We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of . As a result we prove that for any even dimension there exists a unique compact arithmetic hyperbolic -orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We also study hyperbolic -manifolds defined arithmetically and obtain a number theoretical characterization of the smallest compact arithmetic -manifold.
@article{ASNSP_2004_5_3_4_749_0, author = {Belolipetsky, Mikhail}, title = {On volumes of arithmetic quotients of $SO (1, n)$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {749--770}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {4}, year = {2004}, zbl = {1170.11307}, mrnumber = {2124587}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2004_5_3_4_749_0/} }
TY - JOUR AU - Belolipetsky, Mikhail TI - On volumes of arithmetic quotients of $SO (1, n)$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 DA - 2004/// SP - 749 EP - 770 VL - Ser. 5, 3 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2004_5_3_4_749_0/ UR - https://zbmath.org/?q=an%3A1170.11307 UR - https://www.ams.org/mathscinet-getitem?mr=2124587 LA - en ID - ASNSP_2004_5_3_4_749_0 ER -
Belolipetsky, Mikhail. On volumes of arithmetic quotients of $SO (1, n)$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 4, pp. 749-770. http://www.numdam.org/item/ASNSP_2004_5_3_4_749_0/
[BG] The mass of unimodular lattices, J. Number Theory, to appear. | MR 2167969 | Zbl 1076.11025
- ,[BP] Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119-171; Addendum, ibid. 71 (1990), 173-177. | Numdam | MR 1019963
- ,[B] “Groups et Algèbres de Lie, chapitres IV, V et VI”, Paris, Hermann, 1968.
,[BT] Groupes réductifs sur un corps local, I; II, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251; 60 (1984), 5-184. | Numdam | MR 327923 | Zbl 0254.14017
- ,[BFPOD] Tables of number fields of low degree, ftp://megrez.math.u-bordeaux.fr/pub/numberfields/.
- - - - ,[CR] On the classification of maximal arithmetic subgroups of simply connected groups, Sb. Math. 188 (1997), 1385-1413. | MR 1481667 | Zbl 0899.20026
- ,[CF] The smallest arithmetic hyperbolic three-orbifold, Invent. Math. 86 (1986), 507-527. | MR 860679 | Zbl 0643.57011
- ,[CFJR] The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 1-40. | Numdam | MR 1882023 | Zbl 1008.11015
- - - ,[D] A hyperbolic -manifold, Proc. Amer. Math. Soc. 93 (1985), 325-328. | MR 770546 | Zbl 0533.51015
,[EM] Constructing hyperbolic manifolds, In: “Computational and geometric aspects of modern algebra (Edinburgh, 1998)”, London Math. Soc. Lecture Note Ser., No. 275, Cambridge Univ. Press, Cambridge, 2000, pp. 78-86. | MR 1776768 | Zbl 1016.57011
- ,[GHY] On an exact mass formula of Shimura, Duke Math. J. 107 (2001), 103-133. | MR 1815252 | Zbl 1023.11019
- - ,[Gi] Real tunnelling geometries, Classical Quantum Gravity 15 (1998), 2605-2612. | MR 1649661 | Zbl 0935.83016
,[Gr] On the motive of a reductive group, Invent. Math. 130 (1997), 287-313. | MR 1474159 | Zbl 0904.11014
,[H] Halbeinfache Gruppenschemata ber Dedekindringen, Invent. Math. 4 (1967), 165-191. | MR 225785 | Zbl 0158.39502
,[K] Sign changes in Harmonic Analysis on Reductive Groups, Trans. Amer. Math. Soc. 278 (1983), 289-297. | MR 697075 | Zbl 0538.22010
,[Le] “The eightfold way. The beauty of Klein's quartic curve”, Math. Sci. Res. Inst. Publ. 35, Cambridge Univ. Press, Cambridge, 1999. | MR 1722410 | Zbl 0991.11032
(ed.),[Lu] Lattice of minimal covolume in : a nonarchimedean analogue of Siegel’s theorem , J. Amer. Math. Soc. 3 (1990), 961-975. | MR 1070003 | Zbl 0731.22009
,[Od] Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), 119-141. | Numdam | MR 1061762 | Zbl 0722.11054
,[Ono] On algebraic groups and discontinuous groups, Nagoya Math. J. 27 (1966), 279-322. | MR 199193 | Zbl 0166.29802
,[Pl] On the maximality problem of arithmetic groups, Soviet Math. Dokl. 12 (1971), 1431-1435. | MR 292840 | Zbl 0252.20050
,[P] Volumes of -arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 91-117. | Numdam | MR 1019962 | Zbl 0695.22005
,[RT] Volumes of integral congruence hyperbolic manifolds, J. Reine Angew. Math. 488 (1997), 55-78. | MR 1465367 | Zbl 0873.11031
- ,[R] Die maximalen arithmetisch definierten Untergruppen zerfallender einfacher Gruppen, Math. Ann. 244 (1979), 219-231. | MR 553253 | Zbl 0426.20030
,[S] Cohomologie des groupes discrets, In: “Prospects in mathematics”, Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, 1971, pp. 77-169. | MR 385006 | Zbl 0235.22020
,[T] Reductive groups over local fields | MR 546588 | Zbl 0415.20035
,[V] On groups of unit elements of certain quadratic forms, Math. USSR-Sb. 16 (1972), 17-35. | Zbl 0252.20054
,[W] “Adèles and algebraic groups”, Birkhäuser, Boston, 1982. | MR 670072 | Zbl 0493.14028
,