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Estimates of the derivatives for a class of parabolic degenerate
operators with unbounded coefficients in R

N
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Abstract. We consider a class of perturbations of the degenerate Ornstein-
Uhlenbeck operator in R

N . Using a revised version of Bernstein’s method we
provide several uniform estimates for the semigroup {T (t)}t≥0 associated with
the realization of the operator A in the space of all the bounded and continuous
functions in R

N .
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1. Introduction

In the last decades, the interest towards elliptic (and parabolic) operators with un-
bounded coefficients grew considerably, also in view of their wide applications to
stochastic partial differential equations. In the uniformly elliptic case, it is well-
known that, under quite minimal regularity assumptions on the coefficients of the
operator

A =
N∑

i, j=1

qi j Di j +
N∑

i=1

b j D j + cu

and assuming that c is bounded from above (but without any growth assumptions
on the diffusion and the drift coefficients), the Cauchy problem

(HCP)

{
Dt u(t, x) = Au(t, x), (t, x) ∈ R+ × RN ,

u(0, x) = f (x), x ∈ RN ,

admits a classical solution u, which, in general, is not the unique classical solution
to problem (HCP) but, when f ≥ 0, it is the minimal positive solution. This allows
us to associate a semigroup {T (t)}t≥0 of bounded operators in Cb(R

N ) with the
operator A: for any t > 0 and any f ≥ 0, T (t) f is the value at t of the minimal
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classical solution to (HCP). Such a semigroup is not strongly continuous and, in
general, it is not analytic in Cb(R

N ) but it enjoys some properties which are typi-
cal of analytic semigroups. For instance, under rather general assumptions on the
growth rate of the coefficients at infinity, it has been proved (both by analytic and by
probabilistic methods) that the behaviour of the space derivatives of the semigroup
with respect to t is very similar to what we can expect when dealing with analytic
semigroups. See [3, 4, 14]. The determination of such estimates was the key point
also to prove Schauder estimates for the solutions to the elliptic equation

(NHE) λu − Au = f

and to the nonhomogeneous Cauchy problem

(NHCP)

{
Dt u(t, x) = Au(t, x) + g(t, x), (t, x) ∈ R+ × RN ,

u(0, x) = f (x), x ∈ RN .

This was done in [14] and, recently, the method has been applied in [3] to a wider
class of elliptic operators. The degenerate elliptic case is much more difficult to
handle and, to the author’s knowledge, there are only a few results in the literature.
The best known example of a degenerate elliptic operator with unbounded coef-
ficients is the so-called degenerate Ornstein-Uhlenbeck operator which is defined
by

Au = 1

2

N∑
i, j=1

qi j Di j u +
N∑

i, j=1

bi j xi D j u, (1.1)

where Q is any symmetric non-negative definite matrix, and B is a suitable matrix
such that the hypoellipticity condition det(Qt ) > 0 is satisfied at any positive t ,
where

Qt =
∫ t

0
es B Qes B∗

ds, t > 0.

This operator has been deeply studied by A. Lunardi in [14], where she proved
that the Cauchy problem (HCP), associated with the operator (1.1), admits a unique
classical solution u for any f ∈ Cb(R

N ). This allowed her to associate a semi-
group of linear operators with A, as mentioned above. Further, she gave a precise
description of the behaviour of the space derivatives of u near t = 0 because an ex-
plicit representation formula for the solution to problem (HCP) is available in this
particular case. The author obtained the estimates for the space derivatives of u by
means of direct computations on this formula.

As in the non-degenerate case, such estimates are the key point to prove
Schauder estimates for the solutions to (NHE) and (NHCP). Since the behaviour
near t = 0 of the space derivatives of T (t) f is worse than in the non-degenerate
case, it was only possible to prove Schauder estimates for the distributional solu-
tion in anisotropic Hölder spaces. To prove the existence of a classical solution to
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problem (NHCP) one has to assume conditions on g which are much more restric-
tive than in the non-degenerate case. Using a perturbation argument, the author of
[14] was also able to prove similar results in the case when the diffusion matrix
Q = (qi j ) depends on the space variables, its entries vanish when max(i, j) > r ,
and it converges to some positive definite matrix Q0 as |x | tends to +∞.

More recently, Da Prato in [5] dealt with the operator A obtained perturbing
the drift term B by a suitable smooth and bounded function F : RN → R. He
still assumed the hypoellipticity condition (1.2). The techniques of [14] of course
could not be extended to the case when F �= 0, since no explicit representation
formulas were available. To overcome such a difficulty, Da Prato took advantage
of a revised version of Bernstein’s method (see [1]) to obtain the a priori estimates
for the solution to problem (HCP). In fact, he estimates the behaviour of the first
order derivatives of the solution u to (HCP) in terms of the sup norm of f and of
the norm of the matrix �(t) = Q−1/2

t et B , recovering the same estimates proved in
[14] in the case where F = 0.

Bernstein’s method, which seems to best fit for uniformly elliptic/parabolic
operators, has been successfully carried out very recently also in the degenerate
case, in [17], to find a priori local in time gradient estimates for solutions to a class
of quasilinear degenerate parabolic equations with bounded coefficients in bounded
domains.

Here, we consider a class of degenerate elliptic operators of the type

Au(x) =
r∑

i, j=1

qi j (x)Di j u(x) +
N∑

i, j=1

bi j x j Di u(x), (1.2)

which covers all the cases when the diffusion coefficients are bounded as well as
some cases in which they are unbounded. So the main topics to be discussed are:

(i) existence (and uniqueness) of the classical solution to problem (HCP) with A
defined in (1.2);

(ii) uniform estimates (with respect to the x variable) for the space derivatives, up
to the third order, of the function T (t) f when f belongs to suitable functional
spaces;

(iii) continuity properties of the semigroup {T (t)}t≥0 in Cb(R
N ) and characteriza-

tion of the domain of its weak generator;
(iv) Schauder-type estimates for the solutions to (NHE) and (NHCP).

In this paper, we deal with point (i) and (ii) whereas in [12] we deal with the re-
maining points. The main assumptions that we make here on the coefficients are
the following:

H1) N/2 ≤ r < N and

r∑
i, j=1

qi j (x)ξiξ j ≥ ν(x)|ξ |2, ξ ∈ R
r , x ∈ R

N ,

for some function ν : RN → R+ such that ν0 := infx∈RN ν(x) > 0;
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H2) qi j ∈ C3+δ
loc (RN ) (i, j = 1, . . . , r ) for some δ ∈ (0, 1) and there exists a positive

constant C such that

|Dαqi j (x)|≤C |x |(1−|α|)+√
ν(x), x ∈ R

N , i, j = 1, . . . , r, |α| ≤ 3;

H3) the matrix B can be split into blocks as follows

B =
(

B1 B2

B3 B4

)
,

with B1 ∈ L(Rr ), B2, B∗
3 ∈ L(RN−r , Rr ), B4 ∈ L(RN−r ) and rank(B3) =

N − r .

We observe that, due to our assumptions, the hypoellipticity condition det(Qt ) > 0
is satisfied at any x ∈ RN .

A class of degenerate elliptic operators similar to ours has been considered
in [20], where the author deals with the case when the diffusion coefficients are
bounded (and they may also depend on t). Under assumptions on the rank of the
matrix Q less restrictive than ours, but under stronger assumptions on the matrix
B, the author of [20] proves the existence of a fundamental solution to problem
Dt u − Au = 0. Then, in [16] the author deals with the Dirichlet-Cauchy problem
associated with the operator A considered in [20], in bounded open sets � ⊂ RN+1.
Under suitable assumptions on the geometry of �, Manfredini proves existence and
Hölder estimates for the solution to the Dirichlet-Cauchy problem.

We also quote [19], where the author proves interior Schauder estimates for
the solution to the parabolic equation Dt u − Au = f in (0, +∞) × RN , when f
is a smooth function and Au = ∑N−1

j=1 D2
j u + bDN u, b being a smooth function,

not necessarily bounded at infinity, satisfying suitable conditions. Such conditions
are satisfied, for instance, in the particular case when we take b(x) = Bx and the
blocks B1, B2 and B4 of the matrix B identically vanish in R.

Here, under the above set of assumptions, we prove existence and uniqueness
of the solution to problem (HCP) associated with (1.2), and, therefore, we define a
semigroup of bounded operators {T (t)}t≥0 in Cb(R

N ) as described above. More-
over, we show that, for any ω > 0, there exists a constant C = C(ω) such that, if
f ∈ Cb(R

N ), then

‖Di T (t) f ‖∞ ≤ Ceωt t−(1/2+H(i−r))‖ f ‖∞, (1.3)

t > 0, i = 1, . . . , N ,

‖Di j T (t) f ‖∞ ≤ Ceωt t−(1+H(i−r)+H( j−r))‖ f ‖∞, (1.4)

t > 0, i, j = 1, . . . , N ,

‖Di jh T (t) f ‖∞ ≤ Ceωt t−(3/2+H(i−r)+H( j−r)+H(h−r))‖ f ‖∞, (1.5)

t > 0, i, j, h = 1, . . . , N ,
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where H(s) = 0 if s ≤ 0 and H(s) = 1 if s > 0. Furthermore, we prove that
the more f is regular, the more the estimates (1.4)-(1.3) can be improved. More
precisely, we show that

‖T (t) f ‖Ck
b (RN ) ≤ Ceωt‖ f ‖Ck

b (RN ), (1.6)

t > 0, k = 1, 2,

‖Di j T (t) f ‖∞ ≤ Ceωt t−1/2−H(i−r)‖ f ‖C1
b (RN ), (1.7)

t > 0, i ≤ j,

‖Di jh T (t) f ‖∞ ≤ Ceωt t ck
i jk ‖ f ‖Ck

b (RN ), (1.8)

t > 0, i ≤ j ≤ h, k = 1, 2, 3,

where ck
i jh = (3−k)/2+H(i−r)+((2−k)−(1−k)+)H( j−r)+(1−k)+H(h−r),

and C , ω are as above. As in all the cases considered above, also in this situation the
uniform estimates (1.4)-(1.6) are the main ingredients to prove Schauder estimates
both for the solutions to problem (NHE) and (NHCP) associated with the operator
(1.2). But we stress that they also provide the basic tools to investigate point (iii).

The assumption r ≥ N/2 is essential to obtain the estimates (1.3)-(1.8). In-
deed, when r < N/2 and A is the degenerate Ornstein-Uhlenbeck operator, it is
well-known that the behaviour of the derivatives of T (t) f near t = 0 is worse
than the one in the quoted estimates. To let the reader understand the differences,
we consider only the first derivative case, when r < N/2. In [14] the author
shows that there exists a suitable spitting of the indexes r + 1, . . . , N into blocks
Al = {r + jl + 1, . . . , r + jl+1} for l = 0, . . . , n and some n ∈ N, such that

‖Di T (t) f ‖∞ ≤ Ceωt t−(3/2+l)‖ f ‖∞, t > 0,

for any i ∈ Al , some positive constants C, ω and any f ∈ Cb(R
N ).

Although we believe that our method can be adapted also to such a situation,
as well as to more general degenerate elliptic operators, we prefer to show it in the
simplest case, which is however rather technical. We stress that the case treated in
this paper covers several interesting situations. For instance, for even N ’s, we can
consider non trivial perturbations of the well-known Kolmogorov operator, which
can be obtained taking r = N/2, qi j = 1, for any i = j = 1, . . . , r , qi j = 0
otherwise, and B1 = 0, B2 = 0, B4 = 0 and B3 = I . It is worth stressing also that,
in some situations, the operator Dt − A occurs as a linearization prototype of the
Fokker-Plank operator, arising in the study of the Brownian motion of a particle in
a fluid. To prove that problem (HCP) is uniquely solvable, we replace the operator
A with the uniformly elliptic operator Aε defined by

Aε = A + ε

N∑
j=r+1

D j j , (1.9)
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and deal with the Cauchy problem

(HCPε)

{
Dt u(t, x) = Aεu(t, x), (t, x) ∈ R+ × RN ,

u(0, x) = f (x), x ∈ RN .

It is well-known, see [18], that under our assumptions on the coefficients qi j , for
any f ∈ Cb(R

N ), problem (HCPε) admits a unique classical solution u = Tε(·) f ,
where {Tε(t)}t≥0 is the semigroup associated with Aε. We show that for any ω > 0
there exists a positive constant C = C(ω), independent of ε, such that Tε(t) satis-
fies the estimates (1.3)-(1.8) for any t > 0 and any 1 ≤ i, j, h ≤ N . This allows
us to prove, by an approximation argument and a maximum principle, the follow-
ing fact: first that problem (HCP) corresponding to (1.2) is uniquely solvable for
any f ∈ Cb(R

N ), and, then, that the family of linear operators {T (t)}t≥0, defined
by T (t) f = “ limε→0 Tε(t) f ” for any t > 0 and any f ∈ Cb(R

N ), gives rise to a
semigroup of linear operators in Cb(R

N ) satisfying (1.3)-(1.8). The estimates (1.3)-
(1.8) are obtained by adapting the Bernstein method. We stress that our method is
not a straightforward generalization of the method used by Da Prato in [5] since his
method seems to be not applicable to get uniform estimates for the second and third
order space derivatives. The paper is structured as follows. First in Section 2 we
introduce the function spaces that we need throughout the paper, and collect some
preliminaries. In particular, in Subsection 2.2, we recall some results from [18] on
uniformly elliptic operators with unbounded coefficients and we prove some pre-
liminary results which will be used in the following section. In Section 3, the main
body of the paper, we construct the semigroup {T (t)}t≥0 and we prove the estimates
(1.3)-(1.8). First in Subsection 3.1, we prove that, for any ε > 0, {Tε(t)}t≥0 satisfies
the estimates (1.3)-(1.8) with constants independent of ε, and then, in Subsection
3.2, we use such estimates to show that problem (HCP) admits a unique classical
solution for any f ∈ Cb(R

N ), and that the semigroup {T (t)}t≥0 satisfies (1.3)-(1.8).

Notation. Throughout the paper, for any u : R+ × RN → R we indifferently write
u(t, ·) and u(t) when we want to stress the dependence of u on the time variable t .
Moreover, for any smooth real valued function v defined on a domain of RN , we
denote by Dv the gradient of v and by |Dv(x)| its Euclidean norm at x . Similarly,
by Dkv (k ∈ N) we denote the vector consisting of all the k-th order derivatives of
v, and by |Dkv(x)| its Euclidean norm at x . By 1l we denote the function which is
identically equal to 1.

By Ik we denote the identity k ×k matrix. If A is a matrix, we denote by A∗ its
transpose matrix. When a is a vector we denote by aT its transpose. For any matrix
A we denote by ‖A‖ its Euclidean norm. For any symmetric matrix A we denote
by λmax(A) and by λmin(A), respectively, its maximum and minimum eigenvalues.
For any square matrix A we denote by Tr(A) its trace, i.e. the sum of the elements
on the main diagonal. By L(Rm, Rn) we denote the set of all the linear operators
from Rm to Rn (or, equivalently, the set of all the n × m matrices). When m = n
we simply write L(Rm).

Finally, by a ∨ b (resp. a ∧ b) we denote the maximum (resp. the minimum)
between a and b, and we set a+ = a ∨ 0.
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2. Function spaces and preliminaries

In this section we both introduce the function spaces we deal with throughout this
paper and collect all the preliminary results that we need in what follows. We begin
with the following definitions.

Definition 2.1. For any k ≥ 0 and any open set � ⊂ RN (not necessarily bounded),
we denote by Ck

b(�) the space of all the continuously differentiable up to the [k]-
order functions f : � → R such that Dα f is bounded a continuous in � for any
|α| ≤ [k] ([k] denoting the integer part of k) and Dα f is Hölder continuous of order
k − [k] for any |α| = [k]. We endow Ck

b(�) with the Euclidean norm, i.e.

‖ f ‖Ck
b (�) =

∑
|α|≤[k]

‖Dα f ‖∞ +
∑

|α|=[k]

[Dα f ]Ck−[k]
b (�)

,

where ‖Dα f ‖∞ denotes the sup-norm of Dα f and [Dα f ]Cα
b (�) =supx,y∈�, x �=y |x−

y|−α|Dα f (x) − Dα f (y)|. We say that u ∈ C∞
b (�) if it belongs to Ck

b(�) for any
k ≥ 0.

We drop the index “b” when we do not require boundedness of the functions
and their derivatives and when � is bounded.

Finally, by Ck
loc(R

N ) k ∈ R+ \ N, we denote the set of all the functions u :
RN → R which belong to Ck(K ) for any compact set K ⊂ RN .

Definition 2.2. By C1,2((0, +∞) × RN ) we denote the space of the u’s which
are once continuously differentiable with respect to time and twice continuously
differentiable with respect to the space variables in (0, +∞) × RN .

For any α∈(0, 1), C1+α/2,2+α

loc ((0, +∞)×RN ) is the subset of C1,2((0, +∞)×
RN ) of all the functions u such that for any compact set F ⊂ (0, +∞) × RN ,
Dt u, Dβ

x u (|β| ≤ 2) are Hölder continuous of order α in F with respect to the
parabolic distance d((t, x), (s, y)) = (|t − s| + |x − y|2)1/2.

Definition 2.3. A function u : [0, +∞) × RN → R is a classical solution to
problem (HCP), associated with the operator A in (1.2), if u is continuous in
[0, +∞)×RN , it is continuously differentiable once with respect to time and twice
with respect to the space variables in (0, +∞) × RN , and it satisfies the Cauchy
problem (HCP).

2.1. General preliminary results

Lemma 2.4. Let A be a m × n matrix. Then, there exists a n × m matrix C such
that

AC + C∗ A∗

is strictly positive definite if and only if n ≥ m and rank(A) = m. Let B be a m × n
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matrix. Then, there exists a n × m matrix C such that

C B + B∗C∗

is strictly positive definite if and only if m ≥ n and rank(B) = n. In such a case,
we can take C = B∗.

Proof. Suppose that the matrix AC + C∗ A∗ is strictly positive definite. Then, for
any ξ ∈ Rm \ {0} we have

0 < 〈(AC + C∗ A∗)ξ, ξ〉 = 2〈ACξ, ξ〉.
Hence, the matrix AC is not singular i.e. its rank equals m. Since rank(AC) ≤
min(rank(A), rank(C)) it follows that n ≥ m = rank(A).

Vice versa, let us assume that n ≥ m = rank(A). Moreover, let D ∈ L(Rn) be
an invertible matrix such that

AD = (
A1 A2

)
,

where A1 ∈ L(Rm) is invertible, A2 ∈ L(Rn−m, Rm). Let C̃ ∈ L(Rm, Rn) be the
matrix defined by

C̃ =
(

A−1
1 K

0

)
,

K ∈ L(Rm) being any strictly positive definite matrix. We set C = DC̃ and
observe that AC = ADC̃ = K . Hence, AC + C∗ A∗ = 2K is a positive definite
matrix.

Lemma 2.5. Let k, m, n ∈ N and let A(t) be the m × m square matrix defined by

A(t) =



A11tk A12tk+1 · · · A1ntk+n−1

...
. . .

. . .
...

...
. . .

. . .
...

A∗
1ntk+n−1 A∗

2ntk+n · · · Anntk+2n−2

 , t > 0,

where Ai j ∈ L(Rm j , Rmi ) (m1 + . . . + mn = m) and Aii = A∗
i i for any i =

1, . . . , n. Then, A(t) is positive definite for any t > 0 if and only if it is positive
definite at t = 1. In such a case, if for any ξ ∈ Rm we split ξ T = (ξ T

1 , · · · , ξ T
n )

with ξi ∈ Rmi , we have

〈A(t)ξ, ξ〉 ≥ λmin(A(1))

n−1∑
j=1

tk+2 j |ξ j |2, t > 0. (2.1)
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Proof. Of course, if A(t) is strictly positive definite for any t > 0, then, in partic-
ular, it is strictly positive definite at t = 1. Vice versa assume that A(1) is strictly
positive definite. For any t > 0 and any ξ = (ξ1, . . . , ξm) ∈ Rm , split as in the
statement of the lemma, let

ξ
T = (tk/2ξ T

1 , tk/2+1ξ T
2 , . . . , tk/2+n−1ξ T

n ).

Since 〈A(t)ξ, ξ〉 = 〈A(1)ξ , ξ〉, we deduce that A(t) is strictly positive definite and
we get (2.1).

Lemma 2.6. Suppose that Q = (qi j )
N
i, j=1 and A are non-negative definite N × N

square matrices. Further, assume that the submatrix Q0 = (qi j )
r
i, j=1 is strictly

positive definite and qi j = 0 if i ∨ j > r . Then

Tr (Q A) ≥ λmin(Q0)Tr (A1),

where A1 is the submatrix obtained from A by erasing the last N −r rows and lines.

Proof. Since Q0 is strictly positive definite, then there exist an orthogonal r ×
r square matrix B = (bi j ) and a diagonal matrix � = diag(λ1, . . . , λr ) such
that Q0 = B∗�B. This implies that the matrix B̃ ∈ L(RN ), defined by b̃i j =
bi j if 1 ≤ i, j ≤ r , b̃i j = δi j if i ∨ j > r , is orthogonal and B̃∗Q B̃ = �̃ =
diag(λ1, . . . , λr , 0, . . . , 0). Hence,

Tr (Q A) = Tr (B̃∗�̃B̃ A) = Tr (B̃−1�̃B̃ A) = Tr (�̃B̃ AB̃−1) = Tr (�̃B̃ AB̃∗).

We now observe that, since A is positive definite, then B̃ AB̃∗ =: (ci j ) is. This, in
particular, implies that c j j ≥ 0 for any j = 1, . . . , N . Therefore,

Tr (�B̃ AB̃∗) =
N∑

j=1

λ j c j j =
r∑

j=1

λ j c j j ≥ λ

r∑
j=1

c j j = λTr (B A1 B∗)

= λTr (B A1 B−1) = λTr (A1),

where λ = λmin(Q0), and the assertion follows.

2.2. Preliminaries on uniformly elliptic operators with unbounded coefficients
in RN

We now recall some basic results on the Cauchy problem

(HC P)

{
Dt u(t, x) = Au(t, x), t > 0, x ∈ RN ,

u(0, x) = f (x), x ∈ RN ,
(2.2)
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where f ∈ Cb(R
N ) and A is the uniformly elliptic operator defined on the smooth

functions ϕ by

Aϕ(x) =
N∑

i, j=1

qi j (x)Di jϕ(x) +
N∑

j=1

b j (x)D jϕ(x), x ∈ R
N ,

which satisfies

N∑
i, j=1

qi j (x)ξiξ j ≥ ν(x)|ξ |2, x, ξ ∈ R
N , (2.3)

for some function ν : RN → R with infx∈RN ν(x) = ν0 > 0. If we assume that

H1) qi j , b j ∈ Cδ
loc(R

N ) for some δ ∈ (0, 1) and qi j (x) = q ji (x) for any i , j =
1, . . . , N and any x ∈ RN ,

it can be shown that the problem (2.2) admits a classical solution

u ∈ C1+δ/2,2+δ

loc ((0, +∞) × R
N ),

which is bounded and continuous in R+ × RN (see [18, Theorems 4.2 & 4.5]).
Without any additional assumption on the coefficients, in general the function u is
not the unique classical bounded solution to problem (2.2) (see [18], [2, Chapters 2
and 3] [9, Section 5.2] for examples of nonuniqueness). If we also assume

H2) there exist λ > 0 and a function ϕ ∈ C2(RN ) such that lim|x |→+∞ ϕ(x) = +∞
and

sup
x∈RN

(Aϕ(x) − λϕ(x)) < +∞,

then the classical bounded solution to (2.2) is unique, as the following maximum
principle shows.

Proposition 2.7. Suppose that (2.3) and assumptions H1-H2 hold true and let u :
[0, T ] × RN → R (T > 0) be a bounded classical solution of the Cauchy problem{

Dt u(t, x) = Au(t, x) + g(t, x), (t, x) ∈ (0, T ) × RN ,

u(0, x) = f (x), x ∈ RN ,
(2.4)

where f ∈ Cb(R
N ) and g ∈ C((0, T ) × RN ). If g(t, x) ≤ 0 for any (t, x) ∈

(0, T ) × RN , then

sup
x∈RN

u(t, x) ≤ sup
x∈RN

f (x), t ∈ [0, T ]. (2.5)
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Similarly, if g(t, x) ≥ 0 for any (t, x) ∈ (0, T ) × RN , then

inf
x∈RN

u(t, x) ≥ inf
x∈RN

f (x), t ∈ [0, T ]. (2.6)

In particular, if g ≡ 0, then

‖u(t, ·)‖∞ ≤ ‖ f ‖∞, t ∈ [0, T ]. (2.7)

Proof. The proof is similar to that of [15, Proposition 2.1]. Nevertheless for the
reader convenience, and since in the sequel we need to adapt it to the degenerate
case, we are forced to give a detailed proof. We restrict ourselves to proving (2.5),
since (2.6) can be obtained applying (2.5) to the function −u, and (2.7) is a straight-
forward consequence of (2.5) and (2.6). We first prove that if supRN f ≤ 0, then
sup[0,T ]×RN u ≤ 0. Without loss of generality, we can assume that supRN (Aϕ −
λϕ) < 0. Indeed, if this is not the case, we replace ϕ with ϕ + C for a suitable
constant C > 0.

Let v(t, ·) = e−λt u(t, ·) for any t ∈ [0, T ]. A straightforward computation
shows that v is a classical bounded solution to the differential equation Dtv =
(A−λ)v+e−λt g, satisfying v(0, ·) = f . For any k ∈ N, let vk : [0, T ]×RN → R

be defined by

vk(t, x) = v(t, x) − 1

k
ϕ(x), (t, x) ∈ [0, T ] × R

N .

Let us observe that

lim
k→+∞ sup

[0,T ]×RN
vk = sup

[0,T ]×RN
v.

Moreover, since v is bounded and ϕ(x) tends to +∞ as |x | tends to +∞, there exists
a sequence {(tk, xk)}k∈N ⊂ [0, T ] × RN such that vk(tk, xk) = sup(0,T )×RN vk for
any k ∈ N. Hence

sup
[0,T ]×RN

v = lim
k→+∞ vk(tk, xk).

If tk = 0 for any k sufficiently large, we are done. Indeed, in such a situation

sup
[0,T ]×RN

v = lim
k→+∞ vk(0, xk) = lim

k→+∞

(
f (xk) − 1

k
ϕ(xk)

)
≤ 0,

since f ≤ 0 and ϕ is bounded from below. It follows that sup[0,T ]×RN u ≤ 0 as
well. So, let us assume that tk > 0 for infinitely many k. Then, we can find out a
subsequence {(tnk , xnk )}k∈N such that Dtvnk (tnk , xnk ) ≥ 0 and Avnk (tnk , xnk ) ≤ 0.
Since Dtvk = Dtv and Avk = Av − 1

kAϕ, we deduce that

λvnk (tnk , xnk ) ≤ (λ + Dt − A) vnk (tnk , xnk )

= (λ + Dt − A) v(tnk , xnk ) + 1
nk

(A − λ)ϕ(xnk )

= e−λtnk g(tnk , xnk ) + 1

nk
(A − λ)ϕ(xnk ),



266 LUCA LORENZI

and the last side of the previous chain of inequalities is negative since both g and
(A − λ)ϕ are. Hence, sup[0,T ]×RN vnk ≤ 0 and as above, letting k go to +∞, we
deduce that u is nonpositive in [0, T ] × RN .

To prove (2.5) in its generality, it suffices to apply the previous result to the
function ũ : [0, T ] × RN → R defined by ũ(t, x) = u(t, x) − supx∈RN f for any
(t, x) ∈ [0, T ] × RN . This concludes the proof.

The family of bounded operators {T (t)}t≥0 defined by T (t) f = u(t, ·) for
any f ∈ Cb(R

N ) and any t > 0, where u is the classical solution to (HCP), gives
rise to contractive semigroup of linear operators in Cb(R

N ). A straightforward
consequence of (2.6) yields that {T (t)}t≥0 is order preserving, namely

f1, f2 ∈ Cb(R
N ), f1 ≤ f2 �⇒ T (t) f1 ≤ T (t) f2, t ≥ 0. (2.8)

{T (t)}t≥0 is not strongly continuous in Cb(R
N ), and in general, is not analytic

neither in Cb(R
N ) nor in BUC(RN ). Moreover, the following property holds:

If { fn}n∈N ⊂ Cb(R
N ) is a bounded sequence such that lim

n→∞ fn = f ∈
Cb(R

N ) uniformly in B(0, k) for any k > 0, then lim
n→∞ T (·) fn = T (·) f

uniformly in [0, T ] × B(0, k) for any T, k > 0.

(2.9)

We refer the reader to [2, 8, 18] for the proofs of the previous results.
One of the possible methods to construct the classical solution u to (HCP) (and,

hence the semigroup {T (t)}t≥0) consists in seeing it as the “limit” (as R tends to
+∞) of the solutions u R to the Dirichlet Cauchy problems

Dt u R(t, x) = Au R(t, x), t > 0, x ∈ B(0, R),

u R(t, x) = 0, t > 0, x ∈ ∂ B(0, R),

u R(0, x) = ηR(x) f (x), x ∈ B(0, R),

where ηR is any C∞
0 (RN ) smooth function such that ηR ≡ 1 in B(0, R/2) and ηR ≡

0 outside B(0, R). The function u R is defined by u R(t, ·) = TR(t)(ηR f ), where
{TR(t)}t≥0 is the (analytic) semigroup associated with the realization in C(B(0, R))

of the operator A with homogeneous Dirichlet boundary conditions. This is the
approach followed in [3].

We now provide some global estimates for T (·) f and its derivatives up to
the third order, when the coefficients of the drift are linear (i.e. we assume that
bi (x) = ∑N

i, j=1 bi j x j , for some matrix B) and the diffusion coefficients satisfy
suitable regularity and growth assumptions at infinity. Such results will be used in
the next section to prove our estimates. The proof that we provide is similar to the
one in [3, Theorem 3.3]. Hence, we just sketch it.

Theorem 2.8. Suppose that the coefficients qi j =q ji ∈Ck+δ
loc (RN ) (i, j = 1, ..., N )

for some k = 0, 1, 2, 3 are such that qi j = 0 if i ≤ r , j > r , qi j ∈ Ck
b(RN )
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(i, j = r + 1, . . . , N ) and qi j (i, j = 1, . . . , r) satisfy assumptions (2.3) and

N−r∑
i, j=1

qi+r j+r (x)ξiξ j ≥ ν1|ξ |2, ξ ∈ R
N−r , (2.10)

for some positive constant ν1. Further assume that

|Dαqi j (x)|≤C0|x |(1−|α|)+√
ν(x), x ∈R

N , i, j =1, . . . , r, |α|≤k, (2.11)

for some positive constant C0, and that bi (x) = ∑N
j=1 bi j x j (i = 1, . . . , N ) for

some N × N square matrix B.
Let T (·) f be the solution to problem (2.2) corresponding to f ∈ C j

b (RN )

( j ∈ N, j ≤ k). Then, for any T > 0 there exists a positive constant C̃ = C̃T such
that

3∑
j=0

t ( j−k)+/2‖D j T (t) f ‖∞ ≤ C̃‖ f ‖Ck(RN ), t ∈ (0, T ]. (2.12)

Remark 2.9. Since qi j (i, j = 1, . . . , r ) need to satisfy both (2.10) and (2.11), the
qi j ’s and ν (i, j = 1, . . . , r ) may grow at most as |x |2 as |x | tends to +∞.

Remark 2.10. Due to the previous remark, it is immediate to check that if A is as
in the statement of the theorem, then there exist λ > 0 and a (Lyapunov) function
ϕ ∈ C2(RN ) satisfying the assumption H2 of this section. It suffices to take ϕ(x) =
1 + |x |2 for any x ∈ RN and λ = 2Cr2 + 2‖B‖. Therefore, for any f ∈ Cb(R

N ),
T (·) f is the unique classical solution to problem (2.4) (with g = 0).

Remark 2.11. Since we are assuming different growth condition on the coeffi-
cients qi j (i, j = 1, . . . , N ), neither the estimates of [15, Theorem 2.4] nor those
of [3, Theorem 3.3] may be applied to our situation. Indeed, the quoted esti-
mates to be applied need that the modulus of the derivatives of the diffusion co-
efficients of A should be estimated by Cν(x) where, at any x ∈ RN , ν(x) is the
minimum eigenvalue of the matrix Q = (qi j ). In our situation ν = ν0 ∧ ν1.
Hence, to apply the quoted result the coefficients qi j (i, j = 1, . . . , N ) should
grow at infinity at most linearly, while our result can be applied also to coeffi-
cients which grow faster at infinity. For instance, Theorem 2.8 covers the case
where Q = (qi j ) ∈ L(R4), q11(x) = q22(x) = (1/2 + |x |2)3/5 + (1 + |x |2)4/5,
q12(x) = q21(x) = −(1/2 + |x |2)3/5 + (1 + |x |2)4/5, qi j = δi j , i, j = 3, 4.

Remark 2.12. In the following section we apply Theorem 2.8 in the particular case
where qi j (x) = εδi j for any i, j ≥ r + 1.

Proof of Theorem 2.8. We restrict ourselves to showing (2.12) in the case where
(k, l) = (0, 3), the other cases being similar and even easier. Without loss of gen-
erality, we can assume that 1 = ν0 := infx∈RN ν(x).
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Let ϕ ∈ C∞
b (R) be a nonincreasing function such that ϕ(t) = 1 for any t ∈

(−1/2, 1/2), ϕ(t) = 0 for any t ∈ R \ (−1, 1). With any R > 0 we associate the
function ηR : RN → R defined by ηR(x) = ϕ(|x |/R). Of course η ∈ C∞

b (RN ),
ηR = 1 in B(0, R/2) and η = 0 outside the ball B(0, R).

Denote by v the function defined by

vR(t, x) = |u R(t, x)|2 + atη2
R(x)|Du R(t, x)|2 + a2t2η4

R(x)|D2u R(t, x)|2
+ a3t3η6

R(x)|D3u R(t, x)|2,
for any t ∈ [0, T ] and any x ∈ B(0, R) where u R(t, x) = TR(t) f (x). To simplify
the notation, in the sequel we simply write (u, v, η) instead of (u R, vR, ηR).

Classical results on parabolic equations in bounded domains show that v is
continuous in [0, T ]× B(0, R) (the continuity of v can also be checked by adapting
the proof of the forthcoming Theorem 2.13) and it solves the Cauchy problem

Dtv(t, x) = Av(t, x) + g(t, x), t ∈ [0, T ], x ∈ B(0, R),

v(t, x) = 0, t ∈ [0, T ], x ∈ ∂ B(0, R),

v(0, x) = ( f (x))2, x ∈ B(0, R),

where g(t, x) = ∑5
j=1 g j (t, x), for any t > 0 and any x ∈ B(0, R), with

g1 = −2
N∑

i, j=1

qi j Di u D j u − 2atη2
N∑

i, j,h=1

qi j Dihu D jhu

−2a2t2η4
N∑

i, j,h,k=1

qi j Dihku D jhku − 2a3t3η6
N∑

i, j,h,k,l=1

qi j Dihklu D jhklu,

g2 = aη2|Du|2 + 2a2tη4|D2u|2 + 3a3t2η6|D3u|2,

g3 = −2at
(
|Du|2 + 6atη2|D2u|2 + 15a2t2η4|D3u|2

) N∑
i, j=1

qi j DiηD jη,

g4 = −2atη
(
|Du|2 + 2atη2|D2u|2 + 3a2t2η4|D3u|2

)
Aη

−8atη
N∑

i, j,h=1

qi j D jηDhu Dihu − 16a2t2η3
N∑

i, j,h,k=1

qi j D jηDhku Dihku

−24a3t3η5
N∑

i, j,h,k,l=1

qi j D jηDhklu Dihklu

+2atη2
N∑

j,h=1

b jh D j u Dhu + 4a2t2η4
N∑

j,h,k=1

b jh D jku Dhku

+6a3t3η6
N∑

j,h,k,l=1

b jh D jklu Dhklu,
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g5 = 2atη2
N∑

i, j,h=1

Dhqi j Dhu Di j u + 4a2t2η4
N∑

i, j,h,k=1

Dhqi j Dhku Di jku

+6a3t3η6
N∑

i, j,h,k,l=1

Dhqi j Dhklu Di jklu + 2a2t2η4
N∑

i, j,h,k=1

Dhkqi j Di j u Dhku

+6a3t3η6
N∑

i, j,h,k,l=1

Dhkqi j Di jlu Dhklu

+2a3t3η6
N∑

i, j,h,k,l=1

Dhklqi j Di j u Dhklu.

Using the ellipticity assumption on qi j we get

g1≤−2̃ν|Du|2 − 2atη2ν|D2
#,1u|2 − 2atη2ν1|D2

#,2u|2 − 2a2t2η4ν|D3
#,1u|2

−2a2t2η4ν1|D3
#,2u|2 − 2a3t3η6ν|D4

#,1u|2 − 2a3t3η6ν1|D4
#,2u|2, (2.13)

where ν̃ = 1 ∧ ν1, and g3 ≤ 0. Here, to simplify the notation, we have denoted by
Dk

#,1u (resp. Dk
#,2u) (k = 2, 3) the vectors whose entries are the k-order derivatives

∂ku

∂xi1 . . . ∂xik

with i j ≤r for some j =1, . . . , k (resp. i j >r for any j =1, . . . , k).

To estimate the function g4 we observe that, by virtue of our assumptions on
the coefficients qi j , it can be easily shown that ν(x) ≤ C2

0 |x |2 for any x ∈ RN .
Therefore, by H2, |qi j (x)| ≤ C3

0 |x |2 for any x ∈ RN and any i, j = 1, . . . , N .
Now, a straightforward computation shows that

∣∣Aη(x)
∣∣ ≤ C1,

∣∣(Q(x)Dη(x))i
∣∣ ≤ C1

{ √
ν(x), if i ≤ r,

1, if i > r,
(2.14)

for any x ∈ RN and some positive constant C1. Taking (2.14) into account and
recalling that for any a, b, ε > 0 it holds that ab ≤ (4ε)−1a2 + ε2b2, we can now
show that

g4 ≤ 2at
(
C1 + C1

N
ε

+ ‖B‖) |Du|2
+4atη2

(
2C1ε + at (C1 + ‖B‖) + atC1

N
ε

) (
ν|D2

#,1u|2 + |D2
#,2u|2

)
+2a2t2η4

(
8C1ε + 3at (C1 + ‖B‖) + 3atC1

N

ε

) (
ν|D3

#,1u|2 + |D3
#,2u|2

)
+ 24a3t3C1εη

6
(
ν|D4

#,1u|2 + |D4
#,2u|2).

(2.15)
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The term g5 can be estimated similarly, taking (2.11) into account, and it gives

g5 ≤ atC2
N 2

2ε
|Du|2

+atC2 N

{
2ε + 2at N + at

N

ε
+ a2t2 N 2

2ε

}
η2

(
ν|D2

#,1u|2 + |D2
#,2u|2

)
+a2t2C2 N

(
4ε + 3at

N

2ε
+ 6at N + 2atεN

)
η4

(
ν|D3

#,1u|2 + |D3
#,2u|2

)
+6a3t3η6C2εN

(
ν|D4

#,1u|2 + |D4
#,2u|2),

(2.16)

where C2 = max{C, ‖Dqi j‖∞, i, j = r + 1, . . . , N }. From (2.13), (2.15) and
(2.16) we get, for any t ∈ [0, T ],

g ≤
{

−2̃ν + a

[
1 + 2T ‖B‖ + 2C3T

(
1 + N

ε
+ N 2

4ε

)]}
|Du|2

+2a

{
− ν̃ + εC3(4 + N ) + a

[
1 + 2T ‖B‖

+C3T

(
2+ N

2ε
(4 + N ) +N 2+ aT

N 3

4ε

) ]}
tη2

(
ν|D2

#,1u|2 + |D2
#,2u|2

)
+a2

{
− 2̃ν + 4C3ε(4 + N ) + a

[
3 + 6T ‖B‖

+C3T

(
6+3

N

2ε
(4 + N ) + 2N 2(3 + ε)

) ]}
t2η4(ν|D3

#,1u|2+ |D3
#,2u|2)

+2a3 [−ν̃ + 3C3ε(2 + N )] t3η6(ν|D4
#,1u|2 + |D4

#,2u|2),
where C3 := C1 ∨ C2. A straightforward computation shows that we can choose
(a, ε), independent of R, and such that g(t, x) ≤ 0 for any t ∈ [0, T ] and any
x ∈ B(0, R). The classical maximum principle yields

|v(t, x)| ≤ ‖ f ‖∞, (t, x) ∈ [0, T ] × B(0, R).

Now, (2.12) follows letting R go to +∞.

The following theorem guarantees the continuity of the functions (t, x) �→
t j/2(D j T (t) f )(x) at t = 0, for any j = 1, 2, 3 and any f ∈ Cb(R

N ). Its proof is
based upon property (2.9) and the interior estimates of [7] and [11].

Theorem 2.13. Under the same assumptions as in Theorem 2.8, if f ∈ Ck
b(RN )

(k = 0, 1, 2, 3), then the function (t, x) �→ t ( j−k)+/2(D j T (t) f )(x) is continuous
in [0, +∞) × RN for any j = 0, . . . , 3. In particular,

lim
t→0+ t ( j−k)+/2(D j T (t) f )(x) = 0, x ∈ R

N , j = 0, . . . , 3. (2.17)
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Proof. We begin the proof by checking (2.17) in the case where k > 0. We restrict
ourselves to dealing with the case where k = 1, since the other cases are similar
and even simpler.

We use a localization argument. For any x0 ∈ RN , let �′, � be two (suffi-
ciently smooth) bounded open neighborhoods of x0 such that �′ ⊂⊂ �, and let ϑ

be any C∞
0 (RN ) smooth function compactly supported in � and such that ϑ ≡ 1 in

�′. Since u is a classical solution to problem (2.2), the function v = ϑu turns out
to be a classical solution to the nonhomogeneous Cauchy problem

Dtv(t, x) = Av(t, x) + g(t, x), (t, x) ∈ R+ × �,

v(t, x) = 0, (t, x) ∈ R+ × ∂�,

v(0, x) = ϑ(x) f (x), x ∈ �,

where

g(t, x)=−u(t, x)Aϑ(x) − 2
N∑

i, j=1

qi j (x)Di u(t, x)D jϑ(x), (t, x) ∈ R+ × �.

Since the realization A� in C(�) of the operator A, with homogeneous Dirich-
let boundary condition, generates an analytic semigroup {T�(t)}t≥0 (see e.g. [13,
Corollary 3.1.21(ii)]), v is given by the usual variation of constants formula

v(t, ·) = T�(t)(ϑ f ) +
∫ t

0
T�(t − s)g(s, ·)ds, t > 0. (2.18)

Let us estimate separately the two terms in the right-hand side of (2.18). Of course,
without loss of generality, we can let t vary in (0, 1). Throughout the rest of the
proof, to simplify the notation, we denote by C positive constants, independent
of t ∈ (0, 1), which may vary from line to line. To begin with, we consider the
function T�(·)(ϑ f ). From the classical uniform estimates for parabolic problems
with regular coefficients in bounded domains, we know that for any T > 0 there
exists a positive constant C = C(T ) such that

‖D j T�(t)h‖C(�) ≤ C

t ( j−m)+/2
‖h‖Cm(�), t ∈ (0, 1), j = 1, 2, 3, (2.19)

for any h ∈ Cm(�) (m = 0, 1, 2). By [10, Theorem 5.2], if h ∈ C∞
b (RN ) has

compact support in �, then the function T�(·)h and its space derivatives up to the
third order are continuous up to t = 0. In particular, (DT�(t)h)|t=0 = Dh. Since
ϑ f ∈ C1

b(�) is compactly supported in �, we can determine a sequence {hn}n∈N ⊂
C∞

b (�) of smooth functions, with compact support in �, converging to ϑ f in
C1(�). Applying (2.19) with h = hn − ϑ f , we deduce that t ( j−1)/2 D j T�(·)hn
( j = 1, 2, 3) converges uniformly in [0, T ] × � to t ( j−1)/2 D j T�(·)(ϑ f ). This
implies that t ( j−1)/2 D j T�(·)(ϑ f ) ( j = 1, 2, 3) is continuous in [0, +∞) × � and
DT�(t)(ϑ f )|t=0 = D(ϑ f ) while, if j > 1, t ( j−1)/2 D j T�(ϑ f )|t=0 = 0.
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Let us now consider the integral term in (2.18). A straightforward computation
shows that

‖g(t, ·)‖Cm(�) ≤ C‖u(t, ·)‖Cm+1(�), t > 0, m = 0, 1, 2. (2.20)

Hence, taking (2.12) and (2.20) into account, we deduce that

‖g(t, ·)‖Cm(�) ≤ C

tm/2
‖ f ‖C1

b (RN ), t ∈ (0, 1), m = 0, 1, 2. (2.21)

Combining (2.19) and (2.21) (with m = 1) gives

t ( j−1)/2
∥∥∥∥D j

∫ t

0
T�(t−s)g(s, ·)ds

∥∥∥∥
C(�)

≤C‖ f ‖C1(�)t
( j−1)/2

∫ t

0
(t−s)−( j−1)/2s−1/2ds

≤C
√

t‖ f ‖C1(�),

for any t ∈ (0, 1), j = 1, 2.
By interpolation, from (2.19) and (2.21) (with k = 1, 2) we get

‖D3T�(t)h‖C(�) ≤
C

t1−α/2
‖h‖C1+α(�), ‖g(t, ·)‖C1+α(�) ≤ C

t (1+α)/2
‖ f ‖C1

b (RN ),

(2.22)

for any t ∈ (0, T ). Now, (2.22) yields

t

∥∥∥∥D3
∫ t

0
T�(t − s)g(s, ·)ds

∥∥∥∥
C(�)

≤ C‖ f ‖C1(�)t
∫ t

0
(t − s)−1+α/2s−(1+α)/2ds

≤ C
√

t‖ f ‖C1(�),

for any t ∈ (0, 1). Summing up, we have shown that the functions (t, x) �→
t ( j−1)/2 D jv(t, x) are continuous in [0, 1) × �. Moreover, Dv(0, ·) = ϑ f and
(
√

t D2v(t, ·))|t=0 = (t D3v(t, ·))|t=0 = 0. Since v ≡ u in R+ × �′ and ϑ ≡ 1 in
�′, we obtain that (2.17) (with k = 1) holds true at x = x0, and, by the arbitrariness
of x0, it holds true for any x ∈ RN .

To conclude the proof, we now check (2.17) in the case where k = 0. For this
purpose, we observe that the classical interior estimates of [7, Theorem 3.5] and
[11, Exercise 4.5] imply that if d(�′, �) > 1, then

sup
(t,x)∈�′

1

t1/2|(DT (t)h)(x)| + sup
(t,x)∈�′

1

t |(D2T (t)h)(x)|+ sup
(t,x)∈�′

1

t3/2|(D3T (t)h)(x)|

≤ C sup
(t,x)∈�1

|(T (t)h)(x)|, (2.23)

for any h ∈ Cb(R
N ) and some positive constant C = C(�, �′), independent of

h. Here, to simplify the notation, we set �1 = (0, 1) × �, �′
1 = (0, 1) × �′.

Now, with any f ∈ Cb(R
N ), we fix a sequence { fn}n∈N ∈ C1

b(RN ) of smooth
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functions converging in a dominated way to f as n tends to +∞. Applying (2.23)
with g = f − fn and taking (2.9) into account, we deduce that the function (t, x) �→
ψ j,n(t, x) := t j/2(D j T (t) fn)(x) ( j = 1, 2, 3) converges uniformly in �′

T to the
function (t, x) �→ ψ j (t, x) := t j/2(D j T (t) f )(x). By the previous results we

know that each ψn, j is continuous in �
′
T and it vanishes at t = 0. It follows that

ψ j ( j = 1, 2, 3) is continuous in �
′
T and it vanishes at t = 0, as well. Now, (2.17)

follows.

3. Existence and uniqueness results, and uniform estimates

In this section, the main body of the paper, we show that for any f ∈ Cb(R
N )

problem (HCP), where A is given by (1.2), admits a unique classical solution u f

(see Definition 2.3) and that the family of linear operators {T (t)}t≥0 ∈ L(Cb(R
N )),

defined by T (t) f = u f (t, ·) for any t ≥ 0, gives rise to a semigroup of linear
operators satisfying (1.3)-(1.8). Such a semigroup is not strongly continuous and,
in general, is not analytic. Moreover, the behaviour of the space derivatives of
T (t) f near t = 0 differs from the case where the semigroup is associated to a
uniformly elliptic operator in Cb(R

N ) (cf. Theorems 2.8 and 3.1).

3.1. Uniform estimates for the approximating semigroup {Tε(t)}t≥0

We begin this subsection observing that the coefficients of the operator Aε in (1.9)
satisfy the assumptions of Theorem 2.8. Therefore, by Remarks 2.9 and 2.10, for
any ε > 0, the Cauchy problem (HCPε) admits a unique bounded classical solution
uε. It follows that the semigroup {Tε(t)}t≥0 is well-defined and it satisfies (2.12)
and (2.17).

Our purpose in this section consists in showing that, for any ε > 0, {Tε(t)}t≥0
satisfies the estimates (1.3)-(1.8) with constants independent of ε. Such estimates
will be fundamental to solve the degenerate Cauchy problem (HCP) and, conse-
quently, to construct the semigroup {T (t)}t≥0. Before going on, let us introduce
some notation. At any x ∈ RN , we denote by Q(x) ∈ L(Rr ) the (strictly) positive
definite matrix defined by (Q(x))i j = qi j (x) for any 1 ≤ i, j ≤ r . Similarly, we de-
note by Q0(x) = (q0

i j (x)) ∈ L(RN ) the matrix defined as follows: q0
i j (x) = qi j (x)

if i, j ≤ r , q0
i j (x) = 0 otherwise. Moreover, by Qε(x) we denote the matrix dif-

fering from Q0(x) only in the diagonal elements qε
j j (x) ( j > r ) where qε

j j (x) = ε.
Using this notation, we can write

Au(x) = Tr(Q(x)D2u(x)) + 〈Bx, Du(x)〉,
Aεu(x) = Tr (Qε(x)D2u(x)) + 〈Bx, Du(x)〉,

for any x ∈ RN (see (1.2) and (1.9)).
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Next, for any integer k ∈ {2, 3, 4}, any k-tuple (i1, . . . , ik) with 1 ≤ i1 ≤ . . . ≤
ik ≤ N and any smooth function w, we set

Di1,... ,ik w = ∂kw

∂xi1 . . . ∂xik

.

Moreover, we set D∗,1w = (D1w, . . . , Drw) and D∗,2w = (Dr+1w, . . . , DN w).
Then, we introduce, instead of the corresponding tensors, the vectors Dk∗w (k =
2, 3, 4) consisting of all the derivatives Di1,... ,ik w ordered as follows: Di1,... ,ik w

precedes D j1,... , jk w if il ≤ jl , for any l = 1, . . . , k, and il0 < jl0 for some
l0 ∈ {1, . . . , k}, or { j1, . . . , jk} contains more indexes jl ≥ r + 1 than the set
{i1, . . . , ik}. Finally, we set Dk∗wT = ((Dk

∗,1w)T , . . . , (Dk
∗,k+1w)T ), where the

vector Dk∗, jw contains all the derivatives Dk
i1,... ,ik

w with ik+1− j ≤ r < ik+2− j

(when such inequalities are meaningful).
For instance, if N = 4, k = 3 and r = 2, then

D3
∗,1w = (D111w, D112w, D122w, D222w),

D3
∗,2w = (D113w, D114w, D123w, D124w, D223w, D224w),

D3
∗,3w = (D133w, D134w, D144w, D233w, D234w, D244w),

D3
∗,4w = (D333w, D334w, D344w, D444w).

Theorem 3.1. Let ε > 0 and assume that hypothesis H1-H3 are satisfied. Then,
for any k = 1, 2, 3 and any ω > 0, there exists a positive constant C = C(ω),
independent of ε, such that, for any ε > 0,

‖Dk∗, j Tε(t) f ‖∞≤Ceωt t−(k+2 j−2)/2‖ f ‖∞, t >0, j =1, . . . , k+1, f ∈Cb(R
N ).

(3.1)

Proof. As it has already been mentioned in the Introduction, we use the classical
Bernstein’s method to prove (3.1). We restrict ourselves to considering the case
where k = 3, the other cases being similar and even easier. We introduce the
function ξε : [0, +∞) × RN → R defined by

ξε(t, x) = 1

2
α3(uε(t, x))2 + 〈F(t)Duε(t, x), Duε(t, x)〉

+〈G(t)D2∗uε(t, x), D2∗uε(t, x)〉
+〈H(t)D3∗uε(t, x), D3∗uε(t, x)〉,

for any (t, x) ∈ R+ × RN , where

F(t)=
(

αt Ir 4t2 F1

4t2 F1 ιt3 IN−r

)
, G(t)=


t2 In1

r
0 0

0 α−7/16t4 Ir(N−r) α−4/5t5G1

0 α−4/5t5G∗
1 α−7/8t6 In1

N−r

 , (3.2)
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H(t) =


α−7/16t3 In2

r
0 0 0

0 α−7/8t5 I(N−r)n1
r

0 0

0 0 α−1t7 Irn1
N−r

α−13/12t8 H1

0 0 α−13/12t8 H∗
1 α−9/8t9 In2

N−r

 , (3.3)

for any t > 0. Here F1 is any matrix such that B3 F1 + F∗
1 B∗

3 is strictly negative def-
inite (this matrix exists by virtue of Lemma 2.4), −ι = λmax(B3 F1 + F∗

1 B∗
3 ); G1 ∈

L(R(N−r)(N−r+1)/2, Rr(N−r)), H1∈L(R(N−r)(N−r−1)(N−r−2)/6, Rr(N−r)(N−r−1)/2)

are suitable matrices (with entries independent of α) to be determined later on, as
well as the constant α. Finally, n1

m = m(m + 1)/2 and n2
m = m(m + 1)(m + 2)/6

for any m ∈ N.
We require that the matrices F(t), G(t) and H(t) are strictly positive definite

for any t > 0. By Lemma 2.5 it suffices to assume that F(1), G(1) and H(1) are
strictly positive definite and, as a straightforward computation shows, this is the
case if we assume that 

ια − 4‖F1‖2 > 0,

α−7/16 − α−4/5‖G1‖2 > 0,

α−17/8 − α−13/12‖H1‖2 > 0.

(3.4)

Thanks to Theorems 2.8 and 2.13, it is easy to check that the function ξε is a classi-
cal solution of the Cauchy problem

Dtξε(t, ·) = Aεξε(t, ·) + gε(t, ·), t > 0,

ξε(0, ·) = 1

2
α3 f 2,

where gε = ∑3
j=1 g j,ε and

g1,ε(t, x) = −α3〈Qε(x)Duε(t, x), Duε(t, x)〉
−2Tr(Qε(x)D2uε(t, x)F(t)D2uε(t, x))

−2
N∑

i, j=1

qε
i j (x)〈G(t)D2∗ Di uε(t, x), D2∗ D j uε(t, x)〉

−2
N∑

i, j=1

qε
i j (x)〈H(t)D3∗ Di uε(t, x), D3∗ D j uε(t, x)〉;

g2,ε(t, x) = 〈F ′(t)Duε(t, x), Duε(t, x)〉 + 〈G ′(t)D2∗uε(t, x), D2∗uε(t, x)〉
+〈H ′(t)D3∗uε(t, x), D3∗uε(t, x)〉
+〈(B F(t) + F(t)B∗)Duε(t, x), Duε(t, x)〉
+2〈G(t)[D2∗, 〈Bx, D〉]uε(t, x), D2∗uε(t, x)〉
+2〈H(t)[D3∗, 〈Bx, D〉]uε(t, x), D3∗uε(t, x)〉;
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g3,ε(t, x) = 2
r∑

i, j=1

Di j uε(t, x)〈F(t)Dqi j (x), Duε(t, x)〉

+2
r∑

i, j=1

〈G(t)[D2∗, qi j (x)Di j ]uε(t, x), D2∗uε(t, x)〉

+2
r∑

i, j=1

〈H(t)[D3∗, qi j (x)Di j ]uε(t, x), D3∗uε(t, x)〉.

Here by [A, B] we have denoted the commutator between the operators A and B.
Our aim consists in showing that there exists T0 > 0, independent of ε, such

that gε ≤ 0 in (0, T0] × RN . The maximum principle in Proposition 2.7 (see (2.5)),
will then imply that

ξε(t, x) ≤ 1
2α3( f (t, x))2, (t, x) ∈ (0, T0] × RN . (3.5)

Since we are assuming that the matrices F(t), G(t) and H(t) are strictly positive
definite for any t > 0, then, by (3.5), all the terms in the definition of ξε will turn
out to be bounded by 1

2α3 f 2 in (0, T0] × RN and, consequently, Lemma 2.5 will
imply that the estimate (3.1) is satisfied in (0, T0] with ω = 0 and C replaced with
a new constant C1. The semigroup rule then will allow us to extend the previous
estimate to all the positive times. Indeed, consider, to fix the ideas, the case when
k = 1. For any ω > 0, let Cω > C1 be such that

Cωt−(1/2+H(i−r))eωt ≥ C1, t ≥ T0, i = 1, . . . , N .

Then, for any t > T0, split uε(t, ·) = Tε(t) f = Tε(T0)Tε(t − T0) f . Since, as it has
been pointed out in Subsection 2.2, {Tε(t)}t≥0 is a semigroup of contractions, then

‖Di Tε(t) f ‖∞ = ‖Di Tε(T0)Tε(t − T0) f ‖∞
≤ C1T −1/2−H(i−r)

0 ‖Tε(t − T0) f ‖∞ ≤ Cωeωt‖ f ‖∞,

for any ε > 0, and (3.1) (with k = 1) follows with C = Cω.
So, let us prove that the parameter α and the matrices G1 and H1 can be fixed

such that gε ≤ 0 in (0, T0] × RN for some T0 > 0, independent of ε. For this
purpose, we begin by observing that, since the matrices F(t), (〈G(t)D2∗ Di uε(t),
D2∗ D j uε(t)〉)i j and (〈H(t)D3∗ Di uε(t), D3∗ D j uε(t)〉)i j are strictly positive definite,
then

g1,ε(t, x) ≤ g1,0(t, x), (t, x) ∈ R+ × R
N ,

where g1,0 is obtained from g1,ε replacing, at any x ∈ RN , the matrix Qε(x) with
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Q0(x). Now, Lemma 2.6 implies that

g1,0(t) ≤ −α3ν|D∗,1uε(t)|2 − 2ν

r∑
j=1

(D2uε(t)F(t)D2uε(t)) j j

−2ν

r∑
j=1

〈G(t)D2∗ D j uε(t), D2∗ D j uε(t)〉

−2ν

r∑
j=1

〈H(t)D3∗ D j uε(t), D3∗ D j uε(t)〉.

Hence, using properly the inequality

2αγ tβab ≤ αγ1 tβ1a2 + αγ2 tβ2b2 (2γ = γ1 + γ2, 2β = β1 + β2), (3.6)

holding for any α, a, b, t > 0, it follows that

g1,0(t) ≤−α3ν|D∗,1uε(t)|2 − 2αtν〈K1 D2∗,1uε(t), D2∗,1uε(t)〉−2ινt3|D2∗,2uε(t)|2
+‖K2‖ν(α1/2t |D2∗,1uε(t)|2 + α−1/2t3|D2∗,2uε(t)|2)
−2t2ν〈K3 D3

∗,1uε(t), D3
∗,1uε(t)〉−2α−7/16t4ν〈K4 D3

∗,2uε(t), D3
∗,2uε(t)〉

−2α−7/8t6ν|D3
∗,3uε(t)|2

+‖K5‖ν(α−3/5t4|D3
∗,2uε(t)|2 + α−1t6|D3

∗,3uε(t)|2)
−2α−7/16t3ν〈K6 D4∗,1uε(t), D4∗,1uε(t)〉
−2α−7/8t5ν〈K7 D4∗,2uε(t), D4∗,2uε(t)〉
−2α−1t7ν〈K8 D4∗,3uε(t), D4∗,3uε(t)〉 − 2α−9/8t9ν|D4∗,4uε(t)|2
+‖K9‖ν(α−49/48t7|D4∗,3uε(t)|2 + α−55/48t9|D4∗,4uε(t)|2)

≤ −α3ν|D∗,1uε(t)|2 + (−2α + α1/2‖K2‖)tν|D2∗,1uε(t)|2
+(−2ι + α−1/2‖K2‖)νt3|D2∗,2uε(t)|2 − 2t2ν|D3

∗,1uε(t)|2
+(−2α−7/16 + α−3/5‖K5‖)νt4|D3

∗,2uε(t)|2
+(−2α−7/8 + α−1‖K5‖)νt6|D3

∗,3uε(t)|2
−2α−7/16t3ν|D4∗,1uε(t)|2 − 2α−7/8t5ν|D4∗,2uε(t)|2
+(−2α−1 + α−49/48‖K9‖)νt7|D4∗,3uε(t)|2
+(−2α−9/8 + α−55/48‖K9‖)νt9|D4∗,4uε(t)|2,

(3.7)

where K1, K3, K4, K6, K7, K8 are suitable diagonal matrices whose minimum
eigenvalue is 1, whereas the entries of the matrices K2, K5 and K9 depend linearly
only on the entries of F1, G1 and H1, respectively. In particular, all the previous
matrices are independent of α.
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Throughout the rest of the proof, to simplify the notation, we denote by ot (tk)

(k ∈ R+ ∪ {0}) any function h, depending on t , and possibly on α, ‖G1‖, ‖H1‖, but
independent of x , such that limt→0 t−kh(t) = 0. Moreover, in the estimates for g2,ε

and g3,ε we write explicitly only the terms which are not negligible, as t tends to
0, with respect to the terms in the right-hand side of (3.7), and we use the notation
now introduced to denote all the other ones. For instance, if a term is negligible
with respect to −2ινt3|D2∗,2uε(t)|2, we simply denote it by ot (t3)ν|D2∗,2uε(t)|2, or

by ot (t3)|D2∗,2uε(t)|2, if it is independent of ν.
In order to estimate the function g2,ε we observe that

[D2∗, 〈Bx, D〉]uε(t,x)=LD2∗uε(t, x), [D3∗, 〈Bx, D〉]uε(t,x)=MD3∗uε(t, x),

x ∈ R
N ,

where

L =
 L1 L2 0

L3 L4 L5

0 L6 L7

 , M =


M1 M2 0 0

M3 M4 M5 0

0 M6 M7 M8

0 0 M9 M10

 , (3.8)

L j ( j = 1, . . . , 7) and M j ( j = 1, . . . , 10) being suitable matrices whose en-
tries linearly depend on the entries of B, but are independent of α, G1, H1. Using
properly inequality (3.6), it follows that

2〈G(t)[D2∗, 〈Bx, D〉]uε(t), D2∗uε(t)〉
≤ 2t2‖L1‖|D2∗,1uε(t)|2 + ‖L2‖(α1/2t |D2∗,1uε(t)|2 + α−1/2t3|D2∗,2uε(t)|2)

+α−4/5‖G∗
1‖‖L3‖

(
t2|D2∗,1uε(t)|2 + t8|D2∗,3uε(t)|2

)
+α−7/16‖L3‖

(
t2|D2∗,1uε(t)|2 + t6|D2∗,2uε(t)|2

)
+2α−7/16t4‖L4‖|D2∗,2uε(t)|2 + 2α−4/5t5‖G1‖‖L6‖|D2∗,2uε(t)|2
+‖L5‖(α−1/24t3|D2∗,2uε(t)|2 + α−5/6t5|D2∗,3uε(t)|2)
+α−4/5‖G1‖ (‖L4‖ + ‖L7‖)

(
t4|D2∗,2uε(t)|2 + t6|D2∗,3uε(t)|2

)
+α−7/8t6‖L6‖

(
|D2∗,2uε(t)|2 + |D2∗,3uε(t)|2

)
+α−4/5λmax(G

∗
1 L5 + L∗

5G1)t
5|D2∗,3uε(t)|2 + 2α−7/8t6‖L7‖|D2∗,3uε(t)|2

= {α1/2‖L2‖ + ot (1)}t |D2∗,1uε(t)|2

+{α−1/2‖L2‖ + α−1/24‖L5‖ + ot (1)}t3|D2∗,2uε(t)|2

+{α−4/5λmax(G
∗
1 L5 + L∗

5G1) + α−5/6‖L5‖ + ot (1)}t5|D2∗,3uε(t)|2,
(3.9)
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and, similarly,

2〈H(t)[D3∗, 〈Bx, D〉]uε(t), D3∗uε(t)〉
≤ ‖M2‖(α−1/8t2|D3

∗,1uε(t)|2 + α−3/4t4|D3
∗,2uε(t)|2)

+‖M5‖(α−1/2t4|D3
∗,2uε(t)|2 + α−5/4t6|D3

∗,3uε(t)|2)
+‖M8‖(α−43/48t6|D3

∗,3uε(t)|2 + α−53/48t8|D3
∗,4uε(t)|2)

+α−13/12t8λmax(H∗
1 M8 + M∗

8 H1)|D3
∗,4uε(t)|2 + ot (t

2)|D3
∗,1uε(t)|2

+ot (t
4)|D3

∗,2uε(t)|2 + ot (t
6)|D3

∗,3uε(t)|2 + o(t8)|D3
∗,4uε(t)|2

= {α−1/8‖M2‖ + ot (1)}|D3
∗,1uε(t)|2

+{‖M2‖α−3/4+ ‖M5‖α−1/2+ ot (1)}t2|D3
∗,2uε(t)|2

+{‖M5‖α−5/4 + ‖M8‖α−53/48 + ot (1)}t6|D3
∗,3uε(t)|2

+{‖M8‖α−53/48 + α−13/12λmax(H∗
1 M8 + M∗

8 H1) + ot (1)}t8|D3
∗,4uε(t)|2.

(3.10)

Therefore, from (3.9) and (3.10) and observing that

〈(4(B3 F1 + F1 B∗
3 )D∗,2uε(t), D∗,2uε(t)〉 ≤ −4ι|D∗,2uε(t)|2, t > 0,

we get
g2,ε(t) ≤ a1(t)|D∗,1uε(t)|2 + a2(t)|D∗,2uε(t)|2 + a3(t)|D2∗,1uε(t)|2

+a4(t)|D2∗,2uε(t)|2 + a5(t)|D2∗,3uε(t)|2 + a6(t)|D3
∗,1uε(t)|2

+a7(t)|D3
∗,2uε(t)|2 + a8(t)|D3

∗,3uε(t)|2 + a9(t)|D3
∗,4uε(t)|2,

(3.11)

where

a1(t) = α + 8‖C̃‖α1/2 + ‖B3‖α5/2 + ot (1),

a2(t) = {−ι + (8‖F1‖ + ‖B3‖)α−1/2 + ot (1)}t2,

a3(t) = {4 + α1/2‖L2‖ + ot (1)}t,
a4(t) = {4α−7/16 + α−1/2‖L2‖ + α−1/24‖L5‖ + ot (1)}t3,

a5(t) = {6α−7/8 + α−4/5λmax(G
∗
1 L5 + L∗

5G1) + α−5/6‖L5‖ + ot (1)}t5,

a6(t) = {15α−7/16 + α−1/8‖M2‖ + ot (1)}t2,

a7(t) = {10α−7/8 + ‖M2‖α−3/4 + ‖M5‖α−1/2 + ot (1)}t4,

a8(t) = {7α−1 + ‖M5‖α−5/4 + ‖M8‖α−53/48 + ot (1)}t6,

a9(t) = {9α−9/8 + ‖M8‖α−53/48 + α−13/12λmax(H∗
1 M8 + M∗

8 H1) + ot (1)}t8.
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Finally, we consider the function g3,ε and we observe that

[D2∗, qi j (x)Di j ]uε(t, x) = Di j uε(t, x)D2∗qi j (x) + N D3∗uε(t, x),

[D3∗, qi j (x)Di j ]uε(t, x) = Di j uε(t, x)D3∗qi j (x) + R(x)D3∗uε(t, x)

+S(x)D4∗uε(t, x),

where, for any x ∈ RN , the matrices N (x) ∈ L(Rn2
N , R

n1
N ), P(x) ∈ L(Rn2

N ) and
R(x) ∈ L(Rn3

N , R
n2

N ) (n3
N := N (N + 1)(N + 2)(N + 3)/24), split according to

the splitting of the vectors Dk∗uε (k = 2, 3, 4), are given by

N (x) =


N1(x) 0 0 0

N2(x) N3(x) 0 0

0 N4(x) 0 0

 ,

P(x) =


P1(x) 0 0 0

P2(x) P3(x) 0 0

P4(x) P5(x) 0 0

0 P6(x) 0 0

 , R(x) =


R1(x) 0 0 0 0

R2(x) R3(x) 0 0 0

0 R4(x) R5(x) 0 0

0 0 R6(x) 0 0

 ,

for any x ∈ RN , the entries of the matrices N j (x) ( j = 1, . . . , 4), Pj (x), R j (x)

( j = 1, . . . , 6) being linear combinations of the entries of the derivatives of the
diffusion coefficients qi j (x). In particular, they are independent of α, G1, H1 and
there exists a positive constant C2, independent of x , such that

‖Ni (x)‖ + ‖Pj (x)‖ + ‖R j (x)‖≤C2

√
ν(x), x ∈R

N , i =1, ..., 4, j =1, ..., 6.

Hence, using properly the inequality (3.6) (where now a and b are given, respec-
tively, by

√
ν|Dk∗,i uε| and |Dm∗, j uε| for suitable i, j, k, m), and taking assumption

H2 into account, it is easy to check that

g3,ε(t) ≤ ot (1)|D∗,1uε(t)|2 + ot (t2)|D∗,2uε(t)|2
+ot (t)ν|D2∗,1uε(t)|2 + ot (t3)ν|D2∗,2uε(t)|2
+ot (t5)|D2∗,3uε(t)|2 + ot (t2)ν|D3

∗,1uε(t)|2
+ot (t4)ν|D3

∗,2uε(t)|2 + ot (t6)ν|D3
∗,3uε(t)|2

+ot (t8)|D3
∗,4uε(t)|2 + ot (t3)ν|D4∗,1uε(t)|2

+ot (t5)ν|D4∗,2uε(t)|2 + ot (t7)ν|D4∗,3uε(t)|2,

(3.12)
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for any t > 0. Summing up, from (3.7), (3.11) and (3.12) we deduce that

gε(t) ≤ {−α3ν + oα(α3) + ot (1)}|D∗,1uε(t)|2

+{−ι + oα(1) + ot (1)}t2|D∗,2uε(t)|2

+{−2α + oα(α) + ot (1)}νt |D2∗,1uε(t)|2

+{−2ιν + oα(1)ν + ot (1)ν}t3|D2∗,2uε(t)|2

+{α−4/5λmax(G
∗
1 L5 + L∗

5G1) + oα(α−4/5) + ot (1)}t5|D2∗,3uε(t)|2

+{−2ν + oα(1) + ot (1)ν}t2|D3
∗,1uε(t)|2

+{−2α−7/16 + oα(α−7/16) + ot (1)}νt4|D3
∗,2uε(t)|2

+{−2α−7/8 + oα(α−7/8) + ot (1)}νt6|D3
∗,3uε(t)|2

+{α−13/12λmax(H∗
1 M8 + M∗

8 H1) + oα(α−13/12) + ot (1)}t8|D3
∗,4uε(t)|2

+{−2α−7/16ν + ot (1)ν}t3|D4∗,1uε(t)|2

+{−2α−7/8 + ot (1)}νt5|D4∗,2uε(t)|2

+{−2α−1 + oα(α−1) + ot (1)}νt7|D4∗,3uε(t)|2

+{−2α−9/8 + oα(α−9/8)}νt9|D4∗,4uε(t)|2, (3.13)

where by oα(α−k) (k ≥ 0) we have denoted any function h : R+ →R, depending on
α, and possibly on G1 and H1, but independent of t , such that limα→+∞ αkh(α)=
0. To prove that gε(t, x) ≤ 0 for any t in a right neighborhood of 0 (independent of
ε) and any x ∈ RN , we show that we can fix α, T0 > 0 and the matrices G1 and H1
so that all the terms in the right-hand side of (3.13) are negative in (0, T0]×RN . We
denote by â j (x) the coefficients which we obtain from the terms in curly brackets
in the right-hand side of (3.13), disregarding the terms of type ot (1). As a first step
we prove that we can fix α > 0 and the matrices G1 and H1 so that

sup
x∈RN

â j (x) < 0, j = 1, . . . , 9. (3.14)

Once (3.14) is proved, it will be an easy task to check that, we can fix T0 > 0 such
that the right-hand side of (3.13) is negative in (0, T0] × RN . An easy asymptotic
analysis shows that all the coefficients â j ( j = 1, . . . , 9) satisfy (3.14), for α >

0 sufficiently large, provided that G1 and H1 can be chosen so that the matrices
G∗

1 L5 + L∗
5G1 and H∗

1 M8 + M∗
8 H1 are strictly negative definite. By virtue of

Lemma 2.4 and assumption H1, this is the case if the ranks of the matrices L5 ∈
L(Rn1

N−r , Rr(N−r)) and M8 ∈ L(Rn2
N−r , R

rn1
N−r ) are, respectively, n1

N−r and n2
N−r .
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Straightforward computations show that, up to rearranging the rows, we can split
L5 and M8 into blocks (according to the splitting of the vectors D3∗uε, k = 3, 4) as
follows:

L5 = S0, M8 =



S0 0 · · · · · · 0

� S1 0 · · · 0

...
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

� · · · · · · � SN−r−1


,

where S j ∈ L(R
n1

N−r− j−1, Rr(N−r− j)) is given by

D j =



B j
3 0 · · · · · · 0

� B j+1
3 0 · · · 0

...
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

� · · · · · · � B N−r−1
3


, j = 0, . . . , N − r − 1,

B j
3 being obtained from B∗

3 by removing the first j columns. Here and above by “�”
we denote suitable matrices whose entries depend linearly only on the entries of B3.
Since, by the assumption H3, rank(B3) = N − r , it follows, due to the particular
structure of the matrices L5 and M8, that rank(L5) = n1

N−r and rank(M8) = n2
N−r .

Hence, from the second part of Lemma 2.4, we deduce that, if we set G1 = −L5,
and H1 = −M8, then the matrices G∗

1 L5 + L∗
5G1 and H∗

1 M8 + M∗
8 H1 are strictly

negative definite. Therefore, we can fix α > 0 such that (3.14) holds. Moreover,
up to choosing a larger α, we can assume that conditions (3.4) are satisfied. Then,
fixing T0 sufficiently small, we obtain that gε ≤ 0 in (0, T0] × RN and F(t), G(t)
and H(t) are strictly positive definite for any t > 0. By the above remarks this
concludes the proof.

As in the non-degenerate case, the more the initial datum is regular, the more
we can improve the estimates of the derivatives of Tε(t) near t = 0. We state this
fact in the following theorem.

Theorem 3.2. Under the same assumptions of Theorem 3.1, for any k = 2, 3 and
any ω > 0, there exists a positive constant C = C(ω), independent of ε, such that
for any ε > 0

‖Dk∗, j Tε(t) f ‖∞ ≤ Ceωt t−(2( j−h−1)++k−h)/2‖ f ‖Ch
b (RN )

, (3.15)

t > 0, j ≤ k + 1, h ≤ k, f ∈ Ch
b (RN ).
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Proof. Since the proof is close to that of Theorem 3.1, we just sketch it, pointing
out the main differences. We confine ourselves to proving (3.15) when k = h = 3,
the other cases being similar and even simpler. Let us introduce the function ξ3,ε :
[0, +∞) × RN → R defined by

ξ3,ε(t, x) = 1

2
α3(uε(t, x))2 + 〈F Duε(t, x), Duε(t, x)〉

+〈G D2∗uε(t, x), D2∗uε(t, x)〉 + 〈H D3∗uε(t, x), D3∗uε(t, x)〉,
(3.16)

for any (t, x) ∈ R+ × RN , where F = F(1) (with F1 being replaced with (‖B4‖ +
1)F1), G = G(1) and H = H(1) (see (3.2), (3.3)) with G1 = −L5, H1 = −M8
(where L5 and M8 are given by (3.8)) and α is to be determined later on. Using
Theorem 2.13 we can show that ξ3,ε is continuous up to t = 0. Furthermore,
straightforward computations show that ξ3,ε satisfies

Dtξ3,ε(t, ·) = Aεξ3,ε(t, ·) + ĝε(t, ·), t >0,

ξ3,ε(0, ·)= 1

2
α3 f 2+〈F D f, D f 〉+〈G D2∗ f, D2∗ f 〉 + 〈H D3∗ f, D3∗ f 〉,

where ĝε = ∑3
j=1 ĝ j,ε. Here, the functions ĝ j,ε ( j = 1,2,3) are obtained from the

functions g j,ε in the proof of Theorem 3.1 by replacing everywhere (F(t),G(t),H(t))
by (F, G, H) and disregarding the terms containing the matrices F ′, G ′ and H ′.

The proof now follows the same ideas of the proof of Theorem 3.1. The func-
tion ĝ1,ε can be estimated by the right-hand side of (3.7) where we set t = 1 and
G1 = −L5, H1 = −M8. As far as the functions ĝ2,ε and ĝ3,ε are concerned, we
write explicitly only the terms which are not negligible as α tends to +∞ with re-
spect to the terms in (3.7) and simply write oα(αk) (k ≥ 0) to denote the remaining
ones. Hence, using properly inequality (3.6) (with β = 0) and arguing as in the
proof of (3.11) and (3.12), we get

ĝ2,ε(t) + ĝ3,ε(t) ≤ −ι|D∗,2uε(t)|2 − 2α−4/5λmin(L∗
5 L5)|D2∗,3uε(t)|2

−2α−13/12λmin(M∗
8 M8)|D3

∗,4uε(t)|2 + oα(α3)|D∗,1uε(t)|2

+oα(1)|D∗,2uε(t)|2 + oα(α)|D2∗,1uε(t)|2

+oα(1)|D2∗,2uε(t)|2 + oα(1)|D2∗,3uε(t)|2
+oα(1)|D3

∗,1uε(t)|2 + oα(α−7/16)|D3
∗,2uε(t)|2

+oα(α−7/8)|D3
∗,3uε(t)|2 + oα(α−13/12)|D3

∗,4uε(t)|2
+oα(α−7/16)ν|D4∗,1uε(t)|2 + oα(α−7/8)ν|D4∗,2uε(t)|2

+oα(α−1)ν|D4∗,3uε(t)|2,
(3.17)
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for any t > 0. Therefore, from (3.7) (with t = 1, G1 = −L5 and H1 = −M8) and
(3.17), we obtain

ĝε(t) ≤ −{α3ν + oα(α3)}|D∗,1uε(t)|2 − {ι + oα(1)}|D∗,2uε(t)|2

−{2α + oα(α)}ν|D2∗,1uε(t)|2 − {2ι + oα(1)}ν|D2∗,2uε(t)|2

−{2α−4/5λmin(L∗
5 L5) + oα(α−4/5)}|D2∗,3uε(t)|2

−{2ν + oα(1)}|D3
∗,1uε(t)|2

−{2α−7/16 + oα(α−7/16)}ν|D3
∗,2uε(t)|2

−{2α−7/8 + oα(α−7/8}ν|D3
∗,3uε(t)|2

−{2α−13/12λmin(M∗
8 M8) + oα(α−13/12)}|D3

∗,4uε(t)|2

−2α−7/16ν|D4∗,1uε(t)|2 − 2α−7/8νt5|D4∗,2uε(t)|2

−{2α−1 + oα(α−1)}ν|D4∗,3uε(t)|2

−{2α−9/8 + oα(α−9/8)}ν|D4∗,4uε(t)|2. (3.18)

Now, from (3.18) and condition (3.4) (where we replace F1 by (‖B4‖ + 1)F1), it
follows that we can fix α > 0 such that F, G, H are strictly positive definite and
ĝε ≤ 0 in R+ × RN , implying that

‖Tε(t) f ‖C3
b (RN ) ≤ C0‖ f ‖C3

b (RN ), t ∈ (0, T0], f ∈ C3
b(RN ), (3.19)

for some positive T0 and some constant C = C(T0) > 0. The semigroup rule, then
allows us to extend (3.19) to all the positive times obtaining (3.15). Indeed, for any
t > T0, it suffices to split T (t) f = T (T0/2)T (t − T0/2) f observing that (3.1) and
(3.19) give

‖Tε(t) f ‖C3
b (RN ) ≤ C0‖T (t − T0/2) f ‖C3

b (RN ) ≤ C1eωt‖ f ‖C3
b (RN ),

for any ω > 0 and some positive constant C1 = C1(ω). To prove (3.15), with
k = 1, 2, we apply the previous arguments to the functions ξk,ε defined by

ξk,ε(t, x) = 1

2
α3u2

ε(t, x) + 〈F Duε(t, x), Duε(t, x)〉

+(k − 1)〈G D2∗uε(t, x), D2∗uε(t, x)〉, k = 1, 2,

for any t > 0, x ∈ RN , where F and G are as in (3.16).
Finally, to prove (3.15) with (h, k) = (1, 2) and with h = 1, 2, k = 3, it suf-

fices to repeat the previous arguments applied, respectively, to the functions ξ1,2,ε
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and ξ1,3,ε, ξ2,3,ε defined by

ξ1,k,ε(t, x) = ξ1,ε(t, x) + 〈G(t)D2∗uε(t, x), D2∗uε(t, x)〉
+(k − 1)〈H1(t)D3∗uε(t, x), D3∗uε(t, x)〉, k = 2, 3,

for any t > 0, x ∈ RN , and

ξ2,3,ε(t, x) = ξ2,ε(t, x) + 〈H2(t)D3∗uε(t, x), D3∗uε(t, x)〉, t > 0, x ∈ R
N ,

where

G(t)=


t In1

r
0 0

0 α−7/16t I(N−r)n1
r

−α−4/5t2L5

0 −α−4/5t2L∗
5 α−7/8t3 In1

N−r

 , t > 0;

Hk(t)=


α−7/16t3−k In2

r
0 0 0

0 α−7/8t3−k I(N−r)n1
r

0 0

0 0 α−1t7−3k Irn1
N−r

−α−13/12t8−3k M8

0 0 −α−13/12t8−3k M∗
8 α−9/8t3(3−k) In2

N−r

 ,

for any t > 0 (k = 1, 2), with α sufficiently large. Here, as in the proof of Theorem
3.1, we have set n1

m = (m − 1)m/2, n2
m = m(m + 1)(m + 2)/6 for any m ∈ N.

3.2. Construction of the semigroup

In this section we prove that, for any f ∈ Cb(R
N ), the Cauchy problem (HCP),

associated with the degenerate elliptic operator A in (1.2), admits a unique classi-
cal solution u f . This will allow us to define a semigroup of bounded operators in
Cb(R

N ) by setting T (t) f = u f (t, ·) for any t > 0. At the same time we also show
that the semigroup {T (t)}t≥0 satisfies the uniform estimates (1.3)-(1.8). The follow-
ing remark will be fundamental in order to prove our results, since it provides us an
useful maximum principles for the classical solution to Cauchy problem (HCP).

Remark 3.3. (maximum principle) Let us observe that the maximum principle as
stated in Proposition 2.7 holds true also when A is given by (1.2). Indeed, in the
proof of the quoted proposition we never took advantage of the fact that A was
uniformly elliptic. We just took advantage of the existence of a Lyapunov function
ϕ ∈ C2(RN ) such that supRN (Aϕ −λϕ) < +∞ for some λ > 0, and, as it is easily
seen, the function ϕ(x) = 1 + |x |2 is a Lyapunov function for the operator A.

Theorem 3.4. Under assumptions H1-H3, for any f ∈Cb(R
N ) there exists a unique

classical solution u to problem (HCP). Moreover, if we set u(t, ·) = T (t) f , the
family {T (t)}t≥0 is an order preserving semigroup of linear operators in Cb(R

N)

satisfying (1.3)-(1.8).
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Proof. We split the proof into several steps. First in Steps 1, 2 and 3 we prove
that, for any f ∈ Cb(R

N ), problem (HCP) admits a (unique) classical solution u f ;
we define the operator T (t) (t > 0) and we show that, for any compact set F ⊂
(0, +∞) × RN , Tε(·) f converges to T (·) f in C1,2(F) as ε tends to 0. Moreover,
we show that {T (t)}t≥0 is an order preserving semigroup in Cb(R

N ) and it satisfies
(1.3), (1.4), (1.6) (with k = 1, 2) and (1.7). Then in Steps 4 and 5, we show
that u f is thrice-continuously differentiable with respect to the space variables in
(0, +∞) × RN and T (t) satisfies the estimates (1.6) (with k = 3) and (1.8) (with
k = 0, 1, 2).

Throughout the proof, we consider the spaces B(I ; Ck
b(K )), Lip(I ; Ck

b(K ))

and Ch(I ; Ck
b(K )) where I ⊂ R is an interval, K = RN or K = B(0, m)

for some m > 0, and h ∈ (0, 1), k ≥ 0. These spaces are defined as fol-
lows. B(I ; Ck

b(RN )) is the space of all the functions u : I × K → R such that
‖u‖B(I ;Ck

b (K )) := supt∈[a,b] ‖u(t, ·)‖Ck
b (RN ) is finite. Lip(I ; Ck

b(K )) is the subset of

B(I ; Ck
b(K )) of all the functions u such that ‖u(t, ·) − u(s, ·)‖Ck

b (K ) ≤ C |t − s|
for any s, t ∈ I and some C ≥ 0. Finally, Ch(I ; Ck

b(K )) is the set of all the
u : I × K → R such that ‖u(t, ·) − u(s, ·)‖Ck

b (K ) ≤ C |t − s|h , for any s, t ∈ I and
some C ≥ 0.

Step 1. For any f ∈ Cb(R
N ) and any ε ∈ (0, 1], let uε = Tε(·) f be, as usual, the

solution to the Cauchy problem (HCPε). Using the estimates (1.4) and (1.5), we
deduce that {uε}ε>0 ⊂ B([T0, T ]; C3

b(RN )), for any 0 < T0 < T , with norm
independent of ε. Moreover, since Dt uε = Aεuε, then {Dt uε}ε∈(0,1) is equi-
bounded and equicontinuous in [T0, T ] × B(0, R) for any R > 0. It follows that
uε ∈ Lip([T0, T ]; C(B(0, R)))∩ B([T0, T ]×C3(B(0, R))). From [13, Proposition
1.1.4(i) & Corollary 1.2.19] we deduce that uε ∈C (1−α)/3([T0, T ]; C2+α(B(0, R)))

and Dt uε ∈ C (1−α)/3([T0, T ]; C(B(0, R))) with norms independent of ε. There-
fore, the families of functions {Dα

t Dβ
x uε}ε∈(0,1] (2α+|β| ≤ 2) are equibounded and

equicontinuous in [T0, T ] × B(0, R), for any 0 < T0 < T and any R > 0. Hence,
there exists an infinitesimal sequence {εn}n∈N such that uεn converges in C1,2(F),
for any compact set F ⊂ (0, +∞) × RN , to some function u f which, of course,
solves the differential equation Dt u f − Au f = 0.

We now assume that f ∈ C2
0(RN ) and prove that u f is continuous up to t = 0.

For this purpose, we observe that by [18, Proposition 4.3] we can write

(Tεn (t) f )(x) − f (x) =
∫ t

0
(Tεn (s)Aεn f )(x) ds, t > 0, x ∈ R

N .

Since {Tε(t)}t≥0 is a semigroup of contractions for any ε > 0, we get

‖Tεn (t) f − f ‖∞ ≤ sup
x∈RN

∫ t

0
|(Tεn (s)Aεn f )(x)|ds

≤ ‖Aεn f ‖∞t ≤ Ct‖ f ‖C2
b (RN ), t > 0,
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where C is a positive constant, independent of n. Letting n go to +∞, we deduce
that u f (t, ·) tends to f uniformly as t tends to 0. Hence, the function u f is a
classical solution to problem (HCP). Repeating the same arguments as above, and
taking Remark 3.3 into account, we can show that any sequence {uε′

n
}n∈N with ε′

n
vanishing as n go to +∞, admits a subsequence {uε′

nk
}k∈N converging to u f in

C1,2(F) for any F as above. This implies that Tε(·) f converges to u f in C1,2(F)

as ε tends to 0+.

Step 2. We now assume that f ∈ Cb(R
N ) has compact support, and let uεn =

Tεn (t) f be as in Step 1. Moreover, let { fm}m∈N ⊂ C2
b(RN ) be a sequence of

compactly supported functions converging to f in Cb(R
N ). We fix m ∈ N and

observe that, by Step 1, Tεn (t) fm converges to T (t) fm , locally uniformly in RN , as
n tends to +∞, for any t > 0. Writing (2.7) with u being replaced with Tεn (t) f −
Tεn (t) fm and then, letting n go to +∞, we get

‖u f (t, ·) − T (t) fm‖∞ ≤ ‖ f − fm‖∞, t > 0, m ∈ N. (3.20)

Hence, from (3.20) it follows that

‖u f (t, ·) − f ‖∞ ≤ ‖u f (t, ·) − T (t) fm‖∞ + ‖T (t) fm − fm‖∞ + ‖ fm − f ‖∞

≤ 2‖ f − fm‖∞ + ‖T (t) fm − fm‖∞,

for any t > 0 and any m ∈ N. Hence, by Step 1, u f (t, ·) tends to f uniformly
in RN as t tends to 0. This implies that the function u f is a classical solution to
problem (HCP). Then, with the same arguments as in Step 1, we can easily show
that Dα

t Dβ
x Tε(·) f converges to Dα

t Dβ
x T (·) f locally uniformly in (0, +∞) × RN

as ε goes to 0+, for any 2|α| + |β| ≤ 2.

Step 3. We now assume that f ∈ Cb(R
N ) and adapt to our situation the technique in

[6, Proposition 2.2]. We preliminarily observe that, by Proposition 2.7, Tε(t)1l = 1l
for any t > 0. Hence, T (t)1l is well-defined for any t > 0 and T (·)1l = 1l.

We now fix a compact set K ⊂ RN and a smooth function η compactly sup-
ported in RN such that η = 1l in K and 0 ≤ η ≤ 1l. By linearity and Step 2, we
easily see that, for any t > 0, the function T (t)(1l − η) is well-defined. Moreover,
since Tε(t)(1l − η) ≥ 0 for any t > 0 and any ε ∈ (0, 1) (see (2.8)), then

0 ≤ T (t)(1l − η) = 1l − T (t)η, t > 0.

By Step 2 we know that T (t)η tends to η, uniformly in RN . Therefore, T (t)(1l − η)

tends to 0 as t tends to 0, uniformly in K .
Let now uεn = Tεn (·) f and u f be as in Step 1. Since Tεn (t)(1l − η) f ) =

Tεn (t) f − Tεn (η f ) and η f is compactly supported in RN , then Tεn (t)(1l − η) f )

converges in C1,2(F) to u f (t, ·) − T (t)(η f ), for any compact set F ⊂ (0, +∞) ×
RN . Since the semigroup {Tε(t)}t≥0 is order preserving, then

|(Tεn (t)((1l − η) f ))(x)| ≤ ‖ f ‖∞ (Tεn (t)(1l − η))(x), t > 0, x ∈ R
N , n ∈ N,
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so that,

|u f (t, x) − (T (t)(η f ))(x)| ≤ ‖ f ‖∞ (T (t)(1l − η))(x), t > 0, x ∈ R
N .

It follows that u f (t, ·) − T (t)(η f ) vanishes uniformly in K , as t tends to 0. Since
T (t)(η f ) tends to f , uniformly in K , as t tends to 0, then u f (t, ·) converges to
f , as t tends to 0, uniformly in K . By the arbitrariness of K , u f turns out to be
continuous up to t = 0 and it is a classical solution to problem (HCP). Arguing
once more as in Step 1, we can then easily show that Dα

t Dβ
x Tε(·) f converges to

Dα
t Dβ

x T (·) f locally uniformly in (0, +∞) × RN as ε goes to 0.
Now, the estimates (1.3), (1.4), (1.6) (with k = 1, 2) and (1.7) easily follow

letting ε go to 0+ in (3.1), (3.15), recalling that the constants occuring in these last
estimates are independent of ε.

To conclude, we observe that the family of bounded operators {T (t)}t≥0,
T (0) = I , is an order preserving semigroup of linear operators in Cb(R

N ). To
check the semigroup rule, it suffices to notice that, for any f ∈ Cb(R

N ) and any
s > 0, both the functions u(t, ·) = T (t)T (s) f and v(t, ·) = T (t + s) f are classical
solutions to the Cauchy problem (HCP) with f replaced with T (s) f . Hence, from
Remark 3.3 we deduce that u ≡ v, i.e. T (t + s) f = T (t)T (s) f . The maximum
principle also implies that {T (t)}t≥0 is an order preserving semigroup.

Step 4. We now prove (1.5), (1.6) (with k = 3) and (1.8) (all of them in the
case where i ≤ r ), using a localization argument. Without loss of generality,
we can assume that f ∈ C3

b(RN ). Indeed, once (1.5) and (1.8) are established
for any f ∈ C3

b(RN ), then they can be extended, respectively, to the case where
f ∈ BUC(RN ) and f ∈ BUCk(RN ) (k = 0, 1, 2) by a density argument, ap-
proximating f ∈ BUCk(RN ) with a sequence of functions in C3

b(RN ), converg-
ing uniformly to f in BUCk(RN ). Here, BUCk(RN ) (k ∈ N) denotes the set
of all the functions f ∈ Ck

b(RN ) such that Dα f is uniformly continuous in RN

for any |α| = k. Finally, for a general f ∈ Ck
b(RN ), it suffices to split, for any

t > 0, T (t) f = T (t/2)T (t/2) f and apply the above results with f replaced
with T (t/2) f ∈ BUCk(RN ). Moreover, to prove the previous estimates, it suf-
fices to show that for any i ∈ {1, . . . , r} and any j, h ∈ {1, . . . , N }, the function
D jh T (t) f is continuously differentiable with respect to the i-th space variable.
Indeed, suppose for instance that i = 1, j ≤ r , h > r and f ∈ Cb(R

N ). Es-
timate (3.1) (with k = 3) implies that, for any x2, . . . , xN , the function x �→
(D jh Tε(t) f )(x, x2, . . . , xN ) is Lipschitz continuous in R and

[(D jh Tε(t) f )(·, x2, . . . , xN )]Lip(R) ≤ Ceωt t−5/2‖ f ‖Cb(RN ), t > 0,

for suitable C, ω > 0, independent of x2, . . . , xN . Since D jh Tε(t) f converges
to D jh T (t) f locally uniformly, then the function (D jh T (t) f )(·, x2, . . . , xN ) is
Lipschitz continuous in R as well, and

[(D jh T (t) f )(·, x2, . . . , xN )]Lip(R) ≤ Ceωt t−5/2‖ f ‖Cb(RN ), t > 0.
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Therefore, if D jh T (t) f is continuously differentiable with respect to the direction
e1, then the function Di jh T (t) f satisfies (1.8).

So, we fix i ≤ r and j, h ≤ N and we prove that the function D jhu =
D jh T (·) f is continuously differentiable in R+ × RN with respect to the i-th vari-
able. For this purpose, let ηR : RN → R be a smooth function compactly supported
in B(0, R) (R > 0) such that ηR ≡ 1 in B(0, R/2). For any k ∈ R, with |k| ≤ 1,
we introduce the operator τ k

h defined on Cb(R
N ) by

τ h
k ψ(x) = ψ(x + keh) − ψ(x)

k
, x ∈ R

N , ψ ∈ Cb(R
N ),

where eh is the h-th vector of the Euclidean basis of RN . Moreover, we set vh
ε,k,R =

τ h
k vε,R , where vε,R = uεηR and uε = Tε(·) f . As is easily seen, the function vh

ε,k,R
is the classical solution to the Cauchy problem Dtv

h
ε,k,R(t, x) = Aεv

h
ε,k,R(t, x) + gh

ε,k,R(t, x), (t, x) ∈ R+ × RN ,

vk
ε,h,R(0, x) = τ h

k (ηR f )(x), x ∈ RN ,

where, for any t > 0,

gh
ε,k,R(t, ·) = −τ h

k (uε(t, ·)AεηR) − 2
r∑

l,m=1

qlm Dluε(t, · + keh)τ h
k (DmηR)

−2
r∑

l,m=1

qlm(τ h
k Dluε(t, ·))DmηR

−2
r∑

l,m=1

(τ h
k qlm)Dluε(t, · + keh)DmηR(· + keh)

−2ε

N∑
m=r+1

Dmuε(t, · + keh)(τ h
k DmηR)

−2ε

N∑
m=r+1

(τ h
k Dmuε(t, ·))DmηR +

r∑
l,m=1

(τ h
k qlm)Dlmvε,R(t, ·)

+
N∑

l=1

blh Dlvε,R(t, ·). (3.21)

By [21, Theorem 3.5], vh
ε,k,R can be represented by

vh
ε,k,R(t, x) = (Tε(t)(τ

h
k (ηR f )))(x) +

∫ t

0
(Tε(t − s)gh

ε,k,R(s, ·))(x)ds, (3.22)

t > 0, x ∈ R
N .
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We are going to show that we can take the limit as ε tends to 0+ in (3.23) and write

vh
k,R(t, x) := (τ h

k u(t, ·))(x)ηR(x) = (T (t)(τ h
k (ηR f )))(x)

+
∫ t

0
(T (t − s)gh

k,R(s, ·))(x)ds, t > 0, x ∈ R
N , (3.23)

where gh
k,R is obtained from gh

ε,k,R by replacing uε with u and letting ε = 0 in
(3.21). Of course, thanks to the previous steps, it suffices to deal with the con-
volution term in (3.22). Since uε converges to u in C1,2(F) for any compact set
F ⊂ (0, +∞) × RN (see Step 1) and ηR is compactly supported in RN , then
the continuous function gh

ε,k,R converges uniformly in RN to the function gh
k,R as

ε tends to 0. This implies that, for any s, t > 0, Tε(t)g
h
ε,k,R(s, ·) converges to

T (t)gh
k,R(s, ·) locally uniformly in RN as ε tends to 0. Indeed, for any compact set

K ⊂ RN , we have

sup
x∈K

|(Tε(t)g
h
ε,k,R(s, ·))(x) − (T (t)gh

k,R(s, ·))(x)|

≤ sup
x∈K

|(Tε(t)g
h
ε,k,R(s, ·))(x) − (Tε(t)g

h
k,R(s, ·))(x)|

+ sup
x∈K

|(Tε(t)g
h
k,R(s, ·))(x) − (T (t)gh

k,R(s, ·))(x)|

≤ ‖gh
ε,k,R − gh

k,R‖∞ + sup
x∈K

|(Tε(t)g
h
k,R(s, ·))(x) − (T (t)gh

k,R(s, ·))(x)|,

and, by virtue of Step 1, the last side of the previous chain of inequalities vanishes
as ε tends to 0+. Moreover, since the semigroups {Tε(t)}t≥0 are contractive, then
Tε(·)gh

ε,k,R is bounded in [0, T ] × RN for any T > 0, uniformly with respect to
ε ∈ (0, 1). Therefore, letting ε go to 0+ in (3.22), by the dominated convergence
theorem, we get (3.23).

Next step consists in showing that we can let k go to 0 in (3.23) getting the
fundamental representation formula

DhvR(t, x) = (T (t)(Dh(ηR f )))(x) +
∫ t

0
(T (t − s)gh

R(s, ·))(x)ds, (3.24)

t > 0, x ∈ R
N ,

where

gh
R = −Dh(uAηR) − 2

r∑
l,m=1

qlm Dlu DmhηR − 2
r∑

l,m=1

qlm Dlhu DmηR

−2
r∑

l,m=1

(Dhqlm)Dlu DmηR +
r∑

l,m=1

(Dhqlm)DlmvR +
N∑

l=1

blh DlvR, (3.25)

and vR = uηR .
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The convergence of the integral term in (3.23) follows from the dominated
convergence theorem, since gh

k,R converges uniformly in RN to the function gh
R , as

k tends to 0. To show this it suffices to observe that, for any ψ ∈ C(RN ) such
that Dhψ ∈ C(RN ), the function τ h

k ψ converges to Dhψ locally uniformly in RN

as k tends to 0. Similarly τ h
k (ηR f ) and vh

k,R(t, ·) (t > 0) converge uniformly,
respectively, to Dh(ηR f ) and DhvR(t, ·) as k tends to 0.

Now, taking advantage of the representation formula (3.24), we can show that
the function DhvR is twice continuously differentiable in (0, T ) × RN with respect
to the i-th and j-th space variable, for any T > 0. To simplify the notation, in the
rest of the proof, we denote by C j positive constants which may depend on R, but
are independent of t , ε and k.

We begin by observing that, by interpolation, from (3.15) (with h = k =
2, 3) we deduce that Tε(·) f ∈ B((0, T ); C2+α

b (RN )) with norm independent of ε.
Therefore, letting ε go to 0, we get T (·) f ∈ B((0, T ); C2+α

b (RN )) as well and,
consequently, gh

R ∈ B((0, T ); Cα
b (RN )) for any α ∈ (0, 1).

Next, interpolating the estimates (1.4) and (1.7) we get

‖Di j T (t)ψ‖∞ ≤ C1t−3/4‖ψ‖
C5/6

b (RN )
, (3.26)

for any ψ ∈ Cα
b (RN ). The estimate (3.26) implies that the function s → ‖Di j T (t −

s)gh
R(s, ·)‖∞ is in L1(0, t). Hence, from (3.24) and Step 3, we immediately deduce

that the function DhvR is twice-continously differentiable with respect to the i-th
and j-th space variables in (0, T ) × RN . Since vR ≡ u in B(0, R/2) and R
is arbitrarily fixed, we deduce that Dhu is twice-continuously differentiable with
respect to the i-th and j-th space variables as well. The estimate (1.5) follows.

Step 5. We now show (1.5), (1.6) (with k = 3) and (1.8) in the case where
i, j, h > r . Repeating the same arguments as in Step 4, we easily see that it is
not restrictive to consider the case where f ∈ C4

b(RN ). We are going to prove
that the right-hand side of (3.24) defines a function which is twice continuously
differentiable in R+ × RN , with respect to space variables xi and x j . As a first

step, we show that gh
R ∈ B((0, T ); C3/2

b (RN )) for any T > 0. Of course, this
is the case if Dlmu ∈ B((0, T ); C3/2(B(0, R))) for 1 ≤ l ≤ r . To prove that
Dlmu ∈ B((0, T ); C3/2(B(0, R))) we use a bootstrap argument, first showing that
it belongs to B((0, T ); C1+θ/3

b (B(0, 2R))) for any θ ∈ (0, 1). For this purpose,
we replace the function ηR defined in Step 4, with the function η4R which satisfies
η4R = 1l in B(0, 2R). Interpolating (1.7) and (1.8) (with k = 1) we get

‖Dlm T (t)ψ‖
Cθ/3

b (RN )
≤ C2

t (θ+1)/2
‖ψ‖C1

b (RN ), t ∈ (0, T ), 1 ≤ l ≤ r,

for any ψ ∈ C1
b(RN ). It follows that the function t �→ ‖Dlm T (t)ψ‖

Cθ/3
b (RN )

is

integrable in (0, T ). Therefore, since by Step 4, T (·)ψ and Dlm T (·)ψ belong to
B((0, T ); C1

b(RN )) for any 1 ≤ l ≤ r , it follows that gh
4R ∈ B((0, T ); C1

b(RN )) as
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well and then, by (3.24), that Dlmu ∈ B((0, T ); C1+θ/3(B(0, 2R))), since v4R ≡ u
in R+ × B(0, 2R). Hence, by (3.25) (with R replaced with 2R) we deduce that
gh

2R ∈ B((0, T ); C1+θ/3
b (RN )) for any θ ∈ (0, 1). Now, we interpolate first (1.8),

respectively, with k = 1 and k = 2, and then (1.4) and (1.7), obtaining

‖Dlm T (t)ψ‖C1
b (RN ) ≤ C3

t2−θ/2
‖ψ‖

C1+θ/3
b (RN )

, t ∈ (0, T ), 1 ≤ l ≤ r, (3.27)

‖Dlm T (t)ψ‖∞ ≤ C4

t (3−θ)/6
‖ψ‖

C1+θ/3
b (RN )

, t ∈ (0, T ) 1 ≤ l ≤ r. (3.28)

Then, interpolating (3.27) and (3.28), yields

‖Dlm T (t)ψ‖
C1/2

b (RN )
≤ C5

t (15−4θ)/12
‖ψ‖

C1+θ/3
b (RN )

, t ∈(0, T ), 1≤ l ≤ r. (3.29)

Taking θ = 4/5 in (3.29), we easily see that the function s �→ ‖Dlm T (t −
s)gh

2R(s)‖
C1/2

b (RN )
is integrable in (0, T ). Hence, from formula (3.24) we deduce

that Dlmv2R ∈ B((0, T ); C3/2
b (RN )), and, eventually, we obtain that Dlmu ∈

B((0, T ); C3/2(B(0, R))), since v2R ≡ u in R+ × B(0, R).
Now, we are almost done. Indeed, interpolating (1.6) and (1.7), we easily see

that

‖Di j T (t)ψ‖∞ ≤ C6

t3/4
‖ψ‖

C3/2
b (RN )

, t ∈ (0, T ), i, j > r,

which, due to the above results, implies that the map s �→ ‖Di j T (t − s)gh
R(s, ·)‖∞

is integrable in (0, t). Therefore, from (3.24), we easily obtain that Di jku(t, ·) exists
for any t > 0.

Remark 3.5. In fact, in Step 2 of the proof of Theorem 3.4 we have shown that,
for any f ∈ C0(R

N ), T (t) f converges to f uniformly in RN as t tends to 0.
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