@article{ASNSP_2005_5_4_4_619_0, author = {Esposito, Luca and Fusco, Nicola and Trombetti, Cristina}, title = {A quantitative version of the isoperimetric inequality : the anisotropic case}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {4}, year = {2005}, pages = {619-651}, zbl = {1170.52300}, mrnumber = {2207737}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2005_5_4_4_619_0} }
Esposito, Luca; Fusco, Nicola; Trombetti, Cristina. A quantitative version of the isoperimetric inequality : the anisotropic case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 4, pp. 619-651. http://www.numdam.org/item/ASNSP_2005_5_4_4_619_0/
[1] A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 91-133. | Numdam | MR 1259102 | Zbl 0842.49016
and ,[2] “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford University Press, 2000. | MR 1857292 | Zbl 0957.49001
, and ,[3] Über die isoperimetrische Defizit ebener Figuren, Math. Ann. 91 (1924), 252-268. | JFM 50.0487.03 | MR 1512192
,[4] “Geometric Inequalities”, Grund. Math. Wissen., Springer, 1988. | MR 936419 | Zbl 0633.53002
and ,[5] Minimum problems over sets of concave functions and related questions, Math. Nachr. 173 (1995), 71-89. | MR 1336954 | Zbl 0835.49001
, and ,[6] The perimeter inequality for Steiner symmatrization: cases of equality, Ann. of Math. 162 (2005), 525-555. | MR 2178968 | Zbl 1087.28003
, and ,[7] Wulff theorem and best constant in Sobolev inequality, J. Math. Pures Appl. 71 (1992), 97-118. | MR 1170247 | Zbl 0676.46031
and ,[8] Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5 (1958), 33-44. | MR 98331 | Zbl 0116.07901
,[9] Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen, Z. Krist. 105 (1944), 304-314. | MR 12454 | Zbl 0028.43001
,[10] Metric entropy of some classes of sets with differentiable boundaries, J. Approx. Theory 10 (1974), 227-236. | MR 358168 | Zbl 0275.41011
,[11] The Wulff theorem revisited, Proc. Roy. Soc. London 432 (1991), 125-145. | MR 1116536 | Zbl 0725.49017
,[12] A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh 119A (1991), 125-136. | MR 1130601 | Zbl 0752.49019
and ,[13] Stability in the isoperimetric problem for convex or nearly spherical domains in , Trans. Amer. Math. Soc. 314 (1989), 619-638. | MR 942426 | Zbl 0679.52007
,[14] Aspects of Approximation of Convex Bodies, In: “Handbook of Convex Geometry”, P. M. Gruber and J. M. Wills (eds.), Elsevier, 1993, 319-345. | MR 1242984 | Zbl 0791.52007
,[15] A quantitative isoperimetric inequality in -dimensional space, J. Reine Angew. Math. 428 (1992), 161-176. | MR 1166511 | Zbl 0746.52012
,[16] On asymmetry and capacity, J. Anal. Math. 56 (1991), 87-123. | MR 1243100 | Zbl 0747.31004
, and ,[17] On the problem of well-posedness for the Radon transform, In: “Mathematical Aspects of Computerized Tomography”, Proc. Oberwolfach 1980, Lect. Notes Medic. Inform., Vol. 8, 1981, 36-44. | MR 720394 | Zbl 0555.46020
,[18] Some questions of stability in the reconstruction of plane convex bodies from projections, Inverse Problems 1 (1985), 87-97. | MR 787854 | Zbl 0597.52001
,[19] Existence and structure of solutions to a class of nonelliptic variational problems, Sympos. Math. 14 (1974), 499-508. | MR 420407 | Zbl 0317.49053
,[20] Unique structure of solutions to a class of nonelliptic variational problems, Proc. Sympos. Pure Math. 27 (1975), 419-427. | MR 388225 | Zbl 0317.49054
,[21] Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), 568-588. | MR 493671 | Zbl 0392.49022
,[22] Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallfläschen, Z. Krist. 34 (1901), 449-530.
,