2(t) f | ≤ T�2,2(t)| f̃ |,
2. |R(λ, A�1,2) f | ≤ R(λ, A�2,2)| f̃ |.
Setting �2 = Rd in Corollary 4.4, we have finally completed the proof of Theo-
rem 3.2.

Now we have shown that A�,2 satisfies a Kolmogorov kernel estimate with
M = 1 and ω = 0, so the results stated in Chapter 2 hold true. We collect them in
the following theorem.

Theorem 4.5. Let � ⊆ Rd be a domain. Then (T�,p(t))t≥0, 1 ≤ p < ∞, is a
family of consistent, positive C0-semigroups on L p(�) with ‖T�,p(t)‖L(L p(�)) ≤
e− tr(B)

p t for all 1 ≤ p < ∞ and all t ≥ 0. We denote by A�,p the generator of
T�,p(t). Then, for every λ > −tr(B)/p and every t > 0 we have the domination
properties

|R(λ, A�,p) f | ≤ R(λ, ARd ,p)| f̃ |, f ∈ L p(�),

|T�,p(t) f | ≤ TRd ,p(t)| f̃ | = (kt ∗ | f̃ |)(et B ·), f ∈ L p(�),

where f̃ denotes the extension of f by 0. Moreover, the operators A�,p − |tr(B)|
admit a bounded H∞-calculus for every 1 < p < ∞ and we have

1. R(λ, A�,p) f = R(λ, A�,q) f for all f ∈ L p(�) ∩ Lq(�), all 1 ≤ p, q < ∞
and all λ ∈ C with Re(λ) > max(− tr(B)

p , − tr(B)
q ).

2. The set { f ∈ D(A�,2) ∩ L p(�) : A�,2 f ∈ L p(�)} is contained in D(A�,p)

and A�,p f = A�,2 f for all such f and 1 ≤ p < ∞.

5. The spectrum of A�,p on exterior domains

We finally turn our attention to the special case of an exterior domain, i.e. � =
Rd \ K for some compact set K ⊆ Rd with C1,1-boundary. Scaling the set K
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down to {0}, we show that the spectral behaviour of A�,p is the same as in the case
� = Rd . This means that the spectrum of the drift operator L on Rd , i.e. the
whole vertical line −tr(B)/p + iR (or in the case tr(B) = 0 at least an unbounded
subgroup of it) is contained in σ(A�,p). Thus the semigroup (T�,p(t))t≥0 is not
eventually norm-continuous. Nevertheless, we have that the spectral bound of A�,p
and the growth bound of T�,p coincide and s(A�,p) = ω0(T�,p) = −tr(B)/p.
Before we can formulate this theorem, we have to introduce the realisation LRd ,p

of L in L p(Rd):

D(LRd ,p) = {u ∈ L p(Rd) : Lu ∈ L p(Rd)}, LRd ,pu = Lu,

where Lu is understood in the sense of distributions.
We collect the information on the operators LRd ,p that we need in the next

proposition. For proofs, see [15].

Proposition 5.1. Let 1 ≤ p < ∞. Then the following holds:

1. The operator LRd ,p is the generator of a C0-semigroup (S(t))t≥0 on L p(Rd),
given by (S(t) f )(x) = f (et B x), x ∈ Rd , for every f ∈ L p(Rd).

2. If tr(B) �= 0, then σ(LRd ,p) = −tr(B)/p + iR.
3. If tr(B) = 0, then σ(LRd ,p) is an additive subgroup of iR, that is not {0}.

Now the result that we want to prove in this section can be formulated as fol-
lows.

Theorem 5.2. Let K ⊂ Rd be compact with a C1,1-boundary and � = Rd \ K .
Then for every 1 < p < ∞ we have

D(A�,p) = W 1,p
0 (�) ∩ W 2,p(�) ∩ { f ∈ L p(�) : L f ∈ L p(�)}. (5.1)

Furthermore we have the inclusion σ(LRd ,p)⊆σ(A�,p) and s(A�,p)=ω0(T�,p)=
−tr(B)/p.

Note, that the whole picture changes completely for bounded domains as the
semigroup then becomes analytic. It remains however an open question whether
Theorem 5.2 is still valid for more general unbounded domains.

Remark 5.3. If � is an exterior domain with C1,1-boundary, it was shown in
[10] that the Ornstein-Uhlenbeck operator equipped with the domain W 1,p

0 (�)∩
W 2,p(�) ∩ { f ∈ L p(�) : L f ∈ L p(�)} generates a C0-semigroup for every
1 < p < ∞ (in fact, this result is formulated for the case Q = I , but the proof
directly carries over to our situation). For the following results, it is necessary to
check that A�,p coincides with this operator, which we will denote by Ã p. For
p = 2, the inclusion D( Ã2) ⊆ D(A�,2) is clear, so we get D( Ã2) = D(A�,2) by
Remark 3.1.

The construction of the semigroups in [10] now immediately yields consis-
tency. From this we deduce that the semigroups generated by Ã p and A�,p and
hence their generators coincide for 1 < p < ∞.



KOLMOGOROV KERNEL ESTIMATES 745

In the following we often identify functions f ∈ C∞
c (Rd \ {0}) with their

extension by f (0) = 0 and thus view C∞
c (Rd \ {0}) as a subspace of C∞

c (Rd).
The importance of the space C∞

c (Rd \ {0}) for the following is due to the following
lemma.

Lemma 5.4. The subspace C∞
c (Rd \ {0}) ⊆ D(LRd ,p) is a core for LRd ,p.

Proof. Let f ∈ C∞
c (Rd\{0}) and t > 0. Then 0 /∈ supp( f ). In view of the linearity,

bijectivity and continuity of the map x �→ e−t B x , we conclude that supp(S(t) f ) =
e−t Bsupp( f ) is a compact set not containing 0, hence S(t) f ∈ C∞

c (Rd \ {0}) for
every t ≥ 0. Moreover, C∞

c (Rd \ {0}) is dense in L p(Rd), so the lemma follows
from [7, Proposition I.1.7].

Now, if � = Rd \ K for some compact set K ⊆ Rd with C1,1-boundary, for every
k ∈ N we set

�k := {x ∈ R
d : kx ∈ �} = R

d \ 1

k
K

and consider the operator

Ak = 1

k2

d∑
i, j=1

qi j Di D j + L

with domain

D(Ak) = W 1,p
0 (�k) ∩ W 2,p(�k) ∩ { f ∈ L p(�k) : L f ∈ L p(�k)}

for some given p ∈ (1, ∞).
By Remark 5.3 we have D(Ak) = D(A�k ,p), so Theorem 4.5 implies that

{λ ∈ C : Re(λ) > − tr(B)
p } ⊆ �(Ak) for all k ∈ N. Thus we may compare the

resolvents of Ak with the resolvent of A�,p = A1 for all these λ. We adapt a
technique introduced in [6] to obtain the following result.

Lemma 5.5. We have ‖R(λ, Ak)‖L(L p(�k)) = ‖R(λ, A�,p)‖L(L p(�)) for every k ∈
N and every λ ∈ C with Re(λ) > − tr(B)

p .

Proof. We consider the map

Vk : L p(�k) → L p(�), Vk( f )(x) = k− d
p f

( x

k

)
.

The transformation formula yields that Vk is an isometry, whose inverse is given by

(V −1
k f )(x) = k

d
p f (kx) .
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For f ∈ W 2,p(�k) we get by the chain rule Vk f ∈ W 2,p(�). Now consider
f ∈ W 1,p

0 (�k) ∩ { f ∈ L p(�k) : L f ∈ L p(�k)}. Then there is a sequence
( fn) ⊆ C∞

c (�k) which converges to f in W 1,p(�k). So Vk fn ∈ C∞
c (�) with

supp(Vk fn) = k supp( fn) for all k, n ∈ N. This sequence converges to Vk f , hence
Vk f ∈ W 1,p

0 (�). Moreover, we get

(LVk f )(x) = k− d
p B

x

k
∇ f

( x

k

)
,

hence V −1
k LVk f = L f , so LVk f ∈ L p(�). For V −1

k one can argue analogously,
so Vk induces a bijection from D(Ak) to D(A1). Now, for f ∈ D(Ak) we derive

(V −1
k A1Vk f )(x) = k− d

p V −1
k A1

[
f
( ·

k

)]
(x)

= k− d
p

[
V −1

k

(
1

k2

d∑
i, j=1

qi j Di D j f
( ·

k

)
+ L f

( ·
k

))]
(x)

= (Ak f )(x),

hence (λ − Ak) f = V −1
k (λ − A1)Vk f for every λ ∈ C with Re(λ) > − tr(B)

p .

This implies R(λ, Ak) = V −1
k R(λ, A1)Vk . Since Vk : L p(�k) → L p(�) and

V −1
k : L p(�) → L p(�k) are isometries, this concludes the proof.

Having this equality in hand, we shall finally show that the resolvents of A�,p
obey the inequality ‖R(λ, LRd ,p)‖L(L p(Rd )) ≤ ‖R(λ, A�,p)‖L(L p(�)) for Re(λ) >

− tr(B)
p . Since σ(LRd ,p) ⊆ −tr(B)/p + iR by Proposition 5.1, we can approximate

every µ ∈ σ(LRd ,p) by λ ∈ �(A�,p). The above inequality then implies the
divergence of ‖R(λ, A�,p)‖L(L p(�)) for λ → µ. This yields σ(LRd ,p) ⊆ σ(A�,p)

and

− tr(B)

p
≤ s(A�,p) ≤ ω0(T�,p) ≤ − tr(B)

p
,

as stated in Theorem 5.2.

Proposition 5.6. For Re(λ) > − tr(B)
p we have

‖R(λ, LRd ,p)‖L(L p(Rd )) ≤ ‖R(λ, A�,p)‖L(L p(�)).

Proof. Let g ∈ C∞
c (Rd \ {0}). Then g ∈ D(Ak) for k large enough. It follows

‖Ak g − Lg‖L p(�k) =
∥∥∥∥ 1

k2

d∑
i, j=1

qi j Di D j g

∥∥∥∥
L p(�k)

−→ 0
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for k → ∞. Now we consider f = (λ − L)g. For k large enough we have again
f ∈ D(Ak) and for n ≥ k we get with the previous lemma

‖R(λ, An) f − R(λ, LRd ,p) f ‖L p(Rd ) = ‖R(λ, An)(λ − L)g − g‖L p(�n)

=‖R(λ, An)
(
(λ − An)g − (λ − An)g + (λ − L)g

) − g‖L p(�n)

=‖R(λ, An)(An −L)g‖L p(�n) ≤‖R(λ, A�,p)‖L(L p(�))‖(An −L)g‖L p(�n) −→ 0

for n → ∞. Note that the functions in the above calculation have to be restricted
or extended by 0 to elements of the proper spaces. Now for each ε > 0 and f ∈
(λ − LRd ,p)C

∞
c (Rd \ {0}) there exists a k ∈ N with

‖R(λ, LRd ,p) f ‖L p(Rd ) ≤ ‖R(λ, Ak) f ‖L p(�k) + ε

≤ ‖R(λ, A�,p)‖L(L p(�))‖ f ‖L p(Rd ) + ε.

Thus we have

‖R(λ, LRd ,p) f ‖L p(Rd ) ≤ ‖R(λ, A�,p)‖L(L p(�))‖ f ‖L p(Rd )

for all f ∈ (λ − LRd ,p)C
∞
c (Rd \ {0}). Since C∞

c (Rd \ {0}) is a core for LRd ,p by
Lemma 5.4, the assertion follows.
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