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p-Harmonic measure is not additive on null sets
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Abstract. When 1 < p < ∞ and p �= 2 the p-harmonic measure on the
boundary of the half plane R2+ is not additive on null sets. In fact, there are
finitely many sets E1, E2,...,Eκ in R, of p-harmonic measure zero, such that
E1 ∪ E2 ∪ ... ∪ Eκ =R.

Mathematics Subject Classification (2000): 31A15 (primary); 35J70, 60G46
(secondary).

1. Introduction

We consider the p-harmonic measure associated to the operator

L p(u) = div
(
|∇u|p−2∇u

)
,

the p-Laplacian of a function u, for 1 < p < ∞. A p-harmonic function in a
domain � ⊆ Rn(n ≥ 2) is a weak solution of L pu = 0; that is, u ∈ W 1,p

loc (�) and∫
�

〈|∇u|p−2∇u, ∇ϕ〉 dx = 0

whenever ϕ ∈ C∞
0 (�). Weak solutions of L p(u) = 0 are indeed in the class

C1,α
loc , where α depends only on p and n ([DB], [L1].) A lower semicontinuous

v : � → R ∪ {∞} is p-superharmonic provided that v �≡ ∞, and for each open
D ⊂ D ⊂ � and each u continuous on D and p-harmonic in D, the inequality
v ≥ u on ∂ D implies v ≥ u in D.

Let E be a subset of ∂�. Consider the class C(E, �) of nonnegative p-
superharmonic functions v in � such that

lim inf
X∈�,X→ζ

v(X) ≥ χE (ζ )
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for all ζ ∈ ∂�. The p-harmonic measure of the set E relative to the domain � is
the function ωp(., E, �) whose value at any X ∈ � is given by

ωp(X, E, �) = inf {v(X) : v ∈ C(E, �)} .

We often omit the variable X and the domain � and write ωp(E, �) or just ωp(E).
The function ωp(E, �) is p-harmonic in �, satisfies

0 ≤ ωp(E, �) ≤ 1,

and ωp(E, �) has boundary values 1 at all regular points interior to E and boundary
values 0 at all regular points interior to ∂� \ E . For these and additional potential-
theoretic properties of the p-Laplacian see [GLM] and the book [HKM].

When p = 2 harmonic functions have the mean value property. Suppose � is
a Dirichlet regular domain, then ω2(X, ·, �) is a probability measure on ∂� and the
integral ∫

∂�

f (ζ ) dω2(X, ζ, �)

gives the solution to the Dirichlet problem for a given boundary data function f .
When p �= 2, due to the nonlinearity of the p-Laplacian, p-harmonic functions

need not satisfy the mean value property and the sum of two p-harmonic functions
need not be p-harmonic. Consequently ωp(X, ·, �) is not additive on ∂�, hence
not a measure.

Very little is known about measure-theoretic properties of p-harmonic measure
when p �= 2. Assume that � is Dirichlet regular. Then for all compact subsets E
of the boundary ∂� we have

ωp(E, �) + ωp(∂�\E, �) = 1; (1.1)

and if E and F are both compact, disjoint, and ωp(E, �) = ωp(F, �) = 0 then

ωp(E ∪ F, �) = 0. (1.2)

These results can be found in [GLM] and also in [HKM].
Some conditions on the smallness of a compact set F in terms of Hausdorff

dimension or capacity that imply ωp(E ∪ F, �) = ωp(E, �) can be found in [AM],
[K] and [BBS].

Martio asked in [M1] whether p-harmonic measure defines an outer measure
on the zero level; i.e., whether (1.2) remains true when E and F are allowed to
intersect and to be noncompact.

In this note we answer Martio’s question negatively by showing that ωp is not
additive on null sets when p �= 2. We construct an example when � = R2+ is the
upper half-space and ∂� = R. We may consider the point at infinity as a part of the
boundary but it is not difficult to see that ωp({∞}, R2+) = 0. Points in R2+ will be
denoted by (x, y) or X interchangeably.
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Theorem 1.1. Let 1 < p < ∞ and p �= 2. Then there exist finitely many sets
E1, E2, . . . , Eκ on R such that

ωp(Ek, R2+) = 0, ωp

(
R \ Ek, R2+

)
= 1, and

κ⋃
k=1

Ek = R.

Furthermore, the sets Ek verify |R \ Ek | = 0.

Here |.| stands for Lebesgue measure on the real line.

Corollary 1.2. There exist A and B ⊆ R such that

ωp(A, R2+) = ωp(B, R2+) = 0 and ωp(A ∪ B, R2+) > 0.

Thus ωp(·, R2+) is not additive on null sets.

Corollary 1.3. Let 1 < p < ∞ and p �= 2. Then ωp(X, ·, R2+) is not a Choquet
capacity for each X ∈ �. In fact there exists an increasing sequence of sets B1 ⊆
B2 ⊆ · · · ⊆ B j ⊆ · · · ⊆ R so that

lim
j→∞ ωp(B j ) < ωp

( ∞⋃
j=1

B j

)
.

To prove Corollary 1.2, choose k0 = min{k : ωp(E1 ∪ E2 ∪ . . . Ek) > 0} and let
A = E1 ∪ E2 ∪ . . . Ek0−1, B = Ek0 .

Corollary 1.3 follows from Theorem 1.1 as in the tree case given in [KLW].
The definition of Choquet capacity can be found in [HKM].

Both the Theorem and its corollaries can be extended to Rn+(n ≥ 3) by adding
n − 2 dummy variables.

Until recently, there has been no ground for conjecturing the answer to Mar-
tio’s and some other questions about p-harmonic measures. A sequence of papers
[CFPR], [KW], [ARY] and [KLW], is devoted to studying p-harmonic measure and
Fatou theorem for bounded p-harmonic functions in an overly simplified model –
forward directed regular κ-branching trees. On such trees, Theorem 1 is proved and
for each fixed p the exact value of the minimum of Hausdorff dimension of Fatou
sets over all bounded p-harmonic functions is given in [KW] and [KLW].

In [KLW] the construction of the sets in Theorem 1 for trees starts with a basic
p-harmonic function u that does not satisfy the mean value property, follows with
a Riesz product and then a stopping time argument. It is really quite simple. In R2+
we follow the same procedures. The basic p-harmonic function is infinitely more
complicated and is provided by remarkable examples of Wolff for 2 < p < ∞,
and of Lewis for 1 < p < 2 ([Wo1], [Wo2] and [L2]). On a tree there is a perfect
independence among branches and the Riesz product includes all generations; in
R2+ we obtain an approximate independence by introducing large gaps in the Riesz
product. Finally, instead of a stopping time argument, we use an ingenious lemma
of Wolff [Wo1] on gap series of p-harmonic functions, to estimate the p-harmonic
function whose boundary values are given by an infinite product.
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2. Preliminaries

In this section we recall several properties of p-harmonic functions which are
needed in the proofs.

If u(X) is p-harmonic and c ∈ R, then c + u(X), cu(X) and u(cX) are p-
harmonic. If u is a nonnegative p-harmonic function in � and B is a ball such that
2B ⊆ �, then supB u ≤ C infB u for some C = C(n, p) > 0 (Harnack inequal-
ity). A nonconstant p-harmonic function in a domain cannot attain its supremum
or infimum (Strong Maximum Principle). If a sequence of p-harmonic functions
converges uniformly then the limit is also p-harmonic.

We list now some basic properties of p-harmonic measure.

1. If ωp(X, E, �) = 0 at some X ∈ � then ωp(Y, E, �) = 0 for any other Y ∈ �

by Harnack inequality.
2. If E1 ⊆ E2 ⊆ ∂� then ωp(E1, �) ≤ ωp(E2, �) (monotonicity).
3. If �1 ⊆ �2 and E ⊆ ∂�1 ∩ ∂�2 then ωp(E, �1) ≤ ωp(E, �2) (Carleman’s

principle).
4. If E1 ⊇ E2 ⊇, . . . , ⊇ E j ⊇ . . . are closed sets on ∂�, then

ωp

( ∞⋂
j=1

E j , �

)
= lim

j→∞ ωp(E j )

(upper semicontinuity on closed sets).

See chapter 11 in [HKM] for these properties.
We follow [Wo1] and let W p|λ be the class of all functions f : R2+ → R which

are λ-periodic in the x variable ( f (x + λ, y) = f (x, y)) and satisfy

‖ f ‖p
p|λ =

∫
[0,λ)×(0,∞)

|∇ f (x, y)|p dx dy < ∞ ,

where the gradient is taken in the sense of distributions. If f ∈ W p|λ then the
function f has a well-defined trace on R; and among the functions g such that
g − f ∈ W p|λ has trace 0 on R, there is a unique g, denoted by f̂ , which minimizes
‖g‖p|λ. The function f̂ is the unique p-harmonic function in R2+ with boundary
values f on R. Moreover, there exists ξ ∈ R so that

| f̂ (x, y) − ξ | ≤ 2e
−γ y

λ ‖ f ‖∞
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for some γ = γ (p) > 0, [Wo1]. Extend then f̂ to R by its boundary values. The
comparison principle holds in this setting: let f, g ∈ W p|λ satisfy f ≤ g in the
Sobolev sense on R, then f̂ ≤ ĝ in R2+ ([Ma], [Wo1]).

The following lemma of Wolff ([Wo1]) is a substitute for a “local comparison
principle” (unknown for p �= 2) for p-harmonic functions. It is not difficult to
prove (2.1) below for y < Aν−1 and (2.3) below for y > 1. However, a much
deeper analysis is needed to obtain (2.1) and (2.3) below on the two sides of the
line y = Aν−α for some 0 < α < 1. We shall need the full force of Wolff’s lemma.

Wolff’s Lemma [Wo1]. Let 1 < p < ∞. Define α = 1 − 2/p if p ≥ 2 and
α = 1 − p/2 if p < 2. Let ε > 0 and 0 < M < ∞. Then there are small
A = A(p, ε, M) > 0 and large ν0 = ν0(p, ε, M) < ∞ so that the following are
true:

If ν > ν0 is an integer, f , g, q ∈ Lip1(R) are periodic with periods 1, 1, ν−1

respectively, and

max(‖ f ‖∞, ‖g‖∞, ‖q‖∞, ‖ f ||Lip1, ‖g‖Lip1, ν
−1‖q‖Lip1) ≤ M,

then for (x, y) ∈ R2+ we have

| ̂(q f + g)(x, y) − (q̂(x, y) f (x) + g(x))| < ε if y < Aν−α . (2.1)

If, in addition to the above, q̂(x, y) → 0 as y → ∞, then

| ̂(q f + g)(x, Aν−α) − g(x)| < ε (2.2)

and

| ̂(q f + g)(x, y) − ĝ(x, y)| < ε if y > Aν−α . (2.3)

The key to [Wo1] and [L2] is the existence of a basic function � which shows the
failure of the mean value property for periodic p-harmonic functions in the class
W p|λ(R2+) when p �= 2. The mean of �(x, 0) on [0, 1] equals the limit of � at ∞
when p = 2.

Theorem 2.1. (Wolff and Lewis [Wo1], [L2]) For 1 < p < ∞ and p �= 2 there

exists a Lipschitz function � : R2+ → R such that L p� = 0, � has period 1 in the
x variable �(x + 1, y) = �(x, y),∫

[0,1)×(0,∞)

|∇�|pdxdy < +∞,

∫ 1

0
�(x, 0)dx > 0, but �(x, y) → 0 as y → ∞.

Note that when p �= 2, the p-harmonic function |X | p−n
p−1 if p �= n , or log |X | if

p = n, fails to have the mean value property on any sphere or half plane in Rn \ {0}
(n ≥ 2.) But these functions are not periodic.
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3. Proofs

Proof of Theorem 1.1. Fix p �= 2, 1 < p < ∞. Let � be the basic function of
Wolff and Lewis. Note that �(x, 0) must take both positive and negative values by
the comparison principle. Replacing � by c� (c > 0 small constant), if necessary,
we may assume

‖�‖∞ <
1

2
(3.1)

and ∫ 1

0
log(1 + �(x, 0))dx > 0.

Fix a positive integer κ such that

κ∑
k=1

ak > 0 and
κ∏

k=1

(1 + ak) > 1,

where

ak = min

{
�(x, 0) : x ∈

[
k − 1

κ
,

k

κ

]}
(3.2)

Let
L = ‖�‖Lip1,

and fix � > 1 and an integer n0 > 5 so that

1 < � <

κ∏
k=1

(1 + ak)
1
κ (3.3)

and

3−n0 < min

{
1 + max{ak} − �,

L

κ

}
. (3.4)

For convenience we write f (x) for f (x, 0) and ωp(E) for ωp(E, R2+) from now
on.

We shall choose inductively an increasing sequence of positive powers of the
integer κ

1 < ν1 < ν2 < . . .

and shall define for each k ∈ [1, κ] two sequences of functions on R

qk
1 (x) = �

(
x + k − 1

κ

)
, f k

1 (x) = 1 + qk
1 (x) (3.5)

and

qk
j (x) = �

(
ν j x + k − 1

κ

)
, f k

j (x) = f k
j−1(x)(1 + qk

j (x)). (3.6)



p-HARMONIC MEASURE 363

After these are defined, we observe from (3.2), (3.3) and the periodicity of
�(x) that

κ∏
k=1

f k
j (x) =

j∏
i=1

κ∏
k=1

(
1 + �

(
νi x + k − 1

κ

))
> �κ j for all x . (3.7)

Next, it follows from (3.1) that for j ≥ 1

‖qk
j ‖ <

1

2
, (3.8)

2− j < f k
j <

(
3

2

) j

, (3.9)

‖qk
j ‖Lip1 ≤ Lν j , (3.10)

and

‖ f k
j ‖Lip1 ≤ Lν j 2

j . (3.11)

We then define for each k ∈ [1, κ] a set

Ek = {x ∈ R : f k
j (x) > � j for infinitely many j ′s} .

Observe that (3.7) implies
κ⋃

k=1

Ek = R.

To finish the proof we need to establish

ωp(Ek) = 0, ωp
(
R \ Ek, R+

2

) = 1, and |R \ Ek | = 0

for each k.
We start by discussing the choice of {ν j } and two other sequences {r j } and

{t j }; we always assume {ν j } are positive powers of κ , and {r j } and {t j } are negative
powers of κ .

Set r0 = t0 = 1 and ν1 = 1. After {ν1, ν2, . . . , ν j }, {r0, r1, . . . , r j−1} and
{t0, t1, . . . , t j−1} are chosen, the functions

{qk
1 , qk

2 , . . . , qk
j }

and
{ f k

1 , f k
2 , . . . , f k

j }
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are then defined by (3.5) and (3.6) for each k ∈ [1, κ]. We then choose r j > 0 so
that

r j < min{t j−1, (Lν j 6
j+1)−1} (3.12)

and that

| f̂ k
j (x, y) − f k

j (x)| < 3− j−1 if 0 ≤ y ≤ r j (3.13)

for all k ∈ [1, κ].
Let f = g = f k

j , q = qk
j+1, M = Lν j 2 j and ε = 3− j−1 in Wolff’s lemma;

then ν j+1 and t j can be chosen from (2.1) and (2.3) so that

ν−1
j+1 < t j < r j (3.14)

| f̂ k
j+1(x, y) − f k

j (x)(1 + q̂k
j+1(x, y))| < 3− j−1 if 0 < y ≤ t j (3.15)

and

| f̂ k
j+1(x, y) − f̂ k

j (x, y)| < 3− j−1 if y ≥ t j (3.16)

for all k ∈ [1, κ]. The fact that 0 < α < 1 in Wolff’s lemma is needed here to
ensure that we can always find a t j such that ν−1

j+1 < t j < r j . We also need the

fact that q̂k
j+1(x, y) → 0 as y → ∞ to obtain (3.16). This ends the induction

procedure.

For each k ∈ [1, κ] the sequence { f̂ k
j } converges to a p-harmonic function

f k on R2+ uniformly on compact subsets. Since {t j } is decreasing, it follows from
(3.16) that

| f̂ k
N (x, y) − f̂ k

j (x, y)| < 3− j if y ≥ t j (3.17)

for all N ≥ j and k ∈ [1, κ]; and from (3.15) and (3.17) that

f̂ k
N (x, y) >

1

2
f k

j (x) − 3− j if t j+1 ≤ y ≤ t j (3.18)

for all N ≥ j + 1 and k ∈ [1, κ]. To see (3.18), observe that, since y ≥ t j+1, we
get by (3.17),

| f̂ k
N (x, y) − f̂ k

j+1(x, y)| < 3− j−1.

On the other hand, since y ≤ t j , by (3.15) and (3.1) we have

f̂ k
j+1(x, y) >

1

2
f k

j (x) − 3− j−1.
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We are now ready to prove ωp(Ek) = 0 and ωp (R \ Ek) = 1 for all k ∈ [1, κ].
In view of the Harnack inequality and the strong maximum principle, it is enough
to prove ωp(X0, Ek, R2+) = 0 and ωp

(
X0, R \ Ek, R2+

) = 1 for a fixed point
X0 ∈ R2+. We take X0 = (0, 1). We fix k and from now on, we omit k in the
subscripts and superscripts of Ek, qk

j and f k
j . Let G j = {x : f j (x) > � j }, so that

we have

E =
∞⋂

n=1

∞⋃
j=n

G j .

By monotonicity we get ωp(E) ≤ ωp

( ∞⋃
j=n

G j

)
. Therefore to show ωp(E) = 0 it

suffices to prove that for some C > 0,

ωp

(
X0,

∞⋃
j=n

G j

)
≤ C�−n for all n > n0. (3.19)

In fact it is enough to show that for some C > 0,

ωp

(
X0,

N⋃
j=n

G j

)
< C�−n for all N > n > n0 (3.20)

Let us see how (3.20) implies (3.19). Observe that R \ ⋃N
j=n G j , N ≥ n is a

decreasing sequence of closed sets on R. Since the characteristic function of an
open set is bounded and lower semicontinous, it is resolutive. Thus, we have

ωp

(
N⋃

j=n

G j

)
= 1 − ωp

(
R \

N⋃
j=n

G j

)

and

ωp

( ∞⋃
j=n

G j

)
= 1 − ωp

(
R \

∞⋃
j=n

G j

)
(See (9.31) and (11.4) of [HKM].) By the upper semicontinuity of p-harmonic
measure on closed sets, we can let N go to ∞ to get

lim
N→∞ ωp

(
N⋃

j=n

G j

)
= 1 − ωp

(
R \

∞⋃
j=n

G j

)
.

Therefore we conclude

lim
N→∞ ωp

(
N⋃

j=n

G j

)
= ωp

( ∞⋃
j=n

G j

)
.
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By monotonicity we have ωp(R \ E) ≥ ωp

(
R \ ⋃∞

j=n G j

)
; the equality

ωp(R \ E) = 1 follows again from (3.20).
We need to establish (3.20). Define for each j > n0 a set

Hj =
⋃ {

I : κ-adic closed interval of length t j , max
x∈I

f j (x) ≥ � j − 3− j−1
}

and let
Tj = Hj × [0, t j ].

Observe that from the definition of Hj we have

f j (x) < � j − 3− j−1 on Hj\
o
H j (3.21)

where
o
H j is the relative interior of Hj . Hence, it follows that

G j ⊆ G j ⊆ o
H j⊆ Hj .

Note from (3.8), (3.9), (3.10), (3.11), (3.12), and (3.14) that we have

| f j (x) − f j (x ′)| ≤ Lν j 2
j t j < 3− j 6−1 if |x − x ′| ≤ t j . (3.22)

Therefore the inequality

min
Hj

f j ≥ � j − 3− j 2−1 (3.23)

holds. Finally, from (3.13) and (3.14) we deduce

f̂ j (x, y) > � j − 3− j on Tj (3.24)

We pause for a remark. If the statement

f̂N (x, y) > C� j on ∂Tj\
o
H j for all N ≥ j > n0 (3.25)

were true, then it would follow from the comparison principle applied on the domain
R2+ \ ∪N

j=1Tj and the convergence of { f̂ j } that

ωp

(
X0,

N⋃
j=n

G j

)
≤ ωp

(
X0,

N⋃
j=n

∂Tj\
o
H j

)
≤ C−1�−n f̂N (X0) < C(X0)�

−n.

This would give (3.20) and thus ωp(E) = 0. Since (3.25) need not be true on
vertical edges in ∂Tj , we need to modify the sets Tj .

The connected components of Tj are mutually disjoint rectangles Q of height
t j and of widths integer multiples of t j . This class of rectangles is mapped to itself
by the family of mappings (x, y) �→ (mν−1

j + x, y), m ∈ Z.



p-HARMONIC MEASURE 367

Suppose Q = [a, b] × [0, t j ] is such a component. Then

f j (a), f j (b) < � j − 3− j−1 (3.26)

by (3.21). There are two possibilities.

Case I: max
[a,b]

f j ≤ � j .

In this case define Q∗ to be the empty set ∅, and note from (3.26) and the definition
of G j that

G j ∩ [a, b] = ∅ . (3.27)

Case II: max
[a,b]

f j > � j .

In this case let I Q
j = [a, a + t j ] and J Q

j = [b − t j , b], and note from (3.22), (3.23),
and (3.26) that

� j − 3− j < f j (x) < � j − 3− j−2 on I Q
j ∪ J Q

j ,

so that we have

G j ∩ (I Q
j ∪ J Q

j ) = ∅ . (3.28)

To modify Q in Case II, we need the following fact.

Fact. If I is a κ-adic closed interval of length t� (� > n0) on which f�(x) ≥
�� − 3−�, then I contains a κ-adic closed subinterval of length t�+1 on which
f�+1(x) > ��+1.

To see this, we write f�+1 = (1 + q�+1) f� and note that I contains t�ν�+1 pe-
riods of q�+1. So from (3.2), the interval I has at least t�ν�+1 κ-adic subintervals of
length κ−1ν−1

�+1 on which q�+1 ≥ max{ak}. Let I ′′ be any one of such subintervals
and let I ′ be any κ-adic subinterval of I ′′ of length t�+1. Then

f�+1 ≥ (�� − 3−�)(1 + max{ak}) > ��+1 on I ′

by (3.4).
Therefore, we may choose two sequences of κ-adic closed intervals:

I Q
j ⊇ I Q

j+1 ⊇ I Q
j+2 ⊇ . . .

and
J Q

j ⊇ J Q
j+1 ⊇ J Q

j+2 ⊇ . . .

such that |I Q
� | = |J Q

� | = t� and

f�(x) > �� − 3−� on I Q
� ∪ J Q

� (3.29)
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for all � ≥ j . Let

a∗ =
∞⋂

�= j

I Q
� and b∗ =

∞⋂
�= j

J Q
� . (3.30)

Clearly we have the inclusioin [a + t j , b − t j ] ⊆ [a∗, b∗] ⊆ [a, b]. Finally replace
Q by

Q∗ = [a∗, b∗] × [0, t j ]

in Case II.
Set

T ∗
j =

⋃
{Q∗ : Q a component of Tj },

and
H∗

j = T ∗
j ∩ {y = 0}.

Then it follows from (3.27) and (3.28) that

G j ⊆ G j ⊆
o

H∗
j ⊆ H∗

j ⊆ T ∗
j ⊆ Tj .

Claim. f̂N (x, y) > � j/3 on ∂T ∗
j \

o
H∗

j for all N ≥ j .

To establish the claim, note first that ∂T ∗
j \

o
H∗

j ⊆ Tj , so that (3.24) implies

f̂ j (x, y) > � j − 3− j >
� j

3
on ∂T ∗

j \
o

H∗
j .

Next assume N ≥ j + 1. On T ∗
j ∩ {t j+1 ≤ y ≤ t j }, it follows from (3.18) and

(3.23) that

f̂N (x, y) >
1

2
f j (x) − 3− j >

1

2
(� j − 3− j 2−1) − 3− j >

� j

3
.

The portion V = (∂T ∗
j \

o
H∗

j ) ∩ {0 ≤ y ≤ t j+1} consists of vertical line segments
only. Suppose (x, y) ∈ V , then x = a∗ or b∗, associated with some component
[a, b] × [0, t j ] of Tj , as defined in (3.30). If (x, y) ∈ V ∩ {t�+1 ≤ y ≤ t�} for some
� ∈ [ j + 1, N − 1], then

f̂N (x, y) >
1

2
f�(x) − 3−� >

1

2
(�� − 3−�) − 3−� >

� j

3

by (3.18) and (3.29). Finally, if (x, y) ∈ V ∩ {0 ≤ y ≤ tN }, then

f̂N (x, y) > fN (x) − 3−N−1 > �N − 3−N − 3−N−1 >
� j

3

by (3.13), (3.14) and (3.29). This proves the claim.
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From the claim we deduce that the function u(x, y) = 3�−n f̂N (x, y) has
values u(x, y) > 1 on

N⋃
j=n

∂T ∗
j ∩ {y > 0} =

N⋃
j=n

(∂T ∗
j \ H∗o

j ).

We can now pass to a subset to conclude

u(x, y) > 1 on ∂

( N⋃
j=n

T ∗
j

)
∩ {y > 0},

for N ≥ n > n0.
Repeat now the argument after (3.25).The statement (3.20) follows by apply-

ing the comparison principle to the functions u and ωp

(
∪N

j=nG j

)
on the domain

R2+\∪N
j=nT ∗

j . This completes the proof of ωp(Ek, R2+)=0 and ωp(R\Ek, R2+)=1.
It remains to prove |R \ Ek | = 0 for all k ∈ [1, κ]. Define � on [0, 1) so that

�(x) = log(1 + a�) on

[
� − 1

κ
,
�

κ

)
, 1 ≤ � ≤ κ,

and extend � periodically to R so that �(x + 1) = �(x) for all x . Recall that a� =
min

{
�(x) : x ∈ [ �−1

κ
, �

κ
]
}

. Define for each k ∈ [1, κ] a sequence of functions hk
1,

hk
2, hk

3, . . . so that

hk
j (x) = �

(
ν j x + k − 1

κ

)
− m,

where m = 1
κ

κ∑
k=1

log(1 + a�).

Fix k in [1, κ]. Note that hk
j is constant on each interval

[
i−1
κν j

, i
κν j

)
, i an inte-

ger, and has average zero with respect to the Lebesgue measure µ on each interval[
i − 1

κν j−1
,

i

κν j−1

)
.

Here we have set ν−1 = κ−1. Therefore the functions hk
1, hk

2, hk
3, . . . are orthogonal

in L2. Since the sequence is uniformly bounded, it has partial sums

hk
1 + hk

2 + · · · + hk
j = o( j3/4) µ − a.e.

Since

log f k
j ≥

j∑
�=1

�

(
ν�x + k − 1

κ

)
= mj +

j∑
1

hk
�(x)

and 1 < � < em , therefore for µ-almost every x there exist an integer j (x) > 0 so
that

f k
j (x) > � j for all j > j (x).

This says that |R1 \ Ek | = 0.
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4. Questions and Comments

Many questions concerning p-harmonic measure and p-harmonic functions remain
unanswered.

4.1. Are there compact sets A ⊆ R and B ⊆ R so that we have

ωp(A, R2+) = ωp(B, R2+) = 0,

but ωp(A ∪ B, R2+) > 0?

4.2. Can the number κ of sets in Theorem 1.1 be as small as 2?

Based on a theorem of Baernstein [B], we conjecture that when p is close to 2
and p �= 2, κ = 5 suffices. In the tree case, κ must be and can be any integer ≥ 3
[KLW].

Theorem 4.1. (Baernstein [B]) Let D be the unit disk in R2. For a set S ⊆ ∂D

let S∗ be the closed arc on ∂D centered at 1 of length |S|. Suppose that E ⊆ ∂D

is the union of two disjoint closed arcs of equal positive length, and that the two
components of ∂D \ E have unequal length, then there exist p1 and p2 (depending
on E) with 1 < p1 < 2 < p2 < ∞ such that

ωp(0, E, D) > ωp(0, E∗, D) for p1 < p < 2 (4.1)

and

ωp(0, E, D) < ωp(0, E∗, D) for 2 < p < p2 . (4.2)

If E ⊆ ∂D is the union of two disjoint closed arcs of unequal positive length for
which the components of ∂D \ E do have equal length, then inequalities opposite
to (4.1) and (4.2) are true.

According to Baernstein’s theorem, there exist 1 < p1 < 2 < p2 < ∞
so that for each p ∈ (p1, 2) ∪ (2, p2), there is one set J among the four {eiθ :
θ ∈ [0, 4π

5 ]}, {eiθ : θ ∈ [0, 2π
5 ] ∪ [ 4π

4 , 6π
5 ]}, {eiθ : θ ∈ [0, 6π

5 ]} and {eiθ : θ ∈
[0, 4π

5 ] ∪ [ 6π
5 , 8π

5 ]}, which satisfies

ωp(0, J, D) < |J |/2π. (4.3)

From this, a p-harmonic function �̂ on D having Lipschitz continuous boundary
values � may be constructed so that �̂(0) = 0 and

5∑
k=1

�(ei(θ+k2π/5)) > c > 0 for every θ ∈ [0, 2π ]; (4.4)
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consequently,
1

2π

∫ 2π

0
�(eiθ )dθ > c > 0.

On the other hand, using p-capacity estimates we can show that if 1 < p < 3
2 and

J is an arc of the unit circle then (4.3) holds provided |J | < δ0(p). This implies
that for 1 < p < 3

2 , there exists �̂ for which �̂(0) = 0 and (4.4) holds with 5
replaced by some κ = κ(p).

Let �n(eiθ ) = �(einθ ) for integers n ≥ 1. It is not clear, and probably false,
whether �̂n(0) = 0. Therefore it is unclear how to adapt Wolff’s lemma to disks.
Unlike in the half plane, shortening the period of the boundary function on ∂D

complicates the p-harmonic solution in D.

4.3. Given any Lipschitz function � on ∂D, let �̂ be the p-harmonic function in D

with boundary values �, and let �n(eiθ ) = �(einθ ) shortening the period. Suppose
�̂(0) ≤ 1

2π

∫ 2π

0 �(eiθ )dθ . We ask whether

�̂(0) ≤ �̂n(0) ≤ 1

2π

∫ 2π

0
�(eiθ )dθ for n ≥ 2;

and what the value lim
n→∞ �̂n(0) might be.

4.4. Not much is known about the structure of the sets having p-harmonic measure
zero. Sets E ⊆ Rn of absolute p-harmonic measure zero, ωp(E ∩ ∂�, �) = 0 for
all bounded domains �, are exactly those of p-capacity zero. There exist sets on
∂Rn+ of Hausdorff dimension n−1 that have zero p-harmonic measure with respect
to Rn+ when p �= 2. There are also sufficient conditions on sets E ⊆ ∂Rn+ in terms
of porosity, that imply ωp(E, Rn+) = 0. For these and more, see [HM], [M2] and
[W].

Further questions and discussions on p-harmonic measures can be found in
[B] and [HKM].

4.5. Given a function u in Rn+, denote by F(u) the Fatou set{
x ∈ Rn−1 : lim

y→0
u(x, y) exists and it is finite

}
.

Fatou’s Theorem states that Rn−1 \F(u) has zero (n − 1)-dimensional measure for
any bounded 2-harmonic function u in Rn+. When 1 < p < ∞ and p �= 2, the
Hausdorff dimension of the Fatou set of any bounded p-harmonic function in Rn+ is
bounded below by a positive number c(n, p) independent of the function [FGMS],
[MW].

Deep and unexpected examples in [Wo1], [Wo2] and [L2] show that Fatou
Theorem relative to the Lebesgue measure fails when p �= 2.
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Theorem 4.2. (Wolff and Lewis [Wo1], [L2]) For 1 < p < ∞ and p �= 2, there
exists a bounded p-harmonic function u on R2+ such that the Fatou set F(u) has
zero length, and there exists a bounded positive p-harmonic function v on R2+ such
that the set {

x ∈ R : lim
y→0

sup v(x, y) > 0

}
has zero length.

Define the infimum of the dimensions of Fatou sets to be

dimF (p) = inf
{

dimF(u) : u bounded p-harmonic in R2+
}

,

and the dimension of the p-harmonic measure to be

dim ωp = inf
{

dim E : E ⊆ R1, ωp(E, R2+) = 1
}

.

We ask what the values of dimF (p) and dim ωp are, and conjecture that dim ωp =
dimF (p) < 1 when p �= 2.

The question and the conjecture are based on results in [KW]. In the case of
forward directed regular κ-branching trees (κ > 1) whose boundary is normalized
to have dimension 1, the infimum of the dimensions of Fatou sets dimF (κ, p) is
attained and is given by

dimF (κ, p) = min


log

κ∑
1

ex j

log κ
:

κ∑
1

x j |x j |p−2 = 0

 ;

furthermore 0 < dimF (κ, p) < 1 except when p = 2 or κ = 2, and in the
exceptional case dimF (κ, p) = 1.
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