
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. IV (2005), 587-600

On the absence of the one-sided Poincaré lemma in
Cauchy-Riemann manifolds

FABIO NICOLA

Abstract. Given an embeddable C R manifold M and a non-characteristic hy-
persurface S ⊂ M we present a necessary condition for the tangential Cauchy-
Riemann operator ∂M on M to be locally solvable near a point x0 ∈ S in one of
the sides determined by S.
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1. Introduction and discussion of the results

Let M be a C R manifold of type (n, d) (so that dim M = 2n + d). For an open
subset O ⊂ M we denote by C∞(O, �p,q) the space of smooth (p, q) forms in O,
0 ≤ p ≤ m, 0 ≤ q ≤ n, m = n + d (see e.g. Treves [16] and Section 2 below for
terminology).

The Poincaré lemma is said to hold for the tangential Cauchy-Riemann com-
plex ∂M in degree q, 1 ≤ q ≤ n, at the point x0 ∈ M , if for every open neighbor-
hood � of x0 there is an open neighborhood �′ ⊂ � such that the system

∂M u = f (1.1)

admits a solution u ∈ C∞(�′, �0,q−1) for all f ∈ C∞(�, �0,q) which are cocy-

cles, i.e. ∂M -closed (indeed we have ∂
2
M = 0, so that this condition is necessary).

By a classical argument due to Grothendiek the definition given is in fact equiva-
lent to the apparently weaker version of solvability in the sense of germs of smooth
forms.

Necessary and sufficient conditions for the Poincaré lemma to hold have been
object of investigation by many authors; we refer the reader, among others, to the
important contributions by Lewy [10], Hörmander [8], Andreotti and Hill [2], An-
dreotti, Fredricks and Nacinovich [1], Folland and Stein [6], Nacinovich [13, 14],
Michel [12], Treves [16, 18], Chen and Shaw [5], Hill and Nacinovich [7], Peloso
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and Ricci [15]. We also refer to Treves [17], Cordaro and Hounie [3] and the ref-
erences therein for the study of the Poincaré lemma in the more general context of
involutive structures.

The present paper is devoted to the related question of finding necessary con-
ditions for the local solvability of (1.1) in one side of a given smooth hypersurface
S ⊂ M .

Precisely, we reason in an open neighborhood O ⊂ M of a given point 0 ∈ S,
say, the origin of the coordinates, and we suppose that O ∩ S = {ρ = 0}, for
a given smooth real function ρ ∈ C∞(O; R), satisfying dρ �= 0 where ρ = 0.
Moreover, we adopt the following notation: for any open subset � ⊂ O we define
�− = � ∩ {ρ ≤ 0}.

We allow distribution solutions and consider the following form of one-sided
local solvability, which involves two open subsets �′ ⊂ � ⊂ O too:

Given any cocycle f ∈ C∞(�−, �0,q) there is a distribution section

u ∈ A′(�′−, �0,q−1) such that ∂M u = f in �′−. (1.2)

On a smooth manifold with boundary, we are denoting here by A′ the dual of the
space of conormal distributions to the boundary (see Melrose [11], Treves [17]
and Section 2 below). We have C∞ ⊂ A′ ⊂ D′ with dense inclusions. The
choice of this space of distributions smaller than D′ is due to a difficulty in defin-
ing the action of a differential operator on a distribution because of the boundary
term in the integration by parts formula. Instead, when S inherits a C R structure,
for such a subspace there is a well defined restriction map i∗ : A′(�′−, �p,q) →
D′(∂�′−, �

p,q
b ) (the space of (p, q)-distribution sections on ∂�′− = S ∩ �′) which

continuously extends the pull-back to the boundary of smooth forms. Hence, given
u ∈ A′(�′−, �p,q), the distribution section ∂M u can be defined via the formula

〈∂M u, φ〉=(−1)p+q−1〈u, ∂Mφ〉+〈i∗u,i∗φ〉, ∀φ∈C∞
c (�′−, �m−p,n−q−1), (1.3)

which agrees with the case in which u ∈ C∞(�′−, �p,q).
We also observe that (1.2) is clearly different from the microlocal solvability

(with respect to �−) in the sense of hyperfunctions, that is solvability in int(�−)

within forms with arbitrary growth at ∂�− (see Kashiwara and Schapira [9], Michel
[12], Cordaro and Treves [4]).

To establish our result we need a little terminology.
We denote by T 0,1 M ⊂ CT M the C R structure of M and, following the

notation in Treves [16, 17], by T ′M ⊂ CT ∗M its orthogonal with respect to the
duality between forms and vector fields. Moreover we set T 0 M = T ′M ∩ T ∗M for
the so-called characteristic bundle of M (of rank d).

We suppose that M is locally embeddable (i.e. locally integrable) and that S
is non-characteristic with respect to the C R structure of M (Treves [17], Definition
I.4.1), namely dρ|p �∈ T 0

p M for every p ∈ S ∩ O. This implies that S itself
inherits a structure of (embeddable) C R manifold of type (n − 1, d + 1), where
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T 0,1S = T 0,1 M ∩ CT S (hence we can talk about the vector bundles T ′S, T 0S and
so on).

We finally recall that at any point (x0, ω0) ∈ T 0S, ω0 �= 0, it is well defined a
sesquilinear form B(x0,ω0) : T 0,1

x0 S × T 0,1
x0 S → C, by

B(x0,ω0)(v1, v2) = 〈
ω0, [V1, V2]|x0/2ι

〉
v1, v2 ∈ T 0,1

x0
S,

where V1 and V2 are smooth sections of T 0,1S such that V1|x0 = v1, V2|x0 = v2.
The associated quadratic form T 0,1

x0 S  v �→ B(x0,ω0)(v, v), or B(x0,ω0) itself, is
called Levi form of S evaluated at (x0, ω0).

Theorem 1.1. Let M be a locally embeddable C R manifold of type (n, d), and let
S ⊂ M be a non-characteristic smooth hypersurface. With the notation above,
let us suppose that there exists ω0 ∈ T ∗

0 M such that ω0 + ιdρ|0 ∈ T ′
0 M and the

Levi form of S at (0, ω0) is non degenerate and has exactly q positive eigenvalues,
1 ≤ q ≤ n − 1.

Then there exists a neighborhood O of 0 such that (1.2) does not hold for any
choice of the open neighborhoods �′ ⊂ � ⊂ O of 0.

Indeed, if ω0 ∈ T ∗
0 M satisfies ω0 + ιdρ|0 ∈ T ′

0 M , it is easily seen that the
restriction ω0|T0 S defines a non-zero element in T 0

0 S.1 Hence the evaluation of
the Levi form of S at (0, ω0) makes sense. Moreover the hypothesis is clearly
independent of the choice of the defining function ρ among those which preserve
the orientation of S.

For the reader who is not interested in distribution solutions we observe that
the condition in Theorem 1.1 is a fortiori necessary for the existence of smooth
solutions, since C∞(�′−, �0,q−1) ⊂ A′(�′−, �0,q−1). However, the absence of
smooth solutions, under hypotheses equivalent to the ones in Theorem 1.1, was
already established by Nacinovich in [14] (see the third assertion in Proposition 9,
page 481).

When M is a complex manifold, i.e. d = 0, results about the one-sided local
solvability of ∂M were known from Andreotti and Hill [2] and Michel [12]. In this
special case our result agrees with Theorem 4 of [2], page 798. Indeed it is proved
there that, if the Hermitian form

∑n
j,k=1 ∂2ρ/∂z j∂zk |0w jwk restricted to T 0,1

0 S is
non degenerate and has exactly q negative eigenvalues then there is a neighborhood
O of 0 such that, for every domain of holomorphy � ⊂ O the cohomology spaces
H0,q

∂M
(�−) are infinite dimensional (pay attention to the different convention of sign

in the definition of the Levi form; here we decided to follow [16, 17]). As we
observed, this result was then generalized in [14] when M is a C R manifold.

1 We have dρ|0(v) = 0 if v ∈ CT S. Hence ω0(v) = 0 if v ∈ T 0,1S because any covector
in T ′

0 M vanishes on such a subspace too. Therefore ω0|T0 S ∈ T 0
0 S. Finally ω0|T0 S �≡ 0, for

otherwise there would exist α ∈ R such that ω0 = αdρ|0, and therefore (α + ι)dρ|0 ∈ T ′
0 M ,

which contradicts the fact that S is non-characteristic.
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We finally notice that, under the hypotheses in Theorem 1.1 the Poincaré
lemma for the ∂ S necessarily fails in degree q at 0 in view of the classical results by
Andreotti, Fredricks and Nacinovich [1]. On the other hand, the Poincaré lemma
for the ∂M can hold true or not, for, e.g. the signature of the Levi form of M at
characteristic points (0, ω0) ∈ T 0 M can be arbitrary. This shows that Theorem 1.1
cannot be deduced from the necessary condition in [1] for the existence of Poincaré
lemma for the ∂ S combined with a Mayer-Vietoris argument (cf. [2], Part I, and
[17]). We refer to Section 4 for an example related to this fact and also for a few
words about the top degree case (q = n), which is not treated in Theorem 1.1.

ACKNOWLEDGMENTS. I wish to thank Marco M. Peloso and Luigi Rodino for
helpful discussions and Mauro Nacinovich for pointing out his paper [14].

2. Preliminaries

In this section we fix the notation used in this paper; we follow [16, 17].
By definition, a C R structure of type (n, d) on a smooth real manifold M ,

dim M = 2n + d is defined by a subbundle T 0,1 M ⊂ CT M of rank n such that
T 0,1 M ∩ T 0,1 M = 0 and satisfying the Frobenius formal integrability condition.
We say that M is locally embeddable (or locally integrable) if every point of M
has an open neighborhood O such that the bundle T ′M := {(x, α) ∈ CT ∗M :
α(v) = 0, ∀v ∈ T 0,1

x M} (of rank m = n + d) is spanned on O by exact forms
d Z1, . . . , d Zm . The functions Z1, . . . , Zm are then called a system of first inte-
grals. We denote by T ′p,q M the homogeneous part of degree p + q in the ideal
generated by the p-th exterior power of T ′M , i.e. an element ζ ∈ T ′p,q

x0 M has the
form ζ1 ∧ . . . ∧ ζp+q where at least p of the factors ζ ∈ CT ∗

x0
M belong to T ′

x0
M .

Clearly T ′p+1,q−1 M ⊂ T ′p,q M , so that one can set �p,q = T ′p,q M/T ′p+1,q−1
x0 M .

As a consequence of the Frobenius condition it turns out that the differential defines
a map d : C∞(M, T ′p,q M) → C∞(M, T ′p,q+1 M) and consequently it induces an
operator

∂M : C∞(M, �p,q) → C∞(M, �p,q+1),

which is called the tangential Cauchy-Riemann operator on M . In the sequel the el-
ements of C∞(M, �p,q) will be referred to as forms instead of equivalence classes
of forms, when there is not risk of misunderstanding.

We already recalled in the introduction the definition of the Levi form at a
characteristic point ω0 ∈ T 0

x0
M := T ′

x0
M ∩ T ∗

x0
M (we emphasize that in Theorem

1.1 we use the Levi form of S, which inherits a structure of C R manifold of type
(n − 1, d + 1) by defining T 0,1S := T 0,1 M ∩ CT S).

We now want to say a few words about the spaces of distributions involved in
(1.2) (see [11] and especially [17]).
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We use the notation introduced there, so �′ ⊂ M is an open neighborhood of
0 ∈ S ⊂ M , and �′− = �′ ∩ {ρ ≤ 0}, regarded as a manifold with boundary. Then
we denote by D′(�′−, �p,q) the dual of the space C∞

c (�′−, �m−p,n−q) of smooth
forms, compactly supported in �′− (the support can of course intersect the boundary
�′ ∩ S of �′−). We regard C∞(�′−, �p,q) as a subspace of D′(�′−, �p,q) via the
pairing

〈u, φ〉 =
∫

�′−
u ∧ φ, u ∈ C∞(�′−, �p,q), φ ∈ C∞

c (�′−, �m−p,n−q),

which is well defined (i.e. independently of the representatives).
For s ∈ R we define Ḣ s

loc(�
′−, �p,q) as the closed subspace of Hs

loc(�
′
,�

p,q)

of all distribution sections whose support is contained in �′−. Moreover one de-
notes by Ȧ(s)(�′−, �p,q) the space of all u ∈ Ḣ s

loc(�
′−, �p,q) such that Pu ∈

Ḣ s
loc(�

′−, �p,q) for all totally characteristic operators P , i.e. differential operators
in the algebra generated by the vector fields tangent to the boundary of �′− (P acts
on distributions, as usual, via its transpose, which still is a totally characteristic op-
erator). We equip Ȧ(s)(�′−, �p,q) with the coarest locally convex topology that
ensures the continuity of all maps Ȧ(s)(�′−, �p,q) → Pu ∈ Ḣ s

loc(�
′−, �p,q), so

that Ḣ s
loc(�

′−, �p,q) is a Fréchet space. Then one also considers the closed sub-

spaces Ȧ(s)(K , �p,q), with K ⊂ �′− compact. Finally we define Ȧ(s)
c (�′−, �p,q)

as the inductive limit of Ȧ(s)(K , �p,q), with K ⊂ �′− compact.

If s ≤ 0, we have C∞(�′−, �p,q) ⊂ Ȧ(s)(�′−, �p,q) and C∞
c (�′−, �p,q) is

dense in Ȧ(s)
c (�′−, �p,q) and Ȧ(s)(�′−, �p,q).

Definition 2.1. We denote by A′(�′−, �p,q) the subspace of distribution sections
u ∈ D′(�′−, �p,q) such that, for every s ≤ 0, the functional φ �→ 〈u, φ〉 extends
continuously from C∞

c (�′−, �p,q) to Ȧ(s)(�′−, �p,q).

We have C∞(�′−, �p,q) ⊂ A′(�′−, �p,q) ⊂ D′(�′−, �p,q).
As anticipated in the introduction, there is a well defined continuous linear

map i∗ : A′(�′−, �p,q) → D′(∂�′−, �
p,q
b ) which extends the pull-back of smooth

forms to the boundary. Precisely such a map is defined by

〈i∗u, φ〉=(−1)p+q〈u, Eφ〉, u ∈ A′(�′−, �p,q), φ ∈ C∞
c (∂�′−, �

m−p,n−q−1
b ),

where E : D′(∂�′−, �
p,q
b ) → D′(�′−, �p,q+1), 〈Eψ, φ〉 = 〈ψ, i∗φ〉, (i∗φ is the

usual pull-back to the boundary of φ ∈ C∞
c (�′−, �m−p,n−q−1)). This makes sense

since one can prove that Eψ ∈ Ȧ(−1)(�′−, �p,q) if ψ ∈ C∞
c (∂�′−, �m−p,n−q−1).

As a consequence, for u ∈ A′(�′−, �p,q) one can define the distribution section
∂M u as in (1.3), and this extends the usual action when u ∈ C∞(�′−, �p,n−q).
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3. An a priori estimate

In this section we assume (1.2) and we prove an a priori inequality by means of
arguments from Functional Analysis. In the next section we will show that such
an estimate cannot hold under the assumptions of Theorem 1.1. Indeed this is the
classical pattern to prove necessary conditions for local solvability; see e.g. [8, 1,
17].

For an open subset V ⊂ M we set

J∞
c (V−, �p,q) = {v ∈ C∞

c (V−, �p,q), i∗(v) = 0}.
Moreover we denote by ‖ · ‖K ,l , with K ⊂ M compact and l ∈ Z+, the seminorms
which define the topology of C∞(M, �p,q).

Proposition 3.1. Assume (1.2). Then for every compact subset K ′ ⊂ �′− there
exist a compact K ⊂ �− and constants C > 0, l ∈ Z+ such that, for every cocycle
f ∈ C∞(�−, �0,q) and every v ∈ J∞

c (�′−, �m,n−q) with supp v ⊂ K ′ we have∣∣∣∣
∫

�−
f ∧ v

∣∣∣∣ ≤ C‖ f ‖K ,l‖∂Mv‖K ′,l . (3.1)

Proof. We set E =Ker{∂M : C∞(�−, �0,q) → C∞(�−, �0,q+1)}, with the topol-
ogy inherited from C∞(�−, �0,q), and F = {v ∈ J∞

c (�′−, �m,n−q), supp v ⊂
K ′}, with the topology given by the seminorms ‖∂Mv‖K ′,l . E is a Fréchet space,
whereas F is not Hausdorff if q < n. Hence we also consider the associated Haus-
dorff space F0 = F/{0}, where the closure of {0} consists of the cocycles that
belong to J∞

c (�′−, �m,n−q).
We observe that the bilinear functional

E × F  ( f, v) �−→
∫

�−
f ∧ v (3.2)

is certainly continuous for every fixed v ∈ F . On the other hand, for any fixed
f ∈ E , by assumption there exists u ∈ A′(�′−, �0,q−1) satisfying ∂M u = f in
�′−, namely

〈∂M u,φ〉 :=(−1)p+q〈u, ∂Mφ〉+〈i∗u, i∗φ〉=
∫

�−
f ∧ φ, ∀φ∈C∞

c (�′−, �m,n−q).

In particular, if φ = v ∈ J∞
c (�′−, �m,n−q) we have i∗v = 0, and we deduce that

the functional (3.2) is separately continuous and induces a separately continuous
bilinear functional on E × F0. Since E is Fréchet and F0 is metrizable it follows
that it is in fact continuous, and so is its lift to E ×F . But this is exactly the meaning
of (3.1).
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4. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the use of a special system of coordinates
whose existence is shown in the following proposition.

Proposition 4.1. Under the assumptions of Theorem 1.1, in a neighborhood of
0 in M there exist coordinates x j , y j and sk, j = 1, . . . , n, k = 1, . . . , d, such
that a system of first integrals for the C R structure on M is given by

z j := x j + ιy j , j = 1, . . . , n, (4.1)

wk := sk + ιφk(z, s), k = 1, . . . , d, (4.2)

for convenient smooth real functions φk satisfying

φk(0) = 0, dφk |0 = 0. (4.3)

Moreover there exists another defining function ρ′(z, s) for S near 0 satisfying
dρ′|0 = dρ|0 and, upon setting z′ = (z1, . . . , zn−1),

ρ′(z, s) = yn − φ0(z
′, xn, s),

with

φ0(z
′, xn, s) =

q∑
j=1

|z j |2 −
n−1∑

j=q+1

|z j |2 + O(|z′|3 + |xn|3 + |s|3). (4.4)

Proof. We know e.g. from Treves [16, 17] that on any locally embeddable C R man-
ifold of type (n, d) there exist coordinates x j , y j , sk for which z j and wk in (4.1)
and (4.2) are a system of first integrals, for convenient φk satisfying (4.3). In such
a system of coordinates we have T 0,1

0 M = spanC{ ∂
∂z j

∣∣
0; j = 1, . . . , n}, T ′

0 M =
spanC{dz j |0, dsk |0; j = 1, . . . , n, k = 1, . . . , d}, and T 0

0 M = spanR{dsk |0; k =
1, . . . , d}.

By assumption we have dρ|0 �∈ T ′
0 M . Hence we have, say, ∂ρ

∂zn

∣∣
0 �= 0. We

can therefore replace zn by a suitable linear combination z̃n of z j and wk , j =
1, . . . , n, k = 1, . . . , d in such a way that, by taking x̃n = Rezn and ỹn = Imzn
as new coordinates together with x ′ := (x1, . . . , xn−1), y′ := (y1, . . . , yn−1),
s = (s1, . . . , sd), and after deleting the tildes we have

ρ = yn − ψ(z, s),

for a suitable smooth real function ψ satisfying ψ(0) = 0, dψ |0 = 0.2 An ap-
plication of the implicit function theorem shows that S can be defined near 0 by a

2 Indeed, we have dρ|0 = ∑n
j=1(a j dx j |0 + a′

ndy j |0) + ∑d
k=1 ckdsk |0, with a j , a′

j and ck real

numbers and a2
n + a′

n
2 �= 0. Then it suffices to set z̃n = ∑n

j=1(a′
j + ιa j )z j + ∑d

k=1 ιckwk . The

linear transformation (x ′, y′, xn, yn, s) �→ (x ′, y′, x̃n, ỹn, s) is invertible, since its determinant
equals a2

n + a′
n

2.
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function ρ′ of the form

ρ′ = yn − φ0(z
′, xn, s),

for a convenient smooth real function φ0 satisfying φ0(0) = 0 and dφ0|0 = 0.
Hence we see that dρ′|0 = dρ|0 = d yn|0.

Now, as coordinates on S we take the restrictions of x j , y j and sk , j =
1, . . . , n − 1, k = 1, . . . , d. A system of first integrals for the C R structure in-
duced on S (of type (n − 1, d + 1)) is given by z j = x j + ιy j , j = 1, . . . , n − 1,
zn = xn+ιφ0(z′, xn, s) and wk = sk+ιφk(z′, xn, yn, s)|yn=φ0(z′,xn,s), k = 1, . . . , d .
By assumption there exists ω0 ∈ spanR{dx j |0, dy j |0, dsk |0; j = 1, . . . , n, k =
1, ..., d} such that ω0+ιd yn|0 ∈T ′

0 M . This implies that ω0 =dxn|0+∑d
k=1 ckdsk |0,

for certain ck ∈R. In particular we see that ω0 ∈ T 0
0 S = spanR{dxn|0, dsk |0; k =

1, . . . , d}. It follows from [16] that the Levi form of S at (0, ω0), expressed in the
basis { ∂

∂z j

∣∣
0; j = 1, . . . , n − 1} of T 0,1

0 S is the matrix

∂2

∂zi∂z j

(
φ0 +

d∑
k=1

ckφk

) ∣∣∣
0
. (4.5)

So, by setting z̃n := zn + ∑d
k=1 ckwk and taking x̃n = Rez̃n and ỹn = Imz̃n as new

coordinates in place of xn, yn we have (ω0 = dx̃n|0 and)

ρ′ = ỹn − φ̃0(z
′, x̃n, s), (4.6)

where φ̃0 := φ0 + ∑d
k=1 ckφk , expressed in these coordinates. As a consequence

of the assumption on the signature of the Levi form (4.5), we see that there exists a
linear change of coordinates z̃i = bi j z j , i, j = 1, . . . , n − 1 such that, upon setting
x̃ j = Rez̃ j , ỹ j = Imz̃ j , j = 1, . . . , n − 1,

φ̃0(z̃
′, x̃n = 0, s = 0) =

q∑
j=1

|z̃ j |2 −
n−1∑

j=q+1

|z̃ j |2 + O(|z̃′|3). (4.7)

Summing up, (after deleting the tildes) we found coordinates x j , y j , sk , j =1, ..., n,
k = 1, . . . , d, such that a system of first integrals is given by z j , wk in (4.1) and
(4.2), where φk satisfy (4.3). Moreover we found a defining function ρ′ = yn −
φ0(z′, xn, s) for S near 0, with

φ0(z
′, xn, s) =

q∑
j=1

|z j |2 −
n−1∑

j=q+1

|z j |2 + Im

(
n−1∑
j=1

d∑
k=1

a jk z j sk +
n−1∑
j=1

a j0z j xn

)

+
d∑

k,l=1

bklsksl +
d∑

k=1

bk0sk xn + b00x2
n + O(|z′|3 + |xn|3 + |s|3), (4.8)

where b jk , bk0 and b00 are real numbers.
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Let us now define

z̃n = zn −
n−1∑
j=1

d∑
k=1

a jk z jwk −
n−1∑
j=1

a j0z j zn − ι

(
d∑

k,l=1

bklwkwl +
d∑

k=1

bk0wk zn + b00z2
n

)
,

and x̃n = Re z̃n , ỹn = Im z̃n . Then we have

φ0+ ỹn −yn =
q∑

j=1

|z j |2 −
n−1∑

j=q+1

|z j |2+ O(|yn|(|z′| + |yn|) + |z′|3 + |xn|3 + |s|3).
(4.9)

We write the left hand side in (4.9) by using the coordinates x j , y j , x̃n, ỹn, sk , j =
1, . . . , n − 1, k = 1 . . . , d, and we replace in it ỹn by its expression as a function
of the remaining variables given by the implicit function theorem applied to ρ′ = 0
(observe that dρ′|0 = d ỹn|0). Then we obtain a function �0(z′, x̃n, s) satisfying

�0(z
′, x̃n, s) =

q∑
j=1

|z j |2 −
n−1∑

j=q+1

|z j |2 + O(|z′|3 + |x̃n|3 + |s|3),

since ỹn = yn + 0(|z|2 + |s|2) and, on S, ỹn = O(|z′|2 + x̃2
n + |s|2). Finally

ρ̃′ := ỹn − �0(z
′, x̃n, s)

is the defining function we are looking for (after deleting the tildes).

We can now prove Theorem 1.1. We use the coordinates in Proposition 4.1, defined
in an open neighborhood O of 0. We can take the function ρ′ in Proposition 4.1 as
defining function for S in O. It will be denoted later on simply by ρ. Hence,

ρ = yn − φ0(z
′, xn, s),

where φ0 satisfies (4.4).
We therefore suppose that (1.2) holds, for some �′ ⊂ � ⊂ O, and we are

going to show that (3.1) cannot be true if O is small enough.
We begin by defining in O the functions

h1 = −i zn − 4
q∑

j=1

|z j |2 − z2
n −

d∑
k=1

w2
k , (4.10)

and

h2 = i zn − 4
n−1∑

j=q+1

|z j |2 − z2
n −

d∑
k=1

w2
k + 2ρ. (4.11)
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Then we take a function χ ∈ C∞
c (�′−), χ = 1 in some (relatively open) neighbor-

hood of 0 in �′−. For every τ > 0 we consider the forms

fτ = eτh1dz1 ∧ . . . ∧ dzq , (4.12)

and

vτ =eτh2χdz1∧ . . . ∧dzn ∧dw1∧ . . . ∧dwd ∧dzq+1∧ . . . ∧dzn−1 ∧ dρ. (4.13)

We have

fτ ∈ C∞(�−, �0,q), vτ ∈ J∞
c (�′−, �m,n−q),

(recall that m = n + d). We observe that

Re h1 = yn − 4
q∑

j=1

|z j |2 − x2
n + y2

n − |s|2 + O(|z′|4 + |xn|4 + |yn|4 + |s|4).

Hence, in O− = O ∩ {yn ≤ φ0}, for some constants C1 > 0, C ′
1 > 0 we have, if

0 ≤ yn � 1,

Re h1 ≤ 2yn − 4
q∑

j=1

|z j |2 − x2
n − |s|2 + C1(|z′|4 + |xn|4 + |s|4)

≤ −2|z′|2 − x2
n − |s|2 + C ′

1(|z′|3 + |xn|3 + |s|3),

whereas if yn ≤ 0, |yn| � 1, for some constants C2 > 0, C ′
2 > 0 it turns out that

Re h1 ≤ yn/2 − 4
q∑

j=1

|z j |2 − x2
n − |s|2 + C2(|z′|4 + |xn|4 + |s|4) (4.14)

≤ −7
q∑

j=1

|z j |2/2 −
n−1∑

j=q+1

|z j |2/2 − x2
n − |s|2 + C ′

2(|z′|3 + |xn|3 + |s|3).

Summing up, if O is small enough we have

Re h1 ≤ −1

4
(|z′|2 + x2

n + |s|2) in O−. (4.15)
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As regards Re h2, always in O− (i.e. ρ ≤ 0), if |ρ| � 1, for some constant C3 > 0
we have

Re h2 =−yn −4
n−1∑

j=q+1

|z j |2 − x2
n + y2

n − |s|2 + 2ρ + O(|z′|4 + x4
n + |s|4)

=−φ0(z
′, xn, s)−4

n−1∑
j=q+1

|z j |2−x2
n +y2

n − |s|2+ρ+O(|z′|4+ x4
n + |s|4)

=−
q∑

j=1

|z j |2−3
n−1∑

j=q+1

|z j |2−x2
n − |s|2+ρ2+ρ+O(|z′|3+|xn|3+|s|3+|ρ|3)

≤ −|z′|2 − x2
n − |s|2 + ρ/2 + C2(|z′|3 + |xn|3 + |s|3).

Hence, if O is small enough we have Re h2 ≤ −(|z′|2 + x2
n + |s|2 − ρ)/2 in O−.

In particular there exists a constant c > 0 such that

Re h2 ≤ −c on the support of dχ. (4.16)

We now observe that

∂M fτ = 0 (4.17)

and

∂Mvτ = dvτ

=eτh2dχ∧ dz1∧ . . . ∧dzn ∧ dw1∧ . . . ∧dwd ∧ dzq+1∧ . . . ∧dzn−1 ∧ dρ. (4.18)

As a consequence of (4.15), (4.16) and (4.18), for every compact K ⊂ �− and any
l ∈ Z+ there exist constants C ′ > 0, C ′′ > 0 such that

‖ fτ‖K ,l ≤ C ′τ l , ‖∂Mvτ‖K ,l ≤ C ′′τ l e−cτ . (4.19)

This gives an estimate of the right hand side of (3.1) applied to the couple fτ , vτ .
We now look at the left hand side. We have, with obvious notation,∫

ρ≤0
fτ ∧ vτ = (−1)m(n−1−q)

∫
ρ≤0

eτ(h1+h2)χdz′ ∧ dz ∧ dw ∧ dρ

=(−1)m(n−1−q)

∫
ρ≤0

eτ(h1+h2)χdet

(
Id1+d + ι

∂φ

∂(xn,s)

)
dz′∧ dz′∧ dxn ∧ ds∧ dρ,

(4.20)

with φ := (φ0, φ1, . . . , φd).
Moreover,

h1+h2 = −4|z′|2
−2(x2

n + |s|2) + 2ρ + O(|ρ|(|xn| + |ρ|) + |z′|3 + |xn|3 + |s|3), (4.21)
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so that

Re (h1 + h2) ≤ −2|z′|2 − x2
n − |s|2 + ρ in O−, (4.22)

if O is small enough.
We now perform the change of coordinates (z′, xn, s, ρ) �→ (τ−1/2z′, τ−1/2xn,

τ−1/2s, τ−1ρ) in (4.20). The new integrand function, multiplied by τ (m+n+1)/2,
tends to e−4|z′|2−2x2

n−2|s|2+2ρ pointwise as τ → +∞, by (4.21) and the fact that
χ(0) = 1, dφk |0 = 0, k = 0, . . . , d. Hence, as a consequence of (4.22) and the
Lebesgue dominated convergence theorem we obtain

(−1)m(n−1−q)τ (m+n+1)/2
∫

�−
fτ ∧ vτ

−→
∫

ρ≤0
e−4|z′|2−2x2

n−2|s|2+2ρdz′ ∧ dz′ ∧ dxn ∧ ds ∧ dρ �= 0.

This fact together with (4.19) contradicts (3.1) and concludes the proof.

5. Concluding remarks

As an example, consider the following C R structure of type (n, 1), n ≥ 2, on
M = R2n+1, with coordinates x j , y j , s, j = 1, . . . , n, where a system of first
integrals is given by z j = x j + ιy j , and w = s + ιφ(z), with

φ(z) =
ν∑

j=1

|z j |2 −
n∑

j=ν+1

|z j |2 + O(|z|3),

for some integer ν ∈ {0, . . . , n}. Let us consider then the hypersurface S := {ρ =
0}, where ρ = yn − �(z′), z′ = (z1, . . . , zn−1), with

�(z′) =
µ∑

j=1

|z j |2 −
n−1∑

j=µ+1

|z j |2 + O(|z′|2),

for some µ ∈ {1, . . . , n−1}. Since ω0 = dxn|0 satisfies the hypothesis of Theorem
1.1 with q = µ, it follows that, whatever the integer ν ∈ {0, . . . , n} there is a
neighborhood O of 0 such that (1.2) does not hold for every choice of �′ ⊂ � ⊂ O.
Moreover, as a consequence of the necessary condition in [1], the Poincaré lemma
does not hold for the ∂ S in degree µ (and n − 1 − µ, if µ < n − 1) at 0. However,
from the results in [2] it follows that the Poincaré lemma holds true for the ∂M at 0
in any degree 1 ≤ q ′ ≤ n, q ′ �= ν, q ′ �= n − ν.

Finally we want to present a necessary condition for (1.2) to hold in top degree,
namely with q = n (notice that the compatibility condition ∂M f = 0 is now auto-
matically satisfied). In this case one can directly make use of the known necessary
condition for the existence of the Poincaré lemma in top degree for the ∂M (see
[1, 17]). We emphasize that we do not suppose here that M is locally embeddable.
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Proposition 5.1. Let M be a C R manifold of type (n, d), and suppose that the Levi
form of M at some characteristic point (0, ω0) ∈ T 0 M is definite. Then for every
non-characteristic hypersurface S ⊂ M through 0, (1.2) does not hold for any
choice of the open neighborhoods �′ ⊂ � ⊂ M of 0. The same holds with �−, �′−
replaced by �+ = � ∩ {ρ ≥ 0} and �′+ = �′ ∩ {ρ ≥ 0}.
Proof. The proof is by contradiction. From (1.2) with q = n it follows that for
every open set V ⊂⊂ int(�′−) the system ∂M admits a solution u ∈ D′(V, �0,n−1)

in V for every f ∈ C∞(int(�′−), �0,n). Indeed, it suffice to consider any f̃ ∈
C∞(�−, �0,n), with f̃ = f in V , and to solve ∂M ũ = f̃ with ũ ∈A′(�′−, �0,n−1).
Then u := ũ|V ∈ D′(V, �0,n−1) satisfies ∂M u = f in V .

However the Levi form of M will be certainly definite at some characteristic
point (x0, ω̃0) ∈ T 0 M , ω̃0 �= 0, with x0 ∈ int(�′−) sufficiently near 0, and this
contradicts Corollary VIII.2.2 of [17]. The same arguments apply, of course, to the
other side of S.
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